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Simple Summary: Uveal melanoma is a rare cancer with a bad prognosis that needs new therapeutic
and diagnostic approaches. In this regard, long non-coding RNAs (lncRNAs) play a pivotal role in
cancer, among other diseases, and could be used as therapeutic targets of diagnostic markers. In this
review, lncRNAs related to uveal melanoma are revealed to better understand their mechanism of
action, and inspire the development of novel treatment and diagnostic approaches. In addition, the
interaction of lncRNA with other non-coding RNAs (ncRNAs) is also discussed since it might be one
of the most relevant mechanisms of action. The compiled information is helpful not only for uveal
melanoma experts, but also for ncRNA cancer researchers.

Abstract: Uveal melanoma (UM) is an intraocular cancer tumor with high metastatic risk. It is
considered a rare disease, but 90% of affected patients die within 15 years. Non-coding elements
(ncRNAs) such as long non-coding RNAs (lncRNAs) have a crucial role in cellular homeostasis
maintenance, taking part in many critical cellular pathways. Their deregulation, therefore, contributes
to the induction of cancer and neurodegenerative and metabolic diseases. In cancer, lncRNAs are
implicated in apoptosis evasion, proliferation, invasion, drug resistance, and other roles because they
affect tumor suppressor genes and oncogenes. For these reasons, lncRNAs are promising targets in
personalized medicine and can be used as biomarkers for diseases including UM.

Keywords: lncRNA; uveal melanoma; cancer; noncoding RNA; epigenetics; therapy; diagnosis

1. Introduction

For decades, a significant volume of research has been devoted to unraveling genes
that encode proteins. However, in recent years, the non-coding genome has revolutionized
biology, with more than 90% of the RNA in the human genome consisting of non-coding
RNAs (ncRNAs). Furthermore, it has been demonstrated that ncRNAs have an essential
role in cellular processes involving homeostasis and disease progression [1]. The com-
plex network of interactions between multiple ncRNAs as well as between ncRNAs and
coding RNAs highlights the ncRNAs’ fundamental role in regulating cellular processes,
meaning that ncRNAs are taking part in several points of the cellular pathways controlling
the expression of key genes. Therefore, dysregulation of ncRNA is directly related to
neurodegenerative, developmental, metabolic diseases, or cancer.

The different types of ncRNAs can be classified by size into two main groups. Those
with a length below 200 nucleotides (nts) are known as small ncRNAs such as the mi-
croRNAs (miRNAs), t-RNA-derived small RNAs (tsRNAs), and PIWI-interacting RNAs
(piRNAs). In contrast, long non-coding RNAs (lncRNAs) include those above 200 nts in
length including circular RNAs (circRNAs) and pseudogenes [1].

Although signaling pathways have long been characterized, lncRNAs are understud-
ied, however, they have been shown to play an unexpected and essential role. Recently,
lncRNAs have been discovered as critical players in regulatory networks. They interact
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with signaling molecules and regulators by making them more flexible or open to changes
in the environment [2]. LncRNAs are involved in cellular pathways and mechanisms such
as stem cell pluripotency, cell cycle regulation, metabolism, aging, cancer, and neurodegen-
erative and cardiovascular diseases [3,4]. They have a critical effect on the proliferation,
invasion, or metastasis of tumors [2], which can be exploited to develop therapeutic agents
or allow specific lncRNAs to be used as biomarkers [5].

However, substantial work is needed to understand the role of lncRNAs in homeosta-
sis and disease progression. Indeed, it is rather challenging to elucidate the lncRNA roles
and their implications in genetic regulation such as their effects in chromosome domain
organization, nucleic acids and transcription factors subcellular localization, expression
patterns, and genetic evolution or stability [6]. For example, lncRNAs are poorly conserved,
which may seem contradictory with their relevant role in the cells. Furthermore, some lncR-
NAs can encode small functional peptides, suggesting that lncRNAs could also function
as coding sequences [7]. Moreover, their flexibility and relatively large size have made it
quite difficult to resolve their structures by classical methods such as X-ray crystallography,
NMR spectroscopy, or electron microscopy. Moreover, lncRNAs play so many roles that it is
complicated to assign roles to each annotated lncRNA [8]. LncRNA role assignation is done
by loss of function approaches such as RNAi, ASOs, and CRISPR techniques. However, the
inhibition by these processes is not as effective as in the case of mRNA, which complicates
the elucidation of their roles [6]. Although these factors make it more complicated to
unravel the biological function of lncRNAs, their roles are being studied individually and
grouped according to their interaction with other molecules in cellular pathways [4].

In this review, we focus on long non coding-RNAs due to their crucial role in gene
regulation through their interaction with proteins, DNA, and RNA. In particular, it is worth
highlighting their interaction with a specific class of ncRNAs, microRNAs, as both have
been implicated as genome master regulators [6].

Due to the variety of molecules with which lncRNAs can interact, their mechanism
of action and functions are highly diverse (Figure 1). The biological processes in which
lncRNA take part are included in Table 1 [4,8]. Their mechanism of action and function vary
depending on the interaction molecule. Significant efforts have been dedicated to elucidate
new lncRNA interactions and mechanisms. To achieve this goal, both experimental and
computational techniques are essential to investigate new candidates and relate them to
various diseases [2–4,9].

Table 1. Biological processes and examples of lncRNAs.

Biological Process LncRNA Citation

Transcription lncRNA NRON, lncRNA HSR1 [10,11]
Splicing lncRNA MALAT, lncRNA ASCO [12,13]

Translation lncRNA HULC [14]
RNA localization lncRNA XIST [15]

RNA decay lncRNA gadd7 [16]
RNA editing lncRNA CTN [17]

Epigenetic remodeling lncRNA HOTAIR [18]
Genome integrity lncRNA NORAD, lncRNA CONCR [19,20]

Structural functions lncRNA NEAT1, lncRNA FIRRE [21]
Cellular organelle functions lncRNA RMRP, lncRNA SAMMSON [22,23]
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Figure 1. The interaction of lncRNAs with different biomolecules tunes their biological activity. 
LncRNAs can interact with proteins, DNA, or RNA, acting as (A) scaffolds of proteins, (B) decoys, 
preventing protein–oligonucleotide complex formation, (C) guides for (i) proteins or (ii) oligonu-
cleotides, (D) enhancers, promoting transcription, (E) miRNAs sponges, or (F) mRNA inhibitors, 
blocking mRNA function due to (i) mRNA degradation, (ii) blocking translation, or (iii) competing 
for binding sites. Created with BioRender.com 
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Figure 1. The interaction of lncRNAs with different biomolecules tunes their biological activity.
LncRNAs can interact with proteins, DNA, or RNA, acting as (A) scaffolds of proteins, (B) decoys,
preventing protein–oligonucleotide complex formation, (C) guides for (i) proteins or (ii) oligonu-
cleotides, (D) enhancers, promoting transcription, (E) miRNAs sponges, or (F) mRNA inhibitors,
blocking mRNA function due to (i) mRNA degradation, (ii) blocking translation, or (iii) competing
for binding sites. Created with BioRender.com, accessed on 26 October 2020.

LncRNA–protein interactions are involved in transcription, post-transcription, splic-
ing, molecular scaffolds, or decoys. For example, these interactions can allow for protein-
DNA recognition to induce or repress transcription, the recruitment of chromatin-modifying
enzymes, or the cooperation with splicing factors (involved in the regulation of alternative
splicing). The current methods to detect these interactions are electrophoresis, RNA-pull
down assay, fluorescence in-situ hybridization (FISH) colocalization, oligonucleotide-
targeted RNase H assay, and high throughput transcriptomics or proteomics [2,24].

LncRNA interactions with DNA have been implicated in transcription (e.g., partici-
pating in enhancers or chromatin looping processes), DNA repair capacity, and nuclear
body formation and function. The techniques to elucidate these mechanisms are based
on chromatin isolation by RNA purification (ChIRP), capture hybridization analysis of
RNA targets (CHART), RNA antisense purification (RAP), chromatin oligo affinity pre-
cipitation (ChOP) [24–26], and recently computer tools such as GRIDseq, Triplexator, or
LongTarget [27].

LncRNAs can also interact with ncRNAs such as microRNAs, which leads to their inhi-
bition or activation. Additionally, they can interact with mRNAs, affecting their alternative
splicing or stability, inhibiting translation, or even competing for binding sites [25]. Some
techniques to study these interactions include selective 2′-hydroxyl acylation analyzed by
primer extension sequencing (SHAPE-Seq), RNA antisense purification (RAP), selective
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2′-hydroxyl acylation analyzed by primer extension mutational profiling (SHAPE-Map),
dimethyl sulfate sequencing (DMS-Seq), fragmentation sequencing (FRAG-seq), parallel
analysis of RNA structure (PARS), parallel analysis of RNA structure with temperature
elevation (PARTE) or in vivo click selective 2′-hydroxyl acylation analyzed by primer
extension (icSHAPE) [25].

LncRNAs can be classified according to their cis or trans function or position relative
to coding genes [2,28], the latter of which is the preferred method [2,29]. This classification
categorizes lncRNA into the following types:

• Intergenic, the lncRNAs transcribed from DNA strands between protein-coding genes.
These lncRNAs act as master regulators of transcription and posttranscriptional and
translation processes [30].

• Intronic, the lncRNAs transcribed from introns in the same orientation as the mRNA
of protein-coding genes. Many of these lncRNAs are implicated in alternative splic-
ing [31].

• Overlapping, the lncRNAs transcribed from overlapping mRNA of protein-coding
genes. Many overlapping lncRNAs have implications in splicing, tissue specificity,
and aging [32].

• Antisense, the lncRNAs transcribed from the opposite strand (antisense) of protein-
coding genes. These lncRNAs can interfere with transcription or mRNA stability [33].

Some members of all of these types are related to diseases; for example, there are
intergenic lncRNAs such as Doublesex And Mab-3 Related Transcription Factor 2 (DMRT2),
involved in obesity progression, and linc1992, involved in immune disorders [30]; intronic
lncRNAs such as Prostate Cancer Associated Transcript 19 (PCAT19) associated with poor
prostate cancer prognosis [34]; overlapping lncRNA Sex determining Region Y-box 2 (SOX2)
promotes Ewing’s sarcoma proliferation [35]; antisense lncRNAs such as HOXA-AS2
promotes many human cancers [36] or lncRNA β-secretase 1 antisense (BACE1-AS) related
to Alzheimer’s disease [8]. lncRNAs associations with multiple diseases indicate that they
might be considered as targets for therapeutic or diagnostic system development [2,37].

LncRNAs are involved in many of the hallmarks of cancer as described by Hanahan
and Weinberg [38] such as proliferation, motility, immortality, angiogenesis, inflammation,
drug resistance, genomic stability, and cell viability. In fact, recent studies of transcriptome
profiles generated via next-generation sequencing have found many lncRNAs to be mu-
tated or abnormally expressed in tumors [39]. In this sense, lncRNAs could drive cancer
phenotypes, acting as tumor suppressors, oncogenes, or both [40,41]. It is necessary to
correlate the activity of each lncRNA with key cancer players to determine which lncRNA
belongs in which category [42,43]. The cancer lncRNA list is continuously growing and
compiled in databases such as Lnc2Cancer or the Cancer LncRNA Census [8,44,45]

In healthy cells, tumor suppressor genes are activated when cells detect oncogenic
stress to maintain homeostasis. Interestingly, several lncRNAs are involved in regulating
those genes [42], leading mainly to reducing tumor cell growth, proliferation, invasion,
and metastasis. However, when these genes or lncRNAs are downregulated, cancer
develops [44]. Tumor suppressor lncRNAs (Figure 2) can be used as therapeutic agents
because they can interact with oncogenes, directly or indirectly, reducing their expression
levels and, therefore, tumor progression [42].
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Figure 2. Scheme of tumor suppressor lncRNA pathways in uveal melanoma. (A) lncRNA PAUPAR, (B) lncRNA NUMB,
(C) lncRNA CAN1/CASC15-NT1, (D) lncRNA ZNNT1, (E) lncRNA SNGH7, and (F) LncRNA GAS5. Created with
BioRender.com, accessed on 26 October 2020.

In addition, there are homeostatic pathways involved in cellular proliferation, for
example, gastric epithelial maintenance. When these processes are deregulated, cancer
appears. Oncogenic lncRNAs (Figure 3) play pivotal roles in oncogenic transformation
because they are involved in cellular pathways that promote carcinogenesis [42,45]. Onco-
genic lncRNAs are usually upregulated in cancer and promote cell growth, angiogenesis,
migration, invasion, apoptosis evasion, and chemoresistance [46]. Oncogenic lncRNAs
are promising therapeutic targets because they can be inhibited by siRNAs, antisense
oligonucleotides (ASOs), or via Clustered Regularly Interspaced Short Palindromic Re-
peats (CRISPR) techniques, leading to tumorigenesis reduction [47]. In addition, they
can be used as biomarkers because high levels of these lncRNAs can be related to tumor
surveillance [42].
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LncRNAs have been found to be involved in many types of cancers such as prostate,
breast, brain, lung, liver, pancreatic, colorectal, renal, ovarian, and gastric cancer [2,48].
However, lncRNA responses to cancer treatments (e.g., chemotherapy or immunotherapy)
or their relationship with the tumor microenvironment are understudied [8].

In this review, we have described the roles of these ncRNAs in a rare type of cancer of
the eye, uveal melanoma (UM).

2. Uveal Melanoma

Uveal melanoma (UM) is a type of intraocular cancer tumor. It is considered a rare
disease due to its low prevalence, making up just 3–5% of all cancers within the U.S.
population [49]. It principally appears in the choroid, iris, and ciliary body. UM has a high
metastatic risk and a poor prognosis as 90% of patients die within 15 years of diagnosis [50].

In most (83%) cases, UM is caused by mutations in the alpha subunit of the het-
erotrimeric G gene (GNAQ) or its paralogue GNA11. In addition, UM usually presents
other genetic alterations such as the loss in chromosome 3 and gain in chromosome 8q. The
prognosis of this disease is worrying since patients frequently undergo liver metastasis
and succumb within 2–6 months [51]. In metastatic UM, there are also mutations in breast
cancer gene (BRCA) associated protein 1 gene (BAP1) on chromosome 3, which results in
aggressive cancer [52].

Besides the genetic causes, there are also critical epigenetic alterations in the UM
carcinogenesis process (e.g., ncRNA abnormalities, DNA methylation, and histone mod-
ifications) [53–55] that are also understudied. Regarding ncRNAs, it is described that
microRNAs and lncRNA dysregulated levels affect the tumorigenesis process and the final
prognosis. LncRNAs affect several points of the UM pathways, notably at the MAPK/ERK
or PI3K/AKT pathways [56]. These aberrations should be taken into account with the
alterations described by Thornton et al. to classify the patients in proper treatments
groups [55].

Enucleation, radiotherapy, or laser therapy are the current standard therapeutic op-
tions for primary resectable UM tumors. However, for unresectable and/or metastatic
tumors, systemic chemotherapy is the main treatment. Since UM cells are drug-resistant
in primary and metastatic tumors, chemotherapy is usually applied as a combination
of different drugs such as dacarbazine, temozolomide, gemcitabine, or treosulfan [57].
Nonetheless, in a meta-analysis of current treatments (e.g., chemotherapy or radiother-
apy) for metastatic UM, all treatments positively affected overall survival or reduced the
metastatic risk [58–60]. However, there are promising novel treatments in clinical trials
that combine chemotherapy agents with photodynamic therapy, immunotherapy, or tar-
geted therapy for metastatic UM [61]. Despite this progress, the aberrations compilation
indicates UM is a disease with a poor prognosis and low survival rates. For these reasons,
new treatments and diagnosis methods are needed not only to focus on genetic, but also
epigenetic drivers.

3. LncRNAs in Uveal Melanoma

As above-mentioned, dysregulated lncRNAs are implicated in many cancers including
UM. In the following sections, their role in UM is discussed, and their main mechanisms
and roles are summarized in Table 2 [62].
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Table 2. LncRNAs implicated in UM progression.

LncRNA Name Mechanism Role Reference

lncRNA CASC15 Switches tumor phenotype through MITF
and/or SOX10 Oncogenic [56]

lncRNA P2RX7-V3 Affects PI3K/AKT pathway Oncogenic [63]

lncRNA MALAT1
Suppresses miR-608. Promotes miR-140

expression and suppresses Slug and
ADAM10 expression.

Oncogenic [64,65]

lncRNA PVT1 Regulates the expression of EZH2 and
blocks miR-17-3p Oncogenic [66,67]

lncRNA RHPN1-AS1 Participates in TGF-β pathway Oncogenic [68]

lncRNA HOXA11-AS Suppresses p21 and acts as a sponge of
miRNA -124 Oncogenic [69]

lncRNA FTH1P3 Suppresses miR-NA 224-5p expression and
promotes the expression of Rac1 and Fizzled 5 Oncogenic [70]

lncRNA LINC00518 Participates in the metastatic process Oncogenic [71]
lncRNA LOC100132707 Promotes migration via JAK2 Oncogenic [72]

lncRNA PAUPAR Modulates HES1 expression Tumor suppressor [73]

lncRNA NUMB Restores the expression of HIC1
(Hypermethylated in cancer 1) Tumor suppressor [74]

lncRNA CANT1 Modulates JPX or FTX by methylation at
their promoters Tumor suppressor [75]

lncRNA ZNNT1 Promotes autophagy Tumor suppressor [76]
lncRNA SNHG7 Regulates EZH2 pathway Tumor suppressor [77]
lncRNA GAS5 Induces PTEN expression Tumor suppressor [78]

Many of the lncRNAs compiled in this article are those broadly studied in other
cancers. Nevertheless, less lncRNA research has been conducted in UM, so it needs further
investigation in the UM field. In some cases, the mechanism involved in UM is not the same
as the one previously studied, and oncogenic lncRNAs act in UM as tumor suppressors or
vice versa.

3.1. Tumor Suppressor LncRNAs in Uveal Melanoma

Tumor suppressor lncRNAs can act directly on effector molecules or act as regulator
elements, for instance, controlling transcription. Depending on the mechanism of action,
they can activate tumor suppressor pathways (Figure 2B–D) or block the tumorigenesis
process (Figure 2A,E).

Some examples of tumor suppressors in UM are presented below (Figure 2).
LncRNA Pax6 Upstream Antisense RNA (PAUPAR) is a lncRNA that is transcribed

upstream of the PAX6 transcription factor. It was first identified in neuroblastoma modu-
lating Paired Box 6 (PAX6) activity [79]. This protein controls progenitor cell potency and
proliferation, specification, and spatial patterning in neural cells [80,81]. LncRNA PAUPAR
is downregulated in UM, blocking cell migration and tumor formation. Its downstream
target is Hairy and Enhancer of Split 1 (HES1), a critical player in the NOTCH signaling
pathway, controlling the survival or apoptosis of melanocytes [73]. Highly expressed in
UM, HES1 promotes proliferation and invasion [82]. Increased levels of lncRNA PAUPAR
alters the expression of HES1 acting on Histone H3 lysine K4 (H3K4) methylation, related
to the transcription of HES1. In other words, lncRNA PAUPAR reduces HES1 transcription,
which reduces proliferation and invasion [73].

Another notable lncRNA is NUMB. It is encoded upstream of the NUMB protein gene,
which can reduce tumor formation and prevent invasion in UM cell lines. Hypermethylated
in cancer 1 (HIC1) regulates lncRNA NUMB in uveal melanoma. HIC1 promotes lncRNA
expression, acting as a transcriptional activator [74]. LncRNA NUMB acts as a tumor
suppressor by inhibiting cell proliferation and invasion. However it is downregulated in
UM [74,83].
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LncRNA Calcium Activated Nucleotidase 1 (CANT1), also known as CASC15-NT1, is
a typical cancer-associated lncRNA. This downregulated tumor suppressor lncRNA is an
isoform of lncRNA Cancer Susceptibility 15 (CASC15) implicated in UM. [75,84]. LncRNA
CANT1 controls the expression of the lncRNA X-inactive specific transcript (XIST) (XIST
is implied in chromosome X gene repression) [85]. Moreover, lncRNA CANT1 regulates
JPX or five prime to Xist (FTX) transcription factors through their promoter methylation by
H3K4. This pathway contributes to tumorigenesis in UM [75].

The lncRNA ZNF706 Neighboring Transcript 1 (ZNNT1) promotes autophagy in UM
through mTOR inhibition but is downregulated in tumors. LncRNA ZNNT1 controls the
expression of autophagy-related 12 (ATG12) and modulates the ATG12-ATG15 conjunction.
This mechanism produces cell death and tumorigenesis suppression. Furthermore, the
lncRNA could act in proteosome inhibitor-mediated apoptosis [76].

It is worth highlighting that several lncRNAs play dual roles such as the lncRNA
Small Nucleolar RNA Host Gene 7 (SNHG7), which has tumor suppressor or oncogenic
activity depending on the kind of cancer. For instance, it has oncogenic properties in
several cancers such as pancreatic, bladder, colorectal, gastric, and breast cancer [77,86–90].
Whereas, in UM, lncRNA SNHG7 can inhibit malignant transformation due to its effect on
the Enhancer of Zeste 2 Polycomb Repressive Complex 2 Subunit (EZH2) protein, which
regulates cell proliferation, the cell cycle, and apoptosis. Specifically, the lncRNA SNHG7
can inhibit EZH2, reducing UM progression [77]. Similarly, it has been described that
in lung cancer, this lncRNA can also work as a sponge of the oncogenic miR-181 (which
promotes cell proliferation and migration), reducing the activity of miR-181 and, therefore,
the tumoral progression [91].

The lncRNA Growth Arrest Specific 5 (GAS5) is downregulated in UM, and is usually
associated with a bad prognosis. This lncRNA blocks the oncogenic miR-21, which leads
to epithelial-mesenchymal transition (EMT) via Phosphatase and tensin homolog (PTEN)
activation. Therefore, the final result of lncRNA GAS5 downregulation is invasion [78].

3.2. Oncogenic LncRNAs in Uveal Melanoma

Some examples of oncogenic lncRNAs in UM are presented below (Figure 3). As in the
tumor suppressor case, oncogenic lncRNA could activate oncogenic molecules or inhibit
tumor suppressor elements.

A classic lncRNA with an oncogenic role is lncRNA Metastasis Associated Lung
Adenocarcinoma Transcript 1 (MALAT1) (Figure 3). It is also known as nuclear-enriched
abundant transcript 2 (NEAT2), and is upregulated in different kinds of cancer such as
lung, glioma, bladder, pancreatic, gastric, colorectal cancer, and UM. The overexpression of
this lncRNA is associated with low survival rates [92]. It is related to cell cycle progression
and proliferative phenotypes due to E2R1 and p53 regulation. MALAT1 depletion makes
tumor cells sensitive to p53. Moreover, lncRNA MALAT1 interacts with splicing factors
to affect the alternative splicing of some mRNAs [93]. According to some UM studies,
lncRNA MALAT1 reduces the expression of miR-140, which promotes proliferation and
invasion in UM [64]. Other studies suggest that lncRNA MALAT1 upregulates Homeobox
C4 (HOXC4), a HOX family member, by inhibiting miR-608, which also promotes UM
tumorigenesis [65]

The oncogenic lncRNA Plasmacytoma variant translocation 1 (PVT1) acts as a miRNA
sponge in several cancers, leading to enhanced proliferation and metastasis [94]. For
instance, lncRNA PVT1 traps miR-186 in gastric cancer [95], miR-26b in melanomas [96],
miR-448 in pancreatic cancer [97], and miR-203 in esophageal carcinomas [98]. Furthermore,
in UM, lncRNA PVT1 downregulates the expression of miR-17-3p, increasing metastasis.
This process is caused by oncogenic murine double minute 2 (M2M2) expression and
the decrease of p53 tumor suppressor activity [67]. Other authors have reported that
lncRNA PVT1 positively regulates the expression of EZH2 in UM cell lines, which leads to
carcinogenic effects and poor prognosis [66].
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Another oncogenic lncRNA is lncRNA Rhophilin Rho GTPase binding protein 1
antisense RNA 1 (RHPN1-AS1), which is overexpressed in UM compared to healthy tissues.
This lncRNA is associated with angiogenesis, cell adhesion, and extracellular matrix
organization. Therefore, lncRNA RHPN1-AS is implicated in the epithelial-mesenchymal
transition (EMT) through the Transforming growth factor beta (TGF-β) signaling pathway
interaction [68]. In other cancers, it acts with/against miRNAs to promote cancer such as
in cervical cancer through the miR-299-3p/Fibroblast Growth Factor 2 (FGF2) axis [99], in
glioma targeting miR-652-5p/Regenerating islet-derived protein 3-alpha (REG3A) [100], in
breast cancer sponging miR-6884-5p [101], or sponging miR-7-5p in colorectal cancer [68],
but none of these relations have been studied in UM yet.

The lncRNA Homeobox A11 (HOXA11), also known as NCRNA00076, belongs to the
Homeobox A (HOXA) cluster with lncRNA Homeobox A10 antisense (HOXA10AS) and
HOXA Distal Transcript Antisense RNA (HOTTIP), all of which are involved in cancer
proliferation, invasion, migration, and chemoresistance [102,103]. LncRNA HOXA11AS is
upregulated in many cancers such as non-small cell lung cancers, osteosarcoma, glioma,
hepatocellular carcinoma, gastric, breast, cervical cancer, and UM [104]. LncRNA HOXA11
acts as a sponge for the tumor suppressor miR-124 in breast cancer and, through interaction
with EZH2, inhibits protein p21 (p21) [105]. In UM, the high concentration of lncRNA
HOXA11AS leads to proliferation and invasion. This effect could be reversed with miR-124
mimic transfection [69].

The high levels of lncRNA Ferritin Heavy Chain 1 Pseudogene 3 (FTH1P3) in UM
correlate with proliferation, cell cycle, and migration. It is dysregulated in other cancers
such as lung, cervical, glioma, esophageal carcinoma, and breast cancer [106–110]. It is
suggested that lncRNA FTH1P3 decreases miR-224-5p expression and enhances Fizzled
5 and Ras-related C3 botulinum toxin substrate 1 (Rac1) expression, promoting cell cycle
progression and migration [70].

Purinergic Receptor P2X 7 (P2RX7), a ligand-gated ion channel receptor, is overex-
pressed in several cancers and is expressed differently in many tissues. This receptor
participates in tumor growth, differentiation, metabolism, migration invasion, and cell
death, so the P2RX7 overexpression is related to poor prognosis in patients [111]. It has
been reported that the lncRNA P2RX7-V3 variant acts as an oncogene because of the
positive correlation with the P2RX7 receptor. Although the action mechanism is not clear,
the lncRNA P2RX7-V3 variant is upregulated, and is involved in the tumor maintenance
of UM cell lines. Moreover, the analysis of the P2RX7-V3 lncRNA targets demonstrates
that the lncRNA participates in the Phosphatidylinositol 3-kinase (P13K)-Protein kinase B
(AKT) pathway promoting tumorigenesis [63].

The lncRNA LINC00518 is overexpressed in the cytoplasm of UM cells, but it has not
been detected in extracellular fluids. Therefore, it is currently not useful as a biomarker.
It is proposed that lncRNA LINC00518 could act as a miRNA sponge modulating the
metastatic process; however, the cellular pathway has not been well established yet [71].

The lncRNA LOC100132707 is overexpressed in metastatic UM, and is correlated with
the Janus kinase 2 (JAK2)/Signal Transducer and Activator of Transcription 3 (STAT3)
pathway, which are signal transducers and activators of transcription. The activation of
this signaling leads to migration and invasion [72].

4. LncRNAs as Therapeutic Agents

Selecting a proper lncRNA for therapeutic use requires tissues to present different
expression profiles between tumors and healthy cells. It is essential that the differential
levels are due to aberrant cancer expression to target the tumor exclusively. If the therapy
is effective (upregulating tumor suppressor lncRNAs or downregulating oncogenic ones),
the modulation of lncRNA expression should induce cell death, or reduction in tumor size
or motility [112].

Several features make lncRNAs ideal molecules for cancer treatment: (a) lncRNA
concentration is lower than mRNAs, besides lncRNA have a fast turnover, meaning they
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react fast with the targets; (b) lncRNAs are specific for certain cells/tissues specific, making
them ideal for the selection of cell subpopulations and develop selective therapeutics;
(c) LncRNAs can control chromatin modifications; therefore, targeting lncRNAs could be
exploited to modulate the epigenetics of the cells; (d) LncRNAs could modulate chromatin
function, regulate the assembly of nuclear bodies, or affect stability and translation of
mRNA; (e) LncRNAs have many binding sites, thus, blocking different lncRNAs domains
could lead to more efficient therapy because of their effect in multiple proteins of dys-
regulated pathways; and (f) targeting lncRNAs provides simultaneous effects in several
pathways, so there are fewer chances to develop tumor resistance [8,112–115].

There are several strategies to modulate upregulated lncRNA expression depending
on their subcellular localization and mechanism of action [31,41,50,116–118]:

• Inhibit oncogenic lncRNA expression using specific siRNAs, antisense oligonucleotides
(ASOs), gapmers, ribozymes, and Dnazymes, synthetic lncRNA mimics, or
CRISPR systems.

• Block the interaction between lncRNAs and their target molecules (e.g., regulatory
factors or promoters) or affect the lncRNA secondary structure with aptamers or small
synthetic molecules.

In the case of downregulated lncRNAs, therapies are focused on increasing tumor
suppressor lncRNA levels to restore the normal expression levels [119].

Although new therapies against lncRNAs have been developed, there are many chal-
lenges in delivering oligonucleotides because of their natural degradation, immune system
activation, and difficulties in targeting cancer cells and their organelles [120]. Various
delivery systems have been developed to overcome these limitations such as liposomes, mi-
celles, dendrimers, inorganic particles, carbon nanotubes, nanoparticles, viral nanocarriers,
polymeric or peptide nanoparticles, metallic nanoparticles, and others [116–118,121–126].
Through the use of delivery systems, side effects can be reduced due to accurately targeting
the tumoral cells (e.g., using polycation gene vectors for delivering lncRNA Maternally
Expressed 3 (MEG3) in hepatocellular carcinoma [127], or gold nanoparticles with Tyrosine
Aminotransferase (TAT) peptide to deliver specifically into lung cancer cells ASOs against
lncRNA MALAT) [128]. Notably, by using nanoparticle-based approaches, stimuli-sensitive
systems can be implemented to improve control over the release. One example of this
is the delivery of siRNAs against the lncRNA Differentiation Antagonizing Non-Protein
Coding RNA (DANCR) with pH-sensitive amino lipid, polyethylene glycol, and peptide
formulations. These formulations are being used to treat triple-negative resistant breast
cancer models [129]. Moreover, exosomes are gaining relevance in this field because of
their low immunogenicity and good biocompatibility and stability. However, exosomes are
not as tunable as other nanoformulations. For this reason, they are used to hybridize with
other nanoparticles (e.g., liposome-exosome nanoformulations) to deliver CRISPR-Cas
9 [130].

Regarding UM, therapies based on lncRNA could target tumor melanocytes by tak-
ing advantage of lncRNA tissue specificity and delivery systems. Selecting the proper
oncogenic lncRNA and delivering therapies against it would reduce tumor size, avoiding
side effects. Moreover, these therapies could reach metastatic cells such as liver metastasis
(e.g., targeting lncRNA Receptor Tyrosine Kinase Like Orphan Receptor 1 antisense 1
(ROR1-AS1) or lncRNA Homeobox D antisense (HOXD-AS1)) [131,132], which is the main
cause of death in UM patients.

5. LncRNAs as Diagnostic Agents

It is well known that early diagnosis is fundamental to improve the survival of cancer
patients. In addition, it is also necessary to monitor cancer progression. In this regard,
X-ray, magnetic resonance imaging, histopathology, molecular pathology, circulating tumor
cell detection, and tomography are the most common diagnostic methods in the clinic,
but most of them are expensive and invasive techniques; therefore, new non-invasive,
real-time, and reproducible diagnostics are desired [133,134].
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UM used to be diagnosed by enhanced depth imaging optical coherence tomography
(EDI-OCT) and fluorescein or indocyanine green angiography (FFA or ICG) [50], how-
ever, metastatic UM has a challenging detection because of the early dissemination and
micrometastasis, principally in the liver [135]. Thus, UM is usually detected after the tumor
has grown significantly, affecting liver function [136]. Cytogenetic diagnosis is recom-
mended, but these kinds of tests are invasive and conducted after tumor biopsies [135]. For
liver metastasis, the standard techniques are abdominal ultrasound and liver biochemical
function test. In general, blood biomarkers are the best option to diagnose, establish a
prognosis, and predict therapeutic response in metastatic and non-metastatic UM [135].

Many lncRNAs are cancer-specific or aberrantly expressed in some cancer tissues,
making them exploitable as biomarkers. LncRNAs could indicate the presence or ab-
sence of cancer and even the disease progression. Furthermore, lncRNAs are stable in
blood, saliva, and urine, and they are detected in circulating extracellular vesicles [137].
Therefore, they can be excellent markers in non-invasive tests for personal and precision
oncology [50,138–140].

Interestingly, as stated before, lncRNA expression could be correlated to the tumor
stage and, therefore, with cancer prognosis or tumor recurrence. This correlation is ex-
plained because different types of tumors at various stages of progression present distinct
levels of lncRNA depending on the cellular pathways affected [133].

Some lncRNAs are already being used as biomarkers in the clinic such as the lncRNA
Prostate cancer antigen 3 (PCA3) approved by the FDA as a prostate cancer biomarker,
with a sensitivity of 58–82% and a 56–76% specificity [141]. In UM, several lncRNAs are
already used for diagnosis in basic research (Table 3) [133].

Table 3. UM lncRNA diagnosis candidates.

LncRNA Expression Level Source Association Reference

lncRNA PVT1 Up Tumor, gastric juice,
serum Poor overall survival [94]

lncRNA HOXA11AS Up Tumor Poor overall survival [104]

lncRNA SNHG7 Down Tumor
Higher tumor-node-metastasis

stage (TNM) and poor
histological type

[77,79,97]

lncRNA MALAT1 Up Tumor, urine, serum Melanoma progression
and metastasis [133]

lncRNA CASC15 Up Tumor Cancer recurrence [133]

The current lncRNA detection methods include northern blot, qRT-PCR, RNA-seq,
and microarrays. Although it is possible to detect lncRNA with these techniques, not many
lncRNA biomarkers are approved for routine diagnoses in humans. The reason for this
is the lack of extensive cohort studies and inconsistent acquisition and analysis methods.
Furthermore, there is no agreement on suitable sample tissue, RNA isolation method,
sequencing, analysis, or biostatistics techniques; all these steps should be standardized for
proper clinical translation.

Nowadays, some blood biomarkers are used in UM such as tumor-associated antigen
(MIA), osteopontin, and S-100β, among other hepatic markers. These biomarkers are
present at high concentrations in UM patients with liver metastasis [136]. However, any
lncRNA biomarker currently used in the clinic has an enormous potential to be applied
for UM detection and monitoring, because they would be found in blood and are cancer-
specific, sensitive, and the technique is cost-effective, rapid, and non-invasive [135].

In summary, using two or more lncRNAs in combination with currently used biomark-
ers significantly increases the specificity and sensitivity in cancer diagnosis [94,95].
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6. LncRNA-microRNA Interactions Related to Uveal Melanoma

As previously mentioned, the interaction between different ncRNAs permits regu-
latory subcategories in the genome, which means that ncRNA levels depend on other
ncRNAs. In particular, the relationship between lncRNAs and microRNAs is very impor-
tant due to the crucial roles in both the homeostasis and disease processes [5].

Despite the large number of lncRNA–microRNA interactions in nature, very few have
been described in UM. This absence is related not only to the lack of research in UM, as it is
a rare disease, but also because of the novelty of this research field. Recently, a database
called VECTOR (uVeal mElanoma Correlation NeTwORk) has been published to predict
RNA interactions in UM [142], which will be very helpful in this field.

The main contributions in this area are discussed below.
LncRNA PVT1 is an oncogenic lncRNA related to metastasis risk. This lncRNA binds

miR-17-3p, reducing its expression levels. Moreover, miR-17-3p often downregulates
MDM2 expression, a protein that inhibits p53. In UM, the lncRNA PVT1 is highly ex-
pressed, and therefore miR-17-3p is inhibited, leading to MDM2 upregulation and p53
inhibition [67]. This relationship has been described in other cancers such as gastric cancer
or neuroblastoma [138,143]. The study of this regulatory pathway in which lncRNAs and
microRNAs are involved might allow for the design of promising therapies to reduce the
expression of lncRNA PVT1 or increase the levels of miR-17-3p to achieve cancer regression.
Moreover, the presence of the high levels of lncRNA PVT1 could be used as a biomarker to
detect UM [67].

Another well-known oncogenic lncRNA is MALAT1. This lncRNA is also implicated
in metastasis and correlates with advanced tumor stages and poor survival in several
cancers such as lung adenocarcinoma, breast cancer, hepatocellular carcinoma, gastric
cancer, pancreatic cancer, and others [144]. LncRNA MALAT1 regulates miR-608, a tumor
suppressor that inhibits HOXC4, a homeobox family’s transcription factor [139], and AKT2,
an oncogene kinase [140], leading to apoptosis. In UM, MALAT1 is overexpressed, which
reduces the expression of miR-608, leading to an increase of HOXC4. Thus, these processes
together enhance UM cell proliferation and invasion [65].

LncRNA HOXA11AS is an oncogenic lncRNA involved in UM progression, and its
overexpression is related to cell growth, migration, and apoptosis evasion. This lncRNA
can bind EZH2 [69], a polycomb family member with a key role in the cell cycle, cell
death, and cell lineage determination [145]. Additionally, lncRNA HOXA11AS works as
a miR-124 sponge, which controls EZH2 expression levels and causes apoptosis and/or
autophagy [146]. Therefore, low miR-124, mediated by HOXA11AS, releases EZH2, inhibit-
ing the tumor suppressor p21. Interestingly, it has been shown that by increasing miR-124
levels, proliferation and invasion were reduced in UM cells [69], highlighting the potential
use of lncRNAs as therapeutic targets.

7. Conclusions

LncRNA are fascinating molecules involved in UM progression. Regarding their
biological implications, lncRNA can interact with diverse types of molecules. For instance,
they can interact with proteins acting as protein scaffolds, oligonucleotide decoys, or
guides; also with DNA, acting as guides or enhancers; or with other RNA structures as
miRNA sponges or mRNAs inhibitors.

Since LncRNAs are implicated in tumor formation and progression in uveal melanoma,
they can be excellent biomarker candidates for non-invasive diagnostic techniques. In this
scenario, oncogenic lncRNAs such as PVT1, CASC15, or MALAT1 are perfect candidates to
develop diagnostic methods because they are more abundant in UM tumors or even patient
serum. Furthermore, oncogenic lncRNAs are also remarkable targets to inhibit tumors,
increase drug sensibility, and prevent chemoresistance or future relapses. In particular,
tumor suppressor lncRNAs such as lncRNA PAUPAR or NUMB can be used as therapeutic
molecules to reduce tumor progression in UM. It is worth mentioning that these therapeutic



Cancers 2021, 13, 4041 14 of 19

approaches face some challenges associated with drug delivery in vivo (e.g., stability,
internalization), which might be overcome through the use of modern nanocarriers.

Finally, it is clear that a better understanding the lncRNAs’ roles will provide us with
new tools to detect and treat UM, which are needed to tackle this terrible disease. In
this regard, this review could be very valuable to better understand the implications of
LncRNAs in UM and promote this area of research.
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