
 Eindhoven University of Technology

MASTER

A study of nested-relational joins in mediator-based distributed environments

Boersma, M.J.

Award date:
2011

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/94879cff-5732-4bcb-815c-29093ed3160a

Department of Mathematics & Computer Science
Database & Hypermedia Group

A study of nested-relational

joins in mediator-based

distributed environments

MSc Thesis

PUBLIC VERSION

Author M.J. (Melle) Boersma

Daily supervisors dr. G.H.L. Fletcher (TU/e)
G. Bosma (Triple R IT BV)

Supervisors dr.ir. H.M.W. Verbeek (TU/e)
prof.dr. P.M.E. De Bra (TU/e)

Eindhoven, July 2011

Table of Contents

1 Introduction 1

1.1 Relevance to industry . 1

1.2 Context . 2

1.3 Research question . 4

1.4 Contributions . 5

1.5 Thesis outline . 5

2 Background 7

2.1 Relational algebra . 7

2.2 Nested relational algebra . 11

2.3 Implementation of the natural join 12

2.4 Distributed query processing . 16

2.5 Mediator-based systems . 17

3 Analysis of the nested join 19

3.1 Analysis of the G-Join . 19

3.2 Implementation of the G-join . 25

4 Experimental set-up 28

4.1 Experiment design . 28

4.2 Assumptions . 29

4.3 Input data . 30

i

4.4 Parameters . 31

4.5 Implementation . 34

5 Experiment evaluation 36

5.1 Duration of Runs . 36

5.2 Number of bytes sent during runs 41

5.3 Run duration vs. number of bytes sent 45

5.4 Summary . 47

6 Conclusions 48

6.1 Contributions . 48

6.2 Experimental �ndings . 49

6.3 Limitations and future work . 50

6.4 Research question . 51

A TreeGen con�guration �le 52

B Graphs of run duration vs. number of bytes sent 54

References 60

ii

List of Figures

2.1 An example of a scheme . 8

2.2 An graphical representation of common relational operators from
[10] . 10

2.3 Wrapper architecture based on [26] 17

2.4 An example of a query displayed as a tree 18

4.1 The experimental set-up . 29

4.2 Overview of the implementation of the experiment 34

5.1 The duration of runs for the algorithms and join-strategies. . . . 37

5.2 The duration of runs for left and right join sizes. 38

5.3 The duration of runs for left and right join sizes broken down by
the di�erent communication strategies and join algorithms. . . . 38

5.4 The duration of runs for di�erent success ratio values. 39

5.5 The duration of runs for di�erent success cardinality values. . . . 39

5.6 The duration of runs for di�erent success ratio and success car-
dinality values. 40

5.7 The duration of runs for di�erent bu�er exponent values. 40

5.8 The number of bytes sent for the algorithms and join-strategies. . 41

5.9 The average number of bytes sent for the left and right join sizes. 42

5.10 The average total number of bytes sent for di�erent success ratio
values. 42

5.11 The average total number of bytes sent for di�erent success car-
dinality values. 43

iii

5.12 The average total number of bytes sent for di�erent success ratio
and success cardinality values. 43

5.13 The average total number of bytes sent for di�erent bu�er expo-
nent values. 44

5.14 The run duration o�set by the number of bytes sent colour coded
by input sizes. 45

5.15 The run duration o�set by the number of bytes sent colour coded
by success ratio. 46

5.16 The run duration plotted against the number of bytes sent colour
coded by the combination of the communication strategy and the
join algorithm. 46

iv

List of Tables

1.1 The supplier relation. 3

1.2 The supplierLocation relation. 3

1.3 The product relation. 3

1.4 The articleRevision relation. 3

2.1 Relational algebra operators . 9

2.2 A projection of attributes pID and slID of the product relation. 11

2.3 The result applying the nest operation on the pID attribute of
the relation described in Table 2.2. 11

3.1 The six cases of the join operation. 20

4.1 An overview of the input parameters. 33

v

List of Algorithms

2.1 The matches operation for tuples t1 and t2 adapted from [24] . . 13
2.2 The block nested-loop join over relations R and S. 13
2.3 The block sort-merge join for relations R and S. 15
3.1 An implementation of the G-join on nested relations r and q. . . 26

vi

Abstract

This thesis reports on the results of a study of the nested join operator in a
mediator-based setting. As the rate at which data is accumulated increases,
the need for integration of di�erent (physical) Database Management Systems
(DBMS) becomes apparent. The most fundamental and arguably important
operation that is used in order to achieve this is the join-operator.

The nested-relational model is a �exible data model and can be used to describe
data on practically all de facto data models such as relational, object-relational
and XML-based DBMS.

Although joins are not new, very little work has been done in the area of the
nested-relational join operator. Some authors [15, 18, 19] have proposed nested
relational join operators, however an implementation has not been reported.

Information systems companies in their IT-landscape are often of a di�erent
make. This leads to di�culties concerning data integration. To solve these
di�culties in an e�cient way a mediation service, also known as a mediator,
is introduced to their IT-landscape. The mediator facilitates communication
between di�erent databases and the end-user.

The focus of this study is the design, implemention and evaluation of a nested-
relational join operator in a mediator-based context.

This study presents a generalized version of the join introduced by Garani &
Johnson [15]. This generalized join is implemented in a mediator-based context,
which poses some additional constraints on the implementation. Subsequently
the implementation is evaluated and the results are presented.

Preface

This thesis is the �nal product of my master, Business Information Systems. It
also marks the end of my life as a student. After having �nished a bachelor's
degree in Industrial Enigineering and Management Sciences, I chose for the
master Business Information Systems (BIS). This was exactly what I wanted.
Whereas in the bachelor, the Computer Science part was just `one of those'
areas which was touched upon, in the master it became a major part.

With the courses `Information Retrieval' and `Advanced Database Systems',
Mykola Pechenizkiy and Toon Calders triggered my interest in the Databases
and Hypermedia Group early on. And this interest was not unduly, this �eld
is becoming more and more important as we, mankind, accumulate more and
more data over time.

First of all, I would like to thank George Fletcher for his expertise and advice.
I believe that I could not have been introduced in a better way to the academic
�eld of Database Technology. I want to thank my company supervisor Gerco
Bosma for his advice and feedback during the project and for showing me the
clash between the academic world (theory) and the business side (practice). I
would also like to thank Paul de Bra, Eric Verbeek and Lydia Zabel for their
input in the process.

All of this would not have been possible without the love and support of my
parents, Marja and Kerst, my sister, Maren and my girlfriend, Lonneke: Thank
you for being there for me.

i

Chapter 1

Introduction

Around 500 BC the Greek philosopher Heraclitus said that `change is the only
constant'. The present day is no di�erent: IT is ever-advancing. While these
advancements present possible threats, they present even more possibilities and
opportunities. From this constant �ux however, one certainty can be derived:
the amount of data we accumulate is ever growing.

In larger companies multiple systems ful�l business requirements of multiple
divisions and/or business-units. Unfortunately these systems each have their
standards for data storage and retrieval. In order to keep data up-to-date in
multiple systems, the �eld of data integration �ourishes since the 1980's, since
keeping these systems synchronised is often essential for business operations.
However, because of di�erent storage formats and communication protocols,
this is by no means an easy task. As a result, some organisations have become
largely dependent on processes involving data mining and data integration where
data originates from di�erent sources.

The problem which is at the heart of this thesis is in line with the problem
description in the previous paragraph. It is based on a real-life case of the
company, introduced in Section 1.1, which also supervises this thesis. A more
detailed version of the problem is given in Section 1.2. In Section 1.3 the research
statement of this study is presented after which the contributions of this study
are given in Section 1.4. The chapter concludes with an overview of the structure
of the remainder of this thesis in Section 1.5.

1.1 Relevance to industry

Triple R IT BV1 is a high-tech start-up founded in 2005 based at the High-Tech
Campus in Eindhoven, The Netherlands. With their product � the DataSource

1See http://www.triplerit.com

1

http://www.triplerit.com

Integrator � they provide data integration and aggregation solutions for multina-
tionals. These companies often have an abundance of data in separate systems.
As the amount of data grows, it is harder for companies to keep this data syn-
chronised and to extract reliable, relevant and meaningful information from this
data (e.g. KPIs).

As an example consider a production company that consists of three di�erent
departments: �nance, production and sales. The �nance department is respon-
sible for invoicing and the �nancial statements of the company for which they
use a software solution called Exact. The production department manages the
state of their accepted orders, their due dates and resulting work force planning.
This department uses a tailored SAP implementation, which is an Enterprise
Resource Planning (ERP) system. The sales department is responsible for the
order sales and the customer-relationship management of the company for which
they use a software solution of ACT.

When these three departments do not share information and operate as inde-
pendent silos any of the following problems could occur due to either the lack
of information, or the use of outdated information:

• Billing a client too early or too late.

• Billing a client at a wrong address.

• Creation of an incomplete or wrong �nancial statement.

• Promising a client a too optimistic due date.

By integrating the data from these 3 departments the problems described above
could be prevented. However, since these data sources use di�erent means to
access their data and use di�erent formats for data storage, the integration of
data is not a trivial operation.

Triple R IT facilitates the data integration need of companies with their product.
In order to do so in the best possible manner, all software and hardware used
are designed and custom-built in-house.

1.2 Context

This section was modi�ed since it contained classi�ed information.

A running example which is referred to in the remainder of this study is depicted
in Tables 1.1, 1.2, 1.3 and 1.4. This data describes the aforementioned structure
where a supplier (Table 1.1) has one or more locations (Table 1.2) which in turn
have a set of products (Table 1.3) of which some have been revised over time
(Table 1.4). The ID attributes (such as sID and prID) denote unique identi�ers
of tuples, or references to them. The product relation for instance has an slID
attribute. This attribute refers to a tuple within the supplierLocation relation
to which it belongs.

2

Table 1.1: The supplier relation.

sID supplierName

s1 supplier1
s2 supplier2

Table 1.2: The supplierLocation relation.

slID sID address phone

sl1 s1 address1 235-7111317
sl2 s1 address2 192-3293137
sl3 s2 address3 414-3475359

Table 1.3: The product relation.

pID slID code name description price

p1 sl1 code1 product1 description1 1.12
p2 sl1 code2 product2 description2 3.58
p3 sl2 code3 product3 description3 1.32
p4 sl2 code4 product4 description4 1.34
p5 sl3 code5 product5 description5 5.58
p6 sl3 code6 product6 description6 9.14
p7 sl3 code7 product7 description7 4.23

Table 1.4: The articleRevision relation.

prID pID oldCode oldPrice

pr1 p1 codeX 3.37
pr2 p1 code1 6.10
pr3 p5 code5 9.87
pr4 p5 code5 2.58

3

In this section an introduction to the guiding case was given and a running
example was introduced. In the next section the resulting research statement is
presented.

1.3 Research question

The nested-relational model [17], a model used to store and represent hierarchi-
cal data, is a �exible data model and can be used to describe data on practically
all de facto data models such as relational, object-relational and XML-based
database management systems (DBMS).

As the amount of data grows, manual lookups of speci�c data elements and
their manipulation can be quite laborious and error prone. For this reason
DBMS were developed. These systems allow to retrieve and transform speci�c
sets of information based on user requests. Arguably the most important oper-
ation within the �eld concerns combining di�erent types of information. This
operation is executed by a so called `join operator'.

Although joins are not new, relatively little e�ort has been made in the area of
the empirical study of the nested-relational join operator. Some papers [15, 18,
19] presented nested relational join operators, however no implementation has
been reported.

Next to that, the nested join operation has not been implemented in a dis-
tributed setting in which there is a central service which facilitates the execution
of this operation. This central service is also known as a mediator. The medi-
ator and its context are interesting because with the ever increasing amount of
systems available on the market today the number of interoperability require-
ments increases. Next to that, the amount of data processed by these systems
increases. One solution to deal with both interoperability requirements and lack
of processing power is to introduce a mediation service.

The previous observations have resulted in the following research question:

How can the nested relational join operator be implemented in a mediator based
context?

This leads to several sub research questions:

1. What is the result of a join operation on nested-relational data?

2. How can a nested-relational join operator be implemented?

3. What are the properties that a�ect the performance of the nested rela-
tional join operator?

The following steps were taken in this study to answer the aforementioned re-
search question and sub-questions:

4

1. Design of an algorithm for non-distributed nested-relational join based on
earlier work [15, 18, 19].

2. Implementation and validation of the non-distributed algorithm.

3. Design of an algorithm for the distributed nested-relational join.

4. Implementation and validation of the distributed design.

5. Set-up of an experiment for empirical analysis of the designed distributed
algorithm.

6. Execution of the experiment.

7. Analysis of the results.

This section introduced the research question and sub-questions. A number
steps were undertaken, to answer these questions. This lead to several contri-
butions of this study which will be presented in the next section.

1.4 Contributions

This section was modi�ed since it contained classi�ed information.

This section discusses the contributions of this study. Since this study is based
on an actual use-case within the supervising company, this study will contribute
to the academic �eld and add business value on a practical level.

Garani & Johnson [15] identify six cases of the nested-relational join. Their
proposal is the �rst extension of the nested-relational join operator which is not
limited to joining nested structures in any way.

First of all a generalisation of these six cases of the join is presented. This single
generalisation reduces the complexity of implementation and validation for the
di�erent cases of a nested join operator.

Second, a �rst implementation of a local Garani-Join algorithm is presented
extended to a mediator-based context, which imposes several design restrictions.

Third, the implementation is evaluated. This is the �rst reported empirical
evaluation of such a nested-relational join operator. Only by implementation,
bottlenecks can be identi�ed and optimizations can be made. This thesis is a
�rst step towards such optimizations.

1.5 Thesis outline

This section gives a brief overview of the content of the other chapters of the
thesis.

5

Chapter 2 presents background information related to the subject and the
research statement. In this chapter theoretical concepts are introduced
which will be used throughout the rest of the chapters.

Chapter 3 discusses the nested-join operator in more detail. Since this is the
main focus of this thesis, a more in-depth analysis is in order. This chap-
ter includes a generalisation of the nested-join operator. Finally, several
implementations of join algorithms will be presented.

Chapter 4 describes the experimental set-up. The input parameters, output
parameters, data-sets and experiment implementation are presented here
as well.

Chapter 5 will contain the evaluation of the experiment. After running the
experiment, several observations have been made. These observations can
be found in this chapter.

Chapter 6 will contain the conclusions of this study, an overview of the con-
tributions and a listing of future work.

In this section the outline of the thesis is presented. In the next chapter, back-
ground information related to the academic �eld is presented.

6

Chapter 2

Background

In this chapter an overview of literature which is the basis of the aforemen-
tioned research statement is presented. First the foundation of database tech-
nology, relational algebra, is discussed alongside the running example presented
in Chapter 1. The notation introduced here will be used throughout the rest of
the thesis.

Since the research focusses on the join operator, this subject will be discussed
in more detail and several extensions will described. After that, leaving the
declarative �eld behind, we focus on the implementation of query processing
in general and the join operator in speci�c. This subject is extended to a dis-
tributed environment, i.e. a mediator-based context and several considerations
and trade-o�s are discussed.

2.1 Relational algebra

Around the 70's the �rst ERP systems were developed and data began to accu-
mulate. In order to reason in a formal manner about this data, Codd introduced
both the relational model, which is a set of criteria also known as First Normal
Form (1NF or NF), and relational algebra [10]. Based on set theory, relational
algebra can be used as a means to reason and describe data structured according
to the relational model.

Next several concepts of relational algebra are introduced. Just as in set theory,
a tuple is an ordered list of values, such as (B1, Mathematics, Peter). This
example describes a book B1 on the subject Mathematics owned by the per-
son Peter. The nouns used to describe the values of the tuples are known as
attributes, in this case {book, subject, person}. A set of tuples with the same
attributes is called a relation. A scheme is a tree representation of the relation
with its attributes. An example of a scheme is depicted in Figure 2.1. In this
case an extended tree structure of nested relations of a supplier as presented in
Section 1.2 is depicted.

7

Figure 2.1: An example of a scheme

In order to describe operations on relations and attributes in a formal manner, a
set of relational operators was introduced [10]. In Table 2.1 the basic operators
of relational algebra are described [10, 22, 24]. The nest and unnest operators
are discussed in Section 2.2.

The select, project and rename operators are called unary operators since they
require a single operand. In the same fashion the other operators are binary
operators since these operate on two operands.

In order to reduce the length of query statements, the binary Natural-Join

operator (also known as the Join operator or simply `Join') was introduced. It
is de�ned as

R on S ≡ Π(attr(R)∪attr(S))(σP (R× S))

where attr(X) denotes the set of attributes of relation X and predicate P is a
set of equations, de�ned as

P ≡ {R[x] = S[x]|x ∈ (attr(R) ∩ attr(S))}.

Informally, the join operator matches two sets of tuples on a number of shared
attributes.

A graphical representation of the most common relational operators is depicted
in Figure 2.2. In this �gure the rectangles denote the relations. Within those,
the marked areas are a�ected by the described operation. The arrows denote
the transition from input to output. R and S denote the relations participating
in the operation.

Other operators were de�ned to aid in the formulation of queries. For an
overview of these additional relational algebra operators see [24, p.58].

8

Table 2.1: Relational algebra operators

Operation Notation Description

Select σP (R) The select operator returns the subset of tu-
ples in R for which the predicate P holds.

Project ΠA(R) This operator returns a relation including only
the attributes in attribute list A.

Rename ρx(R) Renames relationR to x. In this case, x can be
a relation name or a relation name combined
with attribute names x(A1, ..., An) where Ai

is an attribute name.
Union R ∪ S The union operator appends the tuples of S to

R and returns the result. Note that relations
R and S should have the same attributes.

Intersection R ∩ S The intersection operator returns the set of
tuples which exist in both relations R and S.

Di�erence R− S The di�erence operator behaves like set dif-
ference, it removes the tuples that exist in S
from R.

Cartesian
product

R× S Combines every tuple from R with every tuple
from S by adding the attributes from S to
those from R.

Division R÷ S Let R ⊇ S. The division operator returns a
unique set of tuples with attributes that do not
exist in S for which the attributes in common
are in the complete set of S.

Nest νA(R) Nests relation R on attribute(s) A. Results in
a nested relation.

Unnest µA(R) Unnests relation R on attribute(s) A. Inverse
of the nest operation.

9

Figure 2.2: An graphical representation of common relational operators from [10]

10

2.2 Nested relational algebra

Up until now, the values of attributes are atomic, i.e. they only contain literal
values. Jaeschke & Schek [17] proposed the nested relational model also known
as the Non First Normal Form (NF2) as an extension to the relational model.
In this model, attributes are either atomic or nested, i.e. within tuples the
values of these attributes are a relation by themselves. This extension allows
describing hierarchical data.

Important extensions for dealing with nested relational data are the nesting and
unnesting operations, described in Table 2.1. These operations can be used for
transformations between NF2 and NF. Nesting and unnesting operations are
denoted by νA(R) and µA(R), respectively.

As an example, consider a projection of the pID and slID attributes of the
product relation from Table 1.3. This projection is depicted in Table 2.2. Per-
forming a nest operation on the pID column (νpID(R) or ν$1(R)) would result
in the relation depicted in Table 2.3.

Table 2.2: A projection of attributes pID and slID of the product relation.

pID slID

p1 sl1
p2 sl1
p3 sl2
p4 sl2
p5 sl3
p6 sl3
p7 sl3

Table 2.3: The result applying the nest operation on the pID attribute of the relation
described in Table 2.2.

pID slID

{(p1), (p2)} sl1
{(p3), (p4)} sl2
{(p5), (p6), (p7)} sl3

Although the nest and unnest operations are a welcome extension to the set of
operators, their usage can cause a large explosion of data, especially the usage
of the unnest operator.

The introduction of nested relational data required an extension of the natural
join operator. Roth et al. [23] describe an extension of the set of basic oper-
ators to be used in a nested environment. They present the so-called extended
natural join (one) which is a recursive application of the join operator on nested

11

attributes. The extended natural join of relations r and q with schemes R and
Q and common attributes Ac is de�ned as:

r one q ≡ {t|(∃tr ∈ r, ∃tq ∈ q) (Eq. 2.1)

∧ (t[attr(R)−Ac] = tr[attr(R)−Ac])

∧ (t[attr(Q)−Ac] = tq[attr(Q)−Ac])

∧ (t[Ac] = tr[Ac] ∩e tq[Ac])

∧ (t[Ac] 6= ∅)

}

In equation Eq. 2.1 the extended set intersection (∩e) is de�ned informally
as the complete equality of all (nested) attributes. A complete de�nition is
described by Roth et al. [23]. This extension however, is limited to joining
relations at the top level of the scheme tree.

This limitation was addressed by Liu & Chirathamjaree [18] who present a new
operator called the P-join. However the operator described by the authors is
limited to joining what they call selection-comparable nodes. In order for two
nodes to be selection comparable one of the two nodes has to be a child of an
ancestor of the other node. Unfortunately their proposed algorithm is �awed
in case a join on multiple attributes distributed over multiple levels is per-
formed. Although the authors claim their operator works correct, the resulting
nested attributes point to speci�c points in a global scheme, thereby causing
the scheme-tree to be transformed to a lattice.

Fortunately, Garani & Johnson [15] provided a structural analysis of all cases
which occur when joining nested relational data. Since this is the basis for this
thesis, their research will be discussed in the next chapter.

2.3 Implementation of the natural join

Relational algebra can be used to declare operations on one or more relations.
In order to obtain these results, relational operators will need to be translated
to instructions at a lower level. In this section the two most common imple-
mentations of the join operation will be presented: the nested-loop join and the
sort-merge join.

In the described algorithms the equality and inequality statements operate on
the set of common attributes. As an example, the matches operation in Algo-
rithm 2.1 tests for equality of two tuples. In this algorithm, attr(t) denotes the
set of attributes of tuple t and t[a] refers to the set of values of tuple t for a set
attributes a.

The nested-loop join is the most straightforward implementation of the natural
join operator. It iterates over two nested loops and compares each tuple of
relation R to each tuple in relation S as shown in Algorithm 2.2. The comparison
is based on the matches operations as described in Algorithm 2.1. In this case

12

Algorithm 2.1 The matches operation for tuples t1 and t2 adapted from [24]

1: for all a ∈ (attr(t1) ∩ attr(t2)) do
2: if t1[a] 6= t2[a] then
3: return False
4: end if

5: end for

6: return True

the block version of the nested loop join is presented. This implementation is
based on the notion that the memory capacity of the system performing the
algorithm is likely to be insu�cient to be able to contain the two complete
relations during the operation. Therefore, each relation is composed of a set of
blocks and accessed on block-per-block basis. The assumption in this algorithm
is that the two blocks (BR and BS) and the temporary result set (T) �t into
memory. The complexity of this algorithm is O(N2), where N is the maximum
number of tuples of R and S.

Algorithm 2.2 The block nested-loop join over relations R and S.

1: T := {}
2: for all BR ∈ R do

3: for all BS ∈ S do

4: for all tr ∈ BR do

5: for all ts ∈ BS do

6: if tr = ts then
7: T := T ∪ {(t1 ∪ t2)}
8: end if

9: end for

10: end for

11: end for

12: end for

The sort-merge join, proposed by Blasgen & Eswaran [4] strives to reduce the
space and time complexity of the nested-loop join. By sorting both relations
before performing the join, a large number irrelevant match operations can be
avoided thereby reducing complexity to O(NlogN).

The sort-merge join algorithm works as follows. First the both relations are
sorted based on their common attribute(s). Then all (consecutive) tuples on
the left hand which match are grouped together, up to the �rst tuple which
has di�erent values for the common attributes. After that the right hand side
relation is scanned. This scan continues as long as the common attributes on
the right hand side are ranked lower than those on the left hand side. As soon as
this is no longer the case, the tuple on the right hand side is tested for equality
with the set of tuples on the left hand side. If they are equal, the tuple is added
to the result set and the next tuple of the right hand side is checked for equality.
When this tuple is not equal, its rank is higher than any of the tuples in the set
on the left hand side. Another pass is then made with a new set of tuples on
the left hand side.

13

The blocked version complicates this algorithm considerably. If a subsequent
block is requested on either side, and this block has the same common attribute
values as the last tuple in the previous block, some parts of the other relation
need to be scanned again. Therefore the last block and o�set of any matching
operation needs to be stored, so this position can be restored when a matching
operation is interrupted by block boundaries.

Algorithm 2.3 depicts the sort-merge-join. In this algorithm ri denotes the i
th

element of ordered relation R and |R| the cardinality of relation R, i.e. the
number of blocks contained in relation R. Furthermore, sort(R,A) is de�ned
as a sort operation on attributes A of relation R. Again a block version of the
algorithm is presented for same reasons outlined earlier. Let BRi denote the
ith block of relation R and let |BRi| denote the cardinality of block BRi. The
algorithm is roughly based on the `unblocked' algorihm outlined by Sliberschatz
et al. [24].

In this section, two blocked implementations of join algorithms were reviewed.
However, these algorithms are meant to be used in a local setting; that is in a
centralised location. As a step towards the distributed execution of join opera-
tions, distributed query processing is discussed in the next section.

14

Algorithm 2.3 The block sort-merge join for relations R and S.

1: output := {}
2: i := 0; ilast := −1
3: j := 0; jlast := −1
4: m := 0; mlast := −1
5: n := 0; nlast := −1
6: sort(R, attr(R) ∩ attr(S))
7: sort(S, attr(R) ∩ attr(S))
8: while (i < |BRm| ∨m < |R|) ∧ (j < |BSn| ∨ n < |S|) do
9: if i = |BRm| then
10: m := m+ 1
11: i := 0
12: if jlast > −1 then

13: j := jlast; n := nlast
14: end if

15: end if

16: if j = |BSn| then
17: t := sj
18: n := n+ 1
19: j := 0
20: if sj = t then
21: i := ilast; m := mlast; jlast := −1
22: end if

23: end if

24: ibegin := i
25: P := {ri}
26: while (i+ 1 < |BRm|) ∧ (ri = ri+1) do
27: P := P ∪ {ri+1}
28: i := i+ 1
29: end while

30: while (j < |BSn|) ∧ sj < ri do
31: j := j + 1; jlast := −1
32: end while

33: while (j < |BSn|) ∧ (ri = sj) do
34: if jlast = −1 then

35: jlast := j; nlast := n
36: end if

37: if ilast = −1 then

38: ilast := ibegin; mlast := m
39: end if

40: for all p ∈ P do

41: output := output ∪ {ri ∪ sj}
42: end for

43: j := j + 1
44: end while

45: if ri < sj−1 then
46: ilast := −1
47: end if

48: end while

15

2.4 Distributed query processing

In the previous section, local implementations of the join operator were de-
scribed. Often queries are performed on data from multiple sources distributed
over several physical locations. In this section query processing in such a non-
centralised environment is discussed by presenting two di�erent approaches for
performing the join: a naive approach and the semi-join.

In this section, consider two di�erent physical locations, called sites S1 and
S2. These sites contain relations R1 and R2 respectively. A join is performed
between relations R1 and R2 where a set of common attributes Ac := AR1∩AR2

are compared. Furthermore, assume |R1| < |R2|, i.e. the relation at S1 is smaller
than the relation at S2.

The naive approach [24] is to execute the query at the larger relation, send the
smallest relation (R1) to the site of the larger one (S2) and to perform the join
at the site of the larger relation.

1. Request R1 from S1.

2. Ship relation R1 from S1 to S2.

3. Perform a local join result← R1 on R2.

4. Return result.

Note that this local join can be implemented using any of the previously dis-
cussed joins: the nested-loop join, the sort-merge join or any extended natural
join for that matter, depending on the structure of the data.

The semi-join originally proposed by Bernstein & Chiu [3] aims at reducing the
number of bytes transmitted by shipping a projection of the common attributes
of R1 to S2. A join is performed solely on these attributes, after which an
intermediate result is sent back to S1. After receiving the intermediate result,
it is again used in a join to obtain the �nal result. This process results in the
following steps, based on Silberschatz et al. [24]:

1. At S2 request πAc
(R1) from S1.

2. At S1 compute temp1 ← πAc
(R1).

3. Ship temp1 from S1 to S2.

4. At S1 request temp1 on R2.

5. At S2 Calculate temp2 ← temp1 on R2.

6. Ship temp2 from S2 to S1.

7. At S1 compute result← R1 on temp2.

8. Return result.

In the next section the distributed environment related to this research is pre-
sented. Within this environment the approaches discussed above are used.

16

2.5 Mediator-based systems

This section was modi�ed since it contained classi�ed information.

This section discusses the systems used for distributed query processing such
as those described in the previous section. Initially mediator-based systems are
presented, after which a broader overview of related literature is given. The term
mediator is based on and used interchangeably a the de�nition of a mediation
service [27] which is described as:

�[A mediation service] covers value-added processing on query
text and resulting content as query reformulation and distribution;
and �ltering, integrating and processing the content of the resulting
data, generating new, denser or more relevant information.�

Accordingly, amediator is de�ned as a component that provides mediation ser-
vices in response to a client. In Figure 2.3 a mediator is depicted in its typical
context. In this picture wrappers are responsible for the translation and imple-

Figure 2.3: Wrapper architecture based on [26]

mentation of database speci�c functionality, also known as the capabilities of the
data source. A catalog is stored which contains a global scheme of the separate
database systems. A client connects to the database requesting information.
The mediator translates their requests to appropriate queries and optionally
performs some �nal operations before sending a response to the client.

Several systems for managing heterogeneous data sources (i.e. data sources
with di�erent capabilitites) have been proposed, amongst them are DISCO [25],
MIND [13] and Garlic [7]. Some of these systems take the data source's capa-
bilities into account. These refer to the available operations and their operands
of a certain data source. For example, some data sources might not support ag-
gregate operations such as COUNT or SUM. In this case a wrapper should support
this functionality.

As a result, the internal language used by the mediator should be rich enough
to support a wide variety of operations. For instance the Garlic, MIND and
DISCO frameworks are based on ODMG's object data model [2] which is a
speci�cation for the communication and storage of hierarchical data.

17

Collet & Vu [12] present the Query Broker Framework (QBF). With the QBF
the authors propose a generalised solution to simplify the extension of query
functionality in a heterogeneous setting. They do so by de�ning a framework
that encapsulates distributed query optimisation and monitoring. A monitor
responds to simple event-condition-action or event-action rules. Furthermore,
capability and query context of data sources is taken into account. In the QBF
the context of a query is de�ned as a set of constraints relating to parameters
such as system load or network tra�c. The query itself is represented as a set of
nodes forming a tree cf. the arity of the query operators described in Section 2.1.
An example of such a tree is given in Figure 2.4.

Figure 2.4: An example of a query displayed as a tree

In this chapter several concepts ranging over various levels within the �eld of
data integration were presented. First a basic introduction to relational algebra
and operators was given. At a lower extent general implementations of natu-
ral joins were presented for unnested relations. Subsequently, these joins were
brought to a distributed environment. Finally, several systems for managing
and executing both ad-hoc and planned queries were reviewed.

In the next chapter, an analysis of nested relational joins is presented.

18

Chapter 3

Analysis of the nested join

In the previous chapter a general introduction to the academic �eld was pre-
sented. In this chapter, several theoretical aspects will be discussed in more
detail, as they provide the foundation for the thesis. First an analysis of the
di�erent joins as described by Garany & Johnson [15] is presented. Their work
is a clear and concise summary of the research done in this �eld. Next, a sin-
gle generalised version of these joins is derived. An implementation for this
generalised version is presented subsequently in Section 3.2. This generalised
version is implemented (see Chapter 4) and forms the basis for the evaluation
in Chapter 5, something which has not been done before.

3.1 Analysis of the G-Join

Garani & Johnson [15] identify six cases of the nested relational join. They
distinguish the cases by looking at the type of the attribute (atomic or nested)
and the level at which the participating attributes are within the scheme tree
such as the one presented in Section 1.2, Figure 2.1. These six cases are depicted
in Table 3.1.

In order to distinguish between parent (R) and child (Ri) relations in the scheme
tree, a join-path (L) is introduced. This join-path is de�ned as being either
1) L = ∅ at the level of the participating relation or 2) L = RiLi otherwise .
In the above de�nition, Li denotes the remainder of the join-path at depth i.

In the upcoming descriptions, onN denotes the de�nition of the join operator
according to case N as depicted in Table 3.1.

Case 1

Although relations might contain nested attributes, these are not in the set
of common attributes and hence not participating in the join. Therefore

19

Table 3.1: The six cases of the join operation.

1st relation 2nd relation
Case Attribute Level Attribute Nesting

1 atomic top atomic top
2 atomic not top atomic top
3a atomic not top atomic not top (same level)
3b atomic not top atomic not top (not same level)
4 nested top nested top
5 nested not top nested top
6a nested not top nested not top (same level)
6b nested not top nested not top (not same level)

relations are joined as if they were atomic, i.e. nested attributes appear
in the join result unmodi�ed.

In equation Eq. 3.1 a formal de�nition of the join is given as de�ned in
[15]. Relations r and q contain attributes {R1, R2, . . . , A1, . . . , Aj , . . . , Rn}
and {Q1, Q2, . . . , A1, . . . , Aj , . . . , Qm} respectively. In these attribute sets,
{A1, . . . , Aj} denotes the set of common attributes.

r on1 q ≡ {t|(∃tr ∈ r, ∃tq ∈ q) (Eq. 3.1)

∧ (t[attr(R)− {A1, . . . , Aj}] = tr[attr(R)− {A1, . . . , Aj}])
∧ (t[attr(Q)− {A1, . . . , Aj}] = tq[attr(Q)− {A1, . . . , Aj}])
∧ (t[A1, . . . , Aj] = tr[A1, . . . , Aj] = tq[A1, . . . , Aj])

∧ (t[A1, . . . , Aj] 6= ∅)

}

Case 2

Case 2 considers a join operation on atomic attributes where one of the
attributes is not at the top level. This is a recursive application of the
join operator until the join-path is empty. In this case the join as de�ned
in case 1 is executed.

Again, consider relations r and q with attributes {R1, R2, . . . , Ri, . . . , Rn}
and {Q1, Q2, . . . , A1, . . . , Aj , . . . , Qm} where {A1, . . . , Aj} are the attributes
in common, and these common attributes are on the end of the join-path
of Ri, i.e. Ri is the ancestor of {A1, . . . , Aj}. Let rL denote a relation r
with join path L. The de�nition of equation Eq. 3.2 is slightly adapted
from the authors de�nition [15] since they did not include the di�erence
between the �rst and the second case formally. Note that in the following
de�nition, Ri is a nested attribute and that hence t[Ri] refers to a set of

20

tuples.

rL on2 qM ≡ r(RiLi) on2 q(QjMj) (Eq. 3.2)

≡ {t|(∃tr ∈ r)
∧ (t[attr(R)− {Ri}] = tr[attr(R)− {Ri}])
∧ ((L 6= ∅ ∧ t[Ri] 6= ∅ ∧ (t[Ri] = tr[Ri]Li on2 q))

∨ (L = ∅ ∧ t[Ri] 6= ∅ ∧ (t[Ri] = tr[Ri] on1 q)))

}

Case 3a

This case de�nes the join between atomic attributes which are on equal lev-
els, but not at the top level. Let r and q be nested relations with schemes
R = {R1, R2, . . . , Ri, . . . , Rn} and Q = {Q1, Q2, . . . , Qj , . . . , Qm}. Let Ri

and Qj be the ancestors of a common set of atomic attributes at a speci�c
but equal depth on their respective join-paths. Furthermore, let L and M
be the join-paths of r and q respectively. The join for this case is then
de�ned as:

rL on3a qM ≡ r(RiLi) on3a q(QjMj) (Eq. 3.3)

≡ {t|(∃tr ∈ r, ∃tq ∈ q)
∧ (t[attr(R)− {Ri}] = tr[attr(R)− {Ri}])
∧ (t[attr(Q)− {Qj}] = tq[attr(Q)− {Qj}])
∧ ((Li 6= ∅ ∧ t[RiQj] 6= ∅ ∧ t[RiQj] = (tr[Ri]Li on3a tq[Qj]Mj))

∨ (Li = ∅ ∧ t[RiQj] 6= ∅ ∧ t[RiQj] = (tr[Ri] on1 tq[Qj])))

}

Case 3b

This is the most complex case on atomic attributes since a join is per-
formed on two attributes which are neither at the top relation, nor at the
same level.

In essence, the result of this join consists of all tuples found in the com-
mon attributes, their ancestors and all relevant tuples of attributes not
participating in the join. The relation which has the common attributes
at a lower level in its scheme tree is included in the other.

In the following de�nitions Pyx denotes attribute number x from the set
of P 's attributes which is at depth y in the overall scheme. Moreover,
Pyx(P(y−1)1, . . . , P(y−1)n) denotes that Pyx is a nested attribute with n
child attributes (atomic or nested). The collection of attributes of P at
depth y is denoted by Py.

Consider nested relations r and q again de�ned by schemes R and Q
where the set of common attributes A11, . . . , A1z is present at di�erent
levels in the two scheme trees. In essence it describes two nested schemes
(R and Q) which contain a set of common nested attributes (A11, . . . , A1z)

21

somewhere within the structure.

Let R = {Ri1, . . . , Riw(

R(i−1)1, . . . , R(i−1)x(

. . . (

R21, . . . , R2y(

R11, . . . , A11, . . . , A1z, . . . , R1k

), . . . , R2l

), . . .),

. . . , R(i−1)m,

), . . . , Rin}

and Q = {Qi′1, . . . , Qi′w′(

Q(i′−1)1, . . . , Q(i′−1)x′(

. . . (

Q21, . . . , Q2y′(

Q11, . . . , A11, . . . , A1z, . . . , Q1k′

), . . . , Q2l′

), . . .),

. . . , Q(i−1)m′ ,

), . . . , Qi′n′}

In the above de�nition i, i′, w, w′, x, x′, y, y′, l, l′,m,m′, n, n′ are positive
integers and not equal in general. Furthermore assume that i < i′ without
loss of generality.

Note that this is a more general de�nition than the one de�ned by the
authors [15, def. 11] since they decided to present two scheme trees with
participating relations at the �rst attribute only. It is therefore also a bit
more verbose. As in the previous cases, let L and M be the join-paths of
relations r and q respectively.

The join for this case can be de�ned as:

rL on3b qM ≡ r(RiLi) on3b q(QjMj) (Eq. 3.4)

≡ {t|(∃tr ∈ r, ∃tq ∈ q)
∧ (t[Attr(Qi′(. . . (Qi+1)))] = tq[Attr(Qi′(. . . (Qi+1)))])

∧ (t[attr(Qi)− {Qiw′}] = tq[attr(Qi)− {Qiw′}])
∧ (t[attr(Ri)− {Riw}] = tr[attr(Ri)− {Riw}])
∧ (t[RiwQiw′] = (tr[Riw]Li on3a tq[Qiw′]Mj))

∧ (t[RiwQiw′] 6= ∅)

}

Case 4

The remaining cases consider joins on nested attributes. This case in

22

speci�c considers a join where both nested attributes are at the top level
of the relation.

To join nested relations the authors introduce the intersection of two
nested relations r and q with the same scheme R. In essence, each result-
ing tuple exists in both input relations and the sets of tuples of nested at-
tributes are recursively equal as well. In the following de�nitionN1, . . . , Nj

the set of nested attributes in common, R1, . . . , Ri are the set of attributes
that are not in common.

r ∩∩ q ≡{t|(∃tr ∈ r, ∃tq ∈ q) (Eq. 3.5)

∧ (t[Ni] = tr[Ni] ∩ tq[Ni])

∧ ((t[R1] = tr[R1] ∩∩ tq[R1]) ∧ . . . ∧ (t[Ri] = tr[Ri] ∩∩ tq[Ri]))}

The join for relations with nested attributes at the top level can be de�ned
as:

r on4 q ≡ {t|(∃tr ∈ r, ∃tq ∈ q) (Eq. 3.6)

∧ (t[attr(R)− {A1, . . . , Aj}] = tr[attr(R)− {A1, . . . , Aj}])
∧ (t[attr(Q)− {A1, . . . , Aj}] = tq[attr(Q)− {A1, . . . , Aj}])
∧ (t[A1, . . . , Aj] = (tr[A1, . . . , Aj] on4 tq[A1, . . . , Aj])

= ((A1r ∩∩ A1q) ∧ . . . ∧ (Ajr ∩∩ Ajq))

}

Case 5

This case concerns a join in which the two relations have nested attributes
in common, of which one is at the top level and the other is not. It is
similar to case 2, except for the common attributes being nested instead
of atomic. In the following de�nition relations r and q with join-paths L
and M respectively have a set of nested attributes A1, . . . , Aj in common.
At the end of the join-path, the join is performed according to case 4.

rL on5 qM ≡ r(RiLi) on5 q(QjMj) (Eq. 3.7)

≡ {t|(∃tr ∈ r)
∧ (t[attr(R)− {Ri}] = tr[attr(R)− {Ri}])
∧ ((Li 6= ∅ ∧ t[Ri] = (tr[Ri]Li on5 q) ∧ t[Ri] 6= ∅)

∨ (Li = ∅ ∧ t[Ri] = (tr[Ri] on4 q) ∧ t[Ri] 6= ∅))

}

Case 6a

In this case, the two relations have nested attributes in common, are not
at the top, but are at the same depth in the schemes.

In essence this join is equal to case 3a, other than that the attributes in
common are nested instead of atomic, i.e. Ri and Qj are the ancestors
of common nested attributes instead of common atomic attributes. When
the end of the join paths is reached, the join is performed according to
case 4.

23

rM on6a qM ≡ r(RiLi) on6a q(QjMj) (Eq. 3.8)

≡ {t|(∃tr ∈ r, ∃tq ∈ q)
∧ (t[attr(R)− {Ri}] = tr[attr(R)− {Ri}])
∧ (t[attr(Q)− {Qj}] = tq[attr(Q)− {Qj}])
∧ ((Li 6= ∅ ∧ (t[RiQj] = tr[Ri]Li on6a tq[Qj]Mj))

∨ (Li = ∅ ∧ (t[RiQj] = tr[Ri] on4 tq[Qj])))

∧ (t[RiQj] 6= ∅)

}

Case 6b

As the previous three cases, this one is nearly equal to an earlier variant
as well. All other de�nitions being equal, in this case A11, . . . , A1z consists
of nested attributes instead of atomic ones.

rL on6b qM ≡ r(RiLi) on6b q(QjMj) (Eq. 3.9)

≡ {t|(∃tr ∈ r, ∃tq ∈ q)
∧ (t[attr(Qi′(. . . (Qi+1)))] = tq[attr(Qi′(. . . (Qi+1)))])

∧ (t[attr(Qi)− {Qiw′}] = tq[attr(Qi)− {Qiw′}])
∧ (t[attr(Ri)− {Riw}] = tr[attr(Ri)− {Riw}])
∧ (t[RiwQiw′] = (tr[Riw]Li on6a tq[Qiw′]Mj))

∧ (t[RiwQiw′] 6= ∅)

}

Although Garani & Johnson have created a clear and concise overview of the
nested join operator by creating a distinction between (relative) depth and
attribute-type, there is a lot of redundancy in the aforementioned cases.

In order to converge these six cases to a single implementation, as a �rst step,
a generalisation of the nested join is developed below.

By introducing a general de�nition for attribute equality, the distinction between
nested and atomic joins thereby reducing half of the cases. An major advantage
of this approach is that a mixture of both nested and atomic attributes can
participate in the join operation.

The next de�nition de�nes equality of tuples tr and tq based on a set of common
attributes R, these attributes can be either nested or atomic. A(R) is the set of
atomic attributes and N(R) is the set of nested attributes. Furthermore note
that, t[Ni] denotes the set of child tuples of nested attribute Ni.

tr
R
= tq ≡(∀Ai ∈ A(R) : tr[Ai] = tq[Ai]) (Eq. 3.10)

(∀Ni ∈ N(R) : (∀tnr ∈ tr[Ni],∃tnq : tnr
Ni= tnq)

∧ (∀tnq ∈ tq[Ni],∃tnr : tnq
Ni= tnr))

24

Informally equation Eq. 3.10 de�nes tuple equality as follows. First, all atomic
attributes should be equal. Second, all the sets of all nested attributes should
be equal, i.e. all tuples in tr[Ni] should exist in tq[Ni] and vice versa.

In order to further reduce the number of cases, the de�nition of the join-path
is extended to take into account the absence of a nested relation in the join.
This situation occurs when the nodes are not at the same level. In this case,
the roots of both input relations are not on the same level in the join result.

In the following de�nition, the parameter de�nitions of case 3b are used. Fur-
thermore, P (R) denotes the nested parent attribute of R. A node of the extended
join-path for a nested join operation with schemes R and Q with total depths i
and i′ at depth n with common attributes Ac can be de�ned as:

JPRQ
n =


(Ac, Ac), if n = 0

(π1(P (JPRQ
n−1)), π2(P (JPRQ

n−1))), if n < i

(∅, π2(P (JPRQ
n−1))), if i < n ≤ i′

(Eq. 3.11)

Again, consider the nested schemes R and Q of case 3b and their parameters.
In this generalised case the common attributes Ac = A11, . . . , A1z can either
be nested or atomic. Using equations Eq. 3.10 and Eq. 3.11, the generalised
(Garani) join (onG) of relations r and q can be de�ned. In the following equation

for the sake of brevity, JPnk = {πk(JPRQ
i′−n)}.

r onR,Q,n
G q ≡ {t|(∃tq ∈ q) (Eq. 3.12)

∧ (t[Qn − JPn2] = tq[Qn − JPn2])

∧ ((n ≤ i) ∧ (∃tr ∈ r)
∧ (t[Rn − JPn1] = tr[Rn − JPn1])

∧ ((0 < n < i) ∧ (t[JPn1] = tr onR,Q,n−1
G tq) ∧ (t[JPn1] 6= ∅))

∨ ((n = 0) ∧ (tr
JPn= tq) ∧ (t[JP01] = tr[JP01])))

In this section an extensive overview of the join as proposed by Garani & John-
son [15] was given. In the next section a local algorithm will be presented which
implements our generalised version of the G-Join.

3.2 Implementation of the G-join

In the previous section, a generalised version of the Garani-join was introduced
in equation Eq. 3.12. In this section an implementation of the generalised
Garani-join (G-join) will be presented.

The algorithm starts by �nding two equal tuples at the end of the join path, i.e.
at the level of the common attributes which is in this case in relations r and q.

25

Once those are found the parents of the tuples are merged iteratively until the
the root of one of the schemes is reached. If one of the tuples still has a parent,
that node is added to its parent until the top of the join-path is reached. In this
sense the proposed algorithm deviates from de�nition in equation Eq. 3.12. In
this equation, the result nested tuples still have their original siblings. However,
checking whether the join within a nested tuple is complete and can hence be
shipped, is infeasible in a mediator based environment (see Section 2.5) since
the size of the nested structure might well exceed the bu�ers of the mediator.
Therefore, this is considered a post-processing step, independent of mediated
join-processing. Under the assumption that the original parent-tuples can be
uniquely identi�ed, the join can be post-processed at follows: Starting at the
root of the resulting scheme tree, nest underlying relation on the join-path and
iterate downwards.

Algorithm 3.1 makes use of Algorithm 2.2, the nested-loop join, to �nd matching
nodes, but it could be implemented using other join algorithms as well. It
uses Algorithm 2.1 to check for tuple equality. Without loss of generality this
algorithm assumes that the depth of Q is greater than or equal to the depth of
R.

Algorithm 3.1 An implementation of the G-join on nested relations r and q.

1: result := {}
2: for all tr ∈ r do
3: for all tq ∈ q do
4: if tr = tq then
5: i := 0
6: t := tr
7: while P (tr) ∧ P (tq) do
8: tr := P (tr)
9: tq := P (tq)
10: i := i+ 1
11: ttmp[Ri − {π1(JPi)}] := tr[Ri − {π1(JPi)}]
12: ttmp[Qi − {π2(JPi)}] := tq[Qi − {π2(JPi)}]
13: ttmp[{π1(JPi)π2(JPi)}] := t
14: t := ttmp

15: end while

16: while P (tq) do
17: tq := P (tq)
18: i := i+ 1
19: ttmp[Qi − {π2(JPi)}] = tq[Qi − {π2(JPi)}]
20: ttmp[{π2(JPi)}] := t
21: t := ttmp

22: end while

23: result := result ∪ {t}
24: end if

25: end for

26: end for

This algorithm will provide the basis for the implementation of the generalised
G-join. In this chapter an analysis of the nested relational join was presented,

26

concluding with a generalised implementation. In the next chapter, the experi-
ment set-up is discussed.

27

Chapter 4

Experimental set-up

In this section the experimental set-up is described. First the experiment de-
sign is presented in Section 4.1. Second, assumptions that underlie this ex-
periment are stated in Section 4.2. Subsequently, the input data are discussed
in Section 4.3. After that the parameters are presented in Section 4.4. The
implementation of the experiment is discussed in more detail in Section 4.5.

4.1 Experiment design

In this section the overall design of the experiment will be described. The
experiment has several input parameters, each of which has several values. A
particular instance of the experiment is created when a value is chosen for each
of these parameter values: this is a called a con�guration. A complete set of
con�gurations is created by taking the Cartesian product of all parameters. The
parameters and their actual values are outlined in Section 4.4. The experiment
is complete after each of these con�gurations has been executed.

For each con�guration, a Client is instantiated which has a certain information
need. This information need is interpreted by the Mediator which processes the
query and returns the Query result to the client. During this process several
events are logged in order to derive Statistics of the run. The query result is
only used for testing purposes, but it is discarded during �nal execution of the
experiment since the only output of interest are the output parameters.

An overview of the set-up is depicted in Figure 4.1.

28

Figure 4.1: The experimental set-up

4.2 Assumptions

In this section the assumptions underlying this experiment are presented. These
assumptions were made to frame this experiment. In Chapter 5 the implications
of relaxing each of these assumptions are discussed.

A1. The storage of meta data does not impact the bu�er. In order to operate
over the di�erent databases, the mediator needs to have meta data of the
participating data sources. Because the amount of meta data to store is
small (typically a few kB) compared to the amount of data that is joined
it is considered to be part of the internals of the Medaitor.

A2. The mediator can only be queried for a join operation, it does not support
other relational operators. In order to limit the scope of the experiment,
the number of commands understood by the mediator is limited to the
one this study is all about.

A3. The client is interested in the complete join result. Following from the
previous assumption, the client is only interested in the complete join
result.

A4. The data format used by the client is equal to the one used by the mediator.
Since the client could be accepting input in any format, the format of the
mediator was chosen as the target format. The advantage of this is that
output data can be handled using the same tools as the input data, which
eases output validation.

A5. The client is indi�erent about the order in which partial results are sent.
Ordering is still a complex operation. To order a result set in a mediator-
based context would mean keeping the complete result in memory. This
is simply infeasible for larger relations.

A6. To mitigate start-up costs, there is no query cache available between client
queries. During query execution results can be stored, at the cost of bu�er

29

space.

A7. The data on the sites are stored using a decomposed storage model. The
decomposed storage model is an approach to store nested data in a set of
non-nested relational database, by splitting up every relation.

A8. All sites have the capability to sort tuples of a relation according to a
speci�c (set of) attributes(s). Since the sort-merge join requires ordering
of the results, sites need to have this capability. All mainstream database
solutions support ordering of a result set.

A9. All sites have the capability to perform selection (σ) and projection (π)
on relations. In order to select blocks tuples from the databases, support
of the selection operator is required. Next to that, in order to use the
semijoin communication strategy (see Section 4.4) the projection operator
is required. All mainstream DBMS support the projection and selection
operators.

A10. The minimal amount of memory available in the mediator is su�cient
to process at least one complete tuple at a time. If the mediator does
not have this minimal amount of memory, it becomes impossible to join
information. Depending on the scheme of the relation, this lower bound
will typically be around a few kB.

In this section the assumptions under which this study is conducted were pre-
sented. In the next section, the input data of the experiment and the derivation
thereof is presented.

4.3 Input data

As mentioned before, the input data are of a hierarchical nature. In order
to control the output of the experiment, di�erent data sets of di�erent sizes,
with a set of common attributes were required. Next to that, the result of the
application of the nested join operator needed to be known in advance so runs
could be designed based on certain parameter values (discussed in Section 4.4).

Since readily available data-sets and fake-data generators [6] were not �exible
enough to generate data that satis�ed the needs of this experiment two highly
con�gurable data generation tools were created.

The �rst tool was a data generation tool, nicknamed TreeGen. The second tool
was concerned with data duplication in order to be able to create a join result
which would adhere to prede�ned parameter values. This tool was nicknamed
TreeDup.

The TreeGen program requires a XML-based con�guration �le as its input which
describes the scheme tree of the nested data, consisting of relations and at-
tributes. An example of such a con�guration �le can be found in appendix A.
The program generates a SQLite1 database where the nested data are stored

1See http://www.sqlite.org

30

http://www.sqlite.org

using a decomposed storage model (DSM). The DSM is implemented in such a
way that each tuple has a unique identi�er, and each tuple of a nested attribute
has a reference to its parent tuple in order to facilitate tree traversal when the
G-Join is executed. In essence, the TreeGen process consists of the following
steps:

1. Read the con�guration �le.

2. Create a temporary database in memory.

3. Create a data structure according to the DSM.

4. Generate of non-referenced data (i.e. the literal values).

5. Generate of referenced data (i.e. parent-child relations and foreign keys).

6. Store the database on disk.

TreeDup selects a (nested) part of one dataset and replaces it into another. As
such, it requires three input parameters: a scheme which is a modi�ed version of
the previous XML-con�guration �le, a source-database and a target-database.
The tree duplication process is the following:

1. Read the con�guration �le.

2. Fetch a prede�ned amount of nested tuples from the source database, these
tuples will be duplicated.

3. Delete the same amount of tuples in the target relation.

4. Store the fetched tuples in the target database.

5. Fix all references.

In this section the process of generating input data for the experiment has been
presented. In the next section the parameters related to the experiment will be
discussed.

4.4 Parameters

As mentioned in Section 4.1 this experiment has a number of input parameters.
The input parameters were chosen both to mimic various environmental con-
ditions and to study the e�ect of several structural changes of the experiment.
The input parameters are:

1. Join algorithm

2. Communication strategy

3. Left and right database size

4. Success ratio

5. Success ratio cardinality

31

6. Bu�er factor

First of all, the join strategy is one of two algorithms introduced in Chapter 2;
the nested-loop join (Algorithm 2.2) or the sort-merge join (Algorithm 2.3). The
communication strategy is one of the strategies de�ned in Section 2.4: naive or
semijoin.

The left and right databases are of di�erent sizes: S = {1, 10, 100}. Sizes of the
databases are de�ned as the number tuples of the root node. The set of sizes
for the left and right hand side of the join can be de�ned as:

{(sL, sR)|sL ∈ S, sR ∈ S ∧ sL ≥ sR}

This means that the databases on the left hand side of the join are greater than
or equal to those of the right hand side.

The success ratio and the success ratio cardinality parameters are used to de-
scribe the properties of the result set of the join. The success ratio is de�ned
as the percentage of distinct tuples of the smallest input relation that occur in
the other input relation. By de�ning the success ratio based on thirds, a large
variety of overlap between the two datasets can be simulated.

The success ratio cardinality was introduced to denote that multiple matches can
occur for the same key. It is de�ned as the percentage of distinct matching tuples
in the result set over the total number of tuples in the result set. In selecting
the parameter values the notion of a match occurring multiple times needed to
be varied. In order to make a clear distinction between these occurrence counts,
four subsequent values each di�ering a factor of ten were chosen.

Since the mediator has a �xed memory capacity, it uses bu�ers internally to
store temporary results and input data in order process queries. To account for
this capacity, a bu�er factor was introduced. At a minimum the mediator should
be able to process a single tuple at a time, in other con�gurations, the mediator
should be able to keep a certain amount of the data in memory. This percentage
is de�ned as a power of this one tuple memory constraint. The values for these
bu�er factors were the bare minimum (0), a quarter of the memory needed and
half of the memory needed. A larger bu�er exponent would not mimic realistic
behaviour, i.e. as the amount of memory increases, complete relations can be
kept in memory. This requires major modi�cations to the algorithms used and
was therefore considered to be out of scope.

In a run, several variables are captured. First of all the number of bytes sent
between mediator and client and between mediator and database over di�erent
phases is recorded. Second the duration of several activities is logged. These
data are logged to a �le.

In Table 4.1 an overview of the parameters and their values is presented.

The output parameters are: the duration and the number of bytes sent. These
are sensible output parameters since they represent the speed of the operation
and the operational cost.

32

Table 4.1: An overview of the input parameters.

Input parameter values

Join strategy {NLJ, SMJ}
Communication strategy {Naive, Semi-join}
Left and right database size {(sL, sR)|sL ∈ S, sR ∈ S ∧ sL ≥ sR}
Success ratio {0.0, 0.33, 0.67, 1.0}
Success ratio cardinality {0.1, 1.0, 10.0, 100.0}
Bu�er factor {0, .25, .5}

In this section an overview of the parameters used in the experiment was given.
In the next section the actual implementation of the experiment is discussed.

33

4.5 Implementation

In this section the implementation of the experiment is discussed in more detail.
An overview of the implementation showing all major components is depicted
in Figure 4.2.

Figure 4.2: Overview of the implementation of the experiment

First a random con�guration which has not yet been executed is selected from
the set of experiments. Based on the con�guration, the left and right databases
are loaded into main memory for e�ciency reasons and allocated to two separate
threads. A multi-threaded set-up was chosen to mimic the mediator and its
environment. By doing so, databases can be queried simultaneously.

Once the databases are loaded in main memory, a mediator instance is created
with the parameters of the current con�guration. After this initialisation phase
the mediator receives a user query, which is executed by using a join algorithm
(Algorithms 2.2 and 2.3) together with a communication strategy (Section 2.4).
The communication strategy handles the communication with the left and right
databases through their daemons.

As the join executes, several events are logged to an output stream. The output
format of these events are tab separated values, in order to be able to insert
these logs into a database for analysis later on.

The algorithms are implemented using standard C++2, using the LibXML23

2Adhering to the 1998 ANSI/ISO C++ standard.
3See http://xmlsoft.org

34

http://xmlsoft.org

library for parsing the con�guration/metadata �les. The con�guration, input-
data, as well as the run results are generated using SQLite4.

Timing of durations is done using clock_gettime5 de�ned in <time.h> using
CLOCK_MONOTONIC since the system on which the code is deployed does not
guarantee that processes will not be migrated to another CPU.

Because of its memory requirements, the �nal code is deployed on the Mammoth
server of the TU/e. This is a computational system which consists of 7 servers
that appear as one. It has 56 2GHz processors, a total of 935GB of memory, and
a local disk of 2.4TB. This system runs a modi�ed 64-bit Fedora 12 distribution.
The Linux command taskset6 is used to specify that the CPU's which execute
the program were limited to one of the 7 underlying servers.

This section concludes the description of the experimental set-up. In the next
chapter the results of the experiment will be presented.

4Version 3.7.2, see http://sqlite.org
5See the Linux User's Manual, man clock_gettime
6See the Linux User's Manual, man taskset

35

http://sqlite.org

Chapter 5

Experiment evaluation

In the previous chapter, the experimental set-up was presented. In this chapter
the results of the experiment are presented and discussed.

This chapter consists of four sections: In the �rst section the duration of each
of the experiment runs is analysed. The second section concerns the amount of
data send for each of the experiments. Next, the combination of run size and
duration is inspected in Section 5.3. Finally, the most important observations
will be sumarized in Section 5.4. The initial experiment parameter values as
presented in Section 4.4 and `logical' combinations thereof form the basis of the
evaluation.

Note:
The continuous lines used in the graphs do not imply that the output is
continuous. This style was merely chosen for clarity, i.e. to indicate the
change in value. Next to that, the top part of the error bars in the graphs
denotes the standard deviation of the average value, while the bottom part
denotes the minimum value.

5.1 Duration of Runs

In this section the duration of runs is compared to input parameter values.
The run duration was determined using the commands described in Section 4.5.
Measurement of a run started after both database threads had fully loaded their
database in memory. Each run was executed 5 times in order to reduce timing
�uctuations occurring due to system usage by other processes and/or users.

In Figure 5.1 the average duration runs and their standard deviation is depicted
for each of the algorithm � join-strategy combinations. In this �gure NLJ and
SMJ are acronyms for the Nested Loop Join and the Sort Merge Join de�ned in

36

Figure 5.1: The duration of runs for the algorithms and join-strategies.

Section 2.3, the Naive and Semijoin labels refer to the communication strategies
de�ned in Section 2.4.

From this �gure, it can be seen that on average the sort-merge join as described
in Algorithm 2.3 outperforms the nested loop join (Algorithm 2.2). When com-
paring the performance of the naive join- strategy and the semijoin there is a
di�erence when the nested loop join is used, however there is no apparent dif-
ference when using the sort-merge join. This can be explained by considering
the operations at a lower operational level. The NLJ iterates over its outer and
inner relations. Since these relations are not ordered, each outer block is com-
pared to each inner block. By using a semijoin approach inner tuples which do
not participate in the join are not shipped and checked. Thereby the amount of
tuples is reduced which results in a lower run duration.

For the sort-merge-join on the other hand, the di�erence is less notable, since
results were ordered, a smaller set of tuples is compared. However, since less
tuples are sent to the mediator it can be concluded that the actual comparison
of tuples and the complexity of the join algorithm is an important factor in the
execution of the nested join.

Next, the size of the relations involved in the nested join is analysed. In Fig-
ure 5.2 the duration is plotted as a function of the left and right database sizes.
Note that the y-axis of the graph uses a logarithmic scale. This means that
the complexity of the join-algorithm increases in a non-linear manner when the
size of the participating relations increases. The dip in the graph is likely to be
caused by di�erence in complexity between the 100−1 and the 10−10 instances
with respect to the communication strategy and join-algorithm used. The semi-
join combined with the nested loop join needs less iterations in case of 100− 1,
hence resulting in a lower overall duration. This expectation is con�rmed by
breaking down Figure 5.2 over the di�erent communication strategies and join
algorithms. This breakdown is depicted in Figure 5.3.

37

Figure 5.2: The duration of runs for left and right join sizes.

Figure 5.3: The duration of runs for left and right join sizes broken down by the
di�erent communication strategies and join algorithms.

The success ratio determines the amount of matching tuples between the two
relations. Figure 5.4 depicts the di�erent parameter values and the associated
average run times. As can be seen from this �gure, a higher success ratio results
in more matching tuples, which in turn results in longer processing time, with
a larger degree of variability.

38

Figure 5.4: The duration of runs for di�erent success ratio values.

The success cardinality describes the percentage of similar matches between two
relations. The average run durations for the di�erent values of this parameter
are depicted in Figure 5.5. From this �gure, it can be seen that the average run

Figure 5.5: The duration of runs for di�erent success cardinality values.

durations are hardly in�uenced by this parameter. To con�rm this hypothesis,
all combinations of success ratio and success cardinality are compared to the run
duration in Figure 5.6. As expected, the run size only increases with di�erent
success ratio's and is again indi�erent for the success cardinality. This makes
sense since the amount of tuples matched stays the same due to this parameter.
Because success cardinality is introduced in the data duplication step, tuples are
duplicated in the right relation only, resulting in a 1�N relation. Therefore the

39

Figure 5.6: The duration of runs for di�erent success ratio and success cardinality
values.

bene�ts one would normally get from using a semijoin communication strategy
do not show up here because the same amount of tuples is matched.

Leaving us with the bu�er exponent parameter. Figure 5.7 depicts the durations
over the di�erent bu�er exponent parameter values. Figure 5.7 shows that this

Figure 5.7: The duration of runs for di�erent bu�er exponent values.

parameter has hardly any e�ect on the run duration.

In this section an analysis of the duration of the di�erent experiment runs was
made. In the next section an analysis of the number of bytes sent is discussed.

40

5.2 Number of bytes sent during runs

In this section the number of bytes sent is compared to di�erent input parameter
settings. The amount of bytes sent consists of the number of bytes sent between
both databases and the mediator, and the number of bytes sent between the
mediator and the client.

The amount of data sent for each combination of communication strategy and
join-strategy is depicted in Figure 5.8. There is practically no di�erence between

Figure 5.8: The number of bytes sent for the algorithms and join-strategies.

the number of bytes sent for both the naive and the semijoin SMJ which is
unexpected when looking at the joins at a lower level. One explanation for this
behaviour is the usage of blocked verions of the join algorithms which a�ect the
e�ectiveness of communication strategies.

Figure 5.9 indicates the number of bytes sent over di�erent parameter left and
right database sizes. Note that the scale of the y-axis is logarithmic. The average
number of bytes is lower for the 100 − 1 size combination. This is likely to be
caused by the semijoin algorithm, which reduces the amount of data required
to be sent to the mediator, in combination with the ratio of the right hand site
over the left hand side.

In Figures 5.10 and 5.11 the average total number of bytes sent is depicted for
the success ratio and the success ratio cardinality respectively. As is to be
expected, the success ratio a�ects the total number of tuples sent. When this
parameter equals 0, no tuples match and hence no join result exists. Therefore,
the client receives an empty result set and there is only communication between
the two databases and the mediator. The success cardinality does not a�ect
the average total number of bytes sent, since the amount of matches does not
change with this parameters. Again, Figure 5.12 con�rms this.

41

Figure 5.9: The average number of bytes sent for the left and right join sizes.

Figure 5.10: The average total number of bytes sent for di�erent success ratio values.

Finally, the bu�er size does not a�ect the total number of tuples sent, as is
depicted in Figure 5.13.

In this section an overview of the di�erent parameters and their e�ect on the
average total number of bytes sent during a set of experiment runs was presented.
In the next section the run duration is compared to the run size.

42

Figure 5.11: The average total number of bytes sent for di�erent success cardinality
values.

Figure 5.12: The average total number of bytes sent for di�erent success ratio and
success cardinality values.

43

Figure 5.13: The average total number of bytes sent for di�erent bu�er exponent
values.

44

5.3 Run duration vs. number of bytes sent

In the previous two sections duration and the number of bytes sent were o�set
by the input parameters and combinations thereof. In this section the relation
between both output parameters is inspected.

In Figure 5.14 the duration is plotted against the number of bytes sent. In
order to clarify this graph, colour coding is added based on the input size of
left and right relations participating in the join. A single point in this graph
represents a single experiment run. In total, 5760 runs were performed, 5 for
each individual run con�guration. The colour coding clearly shows that the

Figure 5.14: The run duration o�set by the number of bytes sent colour coded by
input sizes.

relation size of both databases predicts both run duration and the number of
bytes sent. As a result, the graph contains repetition for each major change in
size. A more detailed �gure which magni�es the area were the repetition occurs
can be found in Appendix B, page 1.

Within the each of these magni�cations, clear groups of runs can be distin-
guished along the horizontal axis. These groups are formed due to the di�erent
values of the success ratio parameter, as depicted in Figure 5.15. From this
�gure it is clear that the higher the join ratio, the more bytes have been sent
during the experiment. Magni�cations of the lower left corner of the �gure can
be found in Appendix B, page 2. With this graph the experimental set-up is ver-
i�ed: the join-ratio determines the size of the join result based on the smallest
input relation.

For each of the groups formed by the ratio parameter depicted in Figure 5.15,
subgroups can be identi�ed along the vertical axis. These subgroups are formed,
albeit with overlap, by the communication strategy and the join algorithm. This
is clari�ed by Figure 5.16. Again, magni�cations of the lower left corner can be

45

Figure 5.15: The run duration o�set by the number of bytes sent colour coded by
success ratio.

Figure 5.16: The run duration plotted against the number of bytes sent colour coded
by the combination of the communication strategy and the join algorithm.

found in Appendix B, page 3. Note that the colour coding of this �gure over all
magni�cations corresponds to the �ndings in Figure 5.1, i.e. usage of the sort
merge join results in a lower run duration.

In this section the two output parameters, duration and the number of bytes
sent, were analysed. In the next section a summary of this chapter is given.

46

5.4 Summary

In the previous sections the duration and number of bytes used for each experi-
ment run were analysed. First the run duration and the run size were inspected.
After that, the output parameters were analysed. Over all runs, the following
properties were noted:

• The usage of the sort merge join algorithm reduces the run duration (Fig-
ure 5.1 and Figure 5.16).

• Using semijoin as a communication strategy only has an e�ect on run du-
ration when not used in combination with the sort merge join (Figure 5.1).

• The combination of input sizes of the left and right relations a�ect both
the number of bytes sent and the run duration (Figure 5.2, Figure 5.9 and
Figure 5.14).

• The success ratio determines the number of matches of the join operation.
Therefore, by design, the success ratio a�ects the number of bytes sent
(Figure 5.10). However it also has a clear, predictable impact on the
duration of the join (Figure 5.4).

• The experiment, although subject to a wide range of con�gurations, per-
forms in a predictable manner. This is shown by the repetition which
occurs in the graphs where the duration is o�set by the number of sent
bytes (Figure 5.14 and Appendix B).

In this chapter the duration and number of bytes used for each experiment run
were discussed and several observations were made. The next chapter presents
the conclusions of this thesis.

47

Chapter 6

Conclusions

This chapter presents the conclusions of this thesis. The subject for this thesis
evolved out of the absence of a nested relational join operator required to join
hierarchical data in a distributed context, originally extending the Data Flow
Language as introduced by Hidders et al. [16].

Several extensions were proposed [11, 18, 24] however all with limitations. Garani
& Johnson [15] were the �rst to present a clear overview of all cases in which
one might perform a nested-join, providing the set-up towards a uniform nested-
relational operator that is not hindered by any schematic limitations. The col-
lection of these cases was dubbed the G-Join.

After careful analysis of these six cases of the G-Join, a generalized version
was designed in Chapter 3. This generalization answered the �rst sub research
question, i.e. it described the output of a nested-relational join.

This generalized version was used as a set-up for a single algorithm which was
later on extended to a distributed, mediator-based context. The implementation
of the algorithm and the algorithm itself were evaluated in an experiment subject
to several parameters. The experimental set-up was described in Chapter 4 and
the evaluation of the experiment in Chapter 5.

6.1 Contributions

For completeness the contributions as mentioned in Section 1.4 are stated here.
The contributions of this thesis consist of:

• The design of a generalized version of the G-Join (Section 3.1).

• Design of an algorithm based on this generalized version (Section 3.2).

• An implementation of a nested-relational join operator in a framework
(Chapter 4)

48

• A �rst empirical evaluation of the generalized G-Join. (Chapter 5).

6.2 Experimental �ndings

In this section the experimental �ndings are described based on Chapter 5.
Next to that, the usefulness of the input parameters is assessed and the third
sub research question is answered.

The analysis of the output parameters yielded the following �ndings:

• The usage of the sort merge join algorithm reduces the run duration (Fig-
ure 5.1 and Figure 5.16).

• Using semijoin as a communication strategy only has an e�ect on run du-
ration when not used in combination with the sort merge join (Figure 5.1).

• The combination of input sizes of the left and right relations a�ect both
the number of bytes sent and the run duration (Figure 5.2, Figure 5.9 and
Figure 5.14).

• The success ratio determines the number of matches of the join operation.
Therefore, by design, the success ratio a�ects the number of bytes sent
(Figure 5.10). However it also has a clear, predictable impact on the
duration of the join (Figure 5.4).

• The experiment, although subject to a wide range of con�gurations, per-
forms in a predictable manner. This is shown by the repetition which
occurs in the graphs where the duration is o�set by the number of sent
bytes (Figure 5.14 and Appendix B).

Usage of the success ratio cardinality parameter did not yield any relevant data.
This is partly due to the way the success ratio cardinality was implemented; as
a 1�N relation. Although not sure, it can be questioned whether a N�N imple-
mentation would have turned up real di�erences. The success ratio parameter
would need to be rede�ned in order to keep it reliable. Also the bu�er size did
not a�ect duration and the number of bytes sent a signi�cantly.

Except from the latter two parameters, the rest of the input parameters returned
one or more insights. Within the context of this research this is the answer to
sub research question 3. Since the possible input parameters which could be
used to extend this experiment are plentiful, this set is likely to grow in further
research.

In this section the experimental �ndings were presented and the third research
sub-question was answered. In the next sections the limitations and future work
are discussed.

49

6.3 Limitations and future work

This section was modi�ed since it contained classi�ed information.

The contributions as mentioned in Section 6.1 are only the beginning of the
large number of challenges spanning a number of research areas that will need
to work before a nested relational operator can be considered operational.

Dropping assumptions A2, the mediator can only be queried for the join opera-
tion, and A3, the client is interested in the complete join result, are logical next
steps towards this goal. By dropping these assumptions more advanced queries
can be requested from the mediator.

A limitation of this study is the absence of a post-processing step which is used
to nest all found tuples in their original hierarchy. As mentioned in Section 3.2
this was considered infeasible due to the very nature of the context. A separate
study on a new communication strategy might resolve this issue. In the current
approach a lot of nested tuples which are sent to the client are in fact redundant.
Creating an improved communication strategy which resolves this would be a
huge win.

All in all, although this thesis has provided insight into several aspects, it has
raised even more follow-up questions. This is a good sign.

In this section the limitations and the future work were addressed. In the next
section the research question will be answered.

50

6.4 Research question

After discussing the limitations the second sub research question has been an-
swered with a partial `Yes'. The implementation and the evaluation showed a
successful implementation of a nested relational join operator in a mediator-
based distributed environment. However, due to the nature of the mediator,
composition of the resulting tuples had to sacri�ced.

Leaving us with the research question: How can the nested relational

join operator be implemented in a mediator-based distributed envi-

ronment?

This question is answered a follows:

The nested relational join operator can be implemented in a mediator-based dis-
tributed environment by using the generalized version of the G-Join as presented
in Chapter 3, the context of the mediator however poses signi�cant challenges
with respect to the composition of the nested results. On this speci�c subject,
further research is needed. Other properties that a�ect the performance of this
operator include: the left and right relation sizes, the communication strategy,
the join algorithm and the success ratio.

51

Appendix A

TreeGen con�guration �le

In this appendix, an example con�guration �le as used by the TreeGen program
is described. In this con�guration �le, (nested) relations and attributes along
with their properties can be described using a simple XML syntax.

<con f i g>
<!−− The f i l e the database i s wr i t t en to −−>
<output_f i l e>supp l i e r . db</ output_f i l e>

<!−− The schema −−>
<r e l a t i o n name=" Supp l i e r " count="1">

<a t t r i bu t e name=" id " type="pk" />
<a t t r i bu t e name="name" type=" s t r i n g " />
<r e l a t i o n name="BankAccount" count="5">

<a t t r i bu t e name="account_number" type=" s t r i n g " />
</ r e l a t i o n><!−− /BankAccount −−>
<r e l a t i o n name=" Supp l i e rLocat i on " count="3">

<a t t r i bu t e name=" id " type="pk" />
<a t t r i bu t e name="name" type=" s t r i n g " />
<a t t r i bu t e name=" address " type=" s t r i n g " />
<a t t r i bu t e name=" country " type=" s t r i n g " />
<a t t r i bu t e name="phone" type=" s t r i n g " />
<r e l a t i o n name=" Ar t i c l e " count="500">

<a t t r i bu t e name=" id " type="pk" />
<a t t r i bu t e name="code" type=" s t r i n g " />
<a t t r i bu t e name="name" type=" s t r i n g " />
<a t t r i bu t e name=" de s c r i p t i o n " type=" s t r i n g " />
<a t t r i bu t e name=" p r i c e " type=" f l o a t " min="1" max="120" />
<a t t r i bu t e name="price_group_id" r e f_ r e l="PriceGroup"

r e f_con s t r a i n t="same_parent" r e f_at t r=" id " />
<a t t r i bu t e name=" category_id " r e f_ r e l="Category" r e f_at t r=" id "

/>
<r e l a t i o n name="Ar t i c l eRev i s i on " count="5">

<a t t r i bu t e name=" id " type="pk" />
<a t t r i bu t e name="code" type=" s t r i n g " />
<a t t r i bu t e name="date " type="date " date_from="1990−01−01" />
<a t t r i bu t e name=" p r i c e " type=" f l o a t " min="1" max="120" />

</ r e l a t i o n><!−− Art i c l eRev i s i on −−>
</ r e l a t i o n><!−− / Ar t i c l e −−>

</ r e l a t i o n><!−− / Supp l i e rLocat ion −−>
<r e l a t i o n name="PriceGroup" count="50">

<a t t r i bu t e name=" id " type="pk" />

52

<at t r i bu t e name="name" type=" s t r i n g " />
<r e l a t i o n name="BulkQuant i t i e s " count="4">

<a t t r i bu t e name=" quant i ty " type=" in t " min="1" max="10000" />
<a t t r i bu t e name=" di scount " type=" in t " min="5" max="15" />

</ r e l a t i o n><!−− /BulkQuant i t i e s −−>
</ r e l a t i o n><!−− /PriceGroup −−>

</ r e l a t i o n><!−− / Supp l i e r −−>
<r e l a t i o n name="Category" count="50">

<a t t r i bu t e name=" id " type="pk" />
<a t t r i bu t e name="name" type=" s t r i n g " />
<a t t r i bu t e name="parent_id" r e f_ r e l="Category" r e f_at t r=" id "

null_prob=" 0 .5 " />
</ r e l a t i o n><!−− /Category −−>
<r e l a t i o n name="Warehouse" count="4">

<a t t r i bu t e name="name" type=" s t r i n g " />
<a t t r i bu t e name=" address " type=" s t r i n g " />
<r e l a t i o n name=" Inventory " count="3000">

<a t t r i bu t e name=" a r t i c l e_ i d " r e f_ r e l=" Ar t i c l e " r e f_at t r=" id " />
<a t t r i bu t e name=" s tock_leve l " type=" in t " d i s t="uniform" min="−10000"

max="300000" />
</ r e l a t i o n><!−− / Inventory −−>

</ r e l a t i o n><!−− /Warehouse −−>
</ con f i g>

53

Appendix B

Graphs of run duration vs.

number of bytes sent

The subsequent pages of this appendix include graphs in which the run duration
is o�set by the number of bytes sent. Each page contains four graphs. The
topmost graph contains a complete overview of the experiment runs. The graphs
below that are magni�cations of the lower left corner of the graph above that.

Note these graphs only di�er by colour coding, i.e. each of them contains the
same data points. The �rst page is colour coded by the combined size of the
input relations. Subsequently, the second is colour coded based on the combi-
nation of the communication strategy and the join algorithm used in the run.
Finally, the colours in the set of graphs on the third page represent the di�erent
success ratios of the runs.

54

Duration vs Bytes coded by relation size

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1e+09 2e+09 3e+09 4e+09 5e+09 6e+09

D
u

ra
ti
o

n
 (

s
)

1-1
10-1
100-1
10-10
100-10
100-100

 0

 50

 100

 150

 200

 250

 0 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08

D
u

ra
ti
o

n
 (

s
)

1-1
10-1
100-1
10-10
100-10
100-100

 0

 10

 20

 30

 40

 50

 0 2e+07 4e+07 6e+07 8e+07 1e+08

D
u

ra
ti
o

n
 (

s
)

1-1
10-1
100-1
10-10
100-10
100-100

 0

 2

 4

 6

 8

 10

 12

 14

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07

D
u

ra
ti
o

n
 (

s
)

Bytes

1-1
10-1
100-1
10-10
100-10
100-100

Duration vs Bytes coded by Success Ratio

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1e+09 2e+09 3e+09 4e+09 5e+09 6e+09

D
u

ra
ti
o

n
 (

s
)

SR-0
SR-33
SR-67
SR-100

 0

 50

 100

 150

 200

 250

 0 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08

D
u

ra
ti
o

n
 (

s
)

SR-0
SR-33
SR-67
SR-100

 0

 10

 20

 30

 40

 50

 0 2e+07 4e+07 6e+07 8e+07 1e+08

D
u

ra
ti
o

n
 (

s
)

SR-0
SR-33
SR-67
SR-100

 0

 2

 4

 6

 8

 10

 12

 14

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07

D
u

ra
ti
o

n
 (

s
)

Bytes

SR-0
SR-33
SR-67
SR-100

Duration vs Bytes coded by Communication Strategy and Join Algorithm

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1e+09 2e+09 3e+09 4e+09 5e+09 6e+09

D
u

ra
ti
o

n
 (

s
)

naive-nlj
naive-smj
semijoin-nlj
semijoin-smj

 0

 50

 100

 150

 200

 250

 0 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08

D
u

ra
ti
o

n
 (

s
)

naive-nlj
naive-smj
semijoin-nlj
semijoin-smj

 0

 10

 20

 30

 40

 50

 0 2e+07 4e+07 6e+07 8e+07 1e+08

D
u

ra
ti
o

n
 (

s
)

naive-nlj
naive-smj
semijoin-nlj
semijoin-smj

 0

 2

 4

 6

 8

 10

 12

 14

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07

D
u

ra
ti
o

n
 (

s
)

Bytes

naive-nlj
naive-smj
semijoin-nlj
semijoin-smj

References

[1] Berler, M., Eastman, J., Jordan, D., Russell, C., Schadow, O.,
Stanienda, T., and Velez, F. The object data standard: ODMG 3.0.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2000.

[2] Bernstein, P. A., and Chiu, D.-M. W. Using semi-joins to solve rela-
tional queries. Journal of The ACM 28 (1981), 25�40.

[3] Blasgen, M. W., and Eswaran, K. P. Storage and access in relational
data bases. IBM Systems Journal 16, 4 (1977), 363 �377.

[4] Busse, R., Carey, M., Florescu, D., Kersten, M., Manolescu, I.,
Schmidt, A., and Waas, F. Xmark � an xml benchmark project, 2009.
[Online; accessed 19-July-2011].

[5] Carey, M. J., Haas, L. M., Schwarz, P. M., Arya, M., Cody,
W. F., Fagin, R., Flickner, M., Luniewski, A. W., Niblack, W.,

Petkovic, D., Thomas, J., Williams, J. H., and Wimmers, E. L.

Towards heterogeneous multimedia information systems: the garlic ap-
proach. In RIDE '95: Proceedings of the 5th International Workshop
on Research Issues in Data Engineering-Distributed Object Management
(RIDE-DOM'95) (Washington, DC, USA, 1995), IEEE Computer Society,
pp. 124+.

[6] Codd, E. F. The relational model for database management: version 2.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1990.

[7] Colby, L. S. A recursive algebra for nested relations. Information Systems
15, 5 (1990), 567�582.

[8] Collet, C., and Vu, T.-T. Qbf: A query broker framework for adaptable
query evaluationthis work is part of the mediagrid project, supported by
the french aci grid program. In Flexible Query Answering Systems. 2004,
pp. 362�375.

[9] Dogac, A., Halici, U., Kilic, E., Ozhan, G., Ozcan, F., Nu-
ral, S., Dengi, C., Mancuhan, S., Arpinar, B., Koksal, P., and

Evrendilek, C. Metu interoperable database system. SIGMOD Rec. 25,
2 (1996), 552+.

[10] Garani, G., and Johnson, R. Joining nested relations and subrelations.
Information Systems 25, 4 (June 2000), 287�307.

58

[11] Hidders, J., Kwasnikowska, N., Sroka, J., Tyszkiewicz, J., and
Vandenbussche, J. D�: A data�ow language based on petri nets and
nested relational calculus. Information Systems 33, 3 (May 2008), 261�
284.

[12] Jaeschke, G., and Schek, H. J. Remarks on the algebra of non �rst
normal form relations. In PODS '82: Proceedings of the 1st ACM SIGACT-
SIGMOD symposium on Principles of database systems (New York, NY,
USA, 1982), ACM, pp. 124�138.

[13] Liu, H.-C., and Chirathamjaree, C. An e�cient join for nested rela-
tional databases. In Database and Expert Systems Applications, R. Wagner
and H. Thoma, Eds., vol. 1134 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, Berlin/Heidelberg, 1996, ch. 25, pp. 289�301.

[14] Liu, H. C., and Yu, J. X. Algebraic equivalences of nested relational
operators. Inf. Syst. 30, 3 (2005), 167�204.

[15] Paredaens, J., and Van Gucht, D. Converting nested algebra expres-
sions into �at algebra expressions. ACM Trans. Database Syst. 17, 1 (1992),
65�93.

[16] Roth, M. A., Korth, H. F., and Silberschatz, A. Extended algebra
and calculus for nested relational databases. ACM Trans. Database Syst.
13, 4 (1988), 389�417.

[17] Silberschatz, A., Korth, H., and Sudarshan, S. Database Systems
Concepts. McGraw-Hill, Inc., New York, NY, USA, 2006.

[18] Tomasic, A., Raschid, L., and Valduriez, P. Scaling access to het-
erogeneous data sources with disco. IEEE Transactions on Knowledge and
Data Engineering 10, 5 (Sept 1998), 808�823.

[19] Wiederhold, G. Mediators in the architecture of future information
systems. IEEE Computer 25, 3 (March 1992), 38�49.

[20] Wiederhold, G. Glossary: Intelligent integration of information. Journal
of Intelligent Information Systems 6, 2 (June 1996), 281�291.

59

	Introduction
	Relevance to industry
	Context
	Research question
	Contributions
	Thesis outline

	Background
	Relational algebra
	Nested relational algebra
	Implementation of the natural join
	Distributed query processing
	Mediator-based systems

	Analysis of the nested join
	Analysis of the G-Join
	Implementation of the G-join

	Experimental set-up
	Experiment design
	Assumptions
	Input data
	Parameters
	Implementation

	Experiment evaluation
	Duration of Runs
	Number of bytes sent during runs
	Run duration vs. number of bytes sent
	Summary

	Conclusions
	Contributions
	Experimental findings
	Limitations and future work
	Research question

	TreeGen configuration file
	Graphs of run duration vs. number of bytes sent
	References

