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Summary 
 
Introduction 
 
In non-orthogonal asymmetrical steel frames, a compression force will be introduced in the beam due 
to the load distribution. This compression force causes that the columns will be less supported by the 
beam. This effect and the geometry of non-orthogonal asymmetrical frames make it hard to determine 
critical buckling lengths for the members.  
 
This research is focused on 2 objectives. The first objective of this research is to obtain accurate 
approximations of critical buckling lengths for non-orthogonal asymmetrical frames using Linear 
Buckling Analysis (LBA). Two frames are investigated for this research. The first frame is an 
asymmetric pitched-roof frame as shown in figure 1 and the second frame is a non-orthogonal 
trapezoidal frame as shown in figure 2. Column lengths and beam lengths as well as flexural rigidities 
are variable for both frames. For LBA the frames will be loaded by a uniformly distributed load over the 
span. 
 

       
Figure 1: Asymmetric pitched-roof frame  Figure 2: Non-orthogonal trapezoidal frame 
 
The second objective is to verify or falsify the stability checks in Eurocode 3 using Geometric and 
Material Non-Linear Analyses (GMNIA) for the non-orthogonal trapezoidal frame in figure 2.   
 
Linear Buckling Analysis 
 
Critical buckling loads have been approximated in three different ways. The first method is using the 
differential equation of equilibrium. This method is applied to asymmetrical pitched-roof frames where 
each column is analyzed separately (see figure 3). This results in a critical buckling load for the left-
hand column and a critical buckling load for the right-hand column. The lowest critical buckling load 
serves as overall critical buckling load of the columns and give safe results.  
 

        
Figure 3: Left-hand column analyzed separately   Figure 4: Kinematic model 
 
By varying in geometry it has been concluded that the exchange in stability can not be accurately 
described using separate column approaches. For the investigated cases the maximum 
underestimation is 18%. Therefore, more research is recommended to describe the exchange in 
stability between the left side and the right side of frame more accurately.  
 
The second and third methods for determining critical buckling loads are based on Betti’s theorem and 
kinematic models.  



 

XII 

Betti’s theorem applied to buckling analysis yields errors that are less than 5% underestimated in 
critical buckling length [10]. 
  
Kinematic models consist of bars with an infinte flexural rigidity, the so called pendulum columns as 
shown in figure 4. From the equilibrium of these bars, critical buckling loads can be determined with 
the same accuracy as using Betti’s theorem. For both Betti’s theorem and kinematic models applies 
that, the more the buckling mode can be simulated by adding degrees of freedom, the more accurate 
the critical buckling load can be determined.  
 
Due to compression forces in the beam the column will be less supported by the beam. This results in 
a decrease in critical buckling load for the columns. Betti’s theorem and kinematic models are both 
methods in which the effects of compression forces in beams will not be taken into account. Therefore 
approaches have been developed and the accuracy of these approaches has been investigated for the 
two considered frames. Only cases are considered with hinges at the base and fixed connections 
between the members.  
For the investigated cases of the asymmetrical pitched-roof frames the maximum overestimation in 
critical buckling load will not be greater than 6%, provided that the critical buckling load without an axial 
force in the beam is exactly determined. The maximum underestimation will not be greater than 12%. 
For the non-orthogonal trapezoidal frame, the maximum overestimation is 2% and the maximum 
underestimation is 3%. More research is recommended to investigate the decrease in critical buckling 
load for other type connections.  
 
Stability checks according to Eurocode 3 
 
The ultimate bearing capacities for different considered non-orthogonal trapezoidal frames have been 
calculated using GMNIA for performing stability checks. Imperfections which are modeled using 
scaling the first order buckling mode give for all cases the lowest ultimate bearing capacity.  
 
According to Eurocode 3, two different analyses exist: analysis according to non-sway frames and 
analysis according to sway frames.  
 
The non-sway frames are analyzed using two checks.  

1. First order elastic analysis and stability checks using non-sway buckling lengths. 
2. Second order elastic analysis including initial bow imperfection and no stability check 

 
The sway frames are analyzed using three checks. 

3. First order elastic analysis and stability checks using sway buckling lengths 
4. First order elastic analysis with amplified sway moments and stability checks using non-sway 

buckling lengths. 
5. Second order elastic analysis including initial sway imperfections and stability checks using 

non-sway buckling lengths. 
 
Besides the stability checks, the resistance of the cross-section should also be checked according to 
the requirements of Eurocode 3. 
  
In general, frames which are analyzed as non-sway frames will exceed the cross-section resistance 
check and not the stability check. For the cases which are defined as sway-frames the checks using 
sway buckling lengths (check 3) results for all cases in safe but conservative results.  
 
The results of check 4 differ not significantly from the results of check 5. Both checks are based on the 
same analysis methodology: sway imperfections will be included in the design forces and stability 
checks are based on non-sway buckling lengths. By increasing the slope of the beam, the results 
become unsafe. 
 
In Eurocode 3 it is not described if for sway frames with stability checks using non-sway buckling 
lengths (check 4 and 5), either the equivalent uniform moment factor Cmy belongs to the definition 
sway or non-sway buckling modes. For these type of checks, Cmy is determined twice, once using a 
non-sway buckling mode and once using a sway buckling mode. From the results it is recommended 
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to use an equivalent uniform moment factor Cmy of 0,9 (sway buckling mode). This uniform moment 
factor gives in general more safe and accurate results especially for the columns. 
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Nomenclature 

 
A  area of the cross section 

Ab  integration constant of the beam 

Ac  integration constant of the column 

b  width of the cross section 

Bb  integration constant of the beam 

Bc  integration constant of the column 

C  amplification factor 

Cb  integration constant of the beam 

Cc  integration constant of the column 

Cas  amplification factor for anti-symmetrical sway 

Css  amplification factor for symmetrical sway 

Cmy  equivalent uniform moment factor 

Cmz  equivalent uniform moment factor  

CmLT  equivalent uniform moment factor   

Db  integration constant of the beam 

Dc  integration constant of the column 

E  modulus of elasticity 

EI  flexural rigidity 

EIb  flexural rigidity of the beam 

EIb;l  flexural rigidity of the left beam 

EIb;r  flexural rigidity of the right beam 

EIb;m  mean flexural rigidity of the beam for asymmetrical pitched-roof frames 

EIc;l  flexural rigidity of the left column 

EIc;r  flexural rigidity of the right column 

EIÿη’’cr  bending moment due to ηcr at the critical cross section  

fy  yield strength 

F  force  

Fb  beam force  

Fc  column force  

Fcr  critical buckling load 

Fcr;b  critical buckling load of the beam 

Fcr;c  critical buckling load of the column    

FEd  design load 

Fp force which creates a mechanism according to the first order theory of plasticity 

Fult  ultimate bearing capacity 

h  height of the cross section 

hs  storey height  

H  lateral load 

HEd design value of the horizontal reaction at the bottom of the storey to the horizontal 

loads and fictitious loads   

Iy  moment of inertia about y-y axis  

Ib  moment of inertia of the beam 

Ib;l  moment of inertia of the left beam  

Ib;r  moment of inertia of the right beam  

Ic  moment of inertia of the column 

Ic;l  moment of inertia of the left column  

Ic;r  moment of inertia of the right column  
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k  rotational spring stiffness  

kr;0  rotational spring stiffness at the bottom of the column  

kr;b  rotational spring stiffness due to the stiffness of the beam 

kr;con  rotational spring stiffness due to the connection between column and beam  

kr;L  rotational spring stiffness at the top of the column 

kt;b  translation spring stiffness at the top of asymmetrical pitched-roof frames 

kyy  interaction factor 

kyz  interaction factor 

kzy  interaction factor 

kzz  interaction factor 

Lb  beam length  

Lb;l  length of the left beam 

Lb;r  length of the right beam  

Lb;tot  overall length of the beam for asymmetrical pitched-roof frames (Lb;l + Lb;r) 

Lc  column length  

Lc;l  length of the left column 

Lc;r  length of the right column 

Lcr;b  critical buckling length of the beam 

Lcr;c;l  critical buckling length of the left column 

Lcr;c;r  critical buckling length of the right column 

Le  element length   

Ls  length of the span 

L1  distance for determining Db;2 

L2  distance for determining Db;2 

m  number of columns in a row  

M  bending moment 

Mb;l  bending moment in the left beam 

Mb;r  bending moment in the right beam 

Mc;Rd  design resistance for bending 

Mcr  elastic critical moment for lateral-torsional buckling 

Mex  external bending moment 

Min  internal bending moment 

MN;Rd  design plastic moment resistance reduced due to axial forces 

My;Ed  design bending moment about y-y axis 

My;Rk  characteristic values of resistance to bending moments about y-y axis 

Mz;Ed  design bending moment about z-z axis 

Mz;Rk  characteristic values of resistance to bending moments about z-z axis 

n  sample size  

Nb  axial force in the beam 

Nb;l  axial force in the left beam 

Nb;r  axial force in the right beam 

Nc  axial force in the column 

Nc;l  axial force in the left column 

Nc;r  axial force in the column 

Nc;Rd  design resistance to axial forces 

Ncr  critical buckling load 

NE;b  Euler load of the beam 

NE;c  Euler load of the column 

NEd  design normal force 
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Npl,Rd  design plastic resistance to axial forces 

NRk  characteristic value of resistance to compression 

q  uniformly distributed load 

Q  load 

Qcr.  critical buckling load 

Qult.  ultimate bearing capacity 

s  scale factor 

tf  flange thickness 

tw  web thickness 

Vb;R  reaction force 

Vc  shear force in the column 

Ve  shear force in element 

VEd  design shear force 

Vel,Rd  elastic design shear resistance 

Vpl,Rd  plastic design shear resistance 

w  deflection  

w0  initial deflection 

wb  beam deflection 

wc  column deflection   

we  element deflection  

wu  deflection belonging to the ultimate elastic-plastic load 

Wel;y  elastic moment of inertia about the y-y axis 

Wpl;y  plastic moment of inertia about the y-y axis 

X   mean ratio 

  

a imperfection factor of the buckling curve  

acr factor by which the design loading would have to be increased to cause elastic 

instability 

ah reduction factor for height h applicable to columns 

am reduction factor for the number of columns in a row 

b ratio of bending moments in the beam 

bD critical buckling length factor for the decrease in critical buckling load for symmetrical 

pitched-roof frames 

bb critical buckling length factor of the beam  

bb;l critical buckling length factor of the left beam 

bb;r  critical buckling length factor of the right beam 

bc critical buckling length factor of the column  

bc;l critical buckling length factor of the left column 

bc;r  critical buckling length factor of the right column 

g  Rieckmann factor 

gM1  partial factor for resistance of members to instability 

d  Rieckmann factor 

db  bow imperfection for the beam 

dc;l  bow imperfection for the left column 

dc;r  bow imperfection for the right column 

DANSYS;i  buckling mode displacement ratio in Ansys  

Db;2  imperfection at the top of the buckling mode of the beam  

Dc;l  sway imperfection for the left column 

Dc;r  sway imperfection for the right column 
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DFcr  decrease in critical buckling load 

DFcr;ANSYS decrease in critical buckling load given by Ansys 

DFcr;calc  calculated decrease in critical buckling load  

DFcr;l calculated decrease in critical buckling load where the properties of the left column 

are taken into account 

DFcr;r calculated decrease in critical buckling load where the properties of the right column 

are taken into account 

DMy,Ed  moments due to the shift of the centroidal y-y axis for class 4 sections 

DMz,Ed  moments due to the shift of the centroidal z-z axis for class 4 sections 

e strain  

ηcr shape of the elastic critical buckling mode  

ηinit;b beam amplitude of elastic critical buckling mode 

ηinit;c;l left column amplitude of elastic critical buckling mode  

ηinit;c;r right column amplitude of elastic critical buckling mode  

q slope of the beam 

l multiplier of the compressive forces for obtaining critical buckling loads 

λ  inplane non dimensional slenderness calculated for the beam considered as hinged 

at its ends of the system length measured along the beams 

LTλ   non-dimensional slenderness for lateral torsional buckling 

s  stress 

j  angle of rotation 

j0  basic value for global initial sway imperfections 

jA  angle of rotation of point A 

F  value to determine the reduction factor χ  

FLT  value to determine the reduction factor LTχ  

c  reduction factor for relevant buckling mode 

cy  reduction factor due to flexural buckling about y-y axis 
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cLT  reduction factor due to lateral torsional buckling 
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1. Introduction 

1.1 Problem definition 

In NEN 6770 [1] and NEN-EN 1993-1-1 (Eurocode 3) [2] it is described how to check the stability of 
steel bars loaded in compression and steel bars loaded in combined bending and compression using 
critical buckling lengths. 
 
In literature, little information about the determination of critical buckling lengths for non-orthogonal 
asymmetrical frames is given. Much literature is limited to orthogonal frames and non-orthogonal 
symmetrical frames. Additional difficulty is that literature which gives possibilities to determine critical 
buckling lengths for non-orthogonal asymmetrical frames is limited to the case where no compression 
force in the beam occurs. However, in most cases a compression force will be introduced in the beam 
due to the load distribution as shown in figure 1.1 
  

          

                                                                             
Figure 1.1: a) Non-orthogonal asymmetrical frame loaded by a uniformly distributed load  b) Axial force 
distribution.  
 
This compression force causes that the columns will be less supported by the beam. In mechanical 
terms the problem can be described as an increase in angle of rotation at the ends of the beam due to 
this compression force as shown in figure 1.2b. This results in a decrease of the rotational rigidity at 
the top of the column since the rotational rigidity depends on the bending moment and the angle of 
rotation as given in Eq. (1.1).  

 
Figure 1.2: a) Buckling mode of a column with rotational springs  b) Buckling mode of a beam where 
the angle of rotations at the ends of the beam are increased due to a compression force. 
  

A
L;r

M
k

ϕ
=           (1.1) 

 
When for buckling analysis the compression force in the beam is ignored, it results in an unsafe 
approximation due to an underestimation of the critical buckling length. 
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1.2 Assignment 

Two non-orthogonal frames will be considered in this research. The first frame is an asymmetric 
pitched-roof frame with rotational springs and uniform members as shown in figure 1.3. For this frame, 
column lengths and beam lengths as well as flexural rigidities are variable.  
 

 
Figure 1.3: Frame 1: Asymmetric pitched-roof frame 
 
The second frame to investigate is a trapezoidal frame with rotational springs and uniform members as 
shown in figure 1.4. This trapezoidal frame consists of two columns with different lengths and a single 
beam. Also for this frame, column lengths and beam lengths as well as flexural rigidities are variable.  
 

 
Figure 1.4: Frame 2: Non-orthogonal trapezoidal frame  
 
For these two types of frames, critical buckling lengths will be approximated analytically using Linear 
Buckling Analyses (LBA). For LBA the frames will be considered as loaded by a uniformly distributed 
load over the span of the structure only. 
  
Furthermore, the in-plane ultimate bearing capacity of non-orthogonal trapezoidal frames (frame 2) will 
be determined numerically by means of Geometric and Material Non-Linear Imperfect Analyses 
(GMNIA) according to the requirements of Eurocode 3. The results of these calculations will verify or 
falsify the applicability of different stability checks described in Eurocode 3. 

1.3 Objectives 

The two objectives of this research are: 

- Obtaining accurate approximations of critical buckling lengths for the two described non-
orthogonal frames using Linear Buckling Analysis (LBA). 

- Verify or falsify different stability checks described in Eurocode 3 for trapezoidal frames using 
Geometric and Material Non-Linear Imperfect Analyses (GMNIA).  

1.4 Structure of report 

In chapter 2 a State of the Art is given, in which earlier investigations and information with respect to 
the subjects of this project are briefly described. Chapter 3 describes the analytical methods for 
approximating critical buckling lengths of both frames using LBA. Chapter 4 covers the determination 
of ultimate bearing capacities of trapezoidal frames according to Eurocode 3. Using these ultimate 
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bearing capacities different stability checks of Eurocode 3 will be verified or falsified in chapter 5. 
Finally, the conclusions and recommendations are given in chapter 6. 
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2. State of the Art 

2.1 Critical buckling loads 

Buckling can be described as the loss of structural stability due to compression loads. An analysis with 
which it is possible to obtain buckling loads is called Linear Buckling Analysis (LBA). In LBA critical 
buckling loads are determined for perfect structures (i.e. structures without imperfections) with linear 
elastic material behaviour [3]. An example is the critical buckling load in the case of flexural buckling of 
a column. By increasing an axial compression force on a perfect column, the deflection of the column 
changes, at a certain moment, from axial shortening to lateral deflection as shown in figure 2.1. A 
branching of two equilibrium paths occurs. The intersection point at which this branching occurs is 
defined as the bifurcation point and the load belonging to this bifurcation point is the critical buckling 
load (Fcr). Prior to the bifurcation point the column is in stable equilibrium and the deflection path is 
defined as the primary path. By reaching the bifurcation point, the deflection follows the secondary 
path and the column is in neutral equilibrium.  

 
Figure 2.1: Load-deflection diagram of a bifurcation point for a perfect column 

2.1.1 Columns with rotational springs  

Columns in unbraced frames are typically examples of columns with rotational springs. The connection 
between column and beam gives rotational spring stiffnesses due to the flexural rigidity of the beam 
and the rotational rigidity of the connections. 
 
Exact solutions of critical buckling loads for members with different end conditions can be obtained 
using LBA by deriving the buckling length from the differential equation of equilibrium [3,4]. Table 2.1 
gives the stability criterion for columns with rotational springs at both ends and the derivation of this 
stability criterion (using the differential equation of equilibrium) is given in Appendix A.  
 
This stability criterion gives the critical buckling loads, by solving ac, expressed in: 

 

c
2

cc;cr EIF ⋅α=           (2.1) 
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Table 2.1: Stability criterion for columns with rotational springs 

 
 
The general critical buckling load formula derived by Euler is: 
 

( )2
cc

c
2

c;cr
L

EI
F

⋅β

⋅π
= ,           (2.2) 

 
where bc is the critical buckling length factor of the column and can be expressed as: 

 

cc
c

L⋅α

π
=β           (2.3) 

 
To determine the lowest critical buckling load for the orthogonal unbraced frame given in figure 2.2, the 
rotational spring stiffness kr;0 is zero for a hinged connection and a fixed connection gives an infinite 
value of kr;0.  
 

 
Figure 2.2: Unbraced frame with rotational springs at both ends 
 
The rotational spring stiffness kr;L depends on the buckling shape of the beam. Assuming a rigid 
connection between column and beam, the angle of rotation at point A of figure 2.3 is:  
 



 7 

b

b

b

b

b

b
A

EI6

LM

EI3

LM

EI6

LM

⋅

⋅
=

⋅

⋅
+

⋅

⋅
−=ϕ         (2.4) 

 
Figure 2.3: Deflected shape of the beam caused by moments 
 
This gives a rotational stiffness kr;L of:  
 

b

b

A
L;r

L

EI6M
k

⋅
=

ϕ
=          (2.5) 

 
By considering a hinged connection at the bottom and a rigid connection between column and beam 
for the unbraced frame as given in figure 2.2, the values z0=0 and zL=6/Lb have to be filled in, in the 
stability criterion of table 2.1. In the cases where the column lengths are equal to the beam length, a 
smallest root of 2,69911ÿ10

-4
 yields for ac, which gives a critical buckling load of: 

 

c
24

c;cr EI)1069911,2(F ⋅⋅= −         (2.6) 

 
And a critical buckling length factor of: 
 

328,2
50001069911,2 4c =

⋅⋅

π
=β

−
        (2.7) 

 
The critical buckling load can then be written as: 
 

( )2
c

c
2

c;cr
L328,2

EI
F

⋅

⋅π
=          (2.8) 

2.1.2 Symmetrical pitched-roof frames  

The rotational spring stiffness kr;L using Eq. (2.4) and (2.5), is applicable only when no compression 
force in the beam occurs. Rieckmann [6] developed a method that gives a better approximation of the 
critical buckling load when a compression force is introduced into the beam. He investigated a 
symmetric pitched-roof frame with symmetrical loads and hinged connections at the base as shown in 
figure 2.4. His investigation results in the determination of the parameters d and g, which then can be 
used to determine the critical buckling length factors for beam and column. Where: 
 

cb

bc

LEI

LEI

⋅

⋅
=δ , and          (2.9) 

 

cc

bb

LN

LN

⋅

⋅
⋅= δγ           (2.10) 
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Figure 2.4: Symmetric pitched-roof frame investigated by Rieckmann [6] 
 
Compression forces Nb and Nc can be obtained using a first order elastic analysis, where the average 
value of the compression force in the beam is decisive for Eq. (2.10).  
 
Table 2.2 gives critical buckling length factors bc and bb, which can be determined using d of Eq. (2.9) 
and g of Eq. (2.10).  
 
The critical buckling lengths of the column and beam can be obtained by multiplying the original length 
by bc or bb: 

 

ccc;cr LL ⋅β=           (2.11) 

 

bbb;cr LL ⋅β=           (2.12) 

 
The critical buckling load for column and beam is then given by: 
 

2
c:cr

c
2

c;cr
L

EI
F

⋅π
= , and         (2.13) 

 

2
b:cr

b
2

b;cr
L

EI
F

⋅π
=           (2.14) 
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Table 2.2: Critical buckling length factors 

0.0000 0.500 1.000 1.500 2.000 2.500 3.000 4.000 6.000 8.000

0.200 2.133 2.138 2.156 2.205 2.347 2.672 3.109 4.064 6.037 8.026

4.276 2.156 1.470 1.174 1.069 1.036 1.016 1.006 1.003

0.600 2.391 2.402 2.440 2.522 2.680 2.949 3.316 4.194 6.112 8.080

4.805 2.440 1.681 1.340 1.179 1.105 1.048 1.019 1.010

1.000 2.635 2.649 2.695 2.786 2.943 3.185 3.511 4.325 6.188 8.134

5.298 2.695 1.858 1.471 1.274 1.170 1.081 1.031 1.017

1.500 2.917 2.933 2.984 3.078 3.229 3.448 3.740 4.489 6.284 8.202

5.867 2.984 2.052 1.614 1.379 1.247 1.122 1.047 1.025

2.000 3.179 3.196 3.247 3.341 3.485 3.689 3.956 4.651 6.382 8.271

6.391 3.247 2.227 1.742 1.475 1.319 1.163 1.064 1.034

2.500 3.423 3.439 3.491 3.583 3.720 3.912 4.160 4.811 6.481 8.340

6.879 3.491 2.388 1.860 1.565 1.387 1.203 1.080 1.043

3.000 3.652 3.668 3.719 3.808 3.940 4.121 4.354 4.968 6.580 8.411

7.336 3.719 2.539 1.907 1.649 1.451 1.242 1.097 1.051

3.500 3.868 3.884 3.934 4.020 4.147 4.320 4.540 5.122 6.680 8.481

7.768 3.934 2.680 2.074 1.728 1.513 1.281 1.113 1.060

4.000 4.073 4.089 4.137 4.221 4.344 4.509 4.719 5.273 6.781 8.553

8.178 4.137 2.814 2.172 1.804 1.573 1.318 1.130 1.069

4.500 4.268 4.284 4.332 4.413 4.531 4.690 4.891 5.421 6.881 8.625

8.568 4.332 2.942 2.266 1.876 1.630 1.355 1.147 1.078

5.000 4.456 4.471 4.517 4.597 4.711 4.864 5.057 5.565 6.982 8.697

8.942 4.517 3.064 2.356 1.945 1.686 1.391 1.164 1.087

5.500 4.636 4.651 4.696 4.773 4.884 5.031 5.217 5.707 7.082 8.769

9.301 4.696 3.182 2.442 2.013 1.739 1.427 1.180 1.096

6.000 4.809 4.824 4.868 4.943 5.051 5.193 5.373 5.846 7.183 8.842

9.647 4.868 3.295 2.525 2.077 1.791 1.461 1.197 1.105

6.500 4.976 4.991 5.034 5.107 5.212 5.351 5.525 5.982 7.283 8.915

9.981 5.034 3.405 2.606 2.140 1.842 1.495 1.214 1.114

7.000 5.138 5.152 5.195 5.266 5.368 5.503 5.672 6.115 7.382 8.989

10.305 5.195 3.511 2.684 2.201 1.891 1.529 1.230 1.124

7.500 5.296 5.309 5.351 5.420 5.520 5.651 5.815 6.246 7.481 9.062

10.619 5.351 3.614 2.760 2.260 1.938 1.561 1.247 1.133

8.000 5.448 5.462 5.502 5.570 5.668 5.796 5.955 6.374 7.580 9.136

10.923 5.502 3.714 2.834 2.318 1.985 1.593 1.263 1.142

γ

δ

 

 

Upper value: critical buckling length factor bc for column 
Lower value: critical buckling length factor bb for beam 
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The Dutch foundation ‘Bouwen met Staal’ (BmS), a national organization for the use of steel in building 
and bridge engineering, offers a tool on their website to determine the dimensions of the sections for 
several roof trusses [6]. Also asymmetrical pitched-roof frames are included in this tool where the 
frame is loaded by a uniformly distributed load with rigid connections in the eaves and hinged 
connections at the bottom. However the calculations for determining the dimensions of the sections 
are based on buckling lengths calculated using the method developed by Rieckmann for symmetrical 
pitched-roof frames. According to the calculation method of BmS, the asymmetric pitched-roof frame is 
thought to be split up in two independent pitched-roof frames as shown in figure 2.5. Both frames are 
calculated according to the method of Rieckmann and the decisive critical buckling length of the beam 
and column are used. This method gives an approximation of the critical buckling length of the 
members.  
 

 
Figure 2.5: Asymmetric pitched-roof frame split up in two independent symmetrical pitched-roof 
frames. 
 
The method developed by Rieckmann is based on deriving the critical buckling lengths from differential 
equations of equilibrium. The elastic rotational spring stiffness at the top of the column (kr;L) can be 
determined using a separate differential equation of equilibrium for the beam. In this method, the 
parameters d and g are integrated in the elastic rotational spring stiffness. This method is explained in 
Appendix B and results in the following rotational spring stiffness: 

 

( ) 













⋅⋅α⋅γ

⋅
−

⋅α⋅γ⋅⋅α⋅γ

δ⋅⋅α⋅γ⋅
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=
ϕ

=

b
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cc
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cccc

ccb
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MM
k     (2.15) 

 
The frame investigated by Rieckmann has hinged connection at the bottom. Therefore, z0=0 (see table 
2.1). This parameter and the rotational spring stiffness should be integrated in the stability criterion of 
table 2.1 and gives: 
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0

EI
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LM
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)Ltan(
c
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b
2
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α

⋅














⋅⋅α⋅γ

⋅
−

⋅α⋅γ⋅⋅α⋅γ

δ⋅⋅α⋅γ⋅
−

+⋅α−    (2.16) 

  
Solving ac gives the critical buckling load of the columns and the beams expressed in: 

 

c
2

cc;cr EIF ⋅α= , and         (2.17) 

 

2
b

2
cb

2
c

2

b;cr
L

LEI
F

⋅⋅α⋅γ
=          (2.18) 
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The above approach of determining critical buckling loads using differential equations of equilibrium for 
Rieckmann frames is also followed in Sesink [7]. Sesink investigated three different symmetrical 
pitched-roof frames, which contain many similarities with the frame considered by Rieckmann. The first 
frame is a symmetric frame with segmented beams and rotational springs as shown in figure 2.6. 

 
Figure 2.6: Symmetric pitched-roof frame with segmented beams considered by Sesink [7] 
 
The second frame is a symmetric frame with web-tapered columns and beams with rotational springs 
as shown in figure 2.7.  

 
Figure 2.7: Symmetric pitched-roof frame with web-tapered columns and beams considered by Sesink 
[7] 
 
For these two types of frames critical buckling lengths were determined by means of LBA and GMNIA 
were executed. The results of this GMNIA were compared with the results of the calculation methods 
of Eurocode 3 using buckling lengths for determining ultimate bearing capacities.  
 
Besides these two frames, Sesink investigated the symmetric pitched-roof frame considered by 
Rieckmann extended with rotational springs at the base and the top of the columns as shown in figure 
2.8. The rotational spring stiffness at the top of the columns can be obtained by:  
 

con;rb;r

L,r

k

1

k

1

1
k

+

=          (2.19) 

 
Where: 

kr;b is the rotational stiffness due to the stiffness of beam according to Eq. (2.15)  
kr;con is the rotational stiffness due to the connection between column and beam 

 

 
Figure 2.8: Rieckmann frame extended with rotational springs considered by Sesink [7] 
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The value kr;L of Eq. (2.19) and the rotational stiffness at the base (kr;0) have to be filled in, in the 
stability criteria of table 2.1 and gives the critical buckling loads for this type of frame.  
 
Another investigation with respect to critical buckling lengths of symmetrical pitched-roof frames is 
conducted by Silvestre and Camotim [8]. They considered symmetrical pitched-roof frames with 
symmetrical loads and rotational springs at the base as shown in figure 2.9. 

 
Figure 2.9: Symmetric pitched-roof frame considered by Silvestre and Camotim 
 
In contrast to orthogonal frames, Silvestre and Camotim experienced two global buckling modes for 
this type of frames: antisymmetrical and symmetrical configurations as shown in figure 2.10. Each 
buckling mode involves sway displacements and has a corresponding critical buckling load which 
depends on: 

- the ratio of the compression force in the beam and the column, and  
- the slope of the beam 

 

 
Figure 2.10: a) Antisymmetrical buckling (ASB) mode b) Symmetrical buckling (SB) mode. 
 
An approximation of the critical buckling loads can be obtained using:  
 

C/1
C

b;E0.b

b

C

c;E0.c

c
cr

N

N

N

N
−





























⋅ρ
+















⋅ρ
=α        (2.20) 

 
Where acr is the multiplier of the compression forces for obtaining critical buckling loads 

 
Eq. (2.20) is further explained in Appendix C.  
 
Graph 2.1 and 2.2 gives critical buckling points according to Eq. (2.20) related to antisymmetrical 
buckling modes and symmetrical buckling modes for frames with beam lengths of 5000mm and 
column lengths of 2500mm. All members have a moment of inertia of 1336ÿ10

4
mm

4
 (Iz of a HE200A 

section). Graph 2.1 shows the cases where the columns are hinged connected to the base. Graph 2.2 
shows the cases where the columns are fixed connected to the based. On horizontal x-axis of both 
graphs the design load in the column is given. On vertical y-axis the design load in the beam is given. 
The bifurcation load formula show that symmetrical buckling behaviour will be influenced by the slope 
of the beam (see Appendix C). Therefore five different slopes varying from 0 to 40 degrees are 
analyzed for symmetrical buckling behaviour. 
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Bifurcation points according to Silvestre and Camotim
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Graph 2.1: Antisymmetrical and symmetrical bifurcation points according to Silvestre and Camotim for 
hinged connections at the base.  
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Graph 2.2: Antisymmetrical and symmetrical bifurcation points according to Silvestre and Camotim for 
fixed connections at the base.  
 
From both graphs it can be concluded that ASB is always decisive when a relatively large axial force in 
the column in comparison with the axial force in the beam occurs. On the other hand the slope of the 
beam is decisive when the axial force in the beam is large in comparison with the axial force in the 
column.   

2.2 Ultimate bearing capacities 

By determining ultimate bearing capacities, member imperfections and elastic-plastic material 
behaviour are to be considered as well [9]. An example is the ultimate bearing capacity in the case of 
flexural buckling of a column. By increasing the force gradually, the deflection path follows the second 
order elastic curve and branching off in the direction of the second order plastic curve as shown in 
figure 2.11. The maximum force at this second order elastic-plastic path is defined as the limit point 
and gives the ultimate bearing capacity (Fult) of the column.  
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Figure 2.11: Load-deflection diagram of a limit point for an imperfect column 
 
A practical design procedure which allows to predict the ultimate bearing capacity is the Merchant-
Rankine approach [9]. According to this approach the ultimate bearing capacity can be predicted 
using:  
 

pcrult F

1

F

1

F

1
+=           (2.21) 

 
or 
 

)F/F(1

F
F

crp

p
ult

+
=          (2.22) 

 
Where Fp is the force that creates a mechanism according to the first order theory of plasticity. 
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3. Critical buckling loads of non-orthogonal asymmetrical steel 
frames 

 
In this chapter three different methods will be discussed to determine critical buckling loads analytically. The 
first method is using the differential equation of equilibrium applied to frame 1, in which each column will be 
analyzed separately. This method is given in chapter 3.1. Then critical buckling loads for both frames will be 
determined using Betti’s theorem and is given in chapter 3.2. The last method, which will be discussed in 
chapter 3.3, is the determination of critical buckling loads using kinematic models and this method is 
applicable for both frames. In contrast to the method using the differential equation of equilibrium, Betti’s 
theorem and kinematic models are both methods in which the influence of a compression force in the beam 
will not be taking into account. Therefore an approach has been developed where this influence can be 
determined separately and can be subtracted from the critical buckling loads found by Betti’s theorem and 
kinematic models. This approach will be described and discussed in chapter 3.4. Finally the three methods 
will be compared and conclusions will be given in chapter 3.5. 

3.1 Differential equation of equilibrium applied to frame 1 

3.1.1 Introduction to separate column approach  

Exact solutions of critical buckling loads can be obtained using the differential equation of equilibrium 
as described in Appendix A. In contrast to symmetrical frames, critical buckling loads of asymmetrical 
pitched-roof frames can not be determined using one column analysis due to the asymmetry of the 
frames. Therefore critical buckling loads of frame 1 are approximate by analyzing each column 
separately. For analyzing the left-hand column, a concentrated lateral load will be applied at the top of 
this column. The beams and the right-hand column serve as supportive elements for the left-hand 
column as shown in figure 3.1. Due to the lateral load at the top of the column, the column displaces 
and gives an approximation of the buckling mode of the left column.  
In the other case, when the right-hand column will be analyzed, the beams and the left-hand column 
will serve as supportive elements as shown in figure 3.2. The lateral load at the top of column aims to 
give displacements to the column which approximate the buckling mode of the right-hand column.  
From both analyses, the lowest critical buckling load of the column will serve as overall critical buckling 
load for the columns.   
 

 
Figure 3.1: Model to determine the critical buckling load of the left-hand column (separate column 
approach 1) 

 
Figure 3.2: Model to determine the critical buckling load of the right-hand column (separate column 
approach 2) 
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The rotational sping stiffnessess kr;L;l and kr;L;r at the top of the columns can be obtained using the 
general formula: 
 

i;b

i;b
iL;r;

M
k

ϕ
=           (3.1) 

 
Figure 3.3: Positions Mb;i and jb;i 
 
The angle of rotation of the beam can be determined using the differential equation of equilibrium for 
the beam. The differential equation of equilibrium for the beam is: 
  

0
dx

wd

dx

wd
2

b

b
2

2
b4

b

b
4

=⋅α+   Where 
b

b2
b

EI

N
=α      (3.2) 

 
This is a fourth-order homogeneous differential equation, which has as general solution:  
 

b
b

b
bbbbbbbbb D

L

x
C)xcos(B)xsin(A)x(w +⋅+⋅α⋅+⋅α⋅=      (3.3) 

 
where Ab, Bb, Cb and Db are integration constants obtained from boundary conditions. The boundary 
conditions for non-orthogonal asymmetrical frames differ from the boundary conditions of non-
orthogonal symmetrical frames (which are described in Appendix C) and the formulation of these 
boundary conditions for different non-orthogonal asymmetrical frames will be discussed in later stage 
of this chapter.  
 
After obtaining the integration constants Ab, Bb, Cb and Db, the integration constants can be filled in the 
deflection function of Eq. (3.3). The angle of rotation of the beam can be determined by differentiation 
of the deflection function, wb(xb). The rotational spring stiffness can then be expressed as:  
  

)0('w

M
k

i;b

i;b
i;L;r

−
=           (3.4) 

 
After determining the rotational spring stiffness at the top and the bottom of the column, the stiffnesses 
can be substituted in the boundary conditions of Eq. (A.2) and (A.3). The boundary conditions, as 
given in Eq. (A.1) – (A.4), to determine the integration constants for the column are the same for both 
columns. So, the matrix of Eq. (A.14) can be written in a matrix for the left-hand column:  
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and a matrix for the right-hand column:       
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The determinant of matrix (3.5) is: 
 

0
)Ltan(

)Ltan(
2

l;c

l;Ll;0l;cl;c

l;c

l;L

l;c

l;0
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α
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α
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+

α

ζ
+⋅α−      (3.7) 

Eq. (3.7) is the stability criterion for the left-hand column, where ac;l can be solved, which results in the 
following critical buckling load formula: 
 

l;c
2

l;cl;c;cr EIF ⋅α=          (3.8) 

 
The determinant of matrix (3.6) is: 
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)Ltan(
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and results in the following critical buckling load formula for the right-hand column: 
 

r;c
2

r;cr;c;cr EIF ⋅α=          (3.10) 

 
After obtaining both critical buckling loads, the lowest critical buckling load gives an approximation of 
the overall critical buckling load of the columns. Thereafter, the critical buckling loads of the beams can 
be determined using: 
 

 
c

i;b
c;cri;b;cr

N

N
FF ⋅=          (3.11) 

3.1.2 Boundary conditions 

The integration constants Ab to Db of Eq. (3.3) can be determined by developing boundary conditions 
for the specific properties of the beam considered in its buckling mode. Consider the frame given in 
figure 3.1. Due to the concentrated lateral load the frame deflects and a moment distribution occurs in 
the frame. The mechanical model of the left beam and the moment distribution in the left beam is given 
in figure 3.4.  
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Figure 3.4: a) Left beam b) Moment distribution in the left beam 
 
This model will be used to determine the rotational spring stiffness kr;L;l. Due to the connection between 
beam and column, no displacements occur perpendicular to the left end of the beam (wb;l on position 
xb;l = 0). Therefore, the first boundary condition can be written as: 
 

BC.1  0)0(w l;b =         (3.12) 

  
The second and third boundary condition will describe the influence of bending moments. The values 
of bending moments on position xb;l = 0 and position xb;l = L should be determined where the bending 
moment on position xb;l = L will be expressed as a ratio (y) of the bending moment on position xb;l = 0, 
as shown in figure 3.4b. The second and third boundary conditions can be written as: 
 

BC.2  l;bl;bl;b MEI)0(''w =⋅        (3.13) 

 

BC.3  l;bl;bl;b MEI)L(''w ⋅ψ=⋅        (3.14) 

 
Due to the geometry of the frame and the applied lateral load, the top of the frame will deflect not only 
in horizontal way, but also in vertical way. To take into account this vertical displacement, a fictitious 
translational spring kt;b;l is modeled at the top of the frame. The translational spring stiffness can be 
obtained using the general formula: 
 

)L(w

)L(V
k

l;b

l;b
t;b;l =           (3.15) 

 
where Vb;l(L) is the reaction force perpendicular to position xb;l = L. 
 
To obtain the reaction force Vb;l(L) a roller will be modeled at the top of the frame. Due to the lateral 
load at the top of the column, reaction force Vb;R (shown in figure 3.5) can be found since the hinged 
connection prevents vertical displacements. This reaction force should be decomposed in a force 
perpendicular to position xb;l = L and gives Vb;l(L). 

 
Figure 3.5: Model to determine Vb;l(L) 
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To obtain the vertical displacement at the top of the frame, a first order elastic calculation of the frame 
without a roller connection at the top of the frame will be executed. The vertical displacement wb, as 
given in figure 3.6, should be decomposed in a displacement perpendicular to position xb;l = L and 
gives wb;l(L). 
 

 
Figure 3.6: Vertical displacement at the top of the frame 
 

Note: 
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l;b

l;b
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θ⋅
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==        (3.16) 

 
So the fourth boundary condition can be written as: 
 

BC.4  0)L(w
k

EI)L('''w
l;b
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=+

⋅
−       (3.17) 

 
The general solution of the fourth-order homogeneous differential equation as given in Eq. (3.3), 
should be substituted in the described boundary conditions. The first, second and third derivative of 
this general solution are respectively (expressed for the left beam): 
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Substituting the general solution into the boundary conditions gives: 
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Eq. (3.22) / BC.2 leads to: 
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Eq. (3.23) / BC.3 leads to: 
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Eq. (3.21) / BC.1 leads to: 
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Eq. (3.24) / BC.4 leads to:  
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And gives: 
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Eq. (3.31) simplified gives: 
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Integration constants Ab;l to Db;l substituted into Eq. (3.3) gives:  
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The first derivative of )0(w l;b is: 
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Using Eq. (3.4) the rotational spring stiffness at the top of the left column can be determined and 
results in: 
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3.1.3 Influence of compression forces in the beam on the critical buckling load 

Parameters d and g developed by Rieckmann should be integrated in the rotational spring stiffness to 
account for the effects on the stiffness due to compression forces in the beams. Parameter d (given in 
Eq. (2.9)) can be integrated in EIb;l and Lb;l which results in the following equations: 
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Parameter gl (given in Eq. (2.10)) can be written as: 
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and gives: 
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l;cl;cll;bl;b LL ⋅⋅=⋅ αγα          (3.40) 

 
Eq. (3.36), (3.37), (3.39) and (3.40) substituted into Eq. (3.35) gives the rotational spring stiffness at 
the top of the left-hand column for asymmetrical pitched-roof frames: 
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Exactly the same method as described in chapter 3.1.2 and this chapter, will be applied to determine 
the rotational spring stiffness at the top of the right-hand column (kr;L;r). Figure 3.7a gives the 
mechanical model of the right beam and the moment distribution in the beam is given in figure 3.7b.  
 

 
Figure 3.7: a) Right beam b) Moment distribution in the right beam 
 
The rotational spring stiffness kr;L;r can be determined by: 
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3.1.4 Example   

A two hinged frame is loaded by a uniformly distributed load as given in figure 3.8. The sections of the 
frame consist of HE100A profiles modeled in Ansys. All properties of these composed HE100A 
sections are given in table E.1 of Appendix E.  
  

 
Figure 3.8: Asymmetric pitched-roof frame loaded by a uniformly distributed load. 
 
The d parameters of Riekmann are: 
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And using a first order elastic analysis the g parameters are:  
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One concentrated lateral load of 1 kN has been applied on the top of the left-hand column to 
determine the rotational spring stiffness kr;L;l (figure 3.9a) and results in the moment distribution of 
figure 3.9b.   

 
Figure 3.9: a) Model to determine the rotational spring stiffness kr;L;l  b) Moment distribution in Nm. 
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The vertical displacement at the top of the frame is 0,524mm and as given in figure 3.9b, y is 0,139. 
The reaction force Vb;R of figure 3.5 is 203N.  
 
The translational spring stiffness kt;b;l of Eq. (3.14) results then in: 
 

mm

N
387

)30cos(524,0

)30cos(203
k lb;t; =

⋅

⋅
=         (3.47) 

 
All properties are known to determine kr;L;l of Eq. (3.41) and then to solve ac;l of Eq. (3.7). By filling in all 
properties, ac;l results in:  
 

4
lc; 1080722,3 −⋅=α          (3.48) 

 
and gives a critical buckling load of: 
 

N101043EIF l;c
2

lc;l;c;cr =⋅α=         (3.49) 

 
To determine the rotational spring stiffness kr;L;r, one concentrated lateral load of 1 kN has been 
applied on the top of the right column and results in the moment distribution of figure 3.10b.   

  
Figure 3.10: a) Model to determine the rotational spring stiffness kr;L;r  b) Moment distribution in Nm. 
 
The vertical displacement at the top of the frame is 1,646mm and as given in figure 3.10b y is -0,477. 
The reaction force Vb;R is 639N. 
 
The translational spring stiffness kt;b;r is: 
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⋅
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All properties are known to determine kr;L;r of Eq. (3.42) and then to solve ac;r of Eq. (3.9). By filling in 
all properties, ac;r results in:  
 

4
rc; 1066644,3 −⋅=α          (3.51) 

 
and gives a critical buckling load of: 
 

N93709EIF r;c
2

rc;r;c;cr =⋅α=         (3.52) 
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Using LBA in Ansys, which is described in Appendix E.3, an overall critical buckling load for the 
columns is found of: 
 

N96384F ANSYS;c;cr =          (3.53) 

3.1.5 Discussion   

The described method to determine the overall critical buckling load of the columns using two separate 
column approaches, results in two different critical buckling loads. The lowest critical buckling load can 
be taken to find a safe approximation for the overall critical buckling of the columns. In the case 
considered in chapter 3.1.4, the lowest calculated critical buckling load differs about 3% in comparison 
with the result found by Ansys. This case gives an accurate approximation of the exact critical buckling 
load.  
 
However, by varying in column lengths the deviation in critical buckling load will not remain constant 
and result for some cases in inaccurate approximations of the overall critical buckling load. This is 
determined by investigating the frame of figure 3.8 where the length of the right column varies from 
1500mm to 4000mm as presented in figure 3.11. The differences in critical buckling load of the left-
hand and the right-hand column compared with the overall critical buckling load found by Ansys are 
plotted in graph 3.1, with on horizontal x-axis the length of the right column and on the vertical y-axis 
the error in percents in critical buckling load. An error lower than zero percent implies an 
underestimation of the critical buckling load and gives a safe approximation. An error higher than zero 
percent implies an overestimation of the critical buckling load and results in an unsafe approximation. 
In addition to these analyses, the errors in critical buckling loads according the method developed by 
‘Bouwen met Staal’ (BmS), which is explained in chapter 2.1.2, are also plotted in graph 3.1.   

     
Figure 3.11: Right column varies from 1500mm to 4000mm 
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Graph 3.1: Error in critical buckling loads for the frame given in figure 3.11 
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From graph 3.1 it can be seen that the separate column approach with column length between 
1500mm and 3000mm for the right-hand column results in errors below the 10 percent when the 
lowest critical buckling load is taken. The errors between the separate column approach and the 
method developed by BmS are in most cases between the 15 and 20 percent.  

3.2 Betti’s theorem 

Girgin, Ozmen and Orakdogen [10] developed a simplified procedure for determining approximate 
values of critical buckling loads of both regular and irregular frames which is based on Betti’s theorem. 
This procedure yields errors that are less than 5% underestimation in critical buckling length [10]. First 
a theoretical introduction will be given about this theorem which is taken from [11]. 

3.2.1 Introduction into Betti’s Theorem 

Consider a structure with a set of coordinates 1, 2, …, n, n+1, …, m as shown in figure 3.12a. Two 
systems of forces act on this structure. The F system of forces acts on coordinates 1 to n, and the Q 

system of forces acts on the coordinates n+1 to m as shown in figure 3.12b and 3.12c. The 
displacements which will be caused by F are indicated by wi;F and the displacements which will be 
caused by Q are indicated by wi;Q.  
 

 
 
Figure 3.12: Betti’s Theorem  a) Coordinate system b) F system of forces c) Q system of forces 
 
Suppose that only the F system is applied to the structure and results in displacements (wF), stresses 

(sF) and strains (eF). The internal work is equal to the external work: 
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Where:   

{s}F
T
 is the transpose stress vector {sx, sy, sz, txy, txz, tyz} of system F   

 {e}F is the strain vector {ex, ey, ez, gxy, gxz, gyz} of system F   

 
Suppose now that when the F system is being applied to the structure, the Q system is already acting 
on the structure and causing stresses sQ at any point. The external and internal work during the 
application of the F system are again equal and can be written as: 
  

dx}{}{dx}{}{
2

1
wQwF

2

1

x
F

T
Q

n

1i
x

F
T

FF;ii

m

1ni

iFi ∫∑ ∫∑ ε⋅σ+ε⋅σ⋅=⋅⋅+⋅⋅⋅

= +=

    (3.55) 

 
From Eq. (3.54) and (3.55) follows that: 
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When the F system is applied first and the Q system is added subsequently a similar situation will be 
obtained.  
 

dx}{}{wF
x

Q
T

F

n

1i

iQi ∫∑ ε⋅σ=⋅⋅

=

        (3.57) 

 
If the material of the structure obeys Hooke’s law, thus:  
 

QQ E ε⋅=σ  and  FF E ε⋅=σ  

 

where E is constant and substituting e in Eq (3.56) and (3.57), the right hand sides of these equations 

are equal. Hence: 
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+==
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m

1ni
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Eq. (3.58) is known as Betti’s theorem and says that the sum of the products of the forces of the F 
system and the displacements at the corresponding coordinates caused by the Q system is equal to 
the sum of the products of the forces of the Q system and the displacements at the corresponding 
coordinates caused by the F system. In the following chapters, Eq. (3.58) will be written as: 
 

21 WW =           (3.59)  

3.2.2 Application of Betti’s theorem to buckling analysis 

The practical method to determine approximate values of critical buckling loads of both regular and 
irregular frames developed by [10] based on Betti’s theorem will be given and discussed below.  
Consider the frame given in figure 3.13. According to [10] it is assumed that the lateral loads given in 
figure 3.13c result in displacements which are identical to the buckling mode of the frame. Therefore 
the buckling mode displacements given in figure 3.13b are the same as the displacements given in 
figure 3.13d.  
 

 
Figure 3.13: Storey frame  a) Vertical loaded b) Buckling mode displacements c) Lateral loaded  
d) Displacements due to H 
 
If the axial deformations are neglected, the virtual work on any column can be obtained from: 
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or 
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∫ =
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where L denotes the height of the individual column and n is the number of F which occurs on the 
individual column. The total virtual work can be expressed as: 
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The bending moment and relative displacement diagrams of an individual column are shown in figure 
3.14. The dimensionless coefficient a gives the location of the point of contraflexure and d gives the 
relative storey displacement.  

 
Figure 3.14: a) Bending moments in the column  b) Relative displacements in the column 
 
The expression for the degree of curvature of the column is: 
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Where M(xc) can be expressed as: 
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Substituting Eq. (3.64) into Eq. (3.63) and integrating twice with the boundary conditions: 
 

0w c =   for 0xc =       and 

i;cc ww =   for cc Lx =  

 
gives: 
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The derivative of Eq. (3.65) is: 
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and must be integrated in Eq. (3.62). The total virtual work results then in: 
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The virtual work of the shear force in the columns in conjunction with the displacements gives W2 and 
can be written as: 
 

( )∑ ⋅= i;cc2 wVW          (3.68) 

 
Substitute Eq. (3.67) and (3.68) into Betti’s theorem, given in Eq. (3.59), and solving F results in the 
critical buckling load Fcr for the frame: 
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3.2.3 Example of a one degree of freedom system 

Consider the frame as given in figure 3.15a.  
 

 
 
Figure 3.15: a) Non-orthogonal frame b) Lateral loaded 
  
The frame members have a flexural rigidity of 6,97095

.
10

11
 Nmm

2
, and no axial force occurs in the 

beam. Due to lateral loads of 10 Newton on the top of the columns (for example) as given in figure 
3.15b the parameters which should be known to solve Eq. (3.69) are given in table 3.1. 
 
Table 3.1. Buckling load parameters of the frame given in figure 3.15 

Column Vc Lc wc;i Vc * wc;i n * (wc;i
2
/Lc)

Left 6 5000 0,577 3,462 6,6586*10
-5

Right 14 3000 0,577 8,078 1,1098*10
-4

Sum 11,54 1,7756*10
-4
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This results in a critical buckling load of: 
 

N64991
1107756,1

54,11
F

4cr =
⋅⋅

=
−

        (3.70) 

 
Ansys gives a critical buckling load of 61937N, so the critical buckling load calculated using Betti’s 
theorem gives an overestimation of 4,9%. This overestimation is caused by the number of 
displacements in the calculation of Betti’s theorem. The displacements of the frame are only 
determined at the top of the columns, which results that the buckling mode of the frame cannot be 
simulated accurately. It gives an approximation of the buckling mode and results in a too stiff 
behaviour of the buckling mode.  

3.2.4 Example of a more degrees of freedom system 

To simulate the buckling mode more accurately, the number of displacements of the frame can be 
extended. In the cases with more degrees of freedom for each column, the degrees of freedom will be 
evenly distributed over the height of the columns. For instance, for a frame with two degrees of 
freedom for each column, the first degree of freedom will be positioned at the top of the column and 
the second degree of freedom will be positioned at half column height. The total displacement which 
occurs in the upper element is w1 minus the displacement at the top of the lower element w2 as given 
in figure 3.16.  
 

 
Figure 3.16: Displacements of a column with two degrees of freedom 
 
When the frame of figure 3.15 will be analyzed according to a system with two degrees of freedom for 
each column, the buckling load parameters which should be known to determine the critical buckling 
load according to Betti’s Theorem are given in table 3.2. 
 
Table 3.2. Buckling load parameters of the frame given in figure 3.15 

Element Ve Le we;i Ve * we;i n * (we;i
2 / Le)

Left 1 6 2500 0,221 1,328 1,9590*10
-5

Left 2 6 2500 0,356 2,134 5,0609*10
-5

Right 1 14 1500 0,255 3,563 4,3180*10
-5

Right 2 14 1500 0,322 4,512 6,9252*10
-5

Sum 11,537 1,8263*10
-4

 
 
According to Eq. (3.69) the critical buckling load is: 
 

N63171
1108263,1

537,11
F

4cr =
⋅⋅

=
−

        (3.70) 

 
A critical buckling load of 63171N gives an overestimation of 2% in comparison with Ansys. This 
example clearly shows that using a two degree of freedom system the buckling mode can be simulated 
more accurately and results thus in a less stiff behaviour of the buckling mode. Graph 3.2. shows the 
error in critical buckling load related to the number of degrees of freedom in each column for the frame 
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given in figure 3.15. In this graph it can be seen that when the number of degrees in freedom increase, 
an asymptote arise on x-axis.  
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Graph 3.2: Error in critical buckling load related to the number of degrees of freedom in each 
column 

3.3 Kinematic models 

Kinematic models are models from which an accurate approximation of the critical buckling load can 
be determined and consist of bars with an infinite flexural rigidity, the so called pendulum columns [12]. 
The nodes between these pendulum columns are laterally supported using translational springs with 
the exception of the node at the bottom. Kinematic models can exist in one degree of freedom systems 
or multiple degrees of freedom systems. In the case of figure 3.16b the structure consists of a model 
with two degrees of freedom, with two displacements required to define its displacement configuration. 
 

 
Figure 3.16: a) Model with one degree of freedom  b) Model with two degrees of freedom  
 
The translational spring stiffness represents the flexural rigidity of a certain column. To replace a 
certain column with a flexural rigidity for a kinematic model, the column will be coupled by means of 
rods with the pendulum columns as shown in figure 3.18. These rods ensure that the degrees of 
freedom of the pendulum columns displace with the same distance as the position where the rods are 
coupled with the structure.   
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Figure 3.17: Coupling of columns with pendulum columns results in a kinematical model with in this 
case one degree of freedom for each column.  
  
The non-orthogonal frame of figure 3.15 is modeled as a kinematic model with 2 degrees of freedom (1 
degree of freedom for each column) as given in figure 3.18. To obtain displacements which are similar 
to the buckling mode of the frame, lateral loads have to be applied at the top of the columns which are 
in proportion to the vertical loads existing at the columns [10].  
 

 
Figure 3.18: Kinematic model of the frame in figure 3.15 
 
From the equilibrium follows: 
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The displacements at the top of the columns can be written as: 
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Eq. (3.71) and (3.72) substituted in Eq. (3.73) and (3.74) gives: 
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and can be written as matrix: 
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To find a non-trivial solution the determinant of matrix (3.77) is: 
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Eq. (3.78) results in a critical buckling load of 64988N. This is an overestimation of 4.9% in comparison 
with the critical buckling load found by Ansys.  
A four degree of freedom system results in a critical buckling load of 62938N (see Appendix D) and is 
an overestimation of 1.6% in comparison with the critical buckling load found by Ansys. It can be seen 
that kinematic models result in upper bound solutions and multiple degrees of freedom result in a more 
accurate approximation of the critical buckling load since the buckling mode of the frame can be 
simulated more accurately. 

3.4 Influence of an axial force in the beam on the critical buckling load 

Betti’s theorem and the kinematic models as described in chapter 3.2 and 3.3 give critical buckling 
loads of regular and irregular frames for cases where no axial forces in the beams occur. In this 
chapter an approach will be given, based on Rieckmanns table, where the influence of an axial force in 
the beam on the critical buckling load can be taken into account. This approach is analyzed by means 
of parameter studies. 

3.4.1 Decrease in critical buckling load for symmetrical pitched-roof frames 

For symmetrical pitched-roof frames, where the beams are loaded in compression due to a uniformly 
distributed load, Rieckmann developed a table from which the critical buckling load of such frames can 
be determined (see table 2.2) using the parameters d and g. 
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⋅δ=γ           (3.80) 

 
This table also enables to determine the critical buckling load for symmetrical pitched-roof frames 
where no axial force in the beams occurs using the parameters related to g = 0.  
 
Due to compression forces in the beam the critical buckling load of the columns decrease. In table 3.3 
the table of Rieckmann has been written in the form where the total decrease in critical buckling load of 
the columns can be determined. Substituting parameter bD in Eq. (3.81) results in the decrease in 
critical buckling load, DFcr.  
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          (3.81) 

 
The bD parameters are obtained by determining the critical buckling load using Rieckmanns table 
where no axial force in the beam occurs, minus the critical buckling load using Rieckmanns table 
where an axial force in the beam is present. 
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       (3.82) 

 
Table 3.3 makes it possible to determine the critical buckling load of symmetrical pitched-roof frames 
using Betti’s theorem and kinematic models where DFcr of Eq. (3.82) can be taken into account by 
subtracting it from the critical buckling loads found using Betti’s theorem and kinematic models.  
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Table 3.3: Parameters bD to determine the decrease in critical buckling load of the columns for 
symmetrical pitched-roof frames. 
 

0.0000 0.500 1.000 1.500 2.000 2.500 3.000 4.000 6.000 8.000

0.200 ∞ 31.207 14.642 8.416 5.113 3.541 2.932 2.506 2.280 2.213

0.600 ∞ 25.012 11.991 7.517 5.292 4.085 3.451 2.910 2.598 2.503

1.000 ∞ 25.664 12.557 8.114 5.916 4.691 3.987 3.323 2.912 2.785

1.500 ∞ 27.965 13.843 9.139 6.802 5.471 4.661 3.838 3.293 3.121

2.000 ∞ 30.863 15.615 10.334 7.758 6.266 5.341 4.355 3.666 3.444

2.500 ∞ 35.527 17.428 11.584 8.742 7.071 6.023 4.871 4.031 3.754

3.000 ∞ 39.142 19.327 12.891 9.731 7.882 6.707 5.387 4.390 4.054

3.500 ∞ 42.658 21.205 14.201 10.727 8.686 7.388 5.901 4.744 4.346

4.000 ∞ 46.086 23.246 15.517 11.715 9.494 8.065 6.413 5.094 4.632

4.500 ∞ 49.429 24.922 16.788 12.712 10.295 8.739 6.922 5.441 4.911

5.000 ∞ 54.444 27.206 18.131 13.730 11.115 9.424 7.439 5.788 5.189

5.500 ∞ 57.771 29.094 19.490 14.736 11.936 10.109 7.949 6.132 5.462

6.000 ∞ 61.029 30.982 20.794 15.725 12.743 10.782 8.458 6.474 5.731

6.500 ∞ 64.230 32.875 22.111 16.726 13.531 11.450 8.965 6.815 5.997

7.000 ∞ 69.743 34.780 23.446 17.743 14.347 12.130 9.476 7.156 6.262

7.500 ∞ 75.724 37.033 24.901 18.782 15.181 12.824 9.990 7.498 6.527

8.000 ∞ 76.140 38.981 26.174 19.746 15.963 13.493 10.495 7.836 6.787

γ

δ

 
 

Decrease of the critical buckling load of the column: 
2

c

c
2

cr
)L(

EI
F

⋅β

⋅π
=∆

∆
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Although this table is particularly developed for symmetrical pitched-roof frames, approaches have 
been developed to approximate the decrease in critical buckling load for asymmetrical frames loaded 
by a uniformly distributed load over the length of the span using this table. Firstly frame 2 has been 
investigated. Below the approach is illustrated. 

3.4.2 Approach to determine the decrease in critical buckling load for frame 2 

1. Determine the mean compression force in the beam and the compression force in the 
columns due to the uniformly distributed load. 

 

  
  

Note: Lb for Rieckmann parameters d and g is (1/2)ÿLb of frame 2. 
 

2. Determine the decrease in critical buckling load of the column using table 3.2 for an 
orthogonal frame where the properties of the left-hand column are taken into account and the 
properties of the beam with the mean compression force determined in step 1.  
 

2
l;cl;

l;c
2

l;cr
)L(

EI
F

⋅β

⋅π
=∆

∆

        (3.83) 

 
 
Determine also the decrease in critical buckling load where the properties of the right-hand 
column are taken into account and the properties of the beam with the mean compression 
force determined in step 1.  
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3. From these two decreases, calculated in step 2, determine the mean. This mean gives an 
approximation of the decrease in critical buckling load for the columns in frame 2.  
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3.4.3 Applicability of the approach developed for frame 2 

A number of frames have been analyzed using this approach, where the following features and 
boundary conditions have been applied to the frames: 
 

- The left column has a fixed length  
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For these analyses, the critical buckling loads of the columns are determined exact using LBA in Ansys 
without an axial force in the beam (Fcr;ANSYS;Nb=0) and with an axial force in the beam (Fcr;ANSYS).  
Next, the calculated decreases, DFcr;calc, as described in the approach are determined and are 
subtracted from the Ansys results without an axial force in the beam. This results in the ‘calculated’ 
critical buckling load.  
 

calc;cr0Nb;ANSYS;crcalc;cr FFF ∆−= =         (3.86) 

 
Finally, the errors in percentages for the calculated critical buckling loads have been determined using: 
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In graphs 3.2 to 3.4, the errors for the calculated critical buckling load are shown in graphs with on 
horizontal x- axis the ratio between the length of the left-hand column and the right-hand column and 
on vertical y-axis the error percentage. Errors lower than zero percent imply an underestimation of the 
calculated critical buckling load and give a safe approximation. A difference greater than zero percent 
implies an overestimation of the calculated critical buckling load and results thus in an unsafe 
approximation. The results depend only on the ratio between the flexural rigidity of the members, the 
ratio between both column lengths and the ratio between the column lengths and the span. Because of 
this, only ratios are given in the graphs.  
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Graph 3.2: Error Fcr.calc. for 2
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Ls / Lc;l = 3
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Graph 3.3: Error Fcr.calc. for 3
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Graph 3.4: Error Fcr.calc. for 4
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Most errors show an overestimation in calculated critical buckling load and they show that when the 
ratio between the column lengths comes closer to zero, the errors in critical buckling load increase. As 
well as the ratio in column lengths, the ratio between the span and the column lengths influences the 
error in calculated critical buckling load. By increasing this ratio, the error in critical buckling load will 
also increase. If the acceptable range in overestimation and underestimation in critical buckling load 
will be set at 5 percent, most frames with a column length ratio below 0.5 do not fulfill this requirement. 

3.4.4 Refinement of the approach for frame 2 

To reduce the errors in calculated critical buckling load, the approach has been extended. For this 
extension, the difference between the exact decrease in critical buckling load, DFcr;ANSYS = Fcr;ANSYS;Nb=0 
– Fcr;ANSYS, and the calculated decrease in buckling load as given in Eq. (3.85) has been investigated 
for all analyses. The ratios of the decreases are calculated using: 
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Eq. (3.87) results thus in a multiplier/correction factor for the approximate calculated decrease in 
critical buckling load to obtain the exact decrease in critical buckling load. 
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As shown in graph 3.2 to 3.4, the errors in calculated critical buckling load will not be strongly 
influenced by the ratios of the flexural rigidity. Therefore, mean ratios have been determined related to 
a particular column length ratio and a particular column-span ratio using Eq. (3.89). 
 

 
n

F

F

X

n

1i .calc.cr

ANSYS.cr∑
=

∆

∆

=          (3.89) 

 
Where n is the number of analyzed frames related to a particular column length ratio and a particular 
column-span ratio.  
 

The mean ratios X  are given in table 3.3 and plotted in graph 3.5.  
    

Table 3.3: Mean ratios X between the exact decrease in critical buckling load and the ‘calculated’ 
decrease in critical buckling load 

0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

2 1,93 1,71 1,58 1,37 1,25 1,12 1,02 1,00

3 1,51 1,45 1,37 1,22 1,11 1,07 1,01 1,00

4 1,36 1,38 1,29 1,18 1,11 1,04 1,01 1,00
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Graph 3.5: Mean ratios X  
  
Using these mean ratios, a more accurate approximation of the decrease in critical buckling load can 
be determined using: 
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Applying Eq. (3.90) in the analyses of the frames, the errors in critical buckling are much lower and this 
is shown in the graphs 3.6 to 3.8. 
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Graph 3.6: Error Fcr.calc. for 2
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Graph 3.7: Error Fcr.calc. for 3
L

L

lc;

s = , in which the mean ratios X  are taken into consideration 

Ls / Lc;l = 4

-2,00

0,00

2,00

0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Lc;r / Lc;l

E
rr

o
r 

F
c

r.
c

a
lc

. 
in

 %

EIc;l=1, EIc;r=1, EIb=1 EIc;l=3, EIc;r=3, EIb=1 EIc;l=1, EIc;r=3, EIb=1 EIc;l=3, EIc;r=1, EIb=1
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The results shown in graph 3.6 - 3.8 give errors in critical buckling load between the 2 percent 
overestimation and 3 percent underestimation and are all in the acceptable range. 

3.4.5 Approach to determine the decrease in critical buckling load for frame 1 

The approach for frame 1 shows many similarities with the approach for frame 2. First of all, the frame 
will be considered as a frame with a single beam with a mean axial force in the beam and a mean 
flexural rigidity of the beam.  
 

 
 
The mean axial force in the beam can be calculated using the following equation: 
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And the mean flexural rigidity of the beam can be calculated using: 
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From this considered frame the decrease in buckling load will be determined where the properties of 
the left column are taken into account for both columns and once with the properties of the right 
column for both columns, as described in approach step 2 of frame 2. From these both decreases the 
mean will be determined and results in an approximation of the decrease in critical buckling load. 
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Note: Lb for Rieckmann parameters d and g is (1/2)ÿLb;tot of frame 1. 

3.4.6 Applicability of the approach developed for frame 1 

A number of frames have been analyzed according to this approach, where the following features and 
boundary conditions have been made for the frames: 
 

- The left column has a fixed length 

- The left beam has a fixed slope 

- The angle between the right beam and right column will be >90 degrees  

- VAR
L

L
0.3

lc;

rc;
≤≤  



 

42 

- 4.0
L

L
2.0

lc;

s ≤≤  

- 7.0
EI

EI
1.0

b

c ≤≤  

- 0.85.0 ≤γ≤   

-  8.00.2 ≤δ≤  

 
Graphs 3.9 to 3.11 give the results for frames with a slope of the left beam of 25 degrees and the 
horizontal distance of the apex located at one fifth of the span. This model is given in figure 3.19. The 
method and the processing of the results in graphs have been executed in exactly the same way as for 
frame 2.  
 

 
Figure 3.19: Model for the graphs 3.9 to 3.11 
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Graph 3.11: Error Fcr.calc. for 4
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Graphs 3.12 to 3.14 give the results for frames with a slope of the left beam of 45 degrees and the 
horizontal distance of the apex located at one fifth of the span. This model is shown in figure 3.20. 
 

 
Figure 3.20: Model for the graphs 3.12 to 3.14 
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Graph 3.12: Error Fcr.calc. for 2
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Graph 3.13: Error Fcr.calc. for 3
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Graph 3.14: Error Fcr.calc. for 4
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As seen in graphs 3.9 – 3.14 the overestimation in critical buckling load will not be greater than 5 
percents by a column ratio of 0.7 or greater. Striking, when the column length ratio will come closer to 
0.3 and the span to column ratio will be greater than 2, wide ranges in errors occur. In the cases where 
the right beam has a flexural rigidity greater than or equal to the right column, the error line will decline 
and results in some analyses in an underestimation of the critical buckling load. For all other cases, 
when the ratio comes closer to 0.3, the overestimation increases.  
 
For frame 2, a multiplier/correction factor has been developed to reduce the errors in calculated critical 
buckling load. This factor has reduced the errors effectively, because the calculated critical buckling 
loads were all overestimated and were not strongly influenced by the ratios of the flexural rigidity. The 
analyses of frame 1 show that the error in calculated critical buckling load for a certain span to column 
ratio are (slightly) underestimated or overestimated. Therefore the application of a multiplier by 
determining mean ratios using Eq. (3.88) will not result in a significant decrease in error, since the 
multiplier is close to 1.  
 
Due to wide range in errors for column length ratios below 0.6, the approach of frame 1 can only be 
used for column length ratios of 0.6 or greater. The graphs 3.9 to 3.14 have been re-plotted with this 
boundary condition and are shown in graphs 3.15 to 3.20.  
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Graph 3.15: Error Fcr.calc. for 2
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Graph 3.16: Error Fcr.calc. for 3
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Graph 3.17: Error Fcr.calc. for 4
L

L

lc;

s = , ql = 25
 0
 and the apex on a horizontal distance of sL0,2 ⋅  

Ls / Lc;l = 2

-4,00

-2,00

0,00

2,00

4,00

0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4

Lc;r / Lc;l

E
rr

o
r 

F
c

r.
c

a
lc

. 
in

 %

EIc;l=1, EIc;r=1, EIb;l=1, EIb;r=1 EIc;l=3, EIc;r=1, EIb;l=1, EIb;r=1 EIc;l=3, EIc;r=1, EIb;l=1, EIb;r=3

EIc;l=7, EIc;r=1, EIb;l=1, EIb;r=1 EIc;l=7, EIc;r=1, EIb;l=1, EIb;r=3 EIc;l=1, EIc;r=3, EIb;l=1, EIb;r=1

EIc;l=1, EIc;r=7, EIb;l=1, EIb;r=1 EIc;l=3, EIc;r=3, EIb;l=1, EIb;r=1 EIc;l=3, EIc;r=3, EIb;l=1, EIb;r=3

EIc;l=7, EIc;r=7, EIb;l=1, EIc;r=1 EIc;l=7, EIc;r=7, EIb;l=1, EIb;r=3

 

Graph 3.18: Error Fcr.calc. for 2
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Graph 3.19: Error Fcr.calc. for 3
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Graph 3.20: Error Fcr.calc. for 4
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In the previous analyses there has been varied in column lengths, the span to column ratio and the 
slope of the left beam. In graph 3.14 the errors in calculated critical buckling load have been given for 
frames where the horizontal distance of the apex is changed from 0,2ÿLs to 0,4ÿLs for a span to column 
ratio of 4 and a slope of the left beam of 25 degrees as shown in figure 3.21. 
  

 
Figure 3.21: Model for graph 3.21 
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Graph 3.21: Error Fcr.calc. by 4
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From graph 3.21 it can be seen that the results will not differ significantly from the results of graph 3.17 
where the horizontal distance of the apex is located at one fifth of the span.  

3.5 Conclusions 

In general, the differential equation of equilibrium applied to frame 1 where each column will be 
analyzed separately, results in safe approximations. Looking at the accuracy of the results, the 
accuracy differs too much that the exchange of stability between the left-hand column and the right-
hand column cannot be described accurately enough using two separate column approaches. 
However, the critical buckling load of the frame can be determined more accurately than using the 
approach which is developed by BmS. 
 
Kinematic models and Betti’s theorem are two methods in which the critical buckling loads can be 
determined accurately for frames where the beam is not loaded in compression. The more the buckling 
mode can be simulated by adding degrees of freedom, the more accurate the critical buckling load can 
be determined. Using one degree of freedom for each column, critical buckling loads will be found 
which are about five percent overestimated. In cases with two degrees of freedom the overestimation 
of the critical buckling loads will be reduced to about two percent.  
A disadvantage of kinematic models compared to Betti’s theorem is that calculations are very time-
consuming, in particular for cases that are consist of two or more degrees of freedom for each column. 
This makes Betti’s theorem attractive, since critical buckling loads can be determined using a relatively 
simple and quick method.  
 
To take the influence of compression forces in the beam(s) into consideration for kinematic models 
and Betti’s theorem, approaches have been developed, based on Riekmanns table, and the accuracy 
of these approaches has been investigated for different cases. Because the approaches are based on 
Rieckmann table, the connections in all cases were designed as hinged connections at the base and 
rigid connections between the members.  
For the investigated cases of frame 1, the maximum overestimation in critical buckling load will not be 
greater than 6 percent, provided the critical buckling load without an axial force in the beam is exactly 
determined. The maximum underestimation in critical buckling load will not be greater than 12 percent. 
For frame 2 the maximum overestimation is 2 percent and the maximum underestimation is 3 percent.   
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4. Ultimate bearing capacities of trapezoidal frames 

4.1 Analysis overview  

In this chapter ultimate bearing capacities of trapezoidal frames will be determined for different frame 
geometries and different load combinations. The frames which will be analyzed are given in table 4.1. 
To obtain ultimate bearing capacities, imperfections should be modeled which depend on the critical 
buckling load of the frame. In chapter 3, different methods have been given to obtain accurate 
approximations of critical buckling loads for trapezoidal frames which are hinged connected at the 
base and loaded by a uniformly distributed load. Despite the methods give accurate approximations, 
critical buckling loads for similar cases in table 4.1 will not be determined using the methods of chapter 
3. The critical buckling loads will be determined exact in Ansys using LBA. Exact critical buckling loads 
result in reliable imperfections and therefore in reliable ultimate bearing capacities and reliable stability 
checks which will be discussed in chapter 5.  
 
Table 4.1: Frame overview 
Figure Case q Lc;r in mm Ls in mm Lb in mm

1 0 5000 5000 5000

2 10 4118 5000 5077

3 20 3180 5000 5321

4 30 2113 5000 5774

5 0 5000 5000 5000

6 10 4118 5000 5077

7 20 3180 5000 5321

8 30 2113 5000 5774

9 0 5000 20000 20000

10 5 3250 20000 20076

11 10 1473 20000 20309

12 0 5000 20000 20000

13 5 3250 20000 20076

14 10 1473 20000 20309

 
 

In case 1 to 4, the frames are loaded by a uniformly distributed load. The uniformly distributed load 
represents the dead load of the structure. All members consist of HE180A sections and the properties 
of these composed Ansys sections are given in table E.2. The span is relatively short in comparison 
with the column lengths, resulting in a slope of 30 degrees for case 4.  
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For stability checks in Eurocode 3, each frame should be defined as a sway or a non-sway frame. 
When a frame is defined as a sway frame, second order effects as a result of horizontal displacements 
∆ (figure 4.1) of the frame can not be neglected. Eurocode 3 [2] gives information about the application 
of a second order elastic F-∆ analysis. Second order elastic F-∆ effects can be neglected and a first 
order elastic analysis for obtaining internal forces suffices only if Eq. (4.1) is satisfied. Frames which 
satisfy Eq. (4.1) are classified as non-sway frames. In all other cases (i.e. sway frames), a second 
order elastic F-∆ analysis is required, or a method incorporating these second order effects implicitly.  
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Ed

cr
cr ≥=α           (4.1) 

 
Where: 

acr is the factor by which the design loading would have to be increased to cause elastic 
instability in a global mode 

Fcr is the elastic critical buckling load for global instability mode based on initial elastic 
stiffnesses 

FEd is the design load of the structure 
 

 
Figure 4.1: Horizontal displacements ∆ caused by F  

 

Non-orthogonal frames with roof slopes not steeper than 1:2 (26°), may be analyzed according to Eq. 

(4.1). For these frames acr may be calculated using the approximate formula given in Eq. (4.2), 
provided that the axial compression in the beams may be assumed to be not significant. 
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Where: 

HEd is the design value of the horizontal reaction at the bottom of the storey to the 
horizontal loads and fictitious horizontal loads 

VEd is the total design vertical load on the structure on the bottom of the storey 
hs is the storey height 
dH,Ed is the horizontal displacement at the top of the storey, relative to the bottom of the 

storey, when the frame is loaded with horizontal loads and fictitious horizontal loads 
which are applied at each floor level 

 
The axial compression in the beams is considered significant if: 
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Where: 

λ   is the inplane non dimensional slenderness calculated for the beam considered as 

hinged at its ends of the system length measured along the beams.  
NEd is the design value of the compression force in the beam 

 
The frame in case 4 has a slope of 30 degrees which exceeds the applicability of the approximation 
formula for acr given in Eq. (4.2). For this case, Eurocode 3 assumes that the axial force in the beam is 
significant and Eq. (4.2) may not be used. For all cases, critical buckling loads will be determined 
exactly, so an approximation of acr according to Eq. (4.2) need not be performed and all values of acr 
will be determined using Eq. (4.1). 
  
The geometry and the members of case 5 to 8 are equal to case 1 to 4, but besides a uniformly 
distributed load, lateral loads acting on the top of the frame which represent loads due to wind. 
Different ratios of axial forces arise in the columns due to these lateral loads.  
 
The length of the span for case 9 to 14 is four times as large as the span in case 1 to 8. All members 
consist of HE320A sections and the properties of these composed sections are given in table E.1. 
Using these increased spans, a greater axial force will be introduced in the beam compared to the 
cases where the span is relatively short.  

4.2 Material properties 

As mentioned in chapter 2.2, imperfections and elastic-plastic material behavior will be considered by 
determining the ultimate bearing capacity of a frame. When performing a geometric and material non-
linear analysis in finite element software a stress-strain relationship with corresponding yield strength 
has to be described. All geometric and material non-linear analyses in this report are executed using a 
bi-linear stress-strain relation as shown in figure 4.2. This relation is also called an elastic perfectly 
plastic model since there is no further increase in stress after initial yielding. Steel grade S235 is taken, 
which means that the yield stress is 235 N/mm

2
. The Young’s modulus is set on 2,1ÿ10

5
 N/mm

2
 and 

the Poisson ratio on 0.3.  
  

 
Figure 4.2: Bi-linear stress-strain relationship with a yield strength of 235N/mm

2
 

 

4.3 Imperfections 

Eurocode 3 offers several stability checks for frames. Eurocode 3 describes that no stability check for 
members is necessary if second order effects in individual members and relevant frame imperfections 
are taking into account in the global analysis of the structure. Imperfections should be incorporated to 
cover the effects of residual stresses and geometrical imperfections such as lack of verticality, lack of 
flatness, lack of fit and any minor eccentricities present in joints of the unloaded structure. Eurocode 3 
distinguishes two types of imperfections: global and local imperfections. Global imperfections are 
frame imperfections and affect frame instability using a sway imperfection D. Local imperfections are 
member imperfections and affect member instability using a bow imperfection d. Both imperfections 
are shown in figure 4.3. An analysis in which geometric and material second order effects and sway 
and bow imperfection are taken into account, will be called a Geometric and Material Non-Linear 
Imperfect Analysis (GMNIA).  
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Figure 4.3: Sway imperfections D and bow imperfections d 
 
According to Eurocode 3, the angle of rotation for sway imperfection may be determined from: 
 

mh0 α⋅α⋅ϕ=ϕ           (4.4) 

 
Where: 
 j0 is the basic value 1/200 
 ah is the reduction factor for structure height h applicable to columns 

  
h

2
h =α ,  but 1

3

2
h ≤α≤  

am is the reduction factor for the number of columns in a row 

 







+⋅=α

m

1
15,0m  

m is the number of columns in a row including only these columns which carry a 
vertical load NEd not less than 50% of the average value of the column in the vertical 
plane considered. 

 
In table 5.1 of Eurocode 3 (shown in table 4.2 of this report) a table is given in which the design values 
of initial local bow imperfections can be determined. According to this table the design value of an 
initial local bow imperfection depend on the length of the member, the buckling curve and the type of 
analysis (elastic or plastic).  
 
Table 4.2: Design values of initial local bow imperfections 

Buckling curve elastic analysis plastic analysis

 d / L  d / L

a0 1 / 350 1 / 300

a 1 / 300 1 / 250

b 1 / 250 1 / 200

c 1 / 200 1 / 150

d 1 / 150 1 / 100  
 
However, according to the Dutch annex the bow imperfection should be determined using Eq. (12.3-9) 
of NEN 6771 [13] and is given in Eq. (4.5): 
 

( )
Rd;c

Rd;c
i

N

M
2,0 ⋅−λ⋅α=δ          (4.5) 

 
Where: 
 a is the imperfection factor of the buckling curve given in table 5.1 

 λ  is the in-plane non-dimensional slenderness factor  
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cr

y

F

fA ⋅
=λ  

 Mc;Rd is the design resistance for bending 
 Nc;Rd is the design resistance to axial forces 
 
As an alternative to sway and bow imperfections, the shape of the elastic critical buckling mode of the 
structure may be applied as a unique sway and bow imperfection. The amplitude of this imperfection 
may be determined from: 
 

cr
max,cr

cr
iinit

"EI

N
η⋅

η⋅
⋅δ=η          (4.6) 

 
Where: 
 di  bow imperfection according to Eq. (4.5) 

ηcr  is the shape of the elastic critical buckling mode   
EIÿη”cr,max is the bending moment due to ηcr 

 
The shape of the elastic critical buckling load ηcr in Eq. (4.6) is assumed as displacements due to Ncr 
as shown in figure 4.4. This assumption is based on term: EIÿη”cr,max. η”cr,max is interpreted as the 
second derivative of displacement ηcr resulting in a curvature. This curvature multiplied by EI resulting 
in the internal bending moment due to ηcr. Ncr multiplied by displacement ηcr gives the external bending 
moment and this moment should be in equilibrium with the internal moment. Therefore Eq. (4.6) can 
be written as: 
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η⋅
⋅δ=η        (4.7) 

 

 
Figure 4.4: ηcr assumed as displacement 
 
For each member which is loaded in compression an imperfection should be calculated. The 
imperfection which causes the greatest scaling of the critical buckling mode and thus the greatest 
unique sway and bow imperfection should be used as imperfection.   
 
Once the critical buckling lengths and the amplitudes of the imperfections are determined, the 
minimum imperfections can be determined by considering the amplitude as a perfect sinus shape. For 
the left column, the minimum imperfection at the top of this column can be determined using Eq. (4.8) 
and this is shown in figure 4.5.  
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Figure 4.5: Imperfection Dc;l at the top of the left column 
 
The minimum imperfection at the top of the right column can be determined using Eq. (4.9) and is 
shown in figure 4.6.  
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Figure 4.6: Imperfection Dc;r at the top of the right column 
 
In cases where the beam is loaded in compression an imperfection for the beam should be determined 
also. The minimum imperfection at the top of the buckling mode of the beam Db;2, as given in figure 
4.7, can be determined using: 
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Where:   
2

LL
L

2b;cr
1

−
=  

1b;cr2 L2LL ⋅−=    (see figure 4.7) 

 

 
Figure 4.7: Imperfection Db;2 for the beam 
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To determine which displacement (Dc;l, Dc;r or Db;2) gives the greatest scaling of the buckling mode the 
scale factor of all imperfection should be determined. The scale factor can be determined by analyzing 
the ratio between the displacements in the buckling mode. Buckling mode displacements using LBA in 
Ansys are expressed in values between 0 and 1. Zero displacement implies no displacement in 
buckling mode and one displacement implies maximum displacement in buckling mode. Using the 
command UPGEOM in Ansys the buckling mode can be scaled as imperfection. To obtain a specific 
displacement (Dc;l, Dc;r or Db;2) the scale factor can be determined using: 
 

i
i;ANSYS

1
s ∆⋅

∆
=           (4.11) 

 
Where: 
 s  is the scale factor  
 DANSYS;i  is the displacement ratio in Ansys varying from 0 to 1 
 Di  displacements for unique sway and bow imperfections (Dc;l, Dc;r or Db;2) 
 
For each case in table 4.1, two GMNIA will be executed. A first GMNIA (GMNIA 1) will be performed 
using bow and sway imperfections according to Eq. (4.4) and (4.5). A second GMNIA (GMNIA 2) will 
be performed using the alternative method of Eurocode 3 by which the first buckling mode of the 
structure is applied as a unique sway and bow imperfection according to Eq. (4.6).  

4.4 GMNIA 1 using initial sway and bow imperfections 

The initial bow imperfections depend among others on the in-plane non-dimensional slenderness 
factor and thus on the critical buckling load of the frame. Bow imperfection will be considered 
separately from sway imperfections. Therefore critical buckling loads of the frames should be 
determined for cases where no sway displacements occur. NEN 6771 and Eurocode 3 have not 
described how to determine the critical buckling load for obtaining bow imperfections. There are 
several methods which can be imagined for determining critical buckling loads in sway frames. Three 
different methods will be discussed below. 
   
As first method, vertical rollers can be modeled at the top of the column which prevent horizontal 
displacements at the top of the columns as shown in figure 4.7a. The critical buckling load of the beam 
will be determined by introducing an axial compression parallel to the beam as given in figure 4.7b. 
The connections between beam and column serve as rotational springs at the ends of the beam and 
prevent displacements perpendicular to the ends of the beam.   
 

 
Figure 4.7: Method 1. a) Model to determine the critical buckling load in each column for initial bow 
imperfections of the columns. b) Model to determine the critical buckling load in the beam for the initial 
bow imperfection of the beam 
 
As second method, the critical buckling load of each member can be analyzed separately as given in 
figure 4.8. A vertical roller will be modeled at the top of the column which will be analyzed. Also for this 
method, the critical buckling load of the beam will be determined using a compression force parallel to 
beam.  
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Figure 4.8: Method 2. a) Models to determine the critical buckling load in each column for initial bow 
imperfections of the columns. b) Model to determine the critical buckling load in the beam for the initial 
bow imperfection of the beam 
 
As third method the critical buckling loads can be determined where the critical buckling length of the 
members are assumed as the design lengths of the members as given in figure 4.9. 

 
Figure 4.9: Method 3. Critical buckling lengths assumed as design length of the members for 
determining initial bow imperfections.  
 
For determining design values for initial bow imperfections according to table 5.1 of Eurocode 3 (given 
in table 4.2) each member will be analyzed separately. Therefore, separate analyzes for each member 
is preferred for Eq. (4.5) to achieve somewhat equal ratios between member imperfections and 
member lengths. Method 1 in figure 4.7 will not be considered since two column imperfections will be 
determined in one analysis.  
 
For all analyses, the second method will be considered where each member will be analyzed 
separately (figure 4.8). In this case the connection between beam and column will be considered and 
results in an exact solution of the critical buckling load. Therefore this method is preferred over the 
method in which the critical buckling lengths are assumed as design length of the members.  
 
The critical buckling loads of all considered cases in table 4.1 using the method of figure 4.8 (method 
2) for determining initial bow imperfections are given in table 4.3. These critical buckling loads are 
determined using LBA in Ansys as described in Appendix E.3.  
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Table 4.3: Critical buckling loads in kN for determining initial bow imperfections 

Case Fcr;c;l Fcr;c;r Fcr;b

1 2759,67 2759,67 3628,54

2 2758,91 3851,68 3609,44

3 2745,61 5933,11 3308,84

4 2718,89 11428,96 2707,86

5 2759,67 2759,67 3628,54

6 2758,91 3851,68 3609,44

7 2745,61 5933,11 3308,84

8 2718,89 11428,96 2707,86

9 19082,11 19082,11 3302,80

10 19106,55 38588,08 3153,41

11 19089,28 105927,68 2502,64

12 19082,11 19082,11 3302,80

13 19106,55 38588,08 3153,41

14 19089,28 105927,68 2502,64  
 
Figure 4.10 gives, as example, the critical buckling modes for case 4.  
 

 
Figure 4.10: Buckling modes of case 4. Left: left column. Middle: beam. Right: right column 
 
For case 4 this results in the following bow imperfections: 
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Angle of rotations for determining sway imperfections at the top of the columns will be determined 
using Eq. (4.4). Eurocode 3 mentioned that ah (given in Eq. 4.4) depends on the structure height. 
However, for trapezoidal frames a clear structure height can not be given. Seen from the geometry, 
each column can serve as structure height. Therefore the structure height for obtaining ah will be 
assumed as column height. For case 4 this results in an angle of rotation for the left column of: 
 



 

58 

.rad10873,3
2

1
15,0

5

2

200

1 3
mh0l;c

−⋅=







+⋅⋅⋅=α⋅α⋅ϕ=ϕ     (4.14) 

 
And gives a sway imperfection at the top of the left column of: 
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The angle of rotation for the right column is: 
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And gives a sway imperfection at the top of the right column of: 
 

mm2,92113)10331,4tan( 3
r;c =⋅⋅=∆ −        (4.17) 

 
All applied initial sway and bow imperfections which are used for GMNIA 1 are given in table 4.4. 
 
Table 4.4: Initial sway and bow imperfection in mm for GMNIA 1 

Case Dc;l Dc;r dc;l dc;r db

1 19,4 19,4 9,9 9,9 8,0

2 19,4 17,6 9,9 7,7 8,1

3 19,4 13,8 10,0 5,2 8,7

4 19,4 9,2 10,1 2,4 10,1

5 19,4 19,4 9,9 9,9 8,0

6 19,4 17,6 9,9 7,7 8,1

7 19,4 13,8 10,0 5,2 8,7

8 19,4 9,2 10,1 2,4 10,1

9 19,4 19,4 8,1 8,1 31,9

10 19,4 14,1 8,1 3,0 32,8

11 19,4 6,4 8,1 0,0 37,9

12 19,4 19,4 8,1 8,1 31,9

13 19,4 14,1 8,1 3,0 32,8

14 19,4 6,4 8,1 0,0 37,9  
 
For the cases where the column lengths are not equal in the frame, different initial sway imperfections 
occur. Due to these different imperfections the beam will increase or decrease in stress-free design 
length depending on the sway direction. This is an unfavorable situation, however the GMNIA will be 
executed using these different sway distances since this are the requirements for imperfections of 
Eurocode 3.   
 
Sway and bow imperfection should be considered in the most unfavorable direction and form. In table 
4.5 an overview of different directions and forms is given with corresponding ultimate bearing capacity 
for case 4. 
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Table 4.5: Ultimate bearing capacities using different sway directions and bow forms 

Q = 191,66 kN Q = 192,09 kN Q = 195,94 kN Q = 195,45 kN

Q = 191,35 kN Q = 191,77 kN Q = 195,56 kN Q = 195,11 kN  
 
Table 4.4 shows that initial sway and bow imperfections to the left, results in the lowest ultimate 
bearing capacity (Q = 191,35 kN) for case 4. These directions are the most unfavorable, which is partly 
due to the beam elongation in this case. The load-displacement diagram using the Newton-Raphson 
method and the arc-length method for case 4 is given in figure 4.11 and 4.12 respectively. The 
displacements are measured horizontally in the connection between left column and beam. In chapter 
E.4 sensitivity analyses are executed for GMNIA. The input of different parameters are based on these 
sensitivity analyses and gives therefore reliable results for all GMNIA.   
 

Load-displacements for case 4, GMNIA 1
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Figure 4.11: Load-displacements for case 4 obtained using the Newton-Raphson method.  
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Load-displacements for case 4, GMNIA 1
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Figure 4.12: Load-displacements for case 4 obtained using the arc-length method. 
 
Figure 4.11 and 4.12 show that both methods result in exactly the same ultimate bearing capacity 
(point 3), since the increase in load using the Newton-Raphson method will not be interrupted until 
reaching the ultimate bearing capacity of the frame. In both graphs, points are given at positions where 
initial yielding in the cross section occurs. Point 1 in the load displacement diagrams presents initial 
yielding at half beam length as given in figure 4.13. At point 2, initial yielding in the connection between 
left column and beam occurs as shown in figure 4.14. Point 3 gives the ultimate bearing capacity and 
the related stresses are given in figure 4.15 and 4.16.  
 

 
Figure 4.13: Initial yielding at half beam length (point 1 in figure 4.11 and 4.12)   
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Figure 4.14: Initial yielding in the connection between left column and beam (point 2 in figure 4.11 and 
4.12)   
 

 
Figure 4.15: Stresses at half beam length when the ultimate bearing capacity is reached (point 3 in 
figure 4.11 and 4.12) 
 
 

 
Figure 4.16: Stresses in the connection between left column and beam when the ultimate bearing 
capacity is reached (point 3 in figure 4.11 and 4.12) 
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The ultimate bearing capacities of all other GMNIA 1 cases are given in chapter 4.6.  

4.5 GMNIA 2 using unique initial sway and bow imperfections 

A second GMNIA (GMNIA 2) will be performed using the alternative method by which the shape of the 
elastic critical buckling mode of the structure is applied as a unique sway and bow imperfection using 
Eq. (4.6). To determine the amplitude hinit, the critical buckling loads of the frames should be 
determined without sway constraints at the top of the columns and using the properties and load 
combinations as given in table 4.1. The critical buckling loads are determined using LBA in Ansys as 
described in Appendix E.3.  
 
An overview of the critical buckling loads and critical buckling lengths is given in table 4.6. 
 
Table 4.6: Critical buckling loads and critical buckling lengths for determining imperfections for GMNIA 
2 

Case Fcr;c;l in kN Lcr;c;l in mm Fcr;c;r in kN Lcr;c;r in mm Fcr;b in kN Lcr;b in mm

1 362,60 11732 362,60 11732 35,23 37640

2 431,65 10753 431,65 10753 49,37 31796

3 555,06 9483 555,06 9483 71,22 26473

4 831,46 7748 831,46 7748 113,30 20989

5 506,44 9928 217,05 15165 35,15 37683

6 604,58 9086 281,43 13318 6,24 89436

7 781,33 7993 396,07 11226  not loaded in compr.

8 1185,35 6489 660,22 8695  not loaded in compr.

9 1604,82 16784 1604,82 16784 890,17 22539

10 1962,38 15178 1962,38 15178 1314,84 18543

11 2246,31 14187 2246,31 14187 1711,30 16254

12 1644,90 16578 1564,66 16998 890,17 22536

13 2021,18 14956 1939,46 15268 1292,04 18706

14 2359,70 13841 2284,49 14067 1681,99 16395  
 
As an example the corresponding critical buckling mode for case 4 is given in figure 4.17. 
 

 
Figure 4.17: Buckling mode for case 4 
 
For case 4 this results in the following amplitudes: 
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The minimum imperfections at the top of the columns (figure 4.5 and 4.6) should be: 
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The minimum imperfection for the beam (figure 4.7) should be: 
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where L1 of Eq. (4.23) is determined by measuring L2 in Ansys. 
 
An overview of the minimum imperfection Dc;l, Dc;r and Db;2 for all cases is given in table 4.7. 
 
Table 4.7: Minimum imperfections for unique sway and bow imperfections 

Case Dc;l in mm Dc;r in mm Db;2 in mm

1 35,0 35,0 0,7

2 32,4 30,4 2,4

3 28,1 24,5 3,0

4 19,8 16,7 3,9

5 29,7 41,3 0,7

6 26,4 34,3 0,7

7 21,2 26,6 x

8 11,7 17,6 x

9 39,9 39,9 16,2

10 37,8 27,4 39,2

11 36,3 13,0 46,3

12 39,7 40,2 16,2

13 37,5 27,5 39,0

14 35,7 13,0 46,4  
 
Table 4.8 gives the scale factors for scaling the first buckling mode. The scale factors are determined 
using Eq. (4.11) and the greatest scale factor should be used as scale factor for GMNIA 2.  
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Table 4.8: Scale factors for unique sway and bow imperfections 

Case n for Dc;l n for Dc;r n for Db;2

1 35,0 35,0 24,1

2 32,7 30,7 31,2

3 29,2 25,5 27,8

4 22,6 19,2 17,5

5 29,7 41,3 20,4

6 26,7 34,7 10,9

7 22,1 27,7 x

8 13,4 20,2 x

9 39,9 39,9 57,9

10 40,3 29,3 55,2

11 100,6 36,0 46,3

12 39,7 40,2 57,8

13 40,0 29,3 55,3

14 97,8 35,6 46,4  

4.6 GMNIA results 

The results of the ultimate bearing capacities for the considered cases are shown in table 4.9. GMNIA 
1 gives the ultimate bearing capacities using bow and sway imperfections. GMNIA 2 gives the ultimate 
bearing capacities using the shape of the first buckling mode as imperfection.  
 
Table 4.9: Ultimate bearing capacity in kN 

Case Qult. GMNIA 1 Qult. GMNIA 2

1 225,32 222,13

2 213,22 210,97

3 202,42 201,97

4 191,35 190,93

5 103,06 101,82

6 111,82 110,93

7 121,96 121,46

8 135,33 135,26

9 282,55 280,79

10 255,26 253,80

11 228,18 225,60

12 267,34 265,73

13 246,95 245,54

14 225,21 222,78
 

 
Graph 4.1 to 4.4 gives the load-displacements diagrams for each case and GMNIA. In these graphs 
the loadsteps are plotted with the corresponding displacements. The displacements are measured 
horizontally in the connection between left column and beam.  
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Load-displacements for case 1 to 4
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Graph 4.1: Load-displacements for case 1 to 4 

Load-displacements for case 5 to 8
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Graph 4.2: Load-displacements for case 5 to 8 

Load-displacements for case 9 to 11
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Graph 4.3: Load-displacements for case 9 to 11 
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Load-displacements for case 12 to 14
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Graph 4.4: Load-displacements for case 12 to 14 

4.6 Discussion and conclusions 

For GMNIA 1 different assumptions have been made for determining initial bow and sway 
imperfections, because Eurocode 3 does not describe this in detail. For the non-orthogonal cases 
which are investigated, different sway distances occur at the top of the columns. Due to these different 
sway imperfections the beam will stress-free increase or decrease in length. Given the different 
assumptions in GMNIA 1 and the beam elongation or shortening for the non-orthogonal cases, GMNIA 
1 is not recommended for obtaining ultimate bearing capacities. Besides that, GMNIA 2 results for all 
cases in a lower ultimate bearing capacity, so GMNIA 1 can be considered as the most unfavorable 
analysis for verifying the stability checks of Eurocode 3. Therefore, in the remainder of this report, 
stability checks and cross-resistance checks will be performed where the ultimate bearing capacity is 
based on GMNIA 2.  
 
In table 4.10 critical buckling loads (expressed as Q-load) determined using LBA in Ansys as 
described in Appendix E.3, ultimate bearing capacities using GMNIA 2 and ratios between these both 
loads are given.  
 
Table 4.10: Ratios between critical buckling loads and ultimate bearing capacities.  

Case Qcr. in kN Qult. in kN Qult. / Qcr.

1 725,20 222,13 0,31

2 863,30 210,97 0,24

3 1110,12 201,97 0,18

4 1662,92 190,93 0,11

5 723,49 101,82 0,14

6 886,01 110,93 0,13

7 1177,40 121,46 0,10

8 1845,57 135,26 0,07

9 3209,64 280,79 0,09

10 3924,76 253,80 0,06

11 4492,62 225,60 0,05

12 3209,56 265,73 0,08

13 3960,64 245,54 0,06

14 4644,19 222,78 0,05
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Table 4.10 shows that an increase in slope will result in greater ratio between critical buckling load and 
ultimate bearing capacity. The critical buckling load will be higher by increasing the slope and the 
ultimate buckling load will be lower by increasing the slope due to greater bending moments in the 
structure. For case 5 to 8 and 12 to 14 the addition of lateral loads results also in a greater bending 
moment in the connection between left column and beam. Therefore the ultimate bearing capacity is 
lower for these cases in comparison with the cases in which no lateral loads are applied. For case 5 to 
8 the decrease in ultimate bearing capacity is as such that the ratios between critical buckling loads 
and ultimate bearing capacities increase significantly.  
 
By comparing an orthogonal frame loaded by a uniformly distributed load (case 1) with an orthogonal 
frame loaded by concentrated loads at the top of the columns, as given in table 4.11, a little difference 
in critical buckling load has been found due to a small compression force in the beam for case 1. A 
great difference has been found in ultimate bearing capacities which are determined using scaling the 
first buckling mode as a unique sway and bow imperfection. In contrast to case 1, only bending 
moments will occur due to second order effects in orthogonal frames loaded by concentrated loads at 
the top of the columns. The bending moments in case 1 are much greater due to the uniformly 
distributed load. Therefore plastic hinges arise earlier and gives a lower ultimate bearing capacity.  
 
Table 4.11: Orthogonal frames with different loads 

Case 1 Geometry of case 1 loaded by 

concentrated loads at the top of the columns

Fcr;c = 362,60 kN Fcr;c = 362,84 kN

Fult. = 111,07 kN Fult. = 289,20 kN
 

 
In figure 4.18 the load displacements of the both GMNIA are given as well as the critical buckling load 
(set on 363 kN).  
 

 

Figure 4.18: Load-displacements diagram for the considered frames in table 4.4 
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5. Stability checks according to Eurocode 3 

5.1 Overview of checks 

The ultimate bearing capacities determined using GMNIA 2 in chapter 4, serve as applied load for 
performing stability checks using the diagram given in figure 5.1. This diagram distinguishes stability 
checks for sway and non-sway frames. Repeated from Eq. (4.1), frames can be defined as non-sway 
if: 
 

10
F

F

Ed

cr
cr ≥=α           (5.1) 

 
Cases which do not fulfill Eq. (5.1) will be classified as sway frames.  
 

 
Figure 5.1: Stability checks for non-sway and sway frames  
 

5.2 Stability checks for non-sway frames 

5.2.1 Check 1: First order analysis and non-sway buckling lengths  

For this check internal forces will be determined using first order elastic theory without sway 
imperfections or bow imperfections. The stability of the frames will be checked using section 6.3 of 
Eurocode 3, which describes the methods for individual stability checks of members using buckling 
lengths. The checks should be executed using non-sway buckling lengths. 

5.2.2. Check 2: Second order analysis 

Non-sway frames which will be checked using second order elastic analysis require no stability check 
using section 6.3 of Eurocode 3. For this second order elastic analysis, initial bow imperfections are 
required for second order elastic analysis.  
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5.3 Stability checks for sway frames 

5.3.1 Check 3: First order analysis and sway buckling lengths  

Check 3 using first order elastic analysis and sway buckling lengths is called the Sway Mode Buckling 
Length Method (SMBLM). First order elastic analyses should be executed without sway and bow 
imperfections. The stability of the frames will be checked using section 6.3 of Eurocode 3. The 
influences of bow imperfections are included in this analysis and the critical buckling length of the 

frame should be taken which takes the second order F-∆ effects into account. 

5.3.2 Check 4: First order analysis with amplified sway moments and non-sway 

buckling lengths   

In the Amplified Sway Moment Method (ASMM), a first order elastic analysis with amplification of 
horizontal loads and equivalent loads due to initial sway imperfections should be executed. In this first 
order analysis the horizontal loads and equivalent loads due to initial sway imperfections are amplified 
by the amplification factor: 
 

cr

1
1

1
C

α
−

=           (5.2) 

 
The equivalent horizontal loads due to initial sway imperfections can be determined by multiplication of 
the angle of rotation (given in Eq. (4.4)) by the design axial force in the element. This replacement is 
shown in figure 5.2.  

 
Figure 5.2: Replacement of initial sway imperfection by equivalent horizontal forces 
 
Eurocode 3 describes that the ASMM can only be applied for cases in which acr > 3, since the method 
is too inaccurate for ratios below 3.  
 
After obtaining the internal forces, the members are checked using section 6.3 of Eurocode 3 where 
the buckling lengths may be based on buckling lengths equal to the system lengths of the members, 
because the second order F-D sway effects are included in the amplification factor.  

5.3.2 Check 5: Second order analysis and non-sway buckling lengths  

For this check internal forces will be determined using second order elastic theory in which initial sway 
imperfections are taken into account. Bow imperfections will be taken into account in the stability check 
given in Eurocode 3. Since the second order elastic analysis will be executed with sway imperfections, 
stability check may be based on non-sway buckling lengths. For this check frames with different 
column lengths results in stress-free beam elongation or shortening due to different sway distances at 
the top of the columns.  
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5.4 Stability checks according to section 6.3 of Eurocode 3 

For check 1 and 3 to 5, stability checks according to section 6.3 of Eurocode 3 should be executed, to 
verify the buckling stability of the members. For uniform members loaded in combined bending and 
compression the members should satisfy: 
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Where: 

NEd, My,Ed and Mz,Ed are the is the design values of the compression force and the 
maximum moments about the y-y and z-z axis along the member 
respectively 

NRk is the characteristic value of resistance to compression and can be 
obtained by: fy ÿ Ai 

My,Rk and Mz,Rk are the characteristic values of resistance to bending moments 
about y-y axis and z-z-axis respectively and can be obtained by: fy ÿ 
Wy

 
 and fy ÿ Wz   

∆My,Ed, ∆Mz,Ed are the moments due to the shift of the centroidal axis for class 4 
sections 

cy and cz are the reduction factors due to flexural buckling 
cLT is the reduction factor due to lateral torsional buckling 

gM1 is the partial factor for resistance of members to instability 

kyy, kyz, kzy, kzz are the interaction factors  
 
Only in-plane stability and class 1 sections have been considered for the investigated frames. 
Moments about the z-z axis, moments due to shift of the centroidal axis and torsional deformations can 
not occur. Therefore the reduction factor due to torsional buckling would be 1,0 and Eq. (5.3) and (5.4) 
can be reduced to: 
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The reduction factors due to flexural buckling for the appropriate non-dimensional slenderness λ  

should be determined from the relevant buckling curve according to: 
 

22

1

λ−Φ+Φ
=χ          (5.7) 

 
Where 

( )( )22,015,0 λ+−λ⋅α+⋅=Φ        (5.8) 
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=λ          (5.9) 

 
The imperfection factor a depends on the appropriate buckling curve. The selection of a buckling curve 
depends on the cross-section, the method of manufacture, the steel grade and the buckling axis of the 
section and can be determined using table 6.2 of Eurocode 3. The corresponding imperfection factors 
are given in table 6.1 of Eurocode 3 and shown in table 5.1. 
 
Table 5.1: Imperfection factors for buckling curves 

Buckling curve a0 a b c d

Imperfection factor a 0,13 0,21 0,34 0,49 0,76  
 
To determine the interaction factors kyy and kzy, Eurocode gives two methods in Annex A (Method 1) 
and Annex B (Method 2). According to the Dutch National Annex, method 2 must be used to determine 
these interaction values. Interaction factor kyy and kzy for class 1 section can be determined using:  
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yyzy k6,0k ⋅=           (5.11) 

 
Equivalent uniform moment factor Cmy of Eq (5.10) can be determined using table B.3 of Eurocode 3 
and is also given in table 5.2 below. 
 
Table 5.2: Equivalent uniform moment factors Cm 

Moment diagram range Cmy and Cmz and CmLT

uniform loading concentrated load

                 -1 < y < 1                       0,6 + 0,4y > 4

0 < as < 1 -1 < y < 1 0,2 + 0,8as > 0,4 0,2 + 0,8as > 0,4

0 < y < 1 0,1 - 0,8as > 0,4 -0,8as > 0,4

-1 < as < 0

-1 < y < 0 0,1(1-y) - 0,8as > 0,4 0,2(-y) - 0,8as > 0,4

0 < ah < 1 -1 < y < 1 0,95 + 0,05ah 0,90 + 0,10ah

0 < y < 1 0,95 + 0,05ah 0,90 + 0,10ah

-1 < ah < 0

-1 < y < 0 0,95 + 0,05ah (1+2y) 0,90 + 0,10ah (1+2y)

For members with sway buckling mode the equivalent uniform moment factor should be taken Cmy = 0,9 or 

Cmz = 0,9 respectively
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5.5 Cross section resistance check according to Eurocode 3 

According to section 6.2.9.1, class 1 and class 2 cross-sections should satisfy: 
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Where MN,Rd is the design plastic moment resistance reduced due to axial force NEd 
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If shear force VEd exceeds 50% of Vpl,Rd the design resistance of the cross-section to combinations of 
moment and axial force should be calculated using a reduced yield strength for the shear area. The 
reduction of the yield strength should be determined using: 
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Figure 5.3: Shear area in the cross-section 
 
If the shear force VEd does not exceeds 50% of Vpl,Rd, no reduction of the resistance defined for 
combined bending and axial force need to be made.  

5.6 Classification of the considered trapezoidal frames 

For determining which type of checks (ie checks related to sway or non-sway frames) should be 
performed on the considered frames in table 4.1, first order elastic analyses without sway or bow 
imperfections and using the calculated loads of GMNIA 2, have been executed to determine the design 
axial forces in each frame. Using the design axial forces and the critical buckling loads of the frames, 
each frame can be classified as sway or non-sway using Eq. (5.1). Table 5.3 and 5.4 give the axial 
forces, critical buckling loads and classification of each case for column and beam respectively.   
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Table 5.3: Axial forces and critical buckling loads in the column and classification of the case 

Case NEd;c;l Fcr;c;l acr classification

1 111,07 362,60 3,26 sway

2 105,49 431,65 4,09 sway

3 100,99 555,06 5,50 sway

4 95,47 831,46 8,71 sway

5 71,27 506,44 7,11 sway

6 75,69 604,58 7,99 sway

7 80,60 781,33 9,69 sway

8 86,87 1185,35 13,64 non-sway

9 140,39 1604,82 11,43 non-sway

10 126,90 1962,38 15,46 non-sway

11 112,80 2246,31 19,91 non-sway

12 136,19 1644,90 12,08 non-sway

13 125,30 2021,18 16,13 non-sway

14 113,19 2359,70 20,85 non-sway  
 
Table 5.4: Axial forces and critical buckling loads in the beam and classification of the case 

Case NEd;b Fcr;b acr classification

1 10,79 35,23 3,26 sway

2 12,07 49,37 4,09 sway

3 12,96 71,22 5,50 sway

4 13,01 113,30 8,71 sway

5 4,95 35,15 7,11 sway

6 0,78 6,24 7,99 sway

7   not loaded in compression

8   not loaded in compression

9 77,87 890,17 11,43 non-sway

10 85,03 1314,84 15,46 non-sway

11 85,93 1711,30 19,91 non-sway

12 73,70 890,17 12,08 non-sway

13 80,10 1292,04 16,13 non-sway

14 80,68 1681,99 20,85 non-sway  
 
The critical buckling loads and the axial forces in column and beam as given in table 5.3 and 5.4, are 
all determined using first order analysis without imperfections. Hence, the ratio acr is for both the beam 
and the columns equal in each case.  
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5.7 Overview results 

Table 5.5 gives the results of the stability checks and the cross-section resistance checks for column 
and beam for the non-sway considered frames. Table 5.6 gives the results of the stability checks and 
the cross-section resistance checks for column and beam for the sway considered frames.  
Stability checks which exceed the value 1 do not meet the stability requirements of Eurocode as given 
in Eq. (5.5) and (5.6). If cross-section resistance checks exceed the value 1, they do not meet the 
cross sectional requirements of Eurocode 3 as given in Eq. (5.12).  
For all cases the maximum bearing capacity is applied on the frame so the structure should exceed at 
least one requirement (stability or cross-section resistance) given by Eurocode 3 to show that the rules 
in Eurocode 3 are on the safe side.  
 
For check 4 and check 5, stability checks should be performed using non-sway buckling lengths 
because the second order F-D sway effects are included using amplified sway moments. For 
determining equivalent uniform moment factor Cmy, Eurocode 3 has not described for these checks 
whether Cmy belongs to the definition sway or non-sway buckling modes. Therefore Cmy is determined 
twice, once using a non-sway buckling mode and once using a sway buckling mode (Cmy = 0,9). 
 
Appendix F gives more detailed information about the checks of table 5.5 and 5.6.  
 
Table 5.5: Overview verification non-sway checks 

Check 1 Check 2

Case check unity check unity check

column beam column beam 

8 stability 0,71   -   -   -

cross-section 0,97 0,96 0,98 0,98

9 stability 0,70 0,82   -   -

cross-section 1,07 1,07 1,09 1,09

10 stability 0,76 0,78   -   -

cross-section 1,17 1,17 1,21 1,21

11 stability 0,76 0,82   -   -

cross-section 1,19 1,19 1,23 1,23

12 stability 0,72 0,79   -   -

cross-section 1,11 1,11 1,13 1,13

13 stability 0,77 0,77   -   -

cross-section 1,19 1,19 1,23 1,23

14 stability 0,77 0,82   -   -

cross-section 1,20 1,20 1,23 1,23  
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Table 5.6: Overview verification sway frame checks 

Check 3 Check 4 Check 5

Case check unity check unity check unity check

column beam column beam column beam 

1 stability 1,25 1,59 0,87 (Cmy=0,9) 1,04 (Cmy=0,9) 0,86 (Cmy=0,9) 1,03 (Cmy=0,9)

0,63 (Cmy=n.s.) 1,06 (Cmy=n.s.) 0,62 (Cmy=n.s.) 1,05 (Cmy=n.s.)

cross-section 0,74 1,12 0,79 1,12 0,77 1,13

2 stability 1,20 1,40 0,90 (Cmy=0,9) 0,98 (Cmy=0,9) 0,93 (Cmy=0,9) 0,97 (Cmy=0,9)

0,65 (Cmy=n.s.) 0,99 (Cmy=n.s.) 0,65 (Cmy=n.s.) 0,98 (Cmy=n.s.)

cross-section 0,79 1,04 0,82 1,04 0,85 1,06

3 stability 1,17 1,23 0,95 (Cmy=0,9) 0,93 (Cmy=0,9) 0,98 (Cmy=0,9) 0,94 (Cmy=0,9)

0,67 (Cmy=n.s.) 0,94 (Cmy=n.s.) 0,66 (Cmy=n.s.) 0,95 (Cmy=n.s.)

cross-section 0,85 0,99 0,87 0,99 0,91 0,99

4 stability 1,09 1,09 0,96 (Cmy=0,9) 0,92 (Cmy=0,9) 0,99 (Cmy=0,9) 0,93 (Cmy=0,9)

0,68 (Cmy=n.s.) 0,92 (Cmy=n.s.) 0,69 (Cmy=n.s.) 0,93 (Cmy=n.s.)

cross-section 0,89 0,97 0,90 0,98 0,92 1,02

5 stability 1,26 1,19 1,18 (Cmy=0,9) 1,08 (Cmy=0,9) 1,16 (Cmy=0,9) 1,04 (Cmy=0,9)

0,82 (Cmy=n.s.) 0,76 (Cmy=n.s.) 0,80 (Cmy=n.s.) 0,73 (Cmy=n.s.)

cross-section 1,03 1,03 1,17 1,18 1,15 1,15

6 stability 1,23 1,15 1,16 (Cmy=0,9)   - 1,15 (Cmy=0,9)   -

0,80 (Cmy=n.s.) 0,79 (Cmy=n.s.)

cross-section 1,03 1,04 1,14 1,04 1,13 1,04

7 stability 1,18   - 1,11 (Cmy=0,9)   - 1,10 (Cmy=0,9)   -

0,77 (Cmy=n.s.) 0,77 (Cmy=n.s.)

cross-section 1,01 1,01 1,08 1,01 1,07 1,01

Cmy=0,9 for sway buckling mode, Cmy=n.s. for non-sway buckling mode (calculated Cmy)  
 

5.8 Conclusions 

In this chapter different frames have been checked according to the requirements of Eurocode 3 for 
stability and cross-section resistance. Two checks especially for non-sway frames and three checks 
especially for sway frames.  
 
Non-sway frames are not sensitive for sway displacements and in both checks initial sway imperfection 
will not be modeled. From the verification results in table 5.5 for the non-sway cases, only case 8 gives 
unity checks below 1. This means that all members are stable and will not exceed the maximum cross-
section resistance. This is an unsafe case, however it is not critical since the cross-section resistance 
check are close to 1. For all other non-sway cases the members will exceed the cross-section 
resistance which leads to safe results. 
 
The Sway Mode Buckling Length Method (check 3) leads for all sway cases to safe but conservative 
stability checks. It is useful to note that by increasing the slope the critical buckling loads of the 
columns increase for all sway cases and the critical buckling load of the beam increases for case 1 to 
4. Due to these increases in critical buckling load the unity checks for stability come closer to 1. 
 
The Amplified Sway Moment Method (check 4) gives unsafe results for case 3 and 4. However also for 
these cases the cross-resistance checks are close to 1. Case 3 and 4 are unsafe because the lateral 
loads due to sway imperfections and the amplification of these lateral loads have less influence on the 
design forces in the structure. For the cases 5 to 7 besides lateral loads for sway imperfection, lateral 
loads due to wind will also amplified by factor C (given in Eq. (5.2)). This results in greater design 
forces in the structure and therefore a significantly higher unity check for the cross-section resistance. 
   
The results of check 5 differ not significantly from the results of check 4. Both checks are based on the 
same analysis methodology: sway imperfection will be included in the design forces and stability 
checks are based on non-sway buckling lengths.  
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For the stability checks in check 4 and 5, it is recommended to use an equivalent uniform moment 
factor Cmy of 0,9. This factor gives in general more safe and accurate results especially for the 
columns. 
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6. Conclusions and recommendations  

6.1  Conclusions 

6.1.1 Critical buckling loads 

- Using the differential equation of equilibrium, the exchange between the left-hand column and the 
right-hand column cannot be described accurately using two separate column approaches.  

 

- Using Betti’s theorem and kinematic models critical buckling loads can be determined accurately. 
The more the buckling mode can be simulated by adding degrees of freedom, the more accurate 
the critical buckling load can be determined.  

 

- The approaches which are developed for taking the compression force in the beam into account 
give accurate results especially for non-orthogonal trapezoidal frames.  

6.1.2 Ultimate bearing capacity and stability checks 

 

- For GMNIA using sway and bow imperfections, different assumptions should be made to 
determine these imperfections because Eurocode 3 does not describe this in detail. 

 

- GMNIA using scaling the first buckling mode result for all cases in the lowest ultimate bearing 
capacity and these analyses are recommended to determine ultimate bearing capacities.  

 

- Most non-sway frames exceed the cross-section resistance and therefore the rules in Eurocode 3 
are on the safe side for these types of frames. 
 

- The Sway Mode Buckling Length Method results in safe but conservative stability checks. 
 

- Sway frame checks using non-sway buckling lengths leads to unsafe results when the slope of the 
beam increases. However the unity checks are close to 1.  
 

- A factor of 0,9 for Cmy should be used for all sway frame cases, since this factor gives in general 
more safe and accurate results especially for the columns. 

6.2  Recommendations  

6.2.1 Critical buckling loads 

- For frame 1, critical buckling loads have been determined using the differential equation of 
equilibrium where each column has been analyzed separately. The lowest critical buckling gives 
an approximation of the overall critical buckling load of the columns. In the discussion, it is 
stressed that in some cases the approximation of the overall critical buckling load is inaccurate. 
This is due to the interaction between the left side of the frame and the right side of the frame. 
This interaction can not be accurately taken into account using the separate column approaches. 
Therefore more research is recommended for taking the interaction between the left side and the 
right side of the frame into account. 

 

- Approaches have been developed in chapter 3.4, in which the decrease in critical buckling load as 
a result of compression forces in the beam can be approximated. These approaches are based on 
the table of Rieckmann for symmetrical non-orthogonal frames and were tested for determining its 
accuracy. Only non-orthogonal frames hinged connected at the base and rigid connections 
between the members are tested. It is recommended to test more frames with different 
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connections in order to get more insight if the approach gives reliable results for different 
connections. Also extension in flexural rigidity ratios (cases where the flexural rigidity of the beam 
is greater than the flexural rigidity of the columns) is recommended to get more insight in the 
accuracy of the approach.  

6.2.2 Stability checks 

- The frames which are investigated are all loaded by a uniformly distributed load. Therefore in 
many cases the cross-sectional resistance check of Eurocode 3 is decisive due to great bending 
moments in the structure. It is recommended to analyze frames which are only loaded by 
concentrated loads at the top of the columns. These kinds of loads give less or no (dependent on 
the analysis check) bending moments in the structure. Therefore the stability check becomes 
decisive and gives more insight in the accuracy of the different stability checks.  
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Appendix A – Derivation of the stability criterion for columns with 
rotational springs 
 
Consider the column with rotational springs at both ends as given in figure A.1.  

 
Figure A.1 Column with rotational spring constants at both ends 
 
The four boundary conditions can be formulated as:   
 

BC.1  0 (0)w c =         (A.1) 

BC.2  0 (0)'' w- (0)'w cc0 =⋅ζ   where:  
c

0;r
0

EI

k
=ζ    (A.2)  

BC.3  0 (L)'' w (L)'w ccL =+⋅ζ   where:   
c

L;r
i;L

EI

k
=ζ    (A.3)  

BC.4  0)L('w (L)'''w c
2

cc =⋅α+  where:  
c

c2
c

EI

F
=α     (A.4) 

 
Where: 
wc’(0) and wc’’(0) are the first and second derivative of displacement wc(0) respectively. 
wc’(0), wc’’(0)  and wc’’’(0)  are the first, second and third derivate of displacement wc(L)  respectively. 
 
The differential equation of equilibrium is: 
 

0
dx

wd

dx

wd
2

c

c
2

2
c4

c

c
4

=⋅α+          (A.5) 

 
The general solution of this differential equation is: 
 

c
c

c
ccccccccc D

L

x
C)xcos(B)xsin(A)x(w +⋅+⋅α⋅+⋅α⋅=      (A.6) 

 
The first, second and third derivative of the general solution are respectively: 
 

c

c
cccccccccc

L

C
)xsin(B)xcos(A)x('w +α⋅⋅α⋅−α⋅⋅α⋅=      (A.7) 

2
cccc

2
cccccc )xcos(B)xsin(A)x(''w α⋅⋅α⋅−α⋅⋅α⋅−=      (A.8) 

3
cccc

3
cccccc )xsin(B)xcos(A)x('''w α⋅⋅α⋅+α⋅⋅α⋅−=      (A.9) 
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Substituting the general solution into the boundary conditions gives: 
 

BC.1  0DB)0(w ccc =+=        (A.10) 

 

BC.2  =⋅ζ  (0)'' w- (0)'w cc0 ( ) 0B
L

C
A

2
cc

c

c
cc0 =α⋅−−










+α⋅⋅ζ    (A.11) 

 

BC.3  =⋅ζ  (L)'' w- (L)'w ccL  

   

( ) 0)Lcos(B)Lsin(A

L

C
)Lsin(B)Lcos(A

2
cccc

2
cccc

c

c
ccccccccL

=α⋅⋅α⋅−α⋅⋅α⋅−

+









+α⋅⋅α⋅−α⋅⋅α⋅⋅ζ

   (A.12) 

 

BC.4  =⋅α+ )L('w (L)'''w c
2

cc   

   

( )
0

L

C
)Lsin(B)Lcos(A

)Lsin(B)Lcos(A

c

c
cccccccc

2
c

3
cccc

3
cccc

=









+α⋅⋅α⋅−α⋅⋅α⋅⋅α

+α⋅⋅α⋅−α⋅⋅α⋅−

  (A.13) 

 
Eq. (A.10) - (A.13) expressed in matrix form:        
           (A.14) 

0

D

C

B

A

0
L

00

0
L

)Lcos()Lsin()Lsin()Lcos(

0
L

1010

c

c

c

c

c

2
c

c

L2
ccccccL

2
ccccccL

c

02
cc0

=





















⋅



























α

ζ
α⋅⋅α−α⋅⋅α⋅ζ−α⋅⋅α−α⋅⋅α⋅ζ

ζ
αα⋅ζ

 

 

To find a non-trivial solution the determinant of matrix (A.14)) is: 
 

0
L

)Lsin(

L

)Lcos(

L

)Lcos(

L

)Lsin(

c

L0cc
4

c

c

Lcc
5

c

c

0cc
5

c

c

cc
6

c

=
ζ⋅ζ⋅⋅α⋅α

+
ζ⋅⋅α⋅α

+
ζ⋅⋅α⋅α

+
⋅α⋅α−

    (A.15) 

Dividing Eq. (A.15) by 
c

cc
6

c

L

)Lcos( ⋅α⋅α
gives:       

 

0
)Ltan(

)Ltan(
2

c

L0cc

c

L

c

0
cc =

α

ζ⋅ζ⋅⋅α
+

α

ζ
+

α

ζ
+⋅α−       (A.16) 

 
Eq. (A.16) is the stability criterion of the column, where ac can be solved, which results in the following 
critical buckling load formula: 
 

c
2

cc;cr EIF ⋅α=           (A.17) 
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Appendix B - Derivation of the rotational spring stiffness of 
symmetrical pitched-roof frames 

 
The antisymmetrical buckling mode of a symmetric pitched-roof frame gives the following features of 
the beam: 
 

- The displacements at the ends of the beam are the same 

- There is no bending moment in the apex 

- The maximum bending moment occurs in the eaves 
 

 
 
Figure B.1: Antisymmetrical buckling (ASB) mode 
 
These features can be written as the following boundary conditions: 
 

BC.1  0 (0)wb =         (B.1) 

 

BC.2  0 (L)wb =         (B.2) 

 

BC.3  bbb MEI (0)''w =⋅        (B.3)  

 

BC.4  0 (L)''wb =         (B.4)  

 

 
Figure B.2: a) Beam b) Moment distribution in the beam 
 
The differential equation of equilibrium is: 
 

0
dx

wd

dx

wd
2

b

b
2

2
b4

b

b
4

=⋅α+          (B.5) 

 
The general solution of this differential equation is: 
 

b
b

b
bbbbbbbbb D

L

x
C)xcos(B)xsin(A)x(w +⋅+⋅α⋅+⋅α⋅=      (B.6) 

 
The first and second derivative of the general solution are respectively: 
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b

b
bbbbbbbbbb

L

C
)xsin(B)xcos(A)x('w +α⋅⋅α⋅−α⋅⋅α⋅=      (B.7) 

2
bbbb

2
bbbbbb )xcos(B)xsin(A)x(''w α⋅⋅α⋅−α⋅⋅α⋅−=      (B.8) 

 
Substituting the general solution into the boundary conditions gives: 
 

BC.1  0DB)0(w bbb =+=        (B.9) 

 

BC.2  0DC)Lcos(B)Lsin(A)L(w bbbbbbbbb =++⋅α⋅+⋅α⋅=    (B.10) 

 

BC.3  MEIBEI)0(''w bb
2

bbb =⋅⋅α−=⋅       (B.11) 

 

BC.4  0)Lcos(B)Lsin(A)L(''w
2

bbb
2

bbbbb =α⋅⋅α⋅−α⋅⋅α⋅−=       (B.12) 

 
Eq. (B.11) / BC.3 leads to: 
 

b
2

b

b
EI

M
B

⋅α
−=           (B.13) 

 
Eq. (B.12) / BC.4 leads to: 
 

0)Lcos(
EI

M
)Lsin(A)L(''w

2
bbb

b
2

b

2
bbbbb =α⋅⋅α⋅

⋅α
+α⋅⋅α⋅−=     (B.14) 

 

b
2

bbb

bb
b

EI)Lsin(

)Lcos(M
A

⋅α⋅⋅α

⋅α⋅
=         (B.15) 

 
Eq. (B.9) / BC.1 leads to: 
 

0D
EI

M
)0(w b

b
2

b

b =+
⋅α

−=         (B.16) 

 

b
2

b

b
EI

M
D

⋅α
=           (B.17) 

 

Eq. (B.10) / BC.2 leads to: 
 

0
EI

M
C)Lcos(

EI

M
)Lsin(

EI)Lsin(

)Lcos(M
)L(w

b
2

b

bbb

b
2

b

bb

b
2

bbb

bb
b =

⋅α
++⋅α⋅

⋅α
−⋅α⋅

⋅α⋅⋅α

⋅α⋅
=  (B.18) 

 

b
2

b

b
EI

M
C

⋅α
−=           (B.19) 

 
The functions Ab to Db substituted in Eq. (B.6) gives: 
 

b
2

bb

b

b
2

b

bb

b
2

b

bb

b
2

bbb

bb
bb

EI

M

L

x

EI

M

)xcos(
EI

M
)xsin(

EI)Lsin(

)Lcos(M
)x(w

⋅α
+⋅

⋅α

−⋅α⋅
⋅α

−⋅α⋅
⋅α⋅⋅α

⋅α⋅
=

   (B.20) 
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The deflection function given in Eq. (B.20) can be written in an angle of rotation by differentiating the 
function once. To obtain the rotational spring stiffness the general formula,  
 

)0('w

MM
k

b
L;r

−
=

ϕ
=          (B.21)  

 
should be solved and results in: 
 















⋅⋅α
−

⋅α⋅⋅α

⋅α⋅
−

=
ϕ

=

bb
2

bbbbb

bbb
L;r

LEI

M

EI)Lsin(

)Lcos(M

MM
k      (B.22) 

 
The parameters d and g developed by Rieckmann should be integrated in the rotational spring stiffness 
to account for the effects on the stiffness due to the compression force in the beams. Parameter d, as 
given in Eq. (2.9) can be integrated in EIb and Lb which give the following equations: 
 

c

bc
b

L

LEI
EI

⋅δ

⋅
=           (B.23)  

 

c

cb
b

EI

LEI
L

⋅⋅δ
=           (B.24) 

 
Parameter g as given in Eq. (2.10) can be written as: 
 

cc

bb

cc

bb

cb

bc

L

L

LN

LN

LEI

LEI

⋅α

⋅α
=

⋅

⋅
⋅

⋅

⋅
=γ   where  

b

b
b

EI

N
=α  and     (B.25) 

c

c
c

EI

N
=α  (Derived from Eq. (A.4))   

and can be written as: 
 

b

cc
b

L

L⋅α⋅γ
=α , and               (B.26) 

          

ccbb LL ⋅α⋅γ=⋅α          (B.27) 

 
Eq. (B.23), (B.24), (B.26) and (B.27) substituted in Eq. (B.22) gives: 
 

( ) 













⋅⋅α⋅γ

⋅
−

⋅α⋅γ⋅⋅α⋅γ

δ⋅⋅α⋅γ⋅
−

=
ϕ

=

b
2

cc

b

cccc

ccb
L;r

EIL

LM

EI)Lsin(

)Lcos(M

MM
k     (B.28) 

 
Eq. (B.28) is the rotational spring stiffness for symmetrical pitched-roof frames and can be substituted 
in Eq. (A.3) to obtain the critical buckling load of the column.  
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Appendix C – Critical buckling loads according to Silvestre and 
Camotim 
 
The critical buckling loads are yielded by: 
 

D/1
D

b;E0.b

b

D

c;E0.c

c
cr

N

N

N

N
−





























⋅ρ
+















⋅ρ
=α         (C.1) 

 
Where: 
acr is the multiplier of the compressive force to obtain the critical buckling loads of the columns 

and the beams  
  

K1

K6.12.1
D

+

⋅+
=   where: 

c

c0;r

EI

Lk
K

⋅
=  

 
The factors rc;0 and rb;0 are the parameters of the buckling mode type. rc;0 for antisymmetrical (ASB) 
and symmetrical buckling (SB) can be obtained by: 
 

( )
( )34K1210

33K
ASB;0;c

+δ⋅⋅++δ⋅

++δ⋅
=ρ          (C.2) 

 

( ) ( )
( ) ( )2

H
22

H
2

H

HH
SB;0;c

R24.2KR7R1124.2

R2.48.41KR1128.4

⋅δ⋅+δ⋅⋅+⋅δ⋅++⋅δ⋅+

⋅δ⋅+δ⋅+⋅++⋅δ⋅+
=ρ     (C.3) 

 
Where: 
 

cb

bc

LEI

LEI

⋅

⋅
=δ           (C.4) 

 

c

b
H

L

)sin(L
R

θ⋅
=           (C.5) 

            

0.bρ  for antisymmetrical and symmetrical buckling can be obtained by: 

 

( )
( )44

424

0

0
ASB.0.b

+δ⋅ρ+

+δ⋅⋅ρ+
=ρ         (C.6) 

 

( )
( )24412

RR2.44R4.812

0

2
H

2
H0H

SB.0.b
+δ⋅⋅ρ++δ⋅

⋅δ+⋅δ⋅+δ⋅⋅ρ+⋅δ⋅+δ⋅
=ρ     (C.7) 
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Appendix D – Calculation of a kinematic model with four degrees of 
freedom 

 

 
Figure D.1: Coupling of columns with pendulum columns results in a kinematical model with two 
degrees of freedom for each column.  
 

 
Figure D.2: Pendulum columns of the frame 
 
From the equilibrium follows: 
 

( ) c121 L65HwFwF ⋅⋅=⋅−⋅   � 
c

21
1

L

)ww(F2.1
H

−⋅⋅
=    (D.1) 

 

c2c11 L)65(HL)35(HwF ⋅⋅+⋅⋅=⋅  � 
c

21
2

L

)w2w(F2.1
H

⋅+−⋅⋅
=   (D.2) 

 

c343 L)21(HwFwF ⋅⋅=⋅−⋅   � 
c

43
3

L

)ww(F2
H

−⋅⋅
=    (D.3) 

 

c4c33 L)21(HLHwF ⋅⋅+⋅=⋅   � 
c

43
4

L

)w2w(F2
H

⋅+−⋅⋅
=    (D.4) 

 
The displacements can be written as: 
 

c

3
c4

c

3
c3

c

3
c2

c

3
c1

1
EI

LH4162.0

EI

LH7446.0

EI

LH4593.0

EI

LH7446.0
w

⋅⋅
+

⋅⋅
+

⋅⋅
+

⋅⋅
=   (D.5) 

 

c

3
c4

c

3
c3

c

3
c2

c

3
c1

2
EI

LH2535.0

EI

LH4593.0

EI

LH3591.0

EI

LH4593.0
w

⋅⋅
+

⋅⋅
+

⋅⋅
+

⋅⋅
=   (D.6) 
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c

3
c4

c

3
c3

c

3
c2

c

3
c1

3
EI

LH4162.0

EI

LH7446.0

EI

LH4593.0

EI

LH7446.0
w

⋅⋅
+

⋅⋅
+

⋅⋅
+

⋅⋅
=   (D.7) 

 

c

3
c4

c

3
c3

c

3
c2

c

3
c1

4
EI

LH2504.0

EI

LH4162.0

EI

LH2535.0

EI

LH4162.0
w

⋅⋅
+

⋅⋅
+

⋅⋅
+

⋅⋅
=   (D.8) 

 
Eq. (D.1) to (D.4) substituted in Eq. (D.5) to (D.8) gives: 
 

c

2
c43

c

3
c43

c

2
c21

c

2
c21

1

EI

L)w2w(F8324.0

EI
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L)ww(F8935.0
w

⋅⋅+−⋅⋅
+
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+
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+
⋅−⋅⋅

=

    (D.9) 
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c

3
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c

2
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c

2
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+
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+
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c

2
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c

3
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c

2
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c

2
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4
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Eq. (D.9) can be written as: 
 

0w
EI
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w
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Eq. (D.10) can be written as: 
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Eq. (D.11) can be written as: 
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Eq. (D.12) can be written as: 
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Eq. (D.13) to (D.16) expressed in matrix form: 
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To find a non-trivial solution the determinant of matrix (D.17) is: 
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−

  (D.18) 

 
Eq. (D.18) with an EIc of 6.97095ÿ10

11
 and a column length of 3000mm results in a critical buckling 

load of 62938N and is an overestimation of 1.6% in comparison with the exact critical buckling load 
given by Ansys.  
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Appendix E - Finite element modeling  

E.1 Element type 

The choice for a certain element type depends on a number of properties which are required for the 
analyses. In the case of geometric non-linear behaviour, the elements should be able to describe 
(large) rotations and (large) strains accurately to obtain reliable results.  
An element type which is widely used for modeling beams and columns in Ansys are beam189 

elements. These elements are suitable for analyzing slender to moderately slender beam structures 
and are based on Timoshenko beam theory which takes first order shear deformations into account.  
Beam189 consists of a quadratic three-node beam element in 3-D with six degrees of freedom at each 

node. Translations in the x, y and z direction and rotations about the x, y and z directions can occur at 
each node. Due to these features, the elements are well-suited for linear, large rotation and large 
strain nonlinear applications.  
 
Klemann [14] incorporated in his thesis four benchmarks to investigate whether beam189 elements are 

accurate enough for applying first and second order analyses. These four benchmarks are prepared 
for: 

- Plastic bending moments on a single beam (first order plastic analysis) 

- Bending moments combined with axial forces on a single beam (first order plastic analysis) 

- Shear forces in a cantilever beam (first order elastic and first order plastic analysis) 

- Ultimate load of a single column (second order elastic-plastic analysis). 
 
Klemann concluded that the full plastic design resistance for bending can be reached for all degrees of 
mesh density over the cross-section (see figure E.1). However the cross section will not be fully 
plastic. The greater the degree of mesh density, the more plastically the cross-section will be, but it will 
not influence the bending moment capacity of the element.   
 

 
Figure E.1: a) low level of mesh density b) high level of mesh density 
 
In the case where a beam is loaded in combined bending and compression the relation between these 
forces can be described accurately enough and is independent of the mesh density. Klemann has 
showed this by plotting the interaction between the bending moment and axial force according to 
Eurocode 3 and Ansys. 
The benchmark which gives information about the degree of accuracy to describe the influence of 
shear forces, consists of a very short cantilever beam with a high concentrated load at the end of the 
beam. This model therefore gives large deformations due to shear forces in comparison with the 
deformations due to bending moments. In the benchmark the deformation due to bending moments is 
0,02% of the deformations due to shear forces. For both plastic and elastic analyses beam189 

elements give deformations that are between 4.2% and 2.8% underestimated compared to the 
analytical determined deformation. When the mesh density increases, the underestimation decreases.  
Beam189 elements are based on Timoshenko beam theory which is a first order shear deformation 

theory where the shear stress is assumed constant over the cross section. Cross sections remain 
plane and undistorted after deformation. Therefore the elements cannot become plastic as a result of 
shear stresses and has in this way no influence on plastic analyses. Shear force deformations are thus 
the same for elastic and plastic analyses. 
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The last benchmark which is investigated by Klemann is a single column hinged at both ends and 
loaded under compression. For this column a second order elastic-plastic analysis with an initial bow 
imperfection according to the Dutch code is executed to determine the ultimate load of the column. Six 
analyses are executed with different mesh densities. The results show that the ultimate loads found by 
Ansys are quite similar to the theoretical ultimate loads determined using Eurocode 3. The degree of 
mesh densities gives a difference between the results of 0.01% and the effects of mesh density are 
therefore negligible.  

E.2 Cross sections 

Wide flanges steel profiles are widely used for orthogonal and non-orthogonal steel frames. In this 
report profiles are composed derived from traditional hot rolled HE100A, HE180A and HE320A 
profiles. Using beam189 elements a so-called I-shape section can be modeled where only the width, 

height, thickness of the flanges and the thickness of the web can be defined. In the geometry of a 
traditional hot rolled HEA section, radii are present in the connections between flange and web. These 
radii can not be modeled using beam189 elements and give therefore a decrease in the characteristics 

especially in the plastic design shear resistance. Table E.1 to E.3 give the dimensions and other 
characteristics of the composed cross sections in Ansys. For determining NRd, Vel;z;Rd, Vpl;z;Rd, Mel;y;Rd 
and Mpl;y;Rd a yield stress of 235 N/mm

2
 is assumed. 

 
Table E.1: Characteristics of the composed HE100A cross-section 

Cross section HE100A HE100A Decrease cross-section

in Ansys traditional in % in Ansys

A in mm
2

2000 2124 5,8

Iy in mm
4

3319,5 
.
 10

3
3492 

.
 10

3 4,9

Wel;y in mm
3

69156 72760 5

Wpl;y in mm
3

78400 83010 5,6

NRd in kN 470 498,2 5,7

Vel;z;Rd in kN 54,3 54,5 0,4

Vpl;z;Rd in kN 65,1 103 36,8

Mel;y;Rd in kNm 16,3 17,1 5

Mpl;y;Rd in kNm 18,4 19,5 5,6

 

Table E.2: Characteristics of the composed HE180A cross-section 

Cross section HE180A HE180A Decrease cross-section

in Ansys traditional in % in Ansys

A in mm
2

4332 4525 4,3
Iy in mm

4

2408 
.
 10

4
2510 

.
 10

4 4,1

Wel;y in mm
3

281,7 
.
 10

3
293,6 

.
 10

3 4,1

Wpl;y in mm
3

310821 324900 4,3

NRd in kN 1018 1063,4 4,3

Vel;z;Rd in kN 123,7 124 0,2

Vpl;z;Rd in kN 139,2 196 29

Mel;y;Rd in kNm 66,2 69 4,1

Mpl;y;Rd in kNm 73 76,4 4,3
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Table E.3: Characteristics of the composed HE320A cross-section 

Cross section HE320A HE320A Decrease cross-section

in Ansys traditional in % in Ansys

A in mm
2

11811 12440 5,1

Iy in mm
4

21812 
.
 10

4
22929 

.
 10

4 4,9

Wel;y in mm
3

1407,2 
.
 10

3
1479 

.
 10

3 4,9

Wpl;y in mm
3

1544,6 
.
 10

3
1628 

.
 10

3 5,1

NRd in kN 2775,6 2923,4 5,1

Vel;z;Rd in kN 340,7 342 0,4

Vpl;z;Rd in kN 378,5 558 32,2

Mel;y;Rd in kNm 330,7 347,6 4,9

Mpl;y;Rd in kNm 363 382,6 5,1

 

E.3 Linear Buckling Analysis 

E.3.1 Analysis method of FEM software 

In order to determine the critical buckling load of a frame using linear buckling analysis (LBA) in finite 
element programs, as first step a first order elastic analysis will be executed where the system {F} = 
[K] ÿ {w} will be solved. [K] is the linear stiffness matrix and using this first order elastic analysis the 
axial forces in the structure can be determined.  
Using this first order analysis, second order effects can be included in the analysis where the system 
{F} = ([K] + [Ks]) ÿ {w} will be solved. [Ks] is the stress-stiffness matrix en describes the second order 
effects.  
 
In LBA using finite element modeling, multiplication of load F by eigenvalue a will caused that the axial 
forces in the structure also will be multiplied by a and so the stress-stiffness matrix will be multiplied by 
acr [15, 16]. A structure loaded by acrÿ{F} where second order effects are included gives then the 
following equation: 
 

( ) }w{]K[]K[}F{ crcr ⋅⋅α+=⋅α σ         (E.1) 

 
where acrÿ[Ks] is the stress-stiffness matrix related to the load acrÿ{F}. If acrÿ{F} equals the critical 
buckling load, Eq (4.1) can be written as: 
 

( ) }w{]K[]K[}F{ cr.cr ⋅⋅α+= σ         (E.2) 

 
In case of buckling, a structure in deformed state has the same load capacity as in undeformed state. 
Therefore Eq. (E.2) can be written as: 
 

( ) }ww{]K[]K[}F{ cr.cr ∆+⋅⋅α+= σ         (E.3) 

 
where Dw is the difference between node displacement in the deformed shape and the undeformed 
shape. Eq. (E.2) minus Eq. (E.3) results in: 
 

( ) }w{]K[]K[}0{ cr ∆⋅⋅α+= σ         (E.4) 

 
The trivial solution of Eq. (E.4) is for cases where {Dw} = 0. However in bucking displacements occur, 
so a non-trivial solution should be determined. This non-trivial solution can be obtained by determining 
the determinant of ([K] +acrÿ[Ks]) = 0. In this way ([K] +acrÿ [Ks]) is singular and the eigenvalue acr can 
be determined and gives the critical buckling load: {Fcr.} = acrÿ{F}.  
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E.3.2 Number of elements and mesh density 

The number of elements and mesh densities influence the deformation behaviour of the structure and 
the analysis time of the software. The more elements will be used and the higher the level of mesh 
density the more solution time will be used by the finite element software. In order to guarantee reliable 
results a study has been executed that investigated to what extent the number of elements and mesh 
density influence the results in linear buckling analysis. The orthogonal frame given in figure E.2 has 
been investigated and consists of HE180A Ansys profiles (see table E.2).  
 

 
Figure E.2: Investigated orthogonal frame  
 
The connection between column and beam is rigid and relatively easy to model in Ansys since the 
beam189 structure will be theoretically modeled as a continuous beam. Therefore no specific 

constraints should be used to model a rigid connection. The connection between column and beam as 
given by Ansys is given in figure E.3. 
 

 
Figure E.3: Rigid connection between column and beam given by Ansys 
 
For this frame, critical buckling loads for different mesh densities and number of elements have been 
determined. There has been varied in mesh densities between 0 and 5. The degree of mesh density 
over the cross-section is given in figure E.4. Table E.4 gives the results of this study. 
 

   
 
Figure E.4: Mesh densities between 0 and 5 
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Table E.4: Critical buckling loads in kN for the frame given in figure E.2 by varying in number of 
elements and mesh densities. 

Number of elements

Column 1 2 3 4 5 10

Beam 2 4 6 8 10 20

0 365,42 363,05 362,91 362,89 362,88 362,88

1 365,40 363,03 362,89 362,87 362,88 362,86

Mesh 2 365,38 363,01 362,87 362,85 362,86 362,84

density 3 365,37 363,00 362,86 362,84 362,83 362,83

4 365,37 362,99 362,86 362,83 362,83 362,82

5 365,36 362,99 362,85 362,83 362,82 362,82
 

 
According to Eq. (2.8) the critical buckling load of the frame using the differential equation of 
equilibrium is:   
 

( ) ( )
kN39,368

5000328,2

102,2408101,2

L328,2

EI
F

2

452

2
c

c
2

c;cr =
⋅

⋅⋅⋅⋅π
=

⋅

⋅π
=      (E.5) 

 
All results in table E.4 give a lower critical buckling load as obtained using the differential equation of 
equilibrium. The difference can be explained by the fact that shear deformation are taken into account 
when a LBA is performed using beam189 elements. Using the differential equation of equilibrium, shear 

deformations have not been taken into account. Beam3 elements in Ansys are elements which are 

comparable with beam189 for LBA, however shear deformations will not be taken into account. When 

executing a LBA of the frame given in figure E.2 modeled with 10 column elements and 20 beam 
elements consisting of type beam3, a critical buckling load of 367,89kN has been found as shown in 

figure E.5. This critical buckling load is close to the critical buckling load which is determined using the 
differential equation of equilibrium.  
 
The results in table E.4 show that the influence of mesh density is for all number of elements equal. A 
mesh density of 5 gives a decrease in critical buckling load of 60N in comparison with a mesh density 
of 0. By varying in number of elements, it can be seen that 4 column elements or more and 8 beam 
elements or more, gives almost the same results. Therefore 4 column elements and 8 beam elements 
are sufficient to find reliable results for LBA. 
  

 

 

 
  Figure E.5: Buckling mode and critical buckling loads. Left using beam3 elements, right using beam189 

elements. 
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E.4 Geometric and Material Non-Linear Analysis 

E.4.1 Number of elements and mesh density 

A parameter study is executed to investigate to what extent the number of elements and mesh density 
influence the results for GMNIA. The frame of figure E.2, which is used for LBA, is analyzed using 
GMNIA. In the analyses are sway imperfections and bow imperfections considered. The angle of 
rotation for the sway imperfections are determined using Eq. (E.6) and gives: 
 

.rad10873,3
2

1
15,0

5

2

200

1 3
mh0

−⋅=







+⋅⋅⋅=α⋅α⋅ϕ=ϕ      (E.6) 

 
This angle of rotation results in a sway displacement at the top of the columns of: 
 

mm4,195000)10873,3tan( 3
i;c =⋅⋅=∆ −        (E.7) 

 
The initial bow imperfections are: 
 

( ) mm6,101000
02,1018

04,73
2,0

2517623

2354332
34,0

N

M
2,0

Rd;c

Rd;c
i;c =⋅⋅














−

⋅
⋅=⋅−λ⋅α=δ    (E.8) 

 
Figure E.6: Frame of figure E.2 using sway and bow imperfections 
 
For the frame in figure E.6, different analyses are executed with various numbers of elements and 
mesh densities. The results of this parameter study are given in table E.5.  
 
Table E.5: Ultimate bearing capacites in kN for the frame given in figure E.6 by varying in number of 
elements and mesh densities. 

Number of elements

Column 1 2 3 4 5 10

Beam 2 4 6 8 10 20

0 285,65 284,19 284,03 283,67 283,67 283,64

1 285,44 284,06 284,00 283,62 283,61 283,62

Mesh 2 285,45 284,01 283,97 283,62 283,59 283,62

density 3 285,45 284,01 283,95 283,61 283,59 283,61

4 285,44 284,01 283,95 283,61 283,59 283,61

5 285,44 284,00 283,92 283,61 283,59 283,61
 

 
Table E.5 shows that between 4 and 10 column elements and 8 and 20 beam elements the results are 
practically equal. Therefore, 4 column elements and 8 beam elements are enough to find reliable 



 101 

results for GMNIA. In the remainder of this report 10 column elements and 20 beam elements will be 
used with a mesh density of 2 to reduce the risk of inaccuracy in cases where different geometries and 
load combinations are analyzed.     

E.4.2 Other preprocessing parameters 

In the analyses of table E.5, the ultimate bearing capacities are load-controlled determined using the 
Newton-Raphson Iterative method [15]. The total load is divided into 20 loadsteps. The applied load is 
300kN which means that the load of 300kN will be built up in 20 steps to the 300kN. Besides 
loadsteps, the number of substeps can be given in non-linear finite element modeling which give the 
number of steps between the loadsteps. This value is set on 20 for the analyses of table E.5.  
The number of loadsteps and substeps influences accuracy of the results and the solution time of the 
analyses. To find a reliable number of substeps related to 20 loadsteps a study has been conducted 
for which number of substeps the results will converge. The results of this parameter study are given in 
table E.6.  
 
Table E.6: Ultimate bearing capacity in kN by varying in number of substeps 

Number of substeps

8 12 16 20 24 28

Fult 283,61 283,61 283,61 283,62 283,62 283,62
 

 
The number of substeps given in table E.6 does not have a significant influence on the ultimate 
bearing capacity of the frame. In all non-linear analyses 20 substeps will be applied.  
 
To investigate the influence of convergence tolerances, a number of analyses have been executed on 
the frame with different convergence tolerances. The convergence tolerances varying from 0,05 to 
0,0001. The corresponding ultimate bearing capacity is given in table E.7.  
 
Table E.7: Ultimate bearing capacity in kN by varying in convergence tolerance 

Convergence tolerance

0,05 0,025 0,005 0,001 0,0005 0,0001

Fult 284,28 284,01 283,70 283,62 283,62 283,62
  

 
From the results in table E.7 it can be concluded that a convergence tolerance of 0.001 can be used 
since a smaller tolerance results in exactly the same capacity. 
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E.5  Input files Ansys 

E.5.1  LBA of frame 1 

FINISH 
/CLEAR 
 
*ASK,COLUMNLEFT,Heigth of the left column,5000 
*ASK,COLUMNRIGHT,Heigth of the right colomn,3000 
*ASK,APEX,Heigth of the apex,7500 
*ASK,APEXLEFT,Distance of the apex considered from the left column,8000 
*ASK,SPAN,Total span,20000 
*ASK,E,Number of elements,10 
*ASK,MESH,Mesh refinement,2 
 
!Geometry 
/PREP7 
N,1,0,0,0 
N,2*E+1,0,COLUMNLEFT,0 
FILL          
N,6*E+1,APEXLEFT,APEX,0          
FILL 
N,12*E+1,SPAN,COLUMNRIGHT,0         
FILL 
N,14*E+1,SPAN,0,0 
FILL 
N,14*E+2,SPAN*1.2,0,0 
 
ET,1,BEAM189 
KEYOPT,1,4,1 
KEYOPT,1,8,3 
KEYOPT,1,9,3 
 
!COLUMN LEFT 
SECTYPE,1,BEAM,I,Isection1,MESH 
SECDATA,180,180,171,9.5,9.5,6 
SECPLOT,1 
 
!BEAM LEFT 
SECTYPE,2,BEAM,I,Isection1,MESH 
SECDATA,180,180,171,9.5,9.5,6 
SECPLOT,2 
 
!BEAM RIGHT 
SECTYPE,3,BEAM,I,Isection1,MESH 
SECDATA,180,180,171,9.5,9.5,6 
SECPLOT,3 
 
!COLUMN RIGHT 
SECTYPE,4,BEAM,I,Isection1,MESH 
SECDATA,180,180,171,9.5,9.5,6 
SECPLOT,4 
 
SECNUM,1 
*DO,C,1,2*E,2 
EN,(C+1)/2,C,C+2,C+1,14*E+2 
*ENDDO 
 
SECNUM,2 
*DO,C,1,4*E,2 
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EN,(C+1)/2+E,C+2*E,C+2+2*E,C+1+2*E,14*E+2 
*ENDDO  
 
SECNUM,3 
*DO,C,1,6*E,2 
EN,(C+1)/2+3*E,C+6*E,C+2+6*E,C+1+6*E,14*E+2 
*ENDDO 
 
SECNUM,4 
*DO,C,1,2*E,2 
EN,7*E+1-(C+1)/2,14*E+2-C,14*E-C,14*E+1-C,14*E+2 
*ENDDO 
 
!Material properties 
MP,EX,1,2.1E5 
MP,PRXY,1,0.3 
 
!Boundary conditions 
D,1,UX,,,,,UY 
D,14*E+1,UX,,,,,UY 
D,ALL,UZ 
D,ALL,ROTX 
D,ALL,ROTY 
 
!Load configuration  
!Uniformly distributed load   !Concentrated load at the top of the column 
F,2*E+1,FY,-1,,6*E+1   !F,2*E+1,FY,-1 
F,6*E+1,FY,-1,,12*E+1   !F,12*E+1,FY,-1 
  
FINISH 
 
!First-order analysis 
/SOLU 
ANTYPE,STATIC 
PSTRES,ON 
SOLVE 
FINISH 
 
/POST1 
ETABLE,NFORCE1,SMISC,1 
ETABLE,MOMENTY1,SMISC,2 
ETABLE,shearZ1,SMISC,5 
ETABLE,NFORCE2,SMISC,14 
ETABLE,MOMENTY2,SMISC,15 
ETABLE,shearz2,SMISC,18 
FINISH 
 
!Eigenvalue Buckling Analysis 
/SOLU 
ANTYPE,BUCKLE 
BUCOPT,LANB,2 
MXPAND,2,,,YES 
SOLVE 
FINISH 
 
/ESHAPE,1 
/POST1  
SET,FIRST           
             
PLDISP,1           
      
FINISH   
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E.5.2  LBA of frame 2 

FINISH 
/CLEAR 
 
*ASK,COLUMNLEFT,Heigth of the left column,5000 
*ASK,COLUMNRIGHT,Heigth of the right colomn,2113  
*ASK,SPAN,span,5000 
*ASK,E,Number of elements,10 
*ASK,MESH,Mesh refinement,2 
 
!Geometry 
/PREP7 
N,1,0,0,0 
N,2*E+1,0,COLUMNLEFT,0 
FILL          
N,6*E+1,SPAN,COLUMNRIGHT,0         
FILL 
N,8*E+1,SPAN,0,0           
FILL 
N,8*E+2,SPAN*1.2,0,0 
 
ET,1,BEAM189 
KEYOPT,1,4,1 
KEYOPT,1,8,3 
KEYOPT,1,9,3 
 
!COLUMN LEFT 
SECTYPE,1,BEAM,I,Isection1,MESH 
SECDATA,180,180,171,9.5,9.5,6   
SECPLOT,1 
 
!COLUMN RIGHT 
SECTYPE,2,BEAM,I,Isection1,MESH 
SECDATA,180,180,171,9.5,9.5,6      
SECPLOT,2 
 
!BEAM 
SECTYPE,3,BEAM,I,Isection1,MESH 
SECDATA,180,180,171,9.5,9.5,6 
SECPLOT,3 
 
SECNUM,1 
*DO,C,1,2*E,2 
EN,(C+1)/2,C,C+2,C+1,8*E+2 
*ENDDO 
 
SECNUM,2 
*DO,C,1,2*E,2 
EN,4*E+1-(C+1)/2,8*E+2-C,8*E-C,8*E+1-C,8*E+2 
*ENDDO 
 
SECNUM,3 
*DO,C,1,4*E,2 
EN,(C+1)/2+E,C+2*E,C+2+2*E,C+1+2*E,8*E+2 
*ENDDO  
 
!Material properties 
MP,EX,1,2.1E5 
MP,PRXY,1,0.3 
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!Boundary conditions 
D,1,UX,,,,,UY 
D,8*E+1,UX,,,,,UY 
D,ALL,UZ 
D,ALL,ROTX 
D,ALL,ROTY 
 
!Load configuration  
!Uniformly distributed load   !Concentrated load at the top of the column 
F,2*E+1,FY,-1,,6*E+1   !F,2*E+1,FY,-1 
FINISH     !F,6*E+1,FY,-1 
 
!First-order analysis 
/SOLU 
ANTYPE,STATIC 
PSTRES,ON 
SOLVE 
FINISH 
 
/POST1 
ETABLE,NFORCE1,SMISC,1 
ETABLE,MOMENTY1,SMISC,2 
ETABLE,shearZ1,SMISC,5 
ETABLE,NFORCE2,SMISC,14 
ETABLE,MOMENTY2,SMISC,15 
ETABLE,shearz2,SMISC,18 
FINISH 
 
!Eigenvalue Buckling Analysis 
/SOLU 
ANTYPE,BUCKLE 
BUCOPT,LANB,2 
MXPAND,2,,,YES 
SOLVE 
FINISH 
 
/ESHAPE,1 
/POST1  
SET,FIRST           
         
PLDISP,1           
      
FINISH 
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E.5.3 Ultimate bearing capacity using sway and bow imperfections 

FINISH 
/CLEAR 
 
!Basic input 
*ASK,COLUMNLEFT,Heigth of the left column,5 
*ASK,COLUMNRIGHT,Heigth of the right colomn,2.113  
*ASK,SPAN,Total span,5 
*ASK,LBEAM,Length of the beam,5.774 
*ASK,MESH,Mesh refinement,2 
*ASK,SWAYLEFT,Initial left sway imperfection,-0.0194 
*ASK,SWAYRIGHT,Initial right sway imperfection,-0.0092 
*ASK,BOWLEFT,Initial left column bow imperfection,-0.0101 
*ASK,BOWRIGHT,Initial right column bow imperfection,-0.0024 
*ASK,BOWBEAM,Initial beam bow imperfection,0.0101 
 
/PREP7 
/ESHAPE,1 
ET,1,BEAM189 
SECTYPE,1,BEAM,I,Isection1,MESH 
SECDATA,180,180,171,9.5,9.5,6 
 
!Material properties 
MP,EX,1,2.1E5 
MP,PRXY,1,0.3 
 
K,1,0,0,0 
K,2,SWAYLEFT,COLUMNLEFT,0 
K,3,SPAN+SWAYRIGHT,COLUMNRIGHT,0         
K,4,SPAN,0,0 
 
LARC,1,2,3,-(((COLUMNLEFT/2)*(COLUMNLEFT/2))+(BOWLEFT*BOWLEFT))/(2*BOWLEFT) 
LARC,2,3,1,-(((LBEAM/2)*(LBEAM/2))+(BOWBEAM*BOWBEAM))/(2*BOWBEAM) 
LARC,3,4,2,(((COLUMNRIGHT/2)*(COLUMNRIGHT/2))+(BOWRIGHT*BOWRIGHT))/(2*BOWRIGHT) 
 
LSSCALE,ALL,,,1000,1000,1000,,1,1 
 
LSEL,,,,1 
LATT,,,,,3 
LSEL,,,,2 
LATT,,,,,1 
LSEL,,,,3 
LATT,,,,,1 
 
ALLSEL 
 
LESIZE,1,,,10 
LESIZE,2,,,20 
LESIZE,3,,,10 
 
LMESH,ALL,ALL 
 
!Boundary conditions 
D,1,UX,0 
D,1,UY,0 
D,92,UX,0 
D,92,UY,0 
D,ALL,UZ,0 
D,ALL,ROTX,0 
D,ALL,ROTY,0 
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TB,BKIN,1,1 
TBDATA,1,235,0 
 
FINISH 
 
/SOLU 
ANTYPE,STATIC 
PSTRES,ON 
NLGEOM,ON 
NSUBST,20 
OUTRES,ALL,ALL 
SSTIFF,ON 
NEQIT,50 
 
CNVTOL,F,,0.001,,1 
CNVTOL,U,,0.001,,1 
 
nls=20 
force=-6000 
 
*DO,var,1,nls 
F,2,FY,(force/nls)*var 
F,32,FY,(force/nls)*var 
F,33,FY,(force/nls)*var,,71 
!F,2,FX,(41/10)*(force/nls)*var !(lateral load due to wind) 
!F,32,FX,(41/10)*(force/nls)*var !(lateral load due to wind) 
 
SOLVE 
*ENDDO 
 
FINISH 
 
/POST1 
*DIM,tabout_2a,TABLE,nls,2,1 
*DO,var,1,nls     
SET,var,LAST 
*GET,Displacement_2,NODE,2,U,Y 
*GET,Frequ,ACTIVE,,SET,FREQ 
*VFILL,tabout_2a(var,1),DATA,Displacement_2 
*VFILL,tabout_2a(var,2),DATA,Frequ 
*ENDDO 
*CFOPEN,FRAME2,OUTPUT 
 
*VWRITE, 
('FRAME2') 
*VWRITE, 
('Displ. node 2 [mm]','             ','Time/Freq [Loadsteps]') 
*VWRITE,tabout_2a(1,1),tabout_2a(1,2)  
(E18.10,'    ',E18.10,)  
*CFCLOS 
 
/POST26 
RFORCE,2,1,F,Y 
RFORCE,3,92,F,Y 
ADD,4,2,3 
NSOL,5,2,U,Y 
XVAR,5 
PLVAR,4 
 
/AXLAB,Y,FORCE 
/AXLAB,X,DEFLECTION 
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/REPLOT 
 
FINISH 
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E.5.3 Ultimate bearing capacity using the buckling shape as a unique sway and 

bow imperfections 

FINISH 
/CLEAR 
 
/FILENAME,LBA 
/TITLE,LBA 
 
!Basic input 
*ASK,COLUMNLEFT,Heigth of the left column,5000 
*ASK,COLUMNRIGHT,Heigth of the right colomn,2113   
*ASK,SPAN,Total span,5000 
*ASK,MESH,Mesh refinement,2 
 
/PREP7 
/ESHAPE,1 
ET,1,BEAM189 
SECTYPE,1,BEAM,I,Isection1,MESH 
SECDATA,180,180,171,9.5,9.5,6  
 
!Material properties 
MP,EX,1,2.1E5 
MP,PRXY,1,0.3 
 
K,1,0,0,0 
K,2,0,COLUMNLEFT,0 
K,3,SPAN,COLUMNRIGHT,0          
K,4,SPAN,0,0 
 
L,1,2 
L,2,3 
L,3,4 
 
LSEL,,,,1 
LATT,,,,,3 
LSEL,,,,2 
LATT,,,,,1 
LSEL,,,,3 
LATT,,,,,1 
 
ALLSEL 
 
LESIZE,1,,,10 
LESIZE,2,,,20 
LESIZE,3,,,10 
 
LMESH,ALL,ALL 
 
!Boundary conditions 
D,1,UX,0 
D,1,UY,0 
D,92,UX,0 
D,92,UY,0 
D,ALL,UZ,0 
D,ALL,ROTX,0 
D,ALL,ROTY,0 
 
/SOLU 
ANTYPE,STATIC 
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PSTRES,ON 
 
F,2,FY,-1 
F,32,FY,-1 
F,33,FY,-1,,71 
!F,2,FX,-(41/40)   !(lateral load due to wind) 
!F,32,FX,-(41/40)   !(lateral load due to wind) 
 
SOLVE 
FINISH 
 
/SOLU 
ANTYPE,BUCKLE 
BUCOPT,LANB,1 
MXPAND,1 
 
SOLVE 
FINISH 
 
/FILENAME,FRAME_GMNIA 
/TITLE,FRAME_GMNIA 
 
/PREP7 
/ESHAPE,1 
 
UPGEOM,-22.6,,,LBA 
 
TB,BKIN,1,1 
TBDATA,1,235,0 
 
FINISH 
 
/SOLU 
ANTYPE,STATIC 
NLGEOM,ON 
NSUBST,20 
OUTRES,ALL,ALL 
SSTIFF,ON 
NEQIT,50 
 
CNVTOL,F,,0.001,,1 
CNVTOL,U,,0.001,,1 
 
nls=20 
force=-6000 
 
*DO,var,1,nls 
F,2,FY,(force/nls)*var 
F,32,FY,(force/nls)*var 
F,33,FY,(force/nls)*var,,71 
!F,2,FX,(41/40)*(force/nls)*var  !(lateral load due to wind) 
!F,32,FX,(41/40)*(force/nls)*var  !(lateral load due to wind) 
 
SOLVE 
*ENDDO 
 
FINISH 
 
/POST1 
SET,LAST 
ETABLE,NFORCE1,SMISC,1 
ETABLE,MOMENTY1,SMISC,2 
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ETABLE,shearZ1,SMISC,5 
ETABLE,NFORCE2,SMISC,14 
ETABLE,MOMENTY2,SMISC,15 
ETABLE,shearz2,SMISC,18 
FINISH 
 
/POST1 
*DIM,tabout_2a,TABLE,nls,2,1 
*DO,var,1,nls     
SET,var,LAST 
*GET,Displacement_2,NODE,2,U,X 
*GET,Frequ,ACTIVE,,SET,FREQ 
*VFILL,tabout_2a(var,1),DATA,Displacement_2 
*VFILL,tabout_2a(var,2),DATA,Frequ 
*ENDDO 
*CFOPEN,FRAME2,OUTPUT 
 
*VWRITE, 
('FRAME2') 
*VWRITE, 
('Displ. node 2 [mm]','             ','Time/Freq [Loadsteps]') 
*VWRITE,tabout_2a(1,1),tabout_2a(1,2)  
(E18.10,'    ',E18.10,)  
*CFCLOS 
 
/POST26 
RFORCE,2,1,F,Y 
RFORCE,3,92,F,Y 
ADD,4,2,3 
NSOL,5,2,U,X 
XVAR,5 
PLVAR,4 
 
/AXLAB,Y,FORCE 
/AXLAB,X,DEFLECTION 
/REPLOT 
FINISH 
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E.5.5 Second order analysis including initial bow imperfections 

FINISH 
/CLEAR 
 
!Basic input 
*ASK,COLUMNLEFT,Heigth of the left column,5 
*ASK,COLUMNRIGHT,Heigth of the right colomn,2.113  
*ASK,SPAN,Total span,5 
*ASK,LBEAM,Length of the beam,5.774 
*ASK,MESH,Mesh refinement,2 
*ASK,BOWLEFT,Initial left column bow imperfection,-0.0103 
*ASK,BOWRIGHT,Initial right column bow imperfection,-0.0089 
*ASK,BOWBEAM,Initial beam bow imperfection,0.0101 
*ASK,Q,Ultimate bearing load,190930 
 
/PREP7 
ET,1,BEAM189 
SECTYPE,1,BEAM,I,Isection1,MESH 
SECDATA,180,180,171,9.5,9.5,6 
 
!Material properties 
MP,EX,1,2.1E5 
MP,PRXY,1,0.3 
 
K,1,0,0,0 
K,2,0,COLUMNLEFT,0 
K,3,SPAN,COLUMNRIGHT,0         
  
K,4,SPAN,0,0 
 
LARC,1,2,3,-(((COLUMNLEFT/2)*(COLUMNLEFT/2))+(BOWLEFT*BOWLEFT))/(2*BOWLEFT) 
LARC,2,3,1,-(((LBEAM/2)*(LBEAM/2))+(BOWBEAM*BOWBEAM))/(2*BOWBEAM) 
LARC,3,4,2,(((COLUMNRIGHT/2)*(COLUMNRIGHT/2))+(BOWRIGHT*BOWRIGHT))/(2*BOWRIGHT) 
 
LSSCALE,ALL,,,1000,1000,1000,,1,1 
 
LSEL,,,,1 
LATT,,,,,3 
LSEL,,,,2 
LATT,,,,,1 
LSEL,,,,3 
LATT,,,,,1 
 
ALLSEL 
 
LESIZE,1,,,10 
LESIZE,2,,,20 
LESIZE,3,,,10 
 
LMESH,ALL,ALL 
 
!Boundary conditions 
D,1,UX,0 
D,1,UY,0 
D,92,UX,0 
D,92,UY,0 
D,ALL,UZ,0 
D,ALL,ROTX,0 
D,ALL,ROTY,0 
 



 113 

FINISH 
 
/SOLU 
ANTYPE,STATIC 
NLGEOM,ON 
NSUBST,20 
OUTRES,ALL,ALL 
SSTIFF,ON 
NEQIT,50 
 
CNVTOL,F,,0.001,,1 
CNVTOL,U,,0.001,,1 
 
nls=20 
force=-(Q/41) 
 
*DO,var,1,nls 
F,2,FY,(force/nls)*var 
F,32,FY,(force/nls)*var 
F,33,FY,(force/nls)*var,,71 
!F,2,FX,(41/10)*(force/nls)*var !(lateral load due to wind) 
!F,32,FX,(41/10)*(force/nls)*var !(lateral load due to wind) 
 
SOLVE 
*ENDDO 
 
FINISH 
 
/POST1 
SET,LAST 
ETABLE,NFORCE1,SMISC,1 
ETABLE,MOMENTY1,SMISC,2 
ETABLE,shearZ1,SMISC,5 
ETABLE,NFORCE2,SMISC,14 
ETABLE,MOMENTY2,SMISC,15 
ETABLE,shearz2,SMISC,18 
FINISH 



 

114 

E.5.6 Second order analysis including initial sway imperfections 

FINISH 
/CLEAR 
 
!Basic input 
*ASK,COLUMNLEFT,Heigth of the left column,5 
*ASK,COLUMNRIGHT,Heigth of the right colomn,2.113  
*ASK,SPAN,Total span,5 
*ASK,SWAYLEFT,Initial left sway imperfection,-0.0194 
*ASK,SWAYRIGHT,Initial right sway imperfection,-0.0092 
*ASK,Q,Ultimate bearing load,190930 
 
/PREP7 
ET,1,BEAM189 
SECTYPE,1,BEAM,I,Isection1,2 
SECDATA,180,180,171,9.5,9.5,6 
 
!Material properties 
MP,EX,1,2.1E5 
MP,PRXY,1,0.3 
 
K,1,0,0,0 
K,2,SWAYLEFT,COLUMNLEFT,0 
K,3,SPAN+SWAYRIGHT,COLUMNRIGHT,0         
K,4,SPAN,0,0 
 
L,1,2 
L,2,3 
L,3,4 
 
LSSCALE,ALL,,,1000,1000,1000,,1,1 
 
LSEL,,,,1 
LATT,,,,,3 
LSEL,,,,2 
LATT,,,,,1 
LSEL,,,,3 
LATT,,,,,1 
 
ALLSEL 
 
LESIZE,1,,,10 
LESIZE,2,,,20 
LESIZE,3,,,10 
 
LMESH,ALL,ALL 
 
!Boundary conditions 
D,1,UX,0 
D,1,UY,0 
D,92,UX,0 
D,92,UY,0 
D,ALL,UZ,0 
D,ALL,ROTX,0 
D,ALL,ROTY,0 
 
FINISH 
 
/SOLU 
ANTYPE,STATIC 
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NLGEOM,ON 
NSUBST,20 
OUTRES,ALL,ALL 
SSTIFF,ON 
NEQIT,50 
 
CNVTOL,F,,0.001,,1 
CNVTOL,U,,0.001,,1 
 
nls=20 
force=-(Q/41) 
 
*DO,var,1,nls 
F,2,FY,(force/nls)*var 
F,32,FY,(force/nls)*var 
F,33,FY,(force/nls)*var,,71 
!F,2,FX,(41/10)*(force/nls)*var 
!F,32,FX,(41/10)*(force/nls)*var 
 
SOLVE 
*ENDDO 
 
FINISH 
 
/POST1 
SET,LAST 
ETABLE,NFORCE1,SMISC,1 
ETABLE,MOMENTY1,SMISC,2 
ETABLE,shearZ1,SMISC,5 
ETABLE,NFORCE2,SMISC,14 
ETABLE,MOMENTY2,SMISC,15 
ETABLE,shearz2,SMISC,18 
FINISH 
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Appendix F – Eurocode 3 checks 
 
Check 1: Non-sway frames using first order analysis and stability checks using non-sway 
buckling lengths 
 
Stability check for columns: 

Case 8 9 10 11 12 13 14

NEd in N 86870 140390 126900 112800 136190 125300 113190

My;Ed in Nm 70730 389360 424720 432670 401700 431870 435490

cy 0,831 0,933 0,933 0,933 0,933 0,933 0,933

F 0,757 0,604 0,603 0,604 0,604 0,603 0,604

l 0,612 0,381 0,381 0,381 0,381 0,381 0,381

a 0,34 0,34 0,34 0,34 0,34 0,34 0,34

A in mm
2

4332 11811 11811 11811 11811 11811 11811

Wpl;y in mm
3

310821 1544600 1544600 1544600 1544600 1544600 1544600

fy in N/mm
2

235 235 235 235 235 235 235

Fcr in N 2718890 19082110 19106550 19089280 19082110 19106550 19089280

Cmy 0,6 0,6 0,6 0,6 0,6 0,6 0,6

kyy 1 0,625 0,606 0,605 0,605 0,606 0,605 0,605

kyy 2 0,649 0,626 0,624 0,621 0,625 0,623 0,621

Check 0,71 0,70 0,76 0,76 0,72 0,77 0,77

 
 
Cross-section resistance check for columns: 

Case 8 9 10 11 12 13 14

NEd in N 86870 140390 126900 112800 136190 125300 113190

MEd in Nm 70730 389360 424720 432670 401700 431870 435490

VEd in N 14070 77870 84940 86530 80340 86370 87100

Npl,Rd in N 1018020 2775590 2775590 2775590 2775590 2775590 2775590

Mpl,Rd in Nm 73040 362980 362980 362980 362980 362980 362980

Vpl,Rd in N 139200 378540 378540 378540 378540 378540 378540

reduction fy 0,10  (no) 0,21 (no) 0,22 (no) 0,23 (no) 0,21 (no) 0,23 (no) 0,23 (no)

n 0,0853 0,0506 0,0457 0,0406 0,0491 0,0451 0,0408

a 0,2105 0,2126 0,2126 0,2126 0,2126 0,2126 0,2126

MN,Rd in Nm 74667 385610 387584 389648 386225 387819 389591

Check 0,97 1,07 1,17 1,19 1,11 1,19 1,20
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Stability check for beam: 

Case 8 9 10 11 12 13 14

NEd in N 77870 85030 85930 73700 80100 80680

My;Ed in Nm 389360 424720 432670 401700 431870 435490

cy 0,650 0,637 0,564 0,650 0,637 0,564

F 1,042 1,066 1,200 1,042 1,066 1,200

l 0,917 0,938 1,053 0,917 0,938 1,053

a 0,34 0,34 0,34 0,34 0,34 0,34

A in mm
2

11811,0 11811,0 11811,0 11811,0 11811,0 11811,0

Wpl;y in mm
3

1544600 1544600 1544600 1544600 1544600 1544600

fy in N/mm
2

235 235 235 235 235 235

Fcr in N 3302800 3153410 2502640 3302800 3153410 2502640

Cmy 0,702 0,602 0,614 0,654 0,586 0,611

kyy 1 0,724 0,623 0,642 0,673 0,606 0,638

kyy 2 0,727 0,625 0,641 0,675 0,608 0,636

Check 0,82 0,78 0,82 0,79 0,77 0,82
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Cross-section resistance check for beam: 

Case 8 9 10 11 12 13 14

NEd in N 41730 77870 73960 66350 73700 69400 61390

MEd in Nm 70370 389360 424720 432670 401700 431870 435490

VEd in N 73360 135260 129200 122050 131330 127340 121620

Npl,Rd in N 1018020 2775590 2775590 2775590 2775590 2775590 2775590

Mpl,Rd in Nm 73040 362980 362980 362980 362980 362980 362980

Vpl,Rd in N 139200 378540 378540 378540 378540 378540 378540

reduction fy 0,53 (yes) 0,36 (no) 0,34 (no) 0,32 (no) 0,35 (no) 0,34 (no) 0,32 (no)

r 0,0029

fy;red in N/mm
2

234,31

n 0,0410 0,0281 0,0266 0,0239 0,0266 0,0250 0,0221

a 0,2105 0,2126 0,2126 0,2126 0,2126 0,2126 0,2126

MN,Rd in Nm 78259 394759 395331 396445 395369 395998 397171

Npl,Rd;red in N 1017316

Mpl,Rd;red in Nm 73016

Check 0,96 1,07 1,17 1,19 1,11 1,19 1,20
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Check 2: Cross-section resistance checks for non-sway frames using second order analysis 
including initial sway imperfections. 
 
For columns: 

Case 8 9 10 11 12 13 14

NEd in N 89520 142110 128880 114930 137940 127250 115310

MEd in Nm 71510 396110 437610 444740 410410 444730 446620

VEd in N 11380 76250 84650 86360 79130 86080 86720

Npl,Rd in N 1018020 2775590 2775590 2775590 2775590 2775590 2775590

Mpl,Rd in Nm 73040 362980 362980 362980 362980 362980 362980

Vpl,Rd in N 139200 378540 378540 378540 378540 378540 378540

reduction fy 0,08 (no) 0,20 (no) 0,22 (no) 0,23 (no) 0,21 (no) 0,23 (no) 0,23 (no)

n 0,0879 0,0512 0,0464 0,0414 0,0497 0,0458 0,0415

a 0,2105 0,2126 0,2126 0,2126 0,2126 0,2126 0,2126

MN,Rd in Nm 74455 385359 387295 389336 385969 387533 389280

Check 0,98 1,09 1,21 1,23 1,13 1,23 1,23

 
For beam: 

Case 8 9 10 11 12 13 14

NEd in N 45160 76280 73460 65650 72490 68890 60460

MEd in Nm 71510 396110 437610 444740 410410 444730 446620

VEd in N 74100 137040 131210 124240 133020 129240 123670

Npl,Rd in N 1018020 2775590 2775590 2775590 2775590 2775590 2775590

Mpl,Rd in Nm 73040 362980 362980 362980 362980 362980 362980

Vpl,Rd in N 139200 378540 378540 378540 378540 378540 378540

reduction fy 0,53 (yes) 0,36 (no) 0,35 (no) 0,33 (no) 0,35 (no) 0,34 (no) 0,33 (no)

r 0,0042

fy;red in N/mm
2

234,02

n 0,0444 0,0275 0,0265 0,0237 0,0261 0,0248 0,0218

a 0,2105 0,2126 0,2126 0,2126 0,2126 0,2126 0,2126

MN,Rd in Nm 77971 394992 395404 396547 395546 396073 397307

Npl,Rd;red in N 1017012

Mpl,Rd;red in Nm 73005

Check 0,98 1,09 1,21 1,23 1,13 1,23 1,23
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Check 3: Sway frames using first order analysis and stability checks using sway buckling 
lengths (Sway Mode Buckling Length Method) 
 
Stability check for columns: 

Case 1 2 3 4 5 6 7

NEd in N 111070 105490 100990 95470 71270 75690 80600

My;Ed in Nm 53960 57690 62220 65030 75570 75480 73750

cy 0,285 0,329 0,402 0,531 0,374 0,428 0,511

F 2,155 1,906 1,613 1,266 1,712 1,529 1,312

l 1,676 1,536 1,354 1,107 1,418 1,298 1,141

a 0,34 0,34 0,34 0,34 0,34 0,34 0,34

A in mm
2

4332 4332 4332 4332 4332 4332 4332

Wpl;y in mm
3

310821 310821 310821 310821 310821 310821 310821

fy in N/mm
2

235 235 235 235 235 235 235

Fcr in N 362600 431650 555060 831460 506440 604580 781330

Cmy 0,9 0,9 0,9 0,9 0,9 0,9 0,9

kyy 1 1,408 1,278 1,157 1,044 1,105 1,072 1,031

kyy 2 1,176 1,126 1,078 1,027 1,035 1,025 1,012

Check 1,25 1,20 1,17 1,09 1,26 1,23 1,18

 
 
Cross-section resistance check for columns: 

Case 1 2 3 4 5 6 7

NEd in N 111070 105490 100990 95470 71270 75690 80600

MEd in Nm 53960 57690 62220 65030 75570 75480 73750

VEd in N 10790 11570 12440 13010 15130 15100 14750

Npl,Rd in N 1018020 1018020 1018020 1018020 1018020 1018020 1018020

Mpl,Rd in Nm 73040 73040 73040 73040 73040 73040 73040

Vpl,Rd in N 139200 139200 139200 139200 139200 139200 139200

reduction fy 0,08 (no) 0,08 (no) 0,09 (no) 0,09 (no) 0,11 (no) 0,11 (no) 0,11 (no)

n 0,1091 0,1036 0,0992 0,0938 0,0700 0,0744 0,0792

a 0,2105 0,2105 0,2105 0,2105 0,2105 0,2105 0,2105

MN,Rd in Nm 72726 73174 73535 73977 75918 75564 75170

Check 0,74 0,79 0,85 0,89 1,03 1,03 1,01
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Stability check for beam: 

Case 1 2 3 4 5 6 7

NEd in N 10790 12070 12960 13010 4950 780

My;Ed in Nm 81650 76050 72410 71020 75570 75480

cy 0,033 0,045 0,064 0,100 0,032 0,006

F 15,828 11,548 8,256 5,468 15,862 84,209

l 5,376 4,541 3,781 2,998 5,382 12,773

a 0,34 0,34 0,34 0,34 0,34 0,34

A in mm
2

4332,0 4332,0 4332,0 4332,0 4332,0 4332,0

Wpl;y in mm
3

310821 310821 310821 310821 310821 310821

fy in N/mm
2

235 235 235 235 235 235

Fcr in N 35230 49370 71220 113300 35150 6240

Cmy 0,9 0,9 0,9 0,9 0,9 0,9

kyy 1 2,416 1,927 1,540 1,223 1,598 2,352

kyy 2 1,134 1,089 1,043 0,992 1,008 0,992

Check 1,59 1,40 1,23 1,09 1,19 1,15
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Cross-section resistance check for beam: 

Case 1 2 3 4 5 6 7

NEd in N 10790 11620 12120 15330 4950 8860 24360

MEd in Nm 81650 76050 72410 71020 75570 75480 73750

VEd in N 0 0 0 0 69410 73240 74540

Npl,Rd in N 1018020 1018020 1018020 1018020 1018020 1018020 1018020

Mpl,Rd in Nm 73040 73040 73040 73040 73040 73040 73040

Vpl,Rd in N 139200 139200 139200 139200 139200 139200 139200

reduction fy 0 (no) 0 (no) 0 (no) 0 (no) 0,499 (no) 0,53 (yes) 0,54 (yes)

r 0,003 0,005

fy;red in N/mm
2

234,36 233,82

n 0,0106 0,0114 0,0119 0,0151 0,0049 0,0087 0,0240

a 0,2105 0,2105 0,2105 0,2105 0,2105 0,2105 0,2105

MN,Rd in Nm 80768 80701 80661 80404 81236 80922 79677

Npl,Rd;red in N 1017361 1016805

Mpl,Rd;red in Nm 72843 72675

Check 1,12 1,04 0,99 0,97 1,03 1,04 1,01
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Check 4: Sway frames using first order analysis with amplified sway moments and stability 
checks using non-sway buckling lengths (Amplified Sway Moment Method).  
 
Stability check for columns, Cmy = calculated (0.6): 

Case 1 2 3 4 5 6 7

NEd in N 112310 106520 101840 96160 75260 79230 83510

My;Ed in Nm 57060 60160 63830 65980 85610 83360 79100

cy 0,833 0,833 0,833 0,831 0,833 0,833 0,833

F 0,754 0,754 0,755 0,757 0,754 0,754 0,755

l 0,607 0,607 0,609 0,612 0,607 0,607 0,609

a 0,34 0,34 0,34 0,34 0,34 0,34 0,34

A in mm
2

4332 4332 4332 4332 4332 4332 4332

Wpl;y in mm
3

310821 310821 310821 310821 310821 310821 310821

fy in N/mm
2

235 235 235 235 235 235 235

Fcr in N 2759670 2758910 2745610 2718890 2759670 2758910 2745610

Cmy 0,6 0,6 0,6 0,6 0,6 0,6 0,6

kyy 1 0,632 0,631 0,629 0,628 0,622 0,623 0,624

kyy 2 0,664 0,660 0,658 0,655 0,643 0,645 0,647

Check 0,63 0,65 0,67 0,68 0,82 0,80 0,77

 
 
Stability check for columns, Cmy = 0.9: 

Case 1 2 3 4 5 6 7

NEd in N 112310 106520 101840 96160 75260 79230 83510

My;Ed in Nm 57060 60160 63830 65980 85610 83360 79100

cy 0,833 0,833 0,833 0,831 0,833 0,833 0,833

F 0,754 0,754 0,755 0,757 0,754 0,754 0,755

l 0,607 0,607 0,609 0,612 0,607 0,607 0,609

a 0,34 0,34 0,34 0,34 0,34 0,34 0,34

A in mm
2

4332 4332 4332 4332 4332 4332 4332

Wpl;y in mm
3

310821 310821 310821 310821 310821 310821 310821

fy in N/mm
2

235 235 235 235 235 235 235

Fcr in N 2759670 2758910 2745610 2718890 2759670 2758910 2745610

Cmy 0,9 0,9 0,9 0,9 0,9 0,9 0,9

kyy 1 0,949 0,946 0,944 0,942 0,933 0,934 0,936

kyy 2 0,995 0,990 0,987 0,982 0,964 0,967 0,971

Check 0,87 0,90 0,95 0,96 1,18 1,16 1,11
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Cross-section resistance check for columns: 

Case 1 2 3 4 5 6 7

NEd in N 112300 106520 101840 96160 75260 79230 83510

MEd in Nm 57060 60160 63830 65980 85610 83360 79100

VEd in N 11410 12030 12770 13200 17120 16670 15820

Npl,Rd in N 1018020 1018020 1018020 1018020 1018020 1018020 1018020

Mpl,Rd in Nm 73040 73040 73040 73040 73040 73040 73040

Vpl,Rd in N 139200 139200 139200 139200 139200 139200 139200

reduction fy 0,08 (no) 0,09 (no) 0,09 (no) 0,09 (no) 0,12 (no) 0,12 (no) 0,11 (no)

n 0,1103 0,1046 0,1000 0,0945 0,0739 0,0778 0,0820

a 0,2105 0,2105 0,2105 0,2105 0,2105 0,2105 0,2105

MN,Rd in Nm 72628 73091 73467 73922 75598 75280 74936

Check 0,79 0,82 0,87 0,90 1,17 1,14 1,08

 
 
Stability check for beam, Cmy = calculated: 

Case 1 2 3 4 5 6 7

NEd in N 10790 11810 12520 12470 4950

My;Ed in Nm 83300 77870 73990 72760 86870

cy 0,871 0,870 0,859 0,830 0,871

F 0,696 0,697 0,714 0,758 0,696

l 0,530 0,531 0,555 0,613 0,530

a 0,34 0,34 0,34 0,34 0,34

A in mm
2

4332 4332 4332 4332 4332

Wpl;y in mm
3

310821 310821 310821 310821 310821

fy in N/mm
2

235 235 235 235 235

Fcr in N 3628540 3609440 3308840 2707860 3628540

Cmy 0,915 0,911 0,906 0,904 0,631

kyy 1 0,919 0,915 0,911 0,910 0,632

kyy 2 0,924 0,921 0,916 0,915 0,634

Check 1,06 0,99 0,94 0,92 0,76
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Stability check for beam, Cmy = 0.9: 

Case 1 2 3 4 5 6 7

NEd in N 10790 11810 12520 12470 4950

My;Ed in Nm 83300 77870 73990 72760 86870

cy 0,871 0,870 0,859 0,830 0,871

F 0,696 0,697 0,714 0,758 0,696

l 0,530 0,531 0,555 0,613 0,530

a 0,34 0,34 0,34 0,34 0,34

A in mm
2

4332 4332 4332 4332 4332

Wpl;y in mm
3

310821 310821 310821 310821 310821

fy in N/mm
2

235 235 235 235 235

Fcr in N 3628540 3609440 3308840 2707860 3628540

Cmy 0,9 0,9 0,9 0,9 0,9

kyy 1 0,904 0,904 0,905 0,905 0,902

kyy 2 0,909 0,910 0,910 0,911 0,904

Check 1,04 0,98 0,93 0,92 1,08
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Cross-section resistance check for beam: 

Case 1 2 3 4 5 6 7

NEd in N 10790 10910 11680 12910 4950 8860 24360

MEd in Nm 81650 76290 72900 71610 85610 75480 73750

VEd in N 0 0 0 0 73400 73240 74540

Npl,Rd in N 1018020 1018020 1018020 1018020 1018020 1018020 1018020

Mpl,Rd in Nm 73040 73040 73040 73040 73040 73040 73040

Vpl,Rd in N 139200 139200 139200 139200 139200 139200 139200

reduction fy 0,00 (no) 0,00 (no) 0,00 (no) 0,00 (no) 0,53 (yes) 0,53 (yes) 0,54 (yes)

r 0,003 0,003 0,005

fy;red in N/mm
2

234,30 234,36 233,82

n 0,0106 0,0107 0,0115 0,0127 0,0049 0,0087 0,0240

a 0,2105 0,2105 0,2105 0,2105 0,2105 0,2105 0,2105

MN,Rd in Nm 80768 80758 80696 80598 81236 80922 79677

Npl,Rd;red in N 1017301 1017361 1016805

Mpl,Rd;red in Nm 72825 72843 72675

Check 1,12 1,04 0,99 0,98 1,18 1,04 1,01
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Check 5: Sway frames using second order analysis including initial sway imperfections and 
stability checks using non-sway buckling lengths 
 
Stability check for columns, Cmy = calculated (0.6): 

Case 1 2 3 4 5 6 7

NEd in N 112270 107620 103610 98090 74330 78760 83510

My;Ed in Nm 56260 61810 66220 67530 84020 82300 78470

cy 0,833 0,833 0,833 0,831 0,833 0,833 0,833

F 0,754 0,754 0,755 0,757 0,754 0,754 0,755

l 0,607 0,607 0,609 0,612 0,607 0,607 0,609

a 0,34 0,34 0,34 0,34 0,34 0,34 0,34

A in mm
2

4332 4332 4332 4332 4332 4332 4332

Wpl;y in mm
3

310821 310821 310821 310821 310821 310821 310821

fy in N/mm
2

235 235 235 235 235 235 235

Fcr in N 2759670 2758910 2745610 2718890 2759670 2758910 2745610

Cmy 0,6 0,6 0,6 0,6 0,6 0,6 0,6

kyy 1 0,632 0,631 0,630 0,629 0,621 0,623 0,624

kyy 2 0,664 0,661 0,659 0,656 0,642 0,645 0,647

Check 0,62 0,66 0,69 0,70 0,80 0,79 0,77

 
 
Stability check for columns, Cmy = 0.9: 

Case 1 2 3 4 5 6 7

NEd in N 112270 107620 103610 98090 74330 78760 83510

My;Ed in Nm 56260 61810 66220 67530 84020 82300 78470

cy 0,833 0,833 0,833 0,831 0,833 0,833 0,833

F 0,754 0,754 0,755 0,757 0,754 0,754 0,755

l 0,607 0,607 0,609 0,612 0,607 0,607 0,609

a 0,34 0,34 0,34 0,34 0,34 0,34 0,34

A in mm
2

4332 4332 4332 4332 4332 4332 4332

Wpl;y in mm
3

310821 310821 310821 310821 310821 310821 310821

fy in N/mm
2

235 235 235 235 235 235 235

Fcr in N 2759670 2758910 2745610 2718890 2759670 2758910 2745610

Cmy 0,9 0,9 0,9 0,9 0,9 0,9 0,9

kyy 1 0,949 0,947 0,945 0,943 0,932 0,934 0,936

kyy 2 0,995 0,991 0,988 0,983 0,963 0,967 0,971

Check 0,86 0,93 0,98 0,99 1,16 1,15 1,10
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Cross-section resistance check for columns: 

Case 1 2 3 4 5 6 7

NEd in N 112420 107800 103820 98320 74550 79090 83810

MEd in Nm 56260 61810 66220 67530 84020 82300 78470

VEd in N 9690 10090 10900 11280 14690 14260 76980

Npl,Rd in N 1018020 1018020 1018020 1018020 1018020 1018020 1018020

Mpl,Rd in Nm 73040 73040 73040 73040 73040 73040 73040

Vpl,Rd in N 139200 139200 139200 139200 139200 139200 139200

reduction fy 0,07 (no) 0,07 (no) 0,08 (no) 0,08 (no) 0,11 (no) 0,10 (no) 0,10 (no)

n 0,1104 0,1059 0,1020 0,0966 0,0732 0,0777 0,0823

a 0,2105 0,2105 0,2105 0,2105 0,2105 0,2105 0,2105

MN,Rd in Nm 72618 72989 73308 73749 75655 75291 74912

Check 0,77 0,85 0,91 0,92 1,15 1,13 1,07

 
 
Stability check for beam, Cmy = calculated: 

Case 1 2 3 4 5 6 7

NEd in N 9640 8360 9910 7800 4010

My;Ed in Nm 82810 77530 75080 74200 84020

cy 0,871 0,870 0,859 0,830 0,871

F 0,696 0,697 0,714 0,758 0,696

l 0,530 0,531 0,555 0,613 0,530

a 0,34 0,34 0,34 0,34 0,34

A in mm
2

4332 4332 4332 4332 4332

Wpl;y in mm
3

310821 310821 310821 310821 310821

fy in N/mm
2

235 235 235 235 235

Fcr in N 3628540 3609440 3308840 2707860 3628540

Cmy 0,916 0,911 0,906 0,904 0,631

kyy 1 0,919 0,914 0,910 0,907 0,632

kyy 2 0,924 0,918 0,914 0,911 0,633

Check 1,05 0,98 0,95 0,93 0,73
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Stability check for beam, Cmy = 0.9: 

Case 1 2 3 4 5 6 7

NEd in N 9640 8360 9910 7800 4010

My;Ed in Nm 82810 77530 75080 74200 84020

cy 0,87 0,870 0,859 0,830 0,87

F 0,70 0,697 0,714 0,758 0,70

l 0,53 0,531 0,555 0,613 0,53

a 0,34 0,34 0,34 0,34 0,34

A in mm
2

4332 4332 4332 4332 4332

Wpl;y in mm
3

310821 310821 310821 310821 310821

fy in N/mm
2

235 235 235 235 235

Fcr in N 3628540 3609440 3308840 2707860 3628540

Cmy 0,9 0,9 0,9 0,9 0,9

kyy 1 0,903 0,903 0,904 0,903 0,901

kyy 2 0,908 0,907 0,908 0,907 0,903

Check 1,03 0,97 0,94 0,93 1,04
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Cross-section resistance check for beam: 

Case 1 2 3 4 5 6 7

NEd in N 10650 11650 12060 13070 4190 8860 24360

MEd in Nm 82810 77530 75080 74200 84020 75480 73750

VEd in N 0 0 0 0 72890 73240 74540

Npl,Rd in N 1018020 1018020 1018020 1018020 1018020 1018020 1018020

Mpl,Rd in Nm 73040 73040 73040 73040 73040 73040 73040

Vpl,Rd in N 139200 139200 139200 139200 139200 139200 139200

reduction fy 0,00 (no) 0,00 (no) 0,00 (no) 0,00 (no) 0,52 (yes) 0,53 (yes) 0,54 (yes)

r 0,002 0,003 0,005

fy;red in N/mm
2

234,47 234,36 233,82

n 0,0105 0,0114 0,0118 0,0128 0,0041 0,0087 0,0240

a 0,2105 0,2105 0,2105 0,2105 0,2105 0,2105 0,2105

MN,Rd in Nm 80779 80699 80666 80585 81297 80922 79677

Npl,Rd;red in N 1017481 1017361 1016805

Mpl,Rd;red in Nm 72880 72843 72675

Check 1,13 1,06 1,03 1,02 1,15 1,04 1,01
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The checks for case 4 (sway frame) and case 8 (non-sway frame) have been described in detail.  
 
Check 1: First order analysis and non-sway buckling lengths applied to case 8 
 
In figure F.1 the axial force distribution, shear force distribution and bending moment distribution is 
given using a first order elastic analyses for case 8.  
 

 
Figure F.1: a) Case 8 b) Axial force distribution in kN c) Shear force distribution in kN d) Bending 
moment distribution in kNm 
 
Stability check for the columns according to section 6.3 of Eurocode 3: 
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Stability check: 
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Cross section resistance check for the columns 

 

5,010,0
139200

14070

V

V

Rdpl,

Ed <==   No reduction of the resistance for bending and axial force 
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0853,0
1018020

86870

N

N
n

Rd,pl

Ed ===  
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Cross section resistance check for the beam 
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The reduced yield strength for the shear area is: 
 

2
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Check 2: Second order analysis applied to case 8 
 
In figure F.2 the axial force distribution, shear force distribution and bending moment distribution is 
given using a second order elastic analyses including bow imperfections for case 8. The bow 
imperfections for the cases are given in table 4.4. 
 

 
Figure F.2: a) Case 8 b) Axial force distribution in kN c) Shear force distribution in kN d) Bending 
moment distribution in kNm 
 
Cross section resistance check for the columns 
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Cross section resistance check for the beam 
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The reduced yield strength for the shear area is: 
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Nm7300523527169802,23439123fWf)1(WM yn,plyv,plRd,pl =⋅+⋅=⋅+⋅ρ−⋅=  

 

3
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Check 3: First order analysis and sway buckling lengths applied to case 4 
 
In figure F.3 the axial force distribution, shear force distribution and bending moment distribution is 
given using a first order elastic analysis for case 4.  
 

 
Figure F.3: a) Case 4 b) Axial force distribution in kN c) Shear force distribution in kN d) Bending 
moment distribution in kNm 
 
Stability check for the columns according to section 6.3 of Eurocode 3: 
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Stability check: 
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Cross section resistance check for the columns 
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Stability check for the beam according to section 6.3 of Eurocode 3: 
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Stability check: 
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Cross section resistance check for the beam 
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0151,0
1018020

15330

N

N
n

Rd,pl

Ed ===  

 

2105,0
4332

)5,918024332(

A

)tb2A(
a f =

⋅⋅−
=

⋅⋅−
=  

 

Nm80404
)2105,05,01(

)0151,01(73040

)a5,01(

)n1(M
M

Rd,pl
Rd,N =

⋅−

−⋅
=

⋅−

−⋅
=   �  requirement: Rd,plRd,N MM ≤  

 

0,197,0
73040

71020

M

M

Rd,pl

Ed ≤==  

 

 
Check 4: First order analysis and with amplified sway moments and non-sway buckling lengths 
applied to case 4 
 
The equivalent lateral loads due to initial sway imperfections are should be amplified with factor: 
 

130,1

71,8

1
1

1

1
1

1
C

cr

=

−

=

α
−

=  

 
This gives equivalent lateral loads of: 
 

N418130,19547010873,3CN 3
Edl;c =⋅⋅⋅=⋅⋅ϕ −  

 

N467130,19547010331,4CN 3
Edl;c =⋅⋅⋅=⋅⋅ϕ −   

 
Figure F.4 gives the axial force distribution, shear force distribution and bending moment distribution 
using a first order elastic analysis with equivalent lateral loads due to initial sway imperfections.  
  

 
Figure F.4: a) Case 4 b) Axial force distribution in kN c) Shear force distribution in kN d) Bending 
moment distribution in kNm 
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Stability check for the columns according to section 6.3 of Eurocode 3: 
 

831,0
612,0757,0757,0

11

2222
=

−+
=

λ−Φ+Φ
=χ  

 

Where:  ( )( ) ( )( ) 757,0612,02,0612,034,015,02,015,0 22 =+−⋅+⋅=λ+−λ⋅α+⋅=Φ  

 

  612,0
2718890

2354332

F

fA

cr

y
=

⋅
=

⋅
=λ  

 
 
 

  
 
Stability check using Cmy = 0,6: 
 

628,0
1/)4332235(831,0

96160
8,016,0

1/)4332235(831,0

96160
)2,0612,0(16,0

/N

N
8,01C

/N

N
)2,0(1Ck

1MRky

Ed
my

1MRky

Ed
ymyyy

=








⋅⋅
⋅+⋅≤









⋅⋅
⋅−+⋅

=














γ⋅χ
⋅+⋅≤















γ⋅χ
⋅−λ+⋅=

 

 

1,068,0
)310821(235

65980
0,628

4332)(235831,0

96160

M

M
k

N

N

Rky,

Edy,
yy

Rky

Ed ≤=
⋅

⋅+
⋅⋅

=⋅+
⋅χ

   

 
Stability check using Cmy = 0,9: 
 

942,0
1/)4332235(831,0

96160
8,019,0

1/)4332235(831,0

96160
)2,0612,0(19,0

/N

N
8,01C

/N

N
)2,0(1Ck

1MRky

Ed
my

1MRky

Ed
ymyyy

=








⋅⋅
⋅+⋅≤









⋅⋅
⋅−+⋅

=














γ⋅χ
⋅+⋅≤















γ⋅χ
⋅−λ+⋅=

 

 

1,096,0
)310821(235

65980
0,942

4332)(235831,0

96160

M

M
k

N

N

Rky,

Edy,
yy

Rky

Ed ≤=
⋅

⋅+
⋅⋅

=⋅+
⋅χ

  

 
 
Cross section resistance check for the columns 

 

5,009,0
139200

13200

V

V

Rdpl,

Ed <==   No reduction of the resistance for bending and axial force 

 

0945,0
1018020

96160

N

N
n

Rd,pl

Ed ===  

 

2105,0
4332

)5,918024332(

A

)tb2A(
a f =

⋅⋅−
=

⋅⋅−
=  

6,004,06,04,06,0Cmy =⋅+=ψ⋅+=
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Nm73922
)2105,05,01(

)0945,01(73040

)a5,01(

)n1(M
M

Rd,pl
Rd,N =

⋅−

−⋅
=

⋅−

−⋅
=   �  requirement: Rd,plRd,N MM ≤  

 

0,190,0
73040

65980

M

M

Rd,pl

Ed ≤==  

 
 
Stability check for the beam according to section 6.3 of Eurocode 3: 
 

830,0
613,0758,0758,0

11

2222
=

−+
=

λ−Φ+Φ
=χ  

 

Where:  ( )( ) ( )( ) 758,0613,02,0613,034,015,02,015,0 22 =+−⋅+⋅=λ+−λ⋅α+⋅=Φ  

 

  613,0
2707860

2354332

F

fA

cr

y
=

⋅
=

⋅
=λ  

 

 

905,0
72763

65840
05,095,005,095,0C hmy =

−
⋅+=α⋅+= (see table 5.2) 

 
Stability check using Cmy = 0,905: 
 

911,0
1/)4332235(830,0

12470
8,01905,0

1/)4332235(830,0

12470
)2,0613,0(1905,0

/N

N
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/N

N
)2,0(1Ck

1MRky
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1MRky

Ed
ymyyy

=








⋅⋅
⋅+⋅≤









⋅⋅
⋅−+⋅

=














γ⋅χ
⋅+⋅≤















γ⋅χ
⋅−λ+⋅=

 

 

1,092,0
)310821(235

72760
0,911
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12470

M

M
k

N

N

Rky,

Edy,
yy

Rky

Ed ≤=
⋅

⋅+
⋅⋅

=⋅+
⋅χ

  

 
Stability check using Cmy = 0,9: 
 

905,0
1/)4332235(830,0

12470
8,019,0

1/)4332235(830,0

12470
)2,0613,0(19,0

/N

N
8,01C

/N

N
)2,0(1Ck

1MRky

Ed
my

1MRky

Ed
ymyyy

=








⋅⋅
⋅+⋅≤









⋅⋅
⋅−+⋅

=














γ⋅χ
⋅+⋅≤















γ⋅χ
⋅−λ+⋅=

 

 

1,092,0
)310821(235

72760
0,905

4332)(235830,0

12470

M

M
k

N

N
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Edy,
yy

Rky

Ed ≤=
⋅

⋅+
⋅⋅

=⋅+
⋅χ
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Cross section resistance check for the beam 

 

5,00,0
139200

0

V

V

Rdpl,

Ed <==   No reduction of the resistance for bending and axial force 

 

0127,0
1018020

12910

N

N
n

Rd,pl

Ed ===  

 

2105,0
4332

)5,918024332(

A

)tb2A(
a f =

⋅⋅−
=

⋅⋅−
=  

 

Nm80598
)2105,05,01(

)0127,01(79,66

)a5,01(

)n1(M
M

Rd,pl
Rd,N =

⋅−

−⋅
=

⋅−

−⋅
=   �  requirement: Rd,plRd,N MM ≤  

 

198,0
73040

71610

M

M

Rd,pl

Ed ≤==  

 
 
Check 5: Second order analysis and non-sway buckling lengths 
 
As determined in table 4.4 a sway imperfection of 19,4mm should be applied at the top of the left 
column and a sway imperfection of 9,2mm should be applied at the top of the right column for case 4. 
Using a second order elastic analysis, the axial force distribution, shear force distribution and bending 
moment distribution as given in figure F.5 has been found.  
 

 
 Figure F.5: a) Case 4 b) Axial force distribution in kN c) Shear force distribution in kN d) Bending 
moment distribution in kNm 
 
Stability check for the columns according to section 6.3 of Eurocode 3: 
 

831,0
612,0757,0757,0

11

2222
=

−+
=

λ−Φ+Φ
=χ  

 

Where:  ( )( ) ( )( ) 757,0612,02,0612,034,015,02,015,0 22 =+−⋅+⋅=λ+−λ⋅α+⋅=Φ  

 

  612,0
2718890

2354332

F

fA

cr

y
=

⋅
=

⋅
=λ  

 

  
 

6,004,06,04,06,0Cmy =⋅+=ψ⋅+=
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Stability check using Cmy = 0,6: 
 

629,0
1/)4332235(831,0

98090
8,016,0

1/)4332235(831,0

98090
)2,0612,0(16,0

/N
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M
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N

N
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Ed ≤=
⋅

⋅+
⋅⋅

=⋅+
⋅χ

   

 
Stability check using Cmy = 0,9: 
 

943,0
1/)4332235(831,0

98090
9,016,0

1/)4332235(831,0

98090
)2,0612,0(19,0

/N

N
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/N

N
)2,0(1Ck
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Ed
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⋅⋅
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⋅⋅
⋅−+⋅
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γ⋅χ
⋅+⋅≤
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⋅−λ+⋅=

 

 

1,099,0
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67530
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98090

M

M
k

N

N
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Edy,
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Ed ≤=
⋅

⋅+
⋅⋅

=⋅+
⋅χ

 

 
 
Cross section resistance check for the columns 

 

5,008,0
139020

11280

V

V

Rdpl,

Ed <==   No reduction of the resistance for bending and axial force 
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1018020

98320

N

N
n

Rd,pl

Ed ===  
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4332

)5,918024332(

A
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⋅⋅−
=  
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)2105,05,01(
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M
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Rd,N =

⋅−

−⋅
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M

M
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Ed ≤==  

 
 
Stability check for the beam according to section 6.3 of Eurocode 3: 
 

830,0
613,0758,0758,0

11

2222
=

−+
=

λ−Φ+Φ
=χ  

 

Where:  ( )( ) ( )( ) 758,0613,02,0613,034,015,02,015,0 22 =+−⋅+⋅=λ+−λ⋅α+⋅=Φ  
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  613,0
2707860

2354332

F

fA

cr

y
=

⋅
=

⋅
=λ  

 

 

904,0
74200

67530
05,095,005,095,0C hmy =

−
⋅+=α⋅+= (see table 5.2) 

 
 
Stability check using Cmy = 0,904: 
 

907,0
1/)4332235(830,0
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⋅
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Stability check using Cmy = 0,9: 
 

903,0
1/)4332235(830,0
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M

M
k

N

N
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⋅

⋅+
⋅⋅
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Cross section resistance check for the beam 

 

5,00,0
139200

0

V

V

Rdpl,

Ed <==   No reduction of the resistance for bending and axial force 

 

0128,0
1018020
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N

N
n
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Ed ===  
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)5,918024332(

A
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=
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)n1(M
M
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−⋅
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0,102,1
73040

74200

M

M

Rd,pl

Ed ≥==  


