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Abstract

Embedded systems are computing systems responsible for performing one or more spe-
cific functions within a host device. In the early design phases of embedded systems,
multiple design choices need to be considered. Manually analyzing the feasibility of
the designs is time consuming, lots of design parameters have to be considered, where
exploration of the design space using each parameter is complicated hence impractical.
Thus an integrated toolset that could assist in exploring the design space and choos-
ing a near optimal design is of great benefit to the designers. This exploration usually
involves analyzing the design choices using various tools with specific analysis methods
that focus on one of the chosen design parameters. The design parameters are always
application dependent. The Octopus toolset is one such design space exploration tool
developed by Embedded Systems Institute in collaboration with various Dutch compa-
nies. The toolset assists the users in making a near optimal design choice for a system.
It uses a graphical modeling language called Design Space Exploration Intermediate
Representation (DSEIR).

Embedded systems typically have (strict) real-time constraints and usually work in
a resource-constrained environment. For hard-real time systems with hard-deadlines,
meeting deadline requirements is one of the critical factors for making design decisions.
This property can be checked by performing schedulability analysis on the designs, which
ensures that the resource requirement of the system is satisfied throughout its execution.
Schedulability analysis is an important analysis method for analyzing design choices, and
hence is a useful addition to the Octopus toolset. The goal of this thesis is to incorporate
schedulability analysis as an analysis technique in the Octopus toolset.

We first investigate the possible approaches to add schedulability analysis to the Octopus
toolset. During this investigation we observed broader requirements for the accomplish-
ment of the primary goal, thereby dividing it into two phases namely, making schedula-
bility analysis possible in the Octopus toolset and making this analysis procedure scalable
for arbitrary DSEIR models.

The first phase includes devising an approach to perform schedulability analysis based
on model checking. Model checking was chosen owing to its merits over the other meth-
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ods. The Octopus toolset consists of a branch performing model checking on the DSEIR
models using the model checker Uppaal, upon which we build the support for schedu-
lability analysis. Completion of first phase included adding of the deadline feature into
DSEIR and creating a deadline detection mechanism in Uppaal and embedding this into
the DSEIR to Uppaal translation module in the Octopus toolset.

After the completion of the first phase, we analyze the scalability of our approach to
arbitrary DSEIR models, which are tuned to simulation and are sufficiently large models.
Given the practical limitations for model checking in Uppaal and general problems like
state-space explosion in large models, we required a method to approximate the input
models into an abstract form with focus on state-space reduction. We construct an
algorithm to perform abstraction based on syntax analysis, applying which we get a
sound approximation of the original DSEIR model.
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Chapter 1

Introduction

1.1 Preface

Embedded Systems Institute (ESI) is a leading research-based institute that tries to
bridge the gap between academia and industry. It focuses on embedded systems tech-
nology through open innovation research. This master project is a part of an ESI con-
solidation project, building on the result of the Octopus project [1].

1.2 Context

During the early stages of the design of an embedded system, choosing among the avail-
able design alternatives becomes a huge challenge. The Octopus toolset developed in the
Octopus project uses model-driven design space exploration (DSE) approach to overcome
this challenge. The model-driven DSE approach aims at providing support for modeling,
analyzing and selecting appropriate design alternatives during the early phases of system
development. This helps in making a good design decision after considering the various
metrics of interest such as timing, energy usage and cost, as well as the multiple design
parameters such as the number and type of processing cores, sizes and organization of
memories, interconnects, scheduling and arbitration policies. Figure 1.1 shows a design
space exploration process in which a near optimal design is selected from an available
design space with multiple design choices. Users initially have multiple designs for a
single project and need to decide the best one among them. Manually, this is done by
analyzing these designs using various analysis tools and depending on the results and
requirements deciding the optimum design. Performing these analyses manually poses
challenges in maintaining consistency in the designs, also this process is time consuming.
A DSE tool could assist the users in making design decisions faster, the Octopus toolset
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Figure 1.1: The design space exploration process

is one such DSE tool. The toolset currently provides support for:

• High-level modeling of embedded systems, with a clear separation of concerns in
application, platform, and the application-to-platform mapping.

• Formal analysis of functional correctness and performance, and

• Exploration of alternatives and synthesis of optimized designs.

Figure 1.2 shows the high level plug-in based architecture of the Octopus toolset. It
consists of 5 modules which form the core of Octopus. These modules are:

• Modeling module: Interface to input user models, the Octopus toolset provides
a graphical editor to design the user models.

• Kernel module: The modeling language called Design Space Exploration Inter-
mediate Representation (DSEIR) used to represent the user models.

• Analysis module: The input models in the DSEIR language are subject to
various analysis altogether via the tools in analysis module.

• Diagnostic module: Diagnostic tools for detecting the cause of failure (if any).

• Search module: The tools for searching through the entire design space for near
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optimal design options by checking the models against various properties via the
analysis tools.

Figure 1.2: A high level plug-in based architecture of the Octopus toolset [1]

The various analysis tools can be seen in the main architecture in Figure 1.3. The idea
of Octopus is not to provide new methods but rather to provide connections between
different tools, all based on the assumption that no single tool/method can answer all
design questions. This architecture depicted allows for:

• Easy reuse of models among different tools, while providing model consistency

• Systematic and combined use of different tools and

• Domain-specific abstractions to support different application domains and easy
reuse of tools across domains.

1.3 Motivation and Related Work

Schedulability Analysis is defined in [2] as follows: The problem of real-time schedulabil-
ity analysis involves establishing that a set of concurrent processes will always meet its
deadlines when executed under a particular scheduling discipline on a given system. Em-
bedded systems often involve monitoring and controlling of complex physical processes
using applications running on dedicated execution platforms in a resource-constrained
manner. These resources include memory, processing power as well as the time allotted
for execution. Such systems could be part of larger systems which can be sometimes
life-critical systems, for example in an airplane. For a real-time system with hard dead-
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Figure 1.3: Low level architecture of the Octopus toolset [1]

lines, it is critical to ensure that the deadlines of all the tasks are met. The challenge of
schedulability analysis is to guarantee that the scheduling principle to be implemented
avoids any deadline violations. Thus we need a method to ensure its smooth working.

In the Octopus toolset context, among the various questions affecting the decision making
in DSE is the schedulability of the design. To obtain a proper design that ensures smooth
running of the system by satisfying all the requirements, it would also require the tool
to ensure schedulability. The problem can be solved by imposing task deadlines and
automatically checking if they are always met. This would help the tool to immediately
eliminate infeasible design options. Traditionally, there are two methods to determine
the schedulability of multiprocessor systems:

• Utilization bound tests: Utilization bound tests are theoretical tests based on
certain formulas, which depend on the number of processors and the utilization of
the tasks. This method is safe but pessimistic.

• Simulation: Simulation of a system execution is the artificial representation of the
temporal behavior exhibited by the system during its runtime. This method is
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unsafe and does not perform exhaustive exploration of the state space.

In view of the drawbacks of utilization bound tests and simulation, it would be valuable
if we could have a method for exact schedulability analysis without the pessimism of
the utilization bound tests. The method suggested by Guan et al. [3] was to analyze
schedulability without any pessimism by transforming the schedulability problem into
reachability analysis problem of timed automata. Uppaal [4], a tool for timed automata
model checking is used for this purpose.

1.4 Problem Statement

The core problem of this project is to perform schedulability analysis of models de-
signed in Octopus via model-checking using Uppaal, thereby avoiding pessimistic and
non-exhaustive approaches.

Though the overall problem statement only mentions about schedulability analysis and
model-checking, the actual task is much broader. In the Octopus toolset users can define
their models using the DSEIR language. This model is entirely in the DSEIR syntax and
then needs to be translated into corresponding Uppaal syntax. Uppaal, or in general
any model checking tool, is prone to the state-space explosion problem. In the Octopus
toolset, models are tuned for simulation, making them less applicable for exhaustive
analysis methods. Thus these models can have large number of instances causing state-
space explosion. So in a broader sense the problem statement can be divided into two
phases:

• To make schedulability analysis possible in Octopus.

• To make schedulability analysis scalable for arbitrary DSEIR models.

The first point refers to providing an option in the Octopus toolset to perform schedula-
bility analysis on the models designed. The second point refers to making Schedulability
analysis scalable to be applied on arbitrary models represented in DSEIR, with few syn-
tax restrictions applied on the model. In Section 1.5 we describe the approach used to
solve these problems.

1.5 Approach

This section describes our approach towards solving the problems described in Section
1.4. The DSEIR language provides necessary syntax support for the users to represent
their system in the form of models. A model usually represents a finite system. We
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build the solution over the infrastructure provided by the Octopus toolset, to perform
translations to the Uppaal syntax. The problems addressed in this thesis are:

• Making schedulability analysis possible in Octopus :

– Extending the DSEIR language to include the deadline feature.

– Modifying the existing Uppaal translation from the DSEIR language by adding
a mechanism to detect violation of deadlines.

– Automation of the entire process.

• Making schedulability analysis scalable for arbitrary DSEIR models in Octopus by
performing data abstraction.

The first part is achieved by extending the DSEIR language syntax with deadline which
is essential for performing schedulability analysis. The Octopus toolset previously con-
sisted of a module (DSEIR translator) that translates the user defined model into a
Uppaal model, but lacks the deadline violation detection mechanism, which is required
to perform schedulability analysis. Thus we model a deadline violation detection mech-
anism in Uppaal and test it. As a next step, the DSEIR translator module is extended
to support the deadline violation detection mechanism. These additions make schedu-
lability analysis possible in the Octopus toolset. Hence we have an additional analysis
tool, achieving the first goal of the thesis goals. This part is treated in Chapter 5.

The second part focuses on the modeling part of the DSEIR language. Using Octopus
toolset, problems can be represented generically in terms of three components namely,
application, platform (resources) and mapping of these tasks to respective resources. The
representation consists of finite/infinite systems with non-deterministic behavior because
of the different possibilities for task execution. A task model in DSEIR has large number
of task instances but tends to repeat same behavior in different task instances, consider-
ing these repetitions every time, tends to be an overhead to the model-checking tool and
also increases the state-space. Hence the second part of our approach is to automatically
extract the repetition patterns and similarity between different task instances thus iden-
tifying similar task instances and combining them. We consider methods like simulation
and syntax analysis that could be used for performing the abstraction. The methods and
the procedure for abstraction are explained in Chapter 6. The new model created from
this automatic extraction is an abstract approximation of the original model, usually an
over-approximation. The over-approximation is the price paid to obtain reduced state-
space. We also require to make necessary changes in the verification procedure to omit
the false-negative’s (obtaining non-schedulable results for schedulable systems) that are
obtained owing to the over-approximation. These necessary changes are described in
Chapter 7. In Chapter 8 we then discuss a method to check the fitness of the parameter
abstractor method.
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1.6 Example

In this section we describe an example which demonstrates some aspects of the schedula-
bility problem. We describe this example in the DSEIR language with brief description
of the terms used; a detailed description is given in Chapter 2. We have 2 tasks, where A
executes for 5ms and B executes for 4ms except for a value of (b % 1000) == 805 where
it executes for 5ms. This execution time is obtained from the load shown in Figure 1.5.
(It is actually the product of load and processing time of the resource which is required,
but for simplicity we consider processing time of constant 1.) Both these tasks share
a single CPU and A has a priority higher than B. The task model is shown in Figure
1.4. We have, A with parameter “a” which is also its port binding. It is initialized with
the value 1. The guard over the edge from A to itself states that “a” is continuously
incremented by 1 until it reaches a value of 1000 indicating we have 1000 instances to
execute. We have also defined the deadline for A and B in Figure 1.5, with 6ms for both
A and B. (Note that deadline was not initially a part of the DSEIR language, it was
added on later as a part of the solution.) Also there is a delay on the edge from A to itself
(>> 4) which is set to 4ms. The working will be, A starts and executes for 5ms then
starts again after a delay of 4ms. During this delay B executes. But for one condition
when B executes for 5ms, after 4ms of its execution it is pre-empted by A since there is
only one CPU and A has higher priority. Thus B will miss its deadline since it will have
to wait for 5ms to start again making the count 4ms(initially executed) + 5ms of A thus
crossing the deadline of 6ms. Thus B fails to meet its deadline, given the solution for
the first part of the problem this failure can be detected using the schedulability analysis
technique.

Figure 1.4: a)Example task-set in DSEIR syntax. b) The priority, deadline and scheduler of the
tasks

Figure 1.5: Load of the tasks in the example task-set
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These task-models can also have the state-space explosion problems. Consider a case
where we try to verify this system directly on Uppaal. We have to check for all 1000
instances, hence the state-space has 2000 different states at least (accounting for both
A and B with simple addition, actual value could be much higher). If we consider each
task instance has 3 states during execution, the state space would be still 6000 states.
Accounting for worst case combinations, the state-space growth would be exponential,for
instance the combination could be something like 1000 of A × 1000 of B. Thus the system
could become intractable for a bigger system like this with large number of instances
for each task. The second part of this thesis aims at solving this problem by performing
data abstraction and considerably reducing the state-space.

1.7 Overview

This section describes the structure of the report. The structure and the syntax of the
DSEIR language are explained in detail in Chapter 2. The model checking tool, Uppaal,
is described in Chapter 3. The existing DSEIR translation is described in Chapter 4.
Chapter 5 describes the solution provided to the first problem of designing the deadlock
detection mechanism in Uppaal and extending the existing translation of DSEIR to
Uppaal. We also treat the running example here to show how schedulability checks on
the system can be performed in the Octopus toolset. Chapter 6 realizes the second goal of
the thesis, namely, performing abstraction of the model in order to make model-checking
scalable. Also an algorithm that is used to perform abstraction and its intermediate
steps are explained in detail in the same section. The application of algorithm is then
demonstrated by applying it on the running example. Chapter 7 explains the verification
procedure for schedulability analysis, this includes some revision in the model checking
scheme. Chapter 8 describes the methods to measure the fitness of the abstraction
procedure used for providing scalability to the schedulability analysis technique. Finally,
we conclude the thesis in Chapter 9 and present some recommendations for future work
in Chapter 10.



Chapter 2

Design Space Exploration
Intermediate Representation

The Octopus toolset follows the Y-chart approach (Figure 2.1). The essence of the
Y-chart approach is an orthogonal specification of application and platform and their
combination in the mapping. It supports clear separation of application and platform. In
the Y-Chart approach [5], initially an architecture is designed in the specific composition
as shown in Figure 2.1, implemented, analyzed and then diagnosed. These analysis
results are then diagnosed to find the cause of failures, if any. The diagnosis results are
used by the designers to improve the initial design by making necessary modifications to
prevent the observed failures. The Octopus toolset has a similar work-flow. We create
an initial design and improve it with analysis and diagnostics feedback.

Figure 2.1: Octopus toolset using Y-Chart approach[5]

Using the Design Space Exploration Intermediate Representation(DSEIR) language any
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generic problem can be modeled as an input to the Octopus toolset. The DSE basically
involves defining a model in terms of three components: Application, Platform and the
Mapping of the application onto the platform. This problem-specific model (specific to
the user) is then analyzed and possible flaws detected through the analysis are diag-
nosed. After analysis and diagnostics, if any problems are found, the cycle is repeated
by redefining the initially defined model and proposing solutions to the problems found.
The diagnostic information helps in proposing the solution. This entire process can be
manual or automatic. In this chapter we introduce the DSEIR language and its syntax
constructs required for modeling in detail, in Section 2.1. We then define a running
example in the DSEIR constructs in Section 2.2 which will also be used in the rest of
this thesis to explain the application of various approaches used in this thesis.

2.1 DSEIR Language

This section is largely derived from the Octopus documentation [6], we here describe the
syntax of the DSEIR language in terms of its three basic parts, which are, application,
platform and mapping. Each part is explained in detail with both syntax and example
diagrams.

2.1.1 Application

In DSEIR an application is modeled in terms of atomic tasks as the basic building blocks.
Moreover, an application consists of global variables, local variables, a task-flow graph,
start-statements, end-statements, edges, ports, task load, and task handovers between
various tasks. We explain each of these concepts with its syntax. Figure 2.2 shows
the generic syntax of DSEIR models. An instance of this syntax is given in Figure 2.3.
Below, we explain the concept of local and global variables and task-flow graph followed
by its tasks and other entities of the application.

Global Variables are variables that are used to store data and are visible to every entity
present in the task-flow perspective. The declaration syntax of global variables is shown
in Figure 2.2, they are declared along with the name of the application (SyntaxofApp()).
An example of a global variable can be seen in Figure (2.3) where “c” is a global variable
initialized with an integer value 1.

A local variable is a variable that is declared within any task and is local to that particular
task. The syntax for declaration of the local variables is “Type Variable” as shown in
Figure 2.2. The example model in 2.3 shows “Int x” as a local declaration for task A.

The task-flow graph specifies the flow of tokens between individual tasks. The token
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Figure 2.2: Task-flow perspective syntax diagram

Figure 2.3: Task-flow perspective example

flow represents the flow of control and data between individual tasks, thus representing
data dependency and execution sequence as in general scheduling terms. On a global
perspective the tasks and their connections with other tasks via edges can be viewed as
a task graph, the edges represent the dependency (data or control). For example, “a *
10” on the edge from task A to B is the value passed onto B by A.

The task in DSEIR is comparable to a task in real-time systems. It has several attributes
and it executes (fires) to complete some actions for the system. In DSEIR task is identical
to a function in a programming language, having zero or more parameters of given types.
When each parameter of a task is given a value, a task instance is obtained. A task
instance executes for a required amount of time depending on its load (explained later),
during its execution it consumes some tokens and produces some. A task is said to be in
the “ready” state in scheduling terms when it has enough tokens in its ports. Each task
has a task guard associated with it, which is an expression that evaluates to a boolean
value and needs to be true for the task to execute. The guard is by default true; if not
specified. Task declaration syntax can be seen in the model of Figure 2.2. For example,
in Figure 2.3 A and B are tasks, the task guard of A is true and for B it is b < 11.
The task parameters of A and B are respectively “a” and “b”, which are both of type
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Integer.

The tasks can also contain a set of start-statements and end-statements. Like the name
itself suggests they are executed in the beginning and end of task execution and usually
affect the local variables. In the example, shown in Figure 2.3, x = 1 is the start
statement assignment and x = 0 is the end-statement assignment.

Edges are used to connect a task and the port of another task. They represent transfer
of data and control from one task to another via tokens. As explained before, tokens are
passed through edges and this passing is guarded by a condition on the edge. Condition
is an expression which evaluates to a Boolean value. For example, in Figure 2.3 the
edge from A to B has the condition as a > 4 and the value to pass is a ∗ 10. The
condition is considered to be true if absent. The edges are also associated with a delay,
the time taken by the tokens to pass through the current edge. The value of delay is zero
by default and is represented as “>> Delay” as shown in the syntax describing model
(Figure 2.2).

A port acts as a destination to an edge coming from another task and is contained inside
a task. Port binds (assigns) the value from the input edge to its binding expression. In
cases where the initial value of the port is set, the initial binding happens using this
initial value. The binding expression is a mathematical expression that consists of task
parameters, but usually it contains only one task parameter to which the value from
the edge or initial value is directly assigned. Ports also have conditions associated with
them which are similar to conditions on edges. If the condition on the port evaluates
to false then binding does not happen. For example, in Figure 2.3 the condition for the
port in Task A is true and the binding expression consists of only a parameter “a”.

A task that has all the required tokens in its ports is said to be “enabled” and will
begin executing when it is allocated with resources (platform) by the schedulers. A port
can contain more than one token at a time and requires ordering schemes. Port can be
unordered ; in such a case the task can non-deterministically choose any token and use it
to bind. It can alternatively be FIFO, in which case the token that has first arrived must
be used first. The ports can be unbounded i.e., can have arbitrary number of tokens.
After the firing of the task the tokens are said to be consumed and hence removed from
the port (The binding expressions are assigned to a default value, e.g. 0 indicating that
the tokens are removed). The tasks can also produce tokens while firing, which are then
sent through the output edge from the task.

Along with a task, certain properties of the task can also be defined such as the Task
load which defines the resource requirements of a task. Task load also partially decides
the execution time of the task. The load does not change during the execution of a
task instance and also that unit of load is considered the same for each service type. In
other frameworks tasks may directly request for resources, but in DSEIR, resources are
handled by the schedulers and they provide services to the tasks. The tasks here request
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services rather than resources. Services can be of type COMPUTATION, STORAGE,
TRANSFER or any other user-defined type.

Figure 2.4: Load perspective diagram syntax

Figure 2.4 shows the declaration of load and handover between two tasks in the DSEIR
syntax. Load expression is a mathematical expression which results to a constant or
a distribution over a specified range when evaluated, it is usually dependent on the
parameters of the task or sometimes simply a constant or range. Figure 2.5 shows an
example of the load perspective. We can see the mathematical expression for load over
service type INTERNAL STORAGE in task A, which is dependent on a parameter “a”.
The remaining expressions are just constants.

Figure 2.5: Load perspective diagram example

The handover expression is also similar to the load expression. To model resource reser-
vations and situations where one task needs to transfer rights over some resource to
another, DSEIR introduces the notion of task handover. A handover is an integer ex-
pression associated to each edge (considered zero if absent). This expression is evaluated
at the end of the execution of the current task instance; it can depend on the task param-
eters and other local or global variables. The amount of resource that has been handed
over is then released by the resource receiving it or is transferred over to another task
until it is released.

2.1.2 Platform

The execution of a task requires resources. In DSEIR resources and tasks are not directly
mapped onto each other. Instead resources provide services and tasks requests for these
services. These requests for services are allocated by the scheduler on the basis of the
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scheduling policies and the availability of the resource. The types of resources considered
here are usually CPU, GPU, FPGA and MEMORY. Along with the resources their
attributes, given below, are also defined:

• Service Type: Defines the type of services provided by the resources in the model.
The possible service types are COMPUTATION, STORAGE, TRANSFER and
any other user-defined types.

• Resource Name: Defines the name of a resource used in the model, e.g., CPU or
MEMORY.

• Capacity: Defines the capacities of the resources managed by the scheduler, e.g.,
the capacity of CPU is defined to be 1.

• Processing Time: Defines the processing time required by the respective resource
to process unit load. E.g.Processing time of CPU is 4 time units per 1 unit of load.
So if the load on the service type provided by CPU is 10 then the total time taken
by CPU to process this load amount is 40 time units.

Figure 2.6: Resource perspective syntax diagram

Figure 2.7: Resource perspective diagram example

Figure2.6 shows the declaration of two resources which provide the same service type.
Figure 2.7 shows a declaration of a resource named as Memory with capacity 100 units
and processing time as 0 time units. This resource provides a service of service type
INTERNAL STORAGE.

Tasks put some load on their required service types which are granted by the scheduler
and mapped to the resources that provide them (service type). The mapping of a service
type to the resource that provides that particular service type, by the scheduler is shown
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in Figure 2.8. The amount of the resource to be provided is decided dynamically during
run time and is usually problem specific. Some of the resources like processing units
(CPUs) are also associated with attributes like pre-emptivity. This attribute of pre-
emption is defined in the scheduling perspective in Figure 2.8. In Figure 2.8, the white
circle connecting the resource to a service type means that the resource is pre-emptive
and the black circle connecting the second service type represents non pre-emptiveness.
The amount on the edge from the white circle to the resource describes the amount of
resource to be allocated to that specific task requesting this service type. This amount
can either be a constant value or the load value defined by the requirement of the
task. For the concept of pre-emption, consider a scenario where two tasks X and Y
are contending for the same service type provided by one single resource R. Task Y
has a priority higher than X. Task X is currently executing and has finished 50% of
its execution, when task Y is enabled (has enough tokens in its ports) and is ready to
execute. At this moment task X is pre-empted and Task Y is allowed to execute. Task
X can continue only after task Y has finished execution.

Figure 2.8: Scheduling perspective syntax diagram

Figure 2.9 shows an example of a scheduler mapping resources to the respective service
type they provide. Here, amount allocated in case of CPU is either 1 or none and is
not dependent on the value of any parameters. But in the case of M1 and M2 the
amount allocated is set to be the amount of load requested by task A for the particular
service type. The load expression can be dependent on the task parameters, hence this
allocation also becomes dependent on parameters.

2.1.3 Mapping

A scheduler provides tasks with resources requested by them. In DSEIR, a scheduler is
mapped onto a task or a set of tasks depending on the service type they require. Consider
an example, tasks A and B have requirements for service types COMPUTATION and
a resource called CPU that provides the COMPUTATION service type. Thus these 2
tasks can share a scheduler like in the example shown in Figure 2.10.
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Figure 2.9: Scheduling perspective diagram example

Figure 2.10: Mapping perspective syntax diagram

This mapping is defined along with certain attributes of the task which are set in the
mapping perspective, they are:

Priority : Defines the priority of each task. It is a mathematical expression which results
into an integer constant when evaluated. The expression can be used to specify dynamic
priorities. For static priorities we can define a constant. The priority of the task will
determine the task that will be granted a resource when there is an ambiguity like two
resources are ready at the same time and requesting for the same service type.

Deadline: Defines the relative deadline of a task, in a set of tasks. It is a scheduling
term which defines the latest time until which a task can execute. It is a mathematical
expression which results into an integer constant when evaluated or a distribution. Note:
This feature was not existing previously in the DSEIR syntax and has been added later
on in the context of this thesis. The schematic view of mapping a task to a particular
scheduler along with an example is shown in Figure 2.10. The concrete example shows
the integer constants declared for priority and deadline of Task A, for the deadline of
task B “if b> 2 then 20 else 10” is an expression which evaluates to an integer constant
depending on the value of the parameter “b” local to Task B. If the “condition” in the
“If statement” evaluates to true the deadline will be 20 or else 10. Both the tasks share
the same scheduler (sAB).
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2.2 Running Example in the DSEIR Syntax

The Octopus toolset provides some example models specified in the DSEIR language.
We use one of this to describe the problems solved by this thesis. First we take one of
these example models and use that to illustrate various concepts of DSEIR syntax.

This example consists of a task-set with 3 tasks namely, scan, image processing and
print as well as resources and schedulers which maps these tasks into required service
types. The basic job of this system is to process the pages to be printed and then
printing them. The task-set execution is initiated by initializing scan which is to be
executed first in the sequence. The data (page numbers) about the pages to be printed
and their corresponding page sizes are transferred to scan task which performs a set of
operations given this data and transfers the results to the next task (image processing)
after finishing its execution. Image processing task also performs some operations and
transfers the page data to the next task (print), which prints the page.

2.2.1 Application

The DSEIR model for this example is shown in Figure 2.11 and explained in detail in this
section. The ports of tasks scan, image processing and print task are respectively named
as “inA”, “inB” and “inC”. Scan task is initialized by providing it with a token; this
action is executed by setting the initial values for the port of scan task. In the current
example the initial value for the port binding is [1, dist(sizeDist)] where sizeDist is a
probability distribution for the appearance of elements (array elements), with probability
of each element in the distribution. It is defined as an array “int sizeDist[] = [1, 20, 2, 50,
3, 30]” which means that constant 1 appears with 20% probability, 2 with 50% probability
and 3 with 30% probability, the declaration can be seen in the global declarations. The
file name has been set to ODSE.

Once the ports have enough tokens, scan task waits for its execution until its resource
requirements and priorities are satisfied. After scan task has finished execution it pro-
duces two tokens, of which one is sent over an edge to scan task itself and re-consumed
for the execution of its next instance and the other token is sent over the edge to port
“inB” and is consumed by scan task for its execution. The token to be sent from scan
task to itself, reaches only if the guard condition over the edge from scan task to its port
“inA” is satisfied.

After execution, image processing task produces a token which is passed on to print task
for the execution of its current instance. Print task executes but does not produce any
tokens. Note that each task here has its parameter name as pageSize, since it is a local
variable the names can be the same. The edges, conditions, expressions, handover and
the port bindings are defined as follows:
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Figure 2.11: Task-flow perspective diagram for the printing example

• Scan task:

– Edge to “inA”: Here numObjects is a global variable which is set to 5. This
in combination with the guard on the edge from scan task to its port “inA”
defines that scan task executes for 5 instances, since after that the guard over
it evaluates to false. The value expression (pageSize[1] = pageSize[1]+1) over
the edge has the values that are used to bind the variables of port “inA”.
This expression changes the element at index 1 of pageSize array and passes
the new array onto the port.

– Edge to “inB”: The value expression (pageSize) over the edge has the values
that are used to bind the variables in port “inB”. There is also some amount
of handover that takes place from scan task to image processing task. In
this case it is the RESULT STORAGE and 20 units are handed over. The
handover is shown in Figure 2.12. Scan task initially claims 20 units of service
type RESULT STORAGE, after its execution it does not release this resource
but transfers the same amount (since handover expression and load expression
of scan task are same) to image processing task which uses this storage to
perform its operations, and does not have to explicitly claim it.

– Port “inA”: Binds pageSize (binding Expression of “inA”) array with the
values provided by the value expression (pageSize array with one of its ele-
ments altered) on the edge to “inA”. This binding happens always whenever
tokens are produced by scan task and the guard over the edge evaluates to
true, since the condition for port binding is explicitly specified as true. In the
beginning “inA” is initialized by binding its variables with the initial values
onto an integer array of size (pageSize) which stores this information.
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Figure 2.12: Load perspective diagram for the printing example

• Image processing task:

– Edge to “inC”: The value expression over the edge to “inB” (pageSize) pro-
duces the value that is used as binding to “inC”.

– Port “inB”: Binds pageSize array with the values provided by the value ex-
pression on the edge to “inB”.

• Print task:

– Port “inC”: Binds pageC an integer variable with the value provided by the
expression (pageSize[0] array access of element at index 0) on the edge to
“inC”.

Scan task requires the services of type COMPUTATION, INTERNAL STORAGE and
RESULT STORAGE, the amount of load to be provided to the task is decided by the
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scheduler. The behavior of the scheduler is problem specific. If the available amount of
a resource is less than the requested amount by the task then the scheduler grants the
resource only if its possible for the task to execute with the allocated amount (This is
known apriori and amount defined as a constant in this case is irrespective of the load
request of the task, thus load could be more than or equal to the constant). If it is not
possible, scheduler does not grant the resource and waits for the requested amount to be
available. The load expression defined for each service type decides the amount of load
at each instance. The detailed definition of load of each task is given in Figure 2.12.

2.2.2 Platform

The execution of the task requires services of different types, which are provided by
the resources and are allocated to the tasks by the scheduler. Allocation is done by
the scheduler on the basis of the scheduling policies and the availability of the resource.
There are four resources considered here, namely:

• CPU

• GPU

• FPGA

• MEMORY (M1 and M2)

The resource definitions are shown in Figure 2.13.

Figure 2.13: Resource perspective diagram for the printing example

The resources are defined along with their attributes such as resource name, processing
time, capacity and service type. The processing time for the CPU, GPU and FPGA in
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the current example ranges over an unknown distribution from 9 to 11. An unknown
distribution is a type of distribution where the values are non-deterministically chosen
from the given interval, i.e. the probability of the elements are unknown. The capacities
of these resources are pre defined with CPU and GPU defined as 1 unit, FPGA has 1
unit and each memory has 100 units. The processing time of the memory resources M1
and M2 is 0. The tasks are mapped onto their requested resources by schedulers. The
allocation of service types will be done dynamically during the execution depending on
the requirement of tasks and their priority.

In this particular example there are schedulers that manage a particular set of tasks.
These schedulers then map the tasks onto the resources that they manage. Further the
mapping of the service types required by the tasks to the service types provided by the
actual resources is also done by the schedulers. This is shown in Figure 2.14.

Figure 2.14: Scheduling perspective diagram for the printing example

2.2.3 Mapping

The mapping of each task to scheduler is shown in Figure 2.15. “sA”, “sB” and “sC” are
schedulers. The tasks are defined with their respective priority and deadline expression.

Scan task requires 3 types of services COMPUTATION, INTERNAL STORAGE and
RESULT STORAGE. The scheduler “sA” for scan task maps the services to the re-
sources CPU and Memory M1. The actual load is defined in the application part in
Figure 2.12. Similarly image processing task and print task use scheduler “sB” and
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“sC” respectively, for the mapping to services required by them. In this example the
scheduler grants the amount requested by the task if available, and otherwise no service
is granted until the requested quantity becomes available.

Figure 2.15: Mapping perspective diagram for the printing example

The mapping also describes the priorities. Here scan task has the highest priority,
followed by image processing task and print task. Due to task dependency (Figure 2.11
the edges describe dependency) usually the execution starts with scan task followed,
respectively by image processing task and print task. Along with the priorities, deadline
is also defined in the mapping perspective.
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Uppaal

Uppaal is a toolbox for verification of real-time systems jointly developed by Uppsala
University and Aalborg University [7]. In Uppaal, the concept of timed automata is used
to model processes in a system. A network of communicating timed automata forms the
entire system. The definition of these processes also includes various attributes and
functions with data types such as integer or user defined structured data type. Channel
synchronization are used to synchronize two or more processes. The purpose of using
Uppaal in this thesis is to perform schedulability analysis via model checking. One of the
main problems we address in this thesis is state-space explosion, which is also a problem
in any model checking tool and also is extensively addressed in the literature regarding
Uppaal [7]. Uppaal provides a graphical user interface which can be used by the users
for creating, editing and simulating the input models followed by verifying the input
models. Verification involves specifying the property of the model in a logical query
language and exhaustively searching the state space to make sure that the specified
property is satisfied. For more information about Uppaal and its components refer [8].

In this section we briefly describe the modeling language of Uppaal, the specification
language used to verify and also how the tool works. For a more detailed explanation of
the Uppaal syntax we refer the Uppaal documentation [9]. In explaining the syntax, we
mostly confine ourselves to the constructs that are used in the remainder of this report.

To illustrate the syntax we use a coffee machine example, depicted in Figure 3.1. The
features missing in this example are explained in separate illustrations.

The coffee machine example models the behavior of a system with three components,
a coffee machine, a person and an observer. The person repeatedly tries to insert a
coin, tries to extract coffee after which he will make a publication. Between each two
actions the person requires a suitable time-delay before being ready to participate in
the next one. After receiving a coin the machine should take some time for brewing the
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Figure 3.1: Coffee machine example [10]

coffee. The machine should time-out if the brewed coffee has not been taken before a
certain upper time-limit. The observer should complain, if at any time more than 8 time-
units elapse (expressed by the constant timeout in the model) between two consecutive
publications.

3.1 Uppaal Timed Automata Modeling Language

Uppaal modeling language is based on timed automata, which are finite-state machines,
extended with the concept of time [8]. Time is represented by clock variables. All clocks
in the model progress synchronously. In Uppaal, a system is modeled as a network of
several such timed automata in parallel. Each timed automaton is an instantiation of a
template automaton. The Uppaal syntax has 3 sorts of declarations, given below:

• Global declarations: The declarations in the main section which are visible to
all templates. The declarations can include clock variables, integers, user defined
variables, constants, channel and user-defined functions. The global declarations
for the coffee machine example are given below:

// Only Synchronization channels are declared. - comments

urgent chan coin, coffee, publication;

int count; //Used to count the number of coffee’s served.

• Local/Template declarations: Local declarations are similar to the global decla-
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rations except for the fact that a variable defined in this section is local to that
particular template. An example of a local definition for the person template in
the coffee machine example is given below:

clock y; // A clock variable used in the template

• System declarations: System declarations are used to instantiate the templates
into processes and execute them in parallel. A process instance of a template is
defined by giving it a process name and instantiating it parameters. Templates
without any parameter can be readily used as processes. System declaration starts
with the keyword system and continues by naming all process to be composed in
parallel. For the coffee machine example the system declarations are given below:

Obs = Observer(8);// Process instantiation

system Person, Machine, Observer; //Calling all the processes

In this example we can see that observer is a parameterized template with a parameter
timeout, this is instantiated in the system declarations with the value 8. Figure 3.2
shows the parameterized template of observer.

Figure 3.2: Parameterized template Observer in coffee machine example

Other elements of the Uppaal modeling syntax are:

• Synchronization: There are three types of synchronization in Uppaal, described
below:
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– Binary Synchronization: Channels are used for message passing between edges
of different templates. They can be declared using the syntax “chan vari-
able name” either in the local declarations or in the global declarations. An
edge labeled with variable name! synchronizes with another edge labeled
variable name?, where variable name! acts as the sender and variable name?
acts as a receiver. In the coffee machine example the binary channels are
coin, publication and coffee. This type of synchronization is also known as
hand-shaking.

– Broadcast channels: Channels can also be declared as broadcast channels,
using the syntax “broadcast chan variable name”. The difference between a
binary channel and a broadcast channel is that the broadcast channels syn-
chronize a send with as many “receive” as “enabled”. For example, consider
the Figure 3.3 which represents a scenario with 3 templates A, B and C, with
one broadcast channel test. A sends two messages and both B and C receive
them. So in working all these automata work synchronously, i.e, when A
moves from A1 to A2 both B and C mimic the same due to the synchroniza-
tion channel.

Figure 3.3: Example for broadcast channel

– Urgent channels: These channels enforce a synchronization when the edge is
“enabled”, i.e., do not allow the time progress when both sending and receiv-
ing actions can be taken. Edges having urgent channels cannot have guards
with clock variables. Syntax for urgent (respectively, urgent broadcast) chan-
nels is “urgent chan name variable name” (respectively, “urgent broadcast
chan variable name”). For example, all three channels in the coffee machine
example, i.e., coin, coffee and publication of the coffee machine example are
urgent channels.

• User functions: Users can define functions similar to imperative languages such as
C++ or C functions except that they cannot use pointers. These functions can
have parameters as input and can produce an output. Functions can be global as
well as local, depending on their use. For example, in the Observer template the
function countFunction is declared in its local declarations as:
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int countFunction(int count){

count = count+1;

return count;

}

//This function is used to count the number of times coffee is served.

• Data types in Uppaal:

– Clock Variables: Clock variables are used in Uppaal to keep track of time.
Clock variables are of type real. They can be declared as “clock variable name”
as used in the coffee machine example. There is a possibility to reset the clock
and also pause the clock. The actions are defined as : “x‘==1” to indicate
the clock running, “x‘==0” to indicate the clock is paused and x = 0 to reset
the clock. All clocks in Uppaal progress synchronously. The coffee machine
example uses a clock variable “y” in the person template.

– Structured Data types: Along with the normal data-types such as integers,
arrays of integers and clocks, Uppaal also allows user defined structured data-
types; record-types can be defined using the keyword typedef struct. For
example, consider the definition “typedef struct {int start time; int end time;}
task”. It defines a record type named task which has two components namely,
start time and end time, both of type integer.

– Bounded Integers: The Integer definitions can be bounded in Uppaal. E.g.,
int [0,10] var; specifies that the variable var can take values ranging from 0
to 10.

– Constants: Values that are constant throughout the model can be defined as
“const int variable = value”, in global declarations.

Next we discuss the structure of a template automaton. Each template consists of a set
of locations, transition edges between locations and local declarations. We define each
component of the templates in detail:

• Locations: Locations along with the parameters and the valuations of variables
and clock are used to describe the state of a system. A location is denoted by a
blue circle. Figure 3.4 shows the location which are listed below:

– Normal: a typical location in an automaton is depicted by a circle.

– Initial: Defines the starting location of a process template. It is denoted by
an encircled location.

Locations can also have invariants defined. Clocks, integer variables, and constants
can be referenced in the invariants [9].
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Figure 3.4: Types of locations

In the example model (Figure 3.1), all 3 templates have an initial location and
several normal locations. Each location can also be given a name; e.g., in the
example model, Idle, Ready, WaitCoin, WaitCof, Go and Complain are location
names. The WaitCof location has an invariant (y<=2) which is defined over the
clock variable and specifies the amount of time the system can be in that location.

• Edges: The edges are used to connect two locations to denote possible transitions.
It is defined along with various attributes such as the ones given below:

– Select: Defines a variable and a range of values from which the variable can
non-deterministically take a value. In Figure 3.5, x: int[0,10] defines that
“x”obtains a value in the range from 0 to 10 non-deterministically, when the
edge from location 1 to location 2 is taken.

Figure 3.5: Example of an edge

– Guard: Defines the condition, which has to be true in case the edge associated
with the guard is to be taken. A guard is of Boolean type and consists of
integer or clock values. Clock values are always compared with integer values.
In Figure 3.5 the edge from 1 to 2, has a guard x < 10. This states that this
edge can be taken only when x < 10. In the coffee machine example, in person
template the guard “y==2” can be seen over the edge WaitCof to Go.

– Synchronization: Defines the synchronization labels that affects a particular
edge or is initiated by a particular edge. The label is either in the form Chan-
nelName! Or ChannelName?. The synchronization variables in Figure 3.1
are publication! and coffee!. In Figure 3.5, channel! denotes synchronization
variable.

– Update: Defines update operations on variables. For example, in Figure 3.5
the variable “x” is updated with value 0. In the observer template of the
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coffee machine example, the count variable is first updated to 1 and then
updated using valued calculated by the function countFunction(count).

3.2 Uppaal Query Language

To perform model checking, we need a logical language to define the properties that
the model should satisfy. The query language used in Uppaal is a subset of the TCTL
(Timed Computational Tree logic) [11]. Similar to TCTL the query language consists of
state formulae and path formulae. Path formulae can be classified into safety, liveness
and reachability. We particularly consider the reachability and safety in this project.

• State formulae: A state formula is a logical expression with unary or binary op-
erators combining components that represent the process template. For example,
a state formula for the coffee machine example can be “y==2”. A state formula
can also be used to check whether the system is resided in a particular location, by
using the syntax “process.location”. For checking deadlocks Uppaal has a special
keyword “deadlock”. System reaches a deadlock when no outgoing transition is
enabled and then the clock variables halt as well.

• Path formulae: A path formula quantifies a logical formula over some or all paths
in the system. “E” is used to existentially quantify over paths and “A” universally
quantifies over all paths in the system. In combination with the above mentioned
quantifiers, one can use the modalities <> and [] respectively, to specify eventuality
and invariance of a logical formula. These combinations (required combinations
are only specified) are spelled out as follows.

– A[] φ - For all paths φ always holds.

– E<> φ - There exists a path where φ eventually holds.

Two particular types of formulae that we consider in the remainder of this report are
reachability and safety. Reachability is to check whether a particular state formula can
be satisfied in some reachable state. A formula of the form E<> φ can be used for
this purpose. For example in the coffee machine example it can be checked whether the
complain state can be reached by using the formula “E<> Observer.Complain”, this
shows that the timeout of 8 seconds has happened since complain location is reached. If
this query returns false, it means that the system never reaches the complain location,
i.e., two consecutive servings of coffee takes place within 8 time units.

Safety properties are used to ensure that some properties never hold or always hold.
Safety properties can also be represented as a reachability problem by checking if the
negation of the considered property is reachable. Checking that deadlock never occurs
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is a kind of safety property. It can be checked using the formula “A[] not deadlock”,
which means deadlock never occurs along any path.
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Existing DSEIR Translation to
Uppaal

The Octopus toolset already has the required infrastructure for translation of the user
model in the DSEIR syntax to a model in the Uppaal syntax. Also creation of necessary
query files for checking the newly created model. The work-flow of the entire system
is shown in flow diagram in Figure 4.1. Given a user model, DSEIR model is created
manually. This DSEIR model is then translated to Uppaal syntax using the existing
translation support, i.e., the DSEIR translator. A suitable query file is created manually
for the corresponding Uppaal model file using the Uppaal query file creator of Octopus.
The query file consists of the properties that need to be verified, written in the query
language of Uppaal. Using the created Uppaal model file and the query file we apply the
Uppaal verifier to check whether the property is satisfied or not. In case the property is
satisfied the model is verified otherwise a trace file is generated witnessing the violation
of the property. This trace file is then converted into a user readable format and stored.
This kind of analysis framework can also be seen in [12], with verification trace provided
as output.

In this section, we first describe the existing translation support to Uppaal. This is
done using a generic model which is defined in Section 4.1. Using this generic model,
the mapping of a task in DSEIR syntax into an automaton in the Uppaal syntax is
described in Section 4.2 along with the working of the corresponding Uppaal model.
The application of this translation on the running example is treated in Section 4.3.
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Figure 4.1: The existing work-flow for formal verification in the Octopus toolset

4.1 Generic Model

Consider a generic model with two tasks A and B. Here the two tasks have various
parameters, A has “n” parameters and B has “m” parameters. The number of ports in
A is “x” and B is “m”. In DSEIR, the number of ports should be at least equal to the
number of parameters, with each of those ports having their binding expression as one
of those parameters. A has “z” edges in this example and B has no edges here.

4.1.1 Application

The task-flow perspective diagram of the generic model can be seen in Figure 4.2. The
task parameters of A and B are “a1 · · · an” and “b1 · · · bm” respectively. Task A has
“x” ports with “n” ports with only parameters as binding expressions and remaining
“(x-n)” ports contain “E” a mathematical expression containing operators, constants
and parameters. The distribution of ports with only parameters and the rest are not
necessarily in sequence always, hence they can be spread over the “x” ports in any order.
The sequence numbers “Aa”, “Ab” indicate this randomness, here “a” and “b” could
be any value between 1 and “x”. The operator set for “E” is {+,−, ∗, /,%} and the
logical operator set for “C” is {<,>,≤,≥,==}. For example, a + b is a mathematical
expression, a + b > 5 is a conditional expression. The notations “A1 · · · Ax” describe
the initial values of the ports. The initial value of a port is an array with 0 or more
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Figure 4.2: Task-flow perspective of the generic model

elements.

Edges that connect the tasks have their own conditional expressions “Ce” and value
expressions “Ee”. There are “z” (some number) edges for task A in this model. Note
that all “m” ports of B may not always have edges from task A, but can have edges from
other tasks as well. “TGa” and “TGb” are task guards of A and B respectively.

Figure 4.3 shows the load and mapping perspective of the generic model. Task A requires
“p” service types with load amount associated with each of those service types, similarly
B requires “q” service types. Service types of A has numbering from 11 to 1p and B has
21 to 2q to specify that both can request for different service types, they could be same
as well.

Figure 4.3: a)Load perspective of the generic model. b)Mapping perspective of the generic model
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Figure 4.4: Resource perspective of the generic model

4.1.2 Platform

Figure 4.4 shows the resource declaration for the generic model. We have “u” resources
providing “service type 1” and “v” resources providing “service type (p+q)”. There are
total “(p+q)” service types required by tasks A and B. We skip the scheduling perspec-
tive diagram here since it does not add any information to the translation description.

4.1.3 Mapping

The last perspective in Figure 4.3 shows the scheduler mapping of the tasks with their
priority and deadline defined respectively. Priority and deadline of each task is also
defined. They are mathematical expressions which evaluate to an integer.

4.1.4 Restrictions in Translation

The current infrastructure for translation to Uppaal consists of certain restrictions on
the input DSEIR model it can translate, they are listed below:

• Ports cannot have conditions.

• Ports can have only single variables in their expressions.

• Delay on edges is not supported.

• Dynamic task priorities are not supported.

• Global Variables are not supported.

The generic model here follows these restrictions and is constructed using a subset of
the actual DSEIR construct.
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4.2 Syntax Mapping

This section describes the details of mapping a task in DSEIR syntax into an automaton
in the Uppaal syntax and creating necessary local, global and system declarations for
the same. As described earlier a task is translated into template automaton in Uppaal
syntax. From the scheduling theory perspective a task usually has two states; it can be
idle or active. The DSEIR translation to Uppaal hence creates two locations, namely
idle and active for a particular task automaton. All tasks have these two locations. Since
tasks can also be pre-empted and initialized there can be more locations. When a task
has its initial values set, it has an extra location in the translation called initialize. When
a task has a service type which is provided by a pre-emptable resource then the translated
automaton has a location named pre-empted which is reached when this particular task
is pre-empted by a higher priority task. Hence there are 4 types of translations possible
as listed below:

• Idle, active (only and common for the rest of the types).

• Initialize and pre-empted (as extra states).

• Initialize (only as extra state).

• Pre-empted (only as extra state).

We discuss the translations with respect to the generic model defined previously. The
translation of task A with initial values and pre-emptable resource requirement into a
template, is shown in Figure 4.5. This translation in Figure 4.5 has four locations; with
invariants shown with colour maroon. The locations of the automaton for task A are:

• Initialize: When the initial values of a task are set, it will have this location. Task
A in the generic model has its initial values set hence it contains the location
initialize.

• Idle: From the initialize location, Task A goes to the idle location where it waits
for enough number of tokens in the port, priority requirements to be satisfied and
resources to be available.

• Active: In the active location the task has acquired all the resources and is run-
ning. The time for which the task will be active is decided by the processing time
(Figure 4.4) and the task load (Figure 4.3). Two functions are used to determine
the minimum and maximum duration possible for its execution, namely the min-
Duration() and maxDuration() respectively. These functions are declared local to
each task template. Invariants are used in this location so as to prevent the CPU
from executing the task for a time more than the maxDuration(). minDuration()
is checked to complete at least the minimum duration of execution before returning
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Figure 4.5: A task model with all possible locations

to the idle location by the guard on the edge active to idle. These functions are
defined in the local declarations which are defined later in this section. A clock
variable “x” is used to keep track of the time elapsed in executing the task. Here
x‘ == 1 symbolizes that the clock is ticking when in active location.

• Preempted : When the task instance is in the active location and is running on a pre-
emptable resource like CPU then the task instance can be pre-empted. Hence this
location is reached when a task instance is pre-empted. Preemption is determined
by checking the active status of other tasks that contend for the same resource.
In the current example the task A requires a pre-emptable resource and hence has
the location pre-empted. The invariant x‘ == 0 of this location pauses the clock
variable “x” since task A is not being executed when in this location.

All the resources considered in the generic model providing (p+q) service types (Figure
4.4) are declared in the global declaration section along with their corresponding ca-
pacity “C”. Also the parameters of the task are declared and initialized to value 0, the
guard “is task enabled?” depends on the Boolean function “enabled()” and the variable
“active task” which is initially set to false and is set to true when the system goes from
idle to active location, are declared in global declarations. The synchronization channel
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“hurry” is also declared in the global declarations. Note that C here is from the resource
perspective and not from task-flow perspective.

//Global Declarations

//Channel

urgent broadcast chan hurry;

//Resources

Data_type Resource11 = C11;

Data_type Resource12 = C12;

...

Data_type Resource(p+q)v = C(p+q)v;

//Parameters

a1 = 0;

...

bm = 0;

bool enabled(){

if (required resources available)

return true;

else

return false;

}

bool active_task = false;

The guard “is priority satisfied?” and other functions “claim()”, “consume()”, “re-
lease()”, “produce()” are declared in the local declarations (local to each template or
task). These can be seen in Figure 4.5. The guard “is priority satisfied?” is used to
check if priority requirements of the task are satisfied, is true when any higher priority
tasks is not in active location. The functions “claim()” and “release()” represent the
task claiming the required amount of resource from the available amount when it starts
execution and releasing it after execution. Functions “produce()” and “consume()” are
used to represent consumption and production of tokens, before the task starts firing
and after respectively. These are declared in the local declarations, where “consume”
is more of a representative function setting the ports to a default value. “produce()”
sets the binding expression on the port to the value expression on the incoming edge
depending on the condition of the edge. These functions are listed below in a snapshot
of local declarations for the generic model.

//Local declarations

clock x;

bool is_priority_satisfied(){

return (!active_t1) && ... (!active_t2)

// ( for each t1,t2 that belongs to the set of all higher priority tasks);

}

//For our generic model if B has higher priority than A then the statement
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//would be "return(!active_B)"

void claim(){

Resource11 = Available_amount - LoadA1;

...

}

void release(){

Resource = Available_amount + LoadA1;

...

}

void consume(){

E1 = 0;

...

Ex = 0;

}

void produce(){

if (Ce1)

b1 = Ee1;

...

if (Cem)

bm = Eem;

...//All other edges, maybe to other tasks as well

if (Cez)

Ex = Eez;

}

int minDuration(){

return min(LoadA1) * P11;

}

int maxDuration(){

return max(LoadA1) * P11;

}

}

We then discuss the edges and their attributes:

• The edge from initialize to idle: can contain select and update statements, here
the ports are set with initial values.

– The initial values are bind to the binding expression of the ports, which can
be a single variable like “a1” or a binding expression like “Ex” as shown in
Figure 4.5. Select is optional and is usually set when the model requires
selecting a random value from a given set. For example when the initial value
of a port is selected randomly from the range (1 to 4), select statements are
used.
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• The edge from idle to active: This edge can have all the 4 attributes namely, select,
guard, synchronization and update, set. Select can be present depending on the
model behavior, hence we omit it and present the rest.

– The 3 guards are, “is priority satisfied?”, “is task enabled?” are explained
previously and “do ports have enough tokens?”. The last one checks if ports
have sufficient tokens to fire/execute the task. The actual guard condition
that can be seen in the task automaton, for the guard “do ports have enough
tokens?” is shown in the following example we check for port P1 and P2 in
some task.

0 < numOfTokensP1 && 0 < numOfTokensP2;

//This guard depends on the variables numOfTokens (P1 and P2)\\

which has a count of number of tokens in ports P1 and P2 (respectively).

– Includes a urgent broadcast synchronization channel “hurry” that is used to
force the model to take this edge, whenever the edge is enabled. Note: Only
send is used since the purpose of it is to force the model to take the edge and
not to propagate any message.

– The update part of the edge ensures the execution of the functions defined
in the local template declarations of the task automaton namely “claim()”,
“consume()”, “active task = True” and “x=0”. Here “x” is a local clock
variable defined for each task and can be seen in the local declarations. It is
reset when the task moves from Idle to active. It is used to keep track of the
execution time of each task.

• The edge active to idle: This edge has a guard and some update statements.

– The guard is “x >= minDuration()” ensures that the task has executed to
at least a minimum duration of execution.

– The functions in the update section are “release()” , “produce()”, “active task
= False” and “progressCount++”.

• The edge from active to pre-empted : Contains a guard, a synchronization channel
and an update statement.

– The guard checks if any higher priority task is active. In case a higher priority
task is active the current task is shifted from the active to pre-empted location.

– The urgent broadcast synchronization channel “hurry”.

– The update statement updates the variable active taskName to indicate that
the task is not active anymore.
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• The edge from pre-empted to active: Similar to the edge from active to pre-empted.

– The guard checks if any higher priority task is active. In case no higher
priority task is active the current task is shifted from pre-empted to active
location.

– The synchronization “hurry” on the edge ensures that it is taken whenever
possible.

– The update statement updates the variable “active taskName” to indicate
that the task is active again.

The translation for a regular task such as task B without initial values and pre-emptable
resource is shown in Figure 4.6. The edge in the task automaton is bidirectional the
task can go from idle to active and vice-versa. The attributes over the edges are similar
to the previous translation. Finally the system declarations part calls in all the task
automatons to be executed in parallel.

Figure 4.6: Normal DSEIR translation for task B

4.3 DSEIR Translation of Running Example

The existing Uppaal translation of the printing example described in Chapter 2 has
been implemented in the Octopus toolset. Our translation creates one automaton per
task in the form of a template in Uppaal syntax. The translation of scan task in this
example model using our translation scheme is given in Figure 4.7, the task is renamed
to task A. The translations for the rest of the tasks (task B and task C corresponding to
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image processing task and print task respectively) are shown in Figure 4.8 and Figure
4.9 respectively.

Figure 4.7: Automaton of scan task(task A)

Figure 4.8: Automaton of image processing task(task B)
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Figure 4.9: Automaton of print task (task C)



Chapter 5

Extending DSEIR with Deadlines

The first goal of the thesis is to make schedulability analysis possible in Octopus. Given
the description of the current translation as discussed in Chapter 4, we identify the ad-
ditions that would help us build the schedulability analysis procedure on the existing
infrastructure. The necessary additions that we require to the existing DSEIR transla-
tions are:

1. The DSEIR language already consists of tasks, loads and resources but lacks dead-
line, an important feature required to perform schedulability analysis.

2. The current implementation considers only execution of tasks and pre-emption, we
now need to consider the newly added deadline feature.

Solving the first part is fairly simple and can be done by adding an attribute to the
task in the DSEIR language. We then incorporate this change in the DSEIR translation
by creating corresponding translation rule for deadlines in the Uppaal syntax. Focusing
on the second part, schedulability analysis can be realized by creating a mechanism
in Uppaal that monitors each task using their relative deadline and moves to an error
state if a deadline is missed. This allows for embedding schedulability analysis into a
reachability checking problem. The approach to be taken is divided into two steps:

• We need to initially create possible deadline detection mechanisms in Uppaal. This
step involves creating some models, validating and verifying them.

• The next step is to modify the existing DSEIR translation to incorporate this
deadline detection mechanism.

The extension of the current translation, to realize the second part along with the de-
signs discussed in detail in Section 5.1. These changes are then also incorporated into
the DSEIR translation by making the necessary changes to the existing one. The new
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translation then considers deadline as one of the attributes of the tasks and adds the
deadline detection mechanism. The changes that will occur in the work-flow through
the modifications made in this section are reflected in the work-flow diagram depicted
in Figure 5.1. The changes are, namely, the addition of the deadline feature and the
deadline detection mechanism to the translation procedure and the simultaneous cre-
ation of a deadline query depending on the model and use it in the verification process.
The running example is used to explain the working procedure with respect to the new
translation, as well as verification process in Section 5.2. In this chapter, we describe
the general framework that would be applied to any DSEIR model performing schedu-
lability analysis. We then compare this framework with another schedulability analysis
framework described in [13]. This is done by first describing the scheduling framework
in DSEIR terms and applying schedulability analysis on it, is explained in Section 5.3.

Figure 5.1: Work-flow with the extended DSEIR translation
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5.1 Extending Task Automatons

In this section, we explain the designs used for creation of a deadline detection mech-
anism. Since we are using Uppaal we consider performing schedulability analysis, in
the form of reachability analysis. The idea of performing reachability analysis for sim-
ilar analysis procedures can be found in detail in [13, 3]. We create an extra location
called stop/error which is reached when a task misses its deadline and still has some
execution time left. The schedulability property can then be verified using the formula
“E<> Task.Stop”, which states that “There is a path in the system on which the system
eventually moves to the Stop location”. The expected result is “false” or “property not
satisfied”. In case the property is true, the model violates a deadline. In order to verify
schedulability by means of a safety property, we specify the query as “A[] not Task.Stop”,
which states “Across all the path the system never goes to the stop location”.

Firstly we thought of using the clock comparison with relative deadlines by creating a
clock that starts when the system starts in and by capturing the starting time and ob-
taining the difference between the current time and the starting time, thereby detecting
deadline violations. But this was not feasible since Uppaal does not allow for capturing
clock values during verification. Thus we then decided to use clock guards to capture
the deadline violation scenario.

Figure 5.2: Uppaal model with deadline detection mechanism - First approach

In the first model (Figure 5.2) we added a new location stop and an edge to this location
from each of the 3 other locations idle, active and pre-empted. A guard is placed on
these edges, which is used to ensure that the task has exceeded its deadline and thus
can reach the stop location then. This model uses an additional clock (“y” because the
model already has a clock variable “x”) which keeps track of the lifetime of a task (time
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to deadline). In this model, once a task is initialized, a new clock variable “y” starts
ticking which is used to check deadline violations; it is reset every time the task goes
from active to idle because this is when the task becomes “ready”.

Figure 5.3: a) The Idle to Active location in the initial approach, b) The addition of Ready
location in between

In DSEIR, the concept of “phase” in its scheduling theory sense is not present, however,
a task is said to be “ready” only when its ports have enough tokens. The clock for the
deadline detection, has to start ticking when the task becomes ready. But in the model
of Figure 5.2 the task is not “ready” when it is in the idle location. As we can see in
Figure 5.3 a), we check that “Do Ports have enough tokens?” and directly go to active
along with checking other conditions required to be “active”. In practice, it is not always
the case that a task can go from idle to active directly, but it might sometimes remain
in the ready state until the resources are available and the priority is satisfied. Thus we
identified that the model in Figure 5.2 does not faithfully represent the “ready” state of
a task. Hence we first add a new location to the model, called ready. We then divide the
guards on the pervious “idle to active” edge over two edges, namely the “idle to ready”
and “ready to active”. We present this second approach in Figure 5.3 b) and Figure
5.4. Although we have added this ready location, we still preserve the previous model
(without ready and Stop) for analysis procedures that do not involve deadlines in them
because it is consistent and properly represents the models that do not have deadlines.
Thus we have 2 options of implementation for DSEIR translation to Uppaal depending
on whether the deadline should be considered or not.

5.2 Application of the Extension on the Running Example

We now apply the new modified DSEIR translation to the running example. Here the
task A, task B, and task C are corresponding representations of scan, image processing
and print tasks respectively. We explain only the new elements that are included in the
Uppaal model created using the modified DSEIR translator. The rest of the elements
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Figure 5.4: Uppaal model with deadline detection mechanism - Second approach

remain the same as discussed previously. As mentioned earlier two new locations are
added to the automaton and named as the stoplocation and the ready location. The
additional clock variable used here is “y”. The attribute for defining the deadline is
also used in the model deadline A(), which is a function that returns an integer value
on evaluation. Also the variable progressCount is eliminated from the translated model,
which causes unnecessary state-space explosion. The state-space explosion is caused
because it was initially designed to keep track of the number of task executions in the
model, but when we create infinite models through abstraction (with elimination of
conditions explained in Chapter 6), this is one number that keeps on increasing due to
which the verification never obtains any result.

The templates of the task automata of task A and task B from the example are shown
in Figure 5.5 and Figure 5.6. The running of the model remains almost same as previous
except of the deadline detection mechanism and with respect to the newly inserted
location ready. The changes occurring due to the insertion of the location has been
described previously. We proceed further with the description of the deadline detection
mechanism. The clock variable “y” is started when the task becomes ready and goes
on until it is reset again through the edge from “idle to Ready”. Also note that the
clock value keeps on progressing when the system is in idle location but has no effect
whatsoever on the model, since it is reset when going from “idle to ready. Deadline
violations can be found by comparing this variable with the current relative deadline.
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Figure 5.5: Template of the modified automaton of task A

Hence, when the deadline violation takes place in any of the locations namely, ready,
active or pre-empted, the corresponding edge leading to the stop state is taken. The
translation for task C is similar to task B, model changes in variable names.

Verifying the Deadline Violation

We define the models in Uppaal in the form a of a reachability problem, hence we use
the following formula, to check whether the Error state (stop location) is reached or not.

E<> (A.Stop or B.Stop or C.Stop)

Checks for the property that if any instance of task A, or task B or task C violates the
deadline in any state. The expected result for a proper model here is that the property
is not satisfied; we obtain this result for the current example and is shown in Figure 5.7.
Note that the schedulability analysis implemented is an entirely automated process where
given the DSEIR model, the Octopus engine will transparently perform translations, call
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Figure 5.6: Template of modified automaton of Task B

Uppaal, verify, fetch the results and displays then. Figure 5.7 is manually checked and
depicted here for understanding purpose.

5.3 Application of Extension

Alexandre et al. explained in [13] the procedure to create a scheduling framework in Up-
paal to define a range of classical schedulability problems. We now model this scheduling
framework using the DSEIR language. We use this example to compare between the
manually created model in Uppaal following the approach in [13] and the automatically
generated version by the Octopus toolset.

[13] also includes an example model that consists of 5 tasks, and is explained in detail
in this section. The task dependency graph of this task-set is shown in Figure 5.8. This
task-set is a general real time task-set with certain attributes set accordingly. These
tasks are defined using the following attributes.

1.Best case execution time(BCET) 5.Best case execution time(BCET)
2.Worst case execution time(WCET) 6.Maximum period
3.Deadline 7.Priority
4.Offset 8.Initial Offset
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Figure 5.7: Model checking results for the running example, displayed in Uppaal verifier

Figure 5.8: Task-flow graph of the scheduling framework example in general scheduling terms

5.3.1 Application

Given the syntax definition of the DSEIR language, this scheduling framework is modeled
in the DSEIR language with the help of tasks, ports and tokens. This example requires
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periodicity in its model since the tasks are periodic in nature, but DSEIR has no concept
of periods. Although this could be modeled via self loop on each task with (period -
execution time) as the delay on its edge, we model it differently owing to the restriction
that delay is not supported, specified in Section 4.1.4. An extra task can be used along
with the pre-existing tasks which is used to model period. This special task is the Init
task which produces 6 tokens, one for each task including itself. We use a single task
for this purpose, since all tasks have equal periods. This token is used to indicate the
start of a new period. Figure 5.9 shows the model. The various dependencies between
the tasks are modeled via the token and port system so as to make the dependent tasks
wait for their predecessors. The basic requirement for the tasks to begin execution is to
have at least one token on each of its ports.

The idea of modeling an extra task for imitating periodicity can be applied generically
to other models as well. Although for models with different periods for different tasks,
an extra task can represent the period for each task, the representation of this period
through the delay can be more useful. This concept has to be further investigated since
delay is not directly applicable when variable load/execution times are involved.

Figure 5.9: Task-flow perspective of the scheduling framework example

5.3.2 Platform

This task-set uses 3 resources providing service type COMPUTATION and one resource
providing the service type TRANSFER. The service type COMPUTATION is used by
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Figure 5.10: Load perspective of the scheduling framework example

the Init task and other tasks A, B, C and D. E uses the service type TRANSFER
provided by the resource bus. The resources used and the scheduling of those resources
can be seen in Figure 5.11 and Figure 5.12, respectively.

Figure 5.11: Resource perspective of the scheduling framework example

5.3.3 Mapping

The task-set uses 4 schedulers. The mapping perspective diagram is shown in Figure
5.13.

We then successfully translate this DSEIR model to Uppaal model and check for schedu-
lability using the schedulability query.

E<> (A.Stop or B.Stop or C.Stop or D.Stop or E.Stop)

OR

A[] not (A.Stop or B.Stop or C.Stop or D.Stop or E.Stop)
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Figure 5.12: Scheduling perspective of the scheduling framework example

.

Figure 5.13: Mapping perspective of the scheduling framework example

5.3.4 Statistics

The modeling framework given by Alexandre et al. is a manually built model in Uppaal.
In Octopus we manually build the corresponding model using DSEIR and then it is
translated to Uppaal syntax using automatic methods. We obtain the statistics by
running some tests on both of these models. We consider 3 test cases with 5, 10 and
12 tasks on both models. For the initial test case of 5 tasks, we model it from [13]
example. For test case with 10 and 12 tasks, we replicate some of its tasks keeping the
number of resources the same and increasing the period value correspondingly. Looking
at the results (Table 5.1) we infer that although for small number of task instances
the automatic model is slower than the manual model. For larger model (large number
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of instances) the automatically generated model has a much smaller state-space, lower
timing and memory requirements, though the reason for this huge difference is not
entirely known. Also DSEIR is far more expressive than the manual model since it
allows for handover, variable instances for each tasks via condition on edges and passing
actual data between tasks. Although we can conclude that the DSEIR based automatic
models can be successfully used as modeling framework for schedulability analysis, and
do not suffer from performance degradation due to the automation process, it is still
an open research area to be investigated. In Table 5.1, a cell for specifying memory
requirement of the manual model with 12 tasks is left blank since the value could not
be obtained.

Table 5.1: Performance Comparison

Feature No of tasks Manual Automatic Model

States 5 983 56

Time 5 0.08s 0.7s

Memory 5 10MB 50MB

States 10 282996 190

Time 10 116s 2s

Memory 10 364MB 95MB

States 12 3224144 224

Time 12 44mins 2.6s

Memory 12 - 201MB



Chapter 6

Data Abstraction

In Chapter 5, the first goal of the thesis was achieved, i.e., schedulability analysis is
made possible for DSEIR models. This analysis process includes automatic translation
to Uppaal and mechanized verification of this translated model. Although schedulability
analysis is now possible its scalability to larger models remains an issue. Applying DSEIR
translation and performing model checking on such models results in the state-space
explosion problem. Thus the next part of the thesis is to make schedulability analysis
scalable on arbitrary DSEIR models, with focus on the reduction of the state space.

In a DSEIR model, a task can have numerous instances but these instances share part
of their behavior. Thus if we are able to identify data parameters of these instances
that can be unified and unify them, we obtain abstract models that approximate the
behavior of a class of instances. To perform the abstraction, we need to:

• Identify the data parameters that can be abstracted.

• Perform data abstraction on these data parameters.

• Transform the original model to a new abstract model using the obtained abstrac-
tions.

Although the behavior of the abstract model approximates the behavior of the concrete
instances, it can also comprise new behavior that is not present in any concrete instance.
This is the price paid for obtaining reduced state-space. The abstraction procedure
changes the previous work-flow (Figure 4.1) for schedulability analysis in Octopus. The
new work-flow diagram is shown in Figure 6.1. On an abstract note, the change is that
after a DSEIR model is created, the next step now is to create an abstract model using
the new abstractor function in DSEIR. After an abstract model is created, the work-
flow uses the same old flow of actions, omitted in Figure 6.1 for the sake of brevity. The
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Figure 6.1: New work-flow diagram with abstraction procedure incorporated

work-flow will be further explained in detail in Section ??

In this chapter we first describe the motivation to perform abstraction in detail, with an
example in Section 6.1. Also in this section we present the design approaches that can
be used to extract the data from the user model and to create an abstraction from it.
The abstraction algorithm is described in Section 6.2. The necessary helper functions
required by the algorithm are explained in Section 6.4. An example is used to illustrate
the working of the abstraction algorithm in Section 6.5.

6.1 Motivation and Approach

State-Space Explosion: Models used in Octopus can contain tasks with a large number
of instances resulting in numerous combinations of elements/attributes and hence a
huge state-space. The state-space grows exponentially with the increase in number of
attributes of an arbitrary model. Thus the model checking procedure becomes time
consuming and the verification tool may reach its resource limits, abruptly stopping the
procedure and giving no results.

Consider an example task model with 3 tasks A, B and C, whose possible task execution
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Figure 6.2: a) State-space explosion b) State-space of abstracted model

flows are A− >B− >C or A− >C− >B. Assume all of these tasks have “n” instances.
In such a case the state-space of the model created using the current DSEIR translation
will be as the one shown in Figure 6.2 a), the right hand side shows the state-space of the
abstracted model. Along the execution sequence each task might have a lot of repetitions
in terms of its task instances. Assume that A1 and A3 might be same in terms of the
value all its attributes; they are still considered as different instances in the state space
and represented twice. There can also be a scenario where after 2 instances of each task,
this one execution pattern (Ax = A(x + 2) = A(x + 4) · · · where x = 1 · · ·n − 2 same
for B and C) is repeated “(n/2)-1” times (-1 for first execution) when the total task
instances are “n” for each task. Note that both A(x+2) and Ax represent instances, the
brackets are to show that 2 is added on to value of x. Although repeating the execution
sequence has no effect whatsoever on the model-checking results because the behavior
does not vary when the instances and the execution sequence is same, it is still verified
for all instances since they have different attribute values. For example, A1 and A10 are
equal in terms of their execution time and other important factors but have different
instance number which is sufficient to differentiate them in state-space. Thus ideally we
need to check only one execution sequence of the cycle to verify the properties. The
effect of this abstraction procedure on the load is shown in Figure 6.3. We eliminate
the instances by capturing the load of all instances and replacing with an instance that
represents all possible loads with a range of load specified by its minimum and maximum
([minA,maxA]). Note: In DSEIR each instance could have a range specified as its load
value. The bounds of this range are calculated using the following set of formula:

minAi = minimum(minMaxExpEvaluator(LoadAi)), i = 1 · · ·n

maxAi = maximum(minMaxExpEvaluator(LoadAi)), i = 1 · · ·n

minA = lower bound(minA1(LoadA1)...minAn(LoadAn))

maxA = upper bound(maxA1(LoadA1)...maxAn(LoadAn))

//lower_bound and upper_bound is used because
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their input is a range with two bounds.

The function MinMaxExpEvaluator used here is explained later.

Given an input expression it gives the minimum and

maximum possible values for that expression.

Figure 6.3: The effect of abstraction on load values

Also in a case where the task instances repeat but not the same execution sequence we
still have considerable reduction in state-space by eliminating these instances. To create
an abstract model we need to know all possible values, for all the attributes through all
the instances of the task. Thus we require an approach to capture all possible values
and record them into a new model that approximates the original model.

Approach

The data that can be abstracted in the DSEIR model is the parameter values of that
task. Currently it can take a range of values considering all the possible instances of a
task. The procedure of abstraction has two steps as shown in Figure 6.1. The steps are
listed below:

• We perform parameter (data) abstraction by mapping parameter values into a
range of values, by finding the minimum and maximum value that the tasks can
take during the execution of the input model. We create a map in which each
parameter is mapped onto its respective range specified by minimum and maximum
values. The effect of parameter abstraction on the parameters is shown in Table
6.1. We discuss the parameter abstraction in detail in Section 6.2. Note: here {}
represents a set and [] represents range.

Table 6.1: Effect on parameter values

Parameter Previous Values New Value
a1 {a11...a1m} [min({a11...a1m}),max({a11...a1m})]
. . .

. . .

an {an1...ank} [min({an1...ank}),max({an1...a1k})]

• In the next step we use this parameter map and certain functions to transform
the DSEIR model into an abstract model. This step is further subdivided into two
parts, listed below:
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– Abstracting the load and deadline expressions. The effect of parameter ab-
stractions on the load value and deadline value is shown in Figure 6.4 and
Figure 6.5, respectively. The priority value is also affected in the transforma-
tion which is shown in the mapping perspective along with deadline value.
The new priority values are constants and hence dynamic priority is not sup-
ported like in original DSEIR.

Figure 6.4: a)Affect of abstraction on load value

Figure 6.5: Affect of abstraction on deadline value and priority

– Transformation of the model using the new values for load and deadline,
value expressions over the edges are changed to a constant (1) since they are
no longer required for calculations but are preserved to maintain the task-flow
and the conditions on the edges are eliminated, this change can be seen in
Figure 6.6.

This transformation step is further explained in detail in Section 6.3
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These two steps, parameter (data) abstraction and model transformation can be seen in
the new work-flow in Figure 6.1. Also the change in the 3 parts of the DSEIR model
namely, application, platform and mapping is explicitly specified.

Figure 6.6: Affect of abstraction on value expression and condition, on the edges

6.2 Parameter Abstraction

The parameter (data) abstraction from the DSEIR model can be done in different ways.
We have identified two possible ways in which this can be done, namely, using simulation
and syntax analysis. The basic function of both methods is to identify the range of values
a particular parameter can take and to record it. In the following sections we discuss
these possible solutions in detail along with their advantages and disadvantages.

6.2.1 Simulation

One of the solutions to create an abstract model is by simulation. In this approach,
we run the DSEIR model and record all the data through this process. Using this
recorded data the possible values for each and every parameter in the DSEIR model
can be obtained. The data is recorded in a trace file. We then parse this trace file to
get the range of parameter values. The range is used to create a parameter map. This
parameter map is used in further abstraction procedure steps. Although this is an easy
way to obtain the parameter values, it has the following disadvantages:

• Is time consuming when models become large.
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• Considers only one execution sequence at a time, due to which it is not exhaustive.

Although we do-not directly use this method for the purpose of abstraction, we use it
as a verification method to check the results obtained from the syntax analysis method
of data abstraction; this is explained in Chapter 8.

6.2.2 Syntax analysis

The other possible solution for parameter abstraction is syntax analysis. In this approach
we syntactically analyze the DSEIR model parsing the expressions and conditions across
the tasks, ports and edges to obtain, the range of values that the parameters in the
input DSEIR model can take. This approach is better than simulation since it is not
as time consuming and it also exhaustively goes through the model until a fixpoint is
reached for the parameter values. Although syntax analysis imposes some restrictions on
the DSEIR model in order to be feasible to apply the algorithm. These restrictions are
based on the restrictions on the DSEIR translation to Uppaal. The trade-off here is that
this method is typically is pessimistic and conservative. The algorithm that performs
abstraction through syntax analysis and the restrictions involved are explained in detail
in the following section.

6.2.3 Algorithm

In this section we explain the parameter abstraction algorithm in detail. The input
model for the abstractor algorithm is the DSEIR model. The algorithm considers the
task-flow perspective, load perspective and mapping perspective. The output of this
algorithm is a mapping of parameters to their respective range, which is specified by its
minimum and maximum values.

Input :

The input of the algorithm is a user defined model in DSEIR with restrictions. The
restrictions in the translation to Uppaal discussed in Section 4.1.4 are also considered
here. The restrictions are listed below:

• The number of ports should be equal to the number of parameters, with each of
those ports having their binding expression as one of those parameters. The task
cannot have extra ports as in the actual DSEIR construct.

• The local declarations, start and end-statements are not considered.

• There should be one task that has initial values set for all of its ports.
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• The conditional operators are now limited to {<,>,≤,≥,=}.

• The maximum number of iterations should be known.

• Resource allocation does not depend on deadline values.

Prior to describing the algorithm, we introduce the generic DSEIR model used as input
here, which is a subset of the actual DSEIR model. Note: That for one of the require-
ments like there should be one task that has initial values for all of its ports, in case
of more tasks with initial values, the task with maximum outgoing edges and has at
least one self loop is chosen. The task-flow perspective of this model, with the imposed
restrictions is shown in Figure 6.7. The load and the mapping perspectives are shown
in Figure 6.8. The description of the generic task model can be found in Chapter 4.
The symbols and notations used here are derived from the previous description. The
change caused due to the restriction affects only the task-flow perspective; the restriction
“number of ports = number of parameters” allows “n” ports for A and “m” ports for B.

Figure 6.7: Generic input model(Task-flow perspective)

Figure 6.8: Load perspective of the generic input model
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We use an algorithm to perform the data abstraction, where we obtain the range of
values for the parameters. The following algorithm performs this task:
extractData(DSEIR Model DSEIR,Integer maxIterations)

1 Parameter 7→List<Integer> parameterMap
2 Integer Current parameter min,Current parameter max
3 Integer negativeInfinity← −999999
4 Integer positiveInfinity← 999999
5 Set<Task> setOfTasks← getTasks(dseir)
6 Task task
7 Parameter parameter
8 for (Every task ∈ setOfTasks)
9 do Set<Parameter> parameterSet← getParameters(task)

10 for (Every parameter ∈ parameterSet)
11 do Port p← findPort(parameter)
12 Set<Integer> initial values← initialValue(p)
13 if (initial values 6= ∅ )
14 then Current parameter min← min(initial values)
15 Current parameter max← max(initial values)
16 else
17 Current parameter min← negativeInfinity
18 Current parameter max← positiveInfinity
19 end if
20 parameter 7→ [Current parameter min,Current parameter max]
21 end for
22 end for
23 //The parameterMap for the generic model can be seen in Table 6.2
24 Task initTask← findInitialTask(dseir)
25 Parameter 7→List<Integer> parameterMap(previous), parameterMap(current)
26 parameterMap(current)← parameterMap
27 Integer i
28 while ((parameterMap(previous) 6= parameterMap(current)) ∧ i < maxIterations)
29 do List<Task> taskList
30 taskList← addToList(taskList, initTask)
31 parameterMap(previous)← parameterMap(current)
32 parameterMap(current)←
33 findMinMax(parameterMap(current), init task, taskList)
34 i← i+ 1
35 end while
36 Output parameterMap(current)

Note: We have also used several functions through this algorithm which are explained
briefly but not defined, since it is not important. Those functions are listed below:
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Table 6.2: The parameter table

Parameter Min-Max Value

a1 [a1min, a1max]

.. ..

an [anmin, anmax]

b1 [b1min, b1max]

.. ..

bm [bmmin, bmmax]

• getTasks: Input: DSEIR model, Output: All the tasks present in the model in
the form of a set.

• getParameter: Input: task, Output: All the parameters of the task.

• findPort: Input: parameter, Output: The port in which the parameter forms the
binding expression.

• initialValue: Input: port, Output: The initial values of the port in the form of a
set.

• findInitialTask: Input:DSEIR model, Output: The initial task of the task-set,
which is always first in the execution sequence.

• addToList: Input: List and the element to be added, Output: The input List
with the added element.

The algorithm/pseudo-code extractData is the main algorithm that takes DSEIR
model and maximum possible iterations as input and provides the data parameter values
(range) as output. It has 2 integer constants negativeInfinity and positiveInfinity which
specifies extreme values a parameter could attain. The next step is to check for each
parameter in each task for the existence of initial values on the port they reside (A1 to
An w.r.t the Figure 6.7). Then a mapping of parameter to their intimal minimum and
maximum values (constructing a range) is created. Its declaration is shown in line 1 of
the algorithm where parameter maps to a list of integer (with 2 values). The parameters
which reside on ports with initial values set have proper minimum and maximum values,
the rest have negativeInfinity and positiveInfinity as minimum and maximum, respec-
tively. This parameter map is shown in Table 6.2. Each parameter is mapped to its
possible range specified as a list with 2 values minimum and maximum. Then we start
from initial task of the task-set and traverse through the entire task-flow perspective of
the DSEIR model to obtain the minimum and maximum values. The while loop stops
when 2 consecutive iterations end up having same parameter map (indicating that a
fixed point is reached) or when maxIterations is reached.
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The notion of maxIterations is used to here to terminate the algorithm in cases where
it goes on infinitely. The algorithm can run infinitely in conditions where the model has
a loop in which the edges do not have any guard conditions. An example model that
could run infinitely is shown in Figure 6.9. In this example the edge from task D to task
E and task E to D does not have any condition, hence the algorithm does not terminate
on this loop, this is one case where maxIterations comes into play. Although, the value
of maxIterations needs to be an input for this algorithm, the method to determine this
is unknown yet and is predicted to be dependent on the model.

Figure 6.9: An example model where maxIterations is required to terminate

This algorithm calls another function findMinMax which performs the traversing pro-
cedure through the application, is defined as:
findMinMax(Parameter 7→ List<Integer> parameterMap,Task task,List<Task> taskList)

1 List<Task> processedTaskList;
2 Parameter 7→List<Integer> backupMap
3 if (hasOutGoingEdges(task))
4 then return parameterMap
5 end if
6 Set<Edge> outGoingEdges← getEdgesFrom(task)
7 Edge edge
8 for (Every edge ∈ outGoingEdges)
9 do backupMap← parameterMap

10 Task taskNew← destinationTask(task, edge)
11 //Over the edge
12 Condition Ce← conditionOf(edge)
13 //“Ce” is the condition on the edge considered can be seen in Figure 6.7.
14 List<Expression> expressionList← GuardEvaluator(Ce, parameterMap);
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15 //Guard Evaluvator is a helper function and is further explained in 6.4
16 Parameter 7→ List<Integer> bufferParameterMap
17 bufferParameterMap← solve(expressionList, parameterMap)
18 //Solve is a helper function and is further explained in 6.4
19 expressionList← clear(expressionList)
20 Expression Ee← valueExpression(edge)
21 List<Expression> minMaxList
22 minMaxList←MinMaxExpEvaluavator(Ee, bufferParameterMap)
23 //MinMaxExpEvaluvator is a helper function here and is
24 further explained in 6.4
25 expressionList← addList(expressionList,minMaxList)
26 //At the port
27 Port p← destinationPort(task, edge)
28 Parameter Pa← parameterInPort(p)
29 // Pa ∈ {a1 · · · an, b1 · · · bm}
30 expressionList← addToList(expressionList,Pa)
31 parameterMap← Solve(expressionList, parameterMap)
32 if (processedTaskList has taskNew)
33 then continue //skips the new edge
34 else
35 processedTaskList← addToList(processedTaskList, initTask)
36 if (check(TGp, parameterMap))
37 then parameterMap←
38 findMinMax(parameterMap, taskNew, taskList);
39 else
40 parameterMap←
41 findMinMax(backupMap, taskNew, taskList);
42 end if
43 end if
44 end for

The simple function calls used in this algorithm/pseudo-code are listed below:

• clear: Input: List, Output: Given the input list clears the elements of the list and
outputs an empty list.

• addToList: Similar to the one explained previously for the first algorithm.

• getEdgesFrom: Input: task, Output: The outgoing edges of the task.

• destinationTask: Input: task and one of its edge’s, Output: The task at the
destination of the considered edge.



6.2. Parameter Abstraction 67

• conditionOf : Input: edge, Output: The condition (conditional expression) over
the edge.

• valueExpression: Input: edge, Output: The value expression over the edge.

• destinationPort: Input: task and one of its edge’s, Output: The port at the
destination of the edge.

• parameterInPort: Input: port, Output: The parameter present as the binding
expression in the port.

The findMinMax algorithm traverses through the entire task-flow perspective start-
ing from the initial task and covering all the tasks, edges to syntactically analyze the
expressions and conditions that lie on them. This is a recursive algorithm which calls
itself until tasks with no outgoing edges are reached as the stopping criteria. Until the
stopping criterion is reached, starting from the initial task each edge is traversed. This
traversal includes checking the effect of the guard condition on the parameter (if any) in
the conditional (Guard) expression. This is done using the helper functions GuardE-
valuator and Solve. A guard can restrict the value of a parameter range, for example
if a = [4,5] and the guard condition is a < 5 then the temporary range is stored in the
bufferParameterMap will be a = [4,4]. The bufferParameterMap is a temporary map
variable which is used in only in calculations of a particular edge. This temporary map
would be used in the calculation of the minimum and maximum of the value expression
(Ee) over the edge.

The helper function MinMaxExpEvaluator is used for this purpose, resulting in the
minimum and maximum value for the input expression. We perform the binding to
the parameter on the destination port of the considered edge; the range of the value
expression (Ee) is used for this purpose. New values for the parameter are obtained via
Solve helper function. The task guard TGp (p ∈ {A,B} task-set) is checked using the
new parameterMap values via an extra function Check which if satisfied, the modified
parameterMap will be used, otherwise the backupMap, backup parameter map is used.
A processedTaskList is maintained which stores the tasks that are processed already to
prevent repetitions of the procedure on the same task. After an edge is processed we
go to the destination task of the edge on a recursive call, which is processed next. The
output of this step consisting of the algorithm is an updated parameter map shown in
Table 6.2 with all parameters mapped to their minimum and maximum value that they
can take during the execution of the input model.
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6.3 Model Transformation

Once we obtain the minimum and maximum values of the parameters in the first step
through the parameter abstraction, we then use these values in the next step of abstrac-
tion to translate the DSEIR model into an abstract model. During this translation, we
use the obtained parameter map to find the range of load and deadline for each task,
since the load and deadline values are dependent on their respective task parameters, the
priority values are also affected. The effect on priority is that the function MinMaxEx-
pEvaluator is applied on to it and the maximum value of the range obtained is used as
the final priority value. They are specified as mathematical expressions, hence we need
to find the minimum and maximum for the load and deadline expression. This can be
done using the helper function MinMaxExpEvaluator. The input for this function is
the load/deadline expression and the parameter map obtained in the first step, output
is a range specified using 2 values (minimum and maximum). The resulting values from
the helper function are then specified as an unknown distribution in the abstract model
ranging from the minimum to the maximum value. Note that, the min and max stored
in this load expression inside the unknown Distribution are not always the min and max
of the load expression but depends on the parameters if any present in the expression.
With this change in the load, deadline expressions and elimination of condition on edges
and equating value expression as constant integer 1 on all the edges, we obtain the ab-
stract DSEIR model. The final mapping perspective can be seen in Figure 6.11. The
final task-flow perspective of the model is depicted in Figure 6.10.

Figure 6.10: Task-flow perspective of the output

6.4 Necessary Functions

The algorithm requires some helper functions for its execution. In this section we explain
these necessary helper functions in detail.
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Figure 6.11: Mapping perspective of the output

Figure 6.12: Load perspective of the output

Equation Solver

The function solve referred to previously in the abstractor algorithm is an equation
solver. Given an equation and the parameter table it solves the equation, for one pa-
rameter at a time until all parameters are solved. For example given an equation a
+ 2 = 10, then it solves for “a” as “a = [10,10] - [2,2] = [8,8]”. This new obtained
range is compared with the old range to obtain a new range. This is done using the
rangeCalculations function defined in 6.4.

Range Calculations

In the main algorithm we convert the data parameters to a range of values specified
through the minimum and the maximum of the range. Through the algorithm execu-
tion, the range of the parameters changes, i.e., it is replaced with a new range if found.
This is called inside the solve function where the parameters are given values, then range
calculations are done to obtain actual new values from possible values and old values (of
the parameter). It is different for the different type of expressions (conditional expres-
sions and normal mathematical expressions). The algorithm of the range calculations
function is shown.
calculateRange(Old min,Old max,New min,New max)

1 Result min = Old min
2 Result max = Old max
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3 if (Normal Expression)
4 then //Min part
5 if (Old min == negativeInfinity)
6 then
7 Result min = New min
8
9 else if (New min < Old min)

10 then
11 Result min = New min
12 end if
13 end if
14 // Max Part
15 if (Old max == positiveInfinity)
16 then
17 Result max = New max
18
19 else if (New max > Old max)
20 then
21 Result max = New max
22 end if
23 end if
24
25 else if (Conditional Expression)
26 then //When the ranges are disjoint
27 if ((New min > Old max) ‖ (New max < Old min))
28 then
29 return [Result min and Result max]
30 end if
31 //Min Part
32 if (New min == negativeInfinity)
33 then
34 Result min = Old min
35
36 else if New min > Old min
37 then
38 Result min = Old min
39 end if
40 end if
41 //Max Part
42 if (Old max == positiveInfinity)
43 then
44 Result max = New max
45
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46 else if New max > Old max
47 then
48 Result max = New max
49 end if
50 end if
51 end if
52 end if
53 return [Result min and Result max];

An example of range calculations: old list [3,5] new list [2,5] - resulting list [2,5].

Guard Evaluator

This section explains how the guards are evaluated to solve for the parameters in the
guard, in order to obtain the range to which the parameters are reduced by the guard
conditions. This function takes a conditional expression (guard) and the parameter map
as input and produces a new temporary parameter map as output. For example, Guard
evaluations are done as:

• (Mathematical Expression logicalOperator constant). E.g. (a + b) < Constant

• a = newConstant dualof(operator) y

– Here newConstant depends on the logical operator, E.g. for a+1 < 5 new-
Constant will be a = 4 -1 or in a + 1 > 5 then a = 6 - 1.

– For the set that we consider {<,>,>=, <=,=}.

∗ <, newConstant = constant − 1;

∗ >, newConstant = constant + 1;

∗ >= ,<=, =, newConstant = constant

• Dualof(operator) are defined for mathematical operators +,- (dual-set),/,*(dual-
set)

• Example: a + [5,6] < 10

– a = [9,9] - [5,6] ([9,9] is obtained via GuardEvaluator)

– a = [3,4] (done via MinMaxExprEvaluator) This is the new possible tempo-
rary range of a. In the actual calculations this will be compared with the
existing range of A, consider it to be a = [2,6] the resulting range will be [2,4]
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values above 4 clipped because of the guard condition.

Expression Evaluator

This helper function evaluates a given expression provided that the parameter ranges for
the parameters in the expression are provided, gives the minimum and maximum possible
values for a particular expression. It parses and solves both mathematical expressions
and logical expressions. For logical expressions it uses a special 3-valued logic with values
true, false and unknown. More information about this function is provided in [14]. For
example, consider an expression (a + b) with a = [2,4] and b =[3,6] , The range of the
expression is [5,10].

6.5 Abstraction Example

In this section we show the application of the abstraction algorithm to an example
DSEIR model. The task-flow perspective of this DSEIR model can be seen in Figure
6.13. The load perspective of the DSEIR model can be seen in Figure 6.15. We perform

Figure 6.13: Task-flow perspective of the example problem

data abstraction on this model using the abstraction algorithm, to first extract the value
of the parameters. This is achieved in the following steps:

• The range of the parameters is calculated based on the initial values on the port
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Figure 6.14: Mapping perspective of the example.

of the tasks. Note that initial value [4,6] on the port means two tokens and not
range as we will use the same notation for a range as well.

• A mapping of the parameter to their respective ranges is created and can be seen
in the form of a table in Table 6.3.

Table 6.3: Initial parameter values

Parameter Min-Max Value

a [4,6]

b [negativeInfinity,positiveInfinity]

Ca [negativeInfinity,positiveInfinity]

Cb [negativeInfinity,positiveInfinity]

Da [negativeInfinity,positiveInfinity]

Db [1,1]

e [negativeInfinity,positiveInfinity]

• Task to edge mapping is created, to be used in the function

• getEdgesFrom in task.findMinMax.

• Initial task of the model is obtained using the funtion findInitialTask. The result
obtained is task A in this case.

• We iterate over the all the tasks until a fixed point is found for the parameter
values or the maximum number of iterations are passed.
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Figure 6.15: Load perspective of the example.
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Table 6.4: Task-edge map

Task Edges

A aToA, aToB, aToC, aToD

B bToC

C -

D dToE

E eToD

• The iteration includes calculating parameterMap(current) using findMinMax.
Figure 6.16 shows the execution of the algorithm, for one iteration. There are
total 7 edges in the model. The algorithm starts from A (initial task) and goes
through these edges iteratively starting with the edge to B. For parameter “a” of
task A and “Db” of task D the ranges (using initial values) are set to [4, 6] and
[1, 1] respectively as shown in Table 6.3. We use these values and the rest from
the table in the findMinMax function. When guards are present on the edges,
parameters present in the guard conditions obtain temporary values, which is used
in the value expression of that edge. We explicitly specify in the explanation when
temporary values are used.

Figure 6.16: One iteration of the parameter abstraction algorithm on the working example

We explain each of the steps in the iteration, below:

– 1) aToB: old b = [negativeInfinity,positiveInfinity]
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b = temp ab + 1
new b = [5,5]

– 2) bToC: old Ca = [negativeInfinity,positiveInfinity]
Ca = [5,5] / 2
new Ca =[2,2]

– 3) aToC: old Cb = [negativeInfinity,positiveInfinity]
Cb = temp ac
new Cb = [6,6]

– 4) aToD: old Da = [negativeInfinity,positiveInfinity]
Da = [4,6] * 2
new Da = [8,12]

– 5) dToE: old e = [negativeInfinity,positiveInfinity]
e = [8,12] + [1,1] + [4,5]
new e = [13,18]

– 6) eToD: old Db = [1,1]
Db = temp e - 2
new Db = [1,13]

– 7) aToA: old a = [4,6]
a = temp aa + 2
new a = [4,8]

After these 7 steps the cycle is repeated again with the new values becoming old
values to the next iteration, also temporary values are refreshed depending on the
new ranges. The process is continued until two iterations have same parameter
values.

• After the parameter map is obtained we apply the model transformation as ex-
plained previously, to obtain new task-flow perspective with conditions on edges
eliminated and their value expressions set to constant 1. The output task-flow
perspective diagram obtained through the model translation can be seen in Figure
6.17.

• During the model translation, we also calculate the load of each task on each service
type they require, using the parameter map obtained during data abstraction.
The final load diagram of this example model is shown in Figure 6.18, in this
figure every load value is displayed as an unknown distribution in the range. The
mapping perspective is shown in Figure 6.19, with deadline values changed to the
range specified via an unknown distribution similar to the load values. There is
no effect on priority since it is a constant.
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Figure 6.17: Task-flow perspective of the output model

Table 6.5: Performance Comparison

Feature Original model Abstract model

States 28,842 1057

Time 2.22s 0.25s

Memory 21MB 14MB

Results of Abstraction

In this section we discuss the performance gain in abstracting the original model. We
manually performed some performance comparisons using the Uppaal tool, similar to the
one in Chapter 5. The resulting abstract model shows reduction in state-space and better
performance when compared to the original model. The result is backed by recorded
statistics that can be seen in table 6.5. The correctness of this parameter abstraction
method is also verified and applied on the running example later in Chapter 8.
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Figure 6.18: Load perspective of the output model

Figure 6.19: Mapping perspective of the output model



Chapter 7

Verification

The new model obtained from the abstraction process is an abstraction of the original
model. This new model is an over-approximation that can contain behavior not existing
in the original system. This makes the current model checking scheme inapplicable
to this scenario producing false negatives (“not-schedulable”) for schedulable systems,
because of non-existing behavior. Thus we make an attempt to eliminate such false
negatives, and consider only those results that could help in making the design decisions
for the Octopus toolset.

In this chapter we discuss a revised scheme for model checking in Section 7.1. We apply
this revised model checking scheme to the running example along with the abstraction
procedure to perform schedulability analysis on the running example and is explained
in Section 7.2.

7.1 Revised Model Checking Scheme

We investigate possible approaches to overcome this problem. In the proposed solu-
tion we apply new model checking formulas to get more accurate results considering
the over-approximation. These formulas are different from the ones used in Chapter 4.
Given the current output model (abstract model), the load and deadline are specified as
independent unknown distributions of values in a given range. Considering all the com-
binations of load and deadline values is tedious and time consuming. Hence we decided
to consider some specific cases here, which are enough to capture possible schedulability
information, remaining cases which could result in false negatives are omitted. These
cases are listed below;

• In the first case we check the model with respect to the combination of minimum
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Table 7.1: Model checking results

Case No [maxDuration(), minDuration()] Result

1 maxDeadline No Not-Schedulable

2 maxDeadline Yes Non-Conclusive

3 minDeadline Yes Schedulable

4 minDeadline No Non-Conclusive

possible deadline (minDeadline) and range of execution time. The formula used
for this is: A[] (A.minDeadline) imply not(A.Stop).

• In the second case we check the model with respect to the combination of maximum
possible deadline and range of execution time. The formula used for this is: A[]
(A.maxDeadline) imply not(A.Stop).

Note: Although we mention the load and deadline combinations, we actually consider the
execution time in the verification process. As explained earlier, in DSEIR the execution
time is defined as the product of load and processing time of the service type it executes
on. Since the processing time is a constant and load is the varying term, we here mention
load in our explanation.

We use the above 4 cases in combination of 2 parts, where one component is constant
in both, thus obtaining 4 cases, to form an analysis of the system in terms of schedu-
lability. The 4 different cases are shown in Table 7.1. In the table, maxDeadline and
minDeadline refer to maximum and minimum possible deadline respectively and max-
Duration() and minDuration() refer to maximum and minimum possible duration of
execution respectively. We discuss these 4 cases resulting in 3 possibilities shown below:

• Schedulable: This result suggests that the system is schedulable for all possible
combinations of load and deadline, since the range of execution satisfy the mini-
mum deadline here (The minimum possibility for the all the instances of the task).
This is an ideal case that rarely happens.

• Not schedulable: This result suggests that for the current setting the system is not
schedulable. This case is resulted when one of the execution values in the range
does not meet the maximum deadline, which is the maximum the task can have for
all its instances. This possibility could still result in false negatives which cannot
be prevented. This is the trade of we make to obtain reduced state-space. This
case can be further refined by considering only minDuration() or maxDuration()
along with maxDeadline (2 queries) resulting in an answer “No” to declare the
system as non-schedulable. This would not have any false negatives since both
these values are always part of the original system.

• Non-conclusive: This result suggests that the verification results for the system
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considered is non-conclusive, since we cannot confirm either that it is schedulable
or not. If the results of these conditions were to be considered either false positives
or false negatives could be the result. Two cases result in this value and are listed
below:

– When the range of execution is able to meet the maximum deadline. Given
the consideration of maximum value for deadline in combination with mini-
mum duration (is included in the range) we can neither conclude the system
is “schedulable” nor as “not schedulable” hence we describe it as a non-
conclusive case.

– When the range of execution is not able to meet the minimum deadline. This
is similar to the previous case in a different way since we cannot expect all
the execution duration values to have the minimum deadline as their deadline
and hence we can only say it is non-conclusive case.

We particularly focus on the result that system is non-conclusive, which is obtained in
two cases here because it is not a usual result. We do not consider model checking
the cases which result in this possibility. Further in this section we describe this case
justifying the reason to omit it. We obtain this result because the approximation also
considers values that do not include in the original model and hence schedulability
analysis can fail for those values not included in the actual system. Consider a system
with three tasks A, B and C. The DSEIR model of such a system is shown in Figure 7.1.
From this model we obtain an abstracted form. In Figure 7.2 we show only the load and
mapping perspective of the abstract model, since we concentrate on the execution time
and deadline only. Execution time is the combination of load and processing time and
since processing time is a constant namely 1, it is entirely dependent on the load in this
example.

When this model is translated into the Uppaal syntax and verified, we obtain a non-
conclusive result for the case number 4 for schedulability check from the table 7.1. This
along with the option to generate the trace allows us to see where the system fails. In
the original model, task A has two possible load values 2, 4 and the deadline ranges
from 3 to 9. B and C have constant load values of 5 and 6 since their minimum and
maximum values are equal. Given the processing time as constant 1, the load values can
be considered as the execution time. Considering the application of case number 4 (or
3) we consider minimum deadline of 3 for A and maximum duration of execution time
4, which is originally impractical to consider and declare not schedulable considering the
results. Thus we omit these false negatives by declaring the system as non-conclusive.

With the new model checking scheme defined we verify the running example after ab-
straction procedure is applied on it, explained in Section 7.2.
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Figure 7.1: The perspective diagrams of the example model. 1) Task-flow perspective 2) Load
perspective 3) Mapping perspective 4) Resource perspective 5) Scheduling perspective



7.2. Abstraction and Verification of Running Example 83

Figure 7.2: The final load and mapping perspectives

7.2 Abstraction and Verification of Running Example

The resulting final task-flow perspective will be as shown in Figure 7.3. Resulting load
perspective will be as shown in Figure 7.4. Also the mapping perspective is depicted
in 7.5. The figures are shown just to depict the effect of abstraction on the running
example, with eliminated condition and value expressions over the edge, modified load
and deadline values. Further in this section we also apply the new model checking
schemes to verify the running example for schedulability property.

Figure 7.3: Task-flow perspective of the output model
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Figure 7.4: Load perspective of the output model

Figure 7.5: Mapping perspective of the output model
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Figure 7.6: Model checking results for the running example

After the abstraction procedure applied on the running example, to complete the schedu-
lability analysis on this model, we verify it using the new model checking scheme. The
result obtained is as shown in Figure 7.6 shows that this system is schedulable since it
satisfies case number 3, here A corresponds to scan, B to image processing and C to
print.



Chapter 8

Abstraction Fitness

In the view of this project, this chapter explains a process to assist the users in measuring
the effectiveness of the proposed solutions. In this thesis we have proposed an algorithm
to abstract the DSEIR model in order to reduce the state-space. We have performed
data abstraction on the DSEIR models to achieve this. Thus now we intend to provide a
method to measure the fitness of the results obtained through the abstraction algorithm
which follows syntax analysis method for performing abstraction. The chapter is mainly
concerned with the parameter abstraction part discussed in Section 6.2. The model
transformation part is not treated, since it meagerly performs transformation of the
model based on range of the parameters obtained via data abstraction. The method
in which we measure the fitness/precision is discussed in Section 8.2, in abstract terms
we perform a comparison of parameter values obtained using other known methods
versus the parameter abstraction method. Since we deal with parameter values, we can
use simulation to obtain the parameter values of the original model. We explain this
simulation based comparison technique in the following section.

8.1 Simulation Based Comparison

By simulating DSEIR models we can obtain the minimum and maximum values each
parameter can take in the model. This process is applied on the DSEIR models automat-
ically via simulator in the Octopus toolset that simulates and provides us an execution
trace. This execution trace is parsed and the parameter values are obtained. The work-
flow of this comparison task can be seen in Figure 8.1. A DSEIR model taken as input
for two methods namely , parameter abstraction and simulation which result in a pa-
rameter map. This parameter map is compared for abstraction fitness and further use of
parameter abstraction method on a considered model is dependent on the result of this
measurement. This precision measure is a relative measure, measured using the results
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Figure 8.1: Work-flow showing the use of abstraction fitness

of simulation. We illustrate this by treating the running example.

The task-flow perspective, load perspective and the mapping perspective diagrams of
the running example model can be seen in Section 2. We show the results from the
application of data abstraction using both approaches, i.e., the simulation method and
the syntax analysis method.

8.1.1 Syntax Analysis

In this section, we show the results of the application of the abstraction procedure on the
running example discussed in Section 2.2. The parameter map obtained for the model
using the syntax analysis method for abstraction is shown in the Table 8.1.

Table 8.1: Parameter Map obtained for the Running example via syntax analysis.

Task Parameter Min-Max Value

Scan pageSize[0] [3,5]

Scan pageSize[1] [1,3]

Image Processing pageSize[0] [3,5]

Image Processing pageSize[1] [1,3]

Print pageSize [3,5]
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Table 8.2: Parameter Map obtained for the Running example via simulation

Task Parameter Min-Max Value

Scan pageSize[0] [3,5]

Scan pageSize[1] [1,2]

Image Processing pageSize[0] [3,5]

Image Processing pageSize[1] [1,3]

Print pageSize [3,5]

8.2 Results

We validate the performed data abstraction by comparing the parameter values obtained
in syntax analysis method with the parameter values obtained from simulation as shown
in the simulation work-flow in Figure 8.1. The obtained values can be seen in Table 8.2.
The goal of this method is to provide a measure of fitness of the parameter abstraction
method to the user. By construction of the algorithm, we know that the abstraction is
conservative for the data parameter values. Thus being conservative we have:

• PO set of parameters in the original model and PA set of parameters in the ab-
stracted model

• ∀p ∈ PO we have corresponding pa ∈ PA

• Also if p = {minO . . .maxO} and pa = {minA . . .maxA} then

minA ≤ minO & maxA ≥ maxO.

Thus p ⊆ pa

We can evidently see that here the parameter abstraction procedure is conservative for
the running example, from the data presented in Table 8.1 and Table 8.2. The method
applied for abstraction performs over-approximation, we can have parameter values that
are not in the set of original parameter values, hence being conservative is not always
useful to the user. In cases where the results are conservative but the difference between
the actual data and obtained data is large, the fitness is reduced like the example depicted
in Figure 8.2, alternatively a useful case can be seen in Figure 8.3. Figure 8.4 shows the
actual data range and the data range obtained from the abstraction procedure.

The variables diff min specifies the difference between the minimum(lower bound) of
these two ranges and diff max specifies the difference between the maximum(upper bound)
of the two ranges. The idea is to keep this difference minimum. The fitness(F) of the
parameter abstraction method can be measured either using these variables or using the
length of abstracted data and actual data. This measures the precision in which the
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Figure 8.2: The ranges obtained with large difference

Figure 8.3: The ranges obtained with small difference

Figure 8.4: The ranges obtained using the different methods, the actual data range - simulation
method and abstracted data range - parameter abstraction method, with differences depicted

parameter abstraction method reproduces the original values. We display fitness value
(F) for a single parameter range mathematically as:

abstracted length = upper bound(abstracted data range)−lower bound(abstracted data range)

actual length = upper bound(actual data range)− lower bound(actual data range)

Assuming that no other factors affect the fitness, we can say:

F =
actual length

abstracted length
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We then define total fitness(FT ) of a task model with “n” parameters, as:

FT =

∑n
i=1 Fi

n

Table 8.3: Fitness values of the parameter

Task Parameter abstracted length actual length Fitness

Scan pageSize[0] 3 3 1

Scan pageSize[1] 3 2 0.67

Image Processing pageSize[0] 3 3 1

Image Processing pageSize[1] 3 3 1

Print pageSize 3 3 1

For the current example we write this difference and measure the total fitness. First we
tabulate the fitness of each parameter in Table 8.3. Looking at the table for the example
with 5 tasks (n=5) we have;

FT =
4.67

5
= 0.934

We can also specify it in terms of accuracy as 93.4% accurate. Note that, for a parameter
type of array, each array element is considered a separate parameter for calculation. We
conclude that higher the value of the total fitness, more effective is the abstraction
procedure on the considered model, for ideal case where the abstracted range and actual
range are equal we obtain result as 1. Since the parameter abstraction is conservative,
abstracted range can never be smaller than the actual range hence we can say that each
Fi ∈ [0, 1], for i = 1 · · ·n and “n” being the number of parameters, hence also FT ∈ [0, 1]
for any considered model.
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Conclusions

The primary goal of this thesis was to incorporate schedulability analysis to the Octo-
pus toolset. During the design phase we found that the DSEIR models are tuned to
be simulation models and hence are less applicable for exhaustive analysis approaches
since it causes extensive delay or crashing of the analysis tool. Hence we planned to
achieve this goal into two phases, namely to make schedulability analysis possible in the
Octopus toolset, and then to make it scalable for arbitrary DSEIR models, applicable to
exhaustive analysis approaches.

The approach in the first phase included making some design decisions to add deadline
as a modeling primitive to the DSEIR language, also making it usable by the scheduler.
After adding this feature, we investigated the possibility of re-using the existing infras-
tructure in the Octopus toolset to build schedulability analysis. We extend the existing
DSEIR translation to Uppaal to incorporate deadline detection mechanism to support
schedulability analysis. Hence now schedulability analysis is possible in the Octopus
toolset. We have also identified an obstacle for our method, in the existing translation
to Uppaal syntax during this thesis, where a state “ready” was not precisely defined, and
rectified this problem. Note that this is an obstacle to perform schedulability analysis
and not a problem otherwise. We have then compared this schedulability framework
built in DSEIR against the schedulability analysis framework proposed by Alexandre et
al. [13] for performance measures. Although for smaller set of tasks (5 tasks), there
was no phenomenal difference in the time, memory usage and state-space, for greater
task-sets (10 and 12 tasks) the automatic model (DSEIR to Uppaal converted mod-
els) had better performance, proving that these models do not suffer from performance
degradation due to the automation process.

To make schedulability analysis scalable to DSEIR models with focus on the reduction
of the state-space, we required to perform data abstraction on the model. We considered
two approaches, namely, simulation and syntax analysis to make this possible. Owing to
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the limitations of simulation approach we chose the syntax analysis method and designed
an algorithm to perform abstraction using syntax analysis method. This algorithm per-
forms data abstraction and model conversion on input DSEIR models, resulting in an
abstract model with reduced state-space. The abstraction procedure commonly creates
an over-approximation of the input model, along with specifying load and deadline val-
ues as ranges. The model checking scheme gets affected, by this over-approximation
producing false negatives and by the need to check all combinations of load and deadline
values during verification. We solve this by successfully creating a revised model check-
ing scheme, with an attempt to eliminate false negatives and reducing the state-space
required to be searched by checking appropriate combinations of load and deadline val-
ues, enough to conclude with proper results. Yet some false negatives could be produced,
which can be eliminated by considering the second refinement. Some queries that could
result in non-conclusive or false negative results are omitted. This scalability feature is
applicable only on a restricted subset of DSEIR owing to the limitations of the parameter
abstraction algorithm and the DSEIR translation to Uppaal.

By construction the parameter abstraction procedure is conservative, but being conserva-
tive does not always imply usefulness/fitness. Thus we also provide a method to measure
the fitness of the parameter abstraction algorithm by comparing parameter values with
the one’s obtained by simulating the input model. We also define the total fitness of the
model, which is equal to 1 in an ideal case when the parameter ranges obtained using
parameter abstraction and simulation are equal, otherwise lies in the range [0,1].
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Future Scope

Through this project phase, considering the work done we also describe some recom-
mendations to follow up on the current work:

• Scale the abstraction procedure: Currently the abstraction procedure can be ap-
plied on models based on a subset of the DSEIR syntax. Scaling this to the entire
DSEIR syntax would make abstraction procedure applicable to arbitrary DSEIR
models.

• Improve the abstraction procedure: Currently the abstraction procedure some-
times induces new values into the abstracted model, which is not present in the
original model. By improving the abstraction procedure to capture only the con-
crete values we, could omit the Non conclusive case in the schedulability analysis
results giving proper results. This will also increase the fitness of the procedure.

• Periodic Tasks: A suitable method, similar to the extra task for representing
periodic tasks have to be investigated. The delay over the edges is also an option
to represent periodicity.

• Infinite models: The effect of abstraction procedure on the models that require
maxIterations to terminate have to be investigated further in detail.

• Manual models v/s automatic models: To investigate reasons for the difference in
the expected results and the obtained results for this comparison is an area for
future work.

• Probabilistic schedulability analysis: A computing systems always includes inter-
rupts which is not part of a normal application and hence cannot be specified with
the system. These appear as sporadic tasks appearing in between the execution
of normal tasks and are of usually higher priority than other tasks in the system.
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There is a need to consider these in the schedulability analysis, but being exter-
nal to the system they are not explicitly specified. A probabilistic analysis for
schedulability can be done based on their expected interference with the regular
tasks.
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