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Towards the complete phase profiling of attosecond wave packets
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Realistic attosecond wave packets have complex profiles that, in dispersive conditions, rapidly broaden or
split in multiple components. Such behaviors are encoded in sharp features of the wave packet spectral phase.
Here we exploit the quantum beating between one- and two-photon transitions in an attosecond photoionization
experiment to measure the photoelectron spectral phase continuously across a broad energy range. Supported by
numerical simulations, we demonstrate that this experimental technique is able to reconstruct sharp fine-scale
features of the spectral phase, continuously as a function of energy and across the full spectral range of an
attosecond pulse train. In a proof-of-principle experiment, we observe the periodic modulations of the spectral
phase of an attosecond pulse train due to the individual chirp of each harmonic.
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I. INTRODUCTION

Attosecond photoionization time delays provide a precise
timing of electronic motion in atoms [1–3], molecules [4,5],
and solids [6–9]. Defined as group delay difference between
two electron wave packets, they set benchmarks for the most
advanced quantum simulations [10–12]. However, as group
delays are given by the first-order expansion of the spectral
phase ϕ(E ), they cannot characterize the full wave packet evo-
lution. Indeed, dynamical aspects more complex than a simple
delay, such as changes in the wave packet envelope shape, can
only be reconstructed if the energy-dependent spectral phase
is measured in full. In particular, strong and sharp variations
of ϕ(E ) are key to the most intricate wave packet dynamics
[3,13–16].

Most experimental techniques currently used to charac-
terize photoionization phases can retrieve only the average
value of the group delay across a broad energy range, e.g., the
whole attosecond pulse bandwidth in streaking measurements
[1,17,18], or at discrete energies spaced by twice the probe
frequency, in the RABBITT (reconstruction of attosecond
beatings by interference of two-photon transitions) scheme
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[19,20]. In these techniques, therefore, rapid phase variations
with energy are typically lost. A few techniques to retrieve
full phase profiles in streaking measurements using pulse re-
construction algorithms have been proposed [21,22], some of
which are, in principle, also applicable to pulse trains [21].
Similarly, a few interferometric schemes have been proposed
to resolve sharp spectral features: by dispersing broad RAB-
BITT sidebands [3,13,23], by scanning the probe frequency
across the feature [14,24], or by employing bicircular attosec-
ond pulse trains [25]. Even these more advanced schemes,
however, are sensitive only to the difference of the spectral
phase between two isolated harmonics, and hence they can
characterize the wave packet profile in more detail only under
the ad hoc assumption that the harmonics are Fourier limited.
The question arises, therefore, whether sharp phase variations
associated with either the impinging light or the electronic
structure of the target can be directly observed.

In this work, we demonstrate that the quantum beat be-
tween one- and two-photon transitions, formerly referred to
as 1-2 quantum beat [26–29], together with angle-resolved
electron spectroscopy, provides direct access to complex
structures in the spectral phase of the photoionized electron
wave packets, which, to the best of our knowledge, are,
otherwise, accessible only by complete pulse reconstruction
techniques. In contrast to the previous methods [26–29], we
enable the 1-2 quantum beat by performing a RABBITT-
inspired experiment using an extreme ultraviolet (XUV)
attosecond pulse train (APT) with only odd, but spectrally
broad, high harmonics. The combination of the 1-2 quantum
beat with spectrally broad high harmonics allows us to retrieve
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phase differences continuously as a function of energy and
across the entire bandwidth of the XUV spectrum; i.e., it
allows for a complete phase profiling. In a proof-of-principle
experiment, we observe periodic oscillations in the phase of
electron wave packets generated by photoionization from he-
lium. Supported by numerical solutions of the time-dependent
Schrödinger equation (TDSE), we can attribute these phase
oscillations to the harmonic chirp of the XUV pulse train
inherent to the underlying high harmonic generation (HHG)
process. Whereas the harmonic chirp has been successfully
quantified for single harmonics [30–35], direct observations
of the underlying phase modulations across the full spectrum,
originally predicted more than 15 years ago [36,37], are scarce
[38].

II. METHOD

The spectral phase of a photoelectron wave packet created
by absorption of one XUV photon comprises two contri-
butions, the Eisenbud-Wigner-Smith (EWS) scattering phase
due to half-scattering at the ionic potential [39,40] and the
spectral phase of the ionizing light pulse. The spectral phase of
photo-emitted electrons, therefore, can be used either to study
the EWS scattering phase [41,42] or to characterize XUV light
pulses [43,44].

Figure 1(a) illustrates the comparison between the RAB-
BITT and the 1-2 quantum beat method described in this
work. Upon XUV photoionization (pump) an IR pulse (probe)
promotes continuum-continuum (cc) transitions [45,46]. As
the pump-probe delay is varied, the photoelectron signal beats
as a result of the interference between quantum pathways with
the same final energy. The phase of this beating is directly
linked to the spectral phase difference between the two in-
terfering quantum paths. Whereas RABBITT is based on the
interference between two different two-photon pathways, i.e.,
a 2-2 quantum beat [19,20], the 1-2 quantum beat [26–29]
method exploits the interference between one-photon and
two-photon pathways.

To illustrate the different sensitivity of the two approaches
to sharp features in the spectral phase, we first consider an
idealized ionization experiment for which we assume that
in the energy regime of interest the atomic ionization cross
section is constant and the EWS and cc-phases are negligible.
Under these assumptions, the phase of the ionized electron
wave packet directly reflects the phase of the XUV spectrum.
The XUV spectrum [Fig. 1(b)] used in the calculation fea-
tures a strong and well-localized spectral phase variation at its
center that may mimic the effect of a complex high-harmonic
generation process or the resonant ionization phase of the
target. As can be seen in Figs. 1(c) and 1(e), RABBITT is
blind to the sharp phase variation, while the 1-2 quantum beat
is particularly sensitive to it [Figs. 1(d) and 1(f)]. The retrieved
phase differences provide detailed information on the spectral
phase ϕ(E ) well beyond its first derivative at the center, as we
will show below.

The XUV-APT spectrum is composed of odd high har-
monics of an IR laser field which result in mainbands (MBs)
(one-photon transitions) in the photoelectron spectrum, sepa-
rated by twice the IR photon energy h̄ωIR. Interaction with the
IR probe leads to the appearance of sidebands (SB) between

(a) (b)

(c) (d)

(e) (f )

FIG. 1. (a) RABBITT (2-2 quantum beat) and the 1-2 quantum
beat protocol, schematically. Blue arrows indicate photoionization
induced by the XUV, and red arrows indicate cc-transitions in-
duced by the IR. (b) Amplitude and phase of the input XUV
pulse. (c) RABBITT trace (total yield). The inset indicates the in-
tegration over all emission angles. (d) Asymmetry trace extracted
from the 1-2 quantum beat. The inset indicates the asymmetry of
the angular distribution (difference left-right). (e) Phase difference
�ϕ2−2(E ) extracted from the RABBITT sidebands. (f) Phase differ-
ences �ϕ+

1−2(E ) and �ϕ−
1−2(E ) extracted from the 1-2 quantum beat

method and comparison with �ϕ
+,inp.

1−2 (E ) from the input phase.

the MBs, whose intensities oscillate as a function of the pump-
probe delay τ at twice the IR laser frequency 2ωIR [Fig. 1(c)].
The beating is symmetric along the common light polarization
axis as only partial waves with the same parity interfere.
The phase offset of each sideband corresponds to the phase
difference between the neighboring harmonics extracted by
RABBITT �ϕ2−2 = ϕ(E + h̄ωIR) − ϕ(E − h̄ωIR). Since this
phase difference can be sampled only at the sideband posi-
tions, the sharply structured phase profile remains undetected
[Fig. 1(e)], even though the XUV spectrum spans the entire
energy region.

In the 1-2 quantum beat method, by contrast, the interfer-
ence of partial waves with opposite parity (s − p or p − d)
gives rise to an asymmetry of the electron angular distribution
that beats at the angular frequency ωIR as a function of τ

[Fig. 1(d)] [26,27]. This asymmetry, determined here by
the difference of electron yield emitted to opposite sides of
the plane perpendicular to the light polarization is shown in
Fig. 1(d). For the ultrashort APT employed here, both two-
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photon pathways (absorption and stimulated emission of an
IR photon) can interfere with the one-photon amplitude across
the whole spectral width of the APT. As long as the harmonics
are spectrally sufficiently broad, therefore, the two phase dif-
ferences �ϕ+

1−2(E ) = ϕ(E − h̄ωIR) − ϕ(E ) and �ϕ−
1−2(E ) =

ϕ(E ) − ϕ(E + h̄ωIR) can both be retrieved continuously as
a function of energy and the sharp phase profile is detected.
As we will show below, the two phase differences can be
approximately retrieved fully analytically from the asymmetry
trace. Furthermore, as the one-photon pathway is itself part
of the interference, the retrieved phases are unaffected by the
finite spectral bandwidth of the IR [23]. For sharp resonances
(see, e.g., Fig. 1) the two-photon pathways serve as a flat
reference, such that the retrieved phases remain sharp.

III. THEORETICAL FRAMEWORK

The angle-dependent ionization probability is [3]

I (E , ϑ, τ ) =
∣∣∣∣∣
∑

�

(A+
� + A−

� )Y 0
� (ϑ ) + iA1

1Y
0

1 (ϑ )

∣∣∣∣∣
2

, (1)

where A1
1 and A±

� are the one-photon and two-photon ampli-
tudes (+/− designates IR absorption/emission, and � = 0, 2
is the photoelectron orbital angular momentum), Y m

� are spher-
ical harmonics with m = 0 due to the collinear alignment of
the employed light fields, and ϑ is the angle between the
electron photoemission direction and the common light polar-
ization axis. The energy-dependent ionization cross section is
thereby included in A1

1. The one- and two-photon amplitudes
of the quantum pathways are functions of the kinetic energy
E and of the pump-probe delay τ [45],

A1
1 = ∣∣A1

1

∣∣eiϕ(E ), A±
� = |A±

� |ei(ϕ±
� (E )±ωτ ). (2)

The spectral phase of the one-photon XUV ionization ϕ(E ) =
ϕ1

�=1(E ) contains the EWS scattering phase and the XUV
phase. The photoelectron asymmetry signal

fa(E , τ ) = I (E , τ )ϑ�90◦ − I (E , τ )ϑ�90◦ , (3)

given by the difference between emission into the forward and
backward hemispheres, then follows as

fa(E , τ ) =
∑
σ,�

σc�

∣∣A1
1

∣∣∣∣Aσ
�

∣∣
× sin

{
ωτ + σ

[
ϕσ

� (E ) − ϕ1
1 (E )

]}
, (4)

where σ = ±, c0 = √
3, and c2 = √

15/4. For a simplified
analytic estimate, the two-photon pathways can be approxi-
mated by the one-photon phase as ϕσ

� (E ) � ϕ1
1 (E − σ h̄ωIR)

since the method is sensitive only to phase variations but not to
absolute phases. The cc-phase for different angular momenta
[46] can be neglected since its variation is small within the
present energy range. Likewise, the cc-transition probabilities
to different � are only weakly energy and � dependent, such
that |Aσ

� | ≈ |A±| [47].
Consequently,

fa(E , τ ) � A(E ) sin [ωτ + δ(E )], (5)

where A(E ) and δ(E ) are the modulus and phase of
a+ei�ϕ+

1−2 − a−ei�ϕ−
1−2 , with aσ (E ) = |A1

1||Aσ |(c0 + c2) and
�ϕσ

1−2(E ) = σ (ϕ(E − σ h̄ωIR) − ϕ(E )). This approximate
relationship [Eq. (5)] illustrates the sensitivity of the 1-2 quan-
tum beat method to rapid variations of the spectral phase.
For energy-independent phases, A(E ) vanishes, as a+(E ) ≈
a−(E ). By contrast, phase differences �ϕ± that vary rapidly
within h̄ωIR result in strong oscillations of the photoemis-
sion asymmetry. A similar expression is also obtained in
the PROOF (Phase Retrieval by Omega Oscillation Filtering)
method [22], based on the strong field approximation.

IV. EXPERIMENTAL RESULTS

Figure 2 shows the results of a proof-of-principle ex-
periment performed with atomic helium. The experiment is
carried out resembling the RABBITT protocol and using an
XUV-APT with spectrally broad high harmonics. The XUV-
APT is generated via HHG using a 10 fs FWHM IR laser
pulse centered around 785 nm from a carrier-envelope-phase
(CEP) stabilized Ti:sapphire laser system. In contrast to pre-
vious experiments, where the 1-2 quantum beat has been
enabled by a combination of even and odd harmonics [26,27],
the CEP stabilization is essential for the observation of the
asymmetry signal in our experiment, where the 1-2-quantum
beat is enabled by spectrally overlapping high harmonics. The
XUV-APT is focused together with a collinear time-delayed
replica of the generating IR pulse on a cold helium gas jet.
The resulting photoelectrons are collected with a cold target
recoil ion momentum spectrometer (COLTRIMS) [49], which
allows for an angular resolved detection [50]. The setup is
described in detail in Ref. [51]. In the delay-integrated RAB-
BITT spectrum the MBs are depleted as compared to the

(a) (c)(b)

FIG. 2. (a) XUV-only (green) and delay-integrated RABBITT spectrum (blue) from the experiment. The red curve results from the fit of
the transition ratios [Eq. (7)] to the integrated RABBITT spectrum in the range from 3 eV to 12 eV. (b) Measured asymmetry signal, defined
as in Eq. (3), as a function of pump-probe delay. (c). Retrieved phases �ϕ+

1−2(E ) and �ϕ−
1−2(E − h̄ωIR) from the experiment.
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(a) (c)(b)

FIG. 3. (a) XUV-only (green) and delay-integrated RABBITT spectrum (blue) from the quantum simulation employing a single-active
electron (SAE) approximation and a model potential from Ref. [48]. The red curve results from a fit of the transition ratios [Eq. (7)] to the
integrated RABBITT spectrum in the range from 2 eV to 14 eV. (b) Calculated asymmetry signal, defined as in Eq. (3), as a function of
pump-probe delay. (c) Retrieved phases �ϕ+

1−2(E ) (red) and �ϕ−
1−2(E − h̄ωIR) (blue) in comparison to �ϕ

+,inp.
1−2 (E ) from the input phase. The

difference between the retrieved phase �ϕ+
1−2(E ) and the input phase �ϕ

+,inp.
1−2 (E ) is shown explicitly (green).

XUV-only spectrum due to the IR induced cc-transitions to
the SBs [Fig. 2(a)]. The asymmetry shows a checkerboard
pattern [Fig. 2(b)], which implies an energy dependence of
the spectral phase. If the phase were spectrally flat, only a
weak and constant asymmetry signal comparable to the upper
(or lower) part in Fig. 1(d) would be expected. A similar
checkerboard has been observed in experiments exploiting
the 1-2 quantum beat, where both even and odd harmonics
[26,27] have been employed. As the harmonics were ener-
getically separated by one IR photon in these experiments,
phase differences could be quantified only between different
harmonics and at discrete sampling points, but not, as in our
case, continuously as a function of energy and within indi-
vidual harmonics. Nevertheless, these different experiments
reveal similar phase variations as well.

The retrieval of the phase differences �ϕ±
1−2 from the

asymmetry comprises three steps. First, we determine the
modulus of the one-photon amplitude |A1

1(E )| =
√

f XUV
tot (E )

from an XUV-only spectrum. Second, the modulus of the
two-photon amplitudes for absorption and emission |A±|
are determined by fitting transition ratios to the delay-
integrated RABBITT spectrum [Fig. 2(a)]. The amplitudes of
the two-photon pathways are approximated as replicas of the
one-photon amplitudes, shifted by the IR photon energy:

A+(E ) = r+(E )A1
1(E − h̄ωIR), (6)

A−(E ) = r−(E )A1
1(E + h̄ωIR), (7)

with r±(E ) = c± + d±E . The parameters c± and d± account
for the smooth energy dependence of the transition ratios (see
Appendix A) and are fitted to the delay-integrated RABBITT
spectrum (see Appendix B),

〈 ftot (E , τ )〉τ = |A1(E )|2 + 2|A+(E )|2 + 2|A−(E )|2. (8)

Finally, using a+(E ) and a−(E ), we can analytically deter-
mine �ϕ±

1−2(E ) from the measured amplitude A(E ) and phase
δ(E ) of the asymmetry signal as continuous function of the
energy via Eq. (5) (for the explicit solution see Appendix C).
We note that for ionization from other than s-ground states,
the parametrization of the angular dependent ionization am-
plitude must be extended to account for partial waves with
different l- and m-quantum numbers. For the procedure to
be consistent, the retrieved phase differences must satisfy the
identity �ϕ+

1−2(E ) = �ϕ−
1−2(E − h̄ωIR). Figure 2(c) shows

that �ϕ+
1−2(E ) and �ϕ−

1−2(E − h̄ωIR) are indeed in close
agreement with each other across a wide energy range,
demonstrating the applicability of the phase retrieval and,
in parallel, enabling a consistency check. It is important to
stress that this deviation is not a statistically error estimate,
nor can it be interpreted as a retrieval error. For this reason,
it cannot be compared with the retrieval errors reported for
other pulse retrieval or reconstruction techniques. That said,
a larger deviation of the two phase differences, e.g., for the
energies slightly above 6 eV and 9 eV, does indicate larger
uncertainties for these energies.

V. DISCUSSION AND CONCLUSION

The retrieved phase differences from the 1-2 quantum beat
method exhibit periodic oscillations with the same periodic-
ity as the XUV harmonics, similar to those observed in the
experiments employing both even and odd high harmonics
[26,27]. Since in this energy region neither the EWS scattering
phase nor the cc-phase of atomic helium oscillate [52–54],
the phase oscillations can be attributed to the ionizing APT.
To support this hypothesis, we simulate the experiment by
solving the TDSE in the single-active-electron (SAE) approx-
imation [55]. We have checked for several delay steps that a
full two-electron calculation [56,57] yields indistinguishable
results. As input we use an XUV pulse featuring spectral
phase oscillations. As expected, we obtain an asymmetry
signal exhibiting a qualitatively similar checkerboard pattern
[Fig. 3(b)]. The tilt observed in the pattern is due to the
attochirp of the pulse. We further verify the retrieval method
by applying it to the simulated data and comparing the result
to the original XUV phase. Figure 3(c) shows the excellent
agreement between the phase difference �ϕ

+,inp.

1−2 from the
input phase and the retrieved phase differences �ϕ+

1−2 and
�ϕ−

1−2. The small deviation of the latter two across the full
energy range indicates the accurate phase retrieval for all en-
ergies. The slight deviation with respect to the input phase [see
Fig. 3(c)] at low kinetic energies indicates the retrieval error
due to the EWS and IR-induced cc-phase [see approximations
in Eq. (5)], which are no longer negligible at these energies
and cannot be separated from the XUV phase by the retrieval
method. The root-mean-squared deviation with respect to the
input phase is 0.16 rad across the full energy range, with a
maximal deviation of 0.35 rad at 4 eV.
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FIG. 4. Comparison of simulated attosecond pulse trains (APTs)
with periodic oscillations of the spectral phase (blue) and with a flat
phase (green). The spectrum is identical for both APTs. The insets
show the spectrum and the corresponding phase for both APTs.

The 1-2 quantum beat method enables the measurement of
phase variations across an individual harmonic. This is funda-
mentally different from measuring phase differences between
the same spectral region of different harmonics. Therefore,
this method gives us the ability to simultaneously measure
the atto- and the femtochirp of the APT inherent to the HHG
process [36]. The attochirp, which corresponds to a linear
increase (or decrease) of the group delay across the full spec-
trum, is encoded in the slope of the mean of �ϕ±

1−2(E ). In the
time domain, the attochirp translates into different harmonics
being emitted at different times during the IR cycle stretching
each attosecond burst.

The femtochirp corresponds to the observed oscillations
of �ϕ±

1−2(E ). Such a rapidly varying phase within a given
harmonic in the plateau region was originally predicted more
than 15 years ago [36]. The femtochirp results from the in-
terplay of two microscopic effects. First, the phase of each
harmonic depends on the IR intensity at the time of tunnel
ionization [58]. The use of ultrashort pulsed light sources
to drive HHG implies a rapidly varying intensity envelope,
which results in fine-scale phase structures within each har-
monic. Second, several quantum paths contribute, in general,
to the generation of the harmonics in the plateau region. Even
though the intensity dependence of the phase for each path
is approximately linear, the superposition of multiple paths
with different phase drifts leads to a complex phase structure
within each harmonic [59]. Both effects, therefore, can give
rise to a femtochirp, which, in the time domain, results in an
unequal spacing of the attosecond bursts [36] and stretches
the envelope of the pulse train; see Fig. 4. As shown in a
similar experiment [60] with a well-controlled APT of two or
three attosecond bursts, the induced angular asymmetry can
also be interpreted as a time-slit interference of bursts with
unequal emission time, corresponding to the femtochirp. As
the multi-quantum-path interference is sensitive to and easily
suppressed by macroscopic propagation effects, we expect
the intensity envelope effect to be the dominant contribution
under realistic experimental conditions.

In conclusion, we have shown that the 1-2 quantum beat
method can be used to retrieve phase variations of a photo-
electron wave packet as a continuous function of energy, with

a finer energy resolution than the probe frequency spectral
width. In particular, we demonstrate with a proof-of-principle
experiment that the 1-2 quantum beat method allows us to
observe the strong periodic modulations of the spectral phase
due to the harmonic chirp and caused by the HHG process
itself. As the retrieval method returns phase differences as a
continuous function of energy and is given in closed form, it
constitutes a valuable tool to investigate also more complex
photoionization dynamics and provides unprecedented access
to the spectral phase of wave packets resulting from the break-
up of quantum systems.
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APPENDIX A: CHARACTERIZATION OF THE
CC-TRANSITION AMPLITUDES

To characterize the cc-transition amplitudes, we compare
the results of numerically calculated photoelectron spectra
(PES) in helium for three different cases: (1) one narrow
XUV harmonic in the absence of the IR; (2) the same XUV
harmonic plus an IR field with intensity 1 × 1011 W/cm2;
and (3) the same XUV harmonic plus an IR field with inten-
sity 2 × 1011 W/cm2. The calculations are performed using
the singe-active electron (SAE) approximation and the model
potential from [48]. We have verified that full two-electron
simulations give nearly identical results. Since the amplitude
of the IR field is constant across a time interval wider than the
APT duration, and the target does not exhibit any resonance
in the spectral region of interest, the results are the same as for
a purely monochromatic IR light. In particular, to the lowest
perturbative order, there is no quantum path interference, and
the resulting PES does not depend on the XUV-IR delay. We
integrate the resulting total yield for the XUV-only simulation
and the two-photon peaks for the two-color simulations. Fig-
ure 5 shows the two-color PES for an XUV energy of 35 eV
and IR intensity of 2 × 1011 W/cm2. The two-photon peaks
are well separated from the one-photon peak.

The modulus of the one-photon and two-photon-
amplitudes can be obtained by taking the square root of
the corresponding one-photon and two-photon yields, respec-
tively. The relative amplitudes for absorption (emission) are
then calculated by dividing the higher (lower) two-photon
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FIG. 5. (a) Photoelectron yield from the SAE simulation for he-
lium for the two-color case with an XUV energy of 35 eV and IR
intensity of 2 × 1011 W/cm2. The side peaks (green) correspond to
the two-photon transitions for additional absorption or emission of
one IR photon.

amplitude by the one-photon amplitude. The calculation is
repeated for all XUV energies from 24.5 eV to 40 eV in steps
of 0.5 eV. Figure 6 shows the relative amplitudes as a function
of the energy, justifying the assumption of linear transition
ratios [Eqs. (6) and (7)].

As can be seen from the comparison between the relative
amplitudes from different IR-intensities, the relative ampli-
tudes for both absorption and emission scale with the square
root of the IR intensity, in line with the fact that the two-
photon amplitude is proportional to the electric field strength.

APPENDIX B: TOTAL PHOTOELECTRON YIELD

The total photoelectron signal is determined by integration
of Eq. (2) over all emission angles and thus reads

ftot (E , τ ) =
∫ 2π

0

∫ π

0
I (E , ϑ, τ ) sin(ϑ ) dϑ dφ

= |A1(E )|2 +
∑
�=s,d

[|A+
� (E )|2 + |A−

� (E )|2

+ 2|A+
� (E )||A−

� (E )| cos(2ωτ + ϕ+
� − ϕ−

� )]

≈ |A1(E )|2 + 2|A+(E )|2 + 2|A−(E )|2
+ 4|A+(E )||A−(E )| cos(2ωτ + ϕ+ − ϕ−).

The photoelectron spectrum corresponds to the 2ωIR-
RABBITT signal. [45]. When the delay is integrated over a
full IR cycle, the cosine term vanishes.

FIG. 6. Relative amplitudes for the IR induced two-photon tran-
sitions as a function of energy for additional absorption and emission
of an IR photon and for different intensities of the IR field
(1011 W/cm2 and 2 × 1011 W/cm2). The relative amplitudes for the
higher intensity case are ∼√

2 higher compared to the weak intensity
case as they scale with the strength of the electric field. The energy
axis refers to the electron energy of the corresponding one-photon
amplitude.

APPENDIX C: SOLUTION FOR THE IONIZATION PHASE

The modulus A(E ) and the phase δ(E ) of the ωIR oscil-
lation amplitude are obtained via Fourier transformation of
the experimental asymmetry signal. The quantities a+(E ) and
a−(E ) [compare with Eq. (4)] are obtained by fitting the
transition ratios to the integrated PES. From the two equations

A(E ) = |a+ei�ϕ+
1−2 − a−ei�ϕ−

1−2 |,
δ(E ) = arg (a+ei�ϕ+

1−2 − a−ei�ϕ−
1−2 ),

it is possible to retrieve �ϕ±
1−2(E ) analytically. Let χ =

�ϕ−
1−2 − �ϕ+

1−2, then

A2(E ) = a+2 + a−2 − 2a+a− cos χ,

which can be solved for χ as

χ = ± arccos

(
A2 − a+2 − a+2

2a+a−

)
.

The correct sign determination for χ is ascertained a poste-
riori by requiring for consistency the constraint �ϕ+

1−2(E ) =
�ϕ−

1−2(E − E0) to be satisfied. From the value of χ and the
expression for δ(E ), it is straightforward to retrieve the two
phases �ϕ±

1−2 as

�ϕ+
1−2 = δ(E ) − arg (a+ − a−eiχ ),

�ϕ−
1−2 = χ + �ϕ+

1−2.

This solution holds for all energies, so that the phase differ-
ences �ϕ±

1−2 can be retrieved across the full spectrum.
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