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Abstract

Privacy is taking an increasingly prominent place in today’s digital world. People
wish to control their private information when interacting with websites on the
Internet. However, customer information is one of the keys to successful Internet
business. Internet companies wish to gather and use as much customer information
as possible in order to facilitate business, build competitive barrier and generate
profits. In the middle of the conflicting notions, privacy policy serves as the main
channel for the companies to disclose their practice for dealing with user’s private
information.

However, many surveys have shown that users seldom read the privacy policies
and the current mechanisms to present website privacy policies have not been
successful. The readability issue of privacy policies calls for automated ways of
privacy policy evaluation to assist users to quickly gain insights about the privacy
practice of the website.

This research addresses the present gap in the communication and under-
standing of privacy policies, by creating an automated privacy policy evaluation
framework that provides automatic categorization, analysis and grading of pri-
vacy policies. We advocate a machine learning approach towards privacy policy
evaluation and lay the fundamental basis for this new approach.

We present a privacy policy evaluation framework. The framework comprises
several core components, such as privacy policy paragraph categorization, pri-
vacy policy grading, share statement understanding, as well as some accessorial
components, such as privacy policy detection, search result extraction, text ex-
traction, visualization, and web application interface. We define the common
categories of privacy policies, label real-world privacy policies to form the datasets
and implement all the aforementioned components.

We investigate the application of text classification to categorize privacy policy
paragraphs. We present extensions to this categorization scheme, such as two-
layered classification, multi-label classification, grading and visualization. We
propose two approaches for the task of share statement understanding, each with
different variants. We extensively experiment with our proposed schemes and
approaches on the privacy policy datasets. Our study results demonstrate that the
machine learning approach is effective in building privacy policy evaluation systems
that serve the purpose to assist users to better understand the privacy policies.
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Chapter 1

Introduction

1.1 Background

Privacy is important and valuable for online users. In a recent survey1, 90% of

5,778 respondents (from the EU countries and the U.S.) feel that their personal

information, reputation and privacy are at risk on the Internet today. In another

recent survey [84], 94% of 1004 consumers (from the U.S.) consider online privacy

important. Consumers are willing to pay a premium if an e-commerce website

presents a prominent display of user-friendly privacy practices [104].

Even users care about their private information, the privacy policies do not

influence the user’s trust perception, mainly because users do not read privacy

policies [21]. A study under laboratory conditions shows that only 26% participants

read privacy policies and it is also believed that readership outside of laboratory

conditions is far lower [45]. Users do not read privacy policies due to the poor

readability. An online survey [62] of more than 700 participants tested privacy

policies in three formats and finally found that “participants were not able to

reliably understand companies privacy practices with any of the formats” and that

“all formats and polices were similarly disliked”. Most privacy policies are written at

a level that requires a college-level education and use specific domain terminology

that users are not familiar with [44, 62, 37].

Full text privacy policies in natural language form are still the de facto stand-

ard for presenting privacy policy information online [50], though there are many

solutions proposed to better present the privacy policies. Examples of these altern-

1http://www.slideshare.net/123people/123people-privacy-survey-final – 123people
online privacy survey results for Data Privacy Day on January 28th 2011.

http://www.slideshare.net/123people/123people-privacy-survey-final
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atives are the Platform for Privacy Preferences (P3P) [107], layered privacy notices

[30, 29], standardized table and short standardized table [50] and nutrition label

[49]. A common problem for all these alternatives is that their success heavily rely

on the adoption and co-operation from the websites.

There are two conflicting notions that create a gap between the privacy policy

research and real-world practice. On the one hand, current natural language

privacy policies have a widely criticized readability issue, due to the use of long

texts and complex legalistic phrases. This is the main reason why reading privacy

policies is both challenging and time consuming. On the other hand, it is unlikely

that the eco-system in the industry will change dramatically in near future, given

the natural language privacy policies are still prevailing after years of research

efforts on alternative presentations of privacy policies.

In short, many surveys have demonstrated that online users are highly concerned

about online privacy, yet current alternative mechanisms to natural language in

presenting privacy policies have not achieved major successes due to the present

gap between the current research directions and the real-world practice.

1.2 Research goals

In order to address the present gap, this master thesis project aims to apply a

generic machine learning approach to build automatic privacy policy evaluation

systems, which assist users in reading and understanding the privacy policies by

making it less challenging and time consuming.

The first goal of this thesis work is to build a privacy policy paragraph cat-

egorization system as well as its extensions such as privacy policy grading and

visualization. After this system is implemented, our objective is to test it on certain

datasets in order to prove the generic machine learning approach is effective for

privacy policy categorization and grading.

The second goal is to explore further applications of the machine learning

approach towards the privacy policy evaluation. Specifically, we aim to solve the

share statement understanding task using text classification, feature engineering

and similarity methods. In another word, this part of the work should serve the

purpose to demonstrate the potential of applying machine learning to further

tasks in privacy policy evaluation beyond the basic job of classifying privacy policy

paragraphs into different topics.
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Another goal of this work is to propose a generic framework with necessary

research facilities that support this thesis project work and related future work. We

aim to implement the utility programs, collect the privacy policies, manually label

the items and build the datasets for experimental evaluations.

1.3 Thesis outline

The rest of the thesis is constructed as follows:

Chapter 2 proposes an overall framework for the privacy policy evaluation

systems that apply the generic machine learning approach. It serves as an overview

of the architecture design of the work in this thesis project.

Chapter 3 first defines the categories of privacy policies topics. Then it presents

the topic classification system that categories privacy policies into the categories,

along with intensive experimental evaluations. Furthermore, it introduces several

extensions to the topic classification system.

Chapter 4 focuses on solving a specific task of share statements understanding,

using text classification and natural language processing techniques. Two families

of methods are presented, implemented and empirically evaluated.

Finally, Chapter 5 presents the conclusions, summarizes the contributions and

implications, as well as covers several future research directions.



Chapter 2

Project Design

This chapter describes the high-level deign of the work carried out throughout the

thesis project. Firstly, we present a general overview of the framework. Then, we

focus on several separate modules that are auxiliary components serving for the

core components in the framework.

2.1 Design of the framework

We propose an overall framework to apply the generic machine learning approach

to automatic privacy policy evaluation. This framework serves as the blueprint for

all the work in this thesis project and lays the groundwork for future development

as well. Figure 2.1 demonstrates the design of this framework. Its purpose is to

help the readers understand how every module contributes to the whole as well as

in what ways the procedures interfere one another.

There are three major parts of the whole framework. The first part consists of

the light green modules and red modules in the top of the diagram and the datasets.

We call this part the Input interface. The main function of this part is to receive

and process the inputs from outside world and finally form the labeled datasets of

privacy policies. The automated modules in light green color create a pipeline in

harvesting privacy policies from the Internet. The search result extraction module

first grasps the Google search results on keyword ‘privacy policy’ and passes it to

the privacy policy detection module. This module detects and selects the privacy

policies and further passes them to the text extraction module where the contents

of privacy policies are extracted. Besides, there are two manual processes colored

in red in the diagram, namely, the category extraction process and the labeling
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Figure 2.1: Design of the overall framework
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process. Finally, the items of privacy policies are labeled with the pre-defined

categories and put into datasets.

The second part of the framework is the Machine learning core. It uses the

datasets from the first part and applies the machine learning techniques to form

the classification models. This part is also the main subject of this thesis and the

research work in this thesis project.

The last part of the framework, the User interface, handles the interaction

between the systems and the users. It is comprised of the dark green and orange

colored modules in the diagram. Once a user browses a privacy policy webpage, the

detection module sends the page and the extraction module extracts the contents.

Then the classification models process this content and generate the results of

classification. Based on the classification results, further privacy policy evaluation

results, including privacy policy grading, topic-specific viewing and share statement

grading, are provided to the user.

To summarize, the framework defines a 3-layer architecture for automatic

privacy policy evaluation using machine learning approach. It consists of three

major layers – an input interface, a machine learning core and a user interface.
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Figure 2.2: High-level conceptual design of the framework
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Figure 2.2 is drawn to show this high-level conceptual architecture.

Where are all the components? Because each component in the framework has

different importance in our thesis work from a research point of view, this thesis

is not structured directly following the three layer architecture. As a report of a

piece of scientific research, it mainly focuses on the work of the machine learning

core part, yet only briefly covers the work in the other two parts. Here we provide

a quick mapping between the components in the framework and the sections in the

thesis, for the convenience of the users.

The accessorial components, including all the green modules in the diagram

2.1, are covered in section 2.2. Categories of privacy policy topic classification

and categories of share statements are presented in section 3.2 and section 4.1

respectively. Labeling is not covered in this thesis due to its simplicity from both

research and implementation viewpoints, however, we do provide the information

about the subjectivity test with regarding to the labeling process in section 3.3.1.

Privacy policy topic classification datasets are introduced in 3.3.1, the datasets of

share statements are covered in 4.4.1 and some the details of datasets are provided

in appendix B. Chapter 3 and Chapter 4 together cover the machine learning core

part of the framework. Privacy policy grading is presented in 3.4.3 and visualization

is covered in 3.4.4.
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2.2 Accessorial components

Before we jump into the discussion about topic classification of privacy policy, we

will first briefly cover a few functional modules on which the topic classification

depends. Namely, we will present the methods used for detecting and extracting

of privacy policy contents from web pages. Though may be taken as given, from

engineering point of view, these tasks are not entirely trivial and may systematically

effect the later steps of classification. Furthermore, we will also introduce the

datasets prepared for the experimental evaluations in this section.

2.2.1 Privacy policy detection

A privacy policy detector is an automatic program that distinguishes privacy policies

apart from other types of web pages. In an automatic privacy policy evaluation

system, the privacy policy detector is the first component in the streamline that

picks out privacy policy for further steps.

We choose to implement the detector as a Google Chrome extension, which

provides good use-friendliness and flexibility. The core scheme of the Chrome

privacy policy detector depends on the assumption that there are many specific

topics in privacy policies. The implementation is based on regular expression.

Particularly, when the Google Chrome browser loads a web page, the privacy

policy detector, as a Chrome extension, fetches the contents through Chrome

API1 and carries out an efficient run over all the contents so as to match the

predefined regular expressions. These predefined regular expressions exploit

commonly observed patterns in different topics of the privacy policy. Then the

Chrome extension counts and calculates if the contents in the web page hit enough

matches of the predefined regular expressions so that to cumulate a matching score

higher than a certain threshold. If so, the detector judges the web page as a privacy

policy page. The detector then displays a notification bar in the Chrome browser

and triggers further processing steps.

Though it is a simple Chrome extension, the detector is very effective with high

accuracy, as shown in table 2.1, and low computational cost, due to the application

of standard regular expression library for the regex based scoring scheme. For

the test set consists of about 900 test cases, which are retrieved from Google

1API manual at http://code.google.com/chrome/extensions/api_index.html

http://code.google.com/chrome/extensions/api_index.html
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Table 2.1: Privacy policy detector - evaluation results on 934 full-text
privacy policy dataset

Item # In-class(%) Overall(%)
Whole dataset 934
Valid items1 904
Non summary items 875 100.00
Privacy policy 796
True positive 742 93.22 84.80
False negative 54 6.88 6.17
Non privacy policy 79
True negative 63 79.75 7.20
False positive 16 20.25 1.83
Privacy policy summary 29
Detected 15 51.72
Undetected 14 48.28

1: Exclude non-HTML or unaccessible pages

search results on keyword ‘privacy policy’, the detector provides up to 92% overall

accuracy (combining true positive and true negative). If a web page is a privacy

policy, the detector shows 93.22% accuracy in judging it correctly. Moreover, given

the fact that all test cases are highly related to privacy issues, the 79.25% accuracy

for judging a non-privacy policy correctly is also very reasonable.

The user interface of this Chrome extension is demonstrated in figure 2.3. When

a privacy policy is detected, a notification bar right under the address bar pops up.

When the page is not detected as a privacy policy, the extension works quietly in

the back-end.

2.2.2 Search result extraction

Gathering the raw inputs, the privacy policies, for our research is a repetitive

and labor-intensive task for manual processing. Therefore, we build a module to

automatically retrieve the search results from Google. After we define a keyword,

e.g. ‘privacy policy’, all 1000 search results from Google are retrieved as urls. Then

the webpages are opened given these urls, and contents are saved. To point out,

Google sets a hard limitation and only 1000 results are available on each search

keyword. We apply a Python library called xgoogle2 as the core of this module.

2http://www.catonmat.net/blog/python-library-for-google-search/

http://www.catonmat.net/blog/python-library-for-google-search/
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Figure 2.3: Screenshot of the privacy policy detector

2.2.3 Text extraction

After the detector judges a web page as privacy policy, the next step, before any

topic classification occurs, is to extract the main contents of the privacy policy out

of the web page. Article text extractor, as its name indicates, is the utility that is

capable of distinguishing and extracting the parts of web page which represent

an article apart from other common website building blocks like menus, headers,

footers, advertisements, etc. Even though it is easy for humans to distinguish

the differences, it is still a challenge for a program to detect the main article

automatically in the web page.

Different methods have been proposed during the past few years as a respond

to the growing demands from web scraping, web/text mining and article reading

utilities practice. Kohlschütter et al. [52] propose a text classification based

approach that applies shallow text features. Methods using ext-to-tag ratio [106],

vision-based page segmentation [16] and maximum subsequence segmentation

[75] have been proposed as well.

We apply three libraries in our implementation to extract the main contents
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of privacy policies from web pages - Boilerpipe 3, which is a Java library that

implements the method described in [52], html2text4, which is a Python library

that converts an HTML page into clean, easy-to-read plain ASCII text, and lxml5,

which is a parser for processing XML and HTML in Python.

3http://code.google.com/p/boilerpipe/
4http://www.aaronsw.com/2002/html2text/
5http://lxml.de/

http://code.google.com/p/boilerpipe/
http://www.aaronsw.com/2002/html2text/
http://lxml.de/


Chapter 3

Topic Classification

3.1 Overview

In this chapter, we study the application of machine learning techniques to cat-

egorize the privacy policy paragraphs. We call this process ‘Topic classification’,

expressing the nature that privacy policy paragraphs are categorized into specific

topics. This privacy policy paragraph classification system is one of the two parts of

the machine learning core of our automatic privacy policy evaluation framework.

Besides the major research goal of building the topic classification system, we

also aim to cover the extensions of this system, such as privacy policy grading func-

tionality, multi-label and two-layered classification extensions, and visualization of

the classification results.

Figure 3.1 demonstrates the overview of the topic classification system. From

data perspective, items in the datasets are pre-processed to form the input of the

learning phase, where classifiers learn on the training datasets. In the validating

phase, classification models are selected. Based on the topic classification models,

further extended functionalities are implemented.

The figure is also the general storyline of this chapter. First of all, we cover

the definition of categories of topic classification in 3.2 and introduce the related

datasets in 3.3.1. Following that, we describe the pre-processing methods of the

topic classification in 3.3.2. Then in 3.3.4 and 3.3.5, we briefly introduce the

classifiers and ensemble methods, and then test them on the validation dataset in

order to choose the best classification models. Finally in 3.3.6, we test the best

models on the test dataset. In section 3.4, we present the extensions of the basic

topic classification system.
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Figure 3.1: Topic classification overview
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3.2 Categories

In this section, we define the categories of the topic classification of privacy policy

paragraphs. First we present the sources of the categories in a survey manner, and

then we list and introduce the actual categories of the topic classification.

3.2.1 Sources of categories

There are two major sources of information for defining the categories – the relevant

legislations and the common practice in writing privacy policies.

Legal basis In 1995 the European Union introduced the Data Protection Directive

[73], officially Directive 95/46/EC on the protection of individuals with regard

to the processing of personal data and on the free movement of such data, for its

member states. The Directive regulates the processing of personal data and sets

principles relating to many aspects of the protection of personal data. For example,

Section II of the Directive lays down the principles for processing special data,

Section IV sets the principle for informing the data subject, Section V defines the

data subject’s right of access to data, Section VIII is about the confidentiality and

security of processing, and Chapter IV - Transfer of personal data to third countries

defines limitations on the transfer, processing and storage of the user’s information

in third countries outside of the EU.
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As a preceding effort before the EU 1995 Directive, the Organization for Eco-

nomic Cooperation and Development (OECD) issued its guidelines on the protection

of privacy and trans-border flows of personal data [80] in 1980’s so as to create a

comprehensive data protection system throughout its member countries. It covers

principles for protection of personal data such as notice, purpose, consent, security,

disclosure, access and accountability.

As a result of the Directive, many organizations outside of EU began to draft

policies to comply with the Directive. U.S. Federal Trade Commission (FTC) pub-

lished the Fair Information Practice Principles [18] which sets principles for the com-

mercial use of personal information and covers categories such as notice/awareness,

choice/consent, access/participation, integrity/security, enforcement/redress and

so on.

The Chapter IV - Transfer of personal data to third countries of the EU 1995

Directive requires “the third country in question ensures an adequate level of

protection” when personal data is to be transferred outside to countries outside of

EU. However, there are differences in the legislative practice between EU and other

parts of the world [38, 91], for example, the United States does not have a specific

federal regulation establishing universal implementation of privacy policies. Some

exceptions to this rule in the Directive are provided. The US-EU Safe Harbor [24],

which was developed by the US Department of Commerce, is such a streamlined

process for US companies to comply with the Directive if the companies adhere to

the 7 principles outlined in the Directive. In particular, these principles are notice,

choice, onward transfer, which form the basis for the category ‘Sharing’, security,

data integrity, access and enforcement.

There are also policies and laws which pose regulations and concerns to the

privacy of specific group of people or specific matters. These policies also lead

to special practice in drafting the privacy policies. For instance, the Children’s

Online Privacy Protection Act [19], effective April 21, 2000, applies to the online

collection of personal information from children under 13 and forms the basis

for the category of ‘Children’. The EU 2006/24/EC Directive [74] deals with the

regulation of some important specific privacy-related issues such as confidentiality

of information, treatment of traffic data, spam and cookies. In the US, some

states have implemented strict regulations for privacy policies. An example is the

California Online Privacy Protection Act of 2003 (“OPPA”) [1].

The paper [41] serves as a comprehensive survey of current regulations on
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privacy protection.

Common practice in privacy policies Though not mandating policy, the prin-

ciples set in the above introduced legislations provide guidance for drafting privacy

policies. In order to comply to these policies, there are common practice and even

niche market formed. For example, after the Safe Harbor Program worked out

by US Department of Commerce, the FTC has approved eTrust1 to certify stream-

lined compliance with the US-EU Safe Harbor2. Online Certification programs

are another example of industry self-regulation of privacy policies. They require

implementation of fair information practice as determined by the certification

program and may require continued compliance monitoring. TRUSTe3, eTrust, and

Webtrust4 are some examples of the seal providers.

In practice, there are some other common contents that are normally stated in

privacy policies but not explicitly covered by guidelines and principles stated in

the legal policies. For example, it is quite common for a website to warn the users

about the privacy risk caused by the links to third party websites, to notify the users

about third party advertisements and related privacy risks, to state about possible

updates of the privacy policy, or to provide contact of the company for inquires or

complaints. Another instance is the privacy of location data. With the prevalence

of wireless mobile Internet services and location-based social networking services,

the privacy issue about location information is gaining more and more attentions

and becomes one special category of content in privacy policies.

3.2.2 Core categories

There are four categories that are the main components of privacy policies (see

section 3.2.1 for details about the sources of categories):

• Category of ‘Collection’ discloses how the company5 may collect information

from the users. Normally, it covers the methods of information collection and

descriptions of the information collected. Though ‘collection’ is not directly
1The Electronic Trust foundation (eTrust) is an organization promotes the online privacy through

the establishment of best practice and policy. http://www.etrust.org/.
2http://en.wikipedia.org/wiki/Privacy_policy
3TRUSTe is one of the leading online privacy solution providers. http://www.truste.com/.
4http://www.webtrust.org/
5We will use the term ‘website’ and the term ‘company’ interchangeably when referring to the

party who publishes the privacy policy.

http://www.etrust.org/
http://en.wikipedia.org/wiki/Privacy_policy
http://www.truste.com/
http://www.webtrust.org/
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addressed by any specific section or article in the directives, it is generally

covered throughout these legislations.

• Category of ‘Sharing’ states whether the website will share user’s inform-

ation. If so, further statements will normally be provided to answer the

questions such as under what conditions will the information be shared and

to whom will the information be transferred? The disclosure part of the OECD

guidelines is the legal basis of this category.

• Category of ‘Choice and Access’ provides very useful information about

user’s privacy choices, such opt-out options and user’s rights to access, amend,

modify and/or delete the information collected by the website. Section V

of EU Directive 95/46/EC is a direct basis of this category. Choice/consent

and access/participation in the FTC’s Fair Information Practice Principles are

also closely related to this category. Similarly, consent and access in OECD

guidelines are also related.

• Category of ‘Security’ summarizes the website’s practice and standard in

protecting user’s information. It may refer to the security technologies applied

by the website, as well as to the company policies that regulate the employees’

practices. Section VIII of EU Directive 95/46/EC is a basis of this category.

This category also relates to the security parts of the OECD guidelines and

FTC’s Fair Information Practice Principles.

3.2.3 Supporting categories

Besides the four core categories introduced above, we also define another 12

categories which act as supporting categories that provide further information about

the website’s privacy practice. These categories can be sorted into two general

types, namely, positive supporting categories and neutral supporting categories.

It is important to point out that the difference between the core categories and

supporting categories is solely decided by the amount of content and a category’s

role in the whole privacy policy. Core categories are the major components of

privacy policies and are considered as must-have items in any relatively well-

formed privacy policy, while supporting categories are considered to be extra

disclosure of information. However, the importance of each category is subject to

personal interpretation.
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Positive supporting categories Positive supporting categories are the categories

that, if appear in a privacy policy, bring positive implications. If a privacy policy

contains paragraphs that belong to these positive supporting categories, the privacy

policy is considered to be more trustworthy, or at least, this shows the website’s

positive attitudes in taking user’s privacy seriously and providing more detailed

information about its privacy practice.

• Category of ‘Children’ discloses the company’s policy regarding the collection

and use of personal information about children. It is closely related to the

Children’s Online Privacy Protection Act.

• Category of ‘TRUSTe’ states the website has been awarded TRUSTe’s Privacy

Seal signifying that this privacy policy and practice have been reviewed

by TRUSTe for compliance with TRUSTe’s Privacy Program Requirements

available at TRUSTe.com including transparency, accountability and choice

regarding the collection and use of user’s personal information. This category

is defined due to the common practice in the industry.

• Category of ‘Safe Harbor’ provides status of a website’s participation in and

self-compliance with the U.S.-EU/Swiss Safe Harbor Framework as set forth

by the U.S. Department of Commerce regarding the collection, use, and

retention of data from European Union member countries and Switzerland.

Clearly, U.S.-EU/Swiss Safe Harbor Framework is the direct basis for this

category.

• Category of ‘Link to outside websites’ generally provides notification and

warning to users about the hyperlinks to other third party websites which the

privacy policy under concern does not cover. This category is defined due to

the common practice in the industry.

• Category of ‘California Privacy Rights’ states the specific rights for Califor-

nia residents to request information regarding the disclosure of personal

information by the website to third parties. The legal basis of this category is

the California Online Privacy Protection Act.

Neutral supporting categories In addition to the categories introduced above,

there are other supporting categories which simply provide further information
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about the website’s privacy practice. However, in the occurrence of such categories,

whether or not the content is positive for the user is unknown without knowing the

details.

• Category of ‘Retention’ describes the website’s practice in retaining user’s

personal data. In general, the details may cover the purpose(s), duration

and reason(s) of the retention of personal data. Article 15 in Directive

2002/58/EC addresses the issue of retention period of user’s personal inform-

ation.

• Category of ‘Processing’ acknowledges the users about the technology aspect

of personal information processing. It provides information about where the

personal data is transferred to, stored and processed. From legal aspect, it is

of particular interest to residents who live outside of the country where data

is sotred and processed. Chapter IV of EU Directive 95/46/EC is a basis of

this category.

• Category of ‘Cookies’ explains the website’s use of cookies and other relevant

technologies, such as web beacons and flash cookies. It may also state the

purpose(s) of applying cookies and types of information stored by the cookies.

This category is closely related to the EU 2006/24/EC Directive.

• Category of ‘Advertising’ discloses whether the company displays third party

advertisements on the website, or its own advertisements administered by

third party advertiser. If so, further information about whether and how

personal information will be shared to the advertiser may be provided. This

category is defined due to the common practice in the industry.

• Category of ‘Change’ states how the company will manage the updates

of privacy policy, whether and how the users will be informed in case of

substantial revisions. This category is defined due to the common practice in

the industry.

• Category of ‘Location’ explains the specific privacy practice regarding user’s

location information. This category is defined due to the common practice in

the industry.
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• Category of ‘Contact’ provides company’s contact information in case user

has further queries with regard to user’s privacy. This category is defined due

to the common practice in the industry.

3.3 Basic topic classification

In this section, we study the classification of privacy policy, i.e. categorizing

contents of privacy policy into the topic categories as defined in previous section.

This classification task is the core component of the automatic privacy policy

evaluation framework as proposed in this report.

We cover the important aspects of the topic classification, from the pre-processing

to the final evaluation on test datasets. And then we introduce its extensions and

its application in privacy policy grading.

3.3.1 Datasets

Throughout the discussions about topic classification, we will carry out experimental

evaluations to study and compare different methods. To pave the way for clearer

evaluations, we now introduce the datasets that are applied in this section.

Training dataset The training set consists of 772 paragraphs extracted from

approximately 40 privacy policies, which are all found in the major websites like

Google.com, Amazon.com, FoxNews.com, BestBuy.com, etc. Each of these 772

paragraphs is manually labeled into one of the 16 categories.

The labeling process was carried out by one single human judge. In order to

prevent systematic inaccuracy caused by subjectivity in labeling, a second human

judge has also independently labeled a randomly selected subset of the training set

to form a reference for testing the subjectivity.

To be more precise, in the subjectivity test, 102 items are randomly selected

out of the 772 training cases. The 102 test item cover all categories expect the

categories of ‘Link to outside websites’ and ‘California Privacy Rights’ which are added

after the subjectivity test. The categorical distribution of the test items is made to

be as close to the full training dataset as possible during the random selection.

Out of the 102 test items, as many as 93 items (91.18%) are assigned with the

same labels by both judges, which means only the labels of 9 items (8.82%) are
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disagreed on by the judges. Further, within these 9 disagreed items, 3 of them

are either marked as difficult or assigned to the same labels as second choice by

the second human judge. As shown by this result, especially by considering the

relatively large number of categories in the test, there is a high level of agreement

between the two judges on the labels of the training set, which leads to the

conclusions that the subjectivity of the human judge is low and is not expected to

pose any considerable risk to the correctness of the labels.

Test dataset The test sets contain categories from privacy policy that are graded

into four different levels of grade6. Our test cases come from 24 privacy policies

that are graded into one of the grade groups, namely 4, 6, 8 and 10. The numbers

of privacy policies are equally distributed into these four grades, that is to say, 6

privacy policies in each grade group.

Table 3.1: Details about the training and test datasets (By categories)

Category Training Test(all) Test(10) Test(8) Test(6) Test(4)
Collection 121 34 13 10 8 3
Sharing 128 47 17 14 11 5
Choice & Access 107 41 18 13 7 3
Security 50 28 8 9 6 0
Children 33 18 7 7 3 1
TRUSTe 19 5 5 0 0 0
Safe Harbor 23 5 4 1 0 0
Link outs. 32 11 1 6 3 1
California 23 4 2 1 1 0
Retention 13 2 2 0 0 0
Processing 17 8 4 4 0 0
Cookies 85 27 8 10 6 3
Advertising 39 9 4 4 1 0
Change 35 19 6 6 5 2
Location 17 1 0 1 0 0
Contact 30 18 5 6 5 2
Total 772 277 104 92 56 25

Table 3.1 demonstrates the details of the test cases with comparison with the

training set as well. Though 6 privacy policies are used for each grade group, it

is apparent that privacy policies from the lower grade groups, namely 4 and 6,

yield smaller amounts of test items than the privacy policies from the higher grade

groups.
6The details of grading is introduced in later section3.4.3
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Following the common practice in text classification community, we will hold

the test datasets as unknown for all classification models until the final round of

evaluation based on the test set.

We have 277 test items, consisting of paragraphs that are also sorted into subsets

of the test set by grade groups, and 772 training items. In total, we have labeled

1049 sample privacy policy paragraphs to form the datasets for topic classification

experiments.

3.3.2 Preprocessing

3.3.2.1 Bag-of-words model

We apply the bag-of-words model to represent the word features for topic classifica-

tion. Bag-of-words maps the text into a model consisting of unordered collection of

words, disregarding grammar and word order. As proved by research in the field

of Information Retrieval and the early research in the field of text classification,

the bag-of-word is a reasonable simplifying model to represent the text in text

classification tasks [47]. Nevertheless, it is important to keep in mind that the

bag-of-word representation loses some information from the original text, e.g. the

semantic information.

Notation of the bag-of-words We can formally define the notation of the bag-of-

words model:

• A word, which acts as the basic unit of the whole text collection, is an item

from the vocabulary domain {1, ...,V}. In vector space, each word can be

represented as a unit vector with one component equals to one and all the

other components equal to zero. Hence, the vth word in the vocabulary is

denoted as a unit vector w with wv = 1 and wv̄ = 0.

• A document is represented by a tuple consisting of a list of words d =

(w1,w2, ...,w|d|). In our specific task of topic classification, the paragraphs
retrieved from the online privacy policy are treated as documents in general

text classification.

• A corpus as a collection of documents is denoted by D = {d1,d2, ...,d|D|},
where dn is the nth document in the corpus. The training dataset and the test

dataset are corpora.
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• A category, also called class, is human defined label attached to documents.

Classes are used, in specific application, to categorize the documents in

the document domain into subsets. We define the domain of classes as

C = {c1, c2, ..., c|C|}.

A dataset D of labeled documents is therefore denoted by 〈d, c〉 where 〈d, c〉 ∈
D× C.

3.3.2.2 Tf-idf

Based on the bag-of-words model, the term frequency-inverse document frequency

(tf-idf) weighting [88], which is a widely used vector space weighting scheme

in information retrieval and text mining tasks, is applied on each value in the

bag-of-words representation instead of the simple word frequency. In contrast to

the pure word frequency, tf-idf weighting has advantage, which is brought by the

inverse document frequency factor that weights high frequency term less and rare

term more. This is beneficial because, in text classification, the rare terms are

considered to be more valuable in distinguishing categories for a given test item.

Other weighting methods have been proposed, such as in [99, 32], however, tf-idf

is still one of the most commonly accepted methods for preprocessing the vector

representation for text classification tasks [95].

3.3.2.3 Feature selection

In text classification, a dimensionality reduction process is often carried out in

order to reduce the size of the bag-of-words representation from |d| to a smaller

and normally predefined number. There are two major reasons for dimensionality

reduction: 1) to reduce overfitting, i.e. the model should have low variance and

should not overfit on the training data and lose the ability to generalize to unseen

data; 2) to alleviate the ‘curse of dimensionality’ [39, 7] for the learning methods

that are known to scale badly to high dimensionality.

Feature selection is normally used for dimensionality reduction in text classifica-

tion. During feature selection, each word in the bag-of-words model is scored by a

scoring function that captures its degree of correlation with category ci. Then only

the words with highest scores are selected for the final document representation.

In our experiments, we use predefined thresholds for feature selection, meaning

the numbers of selected words are predefined for each specific experiment.
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Feature selection is an active research fields in text classification and machine

learning communities. Many methods have been proposed for text classification

with focus on certain learning methods. [31, 114] provide systematic survey on

this issue. In later experiments, we will apply the χ2 feature selection method.

3.3.3 Evaluation of text classification

For text classification, throughout this report, we will use the generic term ‘per-

formance’ when measuring the quality of classification decisions. Though, the

term ‘performance’ is also commonly used to express computational efficiency of

classification [58], we only use it for effectiveness of classification unless otherwise

indicated.

3.3.3.1 Metrics

For text classification, the terms true positives (TP ), true negatives (TN), false
positives (FP ), and false negatives (FN) compare classifier’s outputs on the test set

with the predefined labels which are created by external judgments such as human

annotators. Positive and negative refer to the prediction generated by the classifier,

and true and false refer to whether a prediction corresponds to the predefined

label.

The metrics commonly reported for text classification are defined as below:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Fβ = (1 + β2) · Precision ·Recall
β2 · Precision+Recall

Accuracy =
TP + TN

TP + TN + FP + FN

Error =
FP + FN

TP + TN + FP + FN
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Fβ measures are used to provide a balanced view of the performance by weight-

ing and combining precision and recall. Most commonly used form of Fβ is F1

which is the harmonic mean of precision and recall. Two other commonly used Fβ
measures are the F2 measure, which weights recall higher than precision, and the

F0.5 measure, which emphasizes more on precision than recall.

Selection of metrics for text classification

• Accuracy, especially in multi-classification tasks where the number of classes

is relatively high and the distribution of samples among classes are relatively

flat, is not a reliable metric for text classification. This is due to the high

imbalance between the amounts of positive examples and the amounts of

negative examples for multi-class tasks. This means there are too many tn
that dominate the result of accuracy. This can lead to miss-interpretation of

the results conveyed by accuracy.

For instance, when the positive examples of a category constitute only 10%

of the entire test set, a dummy classifier that makes negative predictions for

all documents has an accuracy of 90%, or an error of only 10%. However,

such a system is meaningless in most of the cases. For this fact, we are more
interested in using F scores, precision and recall instead of accuracy and error
to evaluate our tasks.

• F0.5: Intuitively, precision shows a classifier’s ability not to label negative

samples as positive, and recall shows a classifier’s ability to label as many

positive samples as possible. F1 is the harmonic mean of precision and recall,

which is not biased on either precision or recall. For the reason that precision

is more important than recall from user’s prospective, we will also measure

the F0.5, which is a variant of Fβ that is biased on precision.

Averaging methods In case of the binary text classification tasks, the metrics

mentioned above are calculated simply using TP , TN , FP and FN . However, for

multi-class text classification, averaging scheme is needed to calculate the overall

metrics from the TP , TN , FP and FN . For this reason, we will introduce three

averaging schemes. First, we will use the terms TPi, TNi, FPi and FNi to denote

the basic metrics of category i. Three averaging schemes are shown as below:
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The Micro-averaging leads to precision and recall that are directly averaged

globally, meaning that the micro-averaged metrics give an equal weight to each

document.

Precisionmicro =

∑|C|
i=1 TPi∑|C|

i=1(TPi + FPi)

Recallmicro =

∑|C|
i=1 TPi∑|C|

i=1(TPi + FNi)

In contrast, the macro-averaging generates precision and recall on the category

level. The macro-averaged metrics are calculated based on simple average of the

category metrics. This means that equal weight are given to categories rather than

documents.

Precisionmacro =
1

|C|

|C|∑
i=1

TPi
TPi + FPi

Recallmacro =
1

|C|

|C|∑
i=1

TPi
TPi + FNi

These two different averaging schemes are distinctive especially when categories

are unbalanced and have varied performances. Macro-averaging favors more on

the rare categories because all categories are considered equally. Macro-averaging

is informative particularly when the performances of rare categories are more

concerned. Micro-averaging, on the contrary, reflects the performance on the level

of all documents and therefore is inclined to the major categories.

The problem with macro-averaging is that it only conveys the performance on

the level of category and it is often dominated by the rare categories. When the

categorical distribution of test dataset reflects the distribution of future real dataset,

macro-averaging may be misleading by favoring the models that perform better

on rare categories which are much less common than few major categories. This

could bring forth the risk of a biased model selection, so that the selected models

has much worse overall performance in practice.

In general tasks of text classification, micro-averaging is more commonly used

[94, 34]. However, for micro-averaging, in case mutually exclusive categories are
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used, the precision and recall will always be the same [14]. This can be easily

shown as the
∑|C|

i=1 FPi always equals to
∑|C|

i=1 FNi when categories are mutually

exclusive. If the Precision, Recall and Fscores are the same, the information about

the differences between Precision and Recall is missed out.

For the need of our specific task, both micro-averaging and macro-averaging

have their own limitations as stated above. We apply a third averaging scheme, the

weighted averaging, as described below. It is generally a micro-averaging scheme in

that the final metrics are averaged to the global number of documents. But it also

shares similarity with the macro-averaging in that the basic metrics, from which

averaged scores are computed, are calculated on the category level.

Precisionweighted =

∑|C|
i=1 |DCi

| TPi

TPi+FPi

|D|

Recallweighted =

∑|C|
i=1 |DCi

| TPi

TPi+FNi

|D|

where |D| denotes the total number of documents and |DCi
| denotes the number

of documents for category Ci.

This averaging scheme generates scores that are very close to the micro-

averaging while still preserves the differences between Precision, Recall and

Fscores. It also partially preserves the category metrics as in macro-averaging but

will not be dominated by the rare categories. Due to the reasons above, we will

apply the weighted metrics unless otherwise mentioned.

3.3.3.2 Cross validation

To largely utilize the limited resources in a statistically accurate way, we heavily

apply cross-validation throughout our experiments. The usages of cross-validation

are [83]: 1) To gauge the generalization of a learned model based on the limited

amount of available data. 2) To compare the performance of different algorithms for

a specific learning task. 3) To compare different models, including comparisons of

parameter tunned models of parameterized classifiers, and comparisons of different

feature engineering techniques.

There are different variants of cross-validation. As suggested by Kohavi [51],

stratified 10-fold cross-validation is preferred over leave-one-out cross-validation
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and bootstrap. Due to the limited samples (< 10) in some rare categories in our

test sets, we cannot carried out stratified 10-fold cross-validation in all scenarios.

Hence, to form a consistent evaluation baseline, we will follow the widely accepted

practice in machine learning community by applying the 10-fold cross-validation.

Further, if statistical accuracy is more demanding for certain situations when

we compare two target models, n× 10 cross-validation (n could be 10, 50, etc) will

be applied to provide more samples. The approach of 10× 10 fold cross-validation

is also recommended by Bouckaert [8]. To compare two methods more precisely,

Salzberg [89] suggested using k-fold cross-validation followed by appropriate

hypothesis test rather than directly comparing the applied metrics. To this end, we

also apply paired t-test which is widely used in machine learning studies.

3.3.4 Classification model

With the categories of text classification and preprocessing steps introduced, we

now address the selection of optimized classification model for our specific task

- the topic classification of privacy policy paragraphs. Classification model, also

known as classifier or learning method, is the core of a text classification task.

In this section, we will first introduce a basic formal model of classification, and

then cover several classifiers that are commonly used in text classification. Further,

experiments will be carried out to tune the classification models and compare the

classifiers. Last but not the least, we will also apply the ensemble learning methods

in our task.

3.3.4.1 Definition of classification

Suppose we have a training set with n data items. Let the data items in the

training dataset be vectors denoted by x = (x1, . . . , xn)
T , which are actually the

preprocessed paragraphs in our specific task of text classification. For the training

set, we already have the target variables, a.k.a. categories or labels, denoted as

y = (y1, . . . , yn)
T . In the learning stage (also called inference stage), the aim is to

learn a set of parameters θ of the classification model, which infers a classification

model with a hypothesis classification function hθ(·), based on the given x and y.

With this model learned, later in the prediction stage (also called decision
stage), given we have a test set with m test data items which is denoted as

vector xtest = (x1, . . . , xm)
T , we want to predict the targets of the test set, denoted
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as ytest = (y1, . . . , ym)
T , using the classification model. This process is done by

applying the method learned, which is written as ytest = hθ(xtest).

Another common notation of classification is formed by using w denoting the

parameters. In this notation, the prediction is written as y(x,w). Later, we may

use the two slightly different notations interchangeably. However, it is necessary to

point out w here should be confused with the representation of documents in the

bag-of-words discussion.

3.3.4.2 Linear classifiers

A generalized linear classification model is denoted as y = θTx, where θT =

(θ0, . . . , θp) with p the number of datapoints and θ0 the bias. Compared with non-

linear models such as k-nearest neighbors, linear models depend more on the

assumptions about problem’s structure and yield more stable predictions. Such

linear models have been a mainstay of statistics for past decades and widely studied

and applied in statistical learning and machine learning communities. We will

briefly cover three linear classifiers, namely, Naive Bayes, Ridge regression and

linear SVM.

Ridge regression Given the linear model y = θTx, there are many methods to

fit the model to a set of training data. The method of least squares is one of the

most popular methods for this purpose. In the simplest form, the least square can

be denoted as 1
2
‖wTx− y‖2

2. So, one can fit the model to the training data by

minimizing the least squares, i.e. minw
1
2
‖wTx− y‖2

2.

The solution for minimizing the least squares above is given by w = (xTx)−1xTy.

However, there is a problem with this simple form of least square, i.e. xTx may be

singular or ill-conditioned, e.g. when the number of training data n is smaller than

the dimension of x. In this case, a unique solution cannot be guaranteed.

Ridge regression [42] classifier [119] is one of the linear classification models

that remedy this problem by adding a regularization term to the standard least

squares. The Ridge regression variant of least squares and its solution are then

written as
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min
w

1

2
‖wTx− y‖2

2
+ λ‖w‖2

2

w = (xTx + λnI)−1xTy

where I is the identity matrix. By adding the Ridge regularization term to the

least squares, the xTx + λnI part of solution is always non-singular, provided that

λ > 0. This solves the singularity problem.

Another merit of Ridge regression classifier is its ‘cost effectiveness’. It is

more computational efficient compared with many other commonly used linear

regularized methods such as linear SVM and regularized logistic regression. Ridge

regression classifier performs on the same level or even slightly better than the

other two methods [118].

Linear SVM SVM has been widely and successfully applied for text classification

since the late 1990’s [48, 23]. We will cover the linear SVM here, which is one

of the most popular kernels for text classification [118]. Later we will also briefly

introduce another nonlinear kernel based SVM.

The linear SVM projects datapoints to a higher dimensional space and tries

to find the optimal hyperplane with maximized margin, which has the largest

distance to the nearest training datapoints. Assume the training datapoints are

linearly separable in the higher dimensional space, a method, which applies two

auxiliary hyperplanes, can be used to find the searching hyperplane. In this method,

the two auxiliary margin hyperplanes are searched in a way that there should be

no datapoint between these two auxiliary margin hyperplanes and the searching

hyperplane while trying to maximize their distances to the searching hyperplane.

This is equivalent to minimizing norm of the weight vector:

min
w,b

1

2
wTw

subject to: yi(wTxi + b) ≥ 1,∀i

Corinna Cortes and Vladimir Vapnik proposed a more advanced maximum

margin method, called the Soft Margin [20], that allows for the mislabeled items:
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min
w,b,ξ

1

2
wTw + C

n∑
i=1

ξi

subject to: ξi ≥ 1,∀i

yi(wTxi + b) ≥ 1− ξi,∀i

where C represents cost coefficient and ξi is slack variable that measures how

far the corresponding data falls into the wrong side of the margin.

The explanation above forms a very brief introduction to the SVM by covering

the formal representations of the intuitions behind the hyperplane searching. We

recommend further readings [15, 105] for a thorough introduction.

Generative models The generalized linear classification model described above

is also a discriminative model. In contrast to the discriminative models, such as

Ridge and SVM, there is another widely used classification model – the generative

model. A generative model is a full probabilistic model of both input and target

variables, whereas a discriminative model provides a model only for the target

variables conditional on the input variables. That is, generative models allow to

generate samples from the joint distribution of input and target variables.

Naive Bayes Naive Bayes is one of the most commonly used generative learning

methods and has been widely applied to text classification tasks [60, 63, 90]. In

simple terms, Naive Bayes is a group of learning methods that all depend on the

Bayes’ theorem (p(c|f1, . . . , fn) ∝ p(c)p(f1, . . . , fn|c), where c is a class variable

and f1, . . . , fn are features) along with the ‘naive’ assumption of the independence

relation between every pair of features, i.e. given the target variable, the presence

of a particular feature of a class is unrelated to the presence of any other features.

With this ‘naive’ assumption, the relation based on Bayes’ theorem becomes

p(c|f1, . . . , fn) ∝ p(c)
∏n

i=1 p(fi|c). Therefore, model can find the best class by

c = argmax
c

p(c)
n∏
i=1

p(fi|c)

We can use maximum a posteriori probability (MAP) estimate to estimate p(c)

and p(fi|c).
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It is necessary to point out again that Naive Bayes is not a single learning

method. Rather, the name ‘Naive Bayes’ represents a group of close related methods

applying both the Bayes’ theorem and the ‘naive’ assumption. There are several

variants of Naive Bayes, with the difference in the assumptions of the distribution

of ∝ p(c)
∏n

i=1 p(fi|c).

There are two classic variants of Naive Bayes commonly used for text classific-

ation, namely the Multinomial Naive Bayes and Multi-variate Bernoulli Naive

Bayes (or simply Bernoulli Naive Bayes). Bernoulli Naive Bayes assumes data to

be multi-variate Bernoulli distributions, i.e. each feature is only assumed to be a

binary-valued (or say Bernoulli, boolean) variable. The Multinomial Naive Bayes

uses multinomial distribution which is parameterized with smoothed maximum

likelihood calculated from the distribution information learned from the training

set. McCallum et al. in [60] provide a coherent explanation of the differences

between the two variants and their applications in text classification.

We will apply the multinomial variant of Naive Bayes in our topic classifica-

tion. Because the distribution assumption made by multinomial Naive Bayes, it is

considered to be more suitable for general text classification tasks, and it indeed

performs better than the Bernoulli Naive Bayes in many cases [60].

Naive Bayes classifiers can be much faster than some of the more sophisticated

learning methods. The ‘naive’ assumption leads to the decoupling of the class

conditional feature distributions. Therefore it means that each distribution can be

independently estimated and calculated as a one dimensional distribution. This also

helps to alleviate the curse of dimensionality problem. For these merits, Naive Bayes

has been widely applied in many text classification tasks, especially in practical

tasks. For example, it is widely applied in both commercial and open source spam

filtering solutions [63].

3.3.4.3 Non-linear classifiers

‘Non-linear classifier’ is not a strictly defined term. In general, non-linear classifiers

differ from the linear classifiers by the fact that they achieve the classification

decision based on non-linear combination of the features. We will cover three

classic non-linear classifiers, namely k-nearest neighbor (kNN), decision tree, and

SVM with non-linear kernel.
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kNN The idea behind kNN is simple – classifying test datapoints based on k

closest training examples in the feature space. This idea also leads to its special

learning scheme, called lazy learning. In a lazy learning scheme, function is only

approximated locally (with k nearest neighbor) and all computations are deferred

until the classification of the test datapoints. The nonlinearity of kNN can be easily

observed from classification examples [39, 7].

Tree Decision tree is a non-parametric learning method that uses a decision

tree algorithm as a classification model. The decision tree algorithm first learns

the simple decision rules inferred from data features in the training set. Then

observations about a test datapoint are mapped to conclusions about the datapoint’s

target value by applying the learned decision rules.

An outstanding merit of the decision tree classifier is that it is a white box model.

The learned model and results are easily understandable and interpretable. There

are also many problems with the decision tree classifier. Firstly, the learned rules

may be over-complex and do not generalize well. Secondly, decision trees may be

biased if there exists imbalance in categories. Last but not the least, high variance

may exist even when a small change occurs in the training data [39].

There are several classic decision tree algorithms, such as ID3 [81], C4.5 [82]

and CART [9]. We apply CART algorithm in the later experiments.

SVM with non-linear kernel There are several commonly used alternatives [98,

100] to the linear kernel used in the linear SVM. Popular non-linear SVM kernels

are radial basis function (RBF) networks, polynomials, sigmoid, splines and so on.

The linear kernel is denoted as K(x, y) = xTy and the RBF kernel is written as

K(x, y) = exp{−‖x− y‖2
2/γ2}.

Several common kernels are thoroughly compared from both theoretical and

practical aspects in [101]. It is shown that linear kernel is a special case of the

RBF kernel. For general tasks, RBF kernel is recommended as the first choice

for practical uses. Therefore, we will use the radial basis function kernel for the

non-linear version of SVM in later experiments.

3.3.4.4 Parameter tuning

Tuning a classifier involves tuning the thresholds and alterable parameters, de-

pending on the classifier applied. Tuning a single parameter p is normally done
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experimentally by performing repeated tests with different values of the parameter

p on the validation set, or using cross validation, while fixing the values of all other

parameters pk. Finally, the value that yields the best performance is the result for

the tuning of p.

We apply the grid search method for parameter tuning. Grid search performs an

exhaustive search through a predefined subset of the parameter space to solve the

problem of model parameter selection by finding the optimal parameters guided by

certain performance metric under cross validation on the validation set.

SVM comes with several parameters, which differ depending on the applied

variant and implementation of SVM. This requires elaborated efforts in tuning the

parameters to achieve reasonable performance close to the full potential of the

classifier. For SVM with RBF kernel, we tune parameter C and γ following the

guide in [43], i.e. using a loose search followed by a fine search.

For linear SVM, two parameters are alterable – the regularization method, either

l1-norm or l2-norm, and the parameter C. For regularization, as stated in [69], l1 is

expected to be theoretically superior to l2 if the number of features is considerably

bigger than number of examples and the ground truth, or say asymptotic set of

predictive features, must be sparse in the basis. However, when it comes down to

specific task in real life, it still depends on questions such as what are the reasons

or unwanted behaviors that require regularization and which type of regularization

suits for the practical purpose.

For kNN, the only alterable parameter is k, which decides how many neighbors

are used to make the decision. For decision tree, max depth of the tree and min split

at a leaf node are the parameters to control the building process of the decision

tree.

Ridge regression and Naive Bayes are not subjects for parameter tuning. This

simplicity becomes one of the advantages of these two classification models.

The parameter tuning results can be found in Appendix C.1.

3.3.4.5 Comparison of classifiers

In this section, we compare the performance of the six classifiers in order to gain

an overall understanding of the differences among these classifiers and to pave the

way for the final classification model selection.

First, we study the performance of the classifiers when the size of training set

increases. To this end, we create 18 subsets of the training set by increasing the
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percentage of selected items by 5% each time, starting from 10% of the whole

training set. The six classifiers are tested separately on these 18 subsets along with

the full size training set.

Figure 3.2: Comparison of classifiers (by size of training set) - I
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Among all classifiers in figure 3.27, the Ridge regression classifier shows su-

periority over all percentages of the training set. The performance of linear SVM

becomes very close to Ridge regression’s performance when 70% or more of the

training set is used. On the other side, the decision tree classifier shows worse

performance than all the other classifiers. This is probably because of the limited

capability of a single decision tree for text classification task where the representa-

tion is sparse and the number of features is large.

As it can be observed in the results, the differences in classifiers’ performance

are rooted in the differences among different types of classifiers. Specifically, the

linear discriminative models (Ridge regression and linear SVM) perform better

than linear generative model (Naive Bayes) and nonlinear models(SVM with RBF

kernel8, kNN9 and decision tree).

Figure 3.3 provides a zoom in view of the figure 3.2 where the decision tree and

the first two datapoints on the x-axis are removed. Given the obvious inferiority of

7LSVM in the figure stands for Linear SVM
8In this experiment, we set γ = 1/#feature instead of a constant number because the number of

samples are changing.
9Similarly, we use k = #feature

2∗#class for kNN.



34 Topic Classification

Figure 3.3: Comparison of classifiers (by size of training set) - II
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the single decision tree, we will exclude it in the later experiments unless needed

for special purpose.

Second, we examine the performance of the classifiers under χ2 feature selection.

We test all levels of aggressiveness, ranging from 2% to 100% with 2% steps.

The result is shown in figure 3.4. It shows similar rankings of the classifiers as

in previous experiment. This view also reveals kNN’s different behavior compared

with other four classifiers. Two linear discriminative models still perform very well

with slight dropping after the peak. Naive Bayes reaches its peak at similar positions

as the linear discriminative classifiers with competitive performance. However,

Naive Bayes’ dropping at the tail part is much sharper. And fianlly it reaches the

level of performance similar to nonlinear SVM and kNN at the end of the tail part.

From this point of view, it is clear that if feature selection method will be used,

the two discriminative classifiers still are considered to be better choices.

Among the other three classifiers, though they reach the same level when most

of the features are selected, Naive Bayes provides the best performance while kNN

generates the worst performance when fewer features are selected.

Commonly, a linear classifier is applied when computational efficiency of clas-

sification is crucial, since it is often faster than non-linear classifiers (kNN is an

exception), especially when x is sparse. Moreover, linear classifiers often work

quite well when the number of dimensions in x is large. These features suits

very well with the text classification tasks where x is sparse in the bag-of-words
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Figure 3.4: Comparison of classifiers (by number of selected features)
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representations.

Though theoretically similar to each other, Ridge classifier, as a regularized least

square (RLS) classifier, performs slightly better than linear SVM. Moreover, Ridge

is slightly more computational efficient than linear SVM. Similar results have been

observed in [86] for text classification on the 20NewsGroup corpus10. For more

details, Zhang et al. [118] provide a thorough comparison among Ridge, linear

SVM and logistic regression under the setting of text classification.

In conclusion, combining the empirical results with theoretical features of

different classifiers, our topic classification task is linear separable. This also

explains the top-rate performance of the two discriminative classifiers. However,

there is no strong evidence that Ridge regression’s slight superiority over linear SVM

10A popular data set for experiments in text applications of machine learning techniques, such as
text classification and text clustering. http://people.csail.mit.edu/jrennie/20Newsgroups/

http://people.csail.mit.edu/jrennie/20Newsgroups/
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will be stable and generalizable. Naive Bayes performs the best among the second

tier classifiers and has strong advantage due to its computational efficiency. In

contrast to linear SVM, nonlinear SVM shows extra computational cost and slightly

worse performance. kNN, though with acceptable performance, is considered to be

inferior because of its behavior when feature selection is applied.

3.3.5 Ensemble learning

The purpose of applying ensemble learning methods is to strategically generate

and combine classifiers in order to solve a particular machine learning problem.

In classification, ensemble learning methods are primarily applied to improve the

performance of a classification model by forming an ensemble of multiple classifiers.

There are two commonly used ensemble methods: 1) Bagging [10], which

stands for bootstrap aggregating, generates a group of similar classifiers from one

certain type of classifier by using bootstrapped replicas of the training data. 2)

Boosting creates an ensemble of classifiers by re-sampling the data. These classifiers

are then combined by majority voting, in a manner that emphasizes the training

instances previously misclassified by preceding classifiers. AdaBoost [33], stands

for adaptive boosting, is the most popular boosting method so far and generalizes

boosting to multi-class and regression tasks.

However, both bagging and boosting are generally applied to one single type of

classifier by creating the ensemble using duplications of the same type classifier.

We want to create ensembles from totally different types of classifiers, such as SVM,

Ridge regression and Naive Bayes. To this end, we implement and test two types of

ensemble methods, viz., voting committee and stack generalization.

Voting committee combines the classifiers of different types into a voting

committee. On each test datapoint, the classifiers in the committee output the

prediction labels based on which a majority vote is cast so as to form the final

committee prediction label [12].

Stack generalization [110], also known as stacking or blending, introduces a

layered architect of classifiers. In the first tier, classifiers either in different types

or created from a single type of classifiers using bootstrapped samples are treated

similarly as in the other types of ensemble methods. In the second tier, a tier 2

classifier, or meta-classifier, is applied on top of the outputs from the tier 1 classifiers.

In other words, in the layered structure, the final prediction is generated from the
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tier 2 classifier which learns from the outputs from the tier 1 classifiers.

Stacking method is gaining more popularity, especially in practical machine

learning challenges. For instance, it has been heavily applied in the solutions

proposed by the top two teams during the Netflix Prize11 [6, 77]. In research, it

also shows good results in classification and information extraction tasks [102, 97].

For experimental evaluation purpose, we implement and test two variants of

the stacking method. Specifically, the first variant implements the tier 2 classifier in

the way that it learns from the predicted category labels generated by the tier 1

classifiers. In the second variant of stacking, the tier 2 classifier learns from a linear

combinations of prediction scores from the tier 1 classifiers.

In figure 3.5 we show the F1 performance of the three ensemble methods12 in

contrast to two single learning methods, Ridge and Naive Bayes.

Figure 3.5: Ensemble methods

Run Number

F
1 

sc
or

e

0.895

0.900

0.905

0.910

0.915

0.920

0.925

10 20 30 40 50

Options

NB

Pred.

Prob.

Ridge

Vote

The majority voting method provides slightly worse F score performance than

Ridge and Naive Bayes. This can be explained by kNN’s poor performance when

about 40% features are selected, which is the setting for this experiment.

On the other hand, the stacking ensemble learning method improves the per-

formance. As can be observed from both figure 3.5 and table 3.2, the prediction

11$1M Grand Prize for best the collaborative filtering algorithm to predict user ratings for films
based on previous ratings. http://www.netflixprize.com/

12‘Pred.’ and ‘prob.’ represent the two variants of stack generalization, i.e. stacking on the
predictions and stacking on the categorical probability scores. ‘Vote’ stands for the voting committee
ensemble method.

http://www.netflixprize.com/
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variant of stacking only provides a small improvement, while the probability score

variant of stacking improves the F score performance by more than 1% compared

with the best single classifier, Ridge regression.

Table 3.2: Ensemble methods

Category F0.5
∗ F1

∗ Paired t-test
Voting 90.340± 0.220 90.249± 0.223
Stacking (Pred.) 91.439± 0.189 91.085± 0.178 No
Stacking (Prob.) 92.375± 0.168 92.036± 0.174 Yes
Naive Bayes 90.907± 0.258 90.537± 0.242
Ridge reg. 91.362± 0.209 90.989± 0.195 Baseline
Linear SVM 90.710± 0.206 90.325± 0.191
kNN 55.670± 0.583 55.227± 0.452
SVM (RBF) 88.103± 0.243 87.609± 0.232

*: Averaged from 50 runs of 10× 10 CV, in percentage.

In table 3.2, the detailed F scores are provided for all single classifiers and

three ensemble learning methods. We also apply paired t-test to check whether

the two variants of stacking methods significantly improve the performance com-

pared to Ridge regression, the best single classifier. The other pairs of classifiers

and ensemble methods have not been paired t-tested because the differences are

obviously distinguishable.

Another observation is that the two stacking methods also reduce the standard

deviation, which leads to better generalization capability.

To conclude, stacking methods can improve the performance to at least the same

level as the best single classifier while stacking methods are expected to provide

better generalization capability for testing datapoints. In the training experiments,

the probability score variant of stacking provides statistical significant F score

improvement compared with the best single classifier. Voting method depends

more on the average level of the classifiers and cannot therefore guarantee to

provide top-level performance for all cases.

However, the improvements in both F scores and generalization capability

created by stacking methods are limited by a trade-off between performance and

computational efficiency.

To be more specific, majority voting’s computational cost is the sum of computa-

tional costs of all underlying classifiers. Analyzing computational cost of stacking is

less straightforward. In training phase, we apply a 10-fold CV process to generates

the outputs of each classifier. Based on these outputs, the tier 2 classifier learns.
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Hence, the stacking’s trainig cost is approximately 10 times full round costs of

all underlying tier 1 classifiers. This leads to the conclusion that the selection of

models still depends on the practical requirements for computational efficiency and

performance.

In general, Naive Bayes is a better choice when both training time and test time

are crucial. Ridge regression and linear SVM provides top ranked performance

but with training computational cost up to 10 to 20 times higher than that of

Naive Bayes. Stacking method is preferred when training computational cost is

unimportant while stable top-level performance is of greater interests.

3.3.6 Final test

We test the classification models on the test dataset and its four subsets.

Table 3.3: Evaluation results on test dataset

Dataset Test(all) Test(10) Test(8) Test(6) Test(4)
Metric F0.5 F1 F0.5 F1 F0.5 F1 F0.5 F1 F0.5 F1

Voting 93.61 93.57 90.27 89.95 97.97 97.91 94.82 94.75 92.53 92.33
Stack.Pred. 93.61 93.57 90.27 89.95 97.97 97.91 94.82 94.75 92.53 92.33
Stack.Prob. 92.63 92.55 88.13 87.52 97.97 97.91 94.82 94.75 92.53 92.33

Naive Bayes 89.86 89.74 89.66 89.21 92.38 92.38 89.54 88.76 90.38 89.47
Ridge reg. 93.73 93.64 90.27 89.95 98.26 98.10 94.82 94.75 92.53 92.33
Linear SVM 93.95 93.92 90.07 89.82 98.98 98.95 94.82 94.75 92.53 92.33
kNN 90.63 90.35 87.63 86.85 95.33 95.04 92.46 91.93 89.06 88.66
Tree 68.96 67.27 67.72 65.67 68.19 67.47 77.39 74.29 68.34 63.12
SVM (RBF) 91.43 91.26 87.49 86.76 97.97 97.91 92.26 91.81 90.54 89.57

Among the single classifiers, the linear discriminative models, Ridge regression

and linear SVM, still have the top level performance. This is similar to what has

been observed in previous experiments on the training set. Naive Bayes, SVM and

kNN again perform on the same level. Given the fact that we do no carry out feature

selection in this experiment, the observation about these three classifiers also agrees

with pervious experiment. Compared with RBF kernel SVM’s performance in the

training set and test set experiments, the performance of kNN and the performance

of Naive Bayes are respectively better and worse in test set than those in the training

set. Simple decision tree classifier still generates significantly worse results than

the other classifiers. See table 3.3 for details.

With regard to the ensemble methods, both stacking methods and the majority
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voting get similar results while probability scores variant of stacking is worse

than the other two methods for one test subset. Another observation is that none

of the three ensemble methods provides higher F scores compared to the best

single classifiers in each of the test sets. However, the generalization capability of

ensemble methods is proved as they stably provide the top level performance.

Furthermore, no strong relationship between the performance of topic classific-

ation and the grade of privacy policies has been observed. This may partially be

because of the fact that, in the datasets, only the paragraphs that can be manually

sorted into the pre-defined categories are included. Hence, even if the privacy

policies with lower grades may have less structured contents, the performance

of topic classification will not deteriorate significantly. However, the numbers of

categorized paragraphs for the privacy policies with lower grades may drop sharply,

as shown in table 3.1.

In conclusion, the results of test datasets further support the observations and

discussions in previous experiments on the training dataset.

3.4 Extensions

In this section, we introduce four extensions of the basic topic classification system

so as to provide practical functionalities that provide adding value to the users.

3.4.1 Two-layer classification

We have introduced 16 categories that are used for topic classification in section

3.2. As observed in the datasets, the four core categories cover a significant larger

portion of all paragraphs than other supporting categories do. The imbalance in

the sizes of categories lead to the consideration about further classification of the

paragraphs in some of the larger categories into more detailed sub-categories.

The definition of sub-categories depends on the common practice observed in

privacy policies. For example, under the category of ‘Sharing’, there are paragraphs

which cover different topics such as general statement of information sharing,

information sharing with third party companies, information sharing during merge

and acquisition and information sharing required by law. We provide the details of

sub-categories as below:

Category of ‘Collection’:
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• Category of ‘User’: User’s information that is provided voluntarily by the user,

e.g. during registration or form-filling.

• Category of ‘Automatic’: User’s information that is collected automatically,

e.g. user’s online behavior and IP address, etc.

• Category of ‘Others’: User’s information collected from other sources.

Category of ‘Sharing’:

• Category of ‘Statement’: General statement about information sharing.

• Category of ‘Third parties’: Information sharing with third parties.

• Category of ‘Law’: Information disclosure required by law.

• Category of ‘M&A’: Information transfer under merger and acquisition.

Category of ‘Choice and Access’:

• Category of ‘General’: General information about user’s choices and rights to

access information.

• Category of ‘Subscription’: User’s choices about subscriptions of emails,

promotions, activities, etc.

Category of ‘Cookies’:

• Category of ‘General’: General information about cookies.

• Category of ‘Choice’: User’s choice of cookies, e.g. how to disable cookies

and possible effects if cookies are disabled.

In general, we define 11 sub-categories under 4 categories. In order to integrate

the sub-categories into the topic classification system, we propose a two-layer

classification structure.

In the two-layer classification model, the basis classifier in the bottom layer is

the classification model we discussed in section 3.3. The sub-category classifiers in

the top layer are stacked on this basis classifier.

First, paragraphs in a privacy policy are categorized into the 16 top level

categories by the basis classifier. Then, if a paragraph is classified into one of the

four categories which have sub-categories, the corresponding top layer classifier is

applied to label the paragraph with a sub-category.

All in all, with a two-layer structure, the system can provide the user with

granular information. For example, a user, who is interested in information sharing
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with third parties, can directly check this sub-category, saving the time spent on

manually checking all paragraphs in ‘Shareing’ category.

The two-layer classification model has many other merits: 1) The overall

performance is expected to be more stable than a flat structure where all sub-

categories are considered as top level categories. 2) The two-layer classification

structure provides strong flexibility as the top layer classifiers can be easily opted

in or out. 3) Similarly, two-layer structure also contributes to more optimized

computational efficiency due to the flexibility. 4) Furthermore, flexibility gives raise

to user-friendliness, as the swifts of top layer classifiers can be implemented as

user’s preference options in the system.

Now we test the classification of the sub-categories within their own parent

categories. To this end, we choose Ridge regression, linear SVM and Naive Bayes

classifiers and the stacking method to test on the training dataset. The datapoints of

the training dataset have been further labeled to reflect the sub-categories. Feature

selection using χ2 is applied to select 50% features in each case. We provide the

test results generated from 50 runs of 10-fold cross validation:

Table 3.4: Sub-category classification - performance of top layer classifi-
ers

LSVM Ridge NB Stacking
F0.5 F1 F0.5 F1 F0.5 F1 F0.5 F1

Collection 86.80 85.79 90.71 90.00 91.69 91.07 90.21 89.44
Sharing 93.14 92.84 94.19 93.95 94.81 94.58 95.05 94.68
Choice & Acc. 84.26 80.27 29.27 39.58 83.99 83.22 86.58 87.18
Cookies 93.72 92.25 39.34 50.66 97.39 96.02 94.74 95.07

The four sub-category classification tasks are all linear separable as shown in

table 3.4. Naive Bayes performs surprisingly well in these tasks. One of the possible

explanations is that the size of categories (2-4) is much smaller than the size of the

main topic classification task (16). Ridge regression, however, encounters prbolem

in precision scores for the last two sub-category tasks, where there are only two

categories. We suspects that this is caused by implementation flaw in the applied

library. Stacking method, the probability score variant, shows the merit of stable

top-rank performance as concluded in previous section.
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3.4.2 Multi-label classification

So far, in all previous discussions, we have assumed the single-label classification

model, which always and only assigns the best label to a test item. This simplified

model is suitable for paragraph-based classification of formal documents, such as

well structured privacy policies. However, in real life, not all privacy policies are

well structured. There are irrelevant paragraphs that cannot be sorted into any of

the 16 categories and multi-purpose paragraphs that may be relevant to more than

one category.

Therefore, multi-label classification is useful to improve the topic classification

for non-ideal tset cases. In our system, we implement a multi-label mechanism

that can both assign multiple labels and also assign no label if a test case is

considered irrelevant. In current research stage, practical extensions are considered

less essential than the core classification system. Thus, we only implement the

multi-label functionality from engineering aspect without covering any advanced

subject-specific techniques.

Our implementation of multi-label functionality depends on the actual com-

putation process of the classifiers. For many classification models, such as Naive

Bayes and SVM, confidence scores are computed for all categories in order to

compare and decide the final label for a test item. These confidence scores can be

either probabilities or signed distances to the hyperplane, depending on the specific

scheme of the classifier.

Using this confidence score, we can control the behavior of the classifier so as

to provide multi-label functionality. By running empirical tests, confidence score

threshold t is set up for a specific classifier. For example, using manual labeled

instances, a threshold t can be searched. For a test item, categories generate

confidence scores higher than t are assigned as the class labels to the test item. Or

if no category generates confidence score higher than t, no label will be assigned to

the test item.

3.4.3 Privacy policy grading

Based on the results generated by topic classification system, a grading system

can assist users to quickly comprehend the general quality of a privacy policy by

providing an overall grade based on topic coverage.
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3.4.3.1 Background

Agrawal et al. [4] study the issue of privacy policy ranking and propose a simple

mathematical model for privacy policy grading. In their model, categories of

user information type are predefined and sub-categories are allowed. The model

itself is essentially a linear combination of weighted scores from categories. This

type of linear model is expected to be effective and efficient. However, there

are two problems with the proposed model. First of all, it depends heavily on

natural language understanding, and the grading processes are carries out by

manual inspection. This greatly reduces its practical value. Secondly, the model

reflects the level of risks in a privacy policy. To be more precise, if a privacy policy

expresses more undesired features, it will be graded with higher score and therefore

considered as a worse privacy policy. However, such grading scheme will strongly

surfer from privacy policies that simply do not provide enough information. It is

also worth to point out that this paper is the only dedicated research on the issue

of privacy policy grading to the best of our knowledge.

Closely related to our research in privacy policy grading, the study in automatic

essay grading has also evolved largely due to the emerge of modern nature language

processing and machine learning techniques. Back to the 1960’s, research on

automatic grading of essay [70, 111] began by studying the objectively measurable

yet intuitive features from essays, such as length of essay in words, average sentence

length, number of commas, and by finding the correlation between these features

and the essays that receive higher human ratings. Later, the early research methods

were replaced by more sophisticated methods during late 1990’s and early 2000’s,

with several representative systems such as PEG (Project Essay Grade) [71], which

applies multiple regression techniques, Bayesian essay testing system (BETSY) [87],

which uses Bayesian networks, and the intelligent essay assessor [28], which is

based on the Latent Semantic Indexing (LSI).

One of the challenges in building a grading system is that, in contrast to text

classification, grading is a objective process by its nature, due to many subjective

factors (such as personal preference, different background and understanding, or

lack of clearly stated criteria or clearly quantified scaling criteria). For example, in

a university course short answer grading experiment on the five-point scale, Mohler

et al.[67] report exact agreement of scoring only by 56.8% percent with 17.0%

scoring differs by more than one point and 3.0% differs by 4 points or more.
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3.4.3.2 Grading scheme

Our proposed automatic privacy policy grading scheme is based on the topic

coverage as measured by the core topic classification system. Particularly, two

grading schemes are proposed to generate the grades for full-text privacy policies.

Our general privacy policy grading scheme is based on topic coverage, meaning

that privacy policies are graded for their coverage of the predefined topics (categor-

ies). We believe this scheme is more effective and suitable for automatic privacy

policy grading for the following reasons. Firstly, in contrast to the scheme proposed

in [4], classification coverage conveys more accurate information about the general

quality of privacy policy. That is to say, in general, we consider a privacy policy

to have better quality if its contents are more thorough. Secondly, considering

the main purpose of full-text privacy policy is to provide an overall estimation of

the privacy policy so as to improve the awareness of the users, a generic metric is

preferred over specific measures such as the measure of specific risks used in [4].

We apply a linear model to grade a privacy policy p based on its topic coverage:

Grade(p) = N(
n∑
i=1

wici)

where n is the number of all categories, wi denotes the weight assigned to

category i and N(·) is normalization function that normalizes the linear sum into a

predefined scale, e.g. 10-point grading scale or 5-point grading scale. ci = 1 when

category i is covered in the privacy policy, else ci = 0.

The grading model proposed above also provides a valuable functional flexibility

– the weights wi can be adapted from many sources, e.g. generated automatically

by collaborative filtering, or predefined by users to better address his privacy

preferences. Below we introduce two graders that rely on this grading model.

Simple grader We have presented a simple and effective privacy policy detector

in section 2.2.1. The privacy policy detector uses predefined regular expressions

to match contents in privacy policies. Derived from the similar regular expression

scheme used in the privacy policy detector, the simple grader applies regular

expression matching to decide topic coverage of a privacy policy. That is, if certain

regular expression match happens, the grader considers the corresponding category

is covered. Therefore, we derive a simple grader from the privacy policy detector.
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Topic classification based grader Another type of grader is created based on

the core topic classification system. To be more specific, the grader reads the

classification results from the topic classification system, and then applies the linear

model of grading to calculate the score for a privacy policy. Compared with the

simple grader, the classification based grader is expected to be more accurate yet

less computational efficient.

3.4.3.3 Evaluation

To compare the two types of graders, we carry out empirical evaluation using

human judgment as a baseline. As already stated before, the challenge in evaluating

grading is that it is more subjective than classification. We apply a baseline, which

represents human reasoning in grading, in order to evaluate the graders. The

graders are evaluated by measuring which grader provides closer grades to the

baseline.

Setup To test the graders, we apply the 934 full-text privacy policy dataset as

introduced in 2.1. This dataset is constructed using Google’s search results on the

keyword phrase ‘privacy policy’, which are manually classified as either privacy

policy or not privacy policy. This dataset, consisting 796 privacy policies in total,

forms the basis for the evaluation of graders in this section.

The two graders, denoted as G1 and G2, are applied on the 796 privacy policies.

For each grader, we create three variants of the grading system by applying three

different text extracting schemes. The three text extracting schemes are introduced

in section 2.2.3. The variants are denoted as G1v1, G1v2, G1v3 and G2v1, G2v2, G2v3.

This means, for each grader and privacy policy pair, three grades are generated in

order to minimize the possible effects on the grades caused by preprocessing.

var1 = var(G1v1(p), G1v2(p), G1v3(p))

var2 = var(G1v1(p), G1v2(p), G1v3(p))

avg-diff = |avg(G1v1(p), G1v2(p), G1v3(p))− avg(G2v1(p), G2v2(p), G2v3(p))|

For now, we have three sets of grades generated by each grader, i.e. grades

generated by the three variants of each grader. First we calculated the statistical

variance of the grades among the three variants for each grader, var1 and var2, and

then we calculated the differences between averaged grades for two graders, avg.
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In order to form a fair baseline, we only select the privacy policies that generate

smallest var1 and var2 along with largest avg-diff for the next step – manual

grading. During the manual grading process, the human judge knows the linear

grading model but does not know the grades generated by the two grader systems.

Moreover, the human judge generates the grades based on the ruless of the linear

grading model while also based on his general perception.

Result The human judge gives grades to 125 privacy policies based on the linear

grading model along with direct instinct. Finally, we compare the average grades,

which are averaged among three variants, from each grader against the baseline.

To point out, all grades are normalized to a 10-point scale.

For 98 out of 125 (78.4%) test privacy policies, the grades generated by the

topic classification based grader are closer to the human judge’s grades than the

grades generated by the simple grader. Also, measured against the baseline, simple

grader’s averaged difference is 1.68± 0.54 and topic classification based grader’s

averaged difference is 0.83± 0.34. Considering that we apply the 10-point scale,

the grades generated by the latter are very close to the human judge’s grades with

less than one point diffidence on average.

3.4.4 Visualization

Besides the classification and grading extensions introduced so far, we also provide

a visualization extension to visualize the results from topic classification.

This extension depends on a Chrome add-on named XML viewer 13. The

visualization extension translates the privacy policy classification results into a .xml

file. Then, the XML viewer is used to visualize this .xml file, see figure 3.6 for an

example.

Though it is a simple user interface without elaborated design and implementa-

tion, this visualization method serves as a prototype to demonstrate some of the

basic functionalities of visualization in our automatic privacy policy evaluation

framework.

It demonstrates the topic viewing function, which assists the users in quickly

browsing the privacy policies. Paragraphs of privacy policies are sorted into each

specific topics. Hence the users can directly jump into any interested topic. This

visualization function helps to shorten the time spent on finding the right informa-

13https://github.com/sergeche/xmlview

https://github.com/sergeche/xmlview
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Figure 3.6: Visualization extension

tion that users concern and therefore improves the readability of privacy policies.

In the tool, the navigation column on the right part of the screen facilitates the

topic viewing function. Items in the content column are hidden by default. Upon

click on either the entry in the navigation column or in the content column, the

specific paragraph shows up.

Grading is also demonstrated in this visualization prototype. Grade of the

privacy policy is placed right in the top of both the content column and navigation

column.
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3.5 Summary

In this chapter, we fulfill the research goal in building a topic classification system

that applies the generic machine learning approach towards our privacy policy

framework. The thesis covers the all aspects of the topic classification in a step-

by-step manner, from the definition of categories at the very beginning to various

extensions at the end. The classification results in the experimental evaluation

support the idea of applying machine learning approach to automatically categorize,

grade and analyze privacy policies.



Chapter 4

Share Statement Understanding

The basic topic classification approach has the deficiency of loosing the semantic

information of the natural language statements. With the topic classification system

presented in the previous chapter, it may happen that two similar privacy policies,

where one states “We do not share your personal information in any condition” and

the other states “We use, share and sell your personal information”, are graded in

the same positive way.

This problem calls for fine-grained schemes that handle specific parts of privacy

policies using the generic machine learning approach while taking the semantic

information into account. The main research goal of this chapter is to go beyond

the basic topic classification and explore the application of the generic machine

learning approach to the task of understanding the real implication of specific

statements in privacy policies.

Given the hypothesis that natural language understanding is AI-complete1, there

should be no ‘perfect’ solution for the task of automatic privacy policy understand-

ing with the current state of the art. However, there are special patterns in privacy

policies that are finitely classifiable. Therefore, it is possible to reduce the complex-

ity of the task and create automatic systems for understanding the implication of

privacy statements using our generic machine learning approach supported by text

classification and semantic techniques.

1AI-complete is not a formal mathematical definition. It refers to the belief that for several of
broad areas in AI, solving the problem of the area is equivalent to solving the entire AI problem, i.e.
producing a generally intelligent computer program [96].
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Figure 4.1: Privacy policy compared with other types of natural language
articles
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4.1 Overview

Specifically, privacy policies are special compared with common natural language

texts and articles, such as Internet blogs, topic-specific discussions and news articles.

As demonstrated in figure 4.1, privacy policies have limited amount of word

features. Moreover, we observe strong expression formality and fixed patterns from

the online privacy policies due to the legal nature of these policies.

Taking the advantage of the fact that privacy policies are well structured formal

documents, we propose solutions to the task of automatic privacy policy understand-

ing using two different approaches and carry out intensive empirical evaluation

to demonstrate the performance of the systems based on these two approaches

throughout this chapter.

As discussed above, the key of automatic privacy policy understanding is to

reduce the complexity of the task by exploiting the special formality and patterns

in privacy policies. There are many patterns in privacy policies, so that one could

enumerate and tackle these patterns one by one. But in this chapter, we demonstrate

a common methodology for exploiting the interesting patterns in privacy policies

in order to understand the privacy policies using the generic machine learning

approach. Hence, our task begins with choosing one representative pattern in

privacy policies.
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Share statement Out of many patterns in privacy policies, the share statement is

particularly interesting. We select the share statement as the example pattern for

two reasons. First, the share statements observed in hundreds of privacy policies

are classifiable. Second, share statement is one of the most essential parts in privacy

policies from user’s perspective.

We define share statement as the high level statement in a privacy policy that

declares the company’s general attitude in sharing customer’s information.

These share statements normally either come as the first paragraph in the ‘How

We Share Your Information’ section or appear as the first sentence in one of the

paragraphs in this section. Share statement is commonly a one-sentence text, but

sometimes could be a two-sentences or three-sentences text.

In majority cases, a share statements answers the core question of “what is the

scope of sharing?”. More specifically, this scope is about “Does a company share

user’s information”, “If user’s information may be shared, is the company going to

ask for user’s consent beforehand?”, “What are the exceptional situations in which

a company will disclose user’s information?”, etc.

Three examples of share statements extracted from three different privacy

policies, each describing different intentions related to the disclosure of personal

information, are listed below:

“We may sell, rent, license, trade or otherwise disclose your personal

information, including but not limited to your mailing address, phone

number and other registration information.” – Hanleywood’s Privacy

Policy

“As a general rule, Blizzard will not forward your information to a third

party without your permission.” – Blizzard’s Privacy Policy

“Except as described in this statement, we will not disclose your personal

information outside of Microsoft and its controlled subsidiaries and

affiliates without your consent.” – Microsoft’s Privacy Policy

These three examples also reflect the deficiency of the basic topic classification

in previous chapter. Assuming these privacy policies get a same grade, without a

fine-grained scheme in understanding the share statements, we receive no further

evaluation from the system about the huge difference in the share statements.
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Table 4.1: Categories of share statements

3-class 8-class Demo sentence
Positive

Not sell Not share We do not sell, rent or share your personal
information to any third parties.

Not sell We are not in the business of selling or
leasing your personal information.

Neutral
Share only under consent We do not share your information without

your consent.
Share only under consent
with exceptions

We only share your personal information
with your permission or under following
circumstances as described in this privacy
policy.

Share for exceptions We respect your privacy and only share
your information for the following limited
reasons.

Not share for marketing
purpose

We will not share any of your information
with third parties for marketing purposes.

Negative
No limit share We will share your information with our

partners.
Sell and share We reserve the right to sell, rent and other-

wise disclose your information to but not
limited to the following third parties.

Task formulation It is clear to a human judge that these three share statements
above have different scopes concerning the disclosure of user’s information. That

said, it is not trivial for a computer system to automatically understand the differ-

ences among these share statements. Even more, a formal interpretation of the task

of ‘share statement understanding’ is necessary before any meaningful discussion.

To define the task of ‘share statement understanding’ in a way that computer

can tackle, we limit the scope of the problem and reduce it to a text classification

task. In other words, our methodology for ‘share statement understanding’ is to

first predefine categories from observed patterns of share statements, and then

build the systems that classify share statements into these categories.

Categories of share statements We summarize the categories of share statement

in table 4.1. These categories are defined from the observation on two hundred pri-

vacy policies. Based on these categories, the task of ‘share statement understanding’
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is then formalized into two sub-tasks.

The first sub-task is to classify any given share statement into one of the eight

classes. The eight categories provide fine-grained information about the disclosure

practice of the company. These categories are listed from the most positive to most

negative in table 4.1.

Similarly, the second sub-task is to classify share statements into three high-level

categories, that are, positive, neutral and negative. Table 4.1 provides the mapping

between eight categories and three categories as well.

Throughout this chapter, we will use the terms ‘3-class task’ and ‘8-class task’ to

refer to these two sub-tasks.

It is important to point out a few special features of these categories.

Firstly, the eight categories are not externally exclusive. In other words, there

are share statements that do not fall into any one of the eight predefined categories.

However, as shown in table 4.3, in a survey of 95 privacy policies, we identify only

6 (6.32%) of such share statements. This is a proof of the good conclusiveness of

our categories.

Secondly, the eight categories are not strictly mutually exclusive. Though it is

very unlikely that it belongs to another category if a share statement falls into one

of the categories, exceptions still exist. The overlaps may happen between the ‘Not

sell information’ category and other categories that only describe the practice about

information disclosure.

Thirdly, though the eight categories are supposed to be ranked from most posit-

ive to most negative from the top to the bottom in the table 4.1, the interpretation

of this ranking is subject to personal interpretation.

Chapter outline In this chapter, we cover two approaches for solving the ‘share

statement understanding’ problem. A general overview of these two approaches is

drawn in figure 4.2.

Similarity-based approach This approach uses similarity between sentences to

decide whether a given pair of sentences have the same meaning. By matching

test sentence with labeled sentences and measuring the similarity, label is

given to the test sentence based on the closest matches.

Machine learning-based approach This approach directly applies text classifiers

on the sentence dataset and learns classification models that will automatically
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Figure 4.2: Share statement understanding overview
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separate ‘share statements’ into different meanings.

4.2 Similarity based approach

All the techniques in this section calculate a similarity score Sim(Q,R) between

two sentences Q and R. By calculating this similarity score, such techniques

intend to capture numerically the extent to which two sentences convey the same

information. The objective is to calculate Sim(Q,R) for all sentences R in a

collection and know that when the score Sim is maximized, the sentence R has a

high degree of similarity to the query sentence Q.

4.2.1 Word overlap measures

Metzler et al. [64] apply a baseline word overlap measure in their empirical

research. We follow their choice to use the simple word overlap measure as a

baseline for the comparison of more complex measures and the comparison with

the machine learning based approach.

Simple word overlap measure Simple word overlap fraction (Simoverlap) is

defined as the proportion of words that appear in both sentences, normalized
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by the sentence length. Simoverlap is denoted as:

Simoverlap(Q,R) =
|Q ∩R|
|Q|

(4.2.1)

where |Q ∩R| denotes the number of terms that appear in both sentence Q and

R.

IDF overlap measure This simple baseline measure can be extended to an IDF

variant by using weights of inverse document frequency on the proportion of words

that appear in both sentences.

By taking IDF into account, the variant measure reflects the fact that terms with

different IDF contribute differently to the similarity score between two sentences.

Generally, a term with higher IDF, meaning the term appears in less documents

in the whole collection, is considered as a stronger indication of similarity. The

Simoverlap idf is defined as:

Simoverlap idf (Q,R) =
|Q ∩R|
|Q|

( ∑
w∈Q∩R

log
N

dfw

)
(4.2.2)

where N denotes the number of documents in the collection and dfw is the

number of documents that w appear in.

Phrasal overlap measure The word overlap measures introduced above treat a

sentence simply as a bag of words and only capture the overlap between words.

This is a significant limitation because possible phrasal overlaps can also contribute

to the similarity between sentences. Therefore, further improvement could be

achieved by differentiating between the word overlaps and the phrasal overlaps

and taking phrasal overlaps into account.

Banerjee et al. [5] propose a gloss overlap measure, called extended gloss overlap,

that takes phrasal overlap into account. The base argument of this measure is that

the relationship between the lengths of phrases and their frequencies in the text

collection follows the Zipfian distribution. Hence, the overlap score between two

sentences, overlapphrasal(Q,R), can be computed as
∑

nm
2 for n phrasal m-word

overlaps to approximate the Zipfian distribution.

To normalize this score into the range of [0, 1], Ponzetto et al. [78] propose

the following scheme, which first normalizes the overlap score with sum of two
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sentence lengths and then takes the value of the hyperbolic tangent function in

order to minimize the effect of outliers:

Simoverlap phrasal(Q,R) = tanh

(
overlapphrasal(Q,R)

|Q|+ |R|

)
= tanh

( ∑
nm

2

|Q|+ |R|

) (4.2.3)

4.2.2 Semantic measures

WordNet WordNet [26] is a lexical database which groups English words, more

specifically, nouns, verbs, adjectives and adverbs, into sets of cognitive synonyms

called synsets, each expressing a distinct concept, and provides short, general

definitions for these concepts. Each sense of a word is in a specific synset, which

can be viewed as a structure containing sets of terms with synonymous meanings.

WordNet defines the relations between synsets and the relations between word

senses, denoted as semantic relations and lexical relations respectively [22]. The

semantic relations connect synsets from one to another. Hypernym-hyponym (‘is-

a’) relations for nouns2, hypernym-troponym3 for verbs, holonymy (‘has-a’) and

meronymy (‘is-a-part-of’) are all semantic relations defined in WordNet.

Given these relations among synsets defined, WordNet actually provides a huge

net of synsets (senses of words), in which paths exist between synsets (word senses).

These paths between synsets can be measured to reflect the semantic similarity.

4.2.2.1 Word-level semantic similarity measures

There are many proposals for measuring the semantic similarity between two

synsets in the context of WordNet. Below, we briefly cover several commonly used

semantic similarity measures. In contrast to our goal, which is measuring the

sentence-level similarity, the similarity measures in this subsection are about word-

level similarity. In order to avoid confusion, we denote the word-level similarity

measures in this subsection using Synset Sim(s, t), where s and t are two senses

of words (two synsets in WordNet).

2For example, in sentence ‘Red is a color.’, red is a hyponym and color is a hypernym.
3Troponymy is a coined term by WordNet authors as an analogy to hyponymy for nouns. The

reason troponymy is not exact hyponymy is that for nouns the ‘is-a’ relationship is obvious but verbs
are not subject to straightforward ‘is-a’ relationship. For example, it is clear to say ‘red is a color’,
but it is not straightforward to say ‘whispering is talking’.
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To begin with, we define length as the length of the shortest path between two

synsets, D as the maximum depth of a taxonomy4, least common subsumer (LCS)
as the shared parent of two synsets that does not have any child that is also a parent

of the two synsets, P(s) as the probability of encountering an instance of synset s in

a large corpus, and Information Content (IC) as IC(s) = − logP (s).

Path Distance Similarity is the simplest way to calculate the word-level similarity

using WordNet:

Synset Sim(s, t)path =
1

length

Leacock Chodorow Similarity [53] extends the length-based measure and scales

the length by the overall depth D of the taxonomy:

Synset Sim(s, t)LCH = − log
length

2D
Wu-Palmer Similarity [112] defines the similarity using the addition between

the depths of synsets and the depth of their least common subsumer (LCS):

Synset Sim(s, t)WUP =
2depth(LCS)

depth(s) + depth(t)

Resnik Similarity [85] explores the usage of information content in semantic

similarity measure:

Synset Sim(s, t)RES = IC(LCS)

Jiang-Conrath Similarity [46] further extends the information content method

as:

Synset Sim(s, t)JCN =
1

IC(s) + IC(t)− 2IC(LCS)

Lin Similarity [55] is another form of the information content based measure

as:

Synset Sim(s, t)LIN =
2IC(LCS)

IC(s) + IC(t)

Mohler et al. [67] and Budanitsky et al. [13] provide comparisons of these

similarity measures based on detailed experiments. Generally, information content

based Jiang-Conrath similarity performs the best overall, followed by the similar

information content based Lin similarity [13]. Under the context of applying

similarity for short question answering, Jiang-Conrath similarity generates the best

results too, but surprisingly, followed by the simplest path distance similarity which

generates almost the same performance [67].

4For WordNet taxonomy the maximum depth is 16 if we presume all the hierarchies have a
common parent node.[113]
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4.2.2.2 Applying semantic similarity measure to the sentence-level

Despite many word-level semantic similarity measure introduced above, it is not

trivial to create a scheme for calculating the semantic similarity between two

sentences using the WordNet word-level similarity measure.

To produce the sentence similarity score, we need to figure out which word

sense from WordNet to apply for a given word in its sentence context. This leads

to the fact that the sentence-level similarity calculation based on WordNet word-

level semantic similarity requires the solution of the word sense disambiguation

(WSD) problem. However, WSD is still an open research topic in natural language

processing and it is an AI-complete problem [68].

From implementation perspective, it is not validate to directly apply sentence

level similarity measure without considering the issue of WSD. Because each word

may have more than one senses, most of which are not necessarily relevant to the

meanings intended in the sentences. Therefore, the performance of a similarity

measure suffer when these unrelated senses cascade and produce meaningless

similarity scores.

Hence, before building a sentence-level similarity calculation method on top

of the word-level similarity measures, we need to find a workaround of the WSD

problem.

We apply two common and straightforward workarounds of the WSD problem:

• First sense heuristic

Also called predominant sense heuristic. The first sense heuristic method

simply chooses the first sense from WordNet for any ambiguous word for

computing the similarity between sentences. Though simple in nature, it

frequently outperforms some dedicated WSD methods even when they take

surrounding context into account [61]. The downside of the first sense

heuristic is also obvious. It does not take sentence context into account. It

relies on the quality of first senses from WordNet and presumes the first senses

are reasonable in most of the cases.

• Internal similarity maximization

The internal similarity maximization method maximizes the internal semantic

similarity before calculating the similarity between two sentences. That is,

for each ambiguous word, it chooses the sense that can maximize the overall
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similarity of the senses in the sentence. For implementation, brute-force

method is applied to enumerate all possible combinations of senses in the

sentence and then select the combination which has the highest similarity

score.

4.2.2.3 Sentence semantic similarity

Related work There are many proposed methods that calculate sentence-level

similarity measure by applying WordNet word-level similarity measure, such as

cosine similarity measure between semantic vectors of two sentences [54], inter-

sentence maximum similarity measure5 with IDF weights [65], and simplified

inter-sentence maximum similarity measure [56].

Achananuparp et al. [2] carry out extensive experiments of various sentence

similarity measures using three benchmarks6. Based on this empirical research, the

simplified maximum similarity measure proposed by Malik et al. [56] constantly

performs on the top for the task of sentence similarity measuring. Hence, we apply

this method to represent the various WordNet-based semantic similarity measures

with simplest first sense heuristic method as a baseline.

Below, we give a brief description of the two selected methods, the first sense

heuristic method and the Malik et al. method.

First sense heuristic measure First sense heuristic directly selects the first sense

for each ambiguous word in both sentence Q and sentence R. Further, the method

iteratively computes the word-level similarity, using any one of the word similarity

measures introduced in 4.2.2.1, between two terms s and t each drawn from Q

and R. It means, in this step, similarity of all possible combinations of two word

pair from sentences Q and R are calculated.

To get the similarity score for two sentences, the final step is to form a scheme

in aggregating and normalizing the similarity scores of all possible combinations

of two word pair. To this end, we propose a parameter α in the calculation of the

similarity score. In this final step, α ∗ 100% combinations with highest scores are

selected out of all combinations. And scores of these selected combinations are

5Inter-sentence maximum similarity measure is a coined term in this report to denote the scheme
as introduced later.

6TREC9 (The Ninth Text REtrieval Conference), MSRP (Microsoft Research Paraphrase Corpus)
and RTE3 (Third Recognising Textual Entailment Challenge).
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summed up and then normalized by the number of selected combinations to form

the final sentence similarity score:

Simfirst sense α(Q,R) =

∑
(top α highest Synset Sim(s, t))

α |{Q} × {R}|
(4.2.4)

where {Q} denotes a set of all words of sentence Q, {Q} × {R} denotes all

possible combinations of word pairs with the first element s selected from Q and

the second element t selected from Q, and α is the parameter within the range [0,

1] that defines how many percent of highest similarity scores are used.

The reason for using parameter α to select word pairs with highest scores is

that not all word pairs have semantic meaning to be combined together. Therefore

such top α ∗ 100% selection process automatically eliminates the side-effect from

the meaningless word pairs. Due to this reason, the top α ∗ 100% selection is also

expected to outperform random α ∗ 100% sampling.

Though we expect first sense heuristic measure with top α ∗ 100% selection

will outperform a measure using scores from all word pairs or random α ∗ 100%
sampling, there is another prospective in selecting the useful word pairs, that is to

use only the types of words that normally carry the semantic contents.

Hence, we propose a variant of first sense heuristic measure that selects the

terms from sentences using POS tagging. Specifically, before any word-level simil-

arity calculation is done, the two sentence term-sets {Q} and {R} are first reduced

to {QPOS} and {RPOS} with only terms that have the POS tags in interest. In

practice, we only preserve four types of POS tags, namely, nouns, verbs, adjectives

and adverbs. For this variant, the similarity scores are computed as:

Simfirst sense POS(Q,R) =

∑
{s,t|tag(s),tag(t)∈{POSset}} Synset Sim(s, t)

|{QPOS} × {RPOS}|
(4.2.5)

where {POSset} = {nouns, verbs, adjectives, adverbs}7 and pos(s) the POS tag

of term s.

Inter-sentence maximization measure The inter-sentence maximization meas-

ure shares much similarity with the internal similarity maximization scheme for

WSD. The major difference is that inter-sentence maximization measure maximizes

the word-level similarity for each word in a sentence by iterating and computing

7In implementation, POS tagsets are specified in more details, the UPenn Treebank tag set is
often used. See http://www.cnts.ua.ac.be/pages/mbsp-tags and [59].

http://www.cnts.ua.ac.be/pages/mbsp-tags
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the similarity scores with all words the other sentence. Put differently, the core of

inter-sentence maximization measure for two sentences is a WSD scheme. This

WSD scheme disambiguates word senses by choosing the word sense that maxim-

izes the word-level similarity between the word itself and any other words in the

other sentence.

Given two sentences Q and R, inter-sentence maximization measure maximizes

the word-level similarity score for each word s in Q with the words in R. Due to

the fact that in WordNet synset similarity measures do not cover cross-POS, the

iteration process above is limited to calculate only between two words in the same

POS class in order to reduce the computing time.

The original method, first proposed by Mihalcea et al. [65], also takes IDF

into account for normalizing maximized similarity score for each word. However,

empirical study [54] shows that a simplified version of the method by Malik et al.

[56] performs even better without taking IDF into account. We will apply Malik et

al. for further experiment:

Siminter sentence max(Q,R) =

∑
s∈Qmax Synset Sim(s, r)

|Q|+ |R|

+

∑
t∈Rmax Synset Sim(t, q)

|Q|+ |R|

(4.2.6)

where lower-case q and r denotes all terms iterated over sentences Q and R.

4.2.3 Syntactic measures

All semantic similarity measures introduced to this point rely on the word-to-

word lexical similarity based on WordNet. In other words, these methods use the

‘bag-of-words’ representation.

Compared with the word overlap measures in section 4.2.1, the lexical semantics

is expected to be superior. However the lexical semantic measures do not contain

all information conveyed by the sentence as, syntactic information such as the the

order of words is not preserved by the ‘bag-of-words’ model.

Word order measure To take the syntactic information, specifically the word

order, into consideration, Li et al. [54] propose a scheme to calculate the word

order similarity between sentences based on vector representation. We describe

this method below.
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For sentences Q and R, a joint set J is defined as a bag-of-words of all terms

that occur in both Q and R. Once this joint set J is formed, each term in J is binded

with a number that reflects its order in J . For example, Q = ‘Red is a color.’ and R

= ‘Blue is a color.’, then J = {(red,1), (is,2), (a,3), (color,4), (blue,5)}.
After a joint set J is formed based on sentences R and Q, two word order

vectors rQ and rP are computed. The lengths of rQ and rP are the same as the

number of terms in J . The r, e.g. rQ is calculated by iterating over all terms in J in

the following manner:

For the ith word wi in J , check if it exists in Q. If this wi exists in Q and it is at

the kth position in Q, then set rQi = k. If this word does not exist in Q, iterate over

all words in Q to find if there exists a word that has a similarity with wi higher than

a given threshold β. If so and assume this word in Q is located as the mth term in

Q, still set rQi = m. However, if during the iteration, no word in Q has similarity

with wi higher than the threshold β, then we set rQi = 0.

To continue with the example above where J = {(red,1), (is,2), (a,3), (color,4),

(blue,5)}, rQ is {1 2 3 4 0} and rR is {0 2 3 4 1} if similarity between ‘red’ and

‘blue’ is lower than the threshold β, or rQ is {1 2 3 4 1} and rR is {1 2 3 4 1} if

higher.

Given two sentences Q and R along with rQ and rR calculated following the

above scheme, the word order similarity between the two sentences are defined as:

Simword order(Q,R) = 1− ‖rQ − rR‖
‖rQ + rR‖

(4.2.7)

Hybrid measure A hybrid measure that combines the measures of both lexical

semantic and syntactic similarity will benefit from both sides. Li et al. present

a linear combination. Empirical research [3] shows that the linear combination

sentence similarity measure performs well when the semantic measure part is

weighted more significant than the syntactic measure part.

We define the hybrid measure as below:

Simhybrid(Q,R) = δSimsemantic(Q,R) + (1− δ)Simsyntactic(Q,R) (4.2.8)

where Simsemantic(Q,R) is one of the three semantic measures introduced in

section 4.2.2.3 and Simsyntactic(Q,R) is the word order similarity described above.
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4.2.4 Applying sentence similarity measure for classification

Given the sentence level similarity measures described in previous sections, the

next step towards a final working similarity based scheme is the utilization of the

similarity scores computed between sentences in the classification tasks. Though

not the core of the similarity based approach, this step is not trivial and can highly

effect the final models.

In this section, we propose two methods that apply sentence level similarity

measures to solve the share statement classification tasks. These two methods

differ in their ways of computing the final prediction based on a given 2d matrix

calculated from the training set and the test items. Before we go into the details of

these two methods, we will first start with a brief description of related work.

Related work Zhou et al. [120] present a classification algorithm based on

semantic similarity. However, their method is based on the generalized vectors

of classes, which are not available in our case. Mohler et al. [67] use semantic

similarity measure to classify short answers into grading scales. However, this

paper does not cover any explanation of the classification method that applies the

similarity measures between short texts.

Two solutions The two methods that apply similarity measures for the classifica-

tion tasks are formed on a common basis. To start with, we assume there are one

training set with size n and one test set with size m. A m× n matrix of similarity

scores is computed based on these two sets. More specifically, each row in the

matrix corresponds to the similarity scores for one particular item in the test set

and consists of the similarity scores computed between this one test item and all

items in the training set. This means that the m × n matrix hosts the similarity

scores of all pair-wise combinations of the training items and the test items.

Assuming we choose one of the similarity measures described in previous

subsections 4.2.1, 4.2.2 and 4.2.3, we can calculate a m × n matrix of similarity

scores using the method introduced above. With this matrix, we can further

generate the classification predictions using the two methods proposed below,

namely, the averaging method and the machine learning aided method:

Firstly, a straightforward yet effective method is to apply an averaging scheme

on the matrix. For each test item, an average similarity score is computed for

each category in the training set using the arithmetic mean. Assuming there are k
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categories in the training set, k averaged similarity scores will be calculated. For

prediction, the test item is assigned to the category which has the highest averaged

similarity score.

Despite its straightforwardness and effectiveness in general cases, we do expect

this method to have some difficulties in our specific share statement tasks. The

main reason is that, in our specific tasks, sentences from different categories may

share very similar vocabulary set. This leads to very close averaged similarity scores

among some categories and gives raise to inaccuracy in prediction.

To amend this disadvantage, we propose a second method that applies machine

learning technique for predicting the categories of test items. Besides the m× n
matrix, this method requires another n×n matrix to be pre-computed as well. This

n× n matrix is calculated based on the training set itself, meaning the n× n is a

similarity matrix of the training set.

Using both the n× n matrix and m× n matrix as input, the machine learning

method learns on the n× n matrix, which is computed solely from the training set,

and then predicts on the m× n matrix. To be more specific, the learning process

uses the rows in the n× n matrix along with the labels for each row as inputs. And

the predict process uses the learned model to predict the labels for the rows in

m× n matrix.

The machine learning aided method is expected to discover the common pat-

terns of the similarity arrays and therefore provide better generalization and more

accurate predicting results than the averaging method. It is also clear that the

computational cost of the machine learning aided method is n
m

times higher than

the averaging method.

4.3 Machine learning based approach

In this section, we explore the direct application of text classification techniques to

the task of share statement understanding. Classification algorithms with the basic

setup are first tested. Further, various feature engineering techniques are studied.

Empirical evaluations are carried out in later section 4.4.

Related work in short text classification Though machine learning techniques

have dominated the field of modern text classification for more than a decade,

there was limited focus on short text classification task. Compared with general text
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classification tasks, the short text classification task has its own distinct features.

Back to 2000, Zelikovitz et al. [116, 115] study the short text classification using

unlabelled background knowledge, and later they apply the latent semantic index

[117]. Healy et al. [40] study the short text classification using case base reasoning.

It is just after the raise of social networks, especially the microblogging services,

short text classification has gain more attentions, for the applications such as text

classification and sentiment analysis on Tweets [36].

4.3.1 Classifiers

To begin with, we apply Ridge regression, Naive Bayes, k Nearest Neighbours,

linear SVM with l2 regularization and decision tree.

For Ridge, given its superior performance in previous chapter for topic classifica-

tion, we expect it to have higher than average performance for the text classification

task in this chapter.

SVM is widely used for text classification tasks and in practical systems with

constant top tier performance. We use linear SVM with l2 regularization.

Naive Bayes has one of its strong advantages in its efficiency. Shown in previous

chapter, Naive Bayes can perform in the top rank with feature engineering tech-

niques, which is an very interesting feature for our discussion in this chapter. As

stated in previous chapter, it has been shown that the Multinomial model is usually

superior to the Bernoulli model in general text classification tasks [60]. However,

in case of classifying short texts, Bernoulli model has better chance in matching the

Multinomial model due to the fact that, in short documents task, whether a word

occurs may be more important than how many times it occurs. We therefore apply

the Bernoulli model in this section.

kNN classifier, however, is expected to have poor performance in this task. One

of the reasons for this expectation is that imbalance in the categories will lead to

more misclassification for kNN even when k is a small integer.

Given the pattern of share statement, decision tree could achieve reasonable

performance. Though we do not expect to achieve top level performance with a

single decision tree without ensemble methods.



4.3 Machine learning based approach 67

4.3.2 Feature engineering methods

In normal text classification tasks, it is clear that using words, rather than more

complex engineered features, as a vehicle to capture the information from texts in

general text classification tasks is well justified. However, applying NLP engineered

methods is beneficial in our specific task of share statement understanding. The

reason is twofold. Firstly, this specific task requires finding statistical pattern from

short texts, very limited amount of features and train samples. Secondly, our task

cannot be well solved by ‘bag-of-words’ representation using normal feature setup,

due to the substantial loss of linguistic information.

To tackle our task of share statement understanding, elaboration on feature

engineering is even more important than selecting the classification algorithms,

due to the nature of short text classification. In this section, we intensively study

feature engineering techniques in the context of our specific task. These techniques

can be further grouped into three types:

Word-level feature engineering Word is the basic unit to form sentences and

documents. Words can be directly extracted from documents to form the

traditional bag-of-words representation, which is an unordered collection

of words. We study the word-level feature engineering methods, such as

stopword elimination, stemming and lemmatization.

Term-level feature engineering Terms are single words and multi-word phrases

selected from the corpus. For term level model, we experiment n-gram, term

extraction with POS filtering and full-packaged term extraction.

Concept-level feature engineering Concepts are features that preserve the se-

mantic and/or syntactic information, which is left out by t he bag-of-words

model. For example, by using POS tags, the word ‘book’ can represent differ-

ent concepts such as the noun form, meaning ‘a collection of written sheets

of paper’ or the verb form, meaning ‘to reserve for future use’. Besides the

variants of POS tagging, we further investigate different ways of applying

WordNet knowledge base to form the bag-of-synsets representations in order

to preserve more semantic information.

In table 4.2, we summarize the differences among word-level, term-level and

concept-level representations and demonstrate the results from various feature

engineering techniques.
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Table 4.2: Comparison of different feature engineering techniques

Methods Results
Original sentence These lazy geese and dogs can not jump over the quick brown

fox.
Stopword removal Lazy geese dogs jump quick brown fox.
Stemming These lazi gees and dog can not jump over the quick brown

fox.
Lemmatization These lazy goose and dog can not jump over the quick brown

fox.
Netgation bigrams These lazy geese and dogs can not jump over the quick brown

fox. ‘not jump’
Term extraction (POS) Lazy geese dogs not jump quick brown fox.
Term extraction (Full) fox geese dog
POS tags DT JJ NN CC NNS MD RB VB IN DT NN NN NN
POS tagged words These/DT lazy/JJ geese/NN and/CC dogs/NNS can/MD

not/RB jump/VB over/IN the/DT quick/NN brown/NN
fox/NN.

Synsets (first sense) These lazy,s,01 goose,n,01 and dog,n,01 can,n,01 ot,r,01
jump,n,01 over,n,01 the quick,n,01 brown,n,01 fox,n,01.

Synsets (int-max)1 These lazy,s,01 fathead,n,01 and cad,n,01 buttocks,n,01
ot,r,01 jump,n,06 over,n,01 the quick,n,01 brown,n,02
fox,n,05.

1: The variant 2 is applied for the internal maximization method of WSD.

4.3.2.1 Word-level feature engineering

Stopword removal Common word removal is widely used for text classification

tasks in English. These words are overly common that they occur too often to

convey essential information that is discriminating to separate apart documents

in categories. There are two ways to eliminate these words, using a threshold of

occurance or setting up a customized stopword list. The threshold approach is

unbiased but not domain specific. The stopword list approach is language specific

but provides less flexibility.

We include four stopword removal strategies in our experiment: 1) common

English stopword list8 approach., 2) threshold approach, 3) self-defined stopword

list and 4) no stopword removal.

Stemming and lemmatization Stemming and lemmatization are all text normal-

ization techniques. Stemming is the process of merging various word forms, such

8As defined in Appendix C.3
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as plurals of nouns and conjugations of verbs, into their stems. Lemmatization

only finds the strict lemmas of words. Stem is not necessarily the same as the mor-

phological root of the word. This differentiates these two nearly interchangeable

processes, stemming and lemmatization. For instance, for the conjugations of verb

‘go’, i.e. ‘goes’, ‘going’, ‘went’ and ‘gone’, stemming produces ‘goe’, ‘go’, ‘went’ and

‘gone’, while lemmatization yields ‘go’ correctly for all cases.

However, for English, which is relatively a less inflected language, stems are

normally close to or same as the lemmas. This fact guarantees general quality

of stemming for the purpose of text normalization and makes stemming widely

accepted in diverse fields of applications. To point out, this slight difference of

strictness also makes lemmatization a harder task than stemming [103].

In the experiment section, we test both stemming and lemmatization for text

normalization.

4.3.2.2 Term-level feature engineering

As mentioned previously, we also explore the term-level feature engineering by

either extending the bag-of-words model with phrases and multi-word terms or

extracting terms from the bag-of-words model.

Negation bigram term construction Negation plays a crucial role in sentiment

analysis [109, 108]. Our task of share statement understanding has a direct

resemblance to sentiment analysis, in the way share statements can be categorized

as positive, neutral and negative. For example, the share statement “We neither

rent nor sell your personal information to anyone.” is consider much more positive

than “We may disclose your personal data to third parties.”

To exam the role of negation in our task, we present a scheme for constructing

bigram negation terms. The basis of this negation bigram construction scheme is

that there are several common patterns of negation as observed share statements.

For instance, when expressing sharing with limits or no sharing, patterns such as

“... not share, sell or rent ...” and “... never rent, sell or share” are used with very

high frequency. We describe the negation bigram construction scheme below:

P = ( {negationwords}, w, {POS tags}) (4.3.1)

P is a negation bigram construction pattern which is defined as a tuple of the
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negation word set, a window w = (wpre, wpos) and the POS tag set. Such a pattern

P defines a set of negation words along with its influencing distance, which is

defined by the window w, and its influencing POS tags. For example, a pattern

P = ( {not, never}, (0, 10), {V B}) matches any verb that appears within 10-word

distance after a negation word ‘not’ or ‘never’. For a match, such as a verb ‘sell’ that

appears two words after ‘not’, a bigram negation term will be constructed, in this

case ‘not sell’.

The negation term construction begins with the definition of the negation word

set and patterns. Then, the input sentences are easily processed to construct the

negation bigram terms. For a certain input sentence, it is screened by looking up

a dictionary of the words in the negation word set. For any match of negation

word, POS tags are checked within the window in order to find all possible matches.

Finally, negation bigram terms are formed for all matches.

n-gram n-gram is a contiguous sequence of n items from a given sequence of text

or speech. There are two common types of n-gram in computational linguistics,

namely, character-based n-gram and word-based n-gram. The application of both

types of n-gram is studied [35, 17], tracing back to the early years of research on

the text classification.

One difference is that the character based n-gram tolerates the textual errors,

which can not be captured by the word-based n-gram. For instance, ‘hello world’

and ‘hellow orld’ are treated as two totally different bigrams by the word-based

n-gram. But character-based n-gram can capture a lot of character sequences

combinations. Clearly, this robustness of the character-based n-gram is achieved by

computing more features.

In the context of our task, where privacy policies are often formally drafted by

lawyers, fewer than normal contextual errors are expected. Hence, we only apply

word-based n-gram in our experiment.

Term extraction Term extraction methods are used to extract term-level features

that are specific words and expressions found within the native documents that are

generally representative [25]. Term extraction method normally is constructed as

a pipeline of tokenization, text normalization, generation of phrases and filtering.

Regardless of various methodologies applied, the goal of term extraction is to con-

struct terms, by selecting meaningful terms from bag-of-words and/or constructing
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new terms (phrases) from combination of words.

We apply two different term extraction strategies. The first is simple filtering

of terms based on predefined POS tags9. The second is a full pipeline10 of term

extraction.

4.3.2.3 Concept-level representation

In this subsection, we present two types of concept-level representation, i.e. the

concept-level representation based on POS tagging and the one based on Word-

Net. The goal of creating concept-level representation is to preserve more se-

mantic/syntactic information from the original sentences. Compared with term-

level representations, concept-level representation can capture specific semantic

information. As shown previously, POS tagging can preserve the parts of speech

information which helps to distinguish different forms of the word ‘book’. Further-

more, the WordNet based concept-level representation can preserve the semantic

that links together two different words with same meaning.

Throughout this subsection, we use ‘POS tagged word’ and ‘concept’ interchange-

ably for concepts created from POS tagging. And ‘synset’, ‘sense’ and ‘concept’ are

interchangeable for WordNet based concepts.

POS tagging based concept representations To begin with, we apply a model

called bag-of-POS-tags. That is, each sentence is processed by a POS tagger and a

POS tag is assigned to a word if applicable. Then, the bag-of-words is reduced to a

bag-of-POS-tags by simply replacing all the tagged words by their POS tags.

Though very simple, the information carried by POS is useful in many cases.

Finn et al. [27] apply bag-of-POS-tags to J48 (a variant of the C4.5 pruned decision

tree algorithm) to classify WWW pages into two classes (fact and opinion) by POS

statistics obtained from a Brill tagger. Pak et al. [72] demonstrate that different

POS have different effects in sentiment analysis.

In sentiment analysis text classification tasks, different parts of speech also

contribute differently to particular categorizes [72]. By analyzing this information,

the basic grammatical nature of the task is revealed.

9For POS tagging, POS tagger applied is the NLTK recommended Maxent Treebank POS tagger
trained on Penn Parsed Corpora.

10Full term extraction package Topia - http://pypi.python.org/pypi/topia.termextract/.

http://pypi.python.org/pypi/topia.termextract/
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Besides the bag-of-POS-tags, another way to make use of the POS tagging

process is to construct bag-of-POS-tagged-words. The tagged words combine the

advantages of both bag-of-words and bag-of-tags, by preserving POS grammatical

information and statistics of the words.

Bag-of-synsets based on WordNet The concepts generated based on WordNet

are more abstract than the ones generated based on POS. For instance, given the

lexical contexts, WordNet hypernymy is applied to link two similar nouns together

by a same sense both nouns share. In case of the POS based concepts, these two

nouns are detected to be nouns, but the link to their same origin sense is not

discovered. This reflects the fact that WordNet based concept representation is a

further step based on the POS tags. Technically, this is true because finding the

right sense requires the knowledge of the part of speech first, given different parts

of speech appear in different taxonomies in WordNet.

The application of WordNet hypernym in text classification context is studied in

both rule based and machine learning based methods [92, 93]. It is shown that the

WordNet hypernym can bring advantages in specific machine learning tasks.

As discussed in previous section 4.2.2.2, the task of choosing the right synset to

use is not trivial. We implement both methods introduced before, namely, the first

sense heuristic and the internal maximization method. Particularly, we create four

variants of the internal maximization method: the first variant selects the sense

of a word that maximizes the sum of word similarity with another word in the

sentence, meaning that all similarity scores between any possible senses of two

words are summed up to find the max one; the second variant selects the sense of

a word that yields the max sum of similarity scores with all senses of all words in

the sentence; the third and the forth variants are derived from the first and second

variants respectively, by applying the same schemes to the corpus of the whole

training set.

4.4 Experimental evaluation

In this section, we carry out experimental evaluation of the techniques proposed in

previous sections. The goals are:

Goal 1: For machine learning based approach, systematically examine the

impact of different options in each feature engineering technique and analyze the
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experiment outcomes.

Goal 2: Select the classification models that optimize the performance on the

share statement tasks by combining classifier with feature engineering methods.

Goal 3: Evaluate various models on the final test dataset, compare the results

of both the machine learning based methods and the sentence similarity measure

based methods.

4.4.1 Datasets

In section 4.1, we introduce the tasks of share statement understanding, i.e. to

classify an unseen share statement test item into one of the three classes or into one

of the eight classes for the 3-class task or the 8-class task respectively. To facilitate

our empirical evaluation of different models, we gather share statements from

on-line privacy policies and form a dataset as a benchmark for the 3-class task and

8-class task.

The first challenge for building the dataset is that the distribution of the share

statements on different categories is highly unbalanced. Majority of the share

statements fall into few classes and only a few share statements fall into the other

classes. This is the case for both the 3-class task and the 8-class task.

As shown in table 4.3, which is an illustration of a random selected dataset

contains 95 well structured privacy policy (referred as 95 privacy policy set from

now on), the imbalance of the distribution of share statement is indeed evident.

For the 3-class task, out of 64 share statement samples, 54 samples (84.38%) fall

into the the neutral category along with only 6 samples (9.37%) and 4 samples

(6.25%) fall into the positive and the negative classes respectively. Similarly, for

the 8-class task, the top 2 classes, namely the ‘Share only under consent’ and the

‘Share only under consent with exceptions’, consist of 64.06% of all samples.

The second challenge for building the dataset is that privacy policies, though

natural language documents, are formal policy documents that demonstrate strong

patterns and fixed formats in expression. This attribute of privacy policy is both

bless and curse. Fortunately, only with the presence of this attribute of privacy policy,

it is possible to find the patterns in share statement in order to effectively apply

machine learning and natural language processing techniques for to understand

share statements by classifying them.

However, there are also problems. For building the dataset, limited patterns in
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Table 4.3: Statistics of share statement from 95 well structured privacy
policy

3-class 8-class Count Percentage (%)
Positive 6 6.32

Not sell Not share 4
Not sell 2

Neutral 54 56.84
Share only under consent 7
Share only under consent with exceptions 15
Share for exceptions 26
Not share for marketing purpose 6

Negative 4 4.21
No limit share 3
Sell and share 1

No1 25 26.31
Outliers2 6 6.32
Total 95 100.00

1: No share statement is found in the privacy policy.
2: Share statement does not fall into any category.

share statements lead to limited number of diversified samples in each category

for a machine learning classifier to learn enough information. This may lead to

under-fitting for the classes where not enough diverse samples are provided and

further give rise to the chances of overfitting caused by under-fitting.

With these two challenges in mind, we build the dataset, called Share Statement

Dataset (SSD). The SSD contains two parts, the training set and the final test set.

Table 4.4 and 4.5 demonstrate the categorical statistics of SSD training and test

sets.

The SSD training set contains 75 samples in general. We use three sources of

privacy policies to build this training dataset:

First, during the process of annotating the 95 privacy policy set (see table 4.3),

the first 29 samples of share statements are used to form the first part of the

training.

Second, we try an automatic process in the hope to automatically ‘mine’ the

share statements from full text privacy policies. For this purpose, a one-class SVM

[57] is trained on these 29 samples. Using this trained classifier, another 12 samples

are formed by searching about 200 full text privacy policies. After some efforts

in parameter tuning of the one-class SVM, this approach is proven to be not as

promising as expected.
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Table 4.4: Share Statement Dataset (SSD) training set

3-class 8-class Count Percentage (%)
Positive 15 20.00

Not sell Not share 8
Not sell 7

Neutral 47 62.67
Share only under consent 9
Share only under consent with exceptions 12
Share for exceptions 20
Not share for marketing purpose 6

Negative 13 17.33
No limit share 6
Sell and share 7

Total 75 100.00

1: No share statement is found in the privacy policy.
2: Share statement does not fall into any category.

At last, we turn to manual collection by surfing and searching in the Internet.

The merit of this approach is that we can solve both challenges as stated in 4.4.1.

By intentionally omitting some of the share statements found during the web

surfing that belong to the more-common categories and by intentionally finding

diverse patterns and samples for the less-common categories, we collect the last

34 samples of the training set with the best efforts to normalize the distribution of
samples over all categories and to avoid the under-fitting of the less-common categories
by getting more diversified samples.

This effort is reflected in figure 4.3. In contrast to the distribution of the 95
privacy policy set, the SSD training set has a much flatter distribution over the

categories, especially for the less-common categories, such as ‘Not Sell’, ‘No Limit

Share’ and ‘Sell and Share’. Furthermore, as mentioned above, while collecting

these samples, extra efforts are made to find diverse pattern/sentences for these

categories.

On the other hand, the SSD test is built to stimulate the natural distribution of

the share statements. This means, we want to use the SSD test set to approximate

a sample set that a user may encounter during normal period of Internet surfing.

First, we assume the 95 privacy policy set itself is such an approximation. Though

this set contains only well-structured privacy policies, which may not be provided

for all the websites a user visits, we believe that the Internet surfing activities of

an average user are expected to be limited to the scope of well-known websites
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Table 4.5: Share Statement Dataset (SSD) final test set

3-class 8-class Count Percentage (%)
Positive 4 10.81

Not sell Not share 3
Not sell 1

Neutral 31 83.78
Share only under consent 3
Share only under consent with exceptions 8
Share for exceptions 14
Not share for marketing purpose 6

Negative 2 5.41
No limit share 1
Sell and share 1

Total 37 100.00

in majority of the time. And these well-known and frequently-visited websites

are mainly operated by major companies and tend to have well-structured privacy

policies.

Second, the approximation is now reduced to making sure the SSD final test set
has a similar categorical distribution as the one of the 95 privacy policy set. This

desired similarity is shown in the figure 4.3.

The SSD final test set consists of 37 samples. These are share statement samples

from the 95 privacy policy set by excluding the ones used in the first step of building

SSD training set. There are two exceptions that two samples11 are created to make

sure each category in the test set has at least one sample.

It worths to point out that the SSD final test set is not used in any process during

the experiments for training and tuning. The classifiers only see this test samples

in the final test phase after learning is done.

Evaluation of text classification As already introduced in section 3.3.3, we will

mainly apply F1 and F0.5 in the following experimental evaluations. As previously

stated in section 4.4.1, our dataset is limited especially for the rare categories, and

we only have two separate datasets, i.e. a bigger training set and a smaller final

test set, hence we will apply 10× 10 cross validation and 50× 10 cross validation in

different situations.

11See Appendix B for details.
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Figure 4.3: Categorical distribution of datasets
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4.4.2 Single step comparison

To accomplish goal 1 defined in section 4.4, we carry out comparative experiments

on high level options such as different algorithms and feature representation

methods, and also on low level options such as different feature engineering

techniques and even different variants for one feature engineering technique.

4.4.2.1 Comparison of classifiers

First, we examine the performances of different classification algorithms12 in a basic

setup, i.e. without stopword removal, no stemming, no further feature engineering

along with basic bag-of-words representation.

We illustrate the performances of selected classifiers based on different levels of

aggressiveness in χ2 feature selection. In an effort to provide more accurate results,

10 × 10 fold cross-validation is applied, which means each point in the figures is

averaged on the results generated by 10 runs of 10 fold cross-validation.

12kNN: k = 3, NB: Bernoulli Naive Bayes, SVM: linear SVM with l2 regulation and C = 1000,
Tree: with max depth = 10 and min split = 2.
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Figure 4.4: Comparison of classifiers for 8-class task in basic setup
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For both the 8-class task and the 3-class task, we report the F1 score together

with the F0.5 score. For 8-class task, the F1 score is more important as it is an

unbiased reflection on both precision and recall. However, for 3-class task, we

believe the F0.5 score, which is influenced more by precision, is of greater interests

for the reason that it is more critical to prevent assigning positive label to negative

samples rather than to assign as many positive labels as possible in case of 3-class

task.

As shown in figures 4.4 and 4.5, Naive Bayes and Ridge classifiers show constant

superiority over the other three classifiers. The results about Naive Bayes and Ridge

classifier also confirm the similar observations in previous topic classification task.

Ridge and Naive Bayes classifiers in both tasks reach best performance at the points

about half of the features are chosen by χ2 feature selection. One of the superiority

of Ridge classifier is that it constantly performs in the best level, and even starting
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Figure 4.5: Comparison of classifiers for 3-class task in basic setup
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from very aggressive feature selection phase, where only 2%-10% features are

selected. Further, though SVM is not ranked in the top tier, it may because of the

specific characters of the two tasks in the basic setup. Due to the similarity between

Ridge and SVM, we will return to SVM when we compare the performances using

the test set, even though we will not further address SVM under comparison using

the training set.

While comparing across the two figures, a straightforward observation about

the two tasks is the difference in difficulty. These two tasks, by nature, are text

classification tasks based on the same training data but with different categories.

Hence, the reason why 3-class task is easier than 8-class task is obvious. Another

observation is about the subtle distinction in the shapes of Naive Bayes classifier.

This could be a sign that the peak of Naive Bayes’ extraordinarily high Fscores in the

3-class task may be resulted by overfitting.
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Grounded on the results of the empirical analysis of classifiers in this step, we

will mostly apply either one or both of the Naive Bayes and Ridge classifiers in our

later discussion about feature engineering techniques.

4.4.2.2 Stopword removal and stemming

Stopword removal We test four different options for stopword removal on both

Naive Bayes and Ridge classifiers. The experiments in this step are carried out on

both the 3-class and 8-class tasks. We test 50 runs of 10-fold cross-validation for

each of the four scenarios.

Option 1 - Common English stopword list. One of the most common approaches

for stopword removal is using a common English stopword list. We apply this

approach as a comparison baseline. The common English stopword list is

provided in Appendix C.3.

Option 2 - Threshold stopword removal. Another common way to remove stop-

words is using a threshold. We set a threshold to eliminate the top 20 most

frequent words.

Option 3 - Self defined stopword list. Instead of a common English stopword

list, one can define a specific stopword list. In this option, we apply a

stopword list simply consists all the company and brand names occurred in

the sample privacy policies.

Option 4 - No stopword removal. Same as in the setup of previous step where

we compared classifiers, using no stopword removal is another option.

As shown in figure 4.6, the option 3 and 4, self-defined stopword list and no

stopword removal, have shown constant better performances than other options

while option 1, common English stopword list, is always the worst performer.

The key to interpret such results lies in the special roles played by parts of speech

that often removed by common English stopword list. For instance, some common

adverbs and conjunctions provide critical information to separate different classes

in our two tasks. By eliminating all common English words, the common English

stopword list option is not able to preserve this information and therefore shows

constant worse performances in all four scenarios. Similarly, the threshold option
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Figure 4.6: Comparison of stopword removal options
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removes some of these critical common words and hence performs in between of

the best performers and the common English stopword option.

The major difference between option 3 and 4 is that the self-defined stopword

list removes the specific company and brand names. Despite the similar perform-

ances between the two options, the self-defined stopword list option is deemed to

be a better option considering its potential ability in preventing overfitting caused

by these specific names.

Also the figure 4.6 provides a possible means to compare the general perform-

ance change of Ridge and Naive Bayes classifiers in response to feature engineering.

Naive Bayes shows more active performance changes given different options in

feature engineering.

The difference in variances as shown in the figure also supports the superiority

of option 3 and 4 due to their lower variances. From now on, unless otherwise

noted, we will apply the no stopword removal for further step-wise comparisons

and self-defined stopword removal for final result analysis.
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Stemming As previously described in section 4.3.2.1, several options of text

normalization can be applied for text classification tasks. In this step, we compare

both stemming and lemmatization to the baseline where no stemming is used.

Option 1 - Stemming. We apply the widely used Porter stemmer [79] to reduce

inflected words to their stems. We allow the stemmer to handle all words in

the sentence automatically.

Option 2 - Lemmatization. The lemmatization process combines the WordNet

lemmatizer [66] with an NLTK recommended Maxent Treebank POS tagger.

The POS tagger first determines the POS tag of a word, and then the WordNet

lemmatizer takes both the POS tag information and the word itself as input

for lemmatization. For the words that Maxent Treebank POS tagger gives no

output, the word itself is input into the lemmatizer.

Option 3 - No stemming. The baseline for comparison.

Figure 4.7: Comparison of stemming options
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As can be observed in figure 4.7, both stemming and lemmatization do not

provide substantial boost on the F1 scores. Considering the extra computational

costs of the stemming methods, especially the lemmatization which requires POS

tagging and WordNet lookup, the slight increase in performance does not provide

strong support for applying the stemming methods. Therefore, we will not apply

any stemming methods in the further steps or in the final methods.
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4.4.2.3 Term based representations

n-gram n-gram helps to capture the phrases that consists n words. We test three

options of n-gram and compare them with unigram which is the baseline in this

step and equals to the baseline used in previous step.

Option 1 - Bigram. Bigram preserves both the single words and possible phrase

combinations of two words. In the experiment, we simply count in all possible

two-word phrase and then apply χ2 feature selection to select same amount

of features as in the baseline.

Option 2 - Negation bigram construction. In this option, we apply the negation

bigram construction method as proposed in section 4.3.2.2. Specifically, we

implement two negation construction patterns which are concluded from

observations on the training dataset:

P1 = ( {‘not’, ‘never’, ‘neither’}, 10, {V })

P2 = ( {‘without’}, 3, {N})

Same as in option 1, the number of features from negation bigram construc-

tion are reduced by χ2 to the same number of unigram.

Option 3 - Trigram. Trigram also keeps the three-word phrases along with all

features generated by bigram. The feature selection is same as in bigram.

Option 4 - Unigram. The baseline for comparison.

Figure 4.8 shows the F1 scores of the options for n-gram. In the 3-class task,

negation bigram construction performs better than the baseline, unigram, which

performs slightly better than bigram, while the trigram has significantly worse

performance. In the 8-class task, the performances of the four options are close

with slight priority shown by bigram and negation bigram construction.

Demonstrated in the results, negation bigram construction and bigram can both

improve the performance measured by F1 score. However, we prefer the negation

bigram construction to the traditional bigram method for the reason that bigram

may lead to overfitting by retaining certain non-generalized two-word phrases

meanwhile our method of negation bigram construction specifically targets to

useful negation bigrams with justified semantic meanings.
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Figure 4.8: Comparison of n-gram options
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Term extraction In contrast to n-gram, term extraction methods do not create

extra features but actually reduce the number of features by extracting only the

useful terms out of all word features. However, because the very limited amount of

features in the share statement tasks, we expect term extraction will not improve or

may even deteriorate the performance. We examine two options of term extraction

to test this expectation.

Option 1 - Term extraction by POS. A Maxent Treebank POS tagger from NLTK

package is applied to tag all the words. Only the words in specific POS tags,

which normally posses real meaning, are extracted. In the experiment, only

words tagged with POS tags that begins with ‘V’, ‘N’, ‘R’ or ‘J’ are extracted.

Option 2 - Full pipeline term extraction. A full package13 of term extraction is

applied. It is more aggressive than the option 1 and mostly only preserves

the nouns and nouns phrases.

Option 3 - No term extraction. The baseline for comparison, same as the ones

used in previous two steps.

As proven in figure 4.9, the two term extraction options indeed do not improve

F1 performance but considerably deteriorate the F1 score. It is also clearly notice-

able that the more aggressive term extraction strategy leads to worse deterioration
13Topia, as noted previously in section 4.3.2.2.
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Figure 4.9: Comparison of term extraction options

Run Number

F
1 

sc
or

e 0.65

0.70

0.75

0.80

0.85

0.90

0.50

0.55

0.60

0.65

0.70

0.75

10 20 30 40 50

3class_N
B

8class_N
B

Options

Baseline

Full

POS

of the performance. Hence, we will not apply any term extraction method in our

further steps or final result analysis.

4.4.2.4 Concept based representations

POS based representation We test the POS based representation first. The main

aim in this step is to compare the POS tagged words model to the baselines which

are described in option 2 and 3 below.

Option 1 - Bag-of-POS-tagged-words. This is the core POS based representation.

It adds potentially useful semantic information to the original words and thus

forms features that go beyond the bag-of-words model.

Option 2 - Bag-of-POS-tags. Bag of POS tags model only keeps the basic POS tag

information of the sentences. This shows the pure capability in distinguishing

different categories provided by the simple semantic information from POS

tags. We do not expect any good performance from this option because it is

rather a baseline of semantic information.

Option 3 - Baseline. The baseline for comparison, same as the ones used in previ-

ous steps. It is the baseline using traditional bag-of-words model.

Option 2 shows surprisingly reasonable F1 performance even only using the

POS tags. Particularly, about 0.6 and 0.4 F1 scores are achieved for the 3-class
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Figure 4.10: Performance of POS based representation
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and 8-class tasks respectively. This justifies the basis of this step that semantic

information carried by POS tags is substantially useful even without the word

statistics conveyed by the bag-of-words models.

The POS based representation tested as option 1 demonstrates constant better

performance than the baseline option. As will be shown in later section 4.4.2.5,

the option 1 of POS based representation holds the best performance among all

single step feature engineering methods.

In addition to its improvement in performance, the experiments of POS based

representation also confirms semantic information’s positive effects in short text

classification tasks. It underpins the rationale that semantic information helps

to cover the useful features that lead to further improvement in classification

performance but are left out by bag-of-words model.

WordNet synset based representation WordNet synset models are considered

as another concept based representation. By generalizing words into sets of synsets,

synset based representation provides general definitions for sets of similar words

which share the same hyponymy and records the various semantic relations between

these synonym sets.

However, as already discussed in preceding section 4.2.2, constructing good

synset based representation requires solution for WSD problem. In other words, the

performance of a synset based representation hinges upon the quality in handling
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the sense disambiguation task. First, we compare 5 different WSD options with the

baseline. This experiment aims to show whether synset based representation can

boost the performance in general.

Option 1 - First sense heuristic. Synset based representation is constructed by

simply selects the first sense of each word which has multiple senses.

Option 2 - Sentence internal word maximization. One variant of the internal

maximization method that selects senses maximizing similarity with an-

other sense in the scope of the sentence. In our implementation, we apply

brute-force comparison that search all possible combinations to decide the

maximums.

Option 3 - Sentence internal maximization by sentence sum. One variant of the

internal maximization method that selects senses maximizing similarity with

all other words in the scope of the sentence. Brute-force search is implemen-

ted as well.

Option 4 - Corpus level word maximization. One variant of the internal maxim-

ization method that selects senses maximizing similarity with another sense

in the scope of the whole training corpus. Brute-force search is implemented

as well. Due to the large amounts of comparisons computed within the corpus

scope, the computational cost is considerably high in this option.

Option 5 - Corpus level maximization by sentence sum. One variant of the in-

ternal maximization method that selects senses maximizing similarity with

all other words in the scope of the whole training corpus. Brute-force search

is implemented as well. The computational cost is similar to option 4.

Option 6 - Baseline. The baseline for comparison, same as the ones used in pre-

ceding steps.

Various WSD options yield slightly different performances as can be observed

in figure 4.11. It is evident that better WSD scheme leads to slightly better F1

score. Among the four variants of the internal maximization method, corpus based

options, option 4 and 5, outperform the other two options, which are sentence

based. We expect such results for the reason that option 4 and 5 are generally

better WSD schemes compared with option 2 and 3 considering that whole corpus
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Figure 4.11: Comparison of WSD options for synset representation
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is used in the process of sense disambiguation in option 4 and 5. Searching for

the sense that maximizing similarity score in the whole corpus grants a better

chance of find the right sense than searching only in the sentence. The difference

between the two sentence based options, namely option 2 and 3, can be explained

by inter-word similarity maximization’s relative inferiority to sentence internal

similarity maximization scheme.

In general, option 1, 3, 4 and 5 all demonstrate somewhat better F1 performance

than the baseline. However, for the similarity maximization based options, i.e.

option 3, 4 and 5, the slight improvement in performance can hardly justify the

high computational costs. Regarding to the first sense heuristic option, the option 1,

however, the slight boost is favorable because first sense heuristic is much cheaper

computation-wise.

In previous experiment where WSD options for synset representation are tested,

we applied the path distance similarity measure for all options. However, as

introduced in previous section 4.2.2.1, there are various methods for calculating

the WordNet synset similarity. To justify the conclusion in previous step, we will

quickly examine three similarity measure, each represents a specific scheme.

Option 1 - Path distance similarity. The simplest WordNet based similarity meas-

ure.

Option 2 - Wu-Palmer (WUP) similarity. Depth based similarity measure that
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Figure 4.12: Comparison of similarity options for synset representation
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also takes the least common subsumer into consideration. We apply this

measure as a representative of the depth based measures.

Option 3 - Jiang-Conrath (JCN) Similarity. Representative of the information con-

tent based measures. All option 1, 2 and 3 are described in section 4.2.2.1.

Option 4 - Baseline. The baseline for comparison, same as the ones used in pre-

ceding steps.

As demonstrated in figure 4.12, we can arrive at a general conclusion that the

choice of similarity measure does not significantly effect the performance. Each

method has similar performance compared with the baseline and path distance

similarity. An exception is the JCN method slightly outperform other three options

in the 3-class task. However, because JCN similarity measure requires to calculate

the information content in each run, there are extra computational cost on top of

the basic computational cost for each WSD option. Therefore, we will stick to the

basic path distance similarity measure which is already effective enough to judge

the WSD options.

4.4.2.5 Summary of single step feature engineering methods

To sum up all the single step feature engineering methods, we present the table

below to list all the methods with their detailed information.
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Table 4.6: Summary of single step feature engineering

Step Option Feature Time 3-class task3 8-class task3 ∆4

(%)1 (s)2 F1 F0.5 F1 F0.5

Baseline 100.00 0 86.24 88.13 68.96 71.13 0.00
Comm. Eng. 73.65 0 71.15 74.53 59.05 60.65 -12.27

Stopword Self Def. 90.25 0 86.02 87.74 68.22 70.14 -0.58
Threshold 93.50 0 82.24 84.24 64.26 66.05 -4.42

Stemming Stemming 85.92 0.07 87.78 88.93 71.20 72.84 1.57
Lemmat. 90.61 12.4 88.57 89.98 69.49 71.53 1.28
Bigram 354.15 0.03 84.75 83.98 75.90 76.65 1.71

n-gram Neg. Bi. 109.75 10.1 89.48 91.23 72.87 74.44 3.39
Trigram 684.84 0.06 73.71 70.96 69.05 69.57 -7.79

Term ext. POS 82.31 10.2 79.99 82.94 60.12 62.02 -7.35
Full 55.60 0.3 71.29 73.82 54.74 56.18 -14.61

Pos rep. POS tags 9.03 10.3 61.93 59.49 41.52 42.80 -27.18
POS words 113.72 10.1 88.91 90.87 72.22 74.05 2.90
Option 15 95.31 4.6 86.40 87.98 70.65 72.80 0.84
Option 2 98.92 140 82.85 84.96 64.41 66.19 -4.01

Synset WSD Option 3 104.33 136 86.23 88.08 67.91 70.25 -0.50
Option 4 93.14 1721 86.88 88.08 71.59 73.52 1.40
Option 5 93.86 1723 86.72 87.58 71.86 73.97 1.42
Path 104.33 136 86.23 88.08 67.91 70.25 -0.50

Synset sim WUP 107.22 163 85.39 87.53 70.25 72.19 0.23
JCN 96.75 555 83.96 85.98 71.48 73.56 0.13

1: Number of features, percentage in contrast to the baseline.
2: Computational time cost for preprocessing on the training dataset.
3: F scores for both 3-class and 8-class tasks are shown in percentage.
4: Improvement from baseline, averaged on four F scores.
5: Names for WSD options can be found in previous page.

Size of feature set As noted in the third column of table 4.6, some feature

engineering methods increase the size of the feature set while the others lead to

reduction of the feature size. In general, a change in feature number is caused by

the nature of the feature engineering method. For instance, stemming reduced the

feature size because words with same root are reduced to one feature, or bigram

and trigram enlarge the feature size because bigrams and trigrams are formed

using combinations of single words. Same as in previous single step experiments,

all the results shown in the table are measured on the feature set with same size as

the baseline. This means, in order to form a standardized comparison, χ2 is applied

to select features in case the feature size generated by a particular method is bigger

than the baseline’s feature size.
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Computation time cost The fourth column demonstrates the computational cost

of different feature engineering methods. As the computational costs are measured

using computation time on the training set, it is important to specify the details of

the experiment environment. All the experiments are carried out on a Windows

Vista PC (Intel Core3 Duo T6570 with 2G RAM) using Python 2.7.

There are five methods that have similar computation time costs as they all

use the NLTK Maxent Treebank POS tagger, which is a pre-trained tagger that

appears to be an NLTK ClassifierBasedTagger trained on the treebank corpus using

an NLTK MaxentClassifier. Because the POS representation method is one of the

best performers that we will carry on in final result analysis, it is important to point

that the NLTK Maxent Treebank POS’s computation time cost is considerably higher

than other types of POS tagger, such as the Brill tagger [11]. As shown in [76],

though the Maxent tagger provides better accuracy in general, non-classifier based

tagger has much better efficiency. For example, the Brill tagger can be faster than

classifier based tagger by two to three magnitude orders. Therefore, the efficiency

of POS taggger related methods will not be a problem in future implementation. If

speed is an issue, other types of tagger can be applied with no substantial reduction

in accuracy.

For synset related methods, except the first sense heuristic, all other methods and

variants require the calculation of the maximization by iterating over a large number

of combinations of words and computing their similarities. Such process requires

calculating multi-nested loops that are computational intensive in nature. Using

current brute-force search implementation, the computational cost is significant

and hence the efficiency of this type of methods becomes unjustified.

F scores performance The right half of table 4.6 provides the F scores for each

feature engineering method in detail. The F scores are measured in a consistent

way, same as applied in previous experiments, i.e. mean average of scores from 50

runs of 10-fold cross-validation.

Marked in bold are the top scores in each item. Two methods, the negation

bigram construction, as proposed previously, and POS representation demonstrate

continuing better F scores than other methods. Such results have already been

discussed in preceding step-wise experiment section. It is worth to point out that

the right-most column is the averaged improvement of the four scores for each

item. It serves as a clear indication on the perform of a specific method in contract
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to the baseline method.

To sum up, from an overall point of view, the negation bigram construction and

POS representation indeed have beneficial contributions to the improvement of the

classification model and they outperform other feature engineering methods in the

aspect of F score performance and/or efficiency.

4.4.3 Combining feature engineering methods

To achieve the goal 2 defined in section 4.4, we extend the experiment and dis-

cussion of the previous section, by stacking feature engineering methods to form

a combined classification model. Particularly, we are interested in examining the

classification model formed by combining the negation bigram construction and

the POS representation which are two top feature engineering methods shown in

empirical comparison results.

Figure 4.13: Combined method vs. other methods (3 class)
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Firstly, if we revisit the implementation of both the negation bigram construction

and the POS representation, it is clear that they are different kinds of feature en-

gineering method in that negation bigram construction only adds negation bigram

phrase as extra features to the original representation while the POS representation

is a whole replacement for the traditional bag-of-words model. Hence, we can

easily stack negation bigram construction on top of POS representation. That is

to say, the combined feature engineering method is implemented by running both
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methods and then combined the outputs from both into a single set of features.

As already shown in previous single step comparison, both methods give rise to

steady improvements in F scores. However, this does not automatically lead to a

further boost by combining the two methods. Though we expect the improvements

are indeed somehow additive, such property is still target for further empirical

experiments.

In figures 4.13 and 4.14, we compare the combined method and the two

separate methods with the baseline. In the 3-class task, the combined method

shows more steady performance throughout all levels of aggressiveness of the

feature selection, especially in the tail part where the F scores drop. In the 8-class,

the advantages of the combined method is shown more obviously. Using Ridge,

combined method constantly shows top performance, while using Naive Bayes, the

combined method also keeps the superiority until after the peak and drops similarly

as other methods.

Figure 4.14: Combined method vs. other methods (8 class)
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For consistency, we present the table 4.7 as a continuity of the table 4.6. Though

the combined method’s obviously higher F scores in the table may be caused

partially by its advantage in feature selection due to its slightly larger feature size

measure, it is still evident, according to the information conveyed in both table 4.7

and figures 4.13 and 4.14, that the combined method shows it predominance no

matter measured by fixed percentage or fixed number of features.

All in all, the combined method is indeed a better choice than the other two
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Table 4.7: Comparison of combined method and other methods

Option Feature Time 3-class task 8-class task ∆
(%) (s) F1 F0.5 F1 F0.5

Baseline 100.00 0 86.24 88.13 68.96 71.13 0.00
Neg. Bi. 109.75 10.1 89.48 91.23 72.87 74.44 3.39
POS words 113.72 10.1 88.91 90.87 72.22 74.05 2.90
Combined 123.83 9.9 90.77 92.38 75.58 77.07 5.33

single step feature engineering methods which are already selected as the best ones

out of many single step feature engineering methods. Though, it may not be able to

boost the results always by a sum of the improvements achieved by the two single

step methods, it demonstrates better performance and/or more steady performance

in various scenarios. It is the final feature engineering model that we conclude as

the best choice for our share statement classification tasks.

4.4.4 Final test

Up to this point, we have already selected the feature engineering models for the

machine learning based approach and introduced different sentence-level similarity

measure based methods. In order to compare the two types of approaches and to

verify our earlier conclusions and expectations, in this section, we will test all these

methods on the test dataset, which was introduced in section 4.4.1.

Similarity based approach First, we consider the similarity based approach.

As shown in figure 4.1514 we compare the all the 3 main types of the similarity

measures introduced previously. Each of these methods has been tested using

both the simple averaging method and the machine learning aided method for

classification.

To point out the implementation specifics, there are nine different measures or

combinations of measures that are tested using two methods for classification. For

the semantic measures, the Jiang-Conrath Similarity method and Brown Informa-

14The names of the measures: Alpha - Alpha variant of first sense heuristic based semantic
similarity measure; Int. Max - inter-sentence maximization based semantic similarity measure; POS
- POS variant of first sense heuristic based semantic similarity measure; Hy 0.5 - hybrid measure
where POS and word order measures are weighed equally; Hy 0.8 - hybrid measure where POS
semantic measure and word order measures are weighted by 0.8 and 0.2; WrdOr. - word order
syntactic similarity measure; IDF - IDF overlap measure; Overl. - simple word overlap measure;
Phra. - phrasal overlap measure.
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tion Content are applied. For the Alpha variant of the semantic measure, α = 0.05

is used. The two hybrid methods, as introduced in section 4.2.3, are combinations

of the POS variant of the semantic measure and the word order measure.

Figure 4.15: Test results of similarity based methods
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Observed from the first row of the figure, the word overlap measures work

surprisingly well given their simplicity and very low computational cost. On the

contrary, the semantic measures perform poorly. However, after combined with the

word order measure, the POS variant of semantic measure leads to the two hybrid

measures that have considerably well performance.

The difference between the first row and the second row for each measure shows

the improvement caused by the machine learning aided method for classification.

This improvement brought by the machine learning aided classification method is

considerably obvious for the semantic measure, especially for the POS variant which

becomes the best performer among all the measures. However, the performances

of word overlap based measures on the 8-class task are not improved.

Machine learning based approach Second, we test the machine learning based

methods on the test dataset. Same as in section 4.4.3, we apply four feature

engineering models, namely, the two single step methods, the combined method

and the baseline. In this part, we test three classifiers, i.e. Bernoulli variant of

Naive Bayes, Ridge and SVM.
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Figure 4.16: Test results of selected machine learning based methods
(3-class)
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The test results on the 3-class task clearly demonstrates the improvements

brought by feature engineering methods in contrast to the baseline, especially, the

combined method accomplishes the best results among the four methods with all

three classifiers. This improvement varies for different classifiers. For Ridge and

Naive Bayes classifiers, the improvement is about 5% in general, which corresponds

to the improvement occurred during the training evaluations. And for SVM, this

improvement is even higher and up to about 10%.

Same as in previous training phase experiments, Naive Bayes still achieves

better performance than the Ridge classifier. However, the difference between the

training and the test results with regard to classifiers is the advancement of the

SVM. With the combined feature engineering method, it shows top tier performance

and achieves even slightly better results than Naive Bayes. One explanation of

the SVM’s improvement could be the fact that SVM’s kernel method is better at

exploring the linear separability of the task in higher dimensional space given the

limited amount of features provided by the training set for the test set.

For the 8-class task, POS based representation still shows its beneficial contri-
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Figure 4.17: Test results of selected machine learning based methods
(8-class)
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butions while the negation bigram construction performs slightly worse than the

baseline. This leads the performances of the combined methods that are better

than the baseline for Ridge and SVM but slightly worse for the Naive Bayes.

The SVM shows promising performances again in the 8-class task where actually

it provides slightly but distinguishably better performance than Naive Bayes. Ridge,

on the other hand, still brings inferior performance among the three classifiers.

Comparison of the two approaches To clearly show the difference between the

two approaches for comparison purpose, we list the test results from different

combinations of methods and classifiers as shown below. A whole version of the

table is available in appendix C.2.

In general, as shown in table 4.8, different methods in the two different types of

approach have varied F score performance. It is clear that, when using the simple

averaging method for classification, similarity based approach has obvious inferior-

ity to the machine learning based approach. However, when the machine learning

aided method is used for classification, the similarity based approach performs
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Table 4.8: Comparison of two share statement classification approaches

Type Classification Method 3-class task 8-class task
/ Clssifer F1 F0.5 F1 F0.5

Overl. 87.05 89.14 58.76 67.14
IDF 87.83 92.44 64.65 70.54
Alpha 52.77 69.13 37.73 41.83

Averaging POS 37.94 57.12 24.17 24.09
WrdOr. 70.40 79.14 65.95 70.58
Hy 0.8 62.19 74.66 64.01 71.95

Similarity Hy 0.5 72.47 80.48 66.33 71.27
based Overl. 90.43 91.19 73.90 76.27

IDF 93.22 94.04 60.81 63.53
Alpha 81.49 83.48 52.89 55.81

ML aided POS 89.81 91.93 79.76 80.61
WrdOr. 81.23 83.03 71.48 74.05
Hy 0.8 83.93 85.74 78.90 80.97
Hy 0.5 85.02 85.78 71.54 74.16
Baseline 89.19 89.19 79.45 78.51

Naive Neg. Bi. 86.85 87.06 72.58 74.03
Bayes POS words 89.19 89.19 77.82 77.49

Combined 91.52 91.31 74.84 74.35
Machine Baseline 80.83 84.27 64.71 68.34
Learning Ridge Neg. Bi. 80.83 84.27 73.08 74.88
based POS words 80.83 84.27 78.46 80.23

Combined 84.43 88.54 72.88 74.54
Baseline 90.60 91.47 78.04 79.53

SVM Neg. Bi. 86.61 86.69 72.15 73.33
POS words 91.52 91.31 81.26 81.37
Combined 92.25 92.46 77.34 78.37

on the same level as the machine learning based approach. More specifically, the

machine learning approach has better performances for the 8-class task while the

two types of approaches have similar performances for the 3-class task.

When applying Naive Bayes or SVM classifier with the combined feature en-

gineering method or only the POS representation, the machine learning based

approach has constantly promising performance for both the 3-class and the 8-class

tasks. For the similarity based approach, gaining good performances for both the

3-class and 8-class is more demanding. Using either the POS variant of the semantic

similarity measure or the hybrid measure leads to good performances for both the

two tasks.

In general, it is clear that both types of approaches can provide certain high level
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F score performances, particularly, up to 90%+ and 80%+ for 3-class and 8-class

tasks. However, the machine learning based approach is more favorable than the

similarity based approach due to three reasons. Firstly, the performances between 3-

class and 8-class are not balanced for many similarity based methods. For instance,

the IDF method has the highest 3-class performance among all possible options,

however, its 8-class performance is rather poor and worse than most of the machine

learning based methods. Secondly, the computational cost of the similarity based

approach is considerably higher than the machine learning based approach. Thirdly,

the machine learning based methods can provide better generalization. This type

of methods is tunned and selected during a thorough training phase and the very

similar results in test set further prove the generalization. And machine learning

based approach can use classifiers that provide regularization for the purpose of

improving generalization.

4.5 Summary

In this chapter, we present solutions to the share statement understanding task

which is the subject of our research goal. This task is a further study based on

the topic classification from previous chapter. We still apply the generic machine

learning approach to the solutions that take semantic information into account

and categorize share statements into the pre-defined categories. To this end, we

propose, build and experimental evaluate two types of approaches, namely, the

similarity based approach and the machine learning based approach. For both

approaches, different methods are systematically studied and evaluated during thor-

ough experiments. The experimental results demonstrate that both approaches can

lead to quite promising performance for the task of share statement understanding.



Chapter 5

Conclusion

In this work we have answered the research questions which were stated in the

introduction. We have presented a framework for automatic privacy policy evalu-

ation using a new machine learning approach. We have studied the applications of

text classification techniques in privacy policy paragraph categorization, privacy

policy grading and share statement understanding. In this chapter, we formulate

the contributions to this research, summarize the implications of our work, and

pose some recommendations for future work.

5.1 Contributions and implications

The first main contribution of our work is the privacy policy paragraph categor-

ization scheme, in which we apply text classification to categorize privacy policy

paragraphs into pre-defined privacy policy topics. This lays the groundwork for

privacy policy grading and visualization. We optimize the classification models

throughout intensive experiments and achieve promising results on both the valid-

ation and testing datasets. This proves the effectiveness of the machine learning

approach in automatic privacy policy evaluation.

The second main contribution is the share statement understanding scheme,

using which we can classify share statements into pre-defined categories to auto-

matically understand the implications of the share statements. We propose two

approaches to facilitate this scheme, namely, the similarity based approach and

machine learning based approach with enhanced feature engineering. We test

and select the best variants of both approaches and gain reasonable results on

both of the two sub-tasks of share statement understanding. This part of the work
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demonstrates the potential of applying machine learning to further tasks in privacy

policy evaluation beyond the basic job of classifying privacy policy paragraphs into

different topics.

Another contribution of this work is the proposal of the overall framework as

well as all the research facilities built in this framework. We implement the search

result extraction, privacy policy detection, and text extraction programs in order

to detect and extract privacy policy specific information from research results into

clear text. We collect considerable amounts of privacy policies and manually label

the items to form the datasets for experimental evaluations. All these research

facilities serve not only for the proposed framework, but also for any future work

in this direction.

To the best of our knowledge, our research is the first attempt to apply text

classification in automatic privacy policy evaluation. To be more specific, not only

the general schemes of applying text classification in privacy policy evaluation are

treated thoroughly for the first time, but also the detailed approaches and methods

are original explorations in this new area.

We believe that our research has shown and supported a generic approach to

apply machine learning techniques to build privacy policy evaluation systems that

are effective, automated, flexible and user-focused.

Further implication We envision this new work as a potential game-changer

for the current eco-system of privacy policy. Existing privacy policy presentation

alternatives and evaluation methods heavily rely on the adoption and co-operation

from the websites. This means that this type of methods has to meet the website’s

needs and compromise with the websites in order to be widely adopted, assuming

no legal requirement will change the landscape in near future.

However, the machine learning approach in privacy policy evaluation makes

it possible to present the information from privacy policies in a totally different

manner – a user-focused manner. Privacy policies paragraphs are categorized into

different topics. Hence, the users can easily browse through only the parts of the

privacy policy that they are interested in. This helps to solve the readability issue

of privacy policies. Furthermore, a general grade is provided for each privacy

policy. The users can quickly get the insights about the overall quality of the privacy

policies. This functionality helps to improve user’s awareness about privacy and

increase the importance of privacy policy from user’s perspective. Last but not the
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least, the more detailed functionalities, such as the share statement understanding,

provide richer information digest from multiple dimensions. This helps to improve

the usability of the system and meet different needs of the broad user group.

All in all, our approach in privacy policy evaluation does not rely on the adop-

tions by the websites. It opens the door for pure user-driven systems, which have

huge potential to leverage the user’s influence in order to change the landscape of

the online privacy policy eco-system.

5.2 Limitations and future work

Current research is only the groundwork for this new area of study, despite the

systems that are built and experimental results that are achieved. There are several

limitations of the current work. Firstly, there are many important techniques in

text classification that we have not applied yet. For example the feature projection

techniques can be applied to further improve the systems. For both the task of pri-

vacy policy paragraph classification and the task of share statement understanding,

the size of the corresponding datasets is limited due to the constraints of human

resources. Richer datasets can help to increase the credibility of the experimental

results. From software engineering point of view, though we build the systems

by modules and intent to make them as easily re-usable as possible, the current

systems are not developed by professional programmers and should be considered

as prototypes. Also, because of the same constraints, less efforts are spent on

elaborating the visualization and user interface. However, in practice, the good user

interface and well-designed visualization scheme are crucial for the aforementioned

concept of user-driven privacy policy evaluation.

We highlight several improvement areas for future work:

Current design of the systems focuses on the one-way interaction between the

systems and the users. The main flow of information goes from the systems to

the users, by presenting the automated evaluation results, including privacy policy

topic viewing and gradings, to the users. An important further step is to build the

functionality that facilitates the two-way interactions. Collaborative filtering is

ideal for this purpose. Firstly, it is aligned with our generic machine learning based

approach. Secondly, collaborative filtering is suitable for the grading functionality

we introduced. A collaborative grading scheme of privacy policy can become the

‘killer app’ of our overall framework, that both largely leverage the user’s influence
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and greatly promote the awareness of privacy. Thirdly, collaborative filtering helps

to enlarge the size of datasets and therefore optimize the models.

Many interesting relevant machine learning techniques have not been integrated

into the current systems due to the limitation of resources. Feature projection

techniques help to form a better feature space for text classification. Further

research on implementing feature projection in current system can help to improve

the text classification, especially for the privacy policy paragraph categorization

task where the size of features is big. Techniques such as active learning and

semi-supervised text classification can help to solve the problem of the limited

datasets by either constantly receiving the newly labeled data from the users or

integrating unlabeled data into the learning process. Another way to combine

semantic information into the text classification is to use special kernels for SVM,

such as string kernels, latent semantic kernel and syntactic tree kernel.

The share statement understanding chapter shows the potential to apply the

generic machine learning approach to solve specific tasks in privacy policy evalu-

ation. There are many possible patterns in privacy policies to be defined and solved

using the similar approach. A future work is to systematically define these similar

patterns, formally formulate the problems and apply the proposed methods.

In terms of software engineering, a systematic and professional implement-

ation of the framework based on the current prototypes is the basis for future

development of new functionalities and formal software performance research.

Moreover, during this implementation, much more emphasis should be placed

on the design and implementation of user interface and visualization methods.

Especially, the design of grading visualization method is very important, as we

consider the grading functionality to be the potential ‘killer app’ of the framework.
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Appendix A

Implementation Details

The source codes of this thesis project are available on Github. Please visit https:

//github.com/YuanhaoSun for the details of the source codes.

In general, we built the programs in modules so as to provide flexibility for

modification and future development. Another merit of the module structure is

that functionalities provided by different modules can be combined in different

ways to provide high extensibility.

The programs are mainly written in Python, with several R programs for experi-

ment results plotting and few Java programs. Our programs reply heavily on the

Python machine learning library, scikit-learn, which provides implementation of all

kinds of classic machine learning algorithms.

The programs cover all three main parts of the implementation work of the

thesis project, namely the topic classification, share statement understanding, and

utilities.

A.1 Topic classification

Classification programs are implemented to apply different classifiers and ensemble

methods on the datasets to learn the classification models.

Modules belong to this part are general classification module with different

classifiers, cross-validation module, parameter tunning module, model storage

module, grading module, multi-label classification module, two-layered classifica-

tion module, visualization module that translates the results into xml files, stacking

by predication ensemble module, stacking by probability score ensemble module,

voting ensemble module.

https://github.com/YuanhaoSun
https://github.com/YuanhaoSun
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A.2 Share statement understanding

Modules can be sorted into the two general approaches – the similarity based

approach and the machine learning based approach.

For the similarity based approach, each similarity measure is implemented as

a single module, including 3 modules of sentence overlap similarity measure, 4

modules of semantic similarity measures, 1 module of syntactic similarity measure

and 1 module of hybrid measure. Two modules each implement the classification

methods of averaging and ML-aided.

For the machine learning based approach, along with the similar modules in

topic classification, modules for all the feature engineering methods are implemen-

ted.

A.3 Utilities

There are three different types of utility programs – the system utilities, the experi-

ment utilities and the thesis utilities.

System utilities are the programs and code snippets built to support the core

system functionality such as topic classification, grading, and share statement

understanding. The accessorial components of the framework are all implemented

as utility modules.

Experiment utilities are programs and code snippets facilitate the experiment

processes, including modules that handle the file I/O, file type conversion, data

format conversion, dataset conversion, text parsing, etc.

Thesis utilities are mainly the R snippets used to process and plot the raw

experiment results.



Appendix B

Datasets

We construct several datasets to facilitate our research, especially the experi-

mental evaluations. Please visit https://github.com/YuanhaoSun/MLToolkit/

tree/master/Dataset for the datasets.

Table B.1: General information of datasets

Name Section Size Description
Paragraphs train-
ing set

3.3.1 772 Training set for topic classification, with
sub-category labels

Paragraphs test
set

3.3.1 277 Test set for topic classification, with sub-
category labels

Share statement
training set

4.4.1 75 Training set for the task of share statement
understanding

Share statement
test set

4.4.1 37 Test set for the task of share statement
understanding

Full-text privacy
policy dataset

2.2.1 934 Full-text privacy policies search results,
generated from detector test

Pure privacy
policy dataset

2.2.1 796 All privacy policies, derived from 934 full-
text set

Grading dataset 3.4.3.3 126 Grading of full-text privacy policies, manu-
ally grading with automatically generated
scores

Coverage of share statement datasets The sizes of the share statement datasets

are relatively small compared with the privacy policy paragraphs datasets. This

is caused by the nature of the share statements. The share statements are short

text containing very limited amounts of vocabularies and expressing very similar

https://github.com/YuanhaoSun/MLToolkit/tree/master/Dataset
https://github.com/YuanhaoSun/MLToolkit/tree/master/Dataset
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meanings. The share statements in one specific categories can be highly resemblant

to each other.

In a Google search statistics study, we test the first 30 items in the 75 share

statement training set, and search the extract matches and partial sentence matches.

There are many share statements that have exact matches or almost-exact matches

up to tens of thousands on the Internet.

For example, the share statement “We may disclose your personal information

to third parties” has around 2,750,000 exact matches in Google search results, “We

do not sell your personal information to third parties.” has 1,470,000, “We neither

rent nor sell your Personal Information to anyone.” has 38,400, “We never share or

sell your personal information” has 49,700.

All in all, the limited size of share statement datasets are constrained by the

nature of share statements.

Two examples In order to fill at least one test example in each category in the

share statement test dataset (see table 4.5), we created two examples for the

category ‘Not sell Not share’ and the category ‘Sell and share’.

“We may share or disclose your personal information to third parties” is the

sentence created as a test example in category ‘Not sell Not share’.

“We reserves the rights to rent, sell, lease or otherwise share or disclose your
personal information to any third parties” is the sentence created as a test example

in category ‘Sell and share’.

The reasons for creating these two examples are: 1) At the time of building

the training set, we had not labeled all items in the 95 privacy policy set. This

also complies to rule of thumb which requires not knowning the test case during

training. After we almost finished the training experiment, we finished the labeling

of all items. It turned out to be that there is no example for these two categories.

2) However, in order to reflect the categorical distribution of real life test data, we

have already limited the scope of test to be the 95 privacy policy set.

Therefore, we created two examples for the two categories which were empty.

These two sentences were drafted in a manner that largely keeps the consistency

with other examples possible yet avoids pure duplication. A strong proof of their

validation is that there are exact match of the first example on the Internet. Though

there is no exact match for the second due to the scarcity of this categories, there

are close matches which have similar meanings.
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Experiment Details

C.1 Parameter tuning of classifiers

As elaborated in section 3.3.4.4, parameter tuning leads to further optimized

performance of the classifiers that have alterable parameter(s). In this part of

appendix, we provide the detailed information about the process of parameter

tunning. To point out, we only tune the parameter on the full sized training set,

that is, the training set with 772 as introduced in section 3.3.1 because only one set

of tunned paramters can be applied to the test set. Further, grid search is normally

carried out based on one metric. For this, we will select the precision as the metric

to tune the classifier.

For kNN, we tune the parameter of k. One specific trick for a rough k estimation

is to choose k = #feature
2∗#categories which we have used in the comparison where the

precision scores are given by the change of size of training set. We will, however,

test k using grid search based on the trainig set. The result is shown in the following

table:

Table C.1: Parameter tuning - kNN

k F1 k F1 k F1 k F1

1 0.7403 3 0.7917 5 0.8127 7 0.8278
9 0.8347 11 0.8392 13 0.8481 15 0.8506
17 0.8487 19 0.8501 21 0.8452 23 0.8493
25 0.8431 27 0.8482 29 0.8399 31 0.8389
33 0.8278 35 0.8258 37 0.8171 39 0.8101
41 0.8065 43 0.8006 45 0.8002 47 0.7946
49 0.7995 51 0.7923 53 0.7902 55 0.7807
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As shown in the table, the performance of kNN reaches the peak around k =

15, 17, 19. We will therefore choose k = 19 as it is also closer to the practical trick

where k = #feature
2∗#categories .

SVM has two parameters mainly for tuning, i.e. γ and C. One practical trick for

tuning γ is to chooseγ = 1
#feature . The practical guide in tunning the SVM provided

in paper [43] is widely cited and applied. We follow this guide by first applying a

loose search and then going into a fine search.

In the loose search, we set C = {2−3, 2−1, 2, 23, 25, 27, 29, 211, 213, 215} and γ =

{2−15, 2−11, 2−7, 2−5, 2−3, 2−1}. The grid search tests all the combinations between

the available values of C and γ. The best performance is generated when C = 27

and γ = 2−5. Further, we carry out a fine search near the best combination with

C = {25, 26, 27, 28, 29, 210, 211} and γ = {2−8, 2−7, 2−6, 2−5, 2−4, 2−3, 2−2}. Then the

final selected parameters are C = 25 and γ = 2−4.

Similarly, for linear SVM, we tune the parameter C for both l1 regularization

and l2 regularization. The parameter space for C = {2−3, 2−1, 2, 23, 25, 27, 29, 211, 213, 215}.
The grid search shows C = 0.5 when using l2 regularization yields the best per-

formance.

For decision tree, we test the parameter space with max depth = {6, 8, 10, 12, 14, 16}
and min split = {2, 3, 4, 5, 6}. The grid search finds the best parameter combination

with max depth = 16 and min split = 5.

C.2 List of share statement final test results
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Table C.2: Comparison of two share statement classification approaches
- comprehensive

Type Classification Method 3-class task 8-class task
/ Clssifer F1 F0.5 F1 F0.5

Overl. 87.05 89.14 58.76 67.14
IDF 87.83 92.44 64.65 70.54
Phra. 85.05 87.63 48.19 51.75
Alpha 52.77 69.13 37.73 41.83

Averaging POS 37.94 57.12 24.17 24.09
Int.Max 58.30 69.52 46.11 53.07
WrdOr. 70.40 79.14 65.95 70.58
Hy 0.8 62.19 74.66 64.01 71.95

Similarity Hy 0.5 72.47 80.48 66.33 71.27
based Overl. 90.43 91.19 73.90 76.27

IDF 93.22 94.04 60.81 63.53
Phra. 82.02 82.59 52.20 54.59
Alpha 81.49 83.48 52.89 55.81

ML aided POS 89.81 91.93 79.76 80.61
Int.Max 79.45 80.10 49.90 47.69
WrdOr. 81.23 83.03 71.48 74.05
Hy 0.8 83.93 85.74 78.90 80.97
Hy 0.5 85.02 85.78 71.54 74.16
Baseline 89.19 89.19 79.45 78.51

Naive Neg. Bi. 86.85 87.06 72.58 74.03
Bayes POS words 89.19 89.19 77.82 77.49

Combined 91.52 91.31 74.84 74.35
Machine Baseline 80.83 84.27 64.71 68.34
Learning Ridge Neg. Bi. 80.83 84.27 73.08 74.88
based POS words 80.83 84.27 78.46 80.23
(Max) Combined 84.43 88.54 72.88 74.54

Baseline 90.60 91.47 78.04 79.53
SVM Neg. Bi. 86.61 86.69 72.15 73.33

POS words 91.52 91.31 81.26 81.37
Combined 92.25 92.46 77.34 78.37
Baseline 87.20 87.64 71.81 72.77

Naive Neg. Bi. 86.85 87.06 68.46 69.00
Bayes POS words 89.19 89.19 77.82 77.49

Combined 89.19 89.19 74.84 74.35
Machine Baseline 75.37 80.97 64.71 68.34
Learning Ridge Neg. Bi. 77.33 82.29 69.53 72.66
based POS words 77.33 82.29 74.36 77.06
(100%) Combined 87.77 84.94 68.51 70.90

Baseline 80.09 81.15 78.04 79.53
SVM Neg. Bi. 82.50 83.37 68.29 70.53

POS words 87.20 87.64 81.26 81.37
Combined 91.52 91.31 76.42 76.87
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C.3 Common English Stopwords and POS tag set

[’all’, ’six’, ’less’, ’being’, ’indeed’, ’over’, ’move’, ’anyway’, ’four’, ’not’, ’own’,

’through’, ’yourselves’, ’fify’, ’where’, ’mill’, ’only’, ’find’, ’before’, ’one’, ’whose’,

’system’, ’how’, ’somewhere’, ’with’, ’thick’, ’show’, ’had’, ’enough’, ’should’, ’to’,

’must’, ’whom’, ’seeming’, ’under’, ’ours’, ’has’, ’might’, ’thereafter’, ’latterly’, ’do’,

’them’, ’his’, ’around’, ’than’, ’get’, ’very’, ’de’, ’none’, ’cannot’, ’every’, ’whether’,

’they’, ’front’, ’during’, ’thus’, ’now’, ’him’, ’nor’, ’name’, ’several’, ’hereafter’, ’al-

ways’, ’who’, ’cry’, ’whither’, ’this’, ’someone’, ’either’, ’each’, ’become’, ’thereupon’,

’sometime’, ’side’, ’two’, ’therein’, ’twelve’, ’because’, ’often’, ’ten’, ’our’, ’eg’, ’some’,

’back’, ’up’, ’go’, ’namely’, ’towards’, ’are’, ’further’, ’beyond’, ’ourselves’, ’yet’, ’out’,

’even’, ’will’, ’what’, ’still’, ’for’, ’bottom’, ’mine’, ’since’, ’please’, ’forty’, ’per’, ’its’,

’everything’, ’behind’, ’un’, ’above’, ’between’, ’it’, ’neither’, ’seemed’, ’ever’, ’across’,

’she’, ’somehow’, ’be’, ’we’, ’full’, ’never’, ’sixty’, ’however’, ’here’, ’otherwise’, ’were’,

’whereupon’, ’nowhere’, ’although’, ’found’, ’alone’, ’re’, ’along’, ’fifteen’, ’by’, ’both’,

’about’, ’last’, ’would’, ’anything’, ’via’, ’many’, ’could’, ’thence’, ’put’, ’against’, ’keep’,

’etc’, ’amount’, ’became’, ’ltd’, ’hence’, ’onto’, ’or’, ’con’, ’among’, ’already’, ’co’, ’af-

terwards’, ’formerly’, ’within’, ’seems’, ’into’, ’others’, ’while’, ’whatever’, ’except’,

’down’, ’hers’, ’everyone’, ’done’, ’least’, ’another’, ’whoever’, ’moreover’, ’couldnt’,

’throughout’, ’anyhow’, ’yourself’, ’three’, ’from’, ’her’, ’few’, ’together’, ’top’, ’there’,

’due’, ’been’, ’next’, ’anyone’, ’eleven’, ’much’, ’call’, ’therefore’, ’interest’, ’then’,

’thru’, ’themselves’, ’hundred’, ’was’, ’sincere’, ’empty’, ’more’, ’himself’, ’elsewhere’,

’mostly’, ’on’, ’fire’, ’am’, ’becoming’, ’hereby’, ’amongst’, ’else’, ’part’, ’everywhere’,

’too’, ’herself’, ’former’, ’those’, ’he’, ’me’, ’myself’, ’made’, ’twenty’, ’these’, ’bill’,

’cant’, ’us’, ’until’, ’besides’, ’nevertheless’, ’below’, ’anywhere’, ’nine’, ’can’, ’of’, ’to-

ward’, ’my’, ’something’, ’and’, ’whereafter’, ’whenever’, ’give’, ’almost’, ’wherever’,

’is’, ’describe’, ’beforehand’, ’herein’, ’an’, ’as’, ’itself’, ’at’, ’have’, ’in’, ’seem’, ’whence’,

’ie’, ’any’, ’fill’, ’again’, ’hasnt’, ’inc’, ’thereby’, ’thin’, ’no’, ’perhaps’, ’latter’, ’mean-

while’, ’when’, ’detail’, ’same’, ’wherein’, ’beside’, ’also’, ’that’, ’other’, ’take’, ’which’,

’becomes’, ’you’, ’if ’, ’nobody’, ’see’, ’though’, ’may’, ’after’, ’upon’, ’most’, ’hereupon’,

’eight’, ’but’, ’serious’, ’nothing’, ’such’, ’your’, ’why’, ’a’, ’off’, ’whereby’, ’third’, ’i’,

’whole’, ’noone’, ’sometimes’, ’well’, ’amoungst’, ’yours’, ’their’, ’rather’, ’without’,

’so’, ’five’, ’the’, ’first’, ’whereas’, ’once’]
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Table C.3: Penn Treebank II POS tag set

Tag Description Example
CC conjunction, coordinating and, or, but
CD cardinal number five, three, 13%
DT determiner the, a, these
EX existential there there were six boys
FW foreign word mais
IN conjunction, subordinating or preposition of, on, before, unless
JJ adjective nice, easy
JJR adjective, comparative nicer, easier
JJS adjective, superlative nicest, easiest
LS list item marker
MD verb, modal auxillary may, should
NN noun, singular or mass tiger, chair, laughter
NNS noun, plural tigers, chairs, insects
NNP noun, proper singular Germany, God, Alice
NNPS noun, proper plural we met two Christmases ago
PDT predeterminer both his children
PRP pronoun, personal me, you, it
PRP$ pronoun, possessive my, your, our
RB adverb extremely, loudly, hard
RBR adverb, comparative better
RBS adverb, superlative best
RP adverb, particle about, off, up
SYM symbol %
TO infinitival to what to do?
UH interjection oh, oops, gosh
VB verb, base form think
VBZ verb, 3rd person singular present she thinks
VBP verb, non-3rd person singular present I think
VBD verb, past tense they thought
VBN verb, past participle a sunken ship
VBG verb, gerund or present participle thinking is fun
WDT wh-determiner which, whatever, whichever
WP wh-pronoun, personal what, who, whom
WP$ wh-pronoun, possessive whose, whosever
WRB wh-adverb where, when
. punctuation mark, sentence closer .;?*
, punctuation mark, comma ,
: punctuation mark, colon :
( contextual separator, left paren (
) contextual separator, right paren )

Accessed from http://www.cnts.ua.ac.be/pages/mbsp-tags

http://www.cnts.ua.ac.be/pages/mbsp-tags
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