
 Eindhoven University of Technology

MASTER

Vehicle routing problem with flexible time windows

Arslantay, E.

Award date:
2011

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/17ba4b7f-1020-4b2a-8e07-6438ae8ca0ce


Eindhoven, August 2011 

 

 

 

Vehicle Routing Problem with Flexible Time Windows 

by 

Ezgi Arslantay 

 

 

BSc Industrial Engineering – Bilkent University, 2009 

Student identity number 0728342 

 

 

in partial fulfillment of the requirements for the degree of  

 

Master of Science 

in Operations Management and Logistics 

 

 

 

 

 

Supervisors: 

prof. dr. Tom Van Woensel, TU/e, OPAC 

dr. Ola Jabali, École Polytechnique de Montréal 



1 
 

TUE . School of Industrial Engineering 

Series Master Thesis Operations Management and Logistics 

 

 

 

 

 

 

 

 

 

 

Subject headings: vehicle routing problems with flexible time windows, tabu search, metaheuristics, 

allowance for violation of customer time windows, time oriented nearest neighbor heuristic, vehicle 

scheduling, linear programming 

 

 

 

 

 

 

 

 

 

 

 



2 
 

Abstract 

This master thesis describes a research project conducted in the field of vehicle routing problem with 

flexible time window constraints (VRPFTW), in which vehicles are allowed to start servicing customers 

before and after the earliest and latest time window bounds, respectively. The time windows are often 

relaxed to allow for early or late arrivals at customer locations. That relaxation comes at the penalty 

costs as the time window violations has an effect on the customers’ satisfaction. However, in 

applications where increasing customer satisfaction level is much more important, the penalty for 

earliness or tardiness needs to be minimized. The objective of this problem is to assign vehicles to 

feasible routes and make schedules that minimize the total costs, including travel cost, expected penalty 

cost for earliness or tardiness and cost of used vehicles. In this thesis, we describe an algorithm to solve 

the problem, which develops a Tabu Search heuristic incorporated with a linear programming. Three 

different approximation approaches are provided as well as the exact evaluation. The algorithm is tested 

on a number of benchmark instances and provided good quality solutions.  
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Executive Summary  

The Vehicle Routing Problem (VRP) has drawn a lot of attention because of its key role in improving the 

efficiency of distribution and decreasing the transportation cost. The VRP aims at designing a set of 

vehicle routes through several customer locations with minimum costs, under the conditions that each 

route starts and ends at the depot and each customer must be visited only once by one vehicle. 

The problem we consider in this study is called Vehicle Routing Problem with Flexible Time Windows 

(VRPFTW) in which vehicles are allowed to start servicing customers before and after the earliest and 

latest time window bounds, respectively. The time windows are often relaxed to allow for early or late 

arrivals at customer locations. That relaxation comes at the penalty costs as the time window violations 

has an effect on the customers’ satisfaction. Violation is defined as the early or late arrival to the 

particular customer location at a cost of a penalty proportional to the extension in the time window and 

must be penalized to reflect the negative effects of customer satisfaction.  

The objective of this problem is to assign vehicles to feasible routes and make schedules that minimize 

the total costs, including travel cost, expected penalty cost for earliness or tardiness and cost of used 

vehicles. In this thesis, we describe an algorithm to solve the problem, which develops a Tabu Search 

heuristic incorporated with a linear programming. Three different approximation approaches are 

provided as well as the exact evaluation. The algorithm is tested on a number of benchmark instances 

and provided good quality solutions. 

Several exact and approximate algorithms have been proposed to get the solutions of variants of VRP, 

but NP-hardness of those kinds of problem settings requires heuristic solution strategies for most real-

life instances. The algorithm we propose, adopts the concepts of Tabu Search, but incorporates VRPFTW 

specific features. We construct a linear programming (LP) model to make a robust schedule. The 

objective function of the LP is used to exactly evaluate solution. However, computing the objective 

function for all candidate solutions is an expensive approach; thus an approximation function has to be 

used to evaluate possible neighbors of a given solution and choose the best one as a new current 

solution.  

The algorithm for VRPFTW follows the listed steps: 

1. The route planning: The initial solution is found through the time-oriented Nearest Neighbor 

Heuristic. After Or-opt and 2-opt* exchange operators generate the neighborhood, all the 
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candidates are evaluated using the one of three approximation function, from which the one 

with the best value is selected as the current solution. Afterwards, the exact function is 

computed to evaluate the current solution. The tabu list collects the best moves from each of 

the iterations and the aspiration criteria forces the exact value of a forbidden solution to be 

better than the best value found. Lastly, this step terminates when the process hits the total 

number of iterations as well as the maximum number of non-improving iterations. 

2. Vehicle scheduling: LP model is constructed. 

The exact evaluation calculates the total travel time, the objective function of LP and the cost of used 

vehicles. Additionally, a self-adjusted demand infeasibility term is added during the neighbor search. We 

proposed three approximation methods and these methods were compared with those of exact 

evaluation. The outcome of this test can be interpreted as the quality criteria of the different 

approximation methods.  Those methods are also compared among each other to determine the best 

performing one. Results show that the algorithm provides good quality solutions to our problem, while 

consuming reasonable computational efforts. 

In a dynamic world, to address the real world problems effective and efficient decision support tools are 

needed. People from sales and logistics departments can benefit from the flexible version of the 

classical VRPTW which provide solutions by a faster heuristic during fleet planning and sales negotiation.  

There are many perspectives that are worthy of receiving further investigation in future study.  The 

more successful implementations of Tabu Search are more likely to create better initial solutions and 

neighborhood structures. Alternative strategies of generating an initial solution, more sophisticated 

neighborhood exploration, different memory structures, different aspiration criteria and more 

sophisticated diversification and intensification methods can be developed. One should also take the 

trade off between complexity of the algorithm and computational effort that this algorithm requires into 

consideration. 
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1. Introduction 

Freight transportation is one of the most critical activities in supply chain management. This importance 

comes from the fact that it brings more than half of the total logistics cost. The contribution of the 

freight transportation cost to the total cost can be decreased by better utilization of the resources, 

which can be suggested by better routing and scheduling approaches to the problems. The Vehicle 

Routing Problem (VRP) thus has drawn a lot of attention. The VRP aims at designing a set of vehicle 

routes through several customer locations with minimum costs, under the conditions that each route 

starts and ends at the depot and each customer must be visited only once by one vehicle.  

VRP can be described as a combination of two well-studied problems, namely Traveling Salesman 

Problem (TSP) and the Bin Packing Problem (BPP); since it conceptually lies at the intersection of those 

well-studied problems. TSP is the problem of finding one shortest possible tour that visits each city 

exactly once with a given list of cities and their pair wise distances. BPP is the minimization of the 

number of bins used to pack a given number of objects with different volumes and an instance of this 

kind of problem can be seen as a feasible solution for an instance of the VRP. Since TSP and BPP are 

considered as NP hard; computational effort required solving a VRP problem increases exponentially 

with the problem size; thus making it a NP-hard problem.  

Some other constraints might need to be added to VRP depending on the problem setting, such as the 

time windows during which it is allowed to service the customers, which forms an important variant of 

the classic VRP – the Vehicle Routing Problem with Time Windows (VRPTW). The VRPTW is one of the 

critical problems that have been extensively studied by the researchers in the field. The VRPTW belongs 

to the class of the NP-hard combinatorial optimization problems. (Lenstra et al., 1981) 

VRPTW involves the added complexity that every customer should be served within a given time 

interval, called “customer time window”. By adding that constraint, customers have enforced the use of 

time windows during the last few years in distribution, motivated by the Just-in-Time (JIT) principles and 

the competition arisen by adopting such principles. (Hopp et al., 1996) Time windows establish hard 

constraints to the delivery problem; thus forcing distribution companies and manufacturers to sustain 

their own vehicles and to increase their fleet size with the motivation of satisfying time window 

requirements.  
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The VRPTW has several practical applications in industries and services such as the distribution of cash 

amounts among bank branches, disposal of garbage and industrial wastes, distribution of fuel to and 

among fuel stations and school transportation services.  

In this paper we consider the vehicle routing problem with flexible time window constraints (VRPFTW), 

in which vehicles are allowed to start servicing customers before and after the earliest and latest time 

window bounds, respectively. The time windows are often relaxed to allow for early or late arrivals at 

customer locations. That relaxation comes at the penalty costs as the time window violations has an 

effect on the customers’ satisfaction. However, in applications where increasing customer satisfaction 

level is much more important, the penalty for earliness or tardiness needs to be minimized. 

The problem setting proposed in this paper objects to provide an effective tool for time window 

adjustments which is also able to optimize the fleet size during the sales negotiation.  The solution 

approach relies on relaxing the time windows and reducing the number of vehicles used compared to 

the feet size in typical VRPTW instance while keeping time window violations to a bare minimum. The 

motivation is that by allowing limited time window violations for some customers, it may be possible to 

obtain significant reductions in the number of vehicles required and the total distance or time of all 

routes.  

Each problem is solved using a collaborative hybrid algorithm, a combination of Tabu search and a linear 

programming problem. The actual evaluation of the target function is obtained by solving the resulting 

linear model to optimality for each route separately after a Tabu search heuristic for assigning 

customers to routes and for the sequencing of each route is used.  

The remainder of this report is arranged as follows. In chapter 2, a brief literature review of related topic 

is provided. In chapter 3, the problem of the project is defined and described. The VRPFTW heuristic is 

proposed in chapter 5; after the linear model for scheduling within a given route is discussed in chapter 

4 . In chapter 6, the experiments and the results are presented and analyzed. And finally, the discussion 

and the conclusion are the discussed in the last chapter. 
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2. Literature Review 

In this chapter the literature review of related topics is presented. The concept of VRP and VRPTW are 

presented with different approaches used in literature to tackle the problem. 

2.1. VRP 
Vehicle Routing Problem (VRP) is defined as the problem of designing optimal delivery or routes from 

one or several depots to a number of geographically scattered cities or customers, subject to side 

constraints. (Laporte, 1992) Due to the introduction of wide variety of constraints in terms of capacity, 

route length, time windows and precedence relations between customers; it is pretty hard to find a 

generally accepted definition of VRP. (Laporte, 2007).   

VRP can be described as a combination of two well-studied problems, namely Traveling Salesman 

Problem (TSP) and the Bin Packing Problem (BPP); since it conceptually lies at the intersection of two 

well-studied problems. As previously studied, (Gendreau et al., 1994) solutions of the VRP are 

sometimes transformed into the TSP by replication of the depot. 

 Including also concept of TSP, VRP falls into category of NP-hardness. The most sophisticated exact 

algorithms for the VRP are able to solve only instances of up to around 100 customers with different 

succession (Baldacci et al., 2008). That’s mostly why; researchers are forced to put an effort on heuristic 

algorithms in addition to fact that they give flexibility of dealing with the diversity of variants arising in 

practice.  

2.2. VRPTW 
The vehicle routing problem with time windows is the problem of designing least cost routes from one 

depot to a set of geographically scattered points in a way that each point visited only once by exactly 

one vehicle within a given time interval.  All routes start and end at the depot and the total demand of 

all points on a route must not exceed the capacity of the vehicle. (Braysy,O. and M. Gendreau, 2005a). In 

other words, time windows requirement of each customer needs to be satisfied.  

That variant of VRP, VRPTW, is also NP-hard. Savelsbergh (1985) studied that even getting a feasible 

solution to VRPTW when the fleet size is fixed is an NP-hard problem. Therefore, heuristics are again the 

most possible solution approach.    
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Customer time window can be characterized by an early time and a late time within which service 

should begin. Time windows concept exists in many real life situations such as dial-a-ride services, 

school-bus routes and bank deliveries. The planning needs to be designed in a way to consider issues of 

personnel availability to load the vehicles, traffic regulations and conditions, and some other predefined 

customer preferences. Interested reader is referred to Baker et al. (1986) and Solomon (1987).  

Solomon (1987) has studied a number of heuristics including ‘’ savings algorithm’’, ‘’time-oriented 

nearest neighbor algorithm’’, ‘’insertion algorithm’’ and ‘’time-oriented sweep algorithm’’ for VRPTW 

and additionally constructed a set of benchmark problems for an easy comparison of wide-variety of 

solution procedures. Numerous researchers have been using the Solomon test-sets when they test their 

heuristics or exact algorithms. 

Van Landeghem (1988) presented his bi-criteria heuristic based on the Savings heuristic for VRPTW and 

discussed that the interaction between spatial and temporal issues complicates to understand the 

underlying dynamics of the problem. 

Kolen et al. (1987) introduced an optimal algorithm based on branch-and-bound concept for VRPTW but 

failed to implement it in large problem settings. The algorithm is able to solve problems up to four 

vehicles serving fourteen customers.  

Another algorithm based branch-and-bound is developed by Desrochers et al.(1992). The LP relaxation 

of the model is solved by column generation and a shortest path problem with time windows and 

capacity constraints is solved to add feasible columns as needed. That approach has been successful in 

optimally solving the problems with narrow time windows.  

One of the algorithms that Fisher et al. (1991) has developed is based on a k-tree relaxation with time-

windows as side-constraints and alternatively, the other algorithm introduces a solution for a semi-

assignment problem and then treats the problem as a shortest path problem with time windows and 

capacity requirements. The researchers have tested these algorithms with benchmark problem sets and 

found optimal solutions.   

The interested reader is referred to surveys of the published work in the field of VRP and VRPTW 

composed by Golden et al. (1988), Gendreau (1997) et al. and Laporte (1992) concerning solution 

methods developed for these problems in the last twenty five years.  
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2.3. VRPFTW 
 

Customer time window is bounded by the earliest and latest time of the day that the delivery to the 

customer has to take place.  In vehicle routing problem with flexible time windows, time windows can 

be violated by employing the appropriate penalties to reflect the negative effects of customer 

satisfaction. Violation is defined as the early or late arrival to the particular customer location at a cost 

of a penalty proportional to the extension in the time window.  

That problem variant can be seen as a relaxation of the VRPTW and the literature reveals very little 

published work; in contrast to its applicability in practical cases.  Below, we examine the limited research 

efforts for the VRPFTW. 

Dumas et al. (1992) presented a procedure for selecting the time period at which each customer must 

be served to minimize the total inconvenience costs. Moreover, Ferland et al. (1989) introduced an 

algorithm that aims at adjusting time windows of pair of customers to reduce the total costs. Koskosidis 

et al. (1992) have designed and algorithm at which customers are assigned to vehicles using the general 

assignment method and then the TSP with time windows is solved separately for each vehicle.  

Balakrishnan (1993) has created a linear penalty function for each customer to allowable limits of the 

earliest and latest service start times. The proposed model has been solved with different algorithms 

from nearest neighbor to penalty-expanded savings algorithm which obtained low-cost schedules 

serviced by fewer vehicles compared to no-violations allowed, typical VRPTW case.  

2.4. Solution Approaches 
 

Several exact and approximate algorithms have been proposed to get the solutions of VRP and its 

variants. NP-hardness of those kind of problem settings requires heuristic solution strategies for most 

real-life instances. Exact algorithms, based on branch-and-bound techniques, are very satisfying for only 

relatively small problems; but it is also studied that a number of approximate algorithms have provided 

promising results for larger problems. Those approximate algorithms include classical heuristics and 

metaheuristics. 

Classical heuristics has two different types; namely constructive heuristics and improvement heuristics. 

The mostly used constructive heuristics is the Clarke and Wright savings algorithm (Clarke, G., and J.V. 
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Wright, 1964), which is initiated by placing the customer itself and the depot in one vehicle and then 

linking those vehicles according to the savings obtained while keeping the same requirements in several 

iterations. Other important classical heuristics include, e.g., petal heuristics, the sweep algorithm 

(Gillett,B.E.,and L.R. Miller, 1974),a heuristic based on a two-phase decomposition procedure 

(Fisher,M.L., and R. Jaikumar, 1981).  However, the performance of classical improvement heuristics is 

often not satisfying; thus used as building blocks within metaheuristics.   

Improvement heuristics can be divided into intra-route and inter-route heuristics. Intra-route heuristics 

optimize each route alone with the help of a TSP improvement heuristic; whereas inter-route heuristics 

consist of moving vertices to different routes.(Laporte,G., and F. Semet, 2002).  

Although metaheuristics needs more computation time than classical heuristics, but given the 

improvements in solution quality, the extra computational effort is well justified.(Gendreau,M., A. Hertz, 

and G. Laporte, 1994) Metaheuristics can be divided into three categories: local search, population 

search, and learning mechanisms.  Tabu Search (TS) is one of the mostly used local search methods for 

VRPTW and its variants. Tabu Search will be explained in detail and applied to the first phase of the 

VRPFTW in Chapter 5.  
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3. Problem Analysis 

In this chapter, the problem environment in our context is provided with notations, assumptions, the 

objective function and the relative constraints. Then, methodologies of the specific implementation are 

proposed.   

3.1. Problem Definition 
Consider a set of  identical vehicles and with a known capacity  , servicing a set of   customers 

originating from and terminating at the depot aiming at minimum cost.  

The problem can be stated as follows. Let         be a complete directed graph with    {        } 

the set of vertices and A the set of links. The vertices represent the customers where    is the depot. 

The non-stochastic travel time from customer   to customer   is represented by    ; whereas the 

distance between customers   and    is associated with    . The cost of travelling one unit of distance is 

 . Furthermore, there is a one-time cost of    for activating the vehicle      .  

Each customer   also has a standard service time    for loading and unloading activities. The service time 

for the depot is set to zero.   

 

 

Figure 1-Customer Satisfaction in VRPTW 
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Each customer   possesses demand of    units and beginning of a service time denoted by   . A vehicle 

must start servicing the customer   between time intervals [     ]. The customer time windows are often 

relaxed to allow for early or late arrivals at customer locations. That relaxation comes at the penalty 

costs as the time window violations has a effect on the customers’ satisfaction, as showed in Figure 1 

and Figure 2.    

 

Figure 2-Customer Satisfaction in VRPFTW 
 

Note that this allowance for violation of time windows is denoted by          That means time 

windows of each customer can be extended to [                 ] (See Figure 3.) That extension is 

denoted by       percent of the customer time window width and needs to be penalized proportional 

to lateness. For each customer, let     be the unit penalty for the service begins before its earliest start 

time and     be the unit penalty for the service begins after its latest start time.  

 

 

Figure 3-Lower and Upper Bound Violations for Time Window Violations 
 



18 
 

The formula for penalty function    is as follows:  

 

Assumptions 

I. The travel time between two vertices is non-stochastic, undirected and is proportional to travel 

distances. Furthermore, the triangle inequality is satisfied for the travel times. 

II. All vehicles are identical.  

III. The allowance for violation of time windows is denoted by          

IV. The service time for the depot is set to zero.  

 

3.2. The VRPFTW Model 

3.2.1. Decision Variables 

The model formulation requires three groups of variables: 

a. The first group of variables is binary and determines the sequence that vehicles visit customers: 

 

   
   {

                                                                          
                                                                                                                                   

 

 

b. The second group of variables is also binary and checks if the vehicle is active: 

    {
                          
                                  

 

c. The third group determines the service start time of each customer and is represented with     
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3.2.2. The objective function 

Given the above definitions, variables and parameters; we can introduce the objective function for the 

problem which should include three parts: travel cost, vehicle activation cost and tardiness penalty.  

∑∑∑       
  ∑    

 

   

 

   

 

   

 

   

 ∑      
       

  

 

   

 

In this expression,   
  represents the deviation from the time windows due to earliness and   

  

represents the deviation from the time windows due to tardiness. 

  
     {       } 

  
     {       } 

 

3.2.3. The VRPFTW Model 
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∑  ∑   
                  

 

   

 

   

 

                            

                         

    ∑   
 

 

   

                

             (     
 )                       

  
                       

  
                        

   
      {   }          

  
    

                   

Constraints (1) and (2) make sure that each route starts and terminates at the depot, in other words at 

customer zero. Constraints from (3) to (5) assure that exactly one vehicle enters, serves and leaves each 

customer. Constraint (6) indicates that vehicle capacity is not exceeded. Constraints (7) and (8) 

determine the lower and upper boundaries for extended service start time of each customer. To specify 

the used vehicles, constraints (9) and (10) are needed.  Constraint (11) ensures that if the vehicle travels 

from i to j, service at j cannot start earlier than that at i. Here, M is a very large constant. As explained 

earlier in the report, constraints (12) and (13) determine the tardiness that will be penalized in the 

objective function.  

3.3. Methodology 
The solution method for VRPFTW proceeds in two stages: the route planning and the service scheduling. 

For the route planning, the initial solution is formed by some specific route construction method. 

Afterwards, a Tabu Search algorithm is used for a certain iterations to pursue the improvements of the 

routes. The assignment of customers to vehicles and sequencing of customers are done via Tabu Search.  

In the second stage, the service scheduling is to be made via an LP model by using the solution obtained 

in the first phase. The decisions are made to minimize the total costs of the given solution. The derived 

LP model for this problem is developed in Chapter 4.  
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4. Scheduling 

There will be a set of predetermined routes    {             | |} with | |   . Each route 

               with    number of elements is formed by   {        } . The problem here is to find 

an optimal schedule for a given route   , at minimum cost.  In other words, an LP model aims at 

minimizing the deviations from the given customer time windows. 

Let    represent the arrival time at customer  . When the vehicle leaves a customer point (i.e.   ), the 

time that it starts servicing (    the next customer (i.e.   ) in the sequence is determined by one of the 

three feasible scenarios: 

1. If the vehicle arrives within the boundaries of time windows allowed for that customer point, it 

immediately starts servicing. That is,      [     ] and        .  

2. If the vehicle arrives at the customer point later than latest service start time (  ) or earlier than 

earliest service start time (  ) of the customer thus leading to a violation with the maximum 

value of     , it immediately starts servicing in order not to pay more penalty cost. That is, 

     [           ] or      [             ]   and         

3. If the vehicle arrives at the customer point even earlier than its possible earliest service start 

time (       ) of the customer, it needs to wait until the feasible lower boundary of the time 

windows, start servicing and pay the penalty. That is,      [           ]  and    

    {           } 

 

Minimize 

∑      
       

  

  

   

 

subject to 
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In this LP, the only set of decision variables determines the service start time of each customer 

and is represented with      The objective is to minimize the penalty cost subject to constraints 

listed from (1) to (6). Constraint (1) ensures that if the vehicle travels from   to  , service at 

 cannot start earlier than that at    Note that, the travel time from   to next customer in the 

given sequence,  , is represented by   . Constraints (2) and (3) determine the lower and upper 

boundaries for extended service start time of each customer. Constraints (4) and (5) determine 

the tardiness that will be penalized in the objective function. Constraint (6) makes sure that the 

tardiness cannot be negative. 
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5. Tabu Search for VRP with Flexible Time 
Windows 

The tabu search procedure generates a set of routes that still need to be scheduled using the LP 

previously described and determines the active vehicles, the number of routes, customers in each 

vehicle and the sequence that the vehicle visits them. The overall procedure is described in pseudo-code 

as in Section 5.3. 

5.1. Initial Solution 
In this project we use a fast and easy constructive algorithm “time-oriented, nearest neighbor heuristic ” 

(Solomon,1985)  for the initial solution, such that it starts every route from the depot, by each time 

finding the closest unvisited customer as long as all the restrictions (time windows, vehicle arrival time 

and capacity) are met, and then starts another tour. 

The procedure of inserting a new customer is repeated until no other non-routed customer can be 

inserted into the route under construction.  At this point, a new route is initialized with a different 

customer and the same procedure is executed until all customers are assigned to routes. Figure 4 

presents the procedure of the construction of one route. 

We will use a cost metric     that measures the geographical and temporal closeness of the customers 

between customers   and  . The heuristic selects customer   with the lowest cost     for the inclusion 

after the customer  . Note that, the criteria is sequence dependent; thus the relation between the last 

customer added to the route (i.e.  ) and the new customer in the route (i.e.  ) is taken into 

consideration. 

That criterion makes sure that the selected customer   will be the closest to last routed customer   in 

terms of decisions on time windows violation and time influence.  

In the equation of cost metric below, the weights        {       } define the contribution of each 

individual `     metric to the overall criteria. 
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   : The direct travel time between two customers. 

                 : The time between the z beginning of service at  . It involves the time to travel the 

next customer point and the waiting time for the cases that have an arrival before the feasible service 

start time. (i.e. when       [           ])  

        {         (         )}  : The urgency of servicing the customer j. It is defined as the time 

left until the latest service start time of customer j. This term represents the influence regarding the 

order of time-windows of customers on the shipping route. If we also included the amount of allowed 

violation       into the term, we would have incurred the deviation from the time windows twice; both 

within the penalty cost and urgency term.  

   : The cost metric will include the penalty cost component,    as defined below in addition to elements 

in Solomon’s proposition. Here, the penalty component also controls the lower and upper bounds for 

the time windows violation (     ) by stating the intervals for the service start time as follows: 

    

{
 
 

 
                                                   

    (     )                                             

                                                

    (     )                                               

                                                        

 

The non-negative weights represented with              should satisfy               and 

                   . 

 

5.2. Pseudo-code for Time-oriented, Nearest Neighbor Heuristic 
 

WHILE (there is an unvisited customer) 

 Find the ‘’closest’’ customer to the previously routed customer according to the criteria     

  IF the closest can be served within its TW 

  Get the demand of the closest 
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   IF total demand>capacity 

   Find the next TW and capacity constraints satisfying unvisited closest 

   ELSE  

   Include the closest into the route 

   END IF 

  ELSE  

  Initialize a new route 

  END IF 

END LOOP 

 

5.3. Neighborhood Generation and Evaluation 
The neighborhood of a solution contains all solutions that can be reached by moving nodes with some 

neighborhood generation methods. Several neighborhood generation methods are available in 

literature, including both intra-route exchange operators (e.g., 2-opt, Or-opt) and inter-route exchange 

operators (e.g., 2-opt*) In this project, we construct 2-opt* and Or-opt neighborhoods for the  nodes 

closest to  .  

Evaluation of each neighborhood solution needs a separate LP-run. However, such computation is costly 

when a large problem size is performed to optimality. Thus, we have used approximate procedures that 

give an optimal or near optimal solution in tolerable time. We have proposed two different options in 

selecting the best move in its current neighborhood. In this project the one with smallest evaluation 

value is selected as the current solution.  

 

After the move is selected, its exact evaluation is done by running the LP model for the changed routes 

to get an optimal schedule.  

We describe the two criteria that allow avoiding the LP model for each candidate solution and leading to 

computationally efficient move selection process.  
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5.3.1. Exact Evaluation 

Let’s call the exact evaluation function of any solution   (feasible or not)       If we express the 

objective function in the LP model of a solution   (infeasible or not)      , then  

      ∑ ,∑      
       

  

  

   

-

    

 ∑      

    

 

For any feasible solution S, the total cost function is, 

       ∑ ∑    
            

 

                  ∑     

 

   

 

where       calculates the total travel cost of the solution and the third part calculates the cost of used 

vehicles in the solution.  

5.3.2.  Cost of Demand Infeasibility 

As Gendreau et al.(1994) proposes that allowing the existence of routes with total demand exceeding 

the vehicle capacity, in other words allowing “demand infeasible solutions”,  and penalizing such 

solutions proportionally to their capacity brings diversified search to the solution. Thus, for any 

infeasible solution S, a penalty term should be added and the evaluation function is replaced by the 

function: 

              ∑ *(∑  
    

)   +

 

    

 

In this new formula, the term   ∑ [(∑       )   ]
 

     penalizes the demand infeasible route.  

5.3.3.  Approximate Evaluation  

Below, the three criteria that allow avoiding the use of the LP model for each candidate solution and 

lead to computationally efficient move selection procedures are proposed: 
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Approximation 1 – Distance based  

The heuristic is based on minimizing the modified travel cost       . It does not take customer time 

windows and the penalty cost function into account. Let    denote the neighbor of the current solution 

 . Thus the heuristic selects the move that is not tabu and maximizes the following formula: 

    
   [              ] 

 

Approximation 2 – Distance based and the penalties of moves 

As mentioned in Section 3.1 a customer time window can be relaxed to allow for early or late arrivals at 

customer locations. We let      denote the deviation from the customer windows [     ] and       

denote the deviation from the customer windows [     ]. Those deviations represent the minimum 

amount at customer locations to make the route feasible by adding flexibility.  

Each deviation unit is penalized by     For each solution    involving a move between customer   and 

customer  , we compute the following quantity 

    
   [              ]   [          ] 

where          {              }  

This heuristic selects the move that is not tabu and maximizes the formula above. The logic behind the 

formula is based on the elimination of the moves that require higher deviations are likely to decrease 

the total cost associated with the route.   

 

Approximation 3 – Distance based and the penalties for the entire route 

That heuristic is based on the same concept with Approximation 2; penalizing the deviations. It differs in 

a way that it does not only consider the deviations by the changed moves but also the deviations 

occurred within the sub-route; from the first move in the route to the last customer in the route. i.e. a 

push or a pull movement of the service start time of a certain customer, after the move involving that 

customer is executed, is able to affect the remaining customers in the route.  



28 
 

Consider a move between customer   from route    and customer   from route   , leading to the 

solution   . Let   denote the number of customer locations visited by the route    and    denote the 

number of customer locations visited by the route   . Let     
   represent the maximum of all 

deviations occurred within the route    and     
   represent the maximum of all deviations occurred 

within the route   . The heuristic selects the move that is not tabu and maximizes the following 

formula: 

    
   [              ]   [    

       
  ] 

where     
      {                     } and     

      {                     } 

To sum up, we have used those three approximation methods to assess the possible moves based on 

the penalty values in the problem.  

 

5.4. The Algorithm 
 

Step 0:  Initialization 

Read  ,    ,        ,           ,             ,             

Construct initial solution    and compute        

Set        and               

Step 1:  Neighborhood Generation and Evaluation 

Generate the neighborhood of solution   

Evaluate each neighborhood solution by one of the three approximation methods and retain the 

best non-tabu move as new solution   

 Evaluate       and update the tabu list to include   

Step 2: Improvements 

 If   is better than the current best solution, update the best feasible solution to   
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Update the excess demand penalty 

 If no improvement in      iterations then 

 Store the best solution  

 Else go to Step 1 

Step 3: Terminate  

Output the following: Number of routes, sequence of customers visited by each vehicle, number 

of violated time windows, total time (distance), total cost 
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6. Computational Experiments 

Our approach has been tested on the classical data sets R1, C1 and RC1 of Solomon (1987).Each data set 

contains problems with 100 customers. The Cartesian coordinates of customers in the R1 problems of 

are randomly generated from a uniform distribution, while the coordinates of customers in the 

problems in set C1 are clustered. Problems in the set RC1 contain semi-clustered customers, i.e., a 

combination of clustered and randomly (uniformly) distributed customers. The vehicle capacity is 200 

units for all problem sets. The service times and the time windows for customers are given. For 

additional information concerning the data sets, the reader is referred to the Solomon’s study (1987).  

The implementation of the algorithm was coded using Visual C++ 2008 Express Edition, and evaluated 

with simplex algorithm in the application of Gurobi Optimizer 4.5.0 Experiments ran on an HP Compaq 

8530w Mobile Workstation with an Intel® Core™2 Duo CPU 2.80 GHz and 4 GB of RAM, and an operating 

system of Windows Vista™ Enterprise.  

6.1. Initial Parameter Setting 
 

To run the first group of experiments, we will use the values provided in the Solomon data sets and the 

parameter values that are widely used by the researchers in the field. Among these parameters, the 

penalties associated with approximations 2 and 3 are chosen as        and      , respectively by 

doing some preliminary tests. Important to mention that these values do not necessarily fit all of the 29 

instances but provide reasonable results.    

We use the terms distance and travel time interchangeably since the travel cost c in       is set to one. 

For an instance with   nodes, for each customer the     ⌈     ⌉closest customers are candidates for a 

move. The tenure size   is set to 20. The infeasibility penalty   is set to 10. 

We consider allowable penalty       equal to 10 % of the customer  ’s time window; as this ratio has 

been widely used by the researchers in the field.(Balakrishnan,1993) Furthermore, the penalty 

coefficients     and     are set to 1 for each customer   as Kritikos et al.(2002) proposed to use in their 

study. The vehicle activation cost,    is    for each vehicle. 

In section 6.3, we will touch more on how different values of unit penalty costs and allowance for time 

window violation (     ) can reflect the objective function. 
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6.1.1. Parameter Setting for Time Oriented-NNH 

To examine the effect of the various parameters of time-oriented nearest neighbor algorithm on the 

solution quality, we run experiments with different set of values of the parameter set                for 

all of the 29 Solomon instances. The parameters used for this table               are: PS1             ,  

PS2                  , PS3 (                , PS4                  , PS5                   and 

PS6                  . The number of used vehicles is chosen as the criteria to evaluate the different 

value sets and the results are provided in Appendix A. 

In Appendix A, we provide the number of vehicles needed in the system for every Solomon instance-

parameter set combination. From the data of Appendix A, we cannot extract concrete conclusions 

concerning parameters          and   .Even a complete examination of all the results we obtained 

during our experiments could not provide strong evidence on a consistently performing set of values for 

these parameters. Here, we accept to use the value set PS 6                   for the parameters 

              since it used the least number of vehicles in 19 out of 29 instances.  

6.2. Move Selection 

6.2.1. Approximation Evaluation 

 

Table 2 shows the results of implementations for Solomon data sets in which only one of the three 

approximation methods has been used. 

Table 2-Comparison of three approximation methods 

Problem 
Objective Value   

Approximation 1 Approximation 2 Approximation 3 

R101 1512.45 1423.72 1393.72 

R102 1397.67 1387.71 1381.22 

R103 1441.25 1381.23 1372.45 

R104 1295.19 1258.68 1273.84 

R105 1291.49 1276.89 1280.21 

R106 1324.65 1298.55 1280.55 

R107 1292.44 1277.22 1263.48 

R108 1239.18 1187.27 1180.65 

R109 1248.32 1238.94 1223.3 
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R110 1237.49 1202.84 1216.02 

R111 1301.38 1252.96 1231.83 

R112 1222.9 1200.42 1216.49 

C101 1143.76 1117.87 1121.83 

C102 1145.29 1133.74 1107.48 

C103 1116.71 1109.31 1116.61 

C104 1136.63 1114.73 1117.57 

C105 1181.87 1134.22 1146.13 

C106 1174.28 1163.82 1146.29 

C107 1168.89 1132.14 1122.46 

C108 1116.83 1114.95 1100.24 

C109 1204.66 1128.51 1132.52 

RC101 1476.54 1463.03 1436.42 

RC102 1423.87 1402.27 1407.85 

RC103 1357.39 1395.28 1345 

RC104 1361.82 1327.56 1326.93 

RC105 1518.54 1446.87 1423.83 

RC106 1409.13 1381.9 1374.28 

RC107 1373.72 1332.04 1337.21 

RC108 1385.71 1306.41 1316.3 

 

In Table 2, the columns on the right hand side shows the objective function obtained by employing one 

of the three approximation methods. We have observed that approximation 3 outperforms the other 

approximation methods in 17 out of 29 problems; while approximation 2 does so 12 times.  

6.2.2. Comparisons with the Exact Evaluation  

 

Table 3 shows the solution quality of different approximation methods. Such solution quality is tested by 

comparing the results obtained in Table 2 with the optimal solutions solved by the exact algorithm 

discussed earlier in Chapter 5.2.1. The columns on the right side of the table (Ratio 1,Ratio 2 and Ratio 3) 

are the percentage of the ratio of (Approximation/Exact). For instance, one could claim that the 
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approximation 2 provides a result that is about 105% of the one that exact algorithm gives for the 

problem R101. 

As provided below, some of the instances using our algorithm have obtained relatively larger gaps with 

the benchmark values (solution obtained by the exact algorithm). The ratios can be interpreted as the 

quality criteria of the different approximation methods.  

Table 3-Comparison with the Exact Evaluation 
 

Problem Exact Ratio 1(%) Ratio 2(%) Ratio 3(%) 

R101 1355.567 111.5733 105.0277 102.8146 

R102 1322.933 105.6493 104.8964 104.4059 

R103 1320.933 109.1085 104.5647 103.9 

R104 1198.233 108.0916 105.0446 106.3098 

R105 1235.3 104.5487 103.3668 103.6356 

R106 1222.3 108.3736 106.2382 104.7656 

R107 1155.3 111.8705 110.5531 109.3638 

R108 1120.3 110.6114 105.9779 105.3869 

R109 1175.3 106.2129 105.4148 104.0841 

R110 1155.3 107.1142 104.1149 105.2558 

R111 1160.3 112.1589 107.9859 106.1648 

R112 1135.3 107.716 105.7359 107.1514 

C101 1042.833 109.6781 107.1955 107.5752 

C102 1062.833 107.7582 106.6715 104.2007 

C103 1047.833 106.5732 105.867 106.5637 

C104 1042.833 108.9944 106.8944 107.1667 

C105 1062.833 111.1999 106.7166 107.9069 

C106 1067.833 109.9685 108.9889 107.3473 

C107 1062.833 109.9787 106.5209 105.6102 

C108 1042.833 107.0957 106.9155 105.5049 

C109 1055.833 114.0957 106.8833 107.2631 

RC101 1380.1 106.9879 106.009 104.0809 

RC102 1340.1 106.251 104.6392 105.0556 
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RC103 1280.167 106.0323 108.9921 105.0644 

RC104 1269.7 107.2553 104.557 104.5074 

RC105 1340.6 113.2732 107.927 106.2084 

RC106 1309.7 107.5918 105.5127 104.9309 

RC107 1249.7 109.924 106.5888 107.0025 

RC108 1260.7 109.9159 103.6258 104.4102 

 

6.3. Parameter Setting 
In this section, we will select the first three instances from the classical data sets R1, C1 and RC1 of 

Solomon to show the procedure of parameter tuning and how different values of penalty costs(    and 

     and allowance for time window violation (     )  can reflect the objective function. We have 

defined four different parameter settings for this purpose, from Set 1 to Set 4 as follows: 

Table 4-Defining Value Sets for Parameters 
 

              

  5% 10% 

Penalty Cost (1,1) Set 1 Set 2 

          (2,2) Set 3 Set 4 

 

Table 5 shows the results for the four experimental settings after running the Tabu Search procedure 

with the exact evaluation. The values provided in the table are the obtained target function values. On 

average, the objective values under Set 1 are only 0.43% higher than those under Set 2. That can be 

explained by the increment in the number of vehicles. On average, the objective values of Set 3 are 

0.94% higher than those of Set 2; because of the tighter customer time windows and the doubled 

penalty cost         . If the penalty cost is doubled with 10% allowance for violation the customer time 

windows, as showed in Set 4, the objective values are 0.62% higher than those of Set 2, on average. We 

could conclude that the changes are not dramatic.  
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Table 5-Results for selected Solomon sets with different parameter settings 
 

Problem Set 1 Set2 Set3 Set4 

R101 1888 1355.56 3085 2118 

R102 1757 1322.93 2150 2167 

R103 1784 1320.93 3002 2241 

R104 1901 1198.23 2610 1935 

R105 1760 1235.3 2120 2023 

C101 1385 1042.83 2136 1579 

C102 1652 1062.83 1933 1686 

C103 1556 1047.83 1737 1718 

C104 1633 1042.83 1800 1648 

C105 1585 1062.83 2312 1712 

RC101 2079 1380.1 2698 2325 

RC102 1799 1340.1 2184 2261 

RC103 1787 1280.16 2234 1965 

RC104 1923 1269.7 2365 1965 

RC105 1855 1340.6 2718 2054 

Average 1756.26 1220.18 2338.93 1959.8 
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7. Conclusion 

In this thesis, we have described a methodology to solve a special variant of VRP – VRPFTW. Vehicle 

Routing Problem with Flexible Time Windows (VRPFTW) in which vehicles are allowed to start servicing 

customers before and after the earliest and latest time window bounds, respectively. The time windows 

are relaxed to allow for early or late arrivals at customer locations. That relaxation comes at the penalty 

costs as the time window violations has an effect on the customers’ satisfaction. Violation is defined as 

the early or late arrival to the particular customer location at a cost of a penalty proportional to the 

extension in the time window and must be penalized to reflect the negative effects of customer 

satisfaction.  

Our solution approach is a hybrid algorithm in which routing and scheduling are incorporated in a 

sequence. The routing component is handled via a Tabu Search procedure, while solving an LP model 

provides a robust vehicle scheduling. 

The solution engine of the method, our algorithm, which is based on the time-oriented nearest-neighbor 

heuristic developed to account for a penalty associated with time window violations, is applied on 

Solomon’s problem sets. It provides instances where vehicles are allowed to service customers before or 

after their specified time windows. The problem is crucial for fleet planning and contract negotiations 

since it enables decision-makers to determine the best trade-off between time window expansion and 

number of required vehicles. 

The approximation methods, we have developed to avoid running the computationally inefficient exact 

evaluation, were tested to be compared with the exact evaluation.  Those methods are also compared 

among each other to determine the best performing one. Results show that the algorithm provides 

good quality solutions to our problem, while consuming reasonable computational efforts. 

In a dynamic world, to address the real world problems effective and efficient decision support tools are 

needed. People from sales and logistics departments can benefit from the flexible version of the 

classical VRPTW which provide solutions by a faster heuristic during fleet planning and sales negotiation.  

There are many perspectives that are worthy of receiving further investigation in future study.  The 

more successful implementations of Tabu Search are more likely to create better initial solutions and 

neighborhood structures. Alternative strategies of generating an initial solution, more sophisticated 

neighborhood exploration, different memory structures, different aspiration criteria and more 
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sophisticated diversification and intensification methods can be developed. One should also take the 

trade off between complexity of the algorithm and computational effort that this algorithm requires into 

consideration. Another future option can focus on the setting where only a subset of customers has 

fixed time windows. A study on developing more sophisticated approximation methods and doing an 

extensive parameter tuning of these methods can be conducted.  
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Appendices 

Appendix 1- Parameter Setting for Time Oriented NNH 

Problem 
Number of Vehicles 

PS 1 PS 2 PS 3 PS 4 PS 5 PS 6 

R101 23 23 23 25 23 22 

R102 23 21 20 20 22 20 

R103 23 21 20 20 22 20 

R104 15 12 11 12 13 14 

R105 16 17 16 16 15 16 

R106 17 15 15 14 14 15 

R107 13 13 12 13 12 12 

R108 13 12 12 11 10 10 

R109 14 14 13 14 13 13 

R110 13 14 11 12 11 12 

R111 15 13 12 11 12 12 

R112 11 12 11 11 10 11 

C101 11 12 11 11 10 10 

C102 11 12 11 11 11 11 

C103 12 10 10 10 10 10 

C104 11 10 10 10 10 10 

C105 11 12 10 11 11 11 

C106 11 12 11 12 11 11 

C107 11 11 10 11 11 11 

C108 10 12 11 11 11 10 

C109 10 11 11 11 11 10 

RC101 18 17 19 17 17 18 

RC102 16 15 14 15 15 16 

RC103 15 14 13 13 13 13 

RC104 14 12 13 13 13 12 

RC105 19 18 18 18 17 16 
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RC106 14 15 14 15 14 14 

RC107 14 13 12 12 12 11 

RC108 14 13 12 12 12 11 

 

 

 

 

 

 


	Abstract
	Preface
	Executive Summary
	Table of Contents
	List of Figures
	List of Tables
	Table of Notations
	1. Introduction
	2. Literature Review
	3. Problem Analysis
	4. Scheduling
	5. Tabu Search for VRP with Flexible Time Windows
	6. Computational Experiments
	7. Conclusion
	References
	Appendix 1


