
 Eindhoven University of Technology

MASTER

Fully homomorphic encryption in JCrypTool

Ramaekers, C.F.W.

Award date:
2011

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/ddd1181e-050f-4027-a519-2d0886a8f8e3

Fully Homomorphic Encryption in

JCrypTool

Coen Ramaekers

c.f.w.ramaekers@student.tue.nl

August 4, 2011

Abstract

This thesis provides an overview of the recent achievements on Fully Homomorphic
Encyrption (FHE) schemes and also provides a tool demonstrating that FHE allows
computations with ciphertexts while preserving the ability to correctly decrypt the
result.

The general construction as presented by Gentry is explained, along with several
schemes based on this construction. These schemes range from the first theoretic
scheme to the first practically implementable scheme. The main ideas of bootstrap-
ping and squashing needed to obtain a Fully Homomorphic scheme are also described.

A major part of the final project was the implementation of the first practical fully
homomorphic scheme as of Gentry and Halevi in the software package JCrypTool.
The parameters are chosen for educational purposes: they do not offer sufficient
security for real-world use, but they give a sufficiently fast implementation that runs
on average PCs. This implementation is the first implementation with which users
can actually see that calculations can be performed on ciphertexts. The security was
sacrificed to reach better performance.

i

Contents

1 Introduction 1
1.1 Applications of Partially and Fully Homomorphic Encryption Schemes . . . 1
1.2 Somewhat and Fully Homomorphic Encryption Schemes 2
1.3 Goals . 3
1.4 JCrypTool . 3

2 Foundation 4
2.1 Notation . 4
2.2 Circuits . 5
2.3 Lattices . 6
2.4 Ideal Lattices . 8
2.5 Partially Homomorphic Encryption Schemes 9

2.5.1 RSA . 9
2.5.2 Paillier . 10
2.5.3 Applications: Secure Multiparty Computation 12

2.6 Somewhat Homomorphic Encryption . 12

3 Gentry’s Construction 14
3.1 Definitions . 14
3.2 From Somewhat to Fully Homomorphic Encryption 15

3.2.1 The Construction of a Leveled Scheme 16
3.2.2 Correctness of the Construction . 18
3.2.3 Making the Scheme Fully Homomorphic 19

3.3 Security . 19
3.3.1 Semantic Security . 19
3.3.2 KDM-Security . 21
3.3.3 Random Oracle Model . 21

4 Fully Homomorphic Encryption Schemes 23
4.1 Gentry’s Scheme . 23

4.1.1 The Somewhat Homomorphic Scheme 23
4.1.2 Bootstrappable Scheme . 28
4.1.3 Security . 34

4.2 The Smart-Vercauteren Variant . 38
4.2.1 The Somewhat Homomorphic Scheme 38
4.2.2 The Fully Homomorphic Scheme 43
4.2.3 Comparison and security . 43

4.3 The Gentry-Halevi Variant . 46
4.3.1 The Somewhat Homomorphic Scheme 46
4.3.2 The Fully Homomorphic Scheme 49

4.4 Fully Homomorphic Encryption over the Integers 51

ii

4.4.1 The Somewhat Homomorphic Scheme 51
4.4.2 Security . 53
4.4.3 The Fully Homomorphic Scheme 55

5 Implementation in JCrypTool 57
5.1 Optimization in the Gentry-Halevi Variant 57

5.1.1 KeyGen . 57
5.1.2 Encrypt . 60
5.1.3 Decrypt . 61
5.1.4 Recrypt . 61

5.2 Practical Implementation of the Gentry-Halevi Variant 63
5.2.1 KeyGen . 63
5.2.2 Encrypt . 65
5.2.3 Recrypt . 68
5.2.4 Functionality . 70
5.2.5 Appearance . 71

5.3 Performance . 73

6 Lunchtime Attack on the Gentry-Halevi Variant 76
6.1 What is a Lunchtime Attack? . 76
6.2 The Attack . 76
6.3 CCA1-Secure Fully Homomorphic Encryption 77

7 Conclusion 78

List of Figures

1 AND gate from two NAND gates. 6
2 Lattice with two different bases, one with parallelepiped 7
3 Semantic security game . 19
4 Computing g(z) mod z2 . 64
5 Splitting the polynomials . 66
6 Computing the polynomials . 67
7 Loop to compute qk . 69
8 Evaluation of the elementary symmetric polynomials 70
9 JCrypTool plug-in of the Gentry and Halevi fully homomorphic encryption

scheme . 72
10 JCrypTool plug-in of the Gentry and Halevi fully homomorphic encryption

scheme after computations . 73

iii

1 Introduction

The idea of homomorphic encryption is known for quite some time now. Shortly after
the introduction of RSA in 1978 [RSA78], which contains a multiplicative homomorphism,
the notion of “privacy homomorphisms” was introduced [RAD78]. There are two possi-
ble homomorphisms, namely the multiplicative and additive homomorphism. This implies
that there exists a group structure, that is preserved by the encryption and decryption.
An easy to grasp definition is as follows (we will formalize it later on), where π and ψ
denote the plaintext and ciphertext, respectively. Suppose we have a cryptosystem where
Enc(π) denotes an encryption and Dec(ψ) denotes the corresponding decryption. In a
homomorphic encryption scheme this then yields (π1× π2) = Dec(Enc(π1)⊗Enc(π2)) and
(π1 + π2) = Dec(Enc(π1) ⊕ Enc(π2)), where ⊗ and ⊕ denote certain operations on the
ciphertext.
If an encryption scheme allows either one of these operations, but only one, it is called
a partially homomorphic encryption scheme. These schemes generally allow an indefinite
amount of operations to be performed. In section 2.5 some examples will be given.
The multiplicative homomorphism in RSA raised some natural questions; does this imply
extra cryptographic properties? Does this somehow compromise the security of such a
scheme? Do there exist schemes which contain a ring structure instead of only a group
structure, i.e. can we construct a scheme which allows both addition and multiplication
on the ciphertext?

1.1 Applications of Partially and Fully Homomorphic Encryp-
tion Schemes

Several interesting applications using the multiplicative homomorphism of RSA and the
additive homomorphism of Paillier have arisen over time, some of which will be briefly
explained in section 2.5.3. It soon became clear that the group structure in RSA does
indeed compromise its security; it allows an efficient chosen ciphertext attack. For this
reason it was required in the RSA Encryption Standard that the scheme uses a random
padding of messages before encrypting [PKC91].
But the question if it is possible to construct a fully homomorphic scheme, i.e. a scheme
with a ring structure that is preserved by encryption and decryption, remained an open
question for years. The problem is interesting because of the numerous possibilities. Cryp-
tographers have come up with various applications of a fully homomorphic scheme. Several
interesting applications include untrusted storage, “outsourcing” computation and cloud
computing. It goes without saying that one would like private data stored on the web
to be encrypted, but as the amount of data increases it becomes harder to manage an
untrusted storage. Fully homomorphic encryption would allow a user to perform for in-
stance search queries on the encrypted data to find the right files, without needing to
decrypt. Under outsourcing computing we understand distributing computationally inten-
sive operations among large amounts of untrusted computers, in which fully homomorphic

1

encryption plays a vital role [GGP10, CKV10]. Perhaps the most popular application is
secure computations in the cloud. It would allow companies to buy computation time to
outsource their computationally expensive tasks to an untrusted cloud, but with the use
of fully homomorphic encryption, data, computation and answer all remain encrypted.

1.2 Somewhat and Fully Homomorphic Encryption Schemes

In 2009, Gentry finally made the breakthrough and presented a first plausible fully homo-
morphic encryption scheme and described a general construction to create fully homomor-
phic encryption schemes out of schemes which allow both operations, but only a limited
amount of them [Gen09a]. He dubs these schemes “somewhat” homomorphic schemes.
After the breakthrough, a sequence of schemes appeared, which ultimately led to an im-
plementable scheme. The part of the sequence that is covered in this thesis is as follows.

Gentry’s Construction
In [Gen09a, chap. 2-4, pp. 27-56] Gentry shows that the key idea to the construction is to
have a somewhat homomorphic encryption scheme with a noise parameter, i.e. encryption
adds some random noise to the ciphertext. Such a scheme would have algorithms that
allow ciphertexts to be multiplied and added at the expense of an increase in noise. De-
cryption only works if the noise is less then some threshold. Clearly this scheme is not yet
fully homomorphic, since if enough operations are performed, the noise grows larger than
the threshold resulting in incorrect decryption.
If in addition the scheme would have an algorithm which reduces this noise, then we would
be back in business. Gentry’s main contribution is the idea of an algorithm that can re-
duce this noise. This is roughly possible when the encryption scheme is able to evaluate
its own decryption algorithm homomorphically. In that case the algorithm decrypts the
ciphertexts and re-encrypts it homomorphically, so that the amount of noise is reduced.
More details are given in section 3.

Gentry’s Scheme
Together with this general construction, Gentry also described a scheme which is proven
to be fully homomorphic. This scheme is based on lattices and builds on some well known
and thoroughly analyzed hard problems. The scheme is introduced with some detail in
section 4.1. Unfortunately the scheme is not yet practical, but improvements have already
been made.

The Smart-Vercauteren Variant
Smart and Vercauteren presented in [SV10] a variant of the original fully homomorphic
encryption scheme by Gentry. They use a special type of lattice with the property that the
basis can be represented by only two integers. From that they show that the ciphertext
can be represented by a single integer. This drastically reduces the public key and message
size in comparison to the original scheme. See section 4.2.

2

The Gentry-Halevi Variant
The variant by Smart and Vercauteren requires the lattice to have prime determinant.
This is hard to achieve for lattices with a high dimension. Gentry and Halevi present a
variant in which this requirement is dropped [GH11]. Thanks to this and to some other
tweaks to the scheme, they managed to implement the first functional fully homomorphic
encryption scheme. More details in sections 4.3 and 5.

Fully Homomorphic Encryption over the Integers
After the appearance of the fully homomorphic schemes mentioned before, van Dijk, Gen-
try, Halevi and Vaikuntanathan achieved the goal of creating a fully homomorphic en-
cryption scheme using only elementary modular arithmetic [vDGHV10]. As usual, first a
somewhat homomorphic encryption scheme is created and after some optimizing, Gentry’s
general construction is used to turn it into a fully homomorphic one. This will be described
in more detail in section 4.4.

1.3 Goals

The goals for this project are to give a summary of the core developments on fully ho-
momorphic encryption and to create a practical implementation of a fully homomorphic
encryption scheme as a plugin in JCrypTool, which demonstrates the additive and multi-
plicative homomorphisms on integers so that it is understandable by laymen.

1.4 JCrypTool

As mentioned, some of the homomorphic encryption schemes as described in this thesis
are implemented as a plug-in for JCrypTool. JCrypTool is a successor of the CrypTool
package [Cry11] and is a modular cryptography e-learning program. The CrypTool project
started in 1998 as a private learning tool, but was made public in 2000. As of 2003 it
is an open source project. CrypTool was created to teach people the various aspects of
cryptography and allow them to try out various schemes, reaching from the ancient Caeser
cipher, to elliptic curve cryptography. Additionally various cryptanalysis techniques are
implemented, so that users can understand that nothing is ever 100% secure.
JCrypTool is programmed in Java with the main purpose of being platform independent.
The software package is plugin-based, i.e. everyone can write a plugin as extension to
use in JCrypTool. A large advantage of this approach is that one can focus solely on the
cryptographic algorithm which is to be implemented, instead of also on creating some sort
of user interface. Writing a plugin for JCrypTool, or for the other CrypTool packages, has
the great advantage that once work is accepted into the program it will be automatically
included in future versions and enduringly maintained as teaching tool.

3

2 Foundation

In this section the necessary foundations will be given. First, we will define the notation
that is used throughout this thesis. Next, circuits and gates are introduced. After this,
general lattices are discussed, along with several known hard problems. Then, ideal lat-
tices are explained and finally, some partially homomorphic encryption schemes will be
explained, along with some of the possible applications.
But before we jump into all this, we will recap on what an encryption scheme actually is.
The encryption schemes that we consider in this thesis are public key encryption schemes.
These schemes consist of three algorithms, key generation, encryption and decryption. The
key generation algorithm creates both a public and a private key. The public key is needed
to perform encryption, the private key for decryption.
For such a scheme to make sense, decryption must be the inverse of encryption. Further-
more, with the knowledge of the needed key, both encryption and decryption should be
easy to compute. Without the knowledge of the private key, it should be hard to perform
decryption. The hardness of decryption without knowledge of the key is related to a secu-
rity parameter.
As mentioned in the introduction, these schemes can also have more structure. If a scheme
has a group structure, it is called partially homomorphic, and if a scheme has a ring struc-
ture, it is called fully homomorphic. We will present some examples of schemes with both
of these structures.

2.1 Notation

Throughout this thesis, we will use the following notation.

M bold capital letters represent matrices.

v bold small letters denote vectors.

n, M scalars will be represented by normal faced letters, either capital or small.

E calligraphic letters will denote algorithms, encryption schemes, or collections of some
kind; which will be clear from the context.

λ always denotes the security parameter of the scheme. This parameter is defined such
that it takes time at least 2λ to break the scheme.

dze, bzc and bze respectively denote rounding up, down or to the nearest integer.

[z]d and 〈z〉d both denote z mod d, but the former maps to the interval [−d/2, d/2) and
the latter to the interval [0, d).

qp(z) and rp(z) denote the quotient and the remainder of z with respect to p, respectively.
For the remainder, we take rp(z) ∈ (−p/2, p/2].

4

Bn,d(r) denotes the ball with radius r around the origin, with respect to the norm n. The
dimension of the space is given by d. If n or d is omitted, it is clear what norm or
dimension is used.

ei denotes the vector with 1 at position i and 0 at all other positions.

π and ψ respectively denote plaintexts and ciphertexts.

Multiplication will be denoted by × in the case of ring multiplication. When denote by ·
or nothing, it denotes multiplications of polynomials or integers.

2.2 Circuits

The construction of fully homomorphic encryption schemes is based on circuits. A circuit
generally consists of a set of gates, which operate on the inputs to give a certain output.
Without further specification, one can consider a circuit as a black box, which evaluates a
function on the inputs. Every computable function can be represented by a circuit.
A gate in a circuit is a part which performs a single operation. It has one or more inputs
and a single output. Basically, there are three different gates which are commonly used to
construct circuits, namely the AND, OR and NOT gate. To specify the functionality of a
gate, one often uses a truth table. In such a table, all possible inputs are given along with
the output. For the AND, OR and NOT gate, these tables are given in Table 1.

a b a AND b a OR b NOT a
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0

Table 1: Truth table for AND, OR and NOT gate.

Besides these gates, we also consider the NAND and XOR gates. The NAND gate is named
after NOT-AND, its output is the negation of the AND gate. XOR stands for eXclusive
OR, it only outputs a 1 whenever exactly one of its inputs is 1. The truth tables are given
in Table 2.

a b a NAND b a XOR b
0 0 1 0
0 1 1 1
1 0 1 1
1 1 0 0

Table 2: Truth table for NAND and XOR gate.

5

It is a well known fact that one can construct any circuit from only NAND gates [Mar05,
p. 76]. So if we can construct a NAND gate, we can evaluate any circuit and thus compute
any function. As an example, in figure 1 we construct an AND gate from two NAND gates.
The corresponding truth table is given in table 3.

A

B
O

Figure 1: AND gate from two NAND gates.

A B A NAND B (A NAND B) NAND (A NAND B)
0 0 1 0
0 1 1 0
1 0 1 0
1 1 0 1

Table 3: Truth table for AND gate from two NAND gates.

The complexity of a circuit is expressed as its depth. One can view a circuit as a directed
acyclic graph, in which each node represents a gate. The circuit depth then is defined as
the maximum length of a path from any input to any output. Each node in a directed
acyclic graph has an in-degree and an out-degree. These terms are analogous to the terms
fan-in and fan-out used for circuits.

2.3 Lattices

Some of the fully homomorphic encryption schemes presented are based on lattices. A
lattice can be seen as discrete subgroup of Rd. It consists of all integer combinations of n
linearly independent vectors, called the basis:

L(b1, . . . ,bn) =

{
n∑
i=1

xibi : xi ∈ Z

}
.

In other words, b1, . . . ,bn generate the lattice. The rank of a lattice is the size of a maximal
set of independent vectors in the lattice. If this rank equals the dimension of the vector
space, we say the lattice has full rank. The basis can also be represented as a matrix
B ∈ Rd×n, in which case we take the basis vectors as the columns of this matrix. If we use
the matrix notation, we can represent the lattice as L(B) = {Bx : x ∈ Zn}. From now on
we will only consider lattices with full rank.
From this representation, it is easy to see that different bases can generate the same lattice.

6

In fact, every lattice has infinitely many bases. See Figure 2 for an example. In the matrix
representation, we can multiply one basis with a unimodular matrix (an integer square
matrix with determinant ±1) to obtain another basis for the same lattice.

◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦

•O //
GG

77
77

Figure 2: Lattice with two different bases, one with parallelepiped

Even though a lattice has infinitely many bases, finding a particular basis is a hard problem.
This is the fact that an encryption scheme using lattices builds on. The same lattice can
have a public and private basis, both with different properties, so that encryption and
decryption can be performed. It then is a hard problem to compute the private basis given
only the public basis.
The determinant of a lattice is defined as the absolute value of the basis matrix. Since all
basis matrices have the same determinant up to the sign, this value is well defined for a
lattice. We state det(L(B)) = | det(B)|.
Using the matrix representation, one can take the Hermite Normal Form (HNF) of this
matrix. The HNF of any (square) matrix is a matrix B where bi,j = 0 for i < j, bj,j > 0 for
all j and for all i > j we have bi,j ∈ [−bj,j/2, bj,j/2). This form can be computed efficiently
from any basis via Gaussian elimination [GH11, p. 4].
Given a basis in vector form, we can define a half-open parallelepiped P(b1, . . . ,bn) =
{∑n

i=1 xibi : x ∈ [−1/2, 1/2)}, see Figure 2. The volume of this parallelepiped is equal to
the determinant of the lattice [GH11, p. 4]. For any vector t ∈ Rn, define t mod L(B) to
be the unique vector t′ ∈ P(B) such that t− t′ ∈ L(B).
Though this volume is the same for each basis, having an infinite amount of possible bases
yields problems which are conjectured to be hard. Some of these are the following [MR09,
p. 5]:

• Shortest Vector Problem (SVP): Given a lattice basis B and a norm || · ||, find the
shortest nonzero vector in L(B).

• Closest Vector Problem (CVP): Given a lattice basis B, a target vector t and a norm

7

|| · ||, not necessarily in the lattice, find the lattice point v ∈ L(B) which is closest
to t.

• Shortest Independent Vector Problem (SIVP): Given a lattice basis B ∈ Zn×n and a
norm || · ||, find n linearly independent lattice vectors S = {s1, . . . , sn} with si ∈ L(B)
for all i, minimizing the quantity ||S|| = maxi ||si||.

Instead of solving these problems, often one approximates them. In this case, the ap-
proximation factor usually is stated as well. Several approximation algorithms for lattice
problems are known. The best known is LLL [LLL82], which runs in polynomial time and
approximates SVP with an approximation factor of 2O(n), with n the lattice dimension.
All known algorithms either run in exponential time or have an exponential approximation
factor [MR09, p. 2].

A lattice L also has a dual. The dual lattice is denoted by L∗ and is defined as L∗ = {u :
∀v ∈ L, 〈u,v〉 ∈ Z} (here 〈u,v〉 denotes the scalar product). For a lattice and its dual,
it holds that det(L) · det(L∗) = 1. Since we only consider full rank lattices, we have that
(B−1)T is a basis for L∗ if B is a basis for L.

2.4 Ideal Lattices

Ideal lattices are lattices with some additional structure. Lattices have a group structure
and as the term suggests, ideal lattices have an ideal structure. Let f(x) ∈ Z[x] be a
polynomial of degree n. Let R = Z[x]/(f) denote the ring of all polynomials modulo f ,
and define the isomorphism Φ : Zn → R as the mapping (v0, v1, . . . , vn−1) 7→ v0 + v1x +
v2x

2 + · · ·+ vn−1x
n−1 + f(x)Z[x]. Then we have the following definition for an ideal lattice

[DL07, p.3].

Definition 2.4.1. Let L be a lattice in Zn. If there exists a monic polynomial f ∈ Z[x] of
degree n, such that Φ(L) is an ideal in R, then L is an ideal lattice.

As mentioned in the definition, the polynomial should be monic and of degree n. If in
addition the polynomial f is irreducible, we find that for a nonzero polynomial v ∈ Z[x]/(f),
the coefficient vectors of v, vx, . . . , vxn−1 are linearly independent, and thus span an ideal
lattice of rank n in Zn. Ideals that are generated by a single element v are called principal
ideals. This need not be the case in general.
One can also consider the fractional ideal I−1, related to an ideal I. It is defined as the
elements in R, for which it holds that the product with any element in the ideal I is again
in R: I−1 = {u ∈ R : ∀v ∈ I,u × v ∈ R}. This definition has a natural extension to the
ring Q[x]/(f(x)). In this case, the fractional ideal has the same properties as a normal
ideal, except that it is not necessarily a subset of R.
For a principal ideal (v), we also find that the fractional ideal (v)−1 is generated by 1/v,
which yields that it holds that the determinant of (v) is the inverse of the determinant of
(v)−1. We assume here that we have f(x) irreducible. Then there is some relation between

8

a principal ideal J , its dual J∗ and its inverse J−1. Suppose J is generated by (v), and
denote the rotation basis by BJ . Now for the inverse J−1, being generated by (1/v), we
find as basis the rotation basis of 1/v ∈ Q[x]/(f(x)), which are exactly the columns of
B−1
J . Recall that the dual J∗ has basis (B−1

J)T .

2.5 Partially Homomorphic Encryption Schemes

There exist several partially homomorphic encryption schemes, some of which are widely
used today. Two of these schemes are RSA and Paillier. Both schemes are described below
and it is shown that these schemes are partially homomorphic.

2.5.1 RSA

The RSA cryptosystem as originally introduced in [RSA78] works as follows. We have
public key (e, n) and private key (d, n), which are all positive integers. Furthermore, n is
the product of two distinct random primes, n = p · q. The bitlength of these primes is
determined by the security parameter λ. Furthermore, d is the multiplicative inverse of
e mod φ(n), i.e. d · e ≡ 1 mod φ(n), where φ(n) = (p − 1)(q − 1). Here φ denotes Euler’s
totient function.
To encrypt a message π ∈ {0, . . . , n − 1} one simply computes ψ = Enc(π) = πe mod n,
and to decrypt this message compute π′ = Dec(ψ) = ψd mod n. For the scheme to work,
we thus require π ≡ (πe)d mod n. This can be seen as follows;

(πe)d ≡πd·e mod n

≡π1+kφ(n) mod n

≡π · (πφ(n))k mod n

≡π · 1k mod n.

Here the equivalence πφ(n) = 1 follows from Euler’s theorem. To be precise this only works
if π and n are coprime, but this happens with overwhelming probability (and otherwise
the scheme is broken).
To see that this system is homomorphic, consider two messages π1 and π2. We then find
that

Dec(Enc(π1)Enc(π2) mod n) ≡Dec((πe1 mod n)(πe2 mod n) mod n)

≡Dec((π1 · π2)e mod n)

≡Dec(Enc(π1 · π2)).

(1)

Note that the multiplications are all taken modulo n. Also note that we could show this
equivalence using only encryption, but we include decryption for consistency. Because of
this, the ciphertext remains within the same range, even if it is multiplied with another
ciphertext, and the decryption remains possible and correct. As a result of this, the
multiplication of the plaintexts is also the result modulo n.

9

2.5.2 Paillier

Paillier introduced the Paillier Cryptosystem in [Pai99], which we will briefly explain here.
It is based on n-th residues in Z∗n2 . A number x ∈ Z∗n2 is defined to be an n-th residue
modulo n2 if there exists a y ∈ Z∗n2 , for which it holds that x = yn mod n2.
The cryptosystem uses n as the product of two primes, p and q. The bitlength of these
primes is defined to be the security parameter λ. We use Carmichael’s function, Λ(n2) =
lcm(p − 1, q − 1). For convenience, we will denote this value by Λ. Now define G = {u ∈
Z∗n2|ord(u) = kn, k ∈ {1, . . . ,Λ}}, and select a number g ∈ G. The public key of an
instantiation of Paillier consists of n and g. Now we will first introduce the encryption
function, the private key and decryption will be defined later.
Encryption is given by the function Encg : Zn×Z∗n → Z∗n2 , which is defined as (π, r) 7→ gπrn

mod n2. Here π ∈ Zn is the message and the masking factor r ∈ Z∗n is chosen at random.
We will show that this encryption function is bijective, which will aid in the definition of
the decryption function.

Theorem 2.5.1. The function Encg as defined above is bijective for any g ∈ G.

Proof. First, we note that |Zn×Z∗n| = nϕ(n) = ϕ(n2) = |Z∗n2|, where ϕ(n) is Euler’s totient
function. The second equality follows from the property ϕ(mn) = ϕ(m)ϕ(n)d/ϕ(d), with
d = gcd(m,n). Now it suffices to show that Encg is injective.
Suppose we have (π1, r1) and (π2, r2) with Encg(π1, r1) ≡ Encg(π2, r2) mod n2. For Encg
to be injective, we must show that (π1, r1) = (π2, r2). We find the following:

Encg(m1, r1) ≡Encg(m2, r2) mod n2

⇒g(π1−π2)rn1 ≡ rn2 mod n2

⇒gΛ(π1−π2)rnΛ
1 ≡ rnΛ

2 mod n2

⇒gΛ(π1−π2) ≡ 1 mod n2

Where the last implication holds since by Carmichael’s theorem we have xnΛ ≡ 1 mod n2

for every x ∈ Z∗n2 . But then we know that ord(g)|Λ(π1 − π2) and since g ∈ G, also
n|Λ(π1 − π2). By the definition of Carmichael’s function, we have gcd(Λ, n2) = 1, so
gcd(Λ, n) = 1. This implies n|(π1 − π2) and since 0 ≤ π1, π2 < n, we find π1 = π2. From
this we find that rn1 ≡ rn2 mod n2. Now since r1, r2 ∈ Z∗n and (r1/r2)n ≡ 1 mod n2, we
find that r1 = r2.

Now we define the n-th residuosity class of ψ with respect to g to be the unique (follows
from the above theorem) integer π ∈ Zn such that there exists an r ∈ Z∗n such that
ψ = Encg(π, r). Let [ψ]g denote the n-th residuosity class of ψ with respect to g. We find
that the following holds.

Lemma 2.5.2. Let ψ ∈ Z∗n2 and distinct g1, g2 ∈ G be given. Then the following equations
hold.

[ψ]g1 ≡[ψ]g2 [g2]g1 mod n

[ψ]g2 ≡[ψ]g1 [g2]−1
g1

mod n

10

Proof. We write ψ ≡ g
[ψ]g2
2 rn1 mod n2 and g2 ≡ g

[g2]g1
1 rn2 mod n2. Substituting the second

into the first equation yields

ψ ≡ (g
[g2]g1
1 rn2)[ψ]g2rn1 mod n2 ≡ Encg1([ψ]g2 [g2]g1 , r1r

[ψ]g2
2).

But clearly also we have ψ = Encg1([ψ]g1 , r3), for some r3 ∈ Z∗n. So we find that

Encg1([ψ]g2 [g2]g1 , r1r
[ψ]g2
2) = Encg1([ψ]g1 , r3)

and by injectivity of Encg, we find

[ψ]g1 ≡ [ψ]g2 [g2]g1 mod n.

The same follows if the role of g1 and g2 are interchanged, so also we have

[ψ]g2 ≡ [ψ]g1 [g1]g2 mod n.

From this it follows that [g1]g2 ≡ [g2]−1
g1

mod n and thus [ψ]g2 ≡ [ψ]g1 [g2]−1
g1

mod n.

We are now ready to define the decryption function. First, let Sn = {u ∈ Zn2|u = 1
mod n} and define the function L : Sn → Zn by L(u) = u−1

n
. Now we find the following.

Lemma 2.5.3. Let ψ ∈ Z∗n2 be given. Then

L(ψΛ mod n2) ≡ Λ[ψ]n+1 mod n.

Proof. We have that n+ 1 has order n, so (n+ 1) ∈ G. Therefore for some r we have the
following.

ψ ≡Encn+1([ψ]n+1, r)

≡(n+ 1)[ψ]n+1rn mod n2

⇒ ψΛ ≡(n+ 1)Λ[ψ]n+1 mod n2

≡1 + Λ[ψ]n+1n mod n2,

where the last equivalence holds since (1 + n)x ≡ 1 + xn mod n2. This clearly implies the
claim.

Decryption now is defined to be Decg(ψ) = L(ψΛ mod n2)
L(gΛ mod n2)

mod n. The private key thus

consists of Λ. For computational convenience, often µ = L(gΛ mod n2)−1 is also included.
Correctness of decryption can be shown as follows.

Decg(Encg(π, r)) ≡L(ψΛ mod n2) · µ mod n

≡L(ψΛ mod n2)

L(gΛ mod n2)
mod n

≡Λ[ψ]n+1

Λ[g]n+1

mod n

≡[ψ]g ≡ π mod n

11

And the homomorphic property can be seen as follows. Consider two messages π1 and π2.
Then we find that

Dec(Enc(π1)Enc(π2)) =Dec(gπ1+π2(r1r2)n mod n2)

=L((gπ1+π2(r1r2)n)Λ mod n2) · µ
=L((g(π1+π2 mod n)(r1r2)n)Λ mod n2) · µ
=Dec(Enc(π1 + π2 mod n)).

Here the third equality holds since

π1 + π2 mod n =

{
π1 + π2 π1 + π2 < n
π1 + π2 − n π1 + π2 ≥ n

Note that here the modulo operation maps to [0, n−1]. Also note that here we must include
decryption for equality to hold, since the Paillier cryptosystem has a random encryption
factor. Again, since the decryption works modulo n, the ciphertext will always be correctly
decrypted independent of the amount of multiplications performed.

2.5.3 Applications: Secure Multiparty Computation

One class of the possible applications of partially homomorphic encryption schemes is
secure multiparty computation. The idea is that we have n parties P1, . . . Pn, and each
party holds a specific value, say Pi holds xi. These parties share the desire to compute
a function f(x1, . . . , xn), but all do not want to share their secret (except for of course
information that follows directly from the outcome). As long as f is a computable function,
a protocol which evaluates the function can be found [Sch11, p. 66].
A known example of secure multiparty computation is for n = 2 and is often referred to
as Yao’s Millionaire Problem [Yao82]. The problem is that of two millionaires who both
want to know which of them is richer. But of course, they do not want to tell the other
their exact wealth. The function corresponding to the problem is f(x1, x2) = (x1 > x2).
Yao presents several solutions to this problem in [Yao82].
Another example of an application which is used today is electronic voting. It is clear that
this is a specialization of secure multiparty computation, since in the end one would like
to know the sum of all votes given to a certain party. But there is a bit more to it, since
one would like to verify if a voter is eligible and honest (i.e. only cast a single vote), and
guard the privacy of the voter. It is possible to define a scheme that achieves all of these
properties, one such scheme is presented in [CGS97].

2.6 Somewhat Homomorphic Encryption

Now that we have seen that partially homomorphic encryption schemes exist, we want to
work towards fully homomorphic encryption schemes. Since this step is far from trivial, we
will first define something in between. As we have seen, partially homomorphic schemes

12

have a group structure; only a single operation is defined, which is preserved by the homo-
morphism. There is no limit to the amount of times this operation is performed.
Now a logical intermediate step would be an encryption scheme which allows two oper-
ations, i.e. addition and multiplication, but only a finite amount. In other words, both
operations are preserved by the homomorphism, but correct decryption is only guaranteed
for a limited amount of operations. Gentry calls such a scheme “somewhat homomorphic”.
It turns out that this intermediate step will eventually lead to a fully homomorphic scheme.
For this we need several new definitions, which will be presented in the next chapter.

13

3 Gentry’s Construction

In this section we present Gentry’s general construction to create fully homomorphic
encryption schemes [Gen09a, chap. 2-4, pp. 27-56]. Before we can properly introduce
Gentry’s general construction we first provide some motivations of what we can con-
sider a somewhat homomorphic scheme or a fully homomorphic scheme. These will be
given below. After this, we will show how to construct a fully homomorphic encryption
scheme from a somewhat homomorphic encryption scheme. The ability to do this is called
“bootstrappability”. Finally, the security of these schemes is discussed.

3.1 Definitions

Gentry [Gen09a] introduced the following definitions, in order to define his general con-
struction. To use this construction, we assume that we have a somewhat homomorphic
encryption scheme E . Like every public-key encryption scheme, this scheme contains the
three algorithms KeyGenE , EncryptE and DecryptE , but in addition also the algorithm
EvaluateE . This algorithm is able to evaluate circuits on the ciphertexts. A circuit is
called permitted when the ciphertext output by EvaluateE can be decrypted correctly. As
input, this algorithm requires the public key, a permitted circuit, and a tuple of ciphertexts
of size equal to the circuit input.
The first definition provides a criterium to judge when a somewhat homomorphic encryp-
tion scheme is correct [Gen09a, p. 28].

Definition 3.1.1. Let CE denote the set of permitted circuits on the plaintexts. Now for
a somewhat homomorphic encryption scheme E we define the scheme to be correct if, for
any key-pair (sk,pk) generated by KeyGenE , any circuit C ∈ CE , any plaintexts π1, . . . , πt,
and any ciphertexts Ψ = 〈ψ1, . . . , ψt〉, with ψi = EncryptE(pk, πi), the following holds:

ψ = EvaluateE(pk, C,Ψ)⇒ DecryptE(sk, ψ) = C(π1, . . . , πt).

This ensures that the circuit is correctly evaluated, but this definition by itself is not
sufficient to introduce a fully homomorphic encryption scheme, since one could define
EvaluateE to do nothing at all and just output (C,Ψ). Then DecryptE would decrypt the
ciphertexts and apply the circuit to the plaintexts. To rule out this possibility, Gentry
limits the size of the circuit defined by the DecryptE algorithm. This bound should only
depend on the security parameter. A scheme following this definition is called compact.

Definition 3.1.2. A somewhat homomorphic encryption scheme E is considered compact
if there exists a polynomial f in the security parameter λ such that DecryptE can be per-
formed by a circuit of size at most f(λ).

Note that this definition prevents that one defines EvaluateE to do nothing but output
the ciphertext along with the circuit, since in this case after every evaluation the size of
the circuit required to correctly decrypt the ciphertext would increase by the size of the
circuit to be evaluated. After sufficiently many evaluations, the decryption circuit will
grow beyond the bound f(λ). Now fully homomorphic encryption is defined as follows:

14

Definition 3.1.3. A homomorphic encryption scheme is considered to be fully homomor-
phic if it is compact and correct for all permitted circuits.

But Gentry introduces two more notions. One could require only a scheme to be able
to evaluate circuits up to a certain fixed depth d. He names such schemes leveled fully
homomorphic encryption schemes. The other property that one might require is that the
evaluated circuit is hidden from any eavesdroppers. This property will be called circuit
privacy.
These two notions are defined below [Gen09a, p. 29].

Definition 3.1.4. A collection of homomorphic encryption schemes {E (d) : d ∈ Z+} is
considered to be leveled fully homomorphic if:

• for all d ∈ Z+ all schemes in the collection use the same decryption circuit,

• E (d) is compact and correct for all circuits of depth at most d,

• the complexity of the algorithms in E (d) is polynomial in λ, d and the size of the
circuit C.

Definition 3.1.5. A homomorphic encryption scheme E is called circuit private if the
distributions of EncryptE(pk, C(π1, . . . , πt)) and EvaluateE(pk, C,Ψ) are statistically indis-
tinguishable for any key-pair (sk,pk) generated by KeyGenE , any circuit C ∈ CE and any
fixed ciphertexts Ψ = 〈ψ1, . . . , ψt〉 in the image of EncryptE for plaintexts π1, . . . , πt.

Building on these definitions, Gentry defines a construction which allows to create fully
homomorphic encryption schemes from somewhat homomorphic encryption schemes.

3.2 From Somewhat to Fully Homomorphic Encryption

It will be shown in this section that if we have a somewhat homomorphic encryption scheme
E which compactly evaluates augmentations of its own decryption circuit, we can use this
scheme to create a fully homomorphic encryption scheme. For now, we will assume that
the somewhat homomorphic scheme introduces an error term upon encryption. It is easy
to remove this error with use of the secret key, but hard without this knowledge.
The idea then is as follows. We have an encryption ψ1, . . . , ψt of a set of plaintexts π1, . . . , πt
under some public key pki. If EvaluateE is applied to the set of ciphertexts, we have an
increased error parameter on the resulting ciphertext ψ. The scheme is able to correctly
decrypt the ciphertext as long as the error term is not too large. So we want to be able to
reduce the error as otherwise circuit depth is limited.
It is clear that if we would decrypt a ciphertext with a large error term (but within the
schemes ability to decrypt) and then encrypt it again, the error again is as small as possible
for a ciphertext. But of course, not everyone has access to the secret key. We can solve
this by decrypting homomorphically. This is done by encrypting ψ under pki+1 and then
homomorphically evaluating the decryption circuit corresponding to DecryptE , where ski is

15

encrypted under pki+1. If one homomorphically evaluates a permitted circuit, one obtains
the encryption of the result of the evaluation of this circuit. So if the decryption circuit is
a permitted circuit, the result ψ′ is a fresh encryption under pki+1 and the corresponding
plaintext is never revealed.
Furthermore, nobody has direct access to the corresponding secret key, as it is only available
in encrypted form. Whether or not this is a security issue will be discussed in section 3.3.
More formally, Gentry introduces the algorithm RecryptE . It is assumed that the plaintext
space isM = {0, 1} and DE is a boolean circuit in CE , which is the translation of decryption
into a circuit. Note that this is possible since decryption obviously is a computable function
and we can represent every computable function as a circuit. Furthermore, Gentry uses
two instances of E to create a single system. Suppose we have two E key-pairs (sk1, pk1)
and (sk2, pk2). Let ψ1 be an encryption of π ∈M under pk1. Let sk1j denote an encryption
of the j-th bit of sk1 under pk2. The algorithm then is as follows.

RecryptE(pk2, DE , 〈sk1j〉, ψ1) :
ψ1j = EncryptE(pk2, ψ1j)
ψ2 = EvaluateE(pk2, DE , 〈〈sk1j〉, 〈ψ1j〉〉)
Output ψ2

Clearly DE requires the secret key as input along with the ciphertext which is to be de-
crypted. Since it is a circuit, these inputs are required as bits. The circuit is evaluated
homomorphically, so we need these bits in encrypted form. The encrypted bits of the secret
key are given in the public key, and we simply encrypt the ciphertext bits to obtain them
in the correct form.
Now since RecryptE decrypts and then encrypts the ciphertext again, it allows us to reduce
the error in a ciphertext. But to make this useful, we must also be able to evaluate some
circuit before refreshing the ciphertext. Hence Gentry requires that the encryption scheme
can compactly evaluate augmentations of its own decryption circuit. Let Γ denote a set of
gates. Now for a gate g ∈ Γ, define multiple copies of DE , connected by g, to be called a
g-augmented decryption circuit. Denote the set containing these circuits by DE(Γ). This
leads to the following definition of bootstrappability.

Definition 3.2.1. Let CE denote the set of circuits that E compactly evaluates. We call E
bootstrappable with respect to a set of gates Γ if

DE(Γ) ⊆ CE .

It will become clear that, if Γ consists of at least the trivial gate and the NAND gate, if we
have a scheme which is bootstrappable with respect to Γ, then this scheme can be turned
into a leveled fully homomorphic scheme.

3.2.1 The Construction of a Leveled Scheme

Below we will give a construction that, using an encryption scheme E which is bootstrap-
pable with respect to the before mentioned Γ (consisting of the trivial and NAND gate),

16

will create a leveled fully homomorphic encryption scheme E (d) for any integer d ≥ 1.
Again, letM = {0, 1} be the plaintext space. Let ` = `(λ) be such that E ’s secret key can
be expressed as an element of M` and let DE(Γ, δ) denote the set of circuits which equal
a circuit of depth δ and gates in Γ. Note that if a circuit has depth smaller than δ, we can
add trivial gates to make it have depth δ. So from now on we will fix the depth to δ, even
though the circuits could be smaller. The algorithms of E (d) are as follows.

KeyGenE(d)(λ, d) :
To obtain d levels, we need d keypairs. As mentioned before, we also need the secret
keys, bitwise encrypted.
(ski, pki) = KeyGenE(λ) for i ∈ [0, d]

skij = EncryptE(pki−1, skij) for i ∈ [1, d], j ∈ [1, `]

Now we have the secret key sk(d) = sk0 and the public key pk(d) = (〈pki〉, 〈skij〉).
Denote by E (δ) the subsystem with secret and public key respectively sk(δ) = sk0 and
pk(δ) = (〈pki〉, 〈skij〉i∈[1,δ]), for δ ≤ d.

The algorithm outputs sk(d) and pk(d).

EncryptE(d)(pk(d), π) :
Outputs a ciphertext ψ = EncryptE(pkd, π).

DecryptE(d)(sk(d), ψ) :
The ciphertext ψ should be an encryption under pk0. Output is a plaintext π′ =
DecryptE(sk0, ψ).

EvaluateE(d)(pk(δ), Cδ,Ψδ) :
We have Cδ ∈ DE(Γ, δ) and each element of Ψδ is an encryption under pkδ. If δ = 0,
it outputs Ψ0. Otherwise it does the following:

• (C†δ−1,Ψ
†
δ−1) = AugmentE(δ)(pk(δ), Cδ,Ψδ)

• (Cδ−1,Ψδ−1) = ReduceE(δ−1)(pk(δ−1), C†δ−1,Ψ
†
δ−1)

• Call EvaluateE(δ−1)(pk(δ−1), Cδ−1,Ψδ−1)

AugmentE(δ)(pk(δ), Cδ,Ψδ) :
Again, Cδ ∈ DE(Γ, δ), and each element of Ψδ is an encryption under pkδ. De-
fine C†δ−1 to be the augmentation of Cδ and DE . This is a circuit which takes as

input the encrypted secret key 〈skδj〉 and Ψ†δ−1 = {〈〈skδj〉, 〈ψj〉〉|ψj ∈ Ψδ}, where

ψj = EncryptE(δ−1)(pk(δ−1), ψj) for all ψj ∈ Ψδ.
Level δ of the circuit is taken and every gate g is replaced with the g-augmented de-
cryption circuit. When the circuit is evaluated, the output bits are fresh encryptions
of the bits which would have resulted by evaluating level δ in the clear.
The algorithm outputs (C†δ−1,Ψ

†
δ−1).

ReduceE(δ)(pk(δ), C†δ ,Ψ
†
δ) :

Here each element of Ψ†δ must be in the image of EncryptE(δ) and we have C†δ ∈

17

DE(Γ, δ+ 1). Now we define by Cδ the sub-circuit of C†δ , containing the first δ levels.

Furthermore, if w denotes a wire at level δ (i.e. an input wire for Cδ) define by C
(w)
δ

the sub-circuit of C†δ with output wire w and by ψ
(w)
δ the ciphertext output by this

sub-circuit upon input by Ψ
(w)
δ , the corresponding subset of Ψ†δ.

This sub-circuit thus consists of g-augmentations of the decryption circuit. The cir-
cuit can be evaluated and will output a ciphertext encrypted under pkδ with small
error. Note that now the depth of the entire circuit is reduced by one. This process
is repeated until the entire circuit has been evaluated at this level.
So we have ψ

(w)
δ = EvaluateE(pkδ, C

(w)
δ ,Ψ

(w)
δ). Now define Ψδ = {ψ(w)

δ |w wire at level δ}
and return (Cδ,Ψδ).

3.2.2 Correctness of the Construction

We must show that the construction is correct, i.e. if E is a correct bootstrappable en-
cryption scheme, then E (d) is leveled fully homomorphic. This is shown in the following
theorem.

Theorem 3.2.2. Suppose E is a correct bootstrappable encryption scheme with respect to
a universal set of gates Γ (i.e. a set of gates with which all other gates can be constructed),
then E (d) as defined above is leveled fully homomorphic.

Proof. First, define the following notation: D(δ, w, C,Ψ) denotes the plaintext value at the
end of a wire w in the circuit C, for C ∈ DE(Γ, δ). This plaintext value is obtained by
decrypting the ciphertexts in Ψ (which are encrypted under skδ) that are associated with
the input wires of C, and then evaluating the circuit up to the end of w. This definition
means that for each δ ≤ d, the levels before level δ are evaluated as ciphertexts and the
levels starting at δ are evaluated in the clear.
Now we have a circuit Cd and input Ψd for this circuit. To prove correctness of the above
given construction, it suffices to show that

D(d, wout, Cd,Ψd) = D(0, wout, C0,Ψ0), (2)

for each output wire wout of the circuit at level 0. Clearly, if this holds then the output
value of each wire wout is the same, regardless of how much of the circuit is evaluated in
the clear. There are only two algorithms which affect the circuit depth, so we will look
into these.
First, consider (C†δ−1,Ψ

†
δ−1) = AugmentE(δ)(pk(δ), Cδ,Ψδ). Now we claim that

D(δ, w, Cδ,Ψδ) = D(δ − 1, w, C†δ−1,Ψ
†
δ−1) for all wires w up to level at most δ − 1. To

validate this claim, note that the circuits Cδ and C†δ−1 are equivalent in the first δ − 1
levels. AugmentE(δ) will evaluate the circuit at level δ and output a fresh ciphertext which
is the input for the remaining circuit of depth δ − 1.
Second, consider (Cδ,Ψδ) = ReduceE(δ)(pk(δ), C†δ ,Ψ

†
δ). We claim that D(δ, w, C†δ ,Ψ

†
δ) =

D(δ, w, Cδ,Ψδ) for all wires up to level δ. This claim is correct, since the circuits C†δ and
Cδ are equivalent in the first δ levels and EvaluateE is correct for circuits in DE(Γ).

18

Since these two claims result in D(δ, w, Cδ,Ψδ) = D(δ − 1, w, C†δ−1,Ψ
†
δ−1) =

D(δ−1, w, Cδ−1,Ψδ−1), for all wires w in level at most δ−1, this suffices to prove Equation
2.

3.2.3 Making the Scheme Fully Homomorphic

The obvious way to make the construction as mentioned before fully homomorphic is by
making this construction cyclic. In the scheme, for each level the secret key is encrypted
with the public key of the next level. Now if one would only have one keypair and encrypt
the secret key under its corresponding public key, this would result in a leveled fully
homomorphic scheme with infinite levels, which is exactly a fully homomorphic encryption
scheme.

3.3 Security

With the general construction in place, we must analyze its security. First we will show that
if the underlying scheme E is semantically secure, then also the leveled fully homomorphic
scheme E (d) is semantically secure. Then we will look into security with respect to Key
Dependent Messages (KDM-security) and finally we will argue that the fully homomorphic
scheme is secure in the random oracle model.

3.3.1 Semantic Security

An encryption scheme is called semantically secure if an adversary cannot deduce any in-
formation about the plaintext given just the ciphertext and the public key.
This notion is often explained using a game, which we will call the Semantic Security
Game. The picture below depicts this game.

Figure 3: Semantic security game
Challenger Adversary

(pk,sk) ← KeyGen

pk
Generate plaintexts π0 and π1

π0, π1

ψ

b′

The adversary wins the
game if b′ = b.

Generate random b ∈ {0, 1}
ψ = Encrypt(pk, πb)

Decide b′ ∈ {0, 1}

The definition of semantic security now is as follows.

19

Definition 3.3.1. Consider the setting as depicted above. A scheme is considered to be
(t, ε)−semantically secure if there exists no adversary running in time t, that has non-
negligible advantage ε in the semantic security game, i.e. P[b′ = b] = 1

2
+ ε.

We now proceed to show that if E is semantically secure than also E (d) is semantically
secure, this is done by contradiction.

Theorem 3.3.2. Suppose there exists an adversary A which (t, ε)-breaks E (d), then there
exists an adversary A∗ that (t′, ε′)-breaks E, with t′ ≈ t · ` and ε′ ≈ ε/2`(d+ 1), where ` is
such that a secret key in E can be expressed in M`.

Proof. For k ∈ [0, d], we define game k as follows. The challenger generates the public
and secret key for E (d) as usual, but for i ∈ [1, k] generates random E keypairs (sk′i, pk′i) =
KeyGenE and replaces the encryption of ski under pki−1 in the public key with an encryp-
tion of sk′i under pki−1. Thus the public key contains for i ∈ [1, k] encryptions of secret
keys which have nothing to do with the paired public key.
Note that game 0 is the standard semantic security game against E (d). Now we also define
game d+ 1 to be as game d, but the challenger ignores the given plaintexts and returns an
encryption of a random generated plaintext of correct size. It is clear that the advantage
of A in game 0 is ε0 = ε and in game d + 1 it is εd+1 = 0, since the given ciphertext is
independent of the bit b.
Now since we have ε0 = ε and εd+1 = 0, there must exist some k ∈ [0, d] such that
εk − εk+1 ≥ ε/(d+ 1). Fix this value of k.
We will now show that A∗ can use A to break (E)`, i.e. `-fold repetition of E . First the
case that k < d:
A∗ receives an E-public key from the challenger. It then generates the public and secret
key for E (d) as in game k, but where pkk is replaced with pk, and generates an additional
dummy keypair (sk′k+1, pk′k+1). Now it sets π0 = skk+1 and π1 = sk′k+1 and sends these to
the challenger.
The challenger randomly selects β ∈ {0, 1} and replies with Ψ, which is the bitwise en-
cryption of πβ. Now A∗ replaces the encryption of skk+1 with Ψ and forwards the public
values to A. Note that these public values exactly correspond to game k + β.
A generates two plaintexts π̃0 and π̃1 which it sends to A∗. A∗ randomly generates
b ∈ {0, 1} and replies with the bitwise encryption of πb under pkd. Now A sends guess b′

to A∗ and A∗ sends β′ = b⊕ b′ to the challenger.
We now have that A∗ has advantage as follows:

P[β′ = β] = P[β = 1]P[β′ = 1] + P[β = 0]P[β′ = 0] =
1

2
(1 + εk − εk+1) ≥ 1

2
+ ε/2(d+ 1).

In the case that k = d the game is as follows. A∗ receives the E public key pk from the
challenger. It generates the secret and public key values as in game d, with pkd replaced
with pk, and forwards the public values to A. Now A generates two plaintexts π̃0 and π̃1

and sends these to A∗. Then A∗ randomly generates b ∈ {0, 1} and π ∈M` and forwards

20

π0 = π̃b and π1 = π to the challenger.
The challenger randomly generates β ∈ {0, 1} and replies with the bitwise encryption Ψ
of πβ under pk. A∗ forwards these values to A. Note that again the game between A∗ and
A is game d+ β. A responds with a guess b′ and A∗ sends β′ = b′ ⊕ b to the challenger.
Again we find that the advantage of A∗ is at least ε/2(d+1). So this shows that A∗ breaks
(E)` with time t′′ ≈ t and advantage ε′′ ≥ ε/2(d + 1). This translates to A∗ breaking E
with time t′ ≈ t · ` and ε ≥ ε/2`(d+ 1) as required.

3.3.2 KDM-Security

We now have shown that the semantic security of the leveled fully homomorphic scheme
follows from the semantic security of the underlying scheme. But this unfortunately proves
nothing about the semantic security of the fully homomorphic scheme, since in the leveled
version a secret key always is encrypted under a different public key. But in the fully ho-
momorphic scheme, if we were to introduce a cycle in the bootstrapping, one can compute
via the homomorphism an encryption of the secret key sk0 under the corresponding public
key pk0.
The security of a fully homomorphic scheme requires KDM-security, i.e. key dependent
messages, in particular the secret key itself, are indistinguishable from encryptions of ran-
dom secret keys unrelated to the public key under which they are encrypted.
It is clear that a scheme which is bootstrappable and KDM-secure, can be used to create
a semantically secure fully homomorphic scheme.

3.3.3 Random Oracle Model

Let E∗ denote a fully homomorphic encryption scheme created by adding a self-loop. In
the Random Oracle Model, the semantic security of E∗ can be proven. Given a leveled fully
homomorphic scheme E (d) and a hash function H : M`′ → M`, define the scheme E (d)†

to be the same as E (d), except for the following. During key generation, one generates a
random vector r ∈M`′ , encrypts it bitwise under pk(d) to r̄, sets σ = H(r)?sk0 and includes
(〈r̄j〉, σ) in the public key. Here ? is some invertible operation which would completely hide
b ∈ M` in a ? b if a ∈ M` were a one-time pad. The hash function is treated as random
oracle in analysis. Then we have the following two theorems.

Theorem 3.3.3. [Gen09a, p. 53] If E (d) is semantically secure, then E (d)† is semantically
secure in the random oracle model.

Theorem 3.3.4. [Gen09a, p. 54] Suppose E is leveled circuit-private and let E (d)† and
E∗ be constructed as described above. Now if E (d)† is semantically secure, and the circuit
required to compute H and invert ? is at most d levels, then E∗ is semantically secure.

We do not give the proofs here, but just the main idea. The surprising result here is that
E∗ is proven to be semantically secure in the random oracle model, even though it does

21

not contain a hash function. This is a simple consequence of the homomorphic property,
which allows us to create an encryption of sk0 under pk0. We can do this by using the
encryption of r and a circuit corresponding to the hash function H, to find the encryption
of H(r). Since we have σ = H(r) ? sk0 in the public key, we can find the encryption sk0

under pk0 (if the encryption is under a different public key, we can simply use the cycle to
find it under pk0. This gives an encryption without using the hash function. And thus we
find that E∗ is semantically secure.
Unfortunately, this does not imply that E∗ is semantically secure in the standard model.

22

4 Fully Homomorphic Encryption Schemes

As mentioned in the introduction, this section shows the first fully homomorphic scheme
as presented by Gentry [Gen09a, chap. 2-4, pp. 69-114]. Thereafter we present two slight
improvements on his scheme [SV10, GH11]. Finally we present a scheme which was created
with the goal to only use integer arithmetic [vDGHV10].

4.1 Gentry’s Scheme

In addition to the general construction, Gentry also provided a first fully homomorphic
encryption scheme using ideal lattices [Gen09b]. This scheme is presented in two steps.
First an initial somewhat homomorphic scheme is given. It will become clear that the
scheme was not yet bootstrappable, so Gentry introduced another idea, he “squashed” the
decryption circuit. This finally lead to a fully homomorphic scheme. After the complete
introduction of the scheme, its security and performance will be analyzed.

4.1.1 The Somewhat Homomorphic Scheme

The scheme E is based on a polynomial ring and ideal lattices. We take as polynomial
ring the ring R = Z[x]/f(x) with f(x) ∈ Z[x] monic and of degree n, and a fixed basis BI

of an ideal I ⊂ R. Let IdealGenE(R,BI) be an algorithm which efficiently returns public
and secret bases (Bsk

J ,B
pk
J) of some ideal J ⊂ R, such that I + J = R, i.e. I and J are

relatively prime. The public basis is chosen to be a least revealing basis, i.e. a basis of
skewed long vectors. The secret basis consists of short nearly orthogonal vectors. Why
this is chosen in this way will become clear soon. Let SampE(x,BI , R,BJ) be an algorithm
which efficiently samples from the coset x + I. We will leave these algorithms abstract for
now, as only their outputs are interesting for the understanding. The scheme then consists
of the following algorithms.

KeyGenE(R,BI) :
set (Bsk

J ,B
pk
J) = IdealGenE(R,BI). Now the plaintext space M of the scheme be-

comes (a subset of) R mod BI . The public key is set to contain R, BI , Bpk
J , and

SampE . The secret key contains all these as well and in addition Bsk
J .

EncryptE(pk, π) :
for plaintext π ∈M, take ψ′ = SampE(π,BI , R,B

pk
J) and output ψ = ψ′ mod Bpk

J .

DecryptE(sk, ψ) :
for a ciphertext ψ output π = (ψ mod Bsk

J) mod BI .

EvaluateE(pk, C,Ψ) :
for a permitted circuit C (see below) and a set of ciphertexts Ψ, run AddE and MultE
in the sequence as implied by C.

23

AddE(pk, ψ1, ψ2) :
output ψ1 + ψ2 mod Bpk

J .

MultE(pk, ψ1, ψ2) :
output ψ1 × ψ2 mod Bpk

J .

Next we will show that this scheme is indeed correct. Note that in the scheme, C actually
is a circuit modulo BI , but its operations are replaced by ring operations. This is clarified
in the following definition.

Definition 4.1.1. Let C be a modulo BI circuit. The generalized circuit g(C) is defined to
be the circuit C where the AddBI and MultBI gates in C are replaced by the corresponding
ring operations, addition and multiplication in R modulo BI .

To prove correctness, Gentry introduces a few more definitions.

Definition 4.1.2. Let Xenc be the image of SampE . Then all ciphertexts output by EncryptE
are in the coset Xenc + J . Let Xdec equal R mod Bsk

J , the distinguished representatives of
the cosets of J with respect to the secret basis Bsk

J . We also define renc to be the smallest
value such that Xenc ⊆ B(renc) and rdec to be the largest value such that Xdec ⊇ B(rdec).

Note that since I and J are ideal lattices, both Xenc and Xdec are subsets of Zn.

Definition 4.1.3. Define C ′E = {C : ∀(x1, . . . , xt) ∈ X t
enc, g(C)(x1, . . . , xt) ∈ Xdec}, this

is the set of mod BI circuits for which the generalized circuit has output in Xdec as long
as the inputs are in Xenc. For all subsets CE ⊆ C ′E we say that CE is a set of permitted
circuits.

Definition 4.1.4. For rdec and renc as defined above, define the set of permitted circuits
CE = {C : ∀(x1, . . . , xt) ∈ B(renc)

t, g(C)(x1, . . . , xt) ∈ B(rdec)}. Clearly CE ⊆ C ′E .

Definition 4.1.5. A ciphertext ψ′ is considered to be valid with respect to the scheme
E with public key pk and permitted circuits CE if it equals EvaluateE(pk, C,Ψ) for some
C ∈ CE , where each ψ ∈ Ψ is in the image of EncryptE .

Now we are ready to prove correctness of the above described scheme.

Theorem 4.1.6. Let CE be a set of permitted circuits. We claim that E is correct for CE ,
i.e. DecryptE correctly decrypts valid ciphertexts.

Proof. Let Ψ = {ψ1, . . . , ψt}, ψk = πk + ik + jk, with πk ∈ M, ik ∈ I, jk ∈ J and
πk + ik ∈ B(renc), the following holds:

EvaluateE(pk, C,Ψ) = g(C)(Ψ) mod Bpk
J

∈ g(C)(π1 + i1, . . . , πt + it) + J
(3)

24

Since we have πk + ik ∈ B(renc) and if C ∈ CE , we find g(C)(π1 + i1, . . . , πt + it) ∈ B(rdec).
And thus:

DecryptE(sk,EvaluateE(pk, C,Ψ)) = g(C)(π1 + i1, . . . , πt + it) mod BI

= g(C)(π1, . . . , πt) mod BI

= C(π1, . . . , πt).

(4)

Which proves that E is correct for CE .

It is clear that the scheme is correct and can evaluate circuits in the permitted set, but
it is not yet clear what this permitted set concretely is. With the triangle inequality, we
have ||u + v|| ≤ ||u|| + ||v||, for u,v ∈ R. For multiplication we have that ||u × v|| ≤
γmult(R) · ||u|| · ||v||, where γmult(R) is some value which depends only on R.
The following theorem relates the circuit depth to the set of permitted circuits.

Theorem 4.1.7. Let renc ≥ 1, let C’s additive fan-in be γmult(R), let C’s multiplicative
fan-in be 2, and let the depth be at most

log2 log2 rdec − log2 log2(γmult(R) · renc). (5)

Then we have C(x1, . . . ,xt) ∈ B(rdec) for all x1, . . . ,xt ∈ B(renc).

Proof. For a circuit C with d levels, let ri be an upper bound on the Euclidean norm at
level i and let rd = renc. It follows that an addition gate at level i outputs a v ∈ R with
||v|| ≤ γmult(R) · ri. For a multiplication gate at level i, we have ||v|| ≤ γmult(R) · r2

i . So
we find that always ||v|| ≤ γmult(R) · r2

i holds, which leads to rdec = r0 ≤ (γmult(R) · renc)2d .
This completes the proof.

To put it simple, one wants to minimize renc and γmult(R) and maximize rdec, which will
clearly increase the maximum depth of permitted circuits. Minimizing renc is a security
issue and will be dealt with in section 4.1.3. Minimizing γmult(R) depends on the chosen
ring R. It is possible to choose f so that γmult(R) becomes polynomial in n:

Theorem 4.1.8. Let R = Z[x]/f(x) and suppose f(x) = xn − h(x) where h(x) has degree
at most n− (n− 1)/k for k ≥ 2. Then, γmult(R) ≤

√
2n(1 + 2n(

√
(k − 1)n · ||f ||)k).

Before we can prove this theorem, we first need the following theorem.

Theorem 4.1.9. Let f(x) ∈ Z[x] be monic, with degree n. Define F (x) = xnf(1/x) and
g(x) = F (x)−1 mod xn−1. Then for two integer polynomials u and v of degree at most
n− 1 we have that

||u× v|| ≤ γmult(R)||u|| · ||v||
for

γmult(R) ≤
√

2n(1 + 2n||f || · ||g||).

25

Proof. (Thm 4.1.9) Let t(x) = u(x)v(x), which has degree at most 2n − 2. Then for
w(x) = t(x) mod f(x) we find t(x) = q(x)f(x) + w(x), where deg(q(x)) ≤ n − 2 and
deg(w(x)) ≤ n − 1. It is clear that ||t|| = ||u × v||, and for each coefficient of t we find
by the Cauchy Schwarz inequality that its absolute value is bounded by ||u|| · ||v||. This
implies that ||t|| ≤

√
2n||u|| · ||v||.

Define T (x) = x2n−2t(1/x), Q(x) = xn−2q(1/x), and W (x) = x2n−2w(1/x). Then T (x) =
Q(x)F (x) + W (x) and T , Q and F are all integer polynomials of the same norm as re-
spectively t, q and f . The polynomial W with norm equal to the norm of p is divisible by
xn−1, which implies that Q(x) = T (x)g(x) mod xn−1.
We now find that ||Q|| ≤

√
2n||T || · ||g|| for the same argument as holds for the norm of t.

We ultimately find that

||u× v|| = ||r|| = ||W || ≤ ||T ||+ ||Q · F ||
≤ ||T ||+ 2n||T || · ||g|| · ||F ||
= ||t||(1 + 2n||f || · ||g||)
≤ ||u|| · ||v||

√
2n(1 + 2n||f || · ||g||).

Proof. (Thm 4.1.8) Define F (x) = xnf(1/x) = 1− xnh(1/x) and H(x) = xnh(1/x). Note
that H(x) is divisible by xm for m ≥ (n−1)/k. This implies that 1−H(x)k = 1 mod xn−1

and g(x) = F (x)−1 = 1
1−H(x)

= 1−H(x)k

1−H(x)
mod xn−1.

This now leads to

||g(x)|| ≤ 1 + ||H||+ ||H2||+ . . .+ ||Hk−1||
≤ 1 + ||H||+

√
2n||H||2 + . . .+ ((k − 1)n)(k−1)/2||H||k−1

≤ 1 + ||f ||+
√

2n||f ||2 + . . .+ ((k − 1)n)(k−1)/2||f ||k−1

≤ ((
√

(k − 1)n||f ||)k − 1)/((
√

(k − 1)n||f ||)− 1).

Now since ||f || < (
√

(k − 1)n||f ||)−1 together with Thm 4.1.9 we find γmult(R) ≤
√

2n(1+

2n(
√

(k − 1)n||f ||)k).

There are suitable polynomials f(x) for which these theorems cannot be used to bound
γmult(R), because they do not meet the conditions of the theorem [Gen09a, p. 74], but it
is generally a lot harder to determine an upper bound for γmult(R). One easy example is
f(x) = xn − 1, which has γmult(R) ≤ √n, but it is preferred to have f(x) irreducible so
that fractional ideals and inverses in Q[x]/f(x) can be used.
Concerning rdec, maximizing is related to maximizing the parallelepiped P(Bsk

J), since rdec
is the radius of the largest sphere centered at the origin. So this depends strongly on the
shape of Bsk

J , if the basis is more orthogonal, the radius becomes larger. The following
theorem clarifies this.

26

Recall the matrix norm; ||B∗|| = max{||(B∗)x|| : ||x|| = 1}. We then have the following
theorem.

Theorem 4.1.10. Let B be a lattice basis (represented by a matrix) and B∗ = (B−1)T . Let
r be the radius of the largest sphere, centered at the origin, which can be circumscribed with
P(B). Then r = 1/(2 · ||B∗||). If ||t|| < r; then each coefficient of B−1 · t has magnitude
at most 1/2.

Proof. Since ||t|| < r = 1/(2 · ||B∗||), we have ||t|| · ||B∗|| < 1/2. Each coefficient of B−1 · t
is an inner product of t with a column vector of B∗, and thus has magnitude at most 1/2.
This implies bB−1 ·te = 0 (rounding is performed entry-wise) thus t = t mod B, and thus
t ∈ P(B). Now suppose we have ||x|| > 1/(2 · ||B∗||), for x parallel to v, the longest vector
in B∗. Then |(v,x)| > 1/2 and thus bB−1 · xe 6= 0. So then clearly x 6∈ P(B).

This theorem implies that rdec = 1/(2 · ||((Bsk
J)−1)T ||). Ideally, one would like to have an

instantiation of IdealGenE which results in a private basis which circumscribes a sphere
with radius only polynomially shorter than the parallelepiped’s diameter. In that case, the
decrypting ability of the key is as large as possible. This can be achieved with a rotation
basis on a vector v which is nearly parallel to e1. The following theorem describes this
more formally [Gen09a, pp. 76-77].

Theorem 4.1.11. For some s ∈ R, let t ≥ 4 · n · γmult(R) · s. Suppose v ∈ t · e1 + B(s)
and let B be the rotation basis of v. Then P(B) circumscribes a ball of radius at least t/4.

Proof. For i = 0, . . . , n − 1, define vi = v × xi and zi = vi − t · ei. Now we have
||zi|| ≤ ||z0×xi|| ≤ γmult(R) · ||z0|| ≤ γmult(R) · s. The last inequality follows from the fact
that z0 is in the ball with radius s around t · e1.
Now for every point a on the surface of the parallelepiped P(B), there must exist an i such
that

a = (±1/2) · vi +
∑
j 6=i

xj · vj (6)

holds for xj ∈ [−1/2, 1/2]. So then we find that

|(a, ei)| ≥ t/2− n · γmult(R) · s. (7)

This implies in particular that ||a|| ≥ t/2 − n · γmult(R) · s = n · γmult(R) · s ≥ t/4. So
every point on the surface has distance more than t/4 to the origin implying that the
circumscribed ball has radius at least t/4.

The above theorem yields an instantiation of IdealGenE which provides a private ba-
sis which circumscribes a sphere with radius only polynomially shorter than the paral-
lelepiped’s diameter.

27

4.1.2 Bootstrappable Scheme

Unfortunately the scheme as presented in the previous section is not yet bootstrappable,
as will become clear soon. To prepare for bootstrapping, first two small tweaks are per-
formed on the scheme to reduce complexity. When the decryption complexity is analyzed it
is still too large. Finally, the decryption circuit is squashed to achieve the bootstrappability.

Tweaks to the Initial Scheme

The first tweak lowers the precision that is needed for correct decryption at the expense
of the amount of permitted circuits. Tweak two modifies the decryption step from matrix
multiplications to ring multiplications. This reduces the public key size and the computa-
tion that is needed per gate during bootstrapping.

Tweak 1: Redefine the set of permitted ciphertexts CE by replacing rdec with rdec/2.

Purpose: This ensures that the ciphertexts are closer to the lattice J , so that less precision
is needed for correct decryption.

The following theorem shows the effect of Tweak 1.

Theorem 4.1.12. Let ψ be a valid ciphertext after Tweak 1, then each coefficient of
(Bsk

J)−1 · ψ is within 1/4 of an integer.

Proof. Since ψ is a valid ciphertext, we have that ψ = x+ j for some x ∈ B(rdec/2) and j ∈
J . Then it follows that (Bsk

J)−1 ·ψ = (Bsk
J)−1 ·x+(Bsk

J)−1 ·j, where, by analogous arguments
as in the proof of Theorem 4.1.10, the former term has coefficients with magnitude at most
1/4, and the latter is an integer vector since it is an element of R.

It is clear that correct rounding is much more obvious with the tweak in place. The
maximum depth of the evaluation circuit has been lowered to achieve this; by Theorem
4.1.7 the depth after tweak 1 is log log(rdec/2) − log log(γmult(R) · renc), which is log log 2
less than the original, which is not really significant.

Tweak 2: From BI and Bsk
J , compute a short vector vskJ ∈ J−1, such that there exists

u ∈ 1 + I with u× (vskJ)−1 ∈ 1 + I. Also redefine the set of permitted ciphertexts CE
by replacing rdec with 2 · rdec/(n1.5 · γmult(R)2 · ||BI ||).

Purpose: With this tweak DecryptE changes from π = (ψ mod Bsk
J) mod BI = ψ −

Bsk
J · b(Bsk

J)−1 · ψe mod BI to ψ − bvskJ × ψe mod BI , where vskJ ∈ Q[x]/f(x).

Again the depth of the evaluation circuit is lowered, but the change is still not significant.
The following two theorems state the effect of Tweak 2.

Theorem 4.1.13. Let BI and Bsk
J defined as above be given. Then a short vector vskJ ∈ J−1

and a vector u ∈ 1 + I, such that u× (vskJ)−1 ∈ 1 + I, can be computed in polynomial time.
Furthermore, ||vskJ || ≤ (n/2) · γmult(R) · ||((Bsk

J)−1)T || · ||BI ||.

28

To prove this Theorem, we first use the following ideas. Given a short vector in J−1 (resp.
J∗), can we compute a short basis of J∗ (resp. J−1)? This turns out to be the case. For
a basis BJ with columns ui, we find that for v ∈ J−1, v × ui ∈ R and thus Bv ·BJ is an
integer basis. This implies that the rows of Bv are a basis for J∗. To go from J∗ to J−1,
we have the following Lemma [Gen09a, pp. 83-85].

Lemma 4.1.14. Let w ∈ J∗, where J∗ is the dual of the ideal lattice J . Let

v =
n−1∑
i=0

xi
n∑

j=i+1

fj · wj−i−1,

then v ∈ J−1. Let Bv be the rotation basis of v. Then ||Bv|| ≤
√
n · ||f || · ||w||. This

applies even when J is a fractional ideal.

Proof. (Lemma 4.1.14) Let the matrix B be the rotation basis of v. We will show that the
lowest row of B equals w = {w0, w1, . . . , wn−1}. Denote the columns of B by b(k) = v · xk
mod f(x). Now we claim that

b(k) =
n−1∑
i=k

xi
n∑

j=i+1

fj · wj−i−1+k −
k−1∑
i=0

xi
i∑

j=0

fj · wj−i−1+k,

which implies that the coefficient of xn−1 in b(k) is wk, i.e. the lowest row of B is w. This
claim clearly holds for k = 0. Now assume it holds for k′−1. We have the following result.

b(k′) = x

(
n−1∑

i=k′−1

xi
n∑

j=i+1

fj · wj−i−1+k′−1 −
k′−2∑
i=0

xi
i∑

j=0

fj · wj−i−1+k′−1

)
mod f(x)

=
n∑

i=k′

xi
n∑
j=i

fj · wj−i−1+k′ −
k′−1∑
i=1

xi
i−1∑
j=0

fj · wj−i−1+k′ mod f(x)

= xnfnwk′−1 +
n−1∑
i=k′

xi
n∑
j=i

fj · wj−i−1+k′ −
k′−1∑
i=1

xi
i−1∑
j=0

fj · wj−i−1+k′ mod f(x)

= xnfnwk′−1 +
n−1∑
i=k′

xi
n∑
j=i

fj · wj−i−1+k′ −
k′−1∑
i=1

xi
i−1∑
j=0

fj · wj−i−1+k′ −
n∑
i=0

xi · wk′−1 · fi

29

=
n−1∑
i=k′

xi
n∑
j=i

fj · wj−i−1+k′ −
k′−1∑
i=1

xi
i−1∑
j=0

fj · wj−i−1+k′ −
n−1∑
i=0

xi · wk′−1 · fi

=
n−1∑
i=k′

xi

(
−fi · wk′−1 +

n∑
j=i

fj · wj−i−1+k′

)

−
k′−1∑
i=1

xi

(
fi · wk′−1 +

i−1∑
j=0

fj · wj−i−1+k′

)
− wk′−1 · f0

=
n−1∑
i=k′

xi
n∑

j=i+1

fj · wj−i−1+k′ −
k′−1∑
i=0

xi
i∑

j=0

fj · wj−i−1+k′

This verifies the claim. Next we show that v ∈ J−1, by proving that z = v × x ∈ R for
any x ∈ J . Let such an x ∈ J be given, then take the rotation bases Bz, Bv and Bx of
z, v and x respectively. We know that Bz = Bv ·Bx and that lowest row of Bz which is
w ·Bx is an integer vector, since w ∈ J∗.
Now assume that z is not an integer vector. Then there exists a largest index i such
that zi is not an integer. Consider z(n−i−1) = xn−i−1 · z mod f(x), which is one of the
columns in Bz. Now for xn−i−1 · z, the coefficients for xn, xn+1, . . . , x2n−i−1 are all integers,
since i was the largest non-integer index. Since f(x) is monic, we find that xn−i−1 · z
mod f(x) = xn−i−1 · z− a(x)f(x), for some integer polynomial a(x). This implies that the
coefficient for xn−1 in z(n−i−1) is also not integer, but this coefficient is in the bottom row
of Bz which consists only of integers, a contradiction. So z is integral and thus in R.
It remains to be shown that ||Bv|| ≤

√
n · ||f || · ||w||. Since every coefficient of v is an inner

product of two vectors with coefficients respectively in {f0, . . . , fn} and {w0, . . . , wn−1},
each coefficient in Bv has magnitude at most ||f ||·||w|| and thus ||Bv|| ≤

√
n·||f ||·||w||.

Proof. (Theorem 4.1.13)[Gen09a, pp. 87 - 88] Let w ∈ J∗ be a vector in the basis Bsk
J .

Then by Lemma 4.1.14 we can generate a vector x ∈ J−1 with corresponding rotation basis
Bx with length at most

√
n · ||f || · ||w|| ≤ √n · ||f || · ||((Bsk

J)−1)T ||. Now from Bx and a
vector in I of length at most ||BI ||, an independent set BJ−1I of (x) · I ⊂ J−1I of length at
most n · ||f || · ||BI || · ||((Bsk

J)−1)T || can be generated. Now take vskJ = e1 mod BJ−1I , which
has length at most (n/2) · ||f || · ||BI || · ||((Bsk

J)−1)T || ≤ (n/2) ·γmult(R) · ||((Bsk
J)−1)T || · ||BI ||.

Now since I and J are relatively prime (by definition), there exists a vector r ∈ J ∩ (1+ I).
Let u = r×vskJ . Now since vskJ ∈ 1+J−1I, we have u ∈ 1+I and clearly also u×(vskJ)−1 ∈
1 + I.

Theorem 4.1.15. Let ψ be a valid ciphertext after Tweak 2 that decrypts to π. Then
π = ψ − bvskJ × ψe mod BI . To decrypt correctly in all cases, the radius r′dec of the
sphere, circumscribed by the parallelepiped of the rotation basis of vskJ , should be at least
2rdec/n

1.5γmult(R)||BI || (by redefinition of rdec).

30

Proof. [Gen09a, pp. 87 - 88] We know that π = (ψ mod Bsk
J) mod BI = ψ − Bsk

J ·
b(Bsk

J)−1 · ψe mod BI . Now let B†J be the rotation basis of (vsk
J)−1. Since vsk

J generates
a sub-lattice of J−1, we have that B†J generates a super-lattice of J . So now it remains to
show that the sphere circumscribed by B†J has large enough radius, denote this radius by
r′dec.
We find that

r′dec ≥ 1/(2
√
n||(B†J)−1||) = 1/(2

√
n||vsk

J ||) ≥ 2rdec/n
1.5γmult(R)||BI ||,

where the first inequality follows from theorem 4.1.10. So we find that π = ψ − (vsk
J)−1 ×

bvsk
J · ψe decrypts correctly.

Now for r as in the proof of Theorem 4.1.13, we find that

(vsk
J)−1 × bvsk

J × ψe = r× (vsk
J)−1 × bvsk

J × ψe mod BI

= u× bvsk
J × ψe mod BI

= bvsk
J × ψe mod BI .

To determine whether the scheme is bootstrappable yet, we will analyze the decryption
complexity of the tweaked scheme.

Decryption Complexity of the Tweaked Scheme

We would like to express the decryption algorithm as a circuit and analyze its complexity.
For decryption, one computes (ψ − Bsk

J · b(Bsk
J)−1 · ψe) mod BI . But as we have seen,

after applying tweak 2, we can compute this as (ψ − bBsk2
J · ψe) mod BI , where Bsk2

J is
the rotation basis of vskJ . Also, we know from tweak 1 that the coefficients of Bsk2

J · ψ are
all within 1/4 of an integer.
First, we split this computation up into the following steps:

Step 1: Generate n vectors x1, . . . ,xn with sum Bsk2
J · ψ mod f ,

Step 2: From the vectors x1, . . . ,xn, generate integer vectors y1, . . . ,yn+1 with sum b∑xie,

Step 3: Compute π = ψ −∑yi mod BI .

Later we will find that step 1 can be eliminated by the method with which the decryption
circuit is squashed, so we will not look further into that. Concerning step 2, it is straight-
forward to select for y1, . . . ,yn the integer parts of the xi and for yn+1 the sum of the
fractional parts of the xi and then rounded. The problem now is the precision which is
needed to give the correct result, i.e. the amount of significant fractional digits that are
required to yield the correct result. This can be avoided by restricting the plaintext space
toM = {0, 1} so that the operations become boolean operations. In this case, we find the
following lemma.

31

Lemma 4.1.16. [Gen09a, pp. 93-94] For i ∈ [1, t], let ai = (. . . , ai,1, ai,0, ai,−1, . . .) be
a real number given in binary representation mod BI with in addition the promise that∑

i ai mod 1 ∈ [−1/4, 1/4]. There exists a mod -BI circuit C that generates t+ 1 integers
z1, . . . , zt+1 whose sum is b∑i aie, such that if the generalized circuit g(C)’s inputs are in
B(rin), then its outputs are in B(rout) for:

rout ≤ (γmult(R) · n · ||BI || · (1 + γmult(R) · rin)t · t)polylog(t).

Now for ||BI || ≤ rin, t ≤ n, and γmult(R) = nΩ(1), we have:

rout ≤ (γmult(R) · rin)t+polylog(t).

Proof. We will only give a sketch of the proof. The details are not important for under-
standing, and are available in [Gen09a, pp. 93-94] for the interested reader.
The idea of the proof is to take for the integer parts of the ai’s as the first t integers.
Then we note that since all the ai’s are within 1/4 of an integer, it suffices to take the
first T = dlog2 te+ 2e bits of the fractional part. Denote these truncations by bi. The last
integer is taken to be the sum of these truncations, rounded to the nearest integer. These
t+ 1 integers indeed sum up to the correct result.
To sum up the bi, it is easier to compute the Hamming weight cj of (b1,−j, b2,−j, . . . , bt,−j)
for each j ∈ [1, T]. Then the rounded sum of the bi’s can be computed by computing
b∑T

j=1 2−jcje. This sum only consists of T elements, instead of t.
The norm of the values output by the circuit that computes these Hamming weights is
bounded by n · ||BI || · (1 + γmult(R) · rin)t · t, where n · ||BI || is used as upper bound for
the length of elements in R mod BI . The sum of these T Hamming weights (each with
O(log T) bits) then can be computed by a O(log T)-depth circuit. This, together with the
results in the proof of theorem 4.1.7 yields the result.

Since for step 2 we have t = n, we find that log log(rout)− log log(γmult(R) · rin) ≤ log(n+
polylog(n)), which is not enough to show that the scheme is bootstrappable, since our
somewhat homomorphic scheme can only evaluate circuits with depth O(log n). This
requires some changes to the scheme, which will be presented in the next section. But
first, we will look at step 3 using the following lemma:

Lemma 4.1.17. [Gen09a, pp. 95-96] The term ψ −∑yi mod BI can be computed from
a binary representation of the terms of the expression using only a constant depth circuit
with polynomial fan-in AddBI gates and constant fan-in MultBI gates.

Proof. We will only give the main idea behind the proof, the details can be found in
[Gen09a, pp. 95-96]. The idea is to use the mod-BI gates for multiplication and addi-
tion. If the integers are given in mod-BI representation, the summation can clearly be
performed by constant depth circuit with polynomial fan-in AddBI gates.
To do this, we first need to translate binary representation to mod -BI representation. The
advantage here is that the largest part of this translation can be done by pre-computation,
which does not yield extra circuit depth.

32

This translation is computed as follows. Consider y = y1. Represented as binary number,

the ith coefficient is given as yix × e1, . . . , yi0 × e1 mod BI , where yi =
x∑
j=0

2j · yij (and

thus yij ∈ {0, 1}). So we find that

y =
∑

i∈[1,n],j∈[0,x]

2j × (yij × e1)× ei mod BI

is the mod-BI representation of y1.
Now we can pre-compute aj = 2j mod BI for each j ∈ [0, x], so that the computation of
the mod-BI representation can be done by using a constant depth circuit of polynomial
fan-in AddBI gates and constant fan-in MultBI gates.

Squashing the Decryption Circuit

We have seen that the decryption circuit of our scheme has a too high complexity to allow
bootstrapping. We can fix this by squashing the decryption circuit. Abstractly, this is
done by delegating the computationally intensive part of the decryption to the encrypter
and leaving only a low complexity decryption circuit for the decrypter. This requires an
additional hardness assumption, which will be covered in section 4.1.3.
Concretely, we add two more algorithms to the scheme, namely SplitKeyE and ExpandCTE .
Let E∗ denote the original scheme and E the new, squashed scheme. Here is an overview
of the algorithms in our new scheme:

KeyGenE(λ): Runs (pk∗, sk∗) = KeyGenE∗(λ) and (sk, τ) = SplitKeyE(sk
∗, pk∗). The se-

cret key is sk and the public key is (pk∗, τ).

SplitKeyE(sk
∗, pk∗): Extracts the vector vsk

∗
J from sk∗ as defined in Theorem 4.1.13. Now

let γset(n) and γsubset(n) be functions, where the former is ω(n) (as n→∞, γset(n) ≥
n · k, for every k > 0) and poly(n) and the latter is ω(1) and o(n). It now outputs
(sk, τ) where:

• τ is a set of γset(n) vectors t1, . . . , tγset(n) chosen uniformly at random in J−1

mod BI , except that there exists a subset S of cardinality γsubset(n) that sums
up to vsk

∗
J + I.

• sk includes γsubset(n) binary vectors si of dimension γset(n), where each si has
all coefficients equal to zero except for the jith coefficient, which is equal to one.
Here ji is the ith member of S. So these vectors encode the secret subset S.

ExpandCTE(pk, ψ∗): Outputs ci = ti × ψ∗ mod BI for i ∈ [1, γset(n)]. These terms are
represented in binary, as explained in Lemma 4.1.17.

EncryptE(pk, π): Runs ψ∗ = EncryptE∗(pk∗, π) and c = ExpandCTE(pk, ψ∗), then outputs
ψ = (ψ∗, c).

33

AddE(pk, ψ1, ψ2): Extracts (ψ∗1, ψ
∗
2) from (ψ1, ψ2), computes ψ∗ = AddE∗(pk∗, ψ∗1, ψ

∗
2) and

c = ExpandCTE(pk, ψ∗), then outputs ψ = (ψ∗, c). The modification of MultE∗ is
analogous.

DecryptE(sk, ψ): Performs the following steps:

Step 1: Set the vectors xi =
∑γset(n)

j=1 sij · cj, where the sij are the binary vectors
from the secret key and cj the vectors included in the ciphertext.

Step 2: Generate integer vectors y1, . . . ,yγsubset(n)+1 with sum b∑xie.
Step 3: Compute π = ψ − (

∑
yi) mod BI .

It then outputs π.

The decryption step is more or less the same as before, but with the difference that it only
adds up γsubset(n) numbers instead of n, which is a sub-linear quantity. This change is
sufficient to achieve bootstrappability as shown in the following theorem.

Theorem 4.1.18. [Gen09a, p. 102] The scheme E as presented above, is bootstrappable
when

γsubset(n) · logc1 γsubset(n) ≤
(

log(rdec/m)

2c2 · log(γmult(R) · renc)

)
,

where logc1 γsubset(n) is the polylog term in Lemma 4.1.16, m depends on the use of the
tweaks, and c2 is a constant representing the depth needed in a circuit having AddBI

gates with γmult(R) fan-in and MultBI gates with constant fan-in to sequentially perform
DecryptE Steps 1 and 3 and a NAND gate.

Proof. We know that, as shown in the proof of Theorem 4.1.7, for a circuit of depth c with
inputs in B(r), the outputs are in B((γmult(R) · r)2c). Now from Lemma 4.1.16 it follows
that the if the inputs to the NAND-augmented circuit are in B(renc), then the output is in

(γmult(R) · renc)2c2 ·(γsubset(n) polylog(γsubset(n))).

The result follows when this value is at most rdec/m.

Obviously now that we have a bootstrappable somewhat homomorphic encryption scheme,
we can use the construction as explained in Section 3. This leads to a fully homomorphic
encryption scheme.

4.1.3 Security

Now the scheme is given in its concrete form, we will analyze its security. But first there are
some comments to be taken care of, namely minimizing renc and the additional hardness
assumption required for the squashing of the decryption circuit.

34

Minimizing renc
As stated in section 4.1.1, we want to minimize renc as far as possible without compromis-
ing security to enlarge the depth of the allowed circuits. Recall that we defined renc to be
the smallest radius such that Xenc ⊆ B(renc), where Xenc is the image of SampE . So to
state something about renc, we must first make SampE more concrete.
In EncryptE , first a sample is taken from the coset π + I, which is then reduced modulo
the public basis of J . It is important for security that π + I mod J seems to be taken
uniformly in J and not according to some distribution. This can be related to the Bounded
Distance Decoding Problem (BDDP), which is defined as follows.

Definition 4.1.19. (BDDP) [Gen09a, pp. 77-78] Fix a polynomial ring R = Z[x]/(f(x)),
an algorithm IdealGen that samples a basis of an ideal in R and an algorithm Samp1 that

efficiently samples Zn. The challenger sets b
R∈ {0, 1} and (B+J sk,Bsk

J)
R
= IdealGen(R,BI).

If b = 0, it sets r
R
= Samp1(R) and t = r mod Bpk

J . If b = 1, it samples t uniformly from
R mod Bpk

J . The challenge: guess b given (t,Bpk
J).

Now let s be a generator of I. We then define SampE as follows.

SampE(BI ,x) :
r = Samp1(R)
Output x + r× s.

We then have the following theorem.

Theorem 4.1.20. Suppose we have an algorithm A that (t, ε)-breaks E with SampE as
given above. Then there exists an algorithm B which, using A, (t′, ε′)-breaks BDDP with
t′ ≈ t, and ε′ = ε/2.

Proof. The challenger randomly generates b ∈ {0, 1} and generates a keypair. It generates
t according to b and sends (t,Bpk

J) to B. B sends A the public key corresponding to E
composed form the instance the challenger generated.

A requests a challenge ciphertext on π0, π1, B sets β
R∈ {0, 1} and answers with ψ = πβ+t×s

mod Bpk
J . A sends back a guess β′ and B sends guess b′ = β ⊕ β′ to the challenger.

If b = 0, r was chosen according to Samp1, so the ciphertext ψ was of the correct form. In
this case A has an advantage of ε, which gives B an advantage of ε.
If b = 1, t is chosen uniformly random modulo Bpk

J and since I and J are coprime, t× s is
also uniformly random modulo Bpk

J . Thus ψ is a uniformly random element of R mod Bpk
J ,

independent of the choice of β. It is clear that A now has advantage 0, which gives B also
advantage 0.
Overall, we find that B has advantage ε/2.

Let ||r|| < `samp, for some number `samp, with r drawn as according to Samp1. Then one
has

renc = max{||x + r× s||} ≤ n||BI ||+
√
n`samp||BI ||.

35

Now we can choose s short as for instance s = 2e1 (as is the case in the Smart-Vercauteren
and Gentry-Halevi variants). The hardness of BDDP depends on both `samp and on λ1(J)
(the shortest vector in J) and in particular its size compared to `samp. For instance for
λ1(J)/`samp ≥ 2n one can find the closest vector to t in polynomial time with the LLL
reduction algorithm.
For λ1(J) = 2O(

√
n) and `samp ≈ n, no known attacks run in polynomial time.

Additional Hardness Assumption
As stated, including τ in the public key requires an additional hardness assumption. This
relies on the following abstract problem.

Definition 4.1.21. (Splitkey Distinguishing Problem) [Gen09a, pp. 104-105] The chal-
lenger sets (sk∗, pk∗) = KeyGenE∗ and randomly chooses b ∈ {0, 1}. We have that sk∗

includes the secret vector vsk
J . Now if b = 0, it then sets τ to be a set of γset(n) vectors uni-

formly random in J−1 mod BI such that a subset of cardinality γsubset(n) of these vectors
sums up to vsk

J + I. If b = 1, it sets τ in the same way, except that a subset of cardinality
γsubset(n) sums up to 0 + I. The challenge is to guess b given (τ, sk∗, pk∗).

Theorem 4.1.22. Suppose there exists an algorithm A that (t, ε)-breaks the semantic
security of E. Then there exists algorithms B0 and B1, such that either B0 (t′, ε/3)-solves
the SplitKey Distinguishing problem, or B1 (t′, ε/3)-breaks the semantic security of E∗.

Proof. Denote by Game 0 the semantic security game against E and let Game 1 be like
Game 0, except that the challenger runs SplitKey with vsk

J = 0 in sk∗ instead of the normal
sk∗. A’s advantage in Game 0 is ε, let A’s advantage in Game 1 be ε′.
Now B0 runs as follows. The challenger randomly generates a bit b and sends a SplitKey
Distinguishing Problem instance (τ, sk∗, pk∗) to B0. B0 then sends pk = (pk∗, τ) to A.
Now when A asks for a challenge ciphertext on π0, π1, B0 generates a bit β and replies with
ψ = EncryptE(pk, πβ). A answers with a guess bit β′ and B0 forwards b′ = β′ ⊕ β to the
challenger.
This game is exactly distributed as Game b, so B0’s advantage is at least |ε− ε′|/2.
B1 does the following. It obtains an E∗ public key from the challenger. Then it sets τ to be
a set of γset(n) vectors uniformly random in J−1 mod BI such that a subset of cardinality
γsubset(n) of these vectors sums up to 0 + I and sends pk = (pk∗, τ) to A. A asks for a
challenge ciphertext on π0, π1 and B1 forwards this to the challenger. The challenger sends
back ψ∗, B1 sets π to include ψ∗ and ExpandCTE(pk, ψ∗) and sends this to A. When A
guesses bit b′, B1 simply forwards this guess to the challenger.
The distributions in this game are exactly as in Game 1 and B1 has the same advantage
as A, namely ε′.
Now we either have ε′ < ε/3 or ε′ ≥ ε/3. In the former case this leads to B0 having
advantage at least ε/3 and the latter case leads to B1 having advantage at least ε/3.

The Splitkey Distinguishing Problem is not very intuitive, but it can be related to the
Sparse Subset Sum Problem, which is well researched [Gen09a, chap. 11]. The details

36

are omitted here. The best known attack on SSSP is exponential in γsubset(n), as long as
γset(n) is large enough, for instance about 2 log(det(IJ)).

Choice of Parameters
As shown in Theorem 4.1.18, the scheme is bootstrappable when

γsubset(n) · logc1 γsubset(n) ≤
(

log(rdec/m)

2c2 · log(γmult(R) · renc)

)
.

We want to choose γsubset(n) as large as possible, so we take γmult(R), renc and m as
small as possible (i.e. polynomial in n), and rdec is then approximately 2γsubset(n). The
approximation factor of BDDP is at least rdec/renc, which thus is about 2γsubset(n). Solving
this problem takes about 2n/γsubset(n) time with currently known attacks [Gen09a, pp. 113].
So if we choose γsubset(n) ≈ λ, the security parameter, we obtain about 2λ security for both
problems against known attacks. This does however require the lattice dimension to be
n ≈ λ2.

37

4.2 The Smart-Vercauteren Variant

The scheme as presented by Smart and Vercauteren [SV10] is based on the scheme by
Gentry as presented in Section 4.1, but is optimized with respect to the size of both
the public and private key, as well as the size of the ciphertext. Using the construction
by Gentry as presented in Section 3, we will first introduce the somewhat homomorphic
scheme and then present the fully homomorphic scheme. Finally, we will compare the
scheme to the original scheme and analyze its security.

4.2.1 The Somewhat Homomorphic Scheme

For simplicity, the scheme is first presented with plaintext space M = {0, 1}. As usual,
the scheme consists of five algorithms, namely KeyGen,Encrypt,Decrypt,Add,Mult. The
scheme contains three parameters, (n, η, µ), the settings of these parameters will be dis-
cussed later. As it is based on Gentry’s scheme, also this scheme is defined on the polyno-
mial ring R = Z[x]/f(x), for f(x) ∈ Z[x] monic and of degree n.
Like the scheme by Gentry, this variant is also based on ideal lattices defined by a polyno-
mial ring. The algorithms will first be described and are discussed thereafter.

KeyGen :

• Repeat until p is prime:

– S(x)
R∈ B∞,n(η/2)

– g(x) = 1 + 2 · S(x)

– p = res(g(x), f(x))

• D(x) = gcd(g(x), f(x)) over Fp[x]

• Let α ∈ Fp be the unique root of D(x)

• Find Z(x) =
∑n−1

i=0 zix
i ∈ Z[x] for which Z(x)g(x) = p mod f(x) holds

• B = 〈z0〉2p
• Now we have public key pk = (p, α) and private key sk = (p,B).

Encrypt(π, pk) :

• R(x)
R
= B∞,n(µ/2)

• Ψ(x) = π + 2 ·R(x)

• ψ = 〈Ψ(α)〉p
• Output ψ.

Decrypt(ψ, sk) :

• π = 〈(ψ − bψ ·B/pe)〉2

38

• Output π.

Add s(ψ1, ψ2, pk) :

• ψ3 = 〈ψ1 + ψ2〉p
• Output ψ3.

Mult(ψ1, ψ2, pk) :

• ψ3 = 〈ψ1 · ψ2〉p
• Output ψ3.

These algorithms require some analysis to determine how the parameters should be chosen
and the amount of operations which can be performed while decryption remains correct.
Per algorithm we will give a more detailed description.

KeyGen: the algorithm produces a small generator γ = g(θ) for a residue degree one
prime ideal in the number field K defined by the monic irreducible polynomial f(x).
Given our prime ideal p = γ · Z[θ] we need to find the two element presentation, which
forms the public key. The two element presentation is chosen because it is significantly
smaller than storing the entire HNF.
To achieve this, we must find the correct root α of f(x). It is obvious that γ ∈ p, since it
generates it, so γ mod p ≡ 0 and thus we have g(α) ≡ 0 mod p. This implies that f(x)
and g(x) have at least one root in common. Since p is a residue degree one prime ideal,
there can only exist one common root, otherwise γ would generate two different prime
ideals 〈p, θ − α1〉 and 〈p, θ − α2〉, which is clearly impossible.
Now that we have established that f and g only have a single root in common, the greatest
common divisor D(x) of these polynomials suffices to find this root, since it will be of
degree one and have α as only root.
So we have found the two element representation p = p ·Z[θ] + (θ−α) ·Z[θ]. KeyGen also
computes Z(x) ∈ Z[x], for which it holds that Z(x)g(x) ≡ p mod f(x). This value is of
importance for decryption, as we will see soon.

Encrypt: to encrypt a message π, i.e. a single bit, we generate a random polynomial R(x)
with ||R(x)||∞ ≤ µ/2 and deg(R(x)) = n−1. Now the ciphertext is computed by adding π
to R(x) to form Ψ(x), which is then reduced modulo p, i.e. Ψ(θ) mod p ≡ Ψ(α) mod p.
We denote this value, which is the ciphertext, by ψ. Note that since we have Ψ(α)−ψ ≡ 0
mod p, we know (Ψ(θ)− ψ) ∈ p.

Decrypt: we are given a ciphertext ψ for which it holds that Ψ(θ) − ψ ∈ p, for some
unknown Ψ(θ). Note that recovering the message is trivial after we have found Ψ(θ).
Now we know that p is a principal ideal, so it has a single generator. Therefore, we can
find a q(θ) ∈ Z[θ] such that Ψ(θ)− ψ = q(θ)γ = q(θ)g(θ). Remember that in KeyGen we

39

computed Z(x) such that Z(x)g(x) ≡ p mod f(x). So the inverse of g(θ) equals Z(θ)/p.
Hence we find

− ψZ(θ)/p = q(θ)−Ψ(θ)Z(θ)/p. (8)

Now if ||Ψ(θ)Z(θ)/p||∞ < 1/2, simply rounding −ψZ(θ)/p will yield q(θ). Since we know
||Ψ(θ)||∞ < µ/2, we will have to find a bound for Z(θ). To do this, we first introduce some
terminology.

Sylvester matrix For two polynomials f(x) and g(x), of degree n and m < n respec-
tively, for which it holds that gcd(f(x), g(x)) = 1 over Q[x], we can find two polynomials
t(x), s(x) ∈ Q[x] such that t(x)f(x) + s(x)g(x) = 1. We will show that we can find these
polynomials easily using the Sylvester Matrix, which is defined as follows.

Definition 4.2.1. For two polynomials f(x) =
∑n−1

i=0 fix
i and g(x) =

∑m−1
i=0 gix

i, we define
the Sylvester matrix to be the following matrix.

n︷ ︸︸ ︷

Syl(g, f) =



gm−1z gm−2 gm−3 . . . g1 g0 0 0 . . . 0
0 gm−1 gm−2 . . . g2 g1 g0 0 . . . 0
...

. .
...

0 . . . 0 gm−1 gm−2 . . . g2 g1 g0 0
0 0 . . . 0 gm−1 gm−2 . . . g2 g1 g0

fn−1 fn−2 fn−3 . . . f1 f0 0 0 . . . 0
0 fn−1 fn−2 . . . f2 f1 f0 0 . . . 0
...

. .
...

0 . . . 0 fn−1 fn−2 . . . f2 f1 f0 0
0 0 . . . 0 fn−1 fn−2 . . . f2 f1 f0


︸ ︷︷ ︸

m

With the Sylvester matrix, we have the following property:

Syl(g, f)T ·



sn−1
...
s0

tm−1
...
t0


=



0

...

0
1


, (9)

where si and ti are the coefficients of s(x) and t(x) respectively. This property can be
shown with a straightforward induction proof. We are now ready for the following lemma.

Lemma 4.2.2. Let f(x), g(x) ∈ Z[x], with f(x) monic, deg(f) = n, deg(g) = m < n,
res(f, g) = p prime. Then there exists a polynomial Z(x) ∈ Z[x] with Z(x)g(x) = p
mod f(x) and ||Z(x)||∞ ≤ ||g(x)||n−1

2 ||f(x)||m2 .

40

Proof. We have gcd(f(x), g(x)) = 1 over Q[x], so there exists polynomials s(x), t(x) ∈ Q[x]
with deg(s) < n, deg(t) < m such that s(x)g(x) + t(x)f(x) = 1. We are only interested in
the coefficients for s(x). These can be found using Cramer’s rule, i.e.

si =
det((Syl(g, f)T)i)

det(Syl(g, f)T)
=

det((Syl(g, f)T)i)

p
,

where (Syl(g, f)T)i denotes the Sylvester matrix of f and g, with the ith column replaced

by
(
0 . . . 0 1

)T
. Now since s(x)g(x) ≡ 1 mod f(x), we find that Z(x) = p · s(x). In

order to bound the norm of Z(x), we use Hadamard’s inequality for determinants:

||Z(x)||∞ ≤ max
i

m+n∏
j=1

||((Syl(g, f)T)i)j||2 ≤ ||g||n−1
2 ||f ||m2 .

Here ((Syl(g, f)T)i)j denotes the jth column of (Syl(g, f)T)i. The latter inequality holds
because the first n columns have norm ||g||2, the latter m columns have ||f ||2 and the ith

column is replaced by
(
0 . . . 0 1

)T
, for 1 ≤ i ≤ n. Integrality of Z(x) follows from the

fact that the determinant of an integral matrix is itself integral.

Since with very high probability we have that m = n− 1 we will assume from now on that
this is the case. Define

δ∞ := sup

{ ||g(x)h(x) mod f(x)∞
||g(x)||∞ · ||h(x)||∞

, deg(g), deg(h) < n

}
.

Then we have
||g(θ)h(θ)||∞ ≤ δ∞ · ||g(θ)||∞ · ||h(θ)||∞.

For different polynomials f(x), δ∞ can range from exponential in n to linear in n, as is
shown in the following lemma.

Lemma 4.2.3. Let f1(x) = xn − a and f2(x) = xn − axn−1, then δ∞(f1) ≤ |a|n and
δ∞(f2) ≤ |a|n−1n2.

Proof. Let g =
∑n−1

i=0 gix
i and h =

∑n−1
i=0 hix

i, then

g · h mod f1 ≡
n−1∑
k=0

(∑
0≤i≤k

gihk−i + a
∑
k<i<n

gihn+k−i

)
xk.

So we find that ||g ·h mod f1||∞ ≤ |a|n||g||∞ · ||h||∞ from which the bound follows. Now if
we write g ·h =

∑2n−2
k=0 ckx

k, then g ·h mod f2 =
∑n−1

k=0 dkx
k with dk = ck for 0 ≤ k ≤ n−2

and dk =
∑n−1

i=0 cn−1+ia
i for k = n− 1. Clearly we have ci ≤ n||g||∞ · ||h||∞ for all i, so for

dk we find dk ≤ |a|n−1n2||g||∞ · ||h||∞ from which the bound follows.

41

Returning to our initial goal, we need ||Ψ(θ)Z(θ)/p||∞ < 1/2 for decryption to work. The
lemmas yield that

||Ψ(θ)Z(θ)/p||∞ ≤
δ∞||Ψ||∞ · ||g||n−1

2 · ||f ||n−1
2

p
,

so decryption will work if

||Ψ||∞ ≤
p

2δ∞||g||n−1
2 · ||f ||n−1

2

=: rdec.

Now if ||Ψ||∞ < rdec, we find from equation 8 that q(θ) = −bψZ(θ)/pe and thus that
Ψ(x) = ψ + q(θ)γ = ψ − bψZ(x)/peγ. Furthermore, π ≡ Ψ(x) mod 2 and γ ≡ 1 mod 2,
so π ≡ Ψ(x) mod 2 ≡ ψ − bZ(x)/pe mod 2 and thus we must have π ≡ ψ − bψB/pe
mod 2. Here B = z0 mod 2p suffices.
The resultant p will be close to ||g||n2 ||f ||n−1

2 , so we find rdec ≈ ||g||2/(2δ∞). g is generated
such that ||g||∞ ≈ η, which gives

rdec ≈
√
nη

2δ∞
.

If we then select f(x) = xn + 1, this reduces to rdec ≈ η/(2
√
n).

Add and Mult: since it is obvious that these algorithms are correct, we will only analyze
what happens to the error term as the operations are performed on the ciphertext. Let
π1, π2 ∈ {0, 1} be two messages and let ni ∈ B∞,n(ri − 1) be random polynomials. Then
Ψi(x) = πi + ni(x) represent the encryption polynomials, with

Ψi(x) ∈ B∞,n(ri).

Now for Ψ3(x) = Ψ1(x) + Ψ2(x) and Ψ4(x) = Ψ1(x) ·Ψ2(x) we clearly find that

Ψ3(x) ∈ B∞,n(r1 + r2)

Ψ4(x) ∈ B∞,n(δ∞ · r1 · r2).

Typically we have Ψ(x) ∈ B∞,n(µ+1), so after a circuit of multiplicative depth d we expect

Ψ′(x) ∈ B∞,n(r), where r ≈ (δ∞ · µ)2d . Correct decryption is only possible for r ≤ rdec, so
we find the following.

(δ∞µ)2d ≤ rdec

2d log(δ∞µ) ≤ log(rdec)

d log(2) + log log(δ∞µ) ≤ log log(rdec)

d log(2) ≤ log log(rdec)− log log(δ∞µ).

This yields a bound on the maximum multiplicative depth of a circuit which we can evaluate
for each f .

42

4.2.2 The Fully Homomorphic Scheme

With the somewhat homomorphic scheme in place it remains to turn this scheme into a
fully homomorphic one. Since the scheme is actually a specialization of Gentry’s scheme,
we will not describe this in too much detail.
We need to define an algorithm which refreshes a given ciphertext, Recrypt. To define this
algorithm, we first need to redefine KeyGen. It will be identical to what’s given above, with
in addition the following operations, where s1 and s2 are two given integer parameters:

• Generate s1 uniformly random integers Bi in [−p, p], such that there exists a bit-
vector sk with w(sk) = s2 for which it holds that

s1∑
i=1

skiBi = B.

• Encrypt ski under the somewhat homomorphic scheme to obtain ci = Encrypt(ski,PK).

• The public key now consists of

PK = (p, α, s1, s2, {ci, Bi}s1i=1).

We can now define the Recrypt procedure. For a detailed description and analysis, we refer
to [SV10, Appendix A].

Recrypt(ψ,PK):

• Compute the first t bits of the s1 floating point numbers (ψBi mod 2p)/p and
form an s1 × t-matrix (bi,j) for i = 1, . . . , s1 and j = 1, . . . , t.

• Encrypt each of the bits bi,j to obtain an s1 × t-matrix of “clean” ciphertexts
(ψi,j).

• Multiply row i of the matrix (ψi,j) with the corresponding ci. This matrix now
represents the element-wise encryption of a matrix with only s2 non-zero rows.

• Add the rows of this matrix together and reduce its output to obtain the new
encryption of ψ.

This completes the fully homomorphic scheme. Next we will compare the scheme to the
scheme as presented by Gentry and analyze the security of this variant.

4.2.3 Comparison and security

Comparison
As before mentioned, the variant by Smart and Vercauteren is a specialization of Gentry’s
scheme. We have that the generator γ is equivalent to Bsk

J , and 〈p, θ − α〉 is equivalent to
Bpk
J . Furthermore, the ideal I is simply set to (2). Note that the main difference here is

43

the size of the public basis.
In the encryption algorithm, one computes Ψ(θ) = π(θ) + 2R(θ), which is exactly equal
to ψ′ as generated in Gentry’s scheme. Now in the original scheme this value is reduced
modulo J using Bpk

J . But in this variant the reduction modulo p is computed by using the
two-element presentation, i.e. one replaces θ by α and reduces modulo p. In the end this
actually is equivalent, but easier to compute.

Security
For this variant we cover several aspects of security, namely Key Recovery, Onewayness of
Encryption and Semantic security.

Concerning Key Recovery we recall that the public key consists of a principal degree one
prime ideal in the two element representation, and the secret key consists of the inverse of
a small generator of this ideal. This relates recovering the private key from the public key
to an instance of the small principal ideal problem, which is defined as follows.

Definition 4.2.4. (Small Principal Ideal Problem) Given a principal ideal a in either two
element or HNF presentation, compute a small generator of this ideal.

This problem is a well researched problem in algebraic number theory for which there are
no efficient solutions [SV10, p. 430].

Instead of extracting the private key from the public key, one could also try to recover the
message straight from the ciphertext without using the key. It is easy to see that this is
equivalent to solving the following problem:
Given p and α as in the public key, and a ciphertext ψ ∈ Fp, find xi for i = 0, . . . , n − 1
such that

n−1∑
i=0

xi · αi = ψ − k · p,

for some integer k and |xi| ≤ renc. Using the HNF-matrix H, induced by the public key
value, we can rewrite this to

(k,−x1, . . . ,−xn) ·H = (ψ − x0,−x1, . . . ,−xn).

Note that this vector is in the lattice and is very close to the non-lattice vector (ψ, 0, . . . 0),
so finding the plaintext given a ciphertext is related to the shortest vector problem.
As mentioned in section 4.1.3, the problem can also be related to BDDP, in which case
solving the problem has difficulty 2n/ε where ε such that 2ε = rdec/renc.

Remaining to address is the semantic security of the scheme, which is related to the fol-
lowing problem, dubbed the Polynomial Coset Problem.

Definition 4.2.5. [SV10, p. 431] (Polynomial Coset Problem) The challenger first ran-
domly selects b ∈ {0, 1} and runs KeyGen to obtain p and α. If b = 0 the challenger

44

generates a random polynomial R(x) ∈ B∞,n(renc) and sets r = R(α) mod p. But if b = 1,
it randomly selects r ∈ Fp.
Now the problem is to guess whether b = 0 or b = 1, given (r, pk).

This yields the following theorem.

Theorem 4.2.6. Suppose there exists an algorithm A which (t, ε) breaks the semantic
security of our scheme. Then there exists an algorithm B which (t′, ε′) solves PCP, where
t′ ≈ t and ε′ = ε/2.

Proof. The proof is essentially analogous to the proof of theorem 4.1.20 and is given in full
detail in [SV10, p. 431].

45

4.3 The Gentry-Halevi Variant

The variant as presented by Gentry and Halevi is in fact an implementation of the variant
by Smart and Vercauteren with some clever improvements. Since this is the variant which
is used in the JCrypTool plugin which is presented in section 5, we will skip some details
in this section. These details are given in 5. Some techniques are used to speed up the
different algorithms in the implementation, these will be given separately in the section
describing the plugin.

4.3.1 The Somewhat Homomorphic Scheme

As mentioned the scheme strongly resembles the variant by Smart and Vercauteren, so we
will jump straight into describing the algorithms of the somewhat homomorphic scheme.
We select f(x) = x2m + 1, then the scheme is as follows.

KeyGen:
To generate the public and private key, we perform the following steps:

• Select a random integer polynomial v of degree n− 1, where each coefficient is
a t-bit integer. The rotation basis of v, V, now defines an integer lattice. And
in addition, we require the HNF of V to be of the following form:

HNF(V) =


d 0 0 . . . 0
−r 1 0 . . . 0

−[r2]d 0 1
. . .

...
...

...
. 0

−[rn−1]d 0 . . . 0 1

 ,

where d is the resultant of v(x) and f(x), and r an integer such that there exists
an integer vector y with y ×V = 〈−r, 1, 0, . . . , 0〉. We will show later that the
existence of such y and r is required and sufficient for V to have such an HNF.

• Compute a polynomial w(x) such that

w(x)v(x) = d mod f(x)

holds. Associate with w(x) also its rotation basis W.

We now have the public key HNF(V), which can be represented by pk = (d, r) and
the private key (v, w), but we will show that it suffices to have one coefficient of wi,
which must be odd. So sk = w.

Encrypt(π, pk): In this scheme, we again take π ∈M = {0, 1}.

• Generate a random n-dimensional vector u with ui = 0 with probability q and
ui = ±1 each with probability (1− q)/2.

46

• a = 2u + πe1

• ψ = a mod HNF(V).

We will later show that we can represent ψ by a single integer ψ := [a(r)]d.

Decrypt(ψ, pk, sk):

• a = ψ mod V

• π = a0 mod 2

We will later show that we can find π with π = [ψ ·w]d mod 2, and thus do not need
the public key for decryption.

Add, Mult: Will be omitted as ψ is later shown to be an integer.

The description of the algorithms requires some additional clarifications. These will be
given below.

KeyGen: We claim that the existence of an integer vector y with y×V = 〈−r, 1, 0, . . . , 0〉
is necessary and sufficient for V to have HNF of the correct form. This is proven in the
following lemma.

Lemma 4.3.1. The Hermite normal form of V is equal to the identity matrix in all but
the leftmost column, if and only if the lattice spanned by the rows of V contains a vector
of the form r = 〈−r, 1, 0, . . . , 0〉.
Proof. Denote by B the Hermite normal form of V. It is clear that the second row of B
must be of the form r, for some integer r, which implies that the condition is necessary. It
remains to show that the condition is sufficient.
We know that the vector 〈d, 0, . . . , 0〉 is in the lattice L(V), since we have 〈w0, w1, . . . , wn−1〉×
V = 〈d, 0, . . . , 0〉. Now assume that L(V) also contains the vector r, this implies in ad-
dition that we have 〈[−r]d, 1, 0, . . . , 0〉 ∈ L(V), since we can subtract multiples of d · e1.
This gives the first two rows of B. For i = 1, 2, . . . , n− 1 let ri := [ri]d. We will prove by
induction over i that for all i = 1, 2, . . . , n− 1 the vector

ri := −rie1 + ei+1

is in the lattice. Note that these vectors form exactly the rows of B. Since all the rows in
B are lattice vectors, they are all independent, and B has the same determinant as V, we
have that they must span L(V) itself.
The start the induction, note that this is true for i = 1 by the assumption that r ∈ L(V).
Now assume that ri ∈ L(V) for some i ∈ [1, n−2], then we will prove that it also holds for
i+ 1. We know that the lattice is closed under rotation, so since ri = −rie1 + ei+1 ∈ L(V)
we also have si+1 = −rie2 + ei+2 ∈ L(V). It is then clear that L(V) also contains

si+1 + rir = (−rie2 + ei+2) + ri(−re1 + e2) = −rire1 + ei+2.

47

And thus by adding or subtracting a multiple of de1, we find that [−rri]de1 + ei+2 =
−[ri+1]de1 + ei+2 = ri+1, which completes the induction.
Now since we know that the HNF is unique and that the given matrix B is in HNF and
spans L(V), this must be the Hermite normal form of V.

Encrypt: We claim that ψ = [a(r)]d. In the encryption phase, we compute ψ = a
mod HNF(V). Let B = HNF(V), then this reduces to ψ = a − (ba × B−1e × B) =
[a×B−1]×B. We know exactly what B looks like, and it is easy to find its inverse:

B−1 =
1

d



1 0 0 0 . . . 0
r d 0 0 . . . 0

[r2]d 0 d 0 . . . 0

[r3]d 0 0 d
. . .

...
...

...
...

. 0
[rn−1]d 0 0 . . . 0 d


.

Now we have a×B−1 = 〈 s
d
, a1, . . . , an−1〉 for an integer s = a(r) mod d. It is clear that the

fractional part equals [a×B−1] = 〈 [a(r)]d
d

, 0, . . . , 0〉 and we thus have ψ = [a×B−1]×B =
〈[a(r)]d, 0, . . . , 0〉, which clearly is determined by ψ = [a(r)]d.

Decrypt: It is claimed that decryption can be done with a single odd coefficient of the
polynomial w. This is not very obvious, so here is some clarification. The decryption
recovers a with a = ψ mod V, after which it is trivial to find π. Now, like in the encryption
phase, this translates to a = ψ − (bψ × V−1e × V) = [ψ ×W/d] × V. We know that
ψ − a ∈ L(V), so for an integer vector y, we find ψ = y ×V + a. This then yields

[ψ ×W/d]×V = [y ×V ×W/d+ a×V ×W/d] = [a×W/d]×V.

Note that [a×W/d]×V is supposed to be a, so we must have [a×W/d] = (a×W/d),
which means decryption only is correct if every entry in a×W is less than d/2 in absolute
value.
This now gives us the equation [ψ ×W/d] = a×W/d, and thus

[ψ ×W]d = a×W.

This gives us

[ψ ×W]d = [ψ · 〈w0, w1, . . . , wn−1〉]d = 〈[ψw0]d, [ψw1]d, . . . , [ψwn−1]d〉,

but we also know that

[ψ ×W]d = a×W = 2u×W + πe1 ×W = 2u×W + π · 〈w0, w1, . . . , wn−1〉.

These two equations together give us that ψ must satisfy the following

〈[ψw0]d, [ψw1]d, . . . , [ψwn−1]d〉 = π · 〈w0, w1, . . . , wn−1〉 mod 2.

48

So now if we have an odd coefficient of w(x), say w, we find that π = [ψ · w]d mod 2.

This wraps up the changes made to the somewhat homomorphic scheme. Now we will
make the scheme fully homomorphic.

4.3.2 The Fully Homomorphic Scheme

As before, we only need to introduce the Recrypt procedure. First, some additional steps
are added to KeyGen:

• Generate a set of random elements B = {xi ∈ Zd : i = 1, 2, . . . , S} such that there
exists a bit-vector σ = 〈σ1, . . . , σS〉 with w(σ) = s for which it holds that

S∑
i=1

σixi = w mod d.

• We add this set of random elements along with an encrypted version of σ, denoted
by σ̄, to the public key. Later we will see that we can optimize this to reduce the
size of the public key. This will be thoroughly covered in section 5.1.4.

Before we can introduce the Recrypt procedure, we will first derive its steps. Given a
ciphertext ψ ∈ Zd, we first compute yi := 〈ψxi〉d. Decryption, denoted as Dψ,d(σ), then is
as follows

Dψ,d(σ) :=

[
S∑
i=1

σiyi

]
d

mod 2.

We can now deduce that[
S∑
i=1

σiyi

]
d

=

(
S∑
i=1

σiyi

)
− d ·

⌊
S∑
i=1

σi
yi
d

⌉
,

and since we reduce everything modulo 2 and d is odd, this gives us

Dψ,d(σ) =

(
S⊕
i=1

σi〈yi〉2
)
⊕
〈⌊

S∑
i=1

σi
yi
d

⌉〉
2

.

Recall that [wψ]d = π + [2u(r)]d, so if the ciphertext ψ is closer to the lattice than the
scheme can correctly decrypt, it follows that wψ is much closer to a multiple of d than
d/2. If we keep the noise small so that ψ is within distance 1/(s + 1) from the nearest
lattice point, we have that the distance from wψ to the nearest multiple of d is smaller
than d/2(s+ 1). This leads to

abs([wψ]d) = abs

([
S∑
i=1

σiyi

]
d

)
<

d

2(s+ 1)

49

and thus

abs

([
S∑
i=1

σi
yi
d

])
<

1

2(s+ 1)
.

Note that yi ∈ Zd, so yi/d ∈ [0, 1). Define ξ := dlog2(s+ 1)e to be the precision parameter,
with which we approximate every yi/d with zi to within ξ bits after the binary point. This
means we have abs(zi− yi

d
) ≤ 2−(ξ+1) ≤ 1/2(s+1). Now suppose we replace one of the yi/d

with zi, if σi = 0 this makes no difference. If instead σi = 1, we make an error in the total
sum of at most 2−(ξ+1). Since w(σ) = s, we find abs((

∑
i σizi)− (

∑
j σj

yj
d

)) ≤ s/2(s + 1).
We know that the latter sum is at distance at most 1/2(s + 1) from the nearest integer,
which means that the former sum is at distance at most 1/2(s+1)+s/2(s+1) = 1/2 from
the same integer. This implies that⌊

S∑
i=1

σi
yi
d

⌉
=

⌊
S∑
i=1

σizi

⌉
.

So we have established that decryption can be computed as Dψ,d(σ) = 〈b∑i σizie〉2 ⊕⊕
i σi〈yi〉2. Now the Recrypt procedure is as follows.

Recrypt(ψ, pk):

• Compute yi = 〈xi · ψ〉d and approximate zi
ξ≈ yi/d. Store these ξ + 1 bits in an

S × (ξ + 1)-matrix Ψ.

• Encrypt Ψ elementwise.

• Multiply row i of Ψ with σ̄i.

• Add these rows together and reduce to a new encryption of ψ

50

4.4 Fully Homomorphic Encryption over the Integers

This scheme is due to van Dijk, Gentry, Halevi and Vaikuntanathan [vDGHV10]. Their aim
was to create a fully homomorphic scheme using only basic modular arithmetic. Though
working over the integers, also this scheme only encrypts a single bit at a time. The scheme
uses several parameters, some of which are the following:

ρ the bit-length of the noise,

ρ′ a secondary noise parameter,

η the bit-length of the secret key,

γ the bit-length of the integers in the public key,

τ the number of integers in the public key.

These parameters will be set according to the following:

• ρ = ω(log λ), to be safe against brute force attacks on the noise,

• ρ′ = ρ+ ω(log λ),

• η ≥ ρ ·Θ(λ log2 λ), necessary to obtain bootstrappability,

• γ = ω(η2 log λ), to protect against lattice-based attacks,

• τ ≥ γ + ω(log λ), so the leftover hash lemma can be used.

Also, the following distribution is used to efficiently sample integers a, for which [a]p << p.

Dγ,ρ(p) =
{

choose uniformly random q ∈ Z∩[0, 2γ/p), r ∈ Z∩(−2ρ, 2ρ) : output x = pq+r
}
.

4.4.1 The Somewhat Homomorphic Scheme

As usual for somewhat homomorphic schemes, this scheme consists of four different algo-
rithms, namely key generation, encryption, evaluation of a circuit and decryption. These
are as follows:

KeyGen(λ) The secret key is a uniformly random selected odd η-bit integer,
i.e. p ∈R (2Z + 1) ∩ [2η−1, 2η). To create the public key, sample xi ∈ Dγ,ρ(p) for
i = 0, . . . , τ . Relabel so that x0 is the largest. Now x0 must be odd and rp(x0) even,
otherwise re-sample (recall that qp(z) and rp(z) respectively denote the quotient and
the remainder of z with respect to p). The public key then is the collection of these
xi’s, 〈x0, . . . , xτ 〉.

Encrypt(pk, π ∈ {0, 1}) Randomly take a subset S ⊆ {1, 2, . . . , τ} and an integer r ∈
(−2ρ

′
, 2ρ

′
), the ciphertext then is ψ = [π + 2r + 2

∑
i∈S xi]x0 .

51

Evaluate(pk, C, ψ1, . . . , ψt) Apply the circuit C to the ciphertexts ψ1, . . . , ψt and return
the resulting integer.

Decrypt(sk, ψ) The plaintext is π = [ψ]p mod 2. Actually, since p is odd, we find π = [ψ]p
mod 2 = [c− bc/pe]2 = (c mod 2)⊕ (bc/pe mod 2).

We claim that the scheme is somewhat homomorphic, but this is not entirely obvious.
Later, we will see that a ciphertext is of the form ψ = a · p + 2b + π, for some a and
b. Clearly, for addition the noise only doubles. For multiplication, we find ψ′ = a′ · p +
2(2b1b2 + b1π2 + b2π1) +π1π2, so the noise approximately squares. This will soon be proved
formally.
Now consider the generalization of the mod-2 circuits to circuits on the integers. We then
define a permitted circuit as follows.

Definition 4.4.1. A permitted circuit is a circuit in which for any α ≥ 1 and any set of
integer inputs, all less than 2α(ρ′+2) in absolute value, it holds that the generalized circuit’s
output integer has absolute value at most 2α(η−4). Denote this set of circuits by CE .

This definition gives us the following lemma.

Lemma 4.4.2. [vDGHV10, p. 6] The scheme is correct for CE .

Proof. To ensure correct decryption, we require that the noise in the ciphertext is at most
p/2. First consider a ciphertext output by Encrypt. Then we have ψ = a · p + (2b + π).
Clearly 2b + π has the same parity as π. We will first bound |2b + π|. Per definition, we
have ψ = [π + 2r +

∑
i∈S xi]x0 . Since |x0| ≥ |xi| for i ∈ {1, . . . , τ}, this yields

ψ =

(
π + 2r +

∑
i∈S

xi

)
+ k · x0,

for some |k| ≤ τ . Now for every i, we have per definition that there exist integers qi and
ri with |ri| ≤ 2ρ such that xi = qi · p+ 2ri. This gives us

ψ = p

(
kq0 +

∑
i∈S

qi

)
+

(
π + 2r + k · 2r0 +

∑
i∈S

2ri

)
.

The absolute value can be bounded by |2b+ π| ≤ (4τ + 3)2ρ < τ2ρ+3.
Consider a circuit C ∈ CE , with t inputs and a single output. Let C ′ denote the generalized
circuit over the integers. Now we have that C ′(ψ1, . . . , ψt) ∈ C ′(2b1 + π1, . . . , 2bt + πt) +
pZ. This yields that [C ′(2b1 + π1, . . . , 2bt + πt)]p has the same parity as C(π1, . . . , πt).
Furthermore,

|C ′(2b1 + π1, . . . , 2bt + πt)| ≤ 2η−4 ≤ p/8

by the definition of the permitted circuits and since |2bi + πi| ≤ τ2ρ+3. Which clearly
suffices to ensure correct decryption.

52

The definition of permitted circuits seems not very intuitive. Now if one considers these
circuits, a k-fan-in add gate can only increase the size of the ciphertext by at most a
factor k, while a 2-fan-in Mult gate can square this size. So it makes more sense to relate
the permitted circuits to the multiplicative depth of the circuits, or the degree of the
multivariate polynomial which it actually computes. This is formalized in the following
lemma.

Lemma 4.4.3. [vDGHV10, p. 7] Let C be a boolean circuit with t inputs, and let C† be
the associated integer circuit. Let f(x1, . . . , xt) be the multivariate polynomial which C†

computes. Then for d = deg(f) and |f | the `1 norm of the coefficient vector of f , we have
that if |f |(2ρ′+2)d ≤ 2η−4 then C ∈ CE .

This in particular implies that E can correctly evaluate f as long as

d ≤ η − 4− log |f |
ρ′ + 2

.

Denote the polynomials for which this holds, the permitted polynomials, by PE and de-
note by C(PE) the set of circuits that compute these polynomials. We clearly have that
C(PE) ⊆ CE .

Though we can simply reduce modulo x0 in the encryption phase, we cannot do this during
the evaluation of a circuit, since after a single multiplication, the ciphertext size grows much
larger than x0. In that case the error becomes much larger than p/2, introducing possible
errors in decryption. So we need another strategy to reduce the ciphertext size.
One option is to add in the public key more elements of the form x′i = q′i · p+ 2r′i as before,
only with q′i according to

q′i
R∈ Z ∩ [2γ+i−1/p, 2γ+i/p),

such that x′i ∈ [2γ+i, 2γ+i+1]. Now as soon as the ciphertext grows larger than 2γ, we reduce
it consecutively modulo x′γ, x

′
γ−1, . . . , x

′
0. As a result the ciphertext is bounded in absolute

value by 2γ. It is clear that the bit-length of the ciphertext can at most double with a
single operation. This means that the ciphertext is always smaller than 2x′γ, which means
that the reductions only involve small multiples of the xi’s, and thus the error remains
small.

4.4.2 Security

The security of this somewhat homomorphic scheme can be related to the approximate-
GCD problem. This problem is in that case defined as follows.

Definition 4.4.4. (Approximate-GCD) The (ρ, η, γ)−approximate-gcd problem is to find
p, given polynomially many samples from Dγ,ρ(p), for a randomly chosen η-bit odd integer
p.

53

We have the following theorem, which we will present with only a sketch of the proof. The
formal details are in [vDGHV10, pp. 9 - 12].

Theorem 4.4.5. Fix the parameters (ρ, ρ′, η, γ, τ) as in the somewhat homomorphic scheme.
Then any attack A with advantage ε on the scheme can be converted into an algorithm B
that solves the (ρ, η, γ)-approximation-gcd problem with success probability at least ε/2. The
running time of B is polynomial in the running time of A, λ and in 1/ε.

Proof. We have that A has advantage ε on the encryption scheme. Thus given a cipher-
text, A guesses the encrypted bit with probability 1

2
+ ε. We will describe step by step

what B does to solve the approximate-gcd problem.

Step 1: Creating a public key. First B creates a fake public key by sampling τ + 1
numbers x0, . . . , xτ from Dγ,ρ(p), and relabeling it so that x0 is the largest. If x0 is even
it repeats this until x0 is odd. Now if rp(x0) happens to be even, then this fake public
key has exactly the same distribution as a real public key. This obviously happens with
probability 1

2
.

Step 2: An LSB predictor. To find p, and thus solve the approximate-gcd problem, B
uses A to predict the least significant bit of the quotient of an integer with respect to p. B
can roughly do this by creating a fake ciphertext, using the previously created fake public
key. This ciphertext is of the form [z + π + 2r +

∑
i∈S xi]x0 , resembling a real ciphertext.

Then A can be used to guess the parity of this ciphertext, say a, which implies the parity
of qp(z) by a⊕ parity(z)⊕ π.
Now A only has probability of 1

2
of guessing correctly, so B creates poly(λ)/ε fake cipher-

texts using the same public key, and takes the majority vote of the guessed parities for
qp(z), yielding the correct parity with high probability.

Step 3: Binary GCD. Now that B has the possession of an LSB predictor, it can use a
sort of binary-GCD algorithm to recover p. The algorithm is as follows, upon input of two
integers z1, z2.

1. If z2 > z1 then swap them.

2. Use the LSB predictor to learn bi = [qp(zi)]2.

3. If both qp(zi) are odd then set z1 = z1 − z2 and b1 = 0.

4. For each zi with bi = 0, set zi = (zi − parity(zi))/2.

Repeat this process until z2 = 0. We then have that qp(z1) equals the odd part of
gcd(qp(z1), qp(z2)) (for the two initial integers).

Step 4: Recovering p. Recovering p now is straightforward, B draws z∗1 , z
∗
2 from Dγ,ρ(p)

and applies the algorithm. Now if the odd part of gcd(qp(z
∗
1), qp(z

∗
2)) equals one, the

54

algorithm from above will return z̃ = p+ r, for some |r| ≤ 2ρ. Otherwise, repeat this with
two new z∗i .
Finally B runs the binary-GCD algorithm from above again with z∗1 and z̃. Note that since
qp(z̃) will always remain odd, it will never be changed. Now clearly the sequence of bits
b1 in the algorithm exactly equals the binary representation of qp(z

∗
1) and B can recover

p = bz∗1/qp(z∗1)e.

4.4.3 The Fully Homomorphic Scheme

As usual, to make the scheme fully homomorphic we need to squash the decryption circuit.
Recall that decryption only requires to compute [ψ − bψ/pe]2. To make this step easier,
we add to the public key a set y = {y1, y2, . . . , yξ} where yi ∈ [0, 2) rational with κ bits of
precision. This set is subject to the constraint that there exists a subset S ⊂ {1, . . . , ξ},
with |S| = ζ, for which it holds that

∑
i∈S yi ≈ 1/p mod 2. In addition, the secret key is

replaced by the indicator vector of S.
The encryption scheme then is as follows:

KeyGen Let sk∗ and pk∗ be as before. Now set xp = b2κ/pe and let s be a random ξ-
bit vector with Hamming weight ζ. Now let S = {i : si = 1} and choose random
integers ui ∈ Z ∩ [0, 2κ+1), such that

∑
i∈S ui = xp mod 2κ+1. Set yi = ui/2

κ and
define y = 〈y1, . . . , yξ〉. It follows that these yi are in the interval [0, 2), have κ bits
of precision and [

∑
i∈S yi]2 = (1/p)−∆p with |∆p| < 2−κ.

Encrypt and Evaluate Compute the ciphertext ψ∗ as before and compute zi = [ψ∗ · yi]2,
with only n = dlog ζe+ 3 bits of precision. Output ψ∗ and z = 〈z1, . . . , zξ〉.

Decrypt The plaintext is π = [ψ∗ − b∑i sizie]2.

It is not obvious that the revised scheme is still correct, therefore the following lemma is
presented.

Lemma 4.4.6. [vDGHV10, pp. 16] The modified scheme is correct for C(PE). Moreover,
for any ciphertext (ψ∗, z) generated by evaluating a permitted polynomial, it holds that∑

i sizi is within 1/4 of an integer.

Now it only remains to show that this scheme is indeed bootstrappable.

Theorem 4.4.7. [vDGHV10, pp. 17] Let E be the revised scheme as above, and let DE be
the set of augmented squashed decryption circuits. Then we have that DE ⊂ C(P).

Proof. (outline) As we have seen in lemma 4.4.3, we require that the decryption circuit
can be written as a polynomial with degree d satisfying d ≤ (η − 4− log |f |)/(ρ′ + 2). To
show this, the decryption process is split up into three steps:

1. For i ∈ {1, . . . , ξ}, set ai = si · zi.

55

2. Generate n+1 numbers wj, each with less than n bits of precision, such that
∑

j wj =∑
i ai mod 2.

3. Output ψ∗ − (
∑

j wj) mod 2.

The first step is easy to express as a circuit with multiplicative depth 1, but the second and
third are a bit tougher. To achieve this, a method analogous to the method as presented in
lemma 4.1.16 is used. In short, since the ai’s have precision less than n, we can compute the
Hamming weights “columnwise”, and obtain n+ 1 numbers that sum up to

∑
i ai mod 2.

Since at most ζ of the ai’s are nonzero, these wj have precision dlog(ζ + 1)e < n. The
Hamming weights can be efficiently computed using elementary symmetric polynomials.
To perform the final step, the three-for-two trick can be used [KR88, Sec. 4.2.2].
Omitting the further details, this shows the bootstrappability of the scheme when η ≥
ρξ(λ log2 λ).

56

5 Implementation in JCrypTool

The plug-in for JCrypTool consists of three separate parts, an implementation of the fully
homomorphic Gentry-Halevi variant, an implementation of RSA and an implementation
of the Paillier cryptosystem. The implementation of RSA is built on an existing ver-
sion of RSA which is already available within JCT. It simply uses the built-in encryption
and decryption from RSA and shows the homomorphic properties by multiplying the cor-
responding ciphertexts. This is not very interesting, so it will not be discussed in this
section. The implementation of Paillier is straightforward, so it is not discussed either.

5.1 Optimization in the Gentry-Halevi Variant

As mentioned in Section 4.3, several techniques proposed by Gentry and Halevi to speed
up the different algorithms are used in the implementation in JCrypTool. These techniques
will be described here.

5.1.1 KeyGen

In the KeyGen algorithm, first a random polynomial v(x) is generated with t-bit integer
coefficients. Next the scaled inverse w(x) of this polynomial is to be computed. With this
inverse it is easy to verify whether the HNF is of the correct form. First we will describe an
efficient way of computing the inverse w(x) and then we will show how to compute the HNF.

Inverting v(x)
To invert the polynomial v(x), we use a method based on fast fourier transformation
which computes a single odd coefficient of w(x), which is all we need. Recall that we use
fn(x) = xn + 1 (see 4.3.1), where n is a power of 2. Let ρ0, ρ1, . . . , ρn−1 denote the roots of
fn(x) over the complex field. We then have that ρi = ρ2i+1, where ρ is a primitive 2n’th
root. For these roots we have the following properties:

ρi+n
2

= ρ2i+1+n = ρnρi = −ρi,

for all i, and (
ρi+nj/2

)2j
= (ρ2i+nj+1)2j = (ρ2i+1)2j · ρn = −(ρ2j

i),

for all i, j = 0, 1, . . . , log2 n and nj := n/2j. Furthermore, we define the polynomial

g(z) :=
n−1∏
i=0

(v(ρi)− z),

which, as we will see later, is closely related to w. We only need to compute the free term
and the linear term of g(z), through the method as described below.

Computing the free and linear term of g(z):
First we will show that all the coefficients gi of g(z) are integers, for all n = 2m. For m = 1

57

this is easy to see, we have roots ρ0 = i and ρ1 = −i. Now let v(x) = ax + b for some
a, b ∈ Z, then g(z) = (v(ρ0)− z)(v(ρ1)− z) = (ai+ b− z)(b− ai− z) = a2 + b2 − 2bz + z2.
Now suppose all the gi are integers for some m = k, then for m = k + 1 we have

g(z) =
2k+1−1∏
i=0

(v(ρi)− z)

=
2k−1∏
i=0

(v(ρi)− z)(v(ρi+2k)− z)

=

2k−1∏
i=0

(v(ρi)− z)

2k−1∏
j=0

(v∗(ρj)− z)

 ,

where v∗(x) = v(−x). So we find that gi ∈ Z for all i and all n = 2m.
Now to compute the free and linear term of g(z), it suffices to compute g(z) mod z2. We
have the following

g(z) =

n
2
−1∏
i=0

(v(ρi)− z)(v(−ρi)− z)

=

n
2
−1∏
i=0

v(ρi)v(−ρi)︸ ︷︷ ︸
a(ρi)

−z (v(ρi) + v(−ρi))︸ ︷︷ ︸
b(ρi)

+z2


=

n
2
−1∏
i=0

(a(ρi)− zb(ρi)) mod z2.

Note that for a(x) and b(x) all the odd powers have zero coefficients. Furthermore, since
these polynomials are only evaluated at the roots of fn(x), reducing these polynomials
modulo fn(x) has no effect. Define the polynomials v̂ and ṽ as v̂(x2) = a(x) mod fn(x)
and ṽ(x2) = b(x) mod fn(x). Now we have reduced a product of n terms in polynomials of
degree n to a product of n/2 terms in polynomials of degree n/2. Applying this recursively
leads to the polynomial g(z) mod z2.
More concretely, define U0(x) ≡ 1 and V0(x) = v(x). Now we compute Uj(x) and Vj(x) for
j = 1, 2, . . . ,m = log2 n, of degrees at most nj − 1 such that

gj(z) =

nj−1∏
i=0

(
Vj(ρ

2j

i)− zUj(ρ2j

i)
)

= g(z) mod z2.

This equation clearly holds for j = 0. Assume it holds for some j < m, then we can

58

compute Uj+1 and Vj+1 as follows:

gj(z) =

nj/2−1∏
i=0

(
Vj(ρ

2j

i)− zUj(ρ2j

i)
)(

Vj(−ρ2j

i)− zUj(−ρ2j

i)
)

=

nj/2−1∏
i=0

Vj(ρ2j

i)Vj(−ρ2j

i)︸ ︷︷ ︸
=Aj(ρ2j)

−z(Uj(ρ
2j

i)Vj(−ρ2j

i) + Uj(−ρ2j

i)Vj(ρ
2j

i)︸ ︷︷ ︸
=Bj(ρ2j

i)

)

 mod z2.

Denote fnj(x) = xnj + 1 and observe that rn
j

i is a root of fnj for all i. We consider the
following polynomials:

Aj(x) = Vj(x)Vj(−x) mod fnj(x)

Bj(x) = Uj(x)Vj(−x) + Uj(−x)Vj(x) mod fnj(x)

and note that since ρ2j

i is a root of fnj the reduction modulo fnj makes no difference when

evaluating in ρ2j

i . Furthermore, all the coefficients of odd powers are zero, and modular
reduction does not change this since nj is a power of two. So we can define

Uj+1(x) =

nj/2−1∑
t=0

b2t · xt, Vj+1(x) =

nj/2−1∑
t=0

a2t · xt,

which leads to

gj+1(z) =

nj/2−1∏
i=0

(
Vj+1(ρ2j+1

i)− zUj+1(ρ2j+1

i)
)

=

nj/2−1∏
i=0

(
Aj(ρ

2j

i)− zBj(ρ
2j

i)
)

= gj(z) mod z2.

Now by the induction hypothesis we have gj(z) = g(z) mod z2, so we get gj+1(z) = g(z)
mod z2 as needed. Now that we have shown how to compute the two lower terms of g(z),
we next show how this helps us in finding w(x).

Finding d and w0:
We know that if v(x) is square free then resultant(v, fn) =

∏n−1
i=0 v(ρi), which is exactly the

free term of g(z). Next we will show that w0 = g1/n, where w0 is the free term in w(x).
We define a sequence of polynomials Ŵ0, Ŵ1, . . . , Ŵm, as

Ŵj(x) =

nj−1∑
t=0

w2jtx
t.

59

Now we have that Ŵ0 = w, Ŵm = w0 and in particular Ŵj(x) + Ŵj(−x) = 2Ŵj+1(x2). We
will show that

n−1∑
i=0

w(ρi) = 2j
nj−1∑
i=0

Ŵj(ρ
2j

i),

for j = 0, 1, . . . ,m. Again it clearly holds for j = 0, so assume it holds for some j < m.

Now since
(
ρi+nj/2

)2j
= −ρ2j

i , we find

n−1∑
i=0

w(ρi) = 2j
nj−1∑
i=0

Ŵj(ρ
2j

i) = 2j
nj/2−1∑
i=0

Ŵj(ρ
2j

i) + Ŵj(−ρ2j

i) = 2j+1

nj+1−1∑
i=0

Ŵj+1(ρ2j+1

i)

which completes the induction proof. This now implies that
∑n−1

i=0 w(ρi) = nŴn(−1) =
nw0, and since w(ρi) = d/v(ρi) we find

w0 =
1

n

n−1∑
i=0

w(ρi) =
1

n

n−1∑
i=0

d

v(ρi)
=

1

n

n−1∑
i=0

∏n−1
j=0 v(ρj)

v(ρi)

=
1

n

n=1∑
i=0

∏
j 6=i

v(ρj) = g1/n.

So we indeed find that d = g0 and w0 = g1/n.

Recovering w:
Recall that we only require the lattice to contain a vector of the form y×V = 〈−r, 1, 0, . . . , 0〉
for V to have the correct HNF. Now if we multiply this vector on the right with W, we
find that

y ×V ×W = dy = −r · 〈w0, w1, . . . , wn−1〉+ 〈−wn−1, w0, . . . , wn−2〉.

This leads to the condition

−r · 〈w0, w1, . . . , wn−1〉 = 〈wn−1,−w0, . . . ,−wn−2〉 mod d.

So we find r = w0/w1 mod d and wi+1 = wi/r mod d for all i = 1, . . . , n − 2 and
wn−1 = r · w0 mod d. This in particular means that rn = 1 mod d. Now we have found
w0 and w1, so we compute r = w0/w1 mod d and verify that rn = 1 mod d. Now we can
compute all the coefficients of w until we have found an odd integer, which will be our
secret key.

5.1.2 Encrypt

As shown in the previous section, encryption in this scheme is simply ψ = [a(r)]d, for
a(x) = π+2u(x). Now to evaluate the polynomial u at x, we could simply calculate all the
powers of r and then add up to values where ui = 1, this would take n− 1 multiplications.

60

But this can be optimized, as we will show in this section.
Note that we can split the u into two polynomials with half the degree, ulow(x) =

∑n/2−1
i=0 uix

i

and uup(x) =
∑n/2−1

i=0 ui+n/2x
i. Now the evaluation is given by u(r) = ulow(r) + rn/2uup(r),

which now only requires n/2− 1 + 1 + 1 multiplications, n/2− 1 for the powers of r, one
additional to compute the n/2’th power of r and one final to multiply uup(r) with rn/2.
We can apply this recursively. Let M(k, n) denote the number of multiplications needed
to evaluate k polynomials of degree (n− 1). Now it is clear that this gives us

M(k, n) = min(n− 1,M(2k, n/2) + k + 1).

It is also clear that cutting the polynomial in half is more efficient as long as n − 1 >
(n/2− 1) + k + 1. This yields the recursive formula

M(k, n) =

{
M(2k, n/2) + k + 1 when n/2 > k + 1
n− 1 otherwise.

Analysis of this formula yields M(k, n) ≤ min(n − 1,
√

2kn). So the number of multipli-
cations this method uses for the evaluation of a single degree n− 1 polynomial is at most√

2n.
This recursive method will be more efficient in calculation time, but requires more space.
Since the dimensions used in the plugin are reasonably small, this is not an issue.

5.1.3 Decrypt

Decryption is already reduced to the multiplication of two integers, which can not be
optimized any further. The only thing one could do is implement an efficient modular
multiplication algorithm, but it is assumed that Java has these implemented by default.

5.1.4 Recrypt

At the moment there are three optimizations in place for the Recrypt operation. Namely,
the addition of the S numbers σizi, the way the set of xi’s is stored and the way in which
σ is encrypted.

Addition of the zi’s
We want to perform the addition of the zi’s with a polynomial of low degree. The achieve
this, we first split up the vector σ. Recall that w(σ) = s, so we split σ into s vectors σk,
each with weight 1. This requires that we have s sets Bk, one for each σk. Denote the
elements of Bk by {x(k, i) : i = 1, 2, . . . , S}, and the bits of σk by σk,i, y(k, i) and z(k, i)
are defined as expected (see section 4.3.2). We now have the decryption function

Dc,d(σ1, . . . , σs) =

〈⌊
s∑

k=1

(
S∑
i=1

σk,iz(k, i)

)⌉〉
2

⊕
⊕
i,k

σk,i〈y(k, i)〉2.

61

Denote qk =
∑

i σk,iz(k, i) and note that this represents a sum of S numbers, of which at
most one is nonzero. Hence we can bitwise XOR these S numbers, which homomorphically
translates to adding qk,j mod d for all j = 0, 1, . . . , ξ.
Now that the sum of S ξ + 1-bit numbers is reduced to a sum of s ξ + 1-bit numbers, we
use a grade-school addition algorithm to add them. This works as follows. Arrange these
numbers is s rows, each with ξ+1 columns, one for each bit j = 0, 1, . . . , ξ. These columns
are processed starting at column ξ and moving down to column 0.
We first compute the carry bits the addition of these columns produce. The carry bit col-
umn j + δ gets from column j is computed by evaluating the elementary symmetric poly-
nomial of degree 2δ in the bits of column j. The maximum degree δ for j = ξ, ξ − 1, . . . , 1
is respectively ξ, ξ−1, . . . 1. And thus the number of bits to be processed in each column is
respectively s, s+1, . . . , s+ξ−1. For a column with m bits and degree 2δ, we need at most
m2δ multiplications to compute the elementary symmetric polynomial. So we find the total
number of multiplications is bounded by

∑ξ−1
k=0(s+k)·2ξ−k = 2(s(2ξ−1)+2ξ−ξ−1) = O(s2).

Storing the xi’s
We have seen that we need to include in the public key s sets of S elements in Zd. Storing
all these elements explicitly requires a lot of space. Instead, we will store s elements
xi, each of which represents a set Bi, through a geometric progression. To be exact
Bk = {x(k, i) : i = 0, . . . , S − 1} where x(k, i) = 〈xk · Ri〉d and R is some predefined
parameter.

Encrypting the σk
We now have s vectors, each with S bits and weight one which must be encrypted and
included in the public key. Encrypting every single bit thus would require storing s · S
elements of Zd in the public key. Instead, we will implicitly represent these bits. This is
achieved as follows.
We will store c encrypted bits for every Bk, all but two of these are encryptions of zero.
Now σk,i is obtained by multiplying two of these ciphertexts, i.e. for a, b ∈ [1, c] and a > b
we have

i(a, b) := (a− 1) · c−
(
a

2

)
+ (b− a).

Note that these are all the pairs of two distinct numbers one can choose in [1, c], numbered
lexicographically. Denote these encryptions by

{η(k)
m : k ∈ [1, s],m ∈ [1, c]}, (10)

such that η
(k)
a η

(k)
b is the encryption of σk,i(a,b).

Recall we want to compute qk =
∑S−1

i=0 σk,iz(k, i), which now can be achieved using

qk =
∑
a,b

η(k)
a η

(k)
b z(k, i(a, b)) =

c∑
a=1

η(k)
a

c∑
b=a+1

η
(k)
b z(k, i(a, b)).

62

Note that the multiplications with η
(k)
b are not in fact multiplications, since z(k, i(a, b)) are

bits that we have in the clear. So the only multiplications in Zd are those with η
(k)
a , and

there are c of those.
There is a space-time tradeoff here in choosing c. We need at least c ≥ d

√
2Se to be able to

encode all the i ∈ [0, S−1] by a pair (a, b) ∈
(
c
2

)
. Thus increasing c will increase the public

key size, but decrease the amount of extra multiplications needed. In the implementation
c = d2

√
Se is chosen, since it increases the space requirements only by a

√
2 factor, but

halves the amount of extra multiplications needed.

5.2 Practical Implementation of the Gentry-Halevi Variant

In this section we will give an overview of the implementation in JCrypTool of the Gentry-
Halevi variant. We will first cover KeyGen, Encrypt and Recrypt and then discuss the
appearance of the plug-in and what is done in de background. Decrypt is left out of scope,
since it is straightforward to implement. Note that the implementation of KeyGen, Encrypt
and Recrypt is based on the C-code by Gentry and Halevi (see https://researcher.ibm.
com/researcher/view_project.php?id=1548).

5.2.1 KeyGen

Polynomials
First of all, a random polynomial v(x) must be generated. Java does not have a built-in
class to handle polynomials, so I built one. The coefficients of these polynomials will have
bit-length t = 384, so the BigInteger class is used to store these numbers. The polynomial
then is stored as an array of BigIntegers. Randomly selecting the coefficients is done by
generating the correct amount of random bytes (t/8). The constructor of a BigInteger
accepts byte-arrays to create the number.
Besides generating a random polynomial, the necessary functions for computation with
polynomials were added. These are for instance addition and multiplication, but of course
also modular reduction. Since these functions are fairly basic, they are not included here.

Computing the determinant, root and w
Next the determinant and the first odd coefficient of w(x) are computed. Recall w(x)
is the scaled inverse of v(x) and an odd coefficient is all that is needed for decryption.
As mentioned in section 5.1.1, this is done by computing the free and the linear term of

g(z) =
n−1∏
i=0

(v(ρi)−z), where the ρi are the roots of f(x). Clearly it thus suffices to compute

g(z) mod z2. This is done in the loop given in figure 4, where N is halved every iteration.

63

https://researcher.ibm.com/researcher/view_project.php?id=1548
https://researcher.ibm.com/researcher/view_project.php?id=1548

while (N>1) {
V2 = new Polynomial (V. c o e f f s) ;
for (i =1; i<=V2 . degree ; i +=2) { // s e t V2(x) := V(−x)

V2 . c o e f f s [i] = V2 . c o e f f s [i] . negate () ; // negate odd c o e f f i c i e n t s
}
V = Polynomial . mod(Polynomial . mult (V, V2) , F) ; // V := V(x) ∗ V(−x) mod f (x)
U = Polynomial . mod(Polynomial . mult (U, V2) , F) ; // U := U(x) ∗ V(−x) mod f (x)

// Sanity−check : v e r i f y t ha t the odd c o e f f i c i e n t s in V are zero
for (i =1; i <= V. degree ; i +=2)

i f (!V. c o e f f s [i] . equa l s (new Big Intege r (”0”))) {
return null ;

}

// ”Compress” the non−zero c o e f f i c i e n t s o f V
for (i = 1 ; i <= V. degree /2 ; i++) V. c o e f f s [i] = V. c o e f f s [2∗ i] ;
for (; i <= V. degree ; i++) V. c o e f f s [i] = new Big Intege r (”0”) ;
V. normal ize () ;

// Set U to the ”compressed” (U(x) + U(−x)) /2
for (i = 0 ; i <= U. degree /2 ; i++) U. c o e f f s [i] = U. c o e f f s [2∗ i] ;
for (; i <= U. degree ; i++) U. c o e f f s [i] = new Big Intege r (”0”) ;
U. normal ize () ;

// Set N := N/2 and update F accord ing l y
F. c o e f f s [N] = new Big Intege r (”0”) ;
N >>= 1 ;
F . c o e f f s [N] = new Big Intege r (”1”) ;
F . normal ize () ;

}

Figure 4: Computing g(z) mod z2

Note that in the description in section 5.1.1 one takes

Uj+1 = Uj(x
2)Vj((−x)2) + Uj((−x)2)Vj(x

2) mod fnj(x),

and in the code we have

Uj+1 = (Uj(x
2)Vj((−x)2) + Uj((−x)2)Vj(x

2))/2 mod fnj(x).

This is more efficient, since in this way we find w0 = g1 instead of w0 = g1/n. Also note
that this does not influence g0, and the other terms are not used since the polynomial is
taken modulo z2.
But to generate the entire polynomial w(x), we need both w0 and w1. So we repeat the
process with x · v(x) mod f(x) to find w1. Note that this yields the same determinant,
since the lattice is cyclic.
Now to verify that v(x) provides a usable lattice, we just need to check that the determi-
nant is odd and that the root r = w0/w1 satisfies rn ≡ 1 mod d. Finally, we compute
coefficients wi, until we find an odd coefficient. These computations are straightforward.

Encrypting the private key
Of course, we still need to encrypt the private key w and add this encryption to the public

64

key. As explained in section 5.1.4, we will create s numbers xi, which represent geometric
progressions. Along with these numbers, we also need s exponents ei, such that

s−1∑
i=0

xiR
ei ≡ w mod d.

We generate these sets as follows.

• Choose the xi ∈ Zd and ei ∈ ZS uniformly at random, for i = 0, . . . , s− 2,

• compute x̃ = w −
s−2∑
i=0

xiR
ei mod d,

• choose es−1 ∈ ZS uniformly at random until Res−1 is invertible modulo d,

• compute xs−1 = x̃R−es−1 .

These xi will be included in the public key. Finally, the exponents ei are encoded as in
equation 10, then encrypted, and also included in the public key.
How to code these computations is also relatively straightforward, so not included here.

5.2.2 Encrypt

For encryption, the only hard part is evaluating the random polynomial. As described in
section 5.1.2, we will split the polynomial into two pieces as long as m/2 > n + 1, where
n is the number of polynomials of degree m− 1. The implementation can thus be consid-
ered in two parts, splitting the polynomials and evaluating the final polynomials. We will
comment on both parts here.

Splitting the polynomials
To split up the polynomials, a recursive function is used. In the code, we use m to denote
the degree of the polynomial and n to denote the number of polynomials. The function
returns an array which holds the value rm in the first entry, and the evaluation of n
polynomials of degree m− 1. First, we check if we want to split up the polynomial or not.
If this is the case, a recursive call is made. If this is not the case, the polynomials are
evaluated.
The result of the recursive call thus holds rbm/2c and the 2n evaluated polynomials. If m
is odd, we have polynomials of degree bm/2c, so if we would simply multiply the “top
half” by rbm/2c, the degree would become m− 1 instead of m. Thus we must add another
coefficient to the “top half”. This also means that if we pass on the power of r to the
next level, we must first square the current power and then multiply the result by r. The
recursive function is given in figure 5.

65

public stat ic Big Intege r [] evalRandPoly (int n , long m, double p ,
B ig Intege r root , B ig In tege r det) {

Big Intege r [] v a l s ;
i f ((n+1+(m&1) < m/2)) {

double q ;
v a l s = evalRandPoly (2∗n , m/2 , p , root , det) ; //{ root ˆ{m/2} , c0 , c1 , . . . }

for (int i = 1 ; i <= n ; i++) {
// va l s [i] += root ˆ{m/2} ∗ v a l s [i+n] mod det
// I f m i s odd then add another random 0/1 c o e f f i c i e n t

i f (((m&1) == 1) && ((q = Math . random ()) < p)) {
v a l s [i+n] = ((q < p/2) ? v a l s [i+n] . add (v a l s [0]) . mod(det)

: v a l s [i+n] . subt rac t (v a l s [0]) . mod(det)) ;
}

// mu l t i p l y ” top h a l f ” by root ˆ{d/2}
Big Intege r tmp = v a l s [i+n] . mul t ip ly (v a l s [0]) . mod(det) ;
v a l s [i] = v a l s [i] . add (tmp) ;

}
// compute root ˆm for the next l e v e l
v a l s [0] = v a l s [0] . modPow(new Big Intege r (”2”) , det) ;

// i f m i s odd , mu l t i p l y by r again
i f ((m&1) == 1) v a l s [0] = v a l s [0] . mul t ip ly (root) . mod(det) ;

} else {
v a l s = basicRandPoly (n , m, p , root , det) ;

}
return v a l s ;

}

Figure 5: Splitting the polynomials

Computing the polynomials
When the polynomials are split up into many polynomials of low degree, it remains to
evaluate these polynomials. There is still some room for improvement here. For cases
where the polynomials have degree smaller than four, the evaluation is trivial. But if
the degree is larger, we make use of the fact that squaring large numbers is faster than
multiplying. To make use of this, we first compute r2j , for 2j < m. We continue by
computing the odd powers of r, and then all squares of these. To find the next odd power,
one simply multiplies the previous with r2, which is stored in the beginning.
Note that with this method, all powers of r are handled. To see this, suppose we are at
odd power 2j + 1, and the power k < 2j + 1 is not handled. We may assume k is unique,
since otherwise it would have turned up before. Then either k = 2j′ + 1 or k = 2j′. In the
former case, it is an odd power and is thus in the iteration. In the latter case, j′ is handled
and thus also 2j′.
The method which evaluates these polynomials is given in figure 6.

66

public stat ic Big Intege r [] basicRandPoly (int n , long m, double p ,
B ig Intege r root , B ig In tege r det) {

Big Intege r [] v a l s = new Big Intege r [n+1] ;
int i , j , k ;
i f (m <= 0) {

v a l s [0] = new Big Intege r (”1”) ;
return v a l s ;

}
double q ;
for (i = 1 ; i <= n ; i++) v a l s [i] = new Big Intege r (I n t e g e r . t oS t r i ng (

(((q = Math . random ()) < p) ? ((q < p/2) ? −1 : 1) : 0))) ;
i f (m==1) {

v a l s [0] = root ;
return v a l s ;

}

Big Intege r rSqr = root .modPow(new Big Intege r (”2”) , det) ; // root ˆ2 mod det
Big Intege r rPowm ;
// Handle the powers 1 , 2 , 4 , . . . s e pa ra t e l y (saves maybe 1−2 mults)
for (i = 1 ; i <= n ; i++) {

i f ((q = Math . random ()) < p) {
v a l s [i] = (q < p/2) ? v a l s [i] . add (root) : v a l s [i] . subt rac t (root) . mod(det) ;

}
i f (m > 2 && ((q = Math . random ()) < p)) {

v a l s [i] = (q < p/2) ? v a l s [i] . add (rSqr) . mod(det)
: v a l s [i] . subt rac t (rSqr) . mod(det) ;

}
}
i f (m>4) {

rPowm = rSqr ;
for (j = 4 ; j < m; j ∗= 2) {

rPowm = rPowm .modPow(new Big Intege r (”2”) , det) ; // rˆ j mod det
for (i = 1 ; i <= n ; i++) {

i f ((q = Math . random ()) < p) {
v a l s [i] = (q < p/2) ? v a l s [i] . add (rPowm) . mod(det)

: v a l s [i] . subt rac t (rPowm) . mod(det) ;
}

}
}

} else i f (m<4) { // i f m==2 or 3 we ’ re done , j u s t re turn the co r r e c t rˆm
v a l s [0] = ((m == 2) ? rSqr : rSqr . mul t ip ly (root) . mod(det)) ;
return v a l s ;

}

// Compute rˆ j , r ˆ{2 j } , r ˆ{4 j } , . . . , and add to a l l va lue s
Big Intege r rOddPow = root ;
for (j = 3 ; j < m; j += 2) {

rOddPow = rOddPow . mult ip ly (rSqr) . mod(det) ; // next odd power o f r
rPowm = rOddPow ;
k = j ;
while (true) {

for (i = 1 ; i <= n ; i++)
i f ((q = Math . random ()) < p) {

v a l s [i] = (q < p/2) ? v a l s [i] . add (rPowm) . mod(det)
: v a l s [i] . subt rac t (rPowm) . mod(det) ;

}
k ∗= 2 ;
i f (k >= m) break ;

// rˆk := (previous−rˆk)ˆ2 mod det
rPowm = rPowm .modPow(new Big Intege r (”2”) , det) ;

}
}

// r odd power i s r ˆ{m−1} or r ˆ{m−2} , depending on whether m i s even or odd
v a l s [0] = (((m&1) == 1) ? rOddPow . mult ip ly (rSqr) . mod(det)

: rOddPow . mult ip ly (root) . mod(det)) ;
return v a l s ;

}

Figure 6: Computing the polynomials

5.2.3 Recrypt

For the Recrypt algorithm, the most interesting part concerning implementation is the
evaluation of the decryption function, which has been reduced to

Dc,d(σ1, . . . , σs) =

〈⌊
s∑

k=1

(
S∑
i=1

σk,iz(k, i)

)⌉〉
2

⊕
⊕
i,k

σk,i〈y(k, i)〉2.

As mentioned before, the σk,i are encoded and encrypted as

{η(k)
m : k ∈ [1, s],m ∈ [1, c]},

so the decryption function reduces to

Dc,d(σ1, . . . , σs) =

〈⌊
s∑

k=1

qk

⌉〉
2

⊕
⊕
i,k

σk,i〈y(k, i)〉2,

where

qk =
c∑

a=1

η(k)
a

c∑
b=a+1

η
(k)
b z(k, i(a, b)).

Recall that z(k, i(a, b)) is the ξ-bit approximation of 〈ψx(k, i(a, b))〉d/d. The computation
of these qk is done in the loop given in figure 7, where p is used for the precision instead of
ξ.

68

int j , j1 , j 2 ;

for (j = j1 =0; j 1 < nCtxts−1; j 1++) { // sk−b i t s indexed by (j1 ,∗) pa i r s
for (int k = 0 ; k < psums . l ength ; k++) psums [k] = new Big Intege r (”0”) ;

for (j 2 = j1 + 1 ; j 2 < nCtxts ; j 2++) {
// ge t the top b i t s o f f a c t o r / det . The code below assumes
// tha t p+1 b i t s can f i t in one long
long binary = getBinaryRep (f a c to r , det , vars . l ength) ;
i f (f a c t o r . t e s t B i t (0)) { // ”xor” the LSB to column 0

binary ˆ= (1 << fheparams . p) ;
}
// For every 1 b i t , add the current c i p h e r t e x t to the p a r t i a l sums
for (int k = 0 ; k < psums . l ength ; k++) i f (((binary>>k)&1) == 1) {
int k2 = psums . l ength − k − 1 ;
psums [k2] = psums [k2] . add (c t x t s [baseIdX + j2]) . mod(det) ;

}
j ++; // done with t h i s element
i f (j < fheparams . S) { // compute next element = current ∗ R mod det

f a c t o r = f a c t o r . s h i f t L e f t (fheparams . logR) . mod(det) ;
} else break ; // don ’ t add more than S elements

}

// mu l t i p l y p a r t i a l sums by c t x t s [j1] , then add to sum
for (int k = 0 ; k < vars . l ength ; k++) {

psums [k] = psums [k] . mul t ip ly (c t x t s [baseIdX + j1]) . mod(det) ;
vars [k] = vars [k] . add (psums [k]) . mod(det) ;

}

i f (j >= fheparams . S) break ;
}

Figure 7: Loop to compute qk

Here the ξ-bit approximation for qk will be stored in the positions 1 through ξ of the
array psums. For every bit in this representation, add η

(k)
b to the corresponding position

of the partial sum. Note that j1 and j2 in the code represent respectively a and b in the
above sum. Since we need to compute y(k, i(a, b)) to compute z(k, i(a, b)) anyway, we store
the least significant bit of this number in position 0 of psums (the rightmost part of the
decryption function). After all j2 are covered, multiply the partial sums with the right

η
(k)
a .

Now that all qk are computed, it remains to add and round these s numbers of ξ bits.
These numbers are thus stored in the last ξ columns of an s× (ξ+ 1)-matrix. As explained
in section 5.1.4, these numbers are added using a grade school addition (i.e. add the
numbers column by column and add the carry to the next column, etc.) , where the carries
are found by evaluating the elementary symmetric polynomials. Recall that homomorphic
addition corresponds with XOR and multiplication with AND. The columns are put in
stacks, so that it is easy to put the carries on top of the specific rows. The evaluation of
these polynomials is the most interesting part, this is done in the loop given in figure 8.

69

int i , j ;
B ig Intege r [] out = new Big Intege r [deg +1] ;
out [0] = new Big Intege r (”1”) ;
for (i = 1 ; i <= deg ; i++) out [i] = new Big Intege r (”0”) ;

B ig Intege r tmp ;
for (i =1; ! vars . empty () ; i++) { // process the next va r i a b l e , i =1 ,2 , . . .

for (j = Math . min (i , deg) ; j >0; j−−) { // compute the j ’ th elem . sym . po ly
tmp = out [j −1] . mul t ip ly (vars . peek ()) . mod(det) ;
out [j] = out [j] . add (tmp) . mod(det) ; // out [j] += out [j −1] ∗ vars . top () mod M

// At the end o f the inner loop , out [j] ho ld s the
// j ’ th symmetric polynomial in the f i r s t i v a r i a b l e s

}
vars . pop () ; // done with t h i s v a r i a b l e

}

Figure 8: Evaluation of the elementary symmetric polynomials

In this loop, vars denotes the stack of the column to be computed and deg the maximum
degree of the polynomial. This is done first for column ξ + 1, then column ξ, down to
column 2. To see that this loop works, it is easiest to consider a toy example. Suppose
that we want to compute the elementary symmetric polynomials in 3 variables, up to
degree 2. Denote the elements in vars by X1, . . . , X4. We will show how the output array
out changes in every step.

1
0
0

 −→j=1
i=1

 1
X1

0

 −→j=2
i=2

 1
X1

X1 ·X2

 −→j=1
i=2

 1
X1 +X2

X1 ·X2

 −→j=1
i=2 1

X1 +X2

X1 ·X2

 −→j=2
i=3

 1
X1 +X2

X1 ·X2 +X1 ·X3 +X2 ·X3

 −→j=1
i=3

 1
X1 +X2 +X3

X1 ·X2 +X1 ·X3 +X2 ·X3


Note that the result of the addition is in position 1, and the carry for i columns to the left
is in position 2i. Once the sums and carries are computed for columns 2 through ξ+ 1, the
result is given in position 1 of the output of the evaluation of column 2. This result then
is added to the sum of column 1 and the computation is complete.

5.2.4 Functionality

The schemes as presented in this thesis all work on a single bit. To show the user that this is
enough to do computations on the ciphertext, the plug-in encrypts several bits in parallel.
These bits then represent integers which the user chooses to perform computations. These
parallel bits cause a decrease in performance. To compensate this somewhat, the security
is set very low.
To be able to perform computations on these parallel bits, we need algorithms two perform

70

addition and multiplication. These are as follows, where a and b are assumed to have n
bits.

Addition(a, b)

1 d0 ← 0, e0 ← 0
2 for i← 0, . . . , n− 1
3 do ci ← ai + bi
4 di+1 ← ai · bi
5 ei+1 ← ci · (di + ei)
6 fi ← ci + di + ei
7
8 return f

Proof. (correctness of Addition) First, note that addition is inherently modulo 2. Now
to be correct, there cannot be more carries than the ones given in d and e. We note that
there are only two possible levels of carries, namely the carries that follow directly from
the sum of a and b, and the carries that follow from the sum of a and b and a previous
carry. Clearly, if ai and bi both are set, then they give the carry di+1. And if di is set and
ci is set, this gives another carry ei+1.
Now we must show that the above given procedure finds both of these carries. To see this,
we must show that di and ei cannot both be set. If this is true, then it is easy to see that
the procedure is correct.
We show that di and ei cannot both be set by contradiction. Suppose both di and ei are
set. For ei to be set, we must have that ci−1 is set and either di−1 or ei−1 is set. But if ci−1

is set, we have that either ai−1 or bi−1 is set, but not both. But then di is not set. This is
a contradiction.
So we find that di and ei cannot both be set, thus taking ei = ci−1 · (di−1) + ei−1) finds the
necessary carry and the procedure is correct.

To do multiplication we use the standard binary multiplication algorithm; simply multiply
a with each bit of b and add these numbers using the addition algorithm.
After the implementation was finished, there was the open question whether a scheme
which could encrypt several bits at a time was possible. There was some correspondence
with prof. dr. Müller-Quade and Mr. Döttling (Karsruhe Institute of Technology), but
before a solution was found one was published by Smart and Vercauteren [SV11].

5.2.5 Appearance

The Homomorphic Encryption plug-in consists of three different tabs, one for each of the
implemented schemes. We will describe the tab which shows the Gentry-Halevi scheme,
the tabs for RSA and Paillier are similar. When the user opens the plug-in, the plug-in
opens as shown in figure 10.

71

Figure 9: JCrypTool plug-in of the Gentry and Halevi fully homomorphic encryption
scheme

To try the scheme, clearly the user first has to have a key-pair. The plug-in can generate
key-pairs with lattice dimensions 2d, for d = 2, . . . , 6. The maximum dimension is limited
to reduce the maximum computation time during addition and multiplication. Once a
key-pair is generated, the user can choose to save the key-pair. To save a key-pair, one
has to enter the name of the owner and choose a password, with which the private key is
encrypted. The private key is written to a text file and it is encrypted with DES, using
the MD5 hash of the password. This type of encryption is chosen since there exist built-in
Java functions to perform these kinds of encryptions.
Having selected a key-pair, the user must choose a modulus for computations. The avail-
able moduli are 2m, for m = 5, . . . , 10. Now when the user enters an initial operand to
encrypt, this number will be taken modulo the modulus and the binary representation will
be encrypted bitwise.
Now the user can choose an operation to perform on this ciphertext; either add a num-
ber, or multiply with a number. In both cases, the second operand will be entered, taken
modulo the modulus, and the computation is carried out homomorphically. The encrypted
result will be shown as soon as the computation is complete. At the bottom of the screen,

72

the computations are also shown in plaintext, so that the user can keep track of what has
happened so far.

Figure 10: JCrypTool plug-in of the Gentry and Halevi fully homomorphic encryption
scheme after computations

When some computations are carried out, the user might want to check if the ciphertext
actually encrypts the correct result. To verify this, the user can choose to decrypt the
current result and compare the decryption with the plaintext result given below. But of
course, this will always be correct. The reader can verify this by trying it, JCrypTool is
available through http://sourceforge.net/projects/jcryptool/.

5.3 Performance

As mentioned before, the Java implementation of the Gentry-Halevi scheme is based on
the C-code which they published. Here we will list some of the performance results of both
implementations. Note that the performance results from Gentry and Halevi are gathered
on a high-end server (IBM System x3500 server with a 64-bit quad-core Intel Xeon E5450
processor @ 3GHz with 12MB L2 cache and 24GB of RAM), whereas the performance

73

http://sourceforge.net/projects/jcryptool/

results of our implementation are gathered on a modern household PC (Intel Core i7 @
2.93 GHz, 8GB of RAM). This is done because the plug-in is supposed to run on the PC
of an average user.
The following settings are used in the plug-in, for all the possible dimensions, and in the
C implementation for dimension 211.

Java C
Security parameter λ = 72 λ = 80

Bit-size of coefficients of v(x) t = 384 t = 380
Sparse subset size s = 15

Big set size S = 512
Precision parameter ξ = 4

Table 4: Parameter settings

These parameters give the following speeds in several dimensions, all times below are given
in the notation (hh:)mm:ss.ms. Note that in these dimensions, the scheme is trivial to
break. But the purpose of this plug-in is just to visualize that building a fully homomorphic
encryption scheme is possible.

Dimension 4 8 16 32 64
KeyGen 0:00.093 0:00.047 0:00.094 0:00.313 0:01.342

Encrypt single bit - - - 0:00.015 0:00.063
Encrypt 690 bits simultaneously - - 0:00.048 0:00.328 0:00.485

Decrypt single bit - - - - 0:00.016
Recrypt single bit 0:00.047 0:00.094 0:00.312 0:01.061 0:03.995

Table 5: Algorithm speeds Java implementation

As a comparison, the C implementation by Gentry and Halevi gives the following speeds
in high dimensions. Here dimension 512 is still considered to be a toy example. Dimension
32768 is expected to have security comparable to 1024 bits RSA.

Dimension 512 2048 8192 32768
KeyGen 0:02 0:41 8:24 2:12:00
Encrypt 0:00.19 0:01.8 0:19 3:00
Decrypt - 0:00.02 0:00.13 0:00.66
Recrypt 0:06 0:32 2:48 31:00

Table 6: Algorithm speeds C implementation

But as mentioned, in the scheme we want the user to be able to multiply and add num-
bers, not bits. So we encrypt these numbers as several bits and perform addition and
multiplication on them. To see why the dimensions are kept below 64, the running times

74

for addition and multiplication are given. Note that the speeds are not dependent on the
numbers, since the scheme always performs the same operations, as the bits are encrypted.
There is still some variability, but it is not linked directly to the input.

Modulus 32 64 128 256 512 1024
Addition dim 4 0:00.827 0:00.920 0:01.139 0:01.310 0:01.497 0:01.670
Addition dim 8 0:02.262 0:02.777 0:03.307 0:03.869 0:04.430 0:04.976
Addition dim 16 0:07.254 0:09.064 0:10.873 0:12.761 0:14.633 0:16.380
Addition dim 32 0:26.067 0:32.776 0:38.907 0:45.396 0:52.120 0:58.563
Addition dim 64 1:37.423 2:01.696 2:26.702 2:51.169 3:16.523 3:40.817

Multiplication dim 4 0:04.509 0:06.303 0:08.908 0:12.402 0:15.335 0:19.110
Multiplication dim 8 0:13.322 0:19.937 0:27.675 0:36.801 0:47.299 0:58.859
Multiplication dim 16 0:43.977 1:05.364 1:32.060 2:01.556 2:35.579 3:13.861
Multiplication dim 32 2:36.795 3:56.360 5:29.420 7:12.423 9:14.143 11:29.531
Multiplication dim 64 9:46.007 12:57.595 18:03.075 23:52.620 30:23.06 37:48.470

Table 7: Operation speeds Java implementation

75

6 Lunchtime Attack on the Gentry-Halevi Variant

In [LMSV10], Loftus et al. show that the Gentry-Halevi variant, in the form as presented
above, is susceptible to a so called lunchtime attack. Indeed, a straightforward attack is
able to recover the secret key in polynomial time. In this section we will first define the
concept of a lunchtime attack and then show how the attack works. After this, we will
discuss the concept of CCA1 secure fully homomorphic encryption.

6.1 What is a Lunchtime Attack?

The name lunchtime attack comes from the idea that an adversary can use the computer of
the private key owner, which is able to decrypt messages, while the owner is out for lunch.
In fact, a lunchtime attack is more formally called a non-adaptive chosen ciphertext attack,
also known as CCA1 [BDPR98]. The notion is based on the semantic security game (see
3.3), except that in this case, the adversary has access to a decryption oracle which returns
the plaintext corresponding to the given ciphertext [NY90]. The adversary only has access
to this oracle when it has not yet received the challenge from the verifier. This clarifies the
non-adaptive part; the queries made to the oracle can not depend on the given challenge.
Adaptive chosen ciphertext attacks (CCA2) are a natural extension, where the adversary
also has acces to this oracle after being given the challenge. The only restriction is that it
can not query the oracle on the challenge ciphertext. Clearly, this notion is not interesting
for any homomorphic encryption scheme, since the adversary could take the encryption ψ′

of a known plaintext π′, query the oracle on ψ + ψ′ and obtain π from (π + π′)− π′.

6.2 The Attack

We know that the private key consists only of the (odd) integer w and decryptions follows
from [ψ ·w]d. Now assume that the adversary has access to an oracle OD(ψ) which returns
the corresponding plain text b to every cipher text ψ with which it is presented. If the
adversary can make polynomially many queries to this adversary, w can be recovered by
using an algorithm as presented in [LMSV10, p. 9], which is given below.
The algorithm builds on the idea that we may assume that z ∈ [0, d). The algorithm starts
out with an interval [L,U] which surely contains z. Now since [ψ · z]d maps to [−d/2, d/2),
we can choose a subinterval of [L,U], depending on whether k multiples of d suffice to have
ψ · w − k · d ∈ [−d/2, d/2) or k + 1 are needed. The algorithm is as follows.

76

CCA1-Attack(d)

1 L← 0, U ← d− 1
2 while (U − L > 1)
3 do ψ ← bd/(U − L)c
4 b← OD(ψ)
5 q ← (ψ + b) mod 2
6 k ← bLψ/d+ 1/2c
7 B ← (k + 1/2)d/ψ
8 if (k mod 2 = q)
9 then U ← bBc

10 else L← dBe
11 return L

Proof. (correctness of CCA1-Attack(d)) Initially, the algorithm sets L = 0 and U = d−1.
Clearly w is contained in this interval. Now we select a ciphertext ψ = bd/(U − L)c, such
that size of the interval [ψL, ψU] is bounded by d.
For k = bψL/d+1/2c, we find that −d/2 ≤ ψL−kd < d/2. This implies kd−d/2 ≤ ψL <
kd + d/2, and together with the fact that the size of the interval [ψL, ψU] is bounded by
d, we find that d/2 + kd is the only value of the form d/2 + id, for i ∈ Z, which is in the
interval [ψL, ψU]. Define B = (k + 1/2)d/ψ, from which it then follows that this value is
in the interval [L,U].
We have that ψw either is in the interval [ψL, (k+1/2)d) or in the interval [(k+1/2)d, ψU].
Say we have −d/2 ≤ ψw − qd < d/2, then in the former case we have q = k and in the
latter case q = k + 1. The oracle gives us b = ψw − qd mod 2 = ψ + q mod 2. We find
q = b+ ψ mod 2 and if q = k mod 2, then we have that ψw ∈ [ψL, (k + 1/2)d) and thus
w ∈ [L, bBc], otherwise w ∈ [dBe, U].
This ensures that after every step we have w ∈ [L,U]. Since the position of B in the
interval [L,U] and the sub-interval which contains w can be considered to be randomly
chosen, the interval is halved on average in every iteration. So after O(log d) oracle queries,
w is found.

Since the adversary can find the private key with a polynomial amount of oracle queries,
it can clearly correctly decrypt the given challenge. This differs from the usual approach,
where the adversary only tries to decrypt the challenge and nothing further. The conse-
quences are similar, however.

6.3 CCA1-Secure Fully Homomorphic Encryption

It is shown in [LMSV10] that one can make the somewhat homomorphic part of the Smart-
Vercauteren scheme CCA1 secure. In the current version of this paper (uploaded March
10, 2011), it is stated that this result remains unaffected if one extends the CCA1-secure
scheme to a fully homomorphic scheme. This however is not true, as we will show here.
Correspondence with Frederik Vercauteren, one of the authors, confirmed that this error

77

was spotted and that it will be removed.
Actually, it is impossible for a fully homomorphic scheme that is based on Gentry’s con-
struction to be CCA1-secure. This is due to the fact that the secret key is included in the
public key in encrypted form. Clearly, if an adversary is given a public key and access to
a decryption oracle for polynomially many queries before being given a challenge, then the
adversary could simply query the encryption of the secret key.
The first thought to fix this would be to redefine CCA1-security in this case, and exclude
the encryption of the secret key from the decryption power of the oracle. This would
be similar to the definition of CCA2-security, where the adversary cannot query the given
challenge to the oracle. But then, for the same reasons as that a fully homomorphic scheme
cannot be CCA1-secure, the adversary can multiply by an encryption of 1 and query this.
That this is possible cannot be prevented, so such a scheme cannot be CCA1-secure.

7 Conclusion

In this thesis, the current development in the area of fully homomorphic encryption is
summarized. The main ideas behind the construction, namely bootstrapping and squash-
ing are explained. Along with the construction, it is shown how this construction can be
used to turn different kinds of somewhat homomorphic schemes into fully homomorphic
schemes.
The scheme by Gentry and Halevi was used to make an implementation in a plug-in
demonstrating homomorphic encryption for JCrypTool. This implementation is the first
implementation which allows users to see that computations on ciphertexts are possible.
Finally, a lunchtime attack on the implemented scheme is described. This attack is
also integrated in a level 2 challenge available on Mystery Twister C3 (see http://www.

mysterytwisterc3.org/). It is explained that it is impossible for a fully homomorphic
encryption scheme that follows the given construction to be resistant to such an attack.

Future work
There are several directions in which future research can head. Most importantly is to
improve the speed of the operations in these schemes. In particular the recrypt operation.
Also, it would be very interesting to be able to encrypt several bits simultaneously, instead
of in parallel.
Though the plugin is fully functional, there are still points to be improved. The plugin
could keep track of the amount of noise for each ciphertext, and only recrypt if necessary to
compute the next step. In the current implementation, after each multiplication a recrypt
operation is performed.

78

http://www.mysterytwisterc3.org/
http://www.mysterytwisterc3.org/

References

[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Re-
lations among notions of security for public-key encryption schemes. In
Hugo Krawczyk, editor, CRYPTO, volume 1462 of Lecture Notes in Com-
puter Science, pages 26–45. Springer, 1998. http://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.80.1577&rep=rep1&type=ps.

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and
optimally efficient multi-authority election scheme. In EUROCRYPT ’97,
Lecture Notes in Computer Science, volume 1233, pages 103–118, 1997.

[CKV10] Kai-Min Chung, Yael Kalai, and Salil P. Vadhan. Improved delegation of
computation using fully homomorphic encryption. In Rabin [Rab10], pages
483–501. Cryptology ePrint Archive 2010/241, http://eprint.iacr.org/

2010/241.

[Cry11] CrypTool. The website of the CrypTool project, July 2011. http://www.

cryptool.org.

[DL07] Jintai Ding and Richard Lindner. Identifying ideal lattices. Cryptology ePrint
Archive, 2007/322, 2007. http://eprint.iacr.org/2007/322.pdf.

[Gen09a] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford
University, 2009. http://crypto.stanford.edu/craig/.

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, STOC, pages 169–178. ACM, 2009.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable
computing: Outsourcing computation to untrusted workers. In Rabin [Rab10],
pages 465–482. Cryptology ePrint Archive 2009/547, http://eprint.iacr.
org/2009/547.pdf.

[GH11] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic
encryption scheme. In Kenneth G. Paterson, editor, EUROCRYPT, volume
6632 of Lecture Notes in Computer Science, pages 129–148. Springer, 2011.
https://researcher.ibm.com/researcher/view_project.php?id=1579.

[KR88] Richard M. Karp and Vijaya Ramachandran. A survey of paral-
lel algorithms for shared-memory machines. Technical Report CSD-
88-408, UC Berkely, 1988. http://www.cs.pitt.edu/~kirk/cs1510/

ParallelAlgorithmsSurvey.pdf.

[LLL82] A. K. Lenstra, H. W. Lenstra, and L. Lovsz. Factoring polynomials
with rational coefficients. Mathematische Annalen, 261:515–534, 1982.
10.1007/BF01457454.

79

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.80.1577&rep=rep1&type=ps
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.80.1577&rep=rep1&type=ps
http://eprint.iacr.org/2010/241
http://eprint.iacr.org/2010/241
http://www.cryptool.org
http://www.cryptool.org
http://eprint.iacr.org/2007/322.pdf
http://crypto.stanford.edu/craig/
http://eprint.iacr.org/2009/547.pdf
http://eprint.iacr.org/2009/547.pdf
https://researcher.ibm.com/researcher/view_project.php?id=1579
http://www.cs.pitt.edu/~kirk/cs1510/ParallelAlgorithmsSurvey.pdf
http://www.cs.pitt.edu/~kirk/cs1510/ParallelAlgorithmsSurvey.pdf

[LMSV10] Jake Loftus, Alexander May, Nigel P. Smart, and Frederik Vercauteren. On
CCA-secure fully homomorphic encryption. To appear at SAC 2011, Cryptol-
ogy ePrint Archive, 2010/560, 2010. http://eprint.iacr.org/2010/560.

[Mar05] Alan Marcocitz. Introduction to Logic Design. McGraw-Hill, second edition
edition, 2005.

[MR09] Daniele Micciancio and Oded Regev. Lattice-based cryptography.
Post Quantum Cryptography, pages 147–191, Springer, February 2009.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.

4862&rep=rep1&type=pdf.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure
against chosen ciphertext attacks. In STOC, pages 427–437. ACM,
1990. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

26.5883&rep=rep&type=pdf.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuos-
ity classes. In EUROCRYPT ’99, Lecture Notes in Computer Science, volume
1592, pages 223–238, 1999.

[PKC91] PKCS 1: RSA encryption standard, 1991. http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.31.9612.

[Rab10] Tal Rabin, editor. Advances in Cryptology - CRYPTO 2010, 30th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010. Pro-
ceedings, volume 6223 of Lecture Notes in Computer Science. Springer, 2010.

[RAD78] Ronald L. Rivest, Leonard M. Adleman, and Michael L. Dertouzos. On
data banks and privacy homomorphisms. Foundations of Secure Com-
putation, pages 169–180, 1978. http://people.csail.mit.edu/rivest/

RivestAdlemanDertouzos-OnDataBanksAndPrivacyHomomorphisms.pdf.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for ob-
taining digital signatures and public-key cryptosystems. Communications of
the ACM, 21:120–126, 1978. http://www.research.rutgers.edu/~pupala/
cs352_docs/rsa.pdf.

[Sch11] Berry Schoenmakers. Cryptography 2 (2WC13) / cryptographic protocols
(2WC10). Lecture Notes, 2011. http://www.win.tue.nl/~berry/2WC13/

LectureNotes.pdf.

[SV10] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with
relatively small key and ciphertext sizes. In Phong Q. Nguyen and David
Pointcheval, editors, Public Key Cryptography, volume 6056 of Lecture Notes
in Computer Science, pages 420–443. Springer, 2010.

80

http://eprint.iacr.org/2010/560
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.4862&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.4862&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.26.5883&rep=rep&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.26.5883&rep=rep&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.9612
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.9612
http://people.csail.mit.edu/rivest/RivestAdlemanDertouzos-OnDataBanksAndPrivacyHomomorphisms.pdf
http://people.csail.mit.edu/rivest/RivestAdlemanDertouzos-OnDataBanksAndPrivacyHomomorphisms.pdf
http://www.research.rutgers.edu/~pupala/cs352_docs/rsa.pdf
http://www.research.rutgers.edu/~pupala/cs352_docs/rsa.pdf
http://www.win.tue.nl/~berry/2WC13/LectureNotes.pdf
http://www.win.tue.nl/~berry/2WC13/LectureNotes.pdf

[SV11] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic simd operations.
2011. http://eprint.iacr.org/2011/133.pdf.

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan.
Fully homomorphic encryption over the integers. In Henri Gilbert, editor,
EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages
24–43. Springer, 2010. Cryptology ePrint Archive 2009/616, http://eprint.
iacr.org/2009/616.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract).
In FOCS, pages 160–164. IEEE, 1982. http://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.103.7844&rep=rep1&type=pdf.

81

http://eprint.iacr.org/2011/133.pdf
http://eprint.iacr.org/2009/616
http://eprint.iacr.org/2009/616
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.7844&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.7844&rep=rep1&type=pdf

	Introduction
	Applications of Partially and Fully Homomorphic Encryption Schemes
	Somewhat and Fully Homomorphic Encryption Schemes
	Goals
	JCrypTool

	Foundation
	Notation
	Circuits
	Lattices
	Ideal Lattices
	Partially Homomorphic Encryption Schemes
	RSA
	Paillier
	Applications: Secure Multiparty Computation

	Somewhat Homomorphic Encryption

	Gentry's Construction
	Definitions
	From Somewhat to Fully Homomorphic Encryption
	The Construction of a Leveled Scheme
	Correctness of the Construction
	Making the Scheme Fully Homomorphic

	Security
	Semantic Security
	KDM-Security
	Random Oracle Model

	Fully Homomorphic Encryption Schemes
	Gentry's Scheme
	The Somewhat Homomorphic Scheme
	Bootstrappable Scheme
	Security

	The Smart-Vercauteren Variant
	The Somewhat Homomorphic Scheme
	The Fully Homomorphic Scheme
	Comparison and security

	The Gentry-Halevi Variant
	The Somewhat Homomorphic Scheme
	The Fully Homomorphic Scheme

	Fully Homomorphic Encryption over the Integers
	The Somewhat Homomorphic Scheme
	Security
	The Fully Homomorphic Scheme

	Implementation in JCrypTool
	Optimization in the Gentry-Halevi Variant
	KeyGen
	Encrypt
	Decrypt
	Recrypt

	Practical Implementation of the Gentry-Halevi Variant
	KeyGen
	Encrypt
	Recrypt
	Functionality
	Appearance

	Performance

	Lunchtime Attack on the Gentry-Halevi Variant
	What is a Lunchtime Attack?
	The Attack
	CCA1-Secure Fully Homomorphic Encryption

	Conclusion

