EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

FSM information flow analysis for general decomposition with dispersed generation

Ensinck, J.C.L.

Award date:
2007

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/2702f367-3130-4cdf-a370-15548e30b60a

T U /e technische universiteit eindhoven

Faculty of Electrical Engineering

Section Design Technology For Electronic Systems (ICS/ES)
ICS-ES 886

Master's Thesis

FSM INFORMATION FLOW ANALYSIS FOR
GENERAL DECOMPOSITION.

Hans Ensinck

Supervisors: Prof.dr.ir. R.H.J.M. Otten
Dr.ir. L. Jézwiak

Coach: D. Gawlowski, M.Sc.

Date: May 2007

The Faculty of Electrical Engineering of the Eindhoven University of Technology does not
accept any responsibility regarding the contents of Master's Theses

Abstract

The rapidly increasing complexity of digital systems and growing quality demands related to
them result in an increasing need for high-quality EDA tools for synthesis of these systems.
Specifically, the synthesis of the application specific controllers requires special attention,
because the controllers cannot be synthesized from standard high-level components, but must
each time be synthesized anew from basic logic elements.

Fortunately, the modern platform FPGAs allow for fast and cheap development and
implementation of a growing share of the modern complex digital systems. However, their
benefits cannot be fully exploited by the traditional synthesis methods and tools. Therefore, new
better synthesis methods and tools are needed, specifically for the controller (FSM) synthesis.

The subject of this report is a new method for an effective and efficient controller synthesis,
based on the information-driven approach to digital circuit synthesis, the theory of general
decomposition and the theory of information relationships and measures. This method consists of
the following three main phases: FSM information flow analysis, molecular FSM clustering and
FSM network construction. This report discusses the first two phases, when focussing on
information flow analysis.

The method is implemented in a prototype synthesis tool SeMaDe. Afier analysis of the initial
implementation of the method, it turned out that several of its algorithms should be improved or
replaced by new better algorithms. The main aim of this master project was to develop several
new or modified better algorithms for the FSM information flow structure analysis and their
actual software implementation in C++. This included testing of the information flow analysis
algorithms and their software implementation.

In the first phase, the FSM information flows of the machine are analyzed and the input, state and
output information is structured into portions called molecules that are efficient regarding both
the production and consumption of information. Some of the created portions are still too small
too become efficient partial machines or are similar to each other. Therefore, the clustering phase
is needed to combine the molecules that are too small and / or very similar, resulting in a smaller
number of macro molecules that will eventually become the actual partial machines. The third
and final phase, the network construction, will then create the actual network of partial machines,
which is the goal of the entire method.

To test the first two parts of the method and the EDA tool implementing the method, we ran
several hundreds of benchmarks and analyzed the produced decompositions. The extensive
testing confirms that the tool works correctly and produces valid decomposition structures for all
the analyzed cases. For all the test cases that we were able to analyze regarding the result quality,
the tool produced very good results.

However, at this stage, the final benchmarking and comparative research, cannot yet be
performed, because the final part of the whole method is not yet implemented as it should be
which makes it impossible to automate the testing and result analysis. Once the final phase, the
construction of a network of partial machines, is fully implemented, the tool will be able to
produce the actual FSM network specifications in a format understandable to other tools. Once
this is achieved, benchmarking can be automated and the method and tool can be compared to
other methods and tools on many benchmarks. This will finally confirm if the method is
successful. However, this was not the subject of this master project. The aims of this master
project are fully achieved.

ii

Acknowledgements

I would like to thank the people from the TU/e ICS/ES department for giving me the opportunity
of making this thesis. Specifically, I would like to thank Dr. Ir. L. J6Zwiak, my supervisor and
M.Sc. Dominik Gawlowski for our collaboration on this project. Also I would like to thank Prof.
Dr. Ir. R. Otten, Dr. Ir. T. Basten and Dr. Ir. L. J6zwiak for being in my graduation committee.
Consequently, I would to thank the secretaries of the ES group for helping me out with some
organisational issues and my fellow students for the many nice conversations we had during my
master project. Finally, I wish to express my thanks to my family and friends, who have
supported me during my time at TU/e and my graduation.

Eindhoven, May 2007

Hans Ensinck

iv

Contents

ADSITACT ...cuvveerirenteircrs et e et e st e sesseste s s e be e saebesaen et s e e st e b e b enr e e e et e et rae et ne et e e nans i
ACKNOWICAZEIMENLS.....c..eririrniireiiierterirce ettt eb e st e s e s ses e resanet s e b s v
COMLEIIES ...ttt ettt st s e s e b s e e s s sa b se b s v
LISt OF fIZUIES 1. vevveres ettt st sbn e s sae bbb et e st b e asr e e vii
L. IDITOQUCHION . .-ttt ettt et e e e e e st e s e e e maeat s e e seasnesmenns 1
1.1 CONLEXL..c..eeeieieeeietereereereeeereest e e s st st st e et e besaeasbesr e et easeaataneaeoseeneeateraraneans 1
1.2 Problem deSCrIPLIONc.cectereererterrererr st st eree s e eva s emeesenseeanas 3
1.3 SOIULION COMCEPL...cveruiereereerieertrrersresresesresrseeesereeesesseeneentessetenteseansseres seenseneenens 9
1.3.1 Phase 1: ANALYSiS....cceccereineerieeirereneenerer ettt sneene et neae e n s 11
132 Phase 2: CIUSLETINGcvvecvieeceieaieeierreeereeeesaree s eesseesesseesaesessesreemseseeens 13
1.33 Phase 3: Network CONSIIUCHIONccceveeeruerrrreeresrcereneeseressessenssssneseenesns 14

1.4 The subject and aims of the reported WOork..........ccceeereeierireeererenierenrencrens 15

2. Theoretical back@roundccecieriiirvriiesiverrtere i ee e eee e ses s s ese e s ne et sanaas 17
2.1 Different types 0f COVETS.....coviviiiimiiiiiiicie i 17
2.1.1 Definitions and EXamples........cccocecieeeninniiiivenrereeeeceee et 18
212 Operations on Partitions and Set SyStemscoceeecvnererenrnsinisisicrnienns 19

2.2 Information Relationships and Measures.........c..cooceceierceenneneeesnnncnnensincsnnees 22
2.3 Bt SUPPOTLS .eoeeieiriii et seent ettt ebtem e e e e ses et bs shesbe s b sn b ann s 25
2.4 Sequential MacChinesc..coveiriiiiiiiiiiccciiiircicc et 28
24.1 Definitions of Sequential Machines (FSMS)......cccccecierevcercerrcrrenseerieeneene, 28
242 Realizations 0f FSMS......ccociiiirrieneernr e see e e 30
243 Pair AIZEDTaooiicieiiieecciceeer ettt s 31

2.5 Decomposition TheOorY ..ot 33

3 Basic data structures and OPETAtioNS..........ccoeceeeeercereretenieerserseenerer e seeseesenesaeseenee 37
3.1 Main Data structures used in SEMaDe.........ccccovecerrericirinnierinnreneereereenneae 37
3.1.1 SUPPOIES ..eereri it ae s s 37
3.12 SOt SYSLEIMS -.cueeieiereeterieeterte s ettt aree e b st sresee e st see st rasne e e 38
3.13 Molecules / CIUSLETS.c.uevierenieirreer e ree et e eereerecsresr e ereseasbeeneees 39
3.14 Cluster Sets and Cluster Set Jterators........cccvververeeerecrerenrerinineeeeenenenes 40
3.15 SOIULIONS ...cviiriecereieeeteerte sttt seeseseesnese st e s e et sesesereseeesssossasasanesersens 41
3.1.6 Solution Sets and Solution Set [terators..........c.ccevverercrercrerenrrsreerinre e 41

3.2 Basic operations and algorithmsccceceiiirnnnnsiercinneerreeeee e 42
321 Conversions between information representations.........ccececeeeeeeesricranns 42
322 Induced information (by inputs or OUtputs)cccveereeeercrrnieceereeceecienen 45
323 Minimal input support and Maximal output Supportccceceevereerccrneenaes 46
324 The M and M OPErators......ccoceeirveereeerreecrnietertrrresressresssessesssseseessenssesans 49

3.3 Double Beam S€archescccoeoieurerrirerresectrineneniseeseneeneersereseeessrenssereesens 54
4. Main algorithms and their implementation...........c.cvcccieieivennnenneninnnnnienns 59
4.1 Reading of the controller specification...........cccccevueeieerirccenirniinrcerecee s 60
4.2 The Analysis Phase ... 61
42.1 Creation of A MOIeculesccvveroeroereieee et 61
422 Creation of split A Moleculesccoeceevievieiiirieieseerreiee e 64
423 Construction Moore molecules..........cooveerreccercrninnenernerieee e evenns 68
424 Finding a maximal SP set SyStemcc.covvveneriecrerinre e 69
42.5 Creation of B molecules B........ccccieeniencreiiccinccnceneeneniennae 70

4.2.6 Molecule IMProVEMENLccccrruererecieeererireeetessesereeeeeseeessresseneessessanereas 73

4.2.7 Molecule sub-set SElection..........cccccerirereerirereeeeresnreseeereese e saeereenaens 76

4.3 The Clustering PRasecccoeeieieeierineenentecteeereeeteseesseseeesrese s aeesassesssesees 81
43.1 AT Of CIUSEETING eeveeneiiieeerree ettt reesen e e s venene e 81
43.2 INPUL AL ...ttt e en e 82
433 The main Clustering AIZOrithimccoceeirevnieeeiienenerercceenes e 83
434 Beam 1 of the ClUStEring ProCesscoeruicerrenrrreeesseencomsrsssentesmeesesceseseens 86
43.5 Beam 2 of the CluStering ProCesscovivieremreriesercienenesnmsencescneenssens 91

5. Experimental reSearch........ccoorirenrcineiiuericcnnir et etescens s st eessee e e enene s s 95
5.1 EXAMPIE ..ot sit et etesseese b e ss e ebe st e e nenm e s et seeneae 96

6. CONCIUSION ...eeiceerccttciireceeerie sttt st s se e b s e e et sre s r e e s n e 99
REFEIEIICES ..o erreceeieieieetcerte sttt et et et e e et et e et b nen st st d e n e e st 101

vi

List of figures

List of figures

Figure 1.1: An illustration of the Glushkov model (with an example of a possible internal structure). 4
Figure 1.2: Example of a complete tool chain for controller synthesis. ... 6
Figure 1.3: The ratio of analysis and synthesis during the different phases of the method.cccoevemnennncnc, 10
Figure 1.4: General decOmMpPOSIION NETWOTK. ..c..cecerierecresmrererceesssissenmesensesesseesscasstssessessesssssst ntssesarsesesarsasnss 15
Figure 2.1: Different types of COVErs. ...c.cceeeencnrneencecneens

Figure 2.2a: Information relationships.ccecevveenrune
Figure 2.2b: Abstraction relationships........ccocecceveerurne.
Figure 2.3a: Drawing of a Mealy Machine........cccoccuv.n.
Figure 2.3b: Drawing of a Moore Machine.cccoueue.
Figure 2.4a: Output realization of a FSM
Figure 2.4b: Output and State realization of a FSM...........
Figure 2.5: Decomposition into n sequential MAChiNES.c.coimurieuiercnererscressssarsensersssmsssssess srensoressensinsseses 34
Figure 3.1: The two different molecule SIrUCIUTIES.ccovivirrcrssissmrrsserressssssienssimrerssessssesseassocsnessesesssresssssones
Figure 3.2: Graphical representation of a solution.
Figure 3.3: Graphical representation 0f @ SOIULION Set.oveueecrermiiieriiemmrnineencsiinncrrecsses s
Figure 3.4: The search space and the scan path of the QuickScan algorithm.ccocevrrveeeeanene
Figure 3.5: Overview 0f @ beam SEArCh. ...cuvcoeeciirerceiereeerrerrerecsncrreserecnsresessecsssansssessnsssesssesaes
Figure 4.1: Creation of Mealy and Moore molecules A....
Figure 4.2: Internal structure of a Mealy molecule A

Figure 4.3: Geometry of a the combinatorial problem involving variable supports (lattice structures). 64
Figure 4.4: Flow chart for the splitting algorithm of A molecules.ccovrrrrrceniicsnninrniceciirnrisenee e 68
Figure 4.5: Internal structure of @ Moore Molecule A.ociveeieeriennerrrereceeeneeeererrneesessssesesnsesensasssses 68
Figure 4.6: Flowchart for the creation algorithm of B molecules.. ...t nicccnneneeconnes
Figure 4.7: Flow chart for the Moore subset selection process.c.cceceevirivircennenes

Figure 4.8: Overview of SOIULION. ..cccccccirrienirercnerrsreeetsstiniinessessesseescueasssasanesesasenss

Figure 4.9: Overview Of SOIUtION Set.......ccoererieiveerriercaeeerrrreecrnes e senesressrescasesens

Figure 4.10: The main clustering algorithm flowchart.cocecevvevinivcncnnciccccnnne

Figure 4.11: Example overview of a CluSLETing ProCess.evcuieereessmseramiieesnsesssnees

Figure 4.12: Flowchart of The Beam] process of the Main Clustering Algorithm.ccceceeveeceeeerenenuenes 86
Figure 4.13: Flowchart of Construct Affinity Table.....ccceiviirmniienniiciion e 87
Figure 4.14: Flowchart of Cluster Chosen AIernatives.c.oceeeveeesnscreseccearersnsanasens

Figure 4.15: Selection of clustering alternatives.oceirinrecmererermsacimeserrsecesscsssssernsessssesessssssssmssane sorens 89
Figure 4.16: Flowchart of the second beam process of the main clustering algorithm.........c.covcvvcrvereenenenens 91

vii

L. Introduction

1. Introduction

The first chapter of this report contains an introduction to the subject of the master project
reported. In paragraph 1.1 the context of this work is described. It is explained why this project
has been performed and where its results can be applied. In the second paragraph 1.2, the problem
that is to be solved is stated. A short overview of the complete solution method is given in section
1.3. The final section of the introduction describes the aims and the subjects of my master project
and of this master thesis. In the main lines, my master project assignment consisted of a
participation in the development of the last version of the algorithms for the first two parts of the
method and the actual software implementation in C++ of the FSM information flow analysis
algorithms.

1.1 Context

Application specific embedded systems are used in virtually all fields of human activity and play
a remarkable role in today's life. The share of embedded systems with low or medium production
volumes continues to grow. The fast growing complexity and the critical character of systems in
many embedded applications impose extremely high quality requirements. Some of the most
important goals of industry are the reduction of costs and time to market, while simultaneously
increasing the power, complexity and quality of systems. It is therefore very important to
appropriately organize and automate the embedded system design process.

In this design process the following four main abstraction levels can be distinguished:

1. The system specification level: At this level the entire system is defined. This is done by
describing the interfaces to the “external world”, the system’s function and parametric
requirements (e.g. timing, cost).

2. The architectural level: At this level is decided how the system required is build up of a
number of sub-designs that each have a particular function in the complete design, that
communicate with each other. Collaboration together, the sub-systems realize the
required behavior and satisfy the parametric requirements

3. The logical level: The logical level defines how the sub functions should be implemented
as a network of logic-level elements (e.g. gates, LUTs, FFs) and their interconnections.

4. The physical level: Defines how the design is actually implemented on a chip with the
technology primitives.

The subject of this master project is related to the lowest-level architecture synthesis and logic
synthesis. The most important design task at the architectural level is to find an appropriate
structure, composed of sub-systems (architecture modules), which (after its implementation)
realizes the specified behavior of a system, satisfies given (physical, economical etc.) constraints
and optimizes certain objectives. The most important task of logic synthesis is the translation of
the symbolic, functional description of an architecture module into the binary logic description of
a network of logic components that realizes the behavior of the module. This network must
satisfy specified constraints and optimize given objectives. In other words, the architecture
synthesis decomposes a system in a (near-) optimal structure of cooperating architecture modules,
and the logic synthesis decomposes further each architecture module in a (near-) optimal network
of logic building blocks.

1. Introduction

In recent years, there is a fast growing usage of modern field programmable devices like FPGAs
and CPLDs. The reason for this is that they have numerous advantages and are especially well
suited for implementation of application-specific embedded systems that are produced in small or
medium-large series such as embedded controllers in medical, test and measurement
instrumentation, machines, etc. or applications that require re-programmability.

Unfortunately, the traditional architecture and logic synthesis methods and tools are not adequate
for these types of devices, because they considerably differ from the traditional synthesis targets.
This is because these new devices have limited number of inputs and outputs, limited internal
memory and limited communication channels, etc. in contrast to the more traditional devices
where functional complexity is the main constraint. These traditional synthesis methods cannot
cope well with these hard constraints and only explore a small part of the space of possible
solutions.

Another problem of these traditional methods is that the final target is not taken into account
while doing the initial synthesis, and so a post synthesis net-list partitioning and a technology
mapping is required. However, if the actual programmable logic target (e.g. FPGA) strongly
differs from the simplified initial synthesis proxy target, the technology mapping cannot
guarantee good results, because this initial synthesis is performed without close relation to the
actual target. This all results in inferior designs and often can also result in serious problems with
the satisfaction of some physical constraints.

A new approach to solve this problem that is much more promising is the information-driven
approach based on general decomposition and information relationship measures that has been
proposed by Dr. Ir. L. Jézwiak. In the proposed information-driven approach to circuit synthesis,
the distribution, processing and transmission of information play a central role. The circuit is
constructed in such a way that information flows in the circuit are ordered according to the
information production and consumption, appropriately combined, compressed and kept as local
as possible. Hard constraints imposed by the limited number of inputs and of the logic building
blocks (LUTs and CLBs) are satisfied by explicitly constructing the sub-functions that directly fit
in the logic building blocks.

As a result, particular sub-functions have small number of inputs and outputs, the sub-networks
for particular outputs converge rapidly and satisfy hard constraints of logic blocks,
interconnections are minimized, and the resulting circuit is fast and compact.

The approach relies on analysis of the information structure and information flows in the
sequential machine or a combinational function to be implemented, as well as in the circuit under
construction, and usage of the results of this analysis to control the synthesis of a circuit that
implements the function. To enable qualitative and quantitative analysis of the information
structure and information flows, an adequate analysis apparatus is necessary, which facilitates the
following:
1. Analysis of the information flows — where and how a particular information is produced,
and where and how it is consumed,
2. Analysis of the relationships (similarity, difference) between various information flows,
3. Introduction of the quantitative flavor (quantity, importance weight) to characterize the
analyzed information flows and their relationships.

All these requirements are fulfilled by the apparatus of information relationships and measures.

1. Introduction

The decomposition paradigm is successfully used in many fields of engineering and is a way of
simplifying a complex problem by breaking it down into a number of sub-problems of lower
complexity. In the case of the circuit for Finite State Machines (FSMs) this means to find a
network consisting of a number of component machines that together implement the output
behavior of the originally specified FSM.

Using this information-driven approach based on the general decomposition theory {6], [17], [22]
and the apparatus of Information Relationships and Measures [7] as proposed by Dr. Ir. L.
Jozwiak already some very good results were achieved in the form methods and prototype tools
for similar problems:

» SeCoDe by L. Jozwiak and A. Slusarczyk for state encoding of FSMs [17], [22].

o IRMA2FPGAS by L. Jézwiak and A. Chojnacki for synthesis of combinational circuits
[1]1, [2].

e SeMaDe by L. Jozwiak and P. Konieczny as the first method and preliminary prototype
tool for general decomposition of FSMs [19].

These results stimulated the research group of Dr. J6Zwiak and STW to start a project (EES.5766)
related to an effective and efficient architecture and logic synthesis of application-specific
embedded controllers for programmable hardware implementation. In this research several
persons are directly involved to different degrees: Dr. L JoZwiak (project leader), D. Gawlowski
(Ph.D. project), myself (ing. H. Ensinck for my master project), as well as A. Slusarczyk and A.
Chojnacki (former Ph.D. students of Dr. Jézwiak).

My particular role in the project consisted of a participation in the development of the last version
of the algorithms for the first two parts of the related FSM decomposition method, and the actual
software implementation in C++ of the FSM information flow analysis algorithms. My role will
be precisely presented further in this report.

1.2 Problem description

Almost all (complex) modules of digital designs have a processing path (or data path) / controller
structure. Here a processing / data path processes input data to output data and the controller
monitors the status signals and produces the control signals from and to the data path. The
structure as described above is referred to as the Glushkov model (see Figure 1.1). An entire
design can consist of just one such structure. But these structures can also be put in series or
parallel or they can be nested in each other. For instance, a unit from the data path could have a
number of data path units and some controllers of its own. The data path of a digital design
consists of a number of (basic) units / building blocks (like adders, shifters, registers, multipliers,
etc. or on a higher level complete algorithms like FFT’s or different types of de/encoders, etc.).

1. Introduction

Data

Processing

[controller: roces
(Data) Path

Control
Inputs

Control
Outputs

Daa
Outputs

Figure 1.1: An illustration of the Glushkov model (with an example of a possible internal structure).

Because these units/building blocks of the data path generally perform standard functions, they
can usually be reused. Therefore, data-path block synthesis for a specific operation has (in
principle) to be performed only once and therefore a lot of effort can be put into finding a good
implementation of the data-path building blocks. They could e.g. be put into a (post-synthesis)
library, so when needed in a design already synthesized versions of the building blocks can be
used directly. This does not mean that some units of the data path could not be application-
specific and therefore especially designed and synthesized for the specific application.

A controller on the other hand, is always application-specific because in organized and controls
the work of the data-path for just a particular application. Consequently, a controller has to be
synthesized for each different application anew (and every time a controller is changed).
Therefore an automatic synthesis tool is here extremely important that produces very good
synthesis results in terms of circuit speed, area and power consumption using only a reasonable
amount of computation time and memory space.

As mentioned before (in the previous section) the problem of synthesizing an embedded
application-specific controller can be solved by using the information-driven decomposition
paradigm where a sequential machine is split up into a number of component machines that

1. Introduction

together realize the input-output behavior of the original machine. At the same time the given
constraints must be met and the given objectives must be optimized. The theory of general
decomposition states the necessary and sufficient conditions (and gives the necessary constraints)
for an abstract network of component machines to be a valid realization of a given sequential
machine. In this way is defines a generator of all (possible) correct circuit structures. This alone
however does not solve the practical decomposition problem. For larger machines for which so
many (valid) decompositions exist that an exhaustive search is not possible (the solution space is
too large). Therefore, heuristic search algorithms must be used to construct only the most
promising decompositions in such a way that a (near)optimal solution is found, while drastically
reducing the computation time and memory usage otherwise taken by an exhaustive search.

Because of the large freedom that is left (because there are very many possible decompositions),
the synthesis process has to be steered toward an (near) optimal solution. For this purpose, in the
first place, the relevant information about the original machine must be used.

Using for instance the apparatus of Information Relationships and Measures, the internal
information flows of the machine can be examined. In this way, it is possible to see where and
how certain information is produced and / or consumed, and how difficult it is to produce some
portion of information. With this analysis, coherent pieces of information are found that should be
produced or consumed together. By putting one or more of these coherent pieces of information
together in a component machine, a decomposition is found which exploits the internal structure
of the original machine well, and will therefore result in a nice decomposition of relatively simple
component machines with only few interconnections between them.

Besides the internal information, also information on the external relationships of the sequential
machine should be used to steer the decomposition towards a (near) optimal solution. By external
information is meant e.g. information on where (physically) the particular FSM inputs and
outputs are connected, or from/to what part of the data path certain signals are
received/transmitted (see figure 1.1). By taking this information into account, a different
decomposition could be found then when only considering the internal structure of the controller
(e.g. it could be better to produce / consume certain information near a part of the data path where
many of these signals come from, or near some input / output pins. It could also be better to
produce some information more than once if the production is cheaper than the wiring otherwise
required to transmit this information to its destination).

Using these two sorts of information (i.e. on the internal as well as the external information
flows) and confronting them with the actual synthesis objectives and constraints, heuristic
decisions will be taken to control the correct-by-construction circuit generator provided by the
general decomposition theorem, to only synthesize the most promising circuit structure(s).

Summing up, the aim of the while research is to develop a method that will be worked out to
precise algorithms implemented as a C++ program of a CAD tool (SeMaDe) to find one or more
(near-)optimal decompositions of a machine. This tool however, will only be a part of a larger
tool chain that will produce a synthesized version of a given controller description. An example
of such a tool chain is given in figure 1.2.

1. Introduction

T lngqg Data

- Example Toolchain

3 or 4 states—

Output Data

Figure 1.2: Example of a complete tool chain for ;:or‘ltroller‘synthesis.

1. Introduction

The input to this tool chain is a functional description of a sequential machine. This can be of any
form such as a hardware description language like VHDL or Verilog. It can also be in the form of
a graph of states and transitions or an RTL level description. Further, an optional specification of
the external information can be given (as explained earlier). In this file constraints can be defined
in terms of delay, set- and hold-times, etc for certain signals or groups of signals. However if this
information is not available the controller will be decomposed using only information on its
internal information flow structure.

A “Kiss conversion tool” will convert the specific input file(s) to an (extended) Kiss file format as
specified by UC Berkeley. A standard Kiss file can be used to define any sequential logic circuit
with binary encoded inputs and outputs. Even when it has non-deterministic behavior (don’t cares
in the next state function) or not completely defined outputs (don’t cares in the output function).
If this tool is provided with external information about the controller, the Kiss file will be
extended such that this one file contains all information required for the tool chain to synthesize
the controller.

Once this file is created, it is determined what type of binary encoding for the states is optimal.
Research performed by the section of Dr. J6zwiak with thousands of benchmarks has shown that
optimal state encoding is with close to (near-)minimum number of the binary encoding variables
or a (near) one hot encoding in a large majority of cases.

A minimum-length encoding means that the number of state variables / two state memory

elements (in case of binary logic) isl_log2 \S -| , Where lS ‘ is the number of states of the particular

machine (cardinality of the state set). This number of state variables is the minimal number of bits
needed to uniquely to encode all states. This encoding will result in the minimal number of
memory elements and binary next-state functions and thus the next-state and output logic with a
minimized number of inputs, but with probably higher functional complexity.

Secondly, the sections demonstrated that for one type of machines, namely, the state dominated
controllers with very simple sequential behavior (not many branches from a particular state) like
purely sequential controllers, (close to) one-hot encoding could yield very good results. In one hot
encoding (almost) every state is assigned to its own state variable. So this encoding actually will
result in the maximal number of memory elements. However because of the purely sequential
behavior of this type of controller the number of inputs to the particular next-state and output
logic functions is very small and also their functional complexity is extremely low. This type of
encoding is extremely simple: assign a state variable to each state symbol. Based on the research
results of the section of Dr. J6zwiak, it is easy to decide in which cases one-hot encoding should
be applied.

If, on the other hand, is found that the given controller description can be encoded very well with
a binary encoding. The tool SeMaDe can be called. This is the tool described in this report. It will
create a general decomposition of an original FSM in the form of a network of small finite state
machines. However these FSMs do not require all to have only two states (which would mean a
complete binary encoding). This means that the general decomposition method and tool described
in this report creates a multi-valued (partial binary) encoding representing architecture of the
original FSM.

Some machines however could only have two states, so for these FSMs encoding is directly
established because there are only two ways to encode these two states (called A and B): A=0,
B=1 or A=1, B=0. These encodings are each others inverse, and because inversion in an FPGA is
a free operation there is only one (fundamentally different) encoding.

1. Introduction

For decomposed machines of 3 or 4 states, (at least) two state variables of two blocks are needed
for the encoding. An exhaustive search is therefore possible, because there are only a few ways to
encode them. For a FSM with 3 states (A, B and C) these are the six possible encodings.

In the case of a binary encoding for 3 states, this is defined by a product of two two-block set
systems of which the product results in { Z; 1—3; C } (for more information on set systems and the

product operation on set system the reader is referred to chapter 2). The six possible encodings
are as follows:

{E;E}-{A_C;E} ,{E;E}-{Z;E} {ZB@}{EE} {25 E}-{Z;E‘} ,
{A_C,E}{A*BE} and{Z;B_C}-{E;f}.

In the case of a binary encoding for 4 states (A, B, C and D), an encoding is also defined by a
product of two two-block set systems of which the product results in { A; B;C; 5} . In this case

however there are only three possible encodings because each block can only contain one state
(otherwise a product of two two-block set systems could never result in a set system which
uniquely defines all four states). The three possible encodings are as follows:

(4B,CD}-{ AC: BD}, {4B:CD}-{AD; EC) and {4C:BD}-{4D;5C}.

Machines with more than four states will require at least 3 state variables and the number of
possible encodings will explode exponentially. Therefore, we should use the (already developed)
SeCoDe (or any other binary encoding tool), although SeCoDe can also be used for the partial
machines with only 3 or 4 states.

SeCoDe (like SeMabDe) is also based on the theory of general decompositions and information
relationships and measures but it analyses the structure of a machine at the finest level, by
determining which input and atomic / elementary state information are required to compute a
particular output or an atomic / elementary state information while SeMaDe can also work with
larger portions of information. The second difference is that while SeMaDe always searches for a
natural multi-valued decomposition to synthesize the actual circuits that will implement the
original FSM, SeCoDe searches directly for the best binary state encoding so the output of
SeCoDe is guaranteed to be a network of only two state partial machines. So while SeCode will
not always find a (close to) the best natural decomposition and will require more computation
time, for the partial machines generated by SeMaDe it is an exceptionally good tool since it will
structure the machine further where SeMaDe could not decompose further into smaller machines.
The computation time is always reasonable, because the partial machines generated by SeMaDe
are always of a small size.

The result of this final encoding step is again a network of sequential machines, however now all
machines have two states and so the binary encoding of the states is complete. Because we
assumed that the inputs and outputs where already binary encoded, the next state and output
functions of all machines, as well as their input encoders and output decoders are defined as logic
functions with binary input and output bits, so any combinational logic synthesis tool can be
called. In Figure 1.2, the IRMA2FPGA (Information Relations and Measures Applied to FPGA)
tool is mentioned for this purpose. This tool is also based on the theory of general decomposition
and information relationships and measures and yields very good results. However any other
commercial or academic logic synthesis tool can be used for this purpose.

1.) Introduction

Now we have a network of sub-functions and memory elements which can be directly mapped
onto the target architecture. Of coarse, placing and routing still has to be performed using the
tools from the vendor of the target device.

1.3 Solution concept

To solve the problem of the FSM architecture synthesis described in the previous section, we will
use the information-driven general decomposition approach to digital circuit synthesis. This is the
same approach as applied in some other methods and prototype tools (e.g. Devisa and SeCoDe
[17], [22] and IRMA2FPGAs [1], [2]) developed under leadership of Dr. L. Jézwiak for solving
similar problems. The architecture synthesis and network construction method to solve the
problem described in the previous section has been already earlier proposed and implemented in
the first prototype version of the SeMaDe tool [19]. It consists of the following three main
phases:
1. The information flow analysis phase,
2. The clustering phase, and
3. The final FSM network construction phase, where the clusters (found in the second
phase) are converted into a network of adequately interconnected component
machines.

The first prototype version of SeMaDe has been developed to mainly check all the concepts and
although it is a compete tool that implements all the analysis, clustering and network construction
steps and produces valid FSM networks, the implementation of particular parts of the tool was
preliminary and required further research and development effort.

Trough thoroughly analyzing the first version of the SeMaDe, Dr. JéZwiak discovered several
inefficiencies in some of its algorithms and proposed related improvements. It was also necessary
to implement it consistent with SeMaDe tool for the (final) binary FSM encoding. This led to
formulation of the PH.D project in which SeCoDe was developed and the STW research project
of which the work described in this report is a part. Further development of the information flow
analysis part of the SeMaDe tool was the main aim of the master project being the subject of this
report.

In consequence of further works, several algorithms in the first two phases of the last version of
SeMaDe being the subject of this report, at least partially differ from those in the earlier
developed methods (as mentioned above) for solving similar problems. In result, the FSM
architecture synthesis method as implemented in the first prototype of SeMaDe remained
unchanged at the method level, but several algorithms of its particular parts and their
corresponding software implementations are substantially different from those implemented in
the first SeMaDe prototype and other tools as mentioned above for similar purposes.

The main general aim of the decomposition process is to distribute the production of the state
information amongst the particular partial machines in such a way that it is well structured from
the following two viewpoints:

a. State Information Production: The state information should be structured in
portions that are convenient for the production of each particular portion, i.e.
in such a way that:

i. the amount of the input and imported state information needed to
produce the state information of each particular partial machine should
be as low as possible, and

1. Introduction

ii. the number and length of interconnections from the primary inputs and
from other partial machines to a particular partial machine will be
minimized.

b. State Information Consumption: the state information should be structured
in portions that are convenient for the consumption of this particular state
information by the primary outputs and other state information producing
partial machines; this means among other things that the state information
required by a particular output or another partial machine should not be
distributed for its production among too many partial machines, but should
be produced in as few as possible partial machines, if only this is not in
contradiction with requirements of the convenient state information
production.

The decomposition process aims to find the best match and tradeoff between the above two
viewpoints and among the partial machines, to result in a high quality total solution.

In the process of designing digital circuits (or similar design processes) two different activities
can be distinguished: analysis and synthesis. Analysis activities try to gather relevant information
about the problem, to make it possible to make the right decisions for synthesis, which is deciding
on how the design is actually implemented. Rather than seeing analysis and synthesis as two
completely separate stages (where analysis is followed by synthesis), in our method we start with
doing only analysis and gradually increase the amount of synthesis (thus reducing the amount of
analysis) during the method (see figure 1.2). This is done by making synthesis decisions as soon
as analysis provided us with enough information to justify this decision. The process of this
decision-making as early as possible gives us extra information on which to base further
decisions.

100%

0%

Figure 1.3: The ratio of analysis and synthesis during the different phases of the method.

In the analysis phase, a sequential machine is first read (from a kiss file). Thereafter, information
molecules are created. These molecules (in analogy with material molecules in physics or
chemistry) are some portions of information larger than atoms in the sense that a molecule
contains more information than elementary or atomic information. Atomic information refers to a
minimal amount of information which makes it possible, to distinguish two particular symbols
[7]. The SeCoDe tool, for instance, works with the atomic state information (to perform the

10

1. Introduction

binary state encoding for FSMs), while SeMaDe directly creates molecules from the initial FSM
specification and further works with these molecules.

Working with atoms has the advantage that you can precisely analyze what information is
produced / consumed at a certain place. A disadvantage of working with atomic information is
that it is more difficult and time consuming to make an adequate analysis of the information
relationships. Also the following synthesis phases (e.g. clustering) will take longer because more
and smaller components have to be merged.

Another disadvantage is that you tend to work with too fine portions of information. In this case
the relationships between such small portions of information may not be as clear as the
relationships between the larger molecules.

Working directly with molecules (as is done in SeMaDe) is faster but also less precise. The best
option would be therefore, to base the method on molecules but to also do the analysis on much
finer portions of information (e.g. atomic information) when needed. In this way we can profit
from both approaches: A fast algorithm with a precise information analysis (and therefore good
molecules).

1.3.1 Phase 1: Analysis

A molecule (as stated before) can contain more information than an atom, but it is still small
compared to the whole FSM considered. As it will be more precisely (mathematically) described
in the section of this report on the theoretical background, a molecule is defined by four pieces of
information (input information, consumed state information, produced state information and
output information). Molecules are used to model information flows in the FSM from the inputs
and the current-state to the particular outputs, as well as, information processing within the
molecules. They are used for both the information flow and processing modeling, as well as, in
the role of the early prototypes of the actual partial machines in the decomposition, that
corresponds to partial computations of the original FSM.

Two basic molecule types can be distinguished:
e Molecules A: created from the viewpoint of (an efficient) computation of particular
portions of output information, as e.g. information for a particular binary output.
e Molecules B: created from the viewpoint of (an efficient) creation of particular portions
of the state information.

The molecules come in four flavors:

e Mealy molecules A: These are related to computation of some output and possibly also of
some state information.

e Split Molecules A: These are specific molecules A which are split according to their
inputs. In this way not only the outputs but also the inputs are used to decompose the
output information.

e Moore molecules A: These molecules produce information necessary for outputs which
only require state information, so the output information needed for this particular output
can be directly mapped onto its produced state information. Because of this fact, these
molecules’ main aim is to produce state information (which makes it similar to a B
molecule), to produce a particular output (which makes it similar to an A molecule).

e And finally molecules B: These are related mainly on the efficient computation of state
information (and possibly some output information). The outputs do not give information
on how to encode the state information (just on how the output information computation

11

1. Introduction

is originally structured), so the state information can only be decomposed well
accounting for the inputs of the machine and the state-state dependences.
During the construction of molecules A, it is necessary to decide if the input information required
by each of them will be delivered directly or after encoding of some inputs, and the
corresponding input encoders have to be constructed.

The information flow analysis being the main subject of the work reported here is composed of
the following main steps:

o reading the controller (FSM) specification from a KISS file;

e analysis of the input-output and state-output information flows and creation of molecules
A;
splitting the A molecules according to inputs if possible;
creating the Moore molecules A for outputs which do not require input information;
Finding a maximal SP set system to determine the state information to be computed;
analysis of the input-state and state-state information flows and creation of B molecules;
analysis and improvement of the created molecules;
Selecting a limited set of the most promising subsets of molecules that each of them
corresponds to a valid decomposition. Each subset represents a different alternative for
clustering.

The complete FSM information flow analysis necessary to create adequate molecules should be
composed of both the internal, as well as, the external information flow analysis. In the internal
information flow analysis, the input to output, input to state, (present)state to (next)state and state
to output relations are analyzed. Based on the results of this analysis, the molecules will be
created.

In the method that we propose, the molecules A are created first, where each molecule A
corresponds to one output bit of the original machine. This means that a molecule A has to
compute enough (output) information to support a single output bit of the original machine. To do
this, a particular molecule A requires information from (some of the) inputs (consumed input
information) and some information about the state (consumed state information) of the original
machine. With this information it is not only possible to compute some output information, but
also some state information (produced state information) although this is not their main aim. The
state information that is required by a certain molecule (consumed state information), but not
computed by this molecule (produced state information), is called the imported state information.

After the output information is decomposed according to the outputs, it will also be tried to split
the output information according to the inputs. It could happen that some (possibly elementary)
portions of output information do not require all input bits / input information that is needed to
compute the entire output. In this case each particular A molecule is decomposed to still produce
all output information needed for the output bit but with all split A molecules each having the
smallest possible input support. The output will then be computed with a virtual output decoder.
The encoder is up to this point still virtual because it is not actually created, but it is suggested by
the fact that these A molecules only compute part of the output information for a particular output
bit. If however an A molecule contains at least one portion of atomic output information that
requires the input information that was also needed for producing the entire output bit, splitting is
not useful and the corresponding output will be computed by an un-split molecule A.

Then the Moore molecules are constructed for the outputs which do not require input information.

This is a special case. The Moore molecules A do not need any output logic because the state
information can be directly mapped on to the outputs. Secondly the produced state information

12

1. Ir_nroduction

(and also the output information) can be encoded on just one bit so it can be directly used for
binary encoding of the states. This is also the main reason for their low cost. The aim for this type
of molecules is to produce all state information needed for a particular output bit in one molecule
(since the output computation for a Moore output in requires no input information). Of coarse, to
do this, state information and input information is required. Secondly, these molecules can not be
split using output decoders.

Now that the molecules A (complete and split) and the Moore molecules are created, the
computation of all the output information for a valid decomposition is covered. Although some
state information can already be computed by these type A molecules, possibly not all the state
information for a valid decomposition can yet be computed. And even this is the case, it is
anyway useful to analyze the computation of the state information from the viewpoint of the
inputs. To determine what state information should (at least) be computed is not really obvious
since this state information is fed back in sequential machines, because the next state is computed
from the current state (and input information). So the maximal SP set system has to be
determined, which is a the largest set system (contains the least amount of information) that has a
substitution property. This means that the next state can be computed from the previous state thus
making the decomposition valid regarding the state information and taking into account the
recursive behavior.

Now that the maximal required SP set system is known, at least this state information has to be
produced by molecules B. The molecules B where already mentioned several times before, and
are essentially the same as molecules A, except for the fact that they (basically) do not produce
output information. These molecules B will be constructed and also be improved so that they can
maximally exploit the input information consumed.

By then, After the production and improvement of the A and B molecules the analysis phase is
complete. From this point on, all molecules are treated equal (no difference is made between
molecules A and B) and each molecule is treated as a cluster (containing just a single molecule).

The main subject of this report is the first part of the decomposition method briefly described up
to this point and its software implementation. However this is just the first phase of the complete
method to generate a good and valid decomposition of a sequential machine. For a better
understanding of the complete decomposition method, the successive phases are also shortly
addressed.

1.3.2 Phase 2: Clustering

After a wanted set of the alternative most promising initial subsets of molecules is created, the
actual sub-machine network construction can start. Its first step being the second phase of the
complete method, is clustering of some molecules in each subset. At the end of the clustering
process, each macromolecule being its result, corresponds to a partial machine. In the beginning,
all the molecule clusters contain only one molecule of a given subset. During the clustering, the
clusters (which are not indicated by the analysis part to be untouched) are gradually merged based
on a carefully constructed affinity measure corresponding to the actual implementation cost, in
such a way that clusters with high affinity are clustered together. Although the concept of
clustering is intuitive there are a lot of aspects to consider to get a good clustering (which
eventually results in good component machines). The intermediate solutions generated which
have the lowest implementation cost are considered for further clustering.

13

1. Introduction

An affinity measure determines to what degree some clusters are similar and the weights of each
of these measures are of high importance. If this is not done carefully clusters might be joined for
the wrong reasons resulting in bad decompositions. The weighting of the different affinity
measures is important because in this way a certain measure can be emphasized thus focusing on
a certain property. Also the cost function which determines the quality of the solution has to be
carefully defined. Finally the search parameters have to be adjusted well to steer the search in
promising regions of the solutions space and keeping a low running time of the tool versus
maintaining a high possibility that many very good solutions remain in the searched solution
space. If clustering is stopped to early, there will be too many component machines and still al lot
can be gained by further clustering because there are still some clusters with high affinities that
are not merged. This can result in information that is produced more times than necessary. If on
the other hand clustering is stopped to late clusters are merged that should not be clustered, this
will also result in bad decompositions.

During the clustering, we have also to take care of the fact that sometimes the information
necessary for computing a particular output bit can be present in two or more different clusters
that should not be merged together, because of other reasons. In such a case, instead of trying to
merge the otherwise not similar clusters, we can compute the partial output information portions,
for this particular output bit in the separate clusters (partial machines), and then to combine this
partial output information portions in the total output information of the particular output bit,
using an output decoder. This way, similarly to the input decoders on the input side, the
appropriate output decoders will be created on the output side.

Due to the heuristic character of this sort of problems and the uncertainty at this stage, analytical
methods will not suffice. Also because of the possibly large size of this sort of problems, also
exhaustive searches are no good alternative. So only considering one alternative at each stage is
not very likely to lead to good final clustering solutions. Therefore this algorithm is implemented
as a double beam. The principle will be further explained in Chapter 3. And its actual application
to clustering is discussed in Chapter 4.

1.3.3 Phase 3: Network construction

When the clustering is finished, some final clusters are present in each alternative solution. Each
final cluster is an abstract model of a component machine defined with the (next) state and output
information that can be computed from some input and (present) state information. It must
however still be converted into an actual corresponding component machine. To do this, it must
be decided from where (i.e. which partial machines) each particular partial machine will import
the missing information necessary for its computations and how it must be encoded (mapped onto
a number of bits). This encoding is a tradeoff between the number of connections required
between the component machines and the amount of computation necessary to get the required
information encoded on these bits. Now the component machines can finally be interconnected.
And as a result we have our network of component machines that together realize the output
behavior of the original machine.

After the network construction phase, the decomposition will be complete, resulting in a network

of interconnected partial machines, input encoders and output decoders. An example
decomposition structure is shown in Figure 1.4.

14

1. Introduction

- Partial Machine

Parial Machine

RS

‘

R A

Primary Outputs

Y

Connection
Module

Primary Inputs
{

Partial Machine

A

input Decoder Output Encoder

Figure 1.4: General decomposition network.

It can be seen from this figure that the actual decomposition network implementing the original
FSM consists of some partial machines that can be interconnected or stand alone. Also each
partial machine can have direct access to some primary inputs, or can acquire their needed input
information via one or more input encoder(s). A partial machine can produce some output
information. This could be enough to compute one or more output(s) directly. The remaining
outputs are constructed combining output information from different partial machines using one
or more output decoders.

1.4 The subject and aims of the reported work

The subject of the work presented in this report is the FSM information flow analysis for general
decomposition (as stated by the title of this report and my master graduation project). This relates
to the first part of the proposed FSM decomposition method. This also accounted for the final
adaptation of the software developed for the second (clustering) part of the method to seamlessly
collaborate with the first part.

The first aim was to develop several new or modified better algorithms for the FSM information
flow structure analysis. This has been performed by Dr. L. Jézwiak in collaboration with D.
Gawlowski and myself. It was realized through reconsidering the choices made in the previous
version of the algorithms (from SeMaDe) and making a much better use of all the information

15

1. Introduction

that is available to generate as good molecules as possible by the limited computation resource
usage (memory, CPU time, etc.)

The second aim was to implement the new or improved algorithms in software (as C++
programs) and analyze if the improved version of the prototype CAD-tool works correctly and
generates high-quality decompositions. The previous version of this tool (SeMabDe) is based on
the logic synthesis library. This library was reused and extended whenever required. Also the
adequate parts of the SeMaDe main code were reused. This way, a lot of tedious work (of writing
and testing code) was avoided so that we only focused on the improvement and implementation
of the actual changed and new algorithms. The so created improved version of the prototype
SeMaDe CAD-tool has been thoroughly tested by performing a series of experiments with the
method and the tool (with a number of benchmarks). In this phase, some bugs were found and
removed. Also more efficient implementations were considered (requiring less computing
resources).

The final aim was to analyze the SeMaDe method and tool, to see if they actually work correctly
and generate a good quality initial set of molecules (by this is meant, a decomposition as a human
engineer would do or possibly even better), that will be the base of the further synthesis, and can
lead to / result in good final decompositions.

Summarizing: the aim is to have, at the end of this master project, a method based on general
decomposition for generating an initial decomposition into molecules (analysis phase) with
several new or improved algorithms, using as much information as possible to make the adequate
decompositions by an acceptable use of computation resources. The new and improved
algorithms have been implemented as part of a prototype CAD-tool (in C++) and were
thoroughly tested. The method as well as its improved implementation will be described in this
report, when focusing on its first FSM information flow analysis part. Finally, the analysis part
was seamlessly merged with the synthesis phase of the complete tool (clustering).

16

2. Theoretical background

2. Theoretical background

This chapter of the report will recall some selected theoretical concepts and theorems from
several earlier published papers, reports and Ph.D. theses that are used in the rest of this report
and are necessary for its understanding. In chapter 2.1 different types of covers will be discussed.
These types of covers can be used to model the information flows in a FSM. For set systems and
partitions also some operations and relations are defined (set systems are the covers we will use in
the method described in this thesis, partitions are only introduced to show why we have chosen
set systems to model information in our method).

In chapter 2.2 information- and abstraction sets are introduced. Besides this, relations and
measures on two information- (or abstraction-)sets are defined. The information relations and
measures can be used to compare two portions of information.

Chapters 2.3 explains the concept of bit supports and how they are applied in logic synthesis and
decompositions of sequential machines.

Chapter 2.4 gives the definition of a sequential machine / Finite State Machine (of Moore and
Mealy type). Also realizations of output and / or state behavior (of FSMs) and their necessary
conditions are defined. In this chapter also set system pair algebra (and the M and m operators)
are introduced.

Chapters 2.1 to 2.4 are the basis for the decomposition theory (applied to the decomposition of
sequential machines). The decomposition theory states the sufficient and necessary conditions for
a valid decomposition, and will be discussed in chapter 2.5.

2.1 Different types of Covers

In this paragraph the different types of covers are defined. The covers are a mathematical
concepts to model information on elements of a given set S (they group together certain symbols
in the set). As it can be seen in Figure 2.1 there are different types of covers: covers, unique-block
covers, set systems and partitions, in order of increasing strictness. This is the classification as it
has been introduced by Dr. Jozwiak et. al. [7], [17], [22], although the notions of partitions, set
systems and covers existed earlier.

Figure 2.1: Different types of covers.

17

2. Theoretical background

Because partitions are the most strict type of covers, they have a number of desirable properties
(e.g. they form a lattice). But they have the disadvantage that they cannot be used to describe
don’t cares (either in the description of a FSM or Combinational function or in their
decompositions). Therefore in the rest of this thesis mostly set systems will be used. Set systems
do allow for don’t cares but they still have many of the desirable properties of partitions (although
not all if them). The (unique-block) covers can also be used to model redundancy, by using set
systems in our method we cannot model redundancy, but this disadvantage is outweighed by all
the other properties of set systems.

2.1.1 Definitions and Examples

The theory of general full decomposition and information relationships and measures is based on
information and information flows through a sequential machine. To do this, a mathematical
formulation has to be given to what information actually is. The definition we use for
information, is that information is the provides the ability to distinguish different (groups of)
symbols in a set.

A symbol is an element of set. A set contains a discrete and countable number of these elements.
In the case of sequential machines (in this thesis), there are three types of symbol sets:

o S, the set of states (where a symbol is a specific state of the sequential machine).
o I, the set of input combinations (this is different from the set of inputs).
e O, the set of output combinations (this is different from the set of outputs).

Symbols with particular properties and which cannot be distinguished can be grouped. Such a

group of compatible symbols is called a block. The type of covers is described by the restrictions
that hold for these blocks.

Cover:

Definition 2.1: o ={Bi | B, gS/\UB,. =S}

This means that cover ¢ consists of a number of blocks B, that contain together (cover) the
entire set S.

Example 2.1: ¢ ={B,; B, B; By B} = {1:1,2:2,3;4,5:4,5}
Unique-block cover:

Definition 2.2: ¢S={B,|BigSAUB,=S/\i¢j:;>B,.¢BJ}

The definition of a unique-block cover is essentially the same as that of a cover with the extra
restriction that no blocks are allowed to be identical.

Example 2.2: P = {i,l,_2,2,_3,4,_5}

The cover in example 2.1 is not a unique-block cover because B, and B, are identical.

18

2. Theoretical background

Set system:

Definition 2.3: ¢S={B,lBigSAUB,:S/\i;tj:BI.QBj}

In a set system it is not allowed for a block to be entirely covered by another block (all the
symbols in a block are also in another block).

;4,5

The (unique-)block cover in example 2.2 is not a set system because B, = 1,_2 contains all the

symbols of B, = 1.

Example 2.3: ¢ = {r, 2,

Partition:

Definition 2.4: & ={B,. | B, gS/\UB,. =SAi#j=> B NB, =®}

In a partition a certain symbol is not allowed in more than one block.

Example 2.4: ¢ = {1, 2;5; X 5}

2.1.2 Operations on Partitions and Set Systems

A set system can be used to model information. For this purpose it is useful to define some
operators (product - and sum +) and also some relations (smaller or equal <, larger or equal >
equality =). In this chapter their mathematical definition as well as there intuitive meaning are
introduced for set systems.

Let ¢d; and @ be two set systems on symbol set S. The following relations between two set
systems can then be defined as:

Definition 2.5a: >4} iff (VB €¢;,3B' e 4} : B' 2 B*}
Definition 2.5b: ¢S <¢; iff (VB'e 5, 3B e g : B' B’}
Definition 2.5¢c: ﬂ{ ¢s2 A ¢; 2 ¢§}
Definition 2.5d: ¢S < i ﬂ{¢s <@y Ny # ¢s}
Definition 2.5e; ds > @2 lﬁ{(ﬁs > g A s # ¢s}

The intuitive meaning of @ > g is that ¢¢ contains more or the same information than g . This

might be confusing because of the definition of largest set system. The meaning of the other
operations for comparing set systems are then obvious.

19

2. Theoretical background

w

Example 2.5a: {1 ,3;

v

4} 122, }
Again, let ¢; and ¢; be two set systems on symbol set S. The product of two set systems can
then be defined as:

Example 2.5b: {

Definition 2.6a: g = 45 - ¢ = { B, | 3B' € ¢,3B” e §} : B, =B'nB* ni# j= B, C B}

The second constraint (i # j = B, & B,) can also be seen as the Max operator, in this way the

definition becomes:

Definition 2.6b: #s =4 93 =Max{B,|3B' € 4;,3B° € 4} : B, = B' " B’}

The intuitive meaning of the product of two set systems is that @y = g @2 represents the
combined information of ¢§ and ¢s2 (which is the largest set system that contains all the

information of ¢y , as well as, @7).

Example 2.6: {1, 2,3;3,4, 5} : {1,3, 4:1,5,2,3, 4} = {1, :

3:3,4:5

Again, let ¢; and ¢s2 be two set systems on symbol set S. The sum of two set systems can then
be defined as:

Definition 2.7a: b=+ = {B,. |B.eB UB*Ai# j=>B G Bj}
Or
Definition 2.7b: #s = + 4 = Max{B,| B,c B' U B’}

The intuitive meaning of the sum of two set systems is that g, = @ + @2 represents the combined
abstraction of ¢ and @7 (which is the smallest set system that contains the information that is

both in ¢ as well as in @2).

Example 2.7: {1, ,3;?;3,4}+{1,2;2,3,4;3,5}={1, .3:1,5;

3,43,5)

We will also introduce some of these concepts for partitions:

For this we introduce the notation: s = t(n) if and only if s and t are contained in the same block

of 7, ie. sst(7r)<::>B,r (s)zB,r (t)

20

2. Theoretical background

Now multiplication, sum and the relation < can be defined al follows:

Definition 2.8: 7 = 7o is the partition on S such that:

SEt(ﬂ-;.ﬂé)QSEt(ﬁé)/\SEt(ﬂ'ﬁz‘)

Definition 2.9: mg =M + 75 is the partition on S such that:
S=t (7[}g + 7r§) <> there exists a sequence in S
§=15y,8,,8,,...,5, =t for which either
5 =58 (7[;) ors; =S, (”.g)
Definition 2.10 Once the product and sum are defined for partitions we can define the
relation 7y S s & Ty WG =y S A+ Ty =Ty

This is true if and only if each block of 7[; is contained in a block of 7r§.

Note that when ﬂ; = {1, 2;5} and 7r§ = {1,2,-3} then: 71'; + 7r§ = {1,2;2,3} regarded as set

systems or ﬂ; + 7rs2 = {1, 2,3} =] when regarded as partitions.
Next we will introduce some concepts which are identical for both set systems and partitions.

Definition 2.11 The cardinality ‘qﬁs\ of a set system (or partition) g is the number of
blocks in that set system (or partition)

Example 2.11 {1,2,3;1,_5;2,3,4;3,5}):4

Definition 2.12a The O set system (or partition) is the smallest possible set system (or
partition) so 0 <@ where ¢ is any set system (or partition).

Definition 2.12b A second way of defining a 0 set system (or partition) can be done by the
fact that this set system (or partition) has each symbol in a separate
block:
¢ (0) ={B,. I1B]=1AJB, =S}

i

Example 2.12 when | S| =5 then ¢ (0)= {i; 2:3; Z,g}

Definition 2.13a The 1 set system (or partition) is the largest possible set system (or
partition) so 1> ¢ where ¢ is any set system (or partition).

Definition 2.13b A second way of defining a 1 set system (or partition) can be done by the

fact that this set system (or partition) has all symbols in one block:

&s (1)={B,. I B,.| :|S)/\i¢5 (1)‘ :1}

2]

2. Theoretical background

Example 2.13 when ‘S‘ =35 then ¢ (l) ={1,2,3,4,5}

For the 0 and 1 set systems (or partitions) the following holds:
1-¢s = ¢,
0-¢5 =0,
1+¢; =1,
0+ds =ds.

More information on partitions, set systems and related operations can be found in [1], [3], [5],
[61, [16], [171, [19], [22}, [23].

2.2 Information Relationships and Measures

In the previous section (2.1.2) was already noted that set systems and partitions can be used to
model information, where information is the ability to distinguish (groups of) symbols in a set.

For a certain set of symbols S, for every pair of symbols s,,s; €S can be determined if the two

symbols are distinguishable. An ability to distinguish two from each other represents the smallest
amount of information and it is referred to as elementary or atomic information [7] [22]. The
notions of elementary information, information sets, as well as, the theory of information
relationships and measures were introduces by Dr. Jozwiak in [7].

For a certain set system, the set of all distinguishable pairs of symbols can be written down. This
is called an information set and is defined as follows:

Definition 2.14a: inf (@) = IS{{S,.,SJ.} | E ¢ BE }

Definition 2.14b: abs (¢s) =AS{{si,sj}|s.—s.<; B}fs}

2%y

So, if two particular symbols are not contained in any block of the set system, they can be
distinguished, and so this elementary distinction is present in the information set. If, however
there is a block that contains both symbols, distinction is not possible and the pair is put in the
abstraction set.

Example2.14 if ¢ ={0,2,3,412,5}

than IS(g)={011,0]5,1|3,1|4,3|5,4|5}
and AS(¢4s)={0]2,0]3,0]4,1|2,1|5,2]3,2]|4,2|5,3|4}

Note that ‘IS(¢S)‘+’AS(¢S)’=%‘S‘~(‘S‘—l) where‘IS(¢s),AS(¢s)’ and |S| are the

cardinalities (number of elements) in the information set, the abstraction set and the number of
symbols that @ is defined on respectively.

22

2. Theoretical background

For set systems the following statements hold according to their product, sum and > relation and
their corresponding information set:

inf(¢1 ¢2) =inf(¢1)umf(¢2):TI(¢13¢2),
inf(¢1 +¢2) = inf(¢1)minf(¢2):C1(¢1=¢2)’
¢, > ¢, = inf (¢) cinf (4,).

For partitions this is also true except for the second statement. For partitions this is:

inf (¢, +4,) < inf (¢,) "inf (4,)

This is due to the fact that not every information set can be modeled by a partition. For example
on a set of 3 symbols, 1|2 can be distinguished by {1;2, 3} and {1,3;2} . However using these

partition also other information is distinguished. IS ({i;L—S})z{l|2,l|3} and

IS ({i,—B, 5}) = {1 [2,2] 3} . Modeling just the information needed to distinguish 1|2 requires the
symbol 3 present in both blocks, thus it can not be modeled by a partition. This is the main reason

for using set systems in our method.

However a problem regarding set systems is that ¢ > ¢, = inf (¢1) c inf (¢2) is valid in one
direction only. For instance, according to this definition if ¢ = {ﬁ, L_3,E,Ts,_4} and
¢ = {1, 2,3;3,_4} than it should hold that they both represent different information. However the

information set for both ¢ and ¢, = {1 |4,2] 4}. So apparently, there exists more than one way

to represent some information. So to make this mapping work both ways we introduce the
concept of reduced set systems such that there exists only one reduced set system that represents

some particular portion of information. This would make an inverse mapping possible (inf ™).

Definition 2.15 A reduced set system on set S is a set system ¢ on S such that for every
set system on S inf(¢)=inf(z//) = ¢ > . This means that the

reduced set system has the largest blocks and the least number of blocks
required to represent some particular information.

If both ¢ and i are reduced set systems than inf (¢) =inf (1//) = ¢ = . So when using

reduced set systems there is only one set system representing some particular information, thus
the following holds: ¢, > ¢, < inf (¢,) < inf (¢,)

Definition 2.16 When using reduced set systems (@ and ¢,) we can also define the

division operator: ¢, /@, <> inf ™' (inf (¢1) \inf (¢2))

23

2. Theoretical background

For this division operator the following properties hold:
v<op=>(/p)o=y,
yzo=>wlp=l,
-(w<oawzo)=yio=y/(y+9),
(w/g)+o=1,
yll=y,
w/0=yly=1.

Using these information and abstraction sets, we can also define relations. All possible
relations are denoted in the table below. This is done in the form of a formula as well a by
a graphical representation:

Common CI(¢.4,)=1S(¢,)IS(4,) H(ﬁ’é)

Information

Total TI(4.¢,)=1S(¢) 1S(4,)

Information

Missing AT (g, 4,) = IS(4,)\ IS (4,)

Information

Extra EI(4,,¢,)=IS(8,)\IS(¢)

Information
Different DI(¢1 , ¢2) =S (¢1) M IS(¢2)

Information

\IS (4) VU IS(4,) H(q,gé_,)
Figure 2.2a: Information relationships.
C —
Abstaction | 1 (-9:) = 45(4)0 454 TA(4,4,)

Abstraction

Missing n
| Abstraction MA (¢1 ’¢2) AS (¢1) \ AS(¢2

Extra _
Abstraction £4 (¢1 ’ ¢2) 48 (¢2) \AS (¢1)

Different | DA(d,,4,)=4S(4)NAS(¢,)
Abstraction
\4S(4,)U 45 (¢,) DA(d.4,)

Figure 2.2b: Abstraction relationships.

Total TA(¢,.¢,) = 45 () 45 (4,)
-

24

2. Theoretical background

Beside these relations, also measures can be introduced on information set SS, and SS,:

Information and Abstraction similarity (affinity):
ISIM (SS,,SS,) =|CI(S8,,SS,)|, ASIM (SS,,SS,) =|CA(SS,,55,)|

Information and Abstraction dissimilarity (difference):
IDIS (SS,,SSZ) = ‘DI (SSI,SSZ) , ADIS (SSl,SSz) = ‘DA(SSl,SSZ)‘

Information and Abstraction decrease (loss):
IDEC(SS,,S5,) =|MI(SS,,5S,)|, ADEC(SS,,SS,)=|MA(SS,,55,)|

Information and Abstraction increase (growth):
IINC(SS,,55,) =|EI(SS,, 55,)|, AINC(SS,,5S,) =|EA(SS,,SS,)|

Total Information and Abstraction quality:
TIC(SS,,S8,) =|TI(SS,,5S,)|, TAC(SS,,S5S,) =|TA(SS,,SS,)

Above only the simplest information relationships and measures were discussed. Using
these measures all elementary information items are weighted equally. However they
could also be weighed according to their importance, their cost of creation, their use for
production, etc. Also these measures can be normalized (such a normalized measure is
used for clustering affinities in our method). More information on information
relationships and measures can be found in [1], [2], [7], (9], [10], [16], [17], [22].

2.3 Bit Supports

For simplicity sake, the word “bit” is use here to denote a binary variable or a value of a binary
variable.

Definition 2.17. A bit pattern of size n is a series of “0”, “1” and “-“ of length n. Value “-*
represents a “don’t care” bit and a pattern containing “-* represents two smaller patterns, the first
having “0” and the second “1” in place of “~*.

A bit pattern of size n is represents an n-dimensional cube in the n-dimensional Boolean space. A
bit pattern not containing any don’t-care bits is called a minimal pattern or min-term.

Example: Pattern 1-0- represents (covers) the following minimal patterns: 1000, 1001, 1100,
1101.

Two bit patterns are distinguishable (incompatible) if they differ on at least one position, and
neither of them contains “-* in this position.

Examples.
11-0

01-0
1-0-

} differ on position 0 (are incompatible),

} are not distinguishable (are compatatible).

25

2. Theoretical background

In the specifications and implementations of sequential machines, the minimal bit patterns
represent individual symbols. Non-minimal patterns similar to blocks of partitions or set systems
represent certain groups of symbols. Every bit in a bit pattern creates a two-block partition on all
minimal patterns. For example, the zeroth bit of a 5-bit pattern introduces the partition in which
the first block contains all minimal patterns covered by pattern 0---- and the second block
contains all minimal patterns covered by pattern 1----, If we consider information represented by
a complete set of (not necessarily minimal) patterns or cubes, then every bit introduces a two-
block set system on the pattern. Under the complete set we understand a set that covers the whole
n-dimensional Boolean space. In the previous example, the first sub-set contains all patterns
having 0 or — in the zeroth bit (e.g. 0--1- or -01--), the second sub-set contains all patterns having
1 or — in the zeroth bit (e.g. 1---0 or -11-0).

Sometimes only a selected set of bits is supplied from one sub-system to another. To express this
fact mathematically, we introduce the concept of a bit support.

Definition 2.18. A bit support U of a set of bits X is any subset of X (U cX) that is needed or

delivered to compute the information.

When a certain support is supplied from one sub-system to another, all bit patterns received by
the destination sub-system can contain information only on the bit belonging to the support. In
other words, each pattern is filtered in such a way that it has 0°s and 1’s substituted by don’t cares

in all bits not belonging to the support. If x is a bit pattern and u is a bit support, we write x| to
denote such a “filtered” bit pattern.
Examples: ~ "1-0-0" , ="-—

"100_0"

=

We write B| to denote the set of all patterns from B filtered by u.

The filtering expresses the fact that the symbols coded as bit patterns cannot be distinguished in
the sub-system receiving them by bits that are not supplied to that system.

We have stated before that every single binary variable (bit) x, introduces a two-block set system
on all bit patterns (we denote this set system as ind ({x,. })). A single bit is a special case of a bit
support containing only one bit. The combined information of two bits x; and x; is a set system

resulting from the multiplication of the set systems introduced by particular bits (we denote this

set system as ind ({xi, X, })). This information is expressed by a bit support containing those two

bits. Therefore we define the -and + operations for supports similarly to the operations on set
systems: if u and v are bit supports then:

ind(u)-ind (v) = ind(u . v) = ind(u uv) ,

ind(u)+ind(v) =ind (u +v) = ind(u r\v).
Because of this correspondence between bit supports and set systems, bit supports may be used in
place of set systems on coded input / output symbols in the decomposition theory. Note that the

empty support represents a unity set system, but the full support does not induce a zero set system
— some bit pattern pairs can never be distinguished regardless the number of bits in the support

26

2. Theoretical background

{example: a bit pattern containing all don’t cares cannot be distinguished from any other pattern).
We will call the set system induced by the full support a minjmal induced set system.

To fully integrate bit supports and set systems, we need a mapping reverse to ind: converting a bit
set system to a bit support. In doing so the following problems occur:

1. Not all possible set systems are valid ones. There are some set systems that contain
contradictory information. As we have said before, some bit pattemns cannot be distinguished
from others (e.g. all don’t care bit pattern). So set systems in which such indistinguishable

patterns are distinguished are contradictory. It can be easily shown that for set system ¢, on
bit patterns of length n to be a non-contradictory set system, it is necessary and sufficient, to
be greater of equal to a minimal induced set system on those bit patterns, or more formally, to
satisfy the condition:

O = ind({xl yeres xn})
In the sequel of this report we will work only with non-contradictory set systems.

2. The standard notation of set systems is for non-contradictory set systems on bit patterns
lengthy and redundant. Consider an example set system ¢, defined on all bit patterns of

length 2:

@5 = {1 1,10,01,-1,1—,—,0—,—0;00,_0,0_,__}

Since we work with non-contradictory set systems only, we can save space and simplify the
notation by not expressing explicitly information which is obviously included in all non-
contradictory set systems. For instance, we need not to write pattern — in the simplified
notation since we know it has to occur in every block of any non-contradictory set system.
We have two rules which patterns need not to be explicitly shown up in a given block:

Rule 1: If there are three bit patterns in a given block that differ only in one position, the two
patterns which have 0 and 1 on that position are eliminated. In the example ¢, the

first block contains 11, 10, and 1-, so 11 and 10 may be eliminated. Similarly in
contains 11, 01 and -1, so 01 may be eliminated as well.

Rule 2: We may eliminate from any block every pattern that covers at least on other pattern in
that block. For instance, we eliminate patterns -0, 0- and — from the second block of

2

The rules | and 2 are independent, but to obtain the greatest reduction, rule 1 should be applied
first, followed by rule 2. If rule 2 would be appliés first, we would have a set system on minimal
patterns only, so there would be nothing to reduce by rule 1.

In our example @, may be reduced to ¢, = {—1,1—; 0_0}

3. Even if we restrict our attention to non-contradictory set systems only, not all set systems
have direct correspondence to a unique bit support. For instance, the set systems induced by
al bit supports of length 2 are:

ind (@) ={—-} =1,

27

Theoretical background

ind ({3,}) = ¢ = {150},
ind ({x1 }) = Ppy = {—_1,——_0} ,
ind ({xo,x] }) = Plron) = {ﬁ’m} '
None of those supports induces @g: @ <1, @5 > Dot P and Ppgy 2TC incomparable

and @, and Ppyy ar€ incomparable.

We will approximate a set system that does not have a corresponding bit support, from above
and from below, that is, approximate it by the smallest-greater-than or greatest-less-than set
system having direct correspondence to the support.

The first case occurs when we consider information that can be extracted from a set system in
the form of a bit support, which can be further supplied to other sub-circuits. We will call it a
maximal output support problem or mosp. Computationally, mosp can be easily solved: the
output support contains all bits but those which distinguish some patterns that are in one
block of the considered set system. For example,

mosp(pz)=mosp(l)=0.

The second case occurs when we consider information that must be supported in order to
compute the information contained by the set system in question. We will call this a minimal
input support problem or misp. This problem is much harder to solve than mosp: first, there
can be more than one minimal support. Second, finding even one of them is a NP-hard
problem. On the other hand, having an efficient misp procedure is essential in combining set
systems and bit supports in the application of the decomposition theory for machines with
coded inputs and outputs.

In the example above, m isp(goB) = {xo, xl} and this is the only solution.

2.4 Sequential Machines

2.4.1 Definitions of Sequential Machines (FSMs)

Digital circuits can be divided into two main classes: combinational logic and sequential circuits.
A combinational circuit has no memory, so the outputs of this circuit are computed as a discrete
{(Boolean) function of its inputs: 1 : 7 — O.

Definition 2.19: A combinational machine is defined as: M = (I , O,ﬂ) , where:

I : A finite set of input values;
0 : A finite set of output values;

Al—>0 : The output function.

A combinational machine is a mathematical model of a combinational circuit.

28

2. Theoretical background

A sequentjal machine (or Finite State Machine, FSM) has a memory to remember a (finite) set of
states. The FSM outputs can only be calculated knowing the state of the machine (in the case of a
Moore machine), or the state and the input values (in the case of 2 Mealy machine). To compute
the next state the inputs and the current state values are needed. In a mathematical way this is
stated below:

Definition 2.20: A sequential machine M is described by a quintuple: M = <I ,9,0, 6,11)

Mealy: Moore:

— finite set of input symbols 1 — finite set of input symbols

— finite non-empty set of states S — finite non-empty set of states

— finite set of output symbols o — finite set of output symbols
—next state-function §: /xS —> S 3 —next state-function §: /xS > §
— output function A: /xS —> O /) ~ output function 4:.5 — O

2o O un—

inputs inputs
present presert
state state state
Figure 2.3a: Drawing of 2 Mealy Machine. Figure 2.3b: Drawing of é Moore Machine.

As it can be seen, a sequential machine can be considered as two combinational functions (6 and
1) en some memory in which the state of the machine is stored. A combinational machine
(representing a combinational circuit) can be considered as a sequential machine with only one
state and a trivial next state function.

The & and / or A function in a sequential machine (or any other discrete function) can be

completely or incompletely specified. In the case of a binary Boolean function this means that the
function with n inputs is mapped to an output which can only have two values:

B” - B where BE{O,I}.

¢ €

In the case of an incompletely specified binary function also a don’t care ‘-° value can be
assigned:

B" —> B" where B" ¢ {0,1,—}

A don’t care can be used if both values (0 or 1) are possible, i.e. to represent a subset {0, 1}. This
‘freedom’ can and should be used by the synthesis method to create better (faster or smaller)

29

2. Theoretical background

implementations of the sequential machine / discrete function. A sequential machine is called
incompletely specified if the next state and / or the output function does contain don’t cares.

In this work, sequential machine specifications are assumed in which the input and outputs have
already been binary encoded onto bits. So now a machine is defined by:

M=(B",8,D",5,2)
Where the encodings are given by the mappings:
I—= B"and O= D"
Which results in the next state and output function definitions:
6:B"xS —S§ and
A:B"xS§ — D™ for the Mealy case and
A:8 — D" for the Moore case.

2.4.2 Realizations of FSMs

The FSM definition as presented above:
M =(1,8,0,6,4),
describes only the output and state behavior, and not how this behavior will be actually realized.

Several FSMs can “simulate” or “realize” this same behavior. At least the output behavior has to
be realized but sometimes it is desired to realize the state behavior as well. For a machine

M'=(I',§,0.,6'2")
to realize another machine M certain conditions have to be met:

Y:Io5I',®:S>S' and @:0' >0 (or ®:25 525 @:29 529
The input, state and output correspondence functions have to be defined that have to satisfy the
following conditions:

For only realization of the output behavior of an incompletely specified machine:
VseS, Vxel: 5'(CI>(s),‘I’(x)) c CD(&'(s,x)) A@(ﬂ.'(CD(s),‘P(x))) < A(s,x)
And for realization of output and state behavior of an incompletely specified machine:

Vs'eS', Vxel: (D'(é'(s',‘I’(x)))g 5(CD'(s'),x)/\G)(/?.'(s',‘P(x)))g /?.(CI)'(S'),x)

]
Figure 2.4a: Output realization of a FSM. Figure 2.4b: Output and State realization of a FSM.

30

2. Theoretical background

The reasons to be interested in FSM realizations is that the input given to our method only
specifies the behavior of the machine, and the method being the subject of this report has to
construct very good decompositional realizations of the specified behavior. As mentioned before,
there are many ways to realize the specified behavior, even by many machines cooperating
together (this is what we actually aim for with decomposition), so we can construct the best
realization for our purposes.

2.4.3 Pair Algebra

In a sequential machine, there are two combinational functions & (s,x) and ﬂ(s,x) for
computing the next state and the, output, respectively for a particular state and input. If we do not

have or require full precision regarding the input-, output- or state symbols, we define 6 and A
which map not input- and state-symbols but input- and state-blocks onto state- or output-blocks
respectively.

These mapping functions are defined as follows:

5(Bx)={5(s,x)|seBgS/\er} /?—,(x)= { (s,)|seBgS/\er}
5(sA) {5(sx)lseS/\xeAcI} I(SA) { (s,x)] s eS/\xeAc_:I}
5(D):{5(s,x)|(s,x)eDngI} I()= { (s,)|(sx)eDCS><I}

Let M= <I, S,0, 5,/1> and ¢, wgbe set systems on S, @, be set systems on I, @, be set

systems on O and @, be set systems on S x I. Than the set system pairs are defined as follows:

(¢s.Ws) isan S — S set system pair if and only if VB e g, VxeI: 5(B,x)C B', B'ey;
(4,.9;) isan I > S setsystem pair if and only if VA€ ¢, VseS: 6(s,4)C B, Be g
(#s.4,) isan S — O set system pair if and only if VB e gg, Vxe I: Z(B,x)gC, Cedg,
(#,.¢,) isan I > O set system pair if and only if VA€ @), Vse S z(s,A)gC, Ceg,
(¢1.5-85) isan IxS — S set system pair ifand only if VD € ¢, : 6(D)< B, Be gy
(¢1xs,¢0) isan I xS — O set system pair ifand only if VD € @, ; : Z(D)QC, Ceg,

The interpretation of the notions introduced above is as follows: (g,) is an S— S set
system pair if and only if the blocks of @ are mapped by M into the blocks of i/, i.e. the input

and the blocks of @ will unambiguously determine the block of /¢ in which the next state will
be contained. In other words, knowing the input and having the information about the present
state with the precision to the compatibility blocks introduced by g, it is possible to compute the
information about the next state with the precision to the compatibility sets introduced by /¢ . The
interpretation of the notions of I > S, S50, >0, IxS§—>S§ and IxS > Oare
similar. Set system ¢ has substitution property (SP) if and only if (4s,4;) isa S — S pair

(having the information about the present state with precision to the blocks of this set system, we
can compute the next state information by the same precision).

31

2. Theoretical background

Definition 2.21 Let @, be a set system on S. The minimal second set system which forms a
S — S pair with @ as the first set system will be denoted by m; ¢ (¢s) . The maximal first set
system which forms a S — S pair with ¢ as the second set system will be denoted by

M, 5(#5) . It can be proved that:

mg_ (¢S)—_—H{¢,](¢S,¢,) is an S—)Spair}
M, g (¢S)=Z{¢, |(¢1,¢S) is an S—)Spair}

The interpretations of mg_¢ (¢s) and Mg ¢ (¢s) set systems is the following: for a given ¢,
me_ o (¢S) describes the largest amount of information which can be computed about the next

state of M knowing which of the blocks of @ contains the present state. M, (g) describes

the least amount of information which must be known about the present state of M in order to be
able to compute the information about the next state with precision to ¢. In a strictly similar

way, m and M operators are defined an interpreted for / > S, S—> 0, 50, IxS—>S§
and I xS — O set system pairs.

Keeping the above in mind, we extend the M and m operators to input and output supports.
Definition 2.22 Let M = <B",S ,D'",é',/1> and @ be a set system on S, u be an input support,

uc {xo,...,xn_l} and v be an output support, v C {yo, o> Yoo 1} then

My s {u} = m,_ g {ind (u)} My s {o5}=misp(M,_s{os})
M5 0 {95} = mosp(ms_o {s}) M o5 {v} = M, {ind (v)}

My on {u} = mosp(m, o, {ind (u)}) Moy, pp (v { } mzsp(MHO {ind (v)})
o5 {05} = mosp(m,_,{0s}) M, 05 {v} = My {ind (v))

My 0 {1} = ;0 {ind (1)} My o { @5} =misp(M, 0 {0s})

If ¢, ¢ and @, are set systems on set A and ¥, Y, and v, are set systems on set B then the

following is true (we will write m for m,_ , and M for M,_ , to shorten notation):

T o 20, > mi{p}2m{p,} \Y vz, > My} 2M{y,}

1 | m{g+e,}=m{p}+m{p,} VI | M{p,+y,} =My} + M{y,}
m | m{g g} =m{p} m{p,} VIl | M{y, v} =M{p}-M{w,}
IV | yv2m{p} = (v,p) is A-B pair VI p<M{y} < (p.y) is A-B pair
X { {0} } X m{M{u/}}SW

Xu1 | m{M{m{p}}} =m{p} xu | M{m{M{y}}}=M{y}

| XI m{¢}$y/<:>¢<M{(//}

32

2. Theoretical background

More information on set system pairs, their algebra and applications can be found in [3], [4], [5],

[6], [19].

2.5 Decomposition Theory

A general composition of n sequential machines M,, GC ({M,},{Con,.}) consist of the

following objects:
1. {M, = (I.' S.,0,90. /1,.),1,,' =IxI,1<i< n} , a set of sequential machines referred

At A A
to as component machines.
2. {Con,. x=0, > I;,l <i,j< n} , a set of surjective functions referred to as

connecting rules of the component machines.
3. An input encoder ‘¥ and an output decoder ®

Let 7;, 7g and 7y, be set systems on M =(1,5,0,6,4) on 1, S, and S x I, such that
wly2ms, and me,’ = [| 7k, Let g, = [ms, - Let 7y, and 73, be set systems
i=1

i=l,..n

induced on S x I by 7, and 7}, respectively. Let x5, = || 75, and 75, =[] 75, -

i=l,..n i=l,..,n
Below, the term “trinity of set systems” will be used in the sense of three strongly related set
systems.

A sequential machine M =(I,S,0,8,2) has a general full-decomposition with the output

behavior realization with n component machines if and only if n trinities of set systems
(71'; > ﬂ;, ﬂ;xl) exist, so that:

1. (ﬂéﬂ' T -ﬂ'sX,',ﬂSi) isa §xJ — § setsystem pair,
FA | S i ' i i
Tsxt “Tsxt "7 saq ST >

1 S [} i
ot Fsus ST sy s

el

(ﬂsu,ﬂo (0)) isa S'x I — O set system pair,

Additional for output and state realization:

5. H;rs = 75(0)

33

2. Theoretical background

o i Sy Wity G i i N e s — — G S— i il b s vl

I
I
I
|
I

'U.'.'.
R

l
I
I
I
I

I
I
I
I
I
L

B . A R T R R

Figure 2.5: Decomposition into n sequential machines.

Intuitively these conditions can be explained as follows:
e The product Hﬂ; of the state classification relations of the partial machines forms the

state classification relation 7 (0) of the original machine (condition 5),

e The product Hier ;' of the output classification relations of the partial machines forms
i
the classification relation which enables unambiguously computation of the output

classification relation 7, (0) of the original machine M (condition 4),
e Each partial machine is able to compute its own state and primary output classifications
7 and ;r;x ; based on the present state and primary input classification provided by its

own state and primary input, and the classification of the elements from S x I provided
by the extra input from the other machines (conditions 1 and 2),

e The composition of the partial machines is legal (condition 3).

More information on (general) decomposition theory can be found in [6], [16], [17], [19],
[22].

There is an even more general theory of general full decomposition. This theory however is
defined on covers. Because we use set systems to represent information in this method, we will

34

2. Theoretical background

use the theory described above, which is the most general theory of decomposition for set
systems.

There is a small difference between the theoretical decompositions scheme described here and the
decomposition scheme the method uses. In the theoretical decomposition scheme, each partial

machine has only one output 7, the scheme in our method has two outputs £ and p,,

forming together a specific case of the 7, , . This is because a set system on S x I would take

too much memory space, therefore it is immediately mapped onto output and produced state
information set systems, respectively.

Moreover, during the information analysis and clustering phases, each partial machine / (macro-)
molecule has its own pseudo input encoder, pseudo output decoder, input- and output support. All
the input encoders and output decoders of particular partial machines together form a specific
case of the global input encoder and output decoder present in the theoretical decomposition
scheme. The pseudo input encoder sometimes allows for an actual input encoder to be created
later on, however its main aim is to convert the input support to input information. Something
similar holds for the output decoder. The actual input encoders and output decoders are
constructed during the last phase of the method (network construction) and logic synthesis. Up to
that point they only exist virtually in the sense that they are allowed or suggested by the way the
partial machines are created.

35

3 Basic data structures and operations

3 Basic data structures and operations

This chapter gives the reader basic information on the inner workings of SeMaDe. It does not
give a complete overview of all its features, but its main purpose is to give a link between the
theory as discussed in Chapter 2, the main algorithms that will be discussed in Chapter 4 and the
way they are actually implemented in a prototype tool. By discussing the main data types and
operations which can be performed to them, the main algorithms in chapter 4 can easily be
described as applying the basic operations on the data structures.

3.1 Main Data structures used in SeMaDe

As mentioned, not all data structures in SeMaDe are described in this chapter. However, these are
the base data structures, and the main algorithms from SeMaDe can be explained completely by
the knowledge related to these data structures as presented in this chapter.

3.1.1 Supports

A support represents a sub-set of inputs related and / or supplied to a certain piece of FSM logic
(a.k.a. input bit partition) or outputs produced by a particular piece of logic and supported to the
total output (a.k.a. itput bit partition). Support is implemented as a vector of "bit" type to achieve
easy and fast member functions (instead of a 0-1 vector, what would be sufficient). However,
only "relevant” and "irrelevant” values of "bit" are used. Standard constructor requires the number
of input bits to be given. It creates the full support (all bits in the support).

Of course, functions have been implemented to perform the + operation or union of to supports.
This is implemented by an or function on both supports. Also, the x function on concatenation
vs. augmentation which returns the joined support.

For direct manipulation on bits, the adding removing and toggling of bits, the addBit, delBit and
toggleBit functions are implemented. Also, makeFull and makeEmpty functions are available
for fast creation of the full support (zero partition) and the empty support (equivalent to a one-
block partition), respectively.

The contains function checks if the given bit belongs to the support. IsFull and isEmpty check if
the support is a full or an empty support. The length function returns the actual number of
(relevant) bits in the support and numBits returns the number of bits on which the support is
defined.

The reduced function renders for all bits not in the support the corresponding variables don’t
care in the given cube or "irrelevant” in a given output cube. And the distingunishable function
checks if for this support, the given cubes are still distinguishable which is equivalent to
Cube::distinct(reduced(T1), reduced(T2)) but faster.

Sing_dist returns the number of a bit in the support that distinguishes T1 and T2 and Returns -1 if

more than one or no such variable exists. Mult_dist returns a reduced support, containing only
those bits from the support that allow for distinguishing T1 and T2.

37

3 Basic data structures and operations

Finally some relations and operations on supports are implemented. The relations are
implemented by a compare function which returns -1 if St <82, 0if S1 ==82,1ifS1>S2 and
2 if S1 and S2 are incomparable.

The following operators are implemented: complement (or ~) this complemented support
contains the bits that weren't in the support and those that where in it are removed. The sum (+)
returns the gives common support (a sum of bit partitions). And finally, multiplication (*)
returns the joined support (a product of bit partitions).

3.1.2 Set Systems

The set system is the main data structure for information processing in SeMaDe. Its name is a
little confusing because it is actually implemented as a set of elementary abstraction / information
items, and, therefore it has more resemblance to an abstraction or information set.

More precisely, a set system is actually implemented as a bit-vector of length %|S |(‘S J —1)

rounded upward to the nearest multiple of the word-length of the used system (usually 32). Here
]S] is the cardinality (number of symbols) of the set S on which the set system is defined.

Because this bit-vector is only a one dimensional data structure, a function (pairix) has been

implemented to access a particular position in this bit-vector for a given {s,. »S j} .

Of course all the operations for set systems are discussed in Chapter 2. The multiply (*) and the
addition (+) are performed by doing an or, or and operation, correspondingly, on the underlying
symbol set. Division (/) is done by removing all elements in the second set if they where present
in the first set and than doing the complement. Also the *= and += operations are implemented.

The relation <= returns true if the or function of the first and the second set system is equal to the
first set system (meaning that the second set system contains no symbols not already present in
the first set system). The == returns true if both set system actually contain exactly the same
symbols.

Also there are functions implemented which check efficiently if a set system is a 0 or a | set
system. And to change a set system into a 0 or a one set system. Using these special functions for
that purpose is more efficient than doing or checking these operations for each compatibility
separately.

However also all elementary information items (compatibilities) or abstraction items
(incompatibilities) are also available separately to the user by the member functions
areCompatible, numCompatibilities, numlncompatibilities, makeCompatible and
makelncompatible.

Finally, the best case bound estimate of the number of bits needed to encode this information on
is returned by numBits. But a more precise estimate can be obtained by converting the set system
to a block set or a partition. There are also member functions implemented for conversion
between set systems and partitions but they are discussed in more detail in Chapter 3.2.1

38

3 Basic data structures and operations

3.1.3 Molecules / Clusters

A molecule or cluster is the main container of coherent portions of information. They represent
the information structures that are the result of the FSM information flow analysis. As of will be
discussed in Chapter 4, there are 4 different types of molecules, with two fundamentally different
structures. However, they both are represented by the same data structure.

1 ,

| . ! 1 (24 |
LU | — —tp] 7 /L— Vi 1 | oy’ e LAV R
=P "//i :’11' '91‘ . B Ei /1:‘ ‘91'

[
. | =~ Pi
]] . l: Ti ”i 5. - -y
X 1 ...l-,@—» i ,
| 1] I
! |

Ba
N
¥ v
S

x

Figure 3.1: The two different molecule structures.

A molecule or cluster is define by four set systems and two supports that completely define the
information flow inside and at the terminals of the molecule. These are:

¢ The input support u,,

¢ The input information set system ¢,

e The consumed state information set system 7z, ,
e The output support v;,

o The output information set system /3,

e And the produced state information p,

The imported state information 7, is calculated or updated when needed. Of coarse, for all these

supports and set systems there are get-functions available. Besides this, a molecule has a Name
(stored as a string of characters) and an unique id (stored an integer) for identification. Also a
molecule has a cost function calculation function which calculates its cost as will be discussed in
chapter 4.

Next there are functions that return if a molecule is covered by another molecule (produces the
same or more output and state information) or if a molecule is dominated (when it is covered by
a molecule that requires less or the same input and state information).

Also the produce, reduce and remove output bit functions are available which force a molecule to
produce some particular portion of state information, reduce its produced state information with
some set system or remove an output bit respectively.

Finally, a molecule has some functions available for clustering. The merge function creates a
molecule that produces at least the same amount of output and state information as its two
parents. Once the output and produced state information is determined (this initially is a product
of the corresponding set systems of its parents), the molecules is imploited (being forced to
reduce the consumed information to the essential only) and then exploited (being forced to

39

3 Basic data structures and operations

maximally use consumed information). Also, a member function for computing a molecule’s
affinity to another molecule is available.

3.1.4 Cluster Sets and Cluster Set Iterators

Clusters or molecules have to be stored in a convenient way. This is done by storing them in a
cluster set. Also a cluster set iterator is available which makes it very easy to select a particular
molecule from a cluster set. A cluster set is not only a container but it also has some additional
functionality.

The main functionality of the cluster set is to add newly created clusters into this container for
easy access and conservation. This can be done in three ways a cluster or an entire cluster set can
be added, put or best put to a cluster set. For an entire solution set, also a copy function is
available.

When adding a cluster to a cluster set, the cluster is always added to the set no matter what other
molecules where already present at that time. When a cluster is put to the cluster set, it is only
actually added when the cluster is not dominated by any other clusters in the set. Also other
clusters that are dominated by the new cluster are removed. Using the best-put functionality, it is
only actually added when the cluster is not covered by any other clusters in the set. Also other
clusters that are covered by the new cluster are removed.

The add, put and best_put functions are also implemented for adding, putting and best putting
entire cluster sets to a cluster set. With there comparable functions for a single cluster are used,
but now for each cluster in the cluster set. After these functions are done, the clusters are removed
from the cluster set that they where originally in and this cluster set is then removed. Therefore
also a copy function is implemented which copies an entire cluster set.

Finally there are some functions for detaching / removing a cluster from a cluster set based on the
name of or a reference to the cluster, selecting a cluster from the cluster set based on its position
and for requesting the cardinality (number of clusters in) the cluster set.

A cluster set iterator is implemented for easy access to the separate clusters in the cluster set.

Further I would like to mention that the SeMaDe tool has 5 main cluster sets:

1. The first one contains the A molecules

2. The second one contains the split A molecules

3. The third one contains the Moore molecules

4. The fourth one contains the B molecules

5. And the fifth one contains all the clusters created during clustering by merging.
These five cluster set together contain all molecules created by SeMaDe during a decomposition
run. Besides this each solution also contains two cluster sets (see chapter 3.1.5), a flagged and a
non-flagged cluster set, however they do not contain any clusters that are not present in one of the
five main cluster sets.

40

3 Basic data structures and operations

3.1.5 Solutions

A solution is a data structure that mainly consists of two cluster sets. One being a flagged cluster
set and the other a non-flagged cluster set. This distinction is made for clustering. Molecules that
are already completely finished after the analysis phase (because it is obvious that no further
improvement is possible or only leads to worse solutions) are not changed by clustering. By
putting these finished molecules in a separate cluster set (flagged cluster set), the clustering only
considers the molecules in the non-flagged cluster set. Another important parameter is the
clustering level. This parameter is further explained in the chapter on clustering, and indicates the
clustering progress of that particular sotution. Finally, a solution has a cost which is the sum of
the costs of all the clusters in the flagged set as well as the non-flagged set.

Solution

Flagged Non-Flagged
Clusters Clusters

Non-Flagged
ClusterSet

Flagged
ClusterSet

Figure 3.2: Graphical representation of a solution.

3.1.6 Solution Sets and Solution Set Iterators

Solutions
SolutionSet

Figure 3.3: Graphical representation of a solution set.

41

3 Basic data structures and operations

A solution set is a list of solutions. Solutions or other solutions sets can be added or put to an
existing solution set. The difference between the add and the put function is that when using the
add function, the solution is always added to the solution set. Using the put function, the solution
is only added to the solution set when in is not already present. It could already be present
because a same solution can be created trough different paths of the clustering algorithm.

A detach function is available to remove solutions from the solution set and a cardinality is
present which returns the number of solutions in the set. These functions are mainly used by the
second beam of the clustering algorithm (see Chapter 4).

Finally a solution set has a cluster set which contains references to all clusters / molecules created
during clustering by merging molecules. This is done because memory leakage can occur when
references are lost during the removal of solutions during the second beam of the clustering
algorithm. This can also be solved to check every when a solution is removed if some cluster is
removed that is not present in any remaining solutions, however this is a cumbersome process
which is prone to errors.

Also a solution set iterator is implemented which makes it very easy to select a particular solution
from the solution set by iterating over the solution set.

3.2 Basic operations and algorithms

In this chapter related to basic partial algorithms, some basic operations and algorithms required
for FSM information analysis are discussed. Many of these operations where already introduced
in the Chapter about the theory of information analysis, where their meaning and use in
decomposition and specifically in information analysis was clarified. However, here we focus
more on how these operations are actually performed using a computer. Also their complexity
and required resources in terms of memory and time are discussed. By explaining these basic
operations in detail first, we can simply refer to the specific operation when discussing the main
algorithms.

3.2.1 Conversions between information representations

SeMaDe uses a number of data types for storing information. First, I would like to clarify the
names of these types which are a little confusing because of the history of SeMaDe.

The main data structure for the representation is the Set system (see also the chapter on data
structures). The name of this data structure is confusing because it is actually implemented like an
information set (a set of elementary information items) corresponding to a given set system. All
partial algorithms as discussed further in this chapter operate on this data structure. However in
some cases it is useful to have a different representation of the same or almost the same
information.

A partition is also implemented as the data structure partition. It is represented as a characteristic
function. A characteristic function assigns to each symbol a number which identifies the block
that this symbol is in. This is a very compact representation, which is also fast for operations.
However, using this representation, a particular symbol can only be present in one block. This is
fine for partitions because as discussed in the chapter on the theory, in a partition a symbol can

42

3 Basic data structures and operations

only be present in just one block. In Set Systems however, this is not the case. Set Systems do
have a characteristic function but now a symbol can be assigned to more than one block, so there
are no advantages in terms of speeding up operations or ease of use to this way of representation.

As mentioned earlier, in the SeMaDe program, the main way of representation is the Set System
(which is actually implemented as an information set). However this representation of
information has one serious disadvantage which is that there is no (easy) way to get information
on the actual structure of the represented information. Therefore, an additional data structure was
created which actually resembles the representation of an actual set system. This representation is
implemented as a group of blocks, which in turn, is a group of symbols.

Although most of the information processing in SeMaDe is done on information represented as an
information set (called set system in SeMaDe). Conversions from and to partitions and block sets
(set system) were made available.

Information Set -> partition (upper and lower approximation)

As mentioned in Chapter 2 on the theory, a partition can not be used to model don’t care. So not
every set system (those which have symbols in more than one block), cannot be converted to a
partition containing exactly the same information as the set system. So there are two
approximations of set systems by a partition that are as similar to the set system as possible, the
upper and the lower approximation.

The upper approximation converts the set system to the smallest possible partition containing no
more information than the set system. This is a computationally easy procedure and this is done
by starting with a 0 partition (all information present), and merging the pairs of symbols which
are also compatible in the set system (information set representation).

The lower approximation converts the set system to the greatest possible partition containing no
less information than the set system. This problem is equivalent to Graph-Coloring which is an
NP-hard problem. A graph coloring problem is the problem where the nodes of a graph need to be
colored with as few colors as possible, however two nodes with an edge between them may not
have the same color. In this case each node represents a symbol and an edge between two nodes
in the graph means that they are incompatible. The color of each node identifies the block that
that particular symbol is in. Each node can only have one color, so the result of coloring will
always be a partition. And every pair of nodes with an edge between them must have a different
color so at least all the in formation in the set system (information set) is at least contained in the
partition. As mentioned, the problem is NP-hard, so it is solved by a heuristic coloring algorithm.
In our implementation we use a variant of the color influence method. Because this is a heuristic
algorithm it could be (especially for larger instances of the problem) that more colors that strictly
needed are required.

Partition -> Information Set

The conversion from a partition to a set system is a fairly easy procedure because for every
partition a set system (information set) can be found that represents exactly the information
contained in a partition. This is simply done by checking for every pair of symbols in the partition
if they are in the same block. If this is the case they should also be compatible in the set system
(added to the abstraction set).

43

3 Basic data structures and operations

Information Set -> Set System (clique splitting algorithm)

The conversion of a set system (represented as an information set) to a block set (theoretical set
system) is a problem of finding a complete covering of a graph of as few and as large cliques
(which are fully connected sub-graphs) as possible. The original implementation of this maximal
clique covering was of exponential complexity. This algorithm was implemented by starting with
the abstraction graph (where the nodes represent the symbols and the edges represent a
compatibility between two symbols), and larger and larger cliques where constructed (bottom up)
until the largest cliques where found. This is in deed exponential in the number of symbols
because by adding one symbol, the number of possible cliques doubles. The runtime would be
unacceptable for set systems with more than about 25 symbols (over 15 min) while easily set
systems of more that 2000 symbols can occur.

Therefore, I developed and implemented a new algorithm which is actually in the worst case low
order polynomial in the number of symbols. This is done by starting from the different side of the
problem. We assume, that we have a 1 set system (no information) and we do not cluster
according to abstraction but we split according to information. This has the advantages that only
one edge has to be missing in order to split the blocks of a set system (in stead of having to find a
fully connected sub-graph). Secondly the final solution (a set system with only few but large
blocks) will be much closer to the starting point. This algorithm makes it possible to convert an
information set to a reduced set system in very reasonable time (about a few milliseconds even
for set systems of more that 1000 symbols). This makes it possible for our method and tool to not
only analyze the actual information in self but also analyze its structure (number of bits needed to
encode the information on). This algorithm is used in the information analysis part and the
clustering part to calculate the cost function and to print the set system (in block set
representation) in the log file.

The algorithm works as follows.
1. Start with the one set system @ on set S (cardinality is known by the different number of

symbols from the information set IS).
2. Iterate over all the atomic distinctions s, | 5, in the information set IS (independent of the

exact order of iteration).
Iterate over all blocks of the ¢ set system. (independent of the exact order of iteration).

If a block contains both s; and s, split this block in two block identical to the original

but one with s, and the other with s; removed.

5. Put both blocks back into the set of block of ¢. Here put means that a new block can
cover smaller blocks already present in ¢ but it can also be covered by a larger block in

@. A block B, is covered by a different block B, (B, <B,) if B, contains at least all
the symbols that are in B,.

This algorithm is clarified by the following example:
Lete.g. be: IS ={0|3,0| 4,1/3,2|5,3| 5}
Since this information set is defined on S with |S| = 6, the initial ¢ = {0,1,2,3, 4, 5} .

The first distinction considered is: s,|s;=0|3. This will result in a new

Q= {0,1, 2,4,5;1, 2,3,4,5} . None of the new blocks was covered because there was only one

44

3 Basic data structures and operations

block which was split in this step. Then s, | s; = 0]4 leadsto: ¢ = {0, 1,2,5;1,2,4,5;1, 2,3,4,5}

because only the first block contains both 0 and 4. Hover the new second block is covered by the

remaining original block so ¢ ={0, 1,2,5;1, 2,3,4,5}. Note that adding information does not

necessarily mean that more blocks are needed to represent this information. Adding information
can actually decrease the number of blocks (also removing information can increase the number

of blocks). Adding s, |s, =1|3 leads to: ¢ =40,1,2,5;1,2,4,5;2,3,4,5; . Adding s, |s, =215
18 @ P19

leads to: @ = {0, 1,2;0,1,5;1,2,4;1,4,5;2,3,4;3,4, 5} so all the blocks where split with no block

covering an other block. Finally adding s, | s ;=3 |5 leads to:

¢={0,1,2;0,1,5;1,2,4;1,4,5;2,3,4;3,_4;5}. And when removing the covered blocks:

Q= {0, 1,2;0,1,5;1,2,4;1, 4,5;2,3,4;}. So adding s,]sj =3|5 results actually in a decrease of

the number of blocks. Note that ‘¢| =5 so0 3 bits are required to encode this information. Note

that adding s, | s ;=1 |2 resultsin ¢ = {E;O, 1,5;1,4,5;2, 3,4;} which can be encoded only on

two bits. Which results in a major improvement regarding transportation of this information.

Note that blocks are only split when this is essential to distinguish some elementary portion of
information. Therefore, the number of blocks in the final set system is minimal. Also their size is
as large as possible since no splitting of blocks is performed unless this is needed to represent
some particular elementary information. This way, it can be proven that this always is a reduced
set system.

Set System -> information set

Converting a block set (set system structure) back to a set system (information) is again fairly
straight forward. This is simply done by iteration over all blocks from the set system (block set)
and for each particular block add each pair of symbols included in that block to the abstraction
set.

3.2.2 Induced information (by inputs or outputs)

Also the induced information (indi: induced by input and indo: induced by output)operations are
fairly straight forward. Below the code for the induced by input function is presented. The code
for the induced by output function (indo) can be found by replacing Inputsup,
numInputSymbols() and inputCode(symbol) by outputsup, numOutputSymbols() and
outputCode(symbol) respectively.

SetSystemé& Machine::indi(const Support& inputsup) const //IB -> 1

SetSystem &ss = *new SetSystem(numinputSymbols());
for (symbol a = 0; a < numInputSymbols()-1; a++)
{

Cube& A = inputCode(a);

for (symbol b=a+1; b < numInputSymbols(); b++)

Cube& B = inputCode(b);
if (linputsup.distinguishable(A, B)) ss.makeCompatible(a, b),

45

3 Basic data structures and operations

retum ss;

)

This code works as follows. First a new 0 set system is created (containing all information). Then
for each pair of symbols is checked if they are compatible. Because the symbols actually
represent a cube (combination of input or output bits) they have to be looked up in the symbol
dictionary by the inputCode and outputCode functions. These functions return the cubes
represented by the particular symbol. If these cubes cannot be distinguished (for an explanation
on this, I refer to chapter 2.3) the symbols should also be made compatible in the set system.

3.2.3 Minimal input support and Maximal output support

The minimal input support problem can be represented as a row covering problem, for which a
matrix is constructed, where each row represents an atomic portion of information to be covered
and the columns represent the input bits. If an input bit can distinguish a particular portion of
information a one should be placed at its particular place in the matrix (otherwise a zero). The
row covering problem ftries to find a subset of inputs (columns) as small as possible that cover all
required information (rows). Because of this equivalence to row covering, the misp problem is
NP-hard.

In SeMaDe this problem is solved in two ways, by a best first search and a QuickScan (both
heuristic). For both methods this covering matrix should be constructed as described above. Also
between iterations of both methods, the matrix is preprocessed for the next iteration (e.g.
removing already covered information and adding essential columns to the solution). In the end
the results of both methods are compared and the input support from the best method is selected.

The best first search simply adds essential inputs to the minimal input support (some information
can only be covered by one particular input). Then, other inputs are added that at that iteration
cover the most remaining information.

The QuickScan is a smarter (but still heuristic) algorithm developed by Jozwiak and Konieczny
[8], [15], [19], [20]. QuickScan performs a quick traverse through several local minima (non-
redundant supports). It works in two modes: the down-mode, when the algorithm seeks a leftmost
(according to the lexicographic order) local minimum and the up-mode, when the algorithm
escapes from the local minimum in the rightmost direction as can be seen in Figure 3.1. Here the
grey nodes represent infeasible solutions, black arrows — the downward moves to the leftmost
direction, grey arrows — the upward moves to the rightmost direction. In the up-mode, the
algorithm constantly tries to discover a new local minimum, before it makes the next step
upwards. In result, it walks on the surface consisting of patterns representing valid supports,
located in the search space just above the patterns that do not represent valid supports (thus on the
surface representing the non-redundant valid supports). In order to prevent revisiting a previous
local minimum, the algorithm considers only those supports that are on the right of the previously
visited supports. The best local minima visited constitute the result of the algorithm. Although the
global minimum is not guaranteed, the deeper a local minimum is, the more possible ways lead to
it. Therefore, the chance is little that the algorithm will skip a solution that is much better than the
best visited so far. The pseudo-code of the algorithm is given below.

46

Basic data structures and operations

3

Figure 3.4: The search space and the scan path of the QuickScan algorithm.

47

3 Basic data structures and operations

procedure QuickScan

{
current support = full support;
best support = none;
while (current support exists)
{
if (last move was down or first move)
{
next support = leftmost down feasible from
current support;
if (next support exists)
current support = next support;
}
else
{ // local minimum
if (current support < best support)
{
best support = current support;
}
current support = rightmost up from current support;
}
else // last move was up
{
next support = leftmost down feasible but to the
right from previous support;
if (next support exists)
current support = next support;
}
else
{
current support = rightmost up from current support;
}
}
}
return best support;
}

As mentioned in the chapter on the theory, mosp is much easier to compute. For this, first an
empty support is created with the size of the number of output bits. Then for all compatible pairs
of symbols in the abstraction set (ss) it is checked what input bits can distinguish the cubes
represented for these two symbols. The final returned result is the union of all these supports.
The actual source code is shown below.

48

3 Basic data structures and operations

Support Machine::mosp(const SetSystemé& ss) const
{
Support u(numQOutputBits());
for (symbol a=0; a < numOutputSymbols()-1; at+)

Output& A = outputCode(a);
for (symbol b=a+1; b <numOutputSymbols(); b++)
{
if (ss.areCompatible(a, b))
{ // different bits in A and B cannot be in the support
Output& B = outputCode(b);
u=u+~umult_dist(A, B);
}
}
}

return u;
} // Machine::mosp

3.2.4 The m and M operators

In the chapter on the theory, the m and M operators where defined as respectively the product or
sum of all set system pairs. This definition is unfortunately not a good way for implementing
these operators.

The algorithm for computation of the myg . starts with a 0 set system (containing all

information) called res, which will finally contain all next state information that can be computed
from present state information p. Then, we iterate over all compatible pairs of symbols
(elementary abstraction items) from the p set system. For each such compatible pair, we assume
that we know all input information, so we can also compute all the pairs that are mapped onto res

by the next state function delta compatible. Below, the code for the m; ¢ operator is shown. The
code for the m, ¢ is actually quite similar only now it not iterated over the compatible pairs of
states, but the compatible pairs of input symbols. m_,; is quadratic in the number of states and

linear in the number of input symbols, for m,_ it is the other way around.

SetSystem& Machine::m_S_S(const SetSystemé& p) const
{

SetSystem *res = new SetSystem(numStates());

for (symbol s = 0; s < numStates()-1; s++)

for (symbol t = s+1; t < numStates(); t++)
if (p.areCompatible(s, t))
for (symbol i =0; i <numInputSymbols(); i++) res->makeCompatible(delta(s, i), delta(t, i));
return *res;

}

SetSystem& Machine::m_I_S(const SetSystem& p) const
{

SetSystem *res = new SetSystem(numStates());

for (symbol i = 0; i <numInputSymbols()-1; it++)

for (symbol j = i+1; j < numlInputSymbols(); j++)
if (p.areCompatible(i, j))
for (symbol s =0; s < numStates(); st++) res->makeCompatible(delta(s, i), delta(s, j));
return *res;

}

49

3 Basic data structures and operations .

Below, the code for the m;_, andthe m,_, operator is shown. This code is quite similar to that

of mg_, ¢ and m,_ ¢ respectively. The main differences are that in case of a Moore machine, the

result can be computed very fast. Secondly the mapping for these operators is done by the output
function lambda (in stead of the next state function delta). my_,,, is quadratic in the number of

states and linear in the number of input symbols, for m,_,, it is the other way around.

SetSystemé& Machine::m_S_O(const SetSystem& p) const

if (1zero_output_part) ((Machine*)this) -> zero_output_part = &indo(Support(numOutputBits()));
SetSystem *res = new SetSystem(*zero_output_part);
for (symbol s =0; s < numStates()-1; s++)
for (symbol t = s+1; t < numStates(); t++)
if (p.areCompatible(s, t))
for (symbol i =0; i numInputSymbols(); i++) res->makeCompatible(lambda(s, i), lambda(t, i));
return *res;

}

SetSystem& Machine::m_I O(const SetSystemé& p) const
{

if (zero_output_part) ((Machine*)this) -> zero_output_part = &indo(Support(numOutputBits()));

SetSystem *res = new SetSystem(*zero_output_part);

if (isMoore()) return *res;

for (symbol i =0; i <numlnputSymbols()-1; i++)

for (symbol j = i+1; j < numlnputSymbols(); j++)
if (p.areCompatible(i, j))
for (symbol s = 0; s < numStates(); s++) res->makeCompatible(lambda(s, i), lambda(s, j));
return *res;

}

For the m, ¢ ¢ and m, ¢ ,, operators, set systems are defined on the input information as well

as the output information. So there is iterated over all pairs of compatible input and state
information. So these operators are quadratic in the number of inputs as well as the number of
states. The code for these operators is shown below.

i SetSystem& Machine::m_IxS_S(const SetSystemé& x, const SetSystemé& p) const

{

SetSystem *res = new SetSystem(numStates());

for (symbol i = 0; i < numInputSymbols(); i++)
for (symbol j =i; j <numlnputSymbols(); j++)
for (symbol 5 = 0; s < numStates(); s++)
for (symbol t =s; t <numStates(); t++)
if (x.areCompatible(i, j) && p.areCompatible(s, t))

res->makeCompatible(delta(s, 1), delta(t, j));
res->makeCompatible(delta(s, j), delta(t, 1));
}

return *res;

}

50

3 Basic data structures and operations

SetSystem& Machine::m_IxS_O(const SetSystem& x, const SetSystem& p) const
{
if ('zero_output_part) ((Machine*)this) -> zero_output_part = &indo(Support(numOutputBits()));
SetSystem *res = new SetSystem(*zero_output_part);
if (isMoore()) return *res;
for (symbol i =0; i < numInputSymbols(); i++)
for (symbol j =i; j < numInputSymbols(); j++)
for (symbol s = 0; s < numStates(); s++)
for (symbol t =s; t < numStates(); t++)
if (x.areCompatible(i, j) && p.areCompatible(s, t))

res->makeCompatible(lambda(s, i), lambda(t, j));
res->makeCompatible(Jambda(s, j), lambda(t, i));
¥

return *res;

}

mpy o {u} , My _0p {gps} s My op {u} > My op {(ps} and mp_,, {u} are actually calculated the

same way as described in the chapter on the theory as a combination of the ind (induced by input
or output), the mosp (maximal output support problem) and corresponding their corresponding m
operators.

The algorithm for computation of the M, . starts with a 0 set system (containing all

information) called res, which will finally contain the minimal amount of present state
information needed to compute the next state information in p.

Then, we iterate over all compatible pairs of state symbols (elementary abstraction items). Only
if for all input combinations (all input information is assumed available) the pair of elementary
information mapped onto the produced state information represented in p by the next state
function & cannot be distinguished, than this pair does not have to be distinguishable in the res set

system. Below, the code for the A ,, operator is shown. The code for the M, is actually
quite similar only now it not iterated over the pairs of states, but the compatible pairs of input
symbols. M ¢ is quadratic in the number of states and linear in the number of input symbols,

for M, it is the other way around.

SetSystem& Machine::M _S_S(const SetSystemé& p) const
{
SetSystem *res = new SetSystem(numStates());
for (symbol s = 0; s < numStates()-1; s++)
for (symbol t = s+1; t < numStates(); t++)
{
bool can_merge = TRUE;
for (symbol i = 0; can_merge && (i < numInputSymbols()); i++)
can_merge = p.areCompatible(delta(s, i), delta(t, i));
if (can_merge) res->makeCompatible(s, t);
}

return *res;

H

51

3 Basic data structures and operations

SetSystem& Machine::M_I_S(const SetSystemé& p) const
{
SetSystem *res = new SetSystem(numInputSymbols());
for (symbol i =0; i< numInputSymbols()-1; i++)
for (symbol j =i+1; j <numlnputSymbols(); j++)
{
bool can_merge = TRUE;
for (symbol s =0; can_merge && (s < numStates()); s++)
can_merge = p.areCompatible(delta(s, i), delta(s, j));
if (can_merge) res->makeCompatible(i, j);
}

return *res;

}

Below, the code for the M, and the M,_ , operator is shown. This code is also quite similar

to that of Mg ¢ and M, ¢ respectively. The main differences are that in case of a Moore
machine, the result can be computed very fast. Secondly the mapping for these operators is done
by the output function lambda (in stead of the next state function delta). M_, is quadratic in the

number of states and linear in the number of input symbols, for M, _, , it is the other way around.

SetSystem& Machine::M_S_O(const SetSystemé& p) const
{
SetSystem *res = new SetSystem(numStates());
for (symbol s = 0; s <numStates()-1; s++)
for (symbol t = s+1; t <numStates(); t++)
{
bool can_merge = TRUE;
for (symbol i = 0; can_merge && (i < numInputSymbols()); i++)
can_merge = p.areCompatible(lambda(s, i), lambda(t, i));
if (can_merge) res->makeCompatible(s, t);

return *res;

}

SetSystem& Machine::M_]1_O(const SetSystemé& p) const
{
SetSystem *res = new SetSystem(numInputSymbols());
if (isMoore())
{

res->makeUnity();
return *res;
}
for (symbol i = 0; i < numInputSymbols()-1; i++)
for (symbol j = i+1; j <numInputSymbols(); j++)
{
bool can_merge = TRUE;
for (symbol s = 0; can_merge && (s < numStates()); s++)
can_merge = p.areCompatible(lambda(s, 1), lambda(s, j));
if (can_merge) res->makeCompatible(i, j);
}

return *res;

52

3 Basic data structures and operations

Forthe M, o and M, ¢, operators, set systems are defined on the Cartesian product of the

input information and the state information, as well as, on the output information, respectively.
So, there will be iterations over all pairs of compatible input and state / output information.
Consequently, these operators are quadratic in the number of inputs as well as the number of
states. The code for these operators is shown below.

SetSystemé& Machine::M_SxI_S(const SetSystemé& x, const SetSystem& p) const
{
SetSystem *res = new SetSystem(numStates());
for (symbol s = 0; s <numStates()-1; s++)
for (symbol t = s+1; t < numStates(); t++)
{
bool can_merge = TRUE;
for (symbol i = 0; can_merge && (i < numInputSymbols()); i++)
for (symbol j =0; can_merge && (j < numInputSymbols()); j++)
if (x.areCompatible(i, j)) can_merge = p.areCompatible(delta(s, i), delta(t, j));
if (can_merge) res->makeCompatible(s, t);

return *res;

}

SetSystem& Machine::M_SxI_O(const SetSystemé& x, const SetSystem& y) const
{
SetSystem *res = new SetSystem(numStates());
for (symbol s = 0; s < numStates()-1; s++)
for (symbol t = s+1; t < numStates(); t++)
{
bool can_merge = TRUE;
for (symbol i = 0; can_merge && (i < numInputSymbols()); i++)
for (symbol j = 0; can_merge && (j < numlnputSymbols()); j++)
if (x.areCompatible(i, j)) can_merge =y.areCompatible(lambda(s, i), lambda(t, j));
if (can_merge) res->makeCompatible(s, t);
}

return *res;

My {¢S}!MS—>OB{V}! My, op {v}, M, {v} and M, {¢JS} are actually calculated

the same way as described in the chapter on the theory as a combination of the ind (induced by
input or output), the misp (minimal input support problem) and corresponding their
corresponding M operators.

Some of the M and m operations are also implemented for partitions and block sets, however
because they are not used in the currently developed last version of SeMaDe, they are not
discussed in this report. For more information on the above discussed basic operators and
algorithms implementations, the reader is referred to the source code of SeMaDe (machine.h,
machine4.cxx, machine6.cxx).

53

3 Basic data structures and operations

3.3 Double Beam Searches

The double beam-search scheme was developed by J6zwiak to robustly and efficiently construct
some optimal or near-optimal solutions for synthesis problems [8]. In the decomposition method
described in this report, it is used for the molecules sub-set selection and clustering. The double
beam-search is a representative example of a deterministic parallel constructive search that can be
applied to a broad class of problems.

To apply a constructive search for finding the most promising solutions to a certain synthesis
problem, the problem has to be represented in terms of a space of states, where each state
corresponds to a particular (partially constructed) solution, being a particular (partial)
instantiation of the generic solution form. The state space of (partial) solutions is defined as an
implicit tree, by means of:

— initial state IS

— the rules describing how to generate successors to each current state using construction/move
operators op from a certain set OP, that realize transitions between states, and

~ the termination criteria that (implicitly or explicitly) define a set of goal states GS, each
representing a complete solution.

A particular constructive search searches (a part of the) state space, by starting from the initial
state IS, and (selectively and/or in a certain order) applying the construction operators to the
initial state or to the previously constructed states (in this way constructing the successive states),
until some goal states from GS are reached.

The basic beam-search is a variation of breadth-first search, where only a limited number of the
most promising alternatives are explored in parallel. It requires two basic data structures:

— present states PS (that contains the set of states which have been constructed earlier and are
considered to be extended presently), and

~ candidate states CS (that contains the set of states which are being created as a direct extension
of the present states).

A third supplementary data structure, final states FS, contains the states that cannot be further
extended.

The basic beam-search applies all possible to apply construction operators op from OP to each
present state ps from PS, constructing this way a new generation of candidate states CS, and
subsequently, applies its only selection mechanism Select States to the candidate states CS in
order to include the best of them into a new generation of present states PS.

The double-beam search, developed by Jézwiak as an extension and elaboration of the basic
beam-search, uses two selection mechanisms: SelectMoves and Select States. Move operators
are evaluated and selected in relation to a certain state ps (dynamically). Only a few of the most
promising move operators are chosen for a certain present state ps by Select Moves, using
problem-specific heuristic choice strategies and evaluation functions. By applying the selected
move operators to each current state from PS a new generation of candidate states CS is created.
The work of the second selection mechanism, Select States, is twofold: it scans the candidate
states CS for states that cannot be further extended (represent complete solutions), in order to
include them into the set of final states FS, and it examines the rest of the candidate states in order
to include the best of them into a new generation of present states PS. The beam-search stops if
the set PS becomes empty. Some of the constructed final states FS that satisfy some extra
problem specific criteria are the goal states GS.

54

3 _Basic data structures and operations

The selection mechanisms Select Moves and Select States must ensure that a solution that
violates the hard constraints will not be constructed and they should try to robustly construct only
some strictly optimal or near-optimal solutions by limited expenditure of computation time and
memory space:

~ Select Moves will select only those move operators that, applied to a given state, do not lead to
the violation of hard constraints

— Select Moves and Select States will select only a limited number of the most promising
operators or states, respectively, by using the estimations provided by some heuristic evaluation
functions.

The selection mechanisms and evaluation functions determine together the search extent and
quality of the results. In a number of constructive double-beam algorithms that where previously
developed and tested, we implemented certain heuristic elaborations of the following general
decision rule for selection of the construction operators and partial solutions: “at each stage of
the search take a decision that has the highest chance (or certainty) of leading to the optimal
solution according to the estimations given by the evaluation criteria; if there are more
decisions of comparable certainty, try a number of them in parallel, preferring the decisions
that bring more information for deciding on the successive issues”.

According to the above rule, Select Moves will apply those move operators which maximize the
choice certainty in a given present state and it will leave the operators which are open to doubts
for future consideration. Since information contained in the partially constructed solutions and
used by the evaluation functions grows with the progress of computations, the uncertainty

related to both the partial solutions and construction operators decreases. In a particular
computation stage, Select Moves will maximize the conditional probability that the application of
a certain move operator to a certain partial solution leads to the optimal complete solution. Under
this condition, it will maximize the growth of the information in the partial solution, which will
be used to estimate the quality of choices in the successive computation steps, enhancing this way
the choice certainty in the successive steps. The quality Q(op) of a given move operator op is
decided by these two factors. Select Moves is controlled by two parameters:

- MAXMOV ES: the maximum number of the move operator alternatives explored in relation to
each present state, and
— OQFACT OR: the operator quality factor.

In relation to a certain present state ps from PS, Select Moves selects no more than MAXMOV ES

of the highest quality move operators op from OP, so that: Ofop) > OQFACT OR* QJopmarx,
where Qopmax is the quality of the best alternative operator that can be applied to a given state
ps. Poor quality alternatives are not taken into account.

The task of Select States, in addition to selecting the final states, is to choose the most promising
candidate states for a new generation of current states. Select States is controlled by two
parameters:

— MAXST ATES: the maximum number of state alternatives explored at a certain computation
stage, and
~ SQFACTOR: the state quality factor.

Select States selects no more than MAXSTATES of the highest quality alternative states cs from
CS, for which: Q(cs) > SOFACTOR * QOmax, where Q(cs) denotes the quality of an alternative cs

55

3 Basic data structures and operations

from CS and Omax denotes the quality of the best state alternative in CS. Poor quality alternatives
are not taken into account. Q(cs) can be computed by cumulating the qualities of the choices of
move operators that took place during the construction of a certain cs and prediction of the quality
of the best possible future operator choices on the way to the best complete solution possible to
arrive at from this cs. Another possibility consists of predicting the quality of the best

complete solution that can be achieved from a certain candidate state cs. The double-beam search
scheme is graphically represented in Figure 2. As signaled in Section 3, the selection of operators
and partial solutions is generally performed with some uncertainty that decreases with the
progress of computations, because both the “sure” information contained in partial solutions and
the quality of prediction grow with this progress. Moreover, in the first phase of the search, the
choices of operators can be made with much more certainty than the choices of partial solutions,
because, in this phase, partial solutions almost do not exist and almost anything can happen to
them on the way to achievable complete solutions. Therefore, in the first phase, the search should
be performed almost exclusively based on the choices of operators and, with the progress of
computations, more and more on the choices of partial solutions. In our double-beam algorithm,
this is achieved by giving a relatively low value to MAXMOV ES compared to MAXSTATES and a
relatively high value to OQFACT OR compared to SQFACTOR. Since the uncertainty of
estimations decreases with the progress of computations, MAXMOVES and MAXSTATES can
decrease and OQFACT OR and SQFACTOR can increase with the progress of computations,
increasing this way the search efficiency. In the first phase, the double beam-search is divergent
to high degree, i.e. a large number of the most promising directions in the search space are tried.
In the second phase, when it is already possible to estimate the search directions and operators
with a relatively high degree of certainty, the search becomes more and more convergent. The
highly divergent character of the double-beam search in the first phase, composed with the
continuous and growing competition between the partial solutions in the second phase, result in
its global character, effectiveness and efficiency. In this way, the double beam-search allows for
an effective and efficient decision-making under changing uncertainty.

The double-beam search scheme was implemented in numerous circuit synthesis methods and

tools solving different kinds of synthesis problems, and when tested on benchmarks, it efficiently
produced very good results for all considered applications.

56

Basic data structures and operations

PS
Select Moves (MAX oa\o

cs,

Select States {

PS,

CcS,

PS,

0 0 0 C 0 O 0 ¢ g 0 O 0 ¢

PS

Figure 3.5: Overview of a beam search.

57

3

Basic data structures and operations

58

4. Main algorithms and their implementation

4. Main algorithms and their implementation

The aim of the information flow analysis is to collect and make explicit the information on the
internal and external information flows of a given FSM that is relevant and will be used to control
the correct-by-construction circuit generator delivered by the general decomposition theorem, to
only synthesize the most promising circuit structure(s).

Using the molecule concepts and apparatus of Information Relations and Measures the internal
information flows of the machine can be analyzed, made explicit and characterized. In this way, it
is possible to see where and how certain information is produced and / or consumed and how
difficult it is to produce some portions of information. By this analysis, coherent pieces of
information can be found that can be easily produced / consumed together. By putting one or
more of these coherent pieces of information together in a component machine, decomposition is
found which well exploits the natural internal information flow structure of the original machine
and will therefore result in a nice decomposition structure of relatively simple component
machines, with only few interconnections between them and a limited number of long
interconnections.

Besides internal information, also information on the external relationships of the sequential
machine should be used to steer the decomposition towards a (near) optimal solution. By external
information is meant e.g. information on where (physically) the used input / output pins are on the
chip, or from / to what part of the data path certain signals are received / transmitted. By taking
this information into account a different decomposition could be found then when only looking
only at the internal structure (e.g. it could be better to produce / consume certain information near
a part of the data path where many of these signals come from, or near some input / output pins.
Also it could be better to produce some information more than once if the production is cheaper
than de wiring otherwise required to transmit this information to its destination).

Using these two sorts of information (i.e. on the intemal as well as external information flows)
and confronting them with the actual synthesis objectives and constraints, heurist decisions will
be taken to control the correct-by-construction circuit generator delivered by the general
decomposition theorem, to only synthesize the most promising circuit structure(s).

We assume here that the external interconnections of an FSM being decomposed are decided
before starting the decomposition, and consequently, the external information flows of the
original FSM are fixed. In this situation, it is not difficult to characterize the external information
flows, for instance, by specifying some clusters (sub-sets) of the related external interconnection
signals and their characteristics. For example, one particular sub-set (cluster) of the FSM
(controller) inputs can represent the status signals from a particular (part of) data path and another
cluster of inputs the status signals from another (part of) data path. The geometrical closeness the
corresponding (parts of) the data paths can represent the affinity between the input clusters and
particular signals of the clusters. In a strictly similar way, the affinity between the FSM
(controller) output signals (being control signals send to the particular (parts of) data paths can be
modeled. Comparing to the intemal information flow analysis of an FSM, the analysis of the
FSM’s external information flows is therefore not a difficult task. Moreover, it can only be
performed knowing the topology of the system of data paths controlled by the given controller
(FSM) and interconnections of the controller with the particular (parts of) data paths of the
system. Therefore, we assume here that the external information flow analysis will be
implemented in a tool that will call the decomposition tool, or alternatively, in a pre-processor to
the actual decomposition or just a human designer, and the information on the external

59

4. Main algorithms and their implementation

information flows will be delivered to the actual decomposition tool from the outside as one of
the inputs by calling the decomposition tool. In consequence, only the FSM’s internal information
flow analysis will be considered in the remaining part of this section.

Through assuming that the external interconnections of an FSM being decomposed are fixed
before starting the decomposition, we assumed in fact that a given FSM has assigned (binary)
inputs and outputs. It has however just a single symbolic state variable, while all the partial FSMs
in the final network of partial FSMs being the result from the decomposition will be assigned and
only have the binary state variables. The decomposition into partial FSMs will thus perform a
partial state assignment of the original FSM, and the particular partial FSMs will be further
assigned using a networked version of an FSM state assignment program, as e.g. SEMADE. In
such an FSM with assigned inputs and outputs and symbolic states, there are various information
flows between the particular inputs and outputs (exclusively in the Mealy type FSM), inputs and
the state variable, (current value of) the state variable and (next value of) the state variable, the
(current value of the) state variable and the particular outputs. The information on each particular
output is produced using particular state information, and in the Mealy case, particular input
information from particular inputs. Each particular portion (e.g. atom) of the state information
requires for its production particular state information and particular input information from
particular inputs. From a particular sub-set of inputs only a certain maximal portion of state
information can be produced that requires for its production also a certain minimum state
information. The internal information flow analysis aims at discovering or making explicit the
input-output, state-output, input-state, and (present)state-(next)state information relationships,
especially from the viewpoint of the state information consumption and state information
production. What portions of the state information are convenient from the consumption
viewpoint (e.g. to produce information for certain outputs)? What portions of the state
information are convenient from the production viewpoint (e.g. to be produced from certain small
input supports and using only some small portions of another compatible state information)?
What portions of state information are difficult to produce (e.g. require information from many
inputs and/or many incompatible portions of state information)? What are the relationships
between the different produced and consumed portions of state information and/or output
information?

Based on the results of this analysis, the initial molecules will be created that represent some
small partial machines of an initial decomposition that only serves to denote the initial results of
the internal information flow analysis. Next, the initially created molecules will be analyzed and
the relationships between the initially created molecules will be analyzed, and the molecule set
will be improved, or in other words, the final molecules will be created that represent some small
partial machines of an intermediate decomposition that are at the same time good both from the
state information production and consumption, and output information consumption viewpoints.

4.1 Reading of the controller specification

First a description of the FSM that must be decomposed is read. This description consists of two
parts contained in a text file. This file is in the .KISS format. The first part (which is always
necessary) describes the controller’s / FSM’s behavior (it’s original internal information flow).
This file basically contains the transition table of an FSM with coded inputs, coded outputs and
symbolic state variables. In this format any FSM can be described, also FSMs in other formats
(e.g. VHDL, VERILOG, some graphical representation, etc.) can be converted to the .Kiss format
by a one-to-one (direct) translation. The second part is optional and will be embedded in the
KISS file as comments started with a special character so that our tool recognizes it. This part

60

4. Main algorithms and their implementation

will contain information on the extemal information flow (the surroundings of the
controller/FSM) as described in the introduction of this report (also see figure 1). The precise
format of this part is not determined yet, but it will contain some “groups™ of inputs and “groups™
of outputs of the FSM that are respectively coming from or going to a specific part of the data
path (or are perhaps grouped for some other reason). Each of these “groups™ also have a list of
parameters (giving information on e.g. timing requirements, physical position, etc.) that apply to
that particular group and/or particular inputs and outputs of that group.

4.2 The Analysis Phase

4.2.1 Creation of A molecules

After reading the .KISS file description of the sequential machine, the molecules A will first be
constructed. The purpose of the molecules A is to produce enough output information to have a
valid decomposition (see decomposition theory). In other words, the product of the output set
systems of these molecules should be smaller than or the same as the set system induced by all
outputs of the original machine: H B, <ind{Uy}.

We make an assumption that initially this covering of the output information is achieved by
building 2 molecule A for every output bit of the original machine, where every molecule has to
produce (at least) enough output information to compute this particular output bit:
B =ind{u,}(B Sind{ui}) where Uu,. =U. This is a good assumption to start the
analysis process with, but later (after further analysis) during the improvement of the molecules
or clustering, this assumption will not be made and it is very probable that a molecule may
actually compute enough output information for more than one output bit, or only a part of the
information needed for producing this bit.

61

4. Main algorithms and their implementation

Figure 4.1: Creation of Mealy and Moore molecules A.

If during the construction of a molecule A for a particular output bit it will appear that no input
information is necessary, a second (Moore) molecule will be constructed for this output. For this
Moore molecule A, we will initially demand that all state information required for this particular

output is computed locally.

Figure 4.2: Internal structure of a Mealy molecule A.

As mentioned in the flow diagram, a molecule is constructed for every output. So the output

support for molecule M, ,.A is:

62

4. Main algorithms and their implementation

The output support for this molecule is called v}m" because with the same input and state

information required to produce this output, also other outputs can be computed. But the primary
output bit y, is the minimal output support that should be computed by this molecule.

The next step is to compute the set system induced by V;"i" :
B =ind (v}
P is the largest set system required to compute v,.mi“ (the minimal output support for this

molecule). This translation between a set system and a support is represented by 6_’, in figure 4.2.

Now the input information that is needed to compute B™ is calculated, assuming all state
information is present in this molecule:

o™ = Mo {7
If ™ =1, no input information is needed to compute the output, so this particular output is a
Moore output. In this case, also a Moore molecule will be constructed for this output later on.

The input support required for this output is given by:

U, = misp {a:mx} =My 0 {:meax}
For this a minimal input support problem is solved with a quick-scan as well as a best first search
algorithm is solved and the smallest support is used. This translation between a set system and a

support is represented by 1/7, in figure 4.2.

All the input information that is present in this molecule, assuming no input encoder is used, is all
the information induced by the input support:

a, =ind {u;}
If however the input support #,is too large, «; is untouched, still allowing an input encoder
because only the necessary information (to compute its output) is provided to the molecule.

During the computation of "™ we assumed all state information was present in this molecule.

max

In this step, the largest set system needed to compute [,

I

is computed, provided that input

information ¢, is present:
ax
T =Mg,0 {a,, A }
Now that the imported input and state information is determined, all the state and output

information that can be computed is determined:

Pi =Mps,s {ai’ﬂ.i }

And:

B=mys o {ai’”i }

63

4. Main algorithms and their implementation

Finally the output support can be determined:
v, = Mosp {,B,}

4.2.2 Creation of split A molecules

Now the Mealy molecules have been created and all output information is covered. The previous
analysis however, is performed only from the viewpoint of the outputs (and their binary

encoding). If the output information S, of a particular A molecule does not contain any
single portion of elementary information which requires all the consumed state
information 7, and input information e, to be supplied to this molecule, it is possible to
split such a molecule according to its inputs (and the input’s binary encoding).

From the creation of the Mealy A molecules the input support %, of each molecule is known
and the output information to be produced £ too. By splitting the A molecules, the split
A molecules should together still produce [, however, each particular split molecule

should have the smallest input support possible. Finding good input supports for these
molecules is a combinatorial problem (similar to minimal input support). For an un-split A

molecule where = n, the number of supports containing k bits is determined by:

u;

o

These sort of problems tend to explode exponentially (have extremely many solutions) for larger
values of n and values of k around n/2. For a certain value n, the problem can be represented as an
algebraic structure and the shape (geometry) of the problem is drawn in Figure 4.3.

Empty Support

Full Support

Figure 4.3: Geometry of a the combinatorial problem involving variable supports (lattice structures).

64

4. Main algorithms and their implementation

In this drawing k = 0 (Empty support) at the top and k = n (full support) at the bottom. Also the
symmetry of this problem for k =n/2 is represented by the dashed line.

The problem has to be kept to a manageable size even for larger values of n. This is assumed by
combining the following two computation reduction concepts:
1. A different kind of search is performed for the different regions of the problem indicated
by 1,2 and 3 in the figure.
2. The value for n is kept as low as possible. Also during the algorithm it is checked if n
can be further reduced.

As noticed before, the problem can be divided into three regions. First, we discuss the properties
of the molecules in each of these regions:

1. Region 1 contains the molecules with small input supports. Also the solution space
covered by this region is relatively small. In this region, we can perform an extensive
search for good molecules very quickly. The molecules we find in this region will
actually be the desired type because they can produce some necessary output information
at a low cost related to the inputs required for their production. This information can also
be allowed to be produced more than once since production of this information is
relatively cheap compared to the cost of distributing this information to the partial
machines that require this information.

2. Region 2 contains the molecules with average size input supports, therefore they are not
as desired as the molecules from region 1. Some output information however, may
anyway require larger input supports then these of region 1. The main problem in this
region is however, the fact that the solution space, related to this region, is very large. For
this reason this space will be searched last (after region 1 and 3 are explored for good
molecules). It will also be searched differently than regions 1 and 2: The starting point for
these molecules will not be an input support, but some (elementary) output information
that must be computed by a particular molecule. This will enable an efficient computation
related to molecules concerning some elementary information not covered by the
molecules from regions 1 and 3.

3. Region 3 contains the molecules with a large input support and for this reason they are
undesired. But also the difficult to compute information has to be computed, so there is
no way to avoid the large molecules in general. Of course (with enough imported state
information) these molecules can also produce all output information that is computed by
all smaller supports. However, since (large) molecules in region 3 are undesirable, they
will only be used to produce the essential output information (information that can not be
produced by molecules with smaller input supports). We only allow this information to
be produced once in the decomposition because its production costs are very high. Also
during the molecule improvement, the molecules from this region are considered first,
while still much freedom is left. Moreover, for these molecules the input encoders are
considered to obtain a better distribution of the input information. Because the solution
space covered by this region is also small, we find and analyze this hard to compute
output information as soon as possible, because with this information covered we could
try to reduce n (the number of input bits required to compute the state information),
which will result in the corresponding reduction of the entire solution space.

The molecules in both regions 2 and 3 will be created with the possibility for input encoders
o, #ind (u,.) . Moreover, in these regions a separate molecule will be initially created

for a particular portion of elementary information (although some more information
might be computed for free).

65

Main algorithms and their implementation

Summarizing: the direct search of the solution space in region 2 with method 1 or 3, e.g.
through the input combination enumeration, requires to much time since there are too many
supports in the middle region if n is large. Searching the entire solution space with method 2
would take to long since this would require an analysis of the machine on an atomic level.
The combination of the three different specific methods for searching each of the three
different regions results in an efficient search algorithm.

The second way mentioned to reduce the solution space was trying to reduce n. This is
obtained by using the M, ,, { ,B,.} operator on the remaining to be computed output

information. With some output information already covered, perhaps one or more of the bits
in the original input support are not needed anymore. Consequently, we find the minimum
required input support (of size n).

As mentioned before, a molecule can be constructed given an input support #, and a
set system [, which defines the output information that could be produced by a particular
molecule. For a molecule with an input support in region 2, 3 is given, which is a portion of
elementary state information. In contrast to methods 1 and 3, /3, has to be produced. In this

case the input support ; is determined during the construction of the molecule.

For method 1, w, is given (by the algorithm discussed later). The input information:
a, =ind {u,}
And the maximal amount of output information (smallest set system) that can be produced is:
B =my_, {ai} =M Ls {ui}
Also for method 1, not all information that can be produced has to be produced,
because this is not necessary for a valid decomposition. Besides this, in general, not
all information can be produced because the full input support is not present. So, the

minimal set system of essential information that has to be computed by this molecule
is:

B =lBimin+ﬁA

For method 3, the essential information is:

pi= 'B;mm + B,/ H|uj.|=lu,._1[B,
So, only the information in S, is computed which cannot be computed by molecules with a
smaller input support.

Once B is determined, the state required state information and the output informatijon that
can be produced can be computed by:

T =Mg, 0 {ai’ﬂi}
:Bi =M s0 {ai’”i }

v, = Mosp {ﬂ:}

66

4. Main algorithms and their implementation

For method 2 and, /3, is a portion of elementary state information that has to be computed by
the molecule. In this case the input support is calculated by:

u =My o {ﬂ,}
The rest of the molecule is than constructed as follows:
a, =M, {ﬂ,}
T, =Mg, 0 {ai’ﬂi}
v, = Mosp { ,H,}

As it can be seen from the flowchart, methods 1 and 3 are alternated until some boundary
is reached. After method 1 or 3 is complete (for a certain cardinality of inputs L, or Ls
respectively), [, is updated. S, is reduced with the information that was covered by the

created molecules.

If B,=1 all the necessary state information is covered and the algorithm finished its

computations for a particular molecule A (output). If not, the new levels are calculated and it is
decided which method to use next. After method 1, method 2 or 3 can be called and after method
3, method 1 or 2 can be called. Method 2 is guaranteed to cover all remaining the state
information and consequently, after calling method 2, the construction of molecules is certainly
complete.

After method 1 has been completed at a certain level L; and some remaining /3, still has
to be computed. The new level for method 3 can be computed:

L, =min (L3 -LIMp 0 {ﬂA}D

Meaning that L3 will be decreased at least by one if the problem could not be reduced.

Using method 2, for each portion of elementary information a molecule has to be created,
so the number of molecules to cover all remaining state information is: ‘]S (B,)’

M
Using method 3, [IB_’LO {ﬂA}J molecules have to be created at the next level (and

3
perhaps some more if not all information in /3, was covered).

So method 3 is selected if:

is()z[o)

L3
Otherwise method 2 will be selected.

The selection of method 2 or 1 after method 3 is done in a similar way.

67

4. Main algorithms and their implementation

The detailed procedure of switching between the different regions and is described
below:

Figure 4.4: Flow chart for the splitting algorithm of A molecules.

4.2.3 Construction Moore molecules

Figure 4.5: Internal structure of a Moore molecule A.

68

4. Main algorithms and their implementation

For a Moore molecule, to profit from it, all the state information necessary to compute a
certain output must be computed locally. Since a Moore output doesn’t require any input

information, £ is computed as follows:
P =My 05 {Vi} =M, {i"d (Vf)} =M {,B,}

The state and input information necessary to compute this output are:

o =M, g {pi }
And:

=M, s {ai’pi }

If the Moore molecule is suitable (which is decided later, during the molecule sub-set
selection), an output molecule is constructed which has no output logic and has a two
block set system for its state information.

4.2.4 Finding a maximal SP set system

For all partial machines and also all molecules it is allowed to import state information
from other partial machines or molecules, respectively. For the entire decomposition this
is not possible because it has to be a self-contained realization of the specified machine.
So for the entire decomposition the substitution property for the state information must
hold. Up to this point, the algorithm has performed the output analysis, which resulted in
the creation of the A molecules (of the Mealy and Moore type).

The information required by all these A molecules is described by the following formula:

Ty = H T,

i € molecules A

So if 7, is available, all output information can be computed. This can also be achieved

by computing all the state information required to compute 7, < M, {¥}.

The molecules A could already have computed some state information but because we
want to analyze all the state information again from the viewpoint of the input
information necessary for production of particular state information portions. We
temporary assume that no state information is covered yet, so the globally computed state
information is:

Pe =1

So the information computed by the B molecules should be:
Py <7,
However, to compute this state information, some more state information may be needed:

7wy <M 5 {Ps}
In this way, p, = p, - 7, has to be and will be computed recursively until p, <7, .

69

4. Main algorithms and their implementation

4.2.5 Creation of B molecules B

In chapters 4.4.1 to 4.4.3 the creation processes of the regular A and Moore molecules A were
described. The molecules A make sure that all output information is computed. Moreover, some
state information may already be computed for free here. In chapter 4.4.4 it was described how to

find a maximal SP set system p, in arecursive way. This p, defines what state information has

to be computed by all molecules B together. In particular, all the state and output information
computed by the A molecules is will be covered again by the B molecules, but this time analyzed
from the viewpoint of the input information consumption to compute it.

The next aim is to find a set of “good” molecules B that actually compute this information. By
good it is meant here: low cost, e.g. that their input supports are as small as possible and they

require only little state information (7; should be large). The last is however of a smaller

importance because we have much freedom to import state information (we can decide the
encoding of the state information).

Similar to molecules A which are defined by an output support v™ or output information B™*,
molecules B are defined by a set system p, (that represents the state information that we would
like to be computed by that molecule) and/or an input support %, . How a particular molecule B is
computed from this p, and/or u, is described in further in this chapter. First, the algorithm for
finding a good input support (%,) and p, for a molecule B is described.

As mentioned before, a molecule B can be constructed given an input support %, and a set system
P which defines the state information that could be produced by a particular molecule B. For a
molecule B with an input support in region 2, p, is given, which is a particular portion of
elementary state information. In contrast to methods 1 and 3, from the requirement that p, has to

be produced, the input support u, is determined during the construction of the molecule.

For methods 1 and 3, #, is given (by the algorithm discussed later). The input information:
o, =ind {u,}

And the maximal amount of the state information (the smallest set system) that can be produced
is computed:
pimm = ml—)S {ai} = mlB—)S {ui}
For method 1, not all information that can be produced has actually to be produced, because this
is not necessary for guaranteeing a valid decomposition. Also, in general, not all information can
be produced, because the full input support is not present. So, the minimal set system representing
the essential information that actually has to be computed by the molecule is the following:
Pi=pP" +Pp
For method 3, the essential information is defined by:

pi = p,m“" + ,03 /Hll’,|=|"i—l|pj
Here, only this information in p, is computed which cannot be computed by molecules with

smaller input supports and consequently, requires this large support of its computation. Once p,

70

4. Main algorithms and their implementation

is determined, the state required state information and the output information that can be
produced is computed by:

7w =M s {af’pi }
B =m0 {ai’”i }

v, = Mosp{f3,}

For method 2, p, is a portion of elementary state information that has to be computed by the
molecule. In this case the input support is calculated by:

u=Mp {Pi}
The rest of the molecule is then constructed as follows:
a, =ind {u,}

T, =Mg, s {ai’ Pi }
B=mys 0 {ai,”i }

v, = Mosp{3,}

71

4. Main algorithms and their implementation

The detailed procedure of switching between the different search regions 1, 2 and 3 is described
below:

Figure 4.6: Flowchart for the creation algorithm of B molecules.

72

4. Main algorithms and their implementation

As it can be seen from the flowchart, methods 1 and 3 are alternated until some boundary
regarding the input support cardinality is reached. After method 1 or 3 is complete (for a certain

cardinality of inputs L, or L respectively), o, is updated. p, is reduced with the information
that was covered by the just created molecules.

If p, =1, all the necessary state information is covered and the algorithm finishes. If not, the

successive levels are calculated and it is decided which method to use next. After method 1,
method 2 or 3 can be called and after method 3, method 1 or 2 can be called. Method 2 is
guaranteed to cover all the remaining state information, so that after calling method 2, the
construction of B molecules is certainly complete.

After method 1 has been completed at a certain level L; and some remaining p, still has to be
computed. The new level for method 3 can be computed:
L= min(lg =1L \M s {pa}‘)

Meaning that L; will be decreased at least by one if the problem could not be reduced.
Using method 2, for each portion of elementary information a corresponding molecule has to be
created. Thus, the number of molecules required to cover all the remaining state information is:

1S (py),

Using method 3, [

My s {pB}

J molecules have to be created at the next level (and perhaps
3

some more if not all information in p, was covered).

Consequently, method 3 is selected if:

5oz o 7]

L

3
Otherwise method 2 will be selected.

The selection of method 2 or 1 after method 3 is performed in a similar way.

4.2.6 Molecule improvement

In this phase the created molecules are improved. The main aim of this improvement is to
consider not only the actual information flows for the molecules, but also the structure of this
information. This is an iterative process which means that the improvement continues until no
further improvement is possible. During this improvement phase, the relations between the
created molecules are examined. During this analysis a number of alternative ways for
improvement are considered:

e Redundancy elimination: Here is looked at the possibility of producing less information
in a molecule (A) than required for computing its corresponding output bit. This can only
be realized if the other information (not produced anymore by the molecule itself) is
produced by the other molecules. The idea behind this is that the information from
several molecules necessary to compute a particular output variable, information can be
combined during the clustering phase (by an output decoder or by the clustering itself).
Redundancy elimination should only be performed if there is enough gain (by reducing

73

4. Main algorithms and their implementation

the input and / or state information, input support and the number and size of the input
encoders required).

s Molecule splitting: This is analogues to the redundancy elimination, in the sense that a
molecule is not required to produce all the information necessary to compute a particular
output bit. The difference is, that the output information that is not produced by the
molecule itself does not have to be covered by the other molecules. Instead a number of
molecules will be created from the original A molecule that together produce enough
output information to calculate the corresponding output variable. In this way, the
molecules necessary for computing the output bits that require large input supports and /
or state and input information can be replaced by a number of smaller molecules. This
splitting is desired before the clustering phase, because during the clustering phase,
molecules can only be merged. They may only get larger and consequently, later there
will be no chance of their improvement by making them smaller.

s Molecule joining: Here it is analyzed for a molecule if the molecule will be able to
compute more than one output bit by adding no (or only little extra) input/state
information. In this way, some other molecules covering the computation of the
additional outputs can be removed (they may also be preserved as a possible alternative
to computing a certain bit). Molecule joining is not to be confused with molecule
merging. Molecule merging is performed during the clustering phase of the method and
combines molecules that have high affinity.

As mentioned earlier, the improvement phase is an iterative process, so the mechanisms as
described above can be repeated a number of times (e.g. a molecule can be joint and than be split
again). In this way, the computation of the required state and output information can be divided
over the different molecules in a desired way, and possibly some earlier incorrect decisions based
on less information can be corrected when more information is present to support the decision
making. This process continues until there are no changes anymore, or if some other stop
condition is met.

The same mechanisms (redundancy elimination, splitting and joining) can also be applied to the
input encoders. These improvements will be made (every iteration) after the molecules have been
improved.

The “Moore” molecules A, corresponding to the outputs directly used as state variables for the
state assignment, cannot be improved (much) anymore. This is because all the state and input
information has to be present in one place to be able to compute the particular Moore output and
its corresponding state variable. Thus, the molecule cannot be decomposed further. It is also not
useful to add much input or state information because of the fact that the p set system of the
molecule may only have two blocks (which are mapped from the state information to output
information so that the corresponding output logic is reduced to a single wire). The only thing
that could be done is to reduce the number of don’t cares (if there are any) in the p set system in
the best way. These don’t cares are symbols which are present in both the blocks of the p set
system. In this way the p set system can contain more information, but this requires more input
and consumed state information to be sent to the molecule. In most cases this information will not
be compatible and cannot be fully exploited (only the information which reduces don’t cares can
actually be produced in this molecule). So improvement of these Moore molecules A is not
significant and will be postponed or not done at all. Only after all improvements are complete,
there has to be decided which Moore molecules are used.

For the “Mealy” molecules A there are more possibilities for improvement because the restriction
that the p set system may only have two blocks doesn’t hold. Also the Mealy molecules A may be

74

4, Main algorithms and their implementation

split further according to their input supports in a way similar to the creation of the B molecules.
The main difference is that now all output information for a particular output variable should be
covered (instead of all state information).

Further improvements are focused on the split mealy molecules A and the B molecules. First the
B molecules are sorted according to the size of their input support and secondly (in case of the
same input support) according to the cardinality of the pi set system. In this way, the molecules
that compute state (or output information) that requires a lot of inputs are considered first, while
still much freedom is left.

For each molecule, the p, (or B beta in case of mealy molecules A) set system will be examined.

This set system contains the essential produced state information for the corresponding molecule,
meaning the information that cannot be computed with a molecule with a smaller input support.

First of all, the number of essential blocks will be determined. An essential block is a block that
contains one or more symbols that are not present in any other blocks. This number of essential
blocks is a lower bound for the number of blocks needed to represent the essential state
information produced by this molecule. Another way to perform this is by coloring of all the
blocks in:

My s {u,} or my_g {aimax}
for examining improvement without or with an input encoder respectively. This coloring gives
the minimal number of blocks (colours) by merging blocks while no essential information is lost.
This number will be round up to the nearest power of 2 to maximally exploit the interconnections
between the molecules.

Different numbers of blocks in set systems (differently large molecules) will be allowed,
depending on the size of the original machine. Only 2 or 4 block set systems will be allowed for
average size machines. For smaller machines, only 2 block set systems are allowed. Exclusively
for the extremely large machines, set systems with ore blocks may be allowed. This is due to the
fact that during the clustering molecules will only be merged and as a consequence, the number
of state variables for each particular sub-machine after clustering would become too large for set
systems with more blocks. If the number of blocks is too large, for some molecules, the
molecules can be split by constructing an input encoder which supplies the input information
more efficiently to the molecules. For smaller molecules, the cost of having more molecules with
the same support is not too high and so several molecules with the same small or similar support,
each computing a part of the essential information, can be constructed.

Once all molecules are small enough regarding their input supports and produced state
information, the produced state information should be finally divided over the molecules in a way
that information that is hard to produce (requires much state and / or input information) is
produced only once, in one place and is then transported to all the places where it is needed. And
all the information which can be easily produced may be produced everywhere, where it is
needed for some computations and perhaps also in some other places where it is only needed for
increasing the compatibility of the set systems (less blocks). Of course, the cases between thos
too extremes are also possible.

To find good candidates for the set systems, first of all the essential information should be
produced. Any freedom left at this point can be used to improve the amount of information which
can be transferred on a certain amount of bits. If there is still a large amount of freedom left, not
all possible set systems can be constructed and examined, but we need heuristics which will give

75

4. Main algorithms and their implementation

us an indication for promising set systems. First, we have the local analysis. This analysis can be
done only focusing on particular molecule. This analysis only tries to find set systems that have
as much information as possible while requiring only a small amount of state information.
However, not only the amount of information per bit is important, but also the way how it is
consumed and the way in which other molecules produce information is important. This is why
also a Global analysis has to be done. This global analysis is more important, but also more time
consuming, so the actual order in which they are performed and the weight assigned to their
importance has to be established by experiments. However, if different heuristics suggest
different set systems, they can be considered in parallel as alternative solutions.

Local analysis heuristics:
1. The number of blocks for the p, and ¢, set systems should be as small as possible (2
or 4 blocks).
2. Blocks should approximately have equal size.
3. A particular symbol should be in as few blocks as possible (this results in few don’t
cares)

‘MSxI—>S {CZ,., pi}

b

should be small.

Items 1 to 3 make sure that the information per bit is maximized. And item 4 makes sure that not
too much state information is needed to produce a given portion of state information. Here, the

amount of information is of more importance, because is has to be covered by p, set systems,

and since these all have as much information per bit as possible, the number of bits needed to
cover the imported state information will be close to minimal.

Global analysis heuristics:

1. While merging blocks of the set system representing the produced state information,
trying to keep as much information from larger molecules. In this way molecules can
be reduced (or can be removed entirely), because they do not have to produce some
(or all) essential information any more.

2. Construct set systems which will have as much blocks as possible of approximately
equal size when multiplied with constructed set systems from other molecules. If this
condition holds the set systems will be almost orthogonal, which is an indication of a
good (close to) minimal state assignment.

3. Try to construct set systems which resemble the information as it is consumed by
certain molecules.

Using these heuristics a number of molecules are constructed. If (almost) all heuristics suggest a
certain molecule, only this molecule has to be constructed. If however heuristics contradict more
alternatives have to be examined and only when all good alternatives have been considered, the
best decomposition(s) can be determined.

4.2.7 Nolecule sub-set selection

Since, during the improvement phase multiple alternatives where considered to produce some
portions of state or output information some redundancy was introduced. The final task of the
analysis part of the method is the initial creation of (a) valid decomposition(s). This is done by
selecting one or more most promising sub-sets from the pool of all molecules created so far. Each
of these sub-sets represent in fact an early prototype of a valid decomposition that will be further

76

4. Main algorithms and their implementation

processed through the clustering and FSM network construction phases, to finally result in one or
more actual promising decompositions.

The first hard constraint posed on these subsets is that the decomposition represented by the sub-
set is valid. During the construction and improvement it is guaranteed that for all the molecules
(at the local level), the constraints of the decomposition theory are satisfied. However for each
sub-set also the global constraints have to hold (enough output and state information has to be
produced, respectively):

Bs=]1B <ind(Y) and ps=T]p <7s=] =

ieS ieS ieS

These sub-sets (or prototype solutions) can be seen as supports, where a full support contains all
molecules (which is always valid). And an empty support (which contains no molecules) is
always invalid. If a solution with only one molecule is valid, this is a trivial case of a
decomposition into one submachine. We will be only interested in the remaining natural and valid
cases.

This problem, of finding the most promising valid molecules sub-sets, is equivalent to set
covering, which resembles the row covering / minimal input support problem, with the main
difference that the cost function is not equal for all molecules. This set covering problem
however, does not have to be solved for all created molecules so far, but can be split in a number
of sub-problems. This is possible, because we have some additional information on how the
molecules were created. First, we will explain how this subset selection works for Moore
machines. Secondly a suggestion is made on how to extend this algorithm for the Mealy
machines.

Some sequential machines may contain one or more outputs which only require state information
to compute this particular (Moore-type) output. In a Moore machine this is true for all outputs,
but also some Mealy machines may contain one or more of such outputs. As discussed earlier, for
these outputs special Moore molecules were created. These molecules are very useful because
they do not only compute an output, but also induce a two block set system on the states that can
be directly used to represent a binary state variable. Secondly, if actually used in a decomposition,
they require no output logic (only a wire from the corresponding state variable to the output
variable).

For these reasons our algorithm for creating valid subsets of molecules starts by selecting a subset
of these Moore molecules. This subset does not have to be valid by itself because it can be made
valid by adding B molecules to produce the remaining state information.

Our initial guess is to use all constructed Moore molecules. The level parameter is set to the
number of Moore molecules created, in the rest of this algorithm this level will indicate the
number of Moore molecules that will be in the Moore subset of the newly created subsets.

After the final Moore subset is determined, the prototype decomposition has to be made valid. As
mentioned earlier, this is guaranteed by adding some B molecules. Once the decomposition has
been made valid, the cost of this decomposition has to be calculated to determine the quality of
this particular solution/decomposition. This process is called complete, and is explained in more
detail later in this chapter.

77

4. Main algorithms and their implementation

Complete.
(Parentset)

4

“Create
Childset |

¥
F ¥
Complete
(Childset)

Do Beam |-
{oa ¢childset) |

Do Beam
{on parentset}

Figure 4.7: Flow chart for the Moore subset selection process.

At the start of the Moore molecules sub-set selection process, we have an initial parent set which
contains just one solution. We check if the level (number of molecules) is larger or equal to 0. In
the case of a Mealy machine with no Moore outputs it will be 0 from the start and all the state

78

4, Main algorithms and their implementation

information will be produced by the B molecules selected by the complete process. In the case of
only one Moore molecule, the choice is simply whether to use this Moore molecule or not. In all
the remaining cases, the following more complex selection process will be performed.

First, the children are created. For each solution in the parent set at the current level (where the
number of Moore molecules in their subset is equal to level). The children of a particular parent
are created by removing one Moore molecule from the parent set at a time. Consider please this
following example. At a certain point in the algorithm, namely level 5, the parent set contains
Moore subsets: {0, 1, 2, 3, 4, 5}, {0, 2, 3, 4, 5}, {0, 1, 2, 4, 5}, {0, 1,2, 3, 4}. Note that {1, 2, 3,
4,5}, 10,1, 3,4, 5}, {0,1,2, 3, 5} where constructed at the previous level but where rejected by
the first or second beam as will be discussed later in this chapter. At this level {0, 1, 2, 3, 4, 5} is
not used to create children because at the previous level it’s children where already considered.
{0, 2, 3, 4, 5} will have children {2, 3, 4, 5}, {0, 3, 4,5}, {0, 2, 4, 5}, {0, 2, 3,5}, {0, 2, 3, 4}.

{0, 1, 2,4, 5} will have children {1, 2, 4, 5}, {0, 1, 4, 5}, {0, 1,2, 5}, {0, 1, 2, 4}. Note that

{0, 2, 4, 5} was also a child of {0, 2, 3, 4, 5} so it will not be created again. Finally {0, 1, 2, 3, 4}
will have children {1, 2, 3, 4}, {0, 1, 3, 4}, {0, 1, 2, 3}. Again {0, 2, 3, 4},{0, 1, 2, 4} are not
created because they where already present. So the three solutions of the current level produced
5+4+3= 12 children. Note that this is already a subset of all possible sub-sets of 4 Moore
molecules (which has 6*¥5%4/3*2¥1 = 120/6=20 children). This is due to the fact that at the
previous level (in this case only level 5, not all subsets where accepted by the double beam).

If no children where created because there where no parents (no solutions with “level” Moore
molecules), the newly created child solutions are completed, this completing process is the same
as the completing of the initial parent set. After they are completed, only the best of the created
children will be selected for the new generation of solutions and they can be present as final
solutions. This is done by the first beam, which operated only on the child set. Subsequently, the
children are added to the parent set and now the second beam is performed. The second and the
first beam are exactly the same except for the fact that the second beam operates on the parent set
(not only the children), which at this point contains all solutions created and accepted so far.
Finally, the level is decreased by one and the loop is entered again as long as the level is larger or
equal than 0.

The beam operators will be discussed in somewhat more detail. As mentioned earlier, the only
difference between the two beams is the set that they operate on, so the beam algorithms is
actually implemented only once. The beam has two parameters: Q, the quality factor and P, the
maximal number of solutions that are allowed. First the best solution (with the lowest cost):
minimal cost is found, and the quality threshold is determined Qth = minimal cost * Q (where Q
larger of equal to 1). All solutions with a lower cost that Qth are accepted. If the number of
accepted solutions is larger that P, the accepted solutions are sorted and only the best P solutions
are accepted.

Finally the completing process will be described in somewhat more detail. At the point where
completion is called, the subset of Moore molecules is already known. This means that:

TMoore = H 7, and Py, = H p, are already known.

i is in Moore subset i is in Moore subset

Also sinfo=M; {ind (Y)} which is the information needed to compute all outputs is known.

The aim of the complete process is to find a sub-set of B molecules such that:
Ty = H 7, and pg = H p; are fulfilling the following two requirements:

iis in B subset iis in B subset

79

4. Main algorithms and theijr implementation

Prioore * P = T ptoore * 7B and Phtoore * PB <sinfo.

For finding the B sub-set two methods are implemented. Similar to the way the Moore subsets are
determined. We start with all B molecules, remove one B molecule at a time and determine the

solution cost. If Py, Pp S Wy %p and py.. - pp <sinfoare met. The first and the

second beam accept only the best solutions of the newly created and all created subsets of B
molecules so far, respectively. Once this is done, the single best subset is chosen from the
possibly many final subsets that result from the search.

This first method described here gives good results, but at this stage the cost function is not yet
accurate (because clustering is not yet performed). Also since the B molecules have similar costs,
the width of the beam is mostly determined by quantity instead of quality. Because of this poor
distinction of the quality of the solutions the search takes quite a long time. This is why the
second method was developed.

The second method is based on a recursive QuickScan. Initially, before the first iteration
wy=pz=1 (mo B molecules are selected). If p,... Ps <M. Tz and

Prioore - Pp < sinfoare met, the algorithm is finished. If not the information that needs to be
covered is: -7, -sinfo/p,,.... . Now QuickScan is used to select B molecules to cover the
required information for the first time so 7, and p, can be updated. Then again the conditions
Prioore * P < Frgoore " Fp and oy, - pp <sinfo are checked. This loop continues until these

conditions are met.

The main advantage of the second method is speed, and that QuickScan gives one result. Since
only one result is accepted, no search has to be performed for the best one. The main
disadvantage of this method is that the difference in the costs of the molecules is not considered.
However because of the way the B molecules are created, they are all of similar sizes and costs,
so, this poses no real problem. Secondly, most of these molecules produce essential information,
so if this information is needed they should be added no matter the cost. Finally, clustering still
has to be performed, the cost (especially for the B molecules) is not really accurate at this point.
These reasons make the QuickScan approach a good and faster alternative to method 1.

Once the Moore, as well as the B sub-sets are known, the complete process can also calculate the
total solution cost, which is the sum of the costs of all the clusters in the Moore subset and the
clusters in the B subset. How the cost of a single cluster is calculated is explained in Chapter 4.6
because the same cost measure is also used to determine the quality of the second beam of the
clustering process.

This process is easily extended, to allow for the molecules sub-set selections for the Mealy
machines also. The main difference is that the Moore subset selection algorithm described above
(which creates a subset of Moore type A molecules and B molecules) should be preceded by an
algorithm which selects molecules from the set of A and split A molecules that produce the
output information to create a valid decomposition. This algorithm involves two main questions
to be solved. The first question is, what information should actually be covered and the second is
how then to cover this information.

80

4. Main algorithms and their implementation

A starting peint for the first question is that at least the computation of all output information has
to be covered: f; =ind(Y), where f3; is the global output information and Y is the full output

support of the machine.

Of coarse, some of this information can be produced from the state information only, without

. . . ind
input information (e.g. Moore outputs). So 3, = " (%

. This constraint is
SxI—-»0)}

{1, ind (Y
actually much simpler than that for the state information because there is no recursion involved.
Once the set system [3; is determined, only a subset of A molecules has to be found that satisfies

this constraint.

First, we find if there where any A molecules that could not be split further (because they produce
some output information that requires all the input and state information also required for
computation of the entire output). This (elementary) portion of output information that makes the
molecule A unsuitable for splitting is always essential (because it is produced nowhere else). So
these un-split molecules can be added to the flagged set of every solution without further analysis.
The remaining information may be reduced by all output information that is produced by these
molecules because this information is computed by the already selected molecules.

Secondly, if not all output information in £ is covered yet, we find which of the remaining to be

covered output information is essential (produced only by one split molecule A). These molecules
also have to be present in all solutions. However, at this time they are added to the non-flagged
set, because they may require further clustering.

Finally, if some output information is still not covered, we can use a method similar to the
selection of B and Moore molecules to cover the remaining output information. E.g. add all
remaining split and full A molecules to the initial set, and remove them one at a time al long as it
holds that the molecules selected so far produce at least f3;. This is for the first time in this

algorithm that multiple solutions could be required, because the already selected essential
molecules are completed by the subsets of remaining molecules with the lowest cost.

4.3 The Clustering Phase

4.3.1 Aim of clustering

The aim of the clustering process is clear in the context of the work of the whole decomposition
process an din the context of the FSM information flow analysis part. All major aspects of an
adequate information structuring from the viewpoint of the state information production and
consumption and output information production are taken into account during the molecule
creation phase, molecule improvement and selection of the most promising sub-sets except that
the portions of the state information in some of the molecules may be too small, and in
consequence too many, too small partial machines would result from it. Therefore, in the
clustering phase the main aim is to cluster together some relative molecules, especially such
that at least one of them contains a too small portion of state information, or if two molecules
are very similar to each other.

The relation of molecules is represented by their affinity that is defined through a system of
affinity measures described in Section 4 of this clustering method description.

81

4. . Main algorithms and their implementation

4.3.2 Input data

The input data to the clustering algorithm is the output acquired from the analysis part. One
particular valid decomposition generated by the analysis algorithms is called a solution. A
solution is a valid prototype decomposition, meaning that enough state and output information is
produced. A solution is basically a set of clusters (or molecules) that are divided in two different
sub-sets, the flagged- and the non-flagged set. The flagged set contains the molecules of which
is already clear during the analysis phase that no changes should be made to them and that each of
them should be present in the final decomposition as a separate partial machine. Therefore, the
clustering process will not consider the molecules in this set for clustering. The non-flagged set
however contains the molecules that may be still too small to result in a good partial machine or
have a very high affinity and should be considered for further clustering. Thus, so the clustering
algorithm will operate only on this non-flagged set of molecules.

Sofution) Solutions
Non-Flagged SolutionSet
Clusters

Flagged
ClusterSet

Non-Flagged
ClusterSet

Figure 4.8: Overview of Solution. Figure 4.9: Overview of Solution Set.

However, a particular solution represents only one option that leads to one or more final
decomposition(s). During the analysis phase, it may not be the case that one option is found
which is clearly superior to all other options. Often several most promising solutions are of
comparable quality and this quality is estimated using a heuristic measure that only has a strong
positive correlation with the actual circuit quality. To cope with this uncertainty, the analysis
phase will in general construct more than one promising solution. These solutions are stored in a
solution set as depictured in Figure 4.9.

82

4. Main algorithms and their implementation

4.3.3 The main Clustering Algorithm

Do Beam 1

Figure 4.10: The main clustering algorithm flowchart.

83

T

!

Do Beam 2|

—

4. Main algorithms and their implementation

The clustering algorithm is based on the double beam search scheme [8]. This is visible in the
flowchart by the “Do Beam 1” and “Do Beam 2” blocks. These two blocks are described in
more detail in chapters 4.5 and 4.6 respectively. In this chapter the purpose of these two beam
processes is described and also the stop condition for the clustering process is explained (that
is clearly visible from the main flowchart). To further illustrate the main algorithm Figure 4
gives an overview of a possible clustering.

Level = 0

Level=m

lLevel=M

Figure 4.11: Example overview of a clustering p;ocess.

From the analysis phase, one or more solutions are passed on to the clustering phase in the
solution set. All these initial solutions have first index zero, which is the clustering level. The
second index is an identifier for a particular solution at a particular level. This identifier has a
value between 0 and N. It should be noted that N may have a different value at each particular
level.

From the flowchart in Figure 4.10, it can be seen that the level of the clustering algorithm is set to
0 (this clustering level should not be confused with the level of a particular solution). Also, the
new_sols parameter, that indicated if new solutions where created is set to true to enter the main
loop. When this loop is entered the new_sols parameter is set back to false.

Then the algorithm iterates over all solutions in the solution set. Because the first beam operates
only on the solutions at the current level, the “Do Beam 1” routine is called only if the level of the
selected solution is equal to level of the clustering algorithm. So the first beam operates on a
single solution which is at this point the parent solution. From this parent solution, 0, 1 or more

84

4. Main algorithms and their implementation

child solutions can be constructed. This is done by merging two clusters in the non-flagged set of
this solution (the flagged set is not touched). If there is no cluster or just a single cluster in the
flagged set, no child solutions can be generated. However if there are two or more clusters, the
remaining all pairs of clusters are considered based on their affinity. The higher this affinity the
more likely that merging of the two corresponding clusters will lead to a better solution. The best
pairs are actually merged, and for each merged pair a new solution is generated. The level of
these newly generated solutions will be one higher than the clustering level of it’s parent.

If a parent solution generates one or more new solutions, the new_sols parameter is set to true. If
not, nothing is done. So if one or more parent solutions generate new solutions, the main loop will
be executed again after beam 2 is done and the level is increased.

In contrast to the first beam, the second beam operates on a solution set (while the first beam
operates on a single solution). Secondly, the second beam operates on all the solutions in the
solutions set independent of their level. And finally, the second beam only rejects previously
generated solutions (while the first beam only generates new ones). In this beam all the newly
generated solutions (from all parents at the previous level) are compared to each other and to the
solutions created earlier on in the clustering process. This comparison is done according to the
solution cost. So the second beam selects the globally best solutions (of the entire solution space).

The stop condition has already been partially explained. But it will be explained here a little
further. The obvious stop condition implied by the flowchart is that the loop is ended when the
non-flagged sets of all solutions only contain one cluster (or no cluster, if the initial solution had
no non-flagged clusters). This is of course a hard stop condition because at this point it is
impossible to cluster any further. Note that for each particular solution, depending on the number
of clusters in the non-flagged set when the clustering is started, the point where only one cluster
remains may come at a different level.

There is also a second more subtle stop condition. It relates to the cases when there are new
solutions created by the first beam, but they all are rejected by the second beam, because their
quality is substantially lower (costs are higher) than the previously generated solutions. This
creates a very natural stop condition. Also, by tweaking the cost function such that desired
features of final solutions get a low cost and undesirable features get a high cost, the properties of
the final solutions can be controlled.

The solutions that are still in the solution set when the stop condition is met, are considered to be
final solutions of the clustering process and they constitute the input to the last phase of the
method which is the actual creation of the partial machines and their interconnections for each of
the solutions.

85

4. . Main algorithms and their implementation

4.3.4 Beam 1 of the Clustering process

*
.. Create sorted arfay of remaining.
s Affinlities

ers with Affinity <= Pth

Figure 4.12: Flowchart of The Beam1 process of the Main Clustering Algorithm.

86

4. Main algorithms and their implementation

Alternatives

Copy alt flagged clusters |.
to new Solution

. Copy all nonflagged
clusters-exept csa and
csb to new solution

Create merged Cluster
fromcsa & csh

| Figure 4.13: Flowchart of Construct Affinity Table. | Figure 4.14: Flowchart of Cluster Chosen Alternatives.

87

4. Main algorithms and their implementation

The first step of the first beam is to check if the non-flagged set contains more than one cluster. If
this is not the case no mergers are possible for this solution and the beam is stopped.

If there is more than one solution in the non-flagged set, an affinity table is created, in which the
affinity is stored for each pair of clusters in the non-flagged set. Note that affinity(a, b) =
affinity(b, a). How the affinity for each pair of clusters is calculated is described below.

For each two molecules, it is possible to define and calculate an affinity measure related to each
characteristic parameter of the two molecules, using the following equations:

Input Support Affinity Measure

au(ul’u2)_

_|u1|+|u2|—|u1*u2|

min (Iul bl u, |)

Output Support Affinity Measure

a,(v,,v,) =

[vil+ v, [=v, *v, |

min (Jvl L] v, I)

Input Information Affinity Measure
@ a (a 12 a 2)

S (a)) N IS ()]
min (IS (a,)|,|IS ()

Output Information Affinity Measure

aﬂ(ﬂl’ﬂz)

S (B,) N IS (B,)

min (IS (8,)}, IS (8,))|)

b

an(ﬂl’ﬂz):

IS (7)) N IS (7)]
min (IS (=)}, [IS (,)])

IS (p) N IS (p,)
min (IS (p,)},)S (p,)])

2

Pi Affinity Measure
Rho Affinity Measure @, (p 15 P2)
Cross-tau Affinity Measure
Where: n—k
Wesos) = 1 o, (7, p,

n is the total number of ciusters,
k is the number of clusters that:

Z w{siasj}

{sis;Yelnf (z)NInf (p3)

Z W{Sissj}

(5.5, Yelnf (7))

) =

{Siasj} € Inf (p,)

The affinity measures as defined above have to be combined into one general affinity measure for
each two arbitrary clusters. Because a normalized affinity measure is necessary, all partial
affinities and global affinity must be in the range <0, 1>. If the global affinity is equal to 0, it
means that clusters are not using or producing any common information (neither input support,
nor produced and imported state information are the same). The opposite case, if affinity is equal
1, means that clusters are identical. Results closer to 1 are favorable, and indicate that the
corresponding molecules should be clustered. The global affinity measure is a combination of the
weighted affinity measures corresponding to particular molecule attributes, i.e.:

88

4. Main algorithms and their implementation

input support affinity

output support affinity

input information affinity

output information affinity
produced state information affinity
exported state information affinity
e imported state information affinity

The global affinity measure is expressed by the following equation:

Affinity (cluster a, cluster b) = (Wis*Affinity is(a,b) + Wos*Affinity os(a,b) +
Walfa*Affinity alpha(a,b) + Wheta*Affinity beta(a,b) +
Wpi*Affinity pi(a,b) + Wrho*Affinity_rho(a,b) +
Wtau*Affinity tau(a,b)) / NofAffinities

Where:

Wx — Weight of each particular affinity x

NofAffinities — number of partial affinities

Affinity x - a normalized partial affinity related to attribute x

After the affinity table is constructed all affinities are calculated, so there is a quality measure for
all clustering alternatives (as shown in the left picture of figure 15 for a non-flagged set
containing 5 clusters).

All alternatives Remaining alternatives Quality | Remaining alternatives Quantity

Figure 4.15: Selection of clustering alternatives.

Because it may be too time consuming to consider all possible alternatives for all solutions,
only the most promising (with the highest quality / affinity) alternatives are explored. First,
the best clustering altermative is found. Then depending on Q, the quality factor, Qth, the
quality threshold is determined. Q should be between 1 (accept only the best merger) and 0
(accept all mergers), and can be set as a constant or dynamically (e.g. as a function of the
clustering level or the number of possible mergers from a particular parent) to maximize the
probability that the search is steered towards the direction in the search space where these
good solutions are. After Qth is determined, all merger alternatives with an affinity below
Qth are rejected. This could lead to the situation in the middle picture of Figure 15.

If the number of remaining clustering alternatives (in case of our example 6) is lower than
parameter P, the beam is finished. However if, to reduce computation time, we set P lower

89

. Main algorithms and their implementation

than the number of the remaining clustering alternatives, further selection is needed. This
parameter P is an integer and can be (similar to Q) set as a constant of dynamically for a
smarter search. If P is set to 1 only the best alternative is considered. If P = n, at most the n
best alternatives are considered (if the beam is not limited by quality).

To realize this, the remaining cluster alternatives are sorted (with a quick search algorithm)
from low to high. If we set the new threshold of the affinity based on the maximal number of
allowable mergers (Pth) at the value of the sorted table with index clustering alternatives — P,
we know below which value we should reject the clustering alternative to end up with at most
P alternatives. An example of this can be seen in the right picture of Figure 8, for the case
when we would accept at most 4 alternatives.

Once the candidates for clustering are selected, the actual child solutions are created. This is
illustrated by the flowchart in Figure 7. For each particular accepted merger a solution is
created. As explained in Chapter 4.3 a solution consists of a flagged and a non-flagged cluster
set, a clustering level and a cost. The clustering level is one higher than the clustering level of
the parent. The flagged set of the child solution can directly be copied to the flagged set of the
child. The non-flagged set can also be copied except for the two clusters that are merged.
Than a new cluster is made that produces (at least) the same output and state information as
the two separate clusters before they where merged. Once the solution is complete the new
cost can be calculated. How this is done exactly is described in Chapter 4.6, because this cost
is used as the quality measure for the second beam.

90

4. Main algorithms and their implementation

4.3.5 Beam 2 of the Clustering process

¢+ Find Solution With minimal cost : Create sorted array

of costs of remaining |-

Fiéure 4.16: Flowchart of the second beam process of the main clustering algorithm.

91

Main algorithms and their implementation

As described in Chapter 4.4, the second beam operates on all solutions (independent of their
clustering level) and it doesn’t create new solutions (it only removes solutions that are not
good enough compared to solutions created from the solutions at previous levels and
solutions created from different parents). The exact implementation is shown in the flowchart
in Figure 9.

The second beam operates on a solution set (as opposed to beam 1 which operates on a
solution). So for all solutions created so far the cost is asked (the cost is only calculated once
during the creation of the solution). This cost function is calculated as follows:

cost = {(log2 (]ﬁ))_‘ + [log2 ("DD-I} -cfunc {(log2 (]a])-l + [logz ([7[[)] , 4}

where: M is the number of blocks on the ¥ set system, so [log2 (‘ }/])-I is the number of

bits needed to encode the information from ¥ on. Here ¥ can be & (input information),
(output information), = (consumed state information) or p (produced state information).

Thus, [log2 (‘a‘ﬂ -F[log2 (,7[‘)-‘ and [log2 ((ﬂ‘ﬂ -F{]og2 (’pl)-' represents the number of
input and output bits to the combinational logic of a particular partial machine, respectively.

The cost of a combinational function with n input bits and 1 output bit is estimated by:
lifn<k
cfunc (n, k) =

1n*ifn>k
Here k is the number of input bits to one lookup table (usually 4). So, if the number of input
bits is lower or equal to k, only one lookup table is used. If a function does not fit in a single

lookup table the number of lookup tables is ¢ -%nz because of the triangular shape of the

mapping of larger functions on smaller lookup tables where ¢~ . For a combinational

function with more outputs the cost is simply multiplied by the number of output bits. It is
clear that an assumption is made here that the outputs do not share substantial common logic.
This assumption is however quite will satisfied, especially in the state logic of the minimally
encoded FSMs.

This cost function is overestimating the cost for larger molecules, however this is no problem,
because good decompositions consists of smaller molecules. E.g. if it is desired for the
clustering process to produce even smaller (but probably more) partial machines, we could

change cfunc to be %n3 ifn > k. This way, large partial machines become even more
expensive.

First, the best single solution is determined. The best solution is the solution with the lowest
cost. Because the solution with the lowest cost at a particular level does not have to lead to
the best (or a very good) final solution, more solutions have to be considered. Since a low
cost at a particular clustering level is an indication that it could lead to a good final solution, a
limited number of the best solutions are accounted for. How many solutions exactly are
considered can be controlled by the parameters P and Q (of the second beam). These can be
set to a constant value but they could also be calculated dynamically (e.g. as a function of the
clustering) to make better use of the computation resources because in this way the direction
of the search can be steered.

92

Main algorithms and their implementation

The main selection criterion for accepting a particular solution is its quality. As stated earlier,
in the second beam, the quality is based on the total solution cost. All solutions with a cost
below the Quality threshold (Qth) are accepted. This Quality threshold is determined by the Q
parameter and the Quality of the best solution. Q should be larger than 1, so this factor
determines how much worse a solution may be and still be accepted by the algorithm.

If the most promising solutions exist of a comparable quality, it could to acceptance of too
many solutions are accepted if only the quality parameter is used. Therefore another
parameter P is used, which gives the maximal number of the accepted solutions by this beam.
If the number of the accepted solutions is lower than P, the beam is finished. If however the
number of the accepted solutions is larger than P, some of the worst of the accepted solutions
should still be rejected such that P (or less) solutions remain.

To do this, an array is made of the costs of the remaining solutions. These are sorted (by a
QuickSort algorithm) from low to high. So the element at index P-1 gives the new threshold
Pth (because the first element is at index 0). Again all solutions above the new threshold (Pth)
are rejected. This guaranties that no more than P solutions are accepted.

93

4.

Main algorithms and their implementation

94

5. Experimental research

5. Experimental research

Although the whole method is based on the underlying analytic theories of general
decomposition, information relationships and measures and set systems, many of the algorithms
developed involve some heuristics. This is due to the fact that the problems to be solved here are
to large and to complex by nature to be solved purely analytically. Also, no search other than
exhaustive guarantees strictly optimal results. This is not only due to the complex combinatorial
nature of this problem, but also because it is very hard to describe mathematically what “optimal”
actually means. Therefore, the only way to proof the actual effectiveness of the SeMaDe tool with
its underlying methods and algorithms, and if application of the theory of general decomposition
and information relationships is successful is by experimental research.

For the testing of the first two parts of the SeMaDe tool (FSM information flow analysis and
clustering) many benchmarks were used. For this purpose we had 3 sources of benchmarks. The
first was the MCNC set of industrial benchmarks. This set consists of a set of about 40, most of
them, relatively small benchmarks. Secondly, we used a set of approximately 150 benchmarks
generated with the benchmark generator. This set covers a major part of all different classes of
sequential machines (Moore and Mealy machines; state-, input-, output-dominated machines; and
of different sizes: small, medium and large machines). Finally we used a set of about 50 Moore
machines also generated by the BenGen tool. This set was created because not all parts of the
implementation (molecule sub-set selection) have been extended to Mealy machines yet.
However in Chapter 4, a reasonable detailed description is given on how this extension for Mealy
machines could be made.

It is not yet possible to perform a more extensive experimental research on the entire method,
because the final part of the method still has to be implemented. Once this is done, automated
testing and experimentation can be performed and its results can be compared to those of other
commercial and academic tools. For now, we can already say that results are very promising by
analyzing the log-files from the tool. However analyzing these log files involves a lot of tedious
work which has to be done by hand. Secondly, it does not allow for an easy comparison to other
tools.

In this chapter we will explain for one very simple machine the steps performed by the algorithm

and we will discuss the resulting decompositions generated by the tool. The entire log-file is not
presented here, since it is too long even for these small machines.

95

5. Experimental research

5.1 Example

As mentioned in Chapter 4, the FSM specification is read from a KISS (.ex]) file. Below, an
example of such a KISS file is shown:

i4
05
pl9
s 8

00-- stl st2
10-- stl stl
11-- stl st8
01-- stl stl
-0 st2 st3

--1 st2 st2
-0-- st3 st2
-1-- st3 st4
-0-1 st4 st3
-1-- st4 st5

-0-0 st4 st4
1--0 st st4
--1 st5 st6

0--0 st5 st5
— st6 st7
- st7 st8
-1-0 st8 st7
-0-- st8 stl

-1-1 st8 st8

'00000

00000
00000
00000
00100
00100
01001
01001
01101
01101
01101
11011
11011
11011
11111
10001
10101
10101
10101

In the beginning of this file, the number of inputs, outputs, product terms (or transitions) and
states are given (preceded by the ., .0, .p and .s tokens, respectively). Subsequently, at each new
line a transition is specified using the following four columns: input cube and present state
followed by its corresponding next state and output cube. The . token marks the end of the file.

Once the KISS file is read by SeMaDe, a dictionary is created that assigns a symbol (as an
integer) to each input cube, state and output cube :

Input Dictionary {

0) 00--
(1) 10—
2) 11—
(3) 01—
4) -0
(5) -1
6) -0--
(7 -l-
8) -0-1
) -0-0
(10) 1--0
(11) 0--0
(12) -
(13) -1-0
(14) -1-1

State Dictionary {
(0) stl
(1) st2
(2) st8
(3) st3
4) st4
(5) st5
(6) st6
(7) st7

QOutput Dictionary {
(0) 00000
(1) 00100
(2) 01001
(3) 01101
(4) 11011
(5) 11111
(6) 10001
(7) 10101

96

5. Experimental research

From the KISS specification it can be seen that only one output combination occurs for each
particular current state. This indicates that the machine is a Moore machine. Further, after a closer
analysis of the output dictionary, it can be seen that outputs 3 and 4 (in the 4™ and 5® column) can
be constructed as simple functions (AND, OR) from the first three outputs using output decoders.

First, the SeMaDe tool starts by creating a Mealy A molecule for each particular output. Since the
machine considered is a Moore Machine, none of these Mealy A molecules requires input
information.

Therefore, the SeMaDe tool recognizes that this is a Moore machine and also constructs five
Moore A molecules corresponding to each of the five outputs. The cost for these molecules are
4.5 for output 0, 1.0 for output 1, 4.5 for output 2, 1.0 for output 3 and finally 3.125 for output 4.

Subsequently, the maximal SP set system is computed. Because all the constructed A molecules
together consume all the state information, also all the state information (0-set system) has to be
produced by the B molecules. This information is covered by seven B molecules.

Then the molecule sub-set selection algorithms starts. Using Q factors of 1.25 and 1.23 for the
first and second beam, respectively, the sub-set selection algorithm finds the following three
solutions:

parentset(after beam): MooreSelSet {
MooreSel Mooresupport: { 0, 1,2} Bsupport: { } cost: 10,
MooreSel Mooresupport: { 1,2, 3,4 } Bsupport: { } cost: 9.625,
MooreSel Mooresupport: { 0, 1,2, 3 } Bsupport: { } cost: 11

}

Since none of the constructed solutions require any B molecules to make the decomposition valid,
clustering is trivial (no actual clustering will be performed). Clustering only rejects the third
solution, resulting in:

after beam 2: SolutionSet {
Solution (level: 0 and cost: 9.625
Flagged ClusterSet: ClusterSet {
Cluster (5) cost: 3.125 "M4" { }
Cluster (6) cost: 1 "M3" { }
Cluster (7) cost: 4.5 "M2" { }
Cluster (8) cost: 1 "MI1" { }

}

Non Flagged ClusterSet: ClusterSet {

}
b

Solution (level: 0 and cost: 10{
Flagged ClusterSet: ClusterSet {
Cluster (7) cost: 4.5 "M2" { }
Cluster (8) cost: 1 "M1" { }
Cluster (9) cost: 4.5 "M0" { }
}

Non Flagged ClusterSet: ClusterSet {

97

5. Experimental research

The second solution actually is the expected solution, where three partial machines are created for
outputs 0,1 and 2 and where outputs 3 and 4 are constructed by (at this point still virtual output
decoders). Also these three molecules appear to have SP property for the state information, which
make this decomposition valid (this cannot be easily analyzed by a human designer).

But also a second cheaper solution that is not so obvious for a human designer was constructed by
SeMaDe. In this solution also Moore molecules are constructed for outputs 1 and 2, but instead of
a Moore molecule for output 0, two Moore molecules for output 4 and 5 are constructed. As it
appears, these two molecules together have a lower cost than the single molecule for output 0.
This is mainly due to a large amount of state information consumed by the molecule for output 0.
Also, output 0 can be computed (using a virtual output decoder) from the outputs 1 to 4. So this
second solution actually is (but only just) superior to the expected one. However, it is still useful
to consider both solutions during the rest of the method (or even until after combinational logic
synthesis), because their estimated quality is almost identical, but one of them may e.g. have a
difficult to implement sub-function.

98

6. Conclusion

6. Conclusion

The subject of the master project reported here was the FSM information flow analysis for
general decomposition that constitutes the first part of the larger FSM architecture synthesis
method briefly described in this report.

The main aim of this master project was to develop several new or modified better algorithms for
the FSM information flow structure analysis part of the SeMaDe tool and their actual software
implementation in C++. This also accounted for the final adaptation of the software developed for
the second (clustering) part of the method to seamlessly collaborate with the first part. This aim is
achieved. The algorithms have been developed or modified and implemented. The results are
documented mainly in Chapter 4 of this report.

In particular, the modified efficient algorithms for the molecule computation have been
developed and implemented. These algorithms effectively exploit the algebraic lattice structure of
the computation problems to efficiently perform the computations. The modified and new
analysis algorithms perform computation of the most difficult to compute information much more
efficient then the original algorithms. They also detect some relevant special cases (i.e. Moore

type outputs).

Moreover, in a few places of the FSM information flow analysis algorithm, a double beam search
is implemented. In this way many good quality solutions can efficiently be examined and further
developed in parallel by the algorithm instead of just a single one. This greatly increases the
quality of the final results and the robustness of the method.

Also a new efficient algorithm was developed (based on clique splitting) for very fast conversion
between an information set and a set system. This gives the method the ability to not only take the
actual information into account, but also its structure, which is of major importance, because this
is needed, for instance, to determine the actual number of bits to transport the information from
the partial machines to the terminals (inputs and outputs), with or without input encoders and
output decoders and also between the partial machines.

At the moment of finishing of this master project, the first two modified phases of the method,
FSM information flow analysis and clustering, were completely described, implemented in a
prototype SeMaDe tool and documented. This tool produces a log file giving information on how
the tool handles the particular decomposition steps for a certain specification of a sequential
machine. We ran several hundreds of benchmarks to test the tool, and analyzed the log files of
several benchmarks to check the quality of the produced decompositions. The extensive testing
confirms that after the modifications performed, the first two parts of the SeMaDe tool, work
correctly and produce valid decomposition structures (at least for all the hundreds of test cases).
For all the more precisely analyzed cases, the tool produced very good results of a quality that
was expected (for some of these machines a very good decomposition was known), and
sometimes even some surprising / unexpected decompositions where found which were of
comparable or even better quality that the known very good decomposition.

However, at this stage it is only possible to say that the method and its current implementation
are very promising and the first two software parts seem to work as required. The final
benchmarking cannot yet be performed, because the final part of the whole method is not yet
implemented as required. Once the final phase, construction of a network of partial machines, is
fully implemented, besides a log file, the tool will produce the actual FSM network specification

99

6. Conclusion

in the formats understandable to the sequential and combinational logic synthesis tools. Once this
is achieved, the method can be compared to commercial and academic tools on many
benchmarks. The benchmarking and analysis can be fully automated, which will make a much
more extensive benchmarking and analysis possible. This will finally confirm if the method is
successful.

Also there are still some further improvements possible to the algorithms and the tool. The
analysis part could be complemented with some additional improvement of the molecules. Also
this part is not standard in any way, so completely new insights on how to do this are still
possible.

The clustering phase is a more standard process. It is implemented in a very general way with a
very natural stop condition. Here however, a further improvement can also be made, e.g. by
defining possibly better types of affinities, cost function, weights and beam parameters. Also,
these different parameters can be changed at run-time (made dynamic), or changed to get
particular results (e.g. optimize for speed, area, power consumption), or to control the size of the
search, the number and size of the partial machines, etc. The adjustment of these functions and
parameters can also be done by learning algorithms (like in neural networks or fuzzy systems),
which can use the extensive set of benchmarks as learning data. All these possible further works
were however not in the scope of this master project.

100

References

References

[1]

(2]

(3]

[4]

(51

(6]

[7]

(8]

[9]

A. Chojnacki: Effective and Efficient Circuit Synthesis for LUT FPGAs Based on
Functional Decomposition and Information Relationships Measures, Ph.D. Dissertation,
ISBN 90-386-1673-2, Faculty of Electrical Engineering, Eindhoven University of
Technology, The Netherlands, 2004, pp. 1-286.

A. Chojnacki, L. Jozwiak: An Effective and Efficient Method for Functional
Decomposition of Boolean Functions Based on Information Relationships Measures,
Design and Diagnostics of Electronic Circuits and Systems DDECS’2000, Smolenice,
Slovakia, April 5-7, 2000.

J. Hartmanis: Symbolic Analysis of a Decomposition of Information Processing,
Information and Control, vol. 3, pp. 154-178, June 1960.

J. Hartmanis: Loop-free Structure of Sequential Machines, Information and Control, vol.5 ,
pp. 25-43, 1962,

J. Hartmanis, R.E. Stearns: Algebraic Structure Theory of Sequential Machines, Englewood
Cliffs, N.J.: Prentice-Hall, 1966.

L. Jozwiak: General Decomposition and Its Use in Digital Circuit Synthesis, VLSI Design:
An International Journal of Custom Chip Design Simulation and Testing, vol.3, No 3-4,
1995.

L. Jézwiak: Information Relationships and Measures - An Analysis Aparatus for Efficient
Information System Synthesis, Proceedings of the 23 EUROMICRO Conference
(EUROMICRO’97), Budapest, Hungary, September 1-4, 1997, pp. 13-23., IEEE Computer
Society Press.

L. J6zwiak: Advanced Al Search Techniques in Modern Digital Circuit Synthesis, Artificial
Intelligence Review, ISSN 0269-2821, Kluwer Academic Publishers, Dordrecht, The
Netherlands, Vol. 20, No 3-4, December 2003, pp. 269-318.

L. Jozwiak, A. Chojnacki: Effective and Efficient FPGA Synthesis through Functional
Decomposition Based on Information Relationship Measures, DSD’2001 - Euromicro
Symposium on Digital System Design, September 4-6, 2001, Warsaw, Poland, ISBN 0-
7695-1239-9/01, IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 30 - 37.

[10] L. Jézwiak, A. Chojnacki: Effective and Efficient FPGA Synthesis through General

Functional Decomposition, Journal of Systems Architecture, ISSN 1383-7621, Elsevier
Science, Amsterdam, The Netherlands, Vol. 49, No 4-6, September 2003, pp. 247-265.

[11] L. Jézwiak, D. Gawlowski and A. Slusarczyk: An Effective Solution of Benchmarking

Problem - FSM Benchmark Generator and Its Application to Analysis of State Assignment
Methods, DSD’2004 - Euromicro Symposium on Digital System Design, August 31st -
September 3rd , 2004, Rennes, France, ISBN 0-7695-2003-0, IEEE Computer Society
Press, Los Alamitos, CA, USA, pp. 160 - 167.

101

References

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

L. Jozwiak, D. Gawlowski, A. Slusarczyk: Multi-objective Optimal FSM State Assignment,
DSD’2006 — 9™ Euromicro Conference on Digital System Design, August 30 - September
1, 2006, Cavtat near Dubrovnik, Croatia, ISBN 0-7695-2443-8, IEEE Computer Society
Press, Los Alamitos, CA, USA, pp. 385-393.

L. J6zwiak, D. Gawlowski, A. Slusarczyk: Multi-objective Optimal Controller Synthesis for
Heterogeneous Embedded Systems, IC-SAMOS’2006 — International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation, Samos, Greece,
July 17-20, 2006, ISBN 1-4244-0155-0, IEEE Press, Piscataway, NJ, USA, pp. 177-184.

L. Jozwiak, D. Gawlowski, A. Slusarczyk: Benchmarking in Electronic Design Automation,
MIXDES’2006 — International Conference on Mixed Design of Integrated Circuits and
Systems, Gdynia, Poland, June 22-24, 2006, ISBN 83-922632-1-9, DMCS, Lodz, Poland.
pp. 245-250.

L. Jézwiak, P.A. Konieczny: Heuristic Algorithms for Minimal Input Support Problems,
International Workshop on Design Methodologies for Microelectronics, Smolenice Castle,
Slovakia, 11-13 Sept., 1995.

L. Jozwiak, A. Slusarczyk: Application of Information Relationships and Measures to
Decomposition and Encoding of Incompletely Specified Sequential Machines, Third
Oregon Symposium of Logic, Design and Leamning, Oregon, Portland, USA, May 22,
2000.

L. Jézwiak, A. Slusarczyk: General Decomposition of Incompletely Specified Sequential
Machines with Multi-State Behavior Realisation, Journal of Systems Architecture, ISSN
1383-7621, Elsevier Science, Amsterdam, The Netherlands, Vol. 50, December 2003, pp.
445-492.

L. Jézwiak, A. Slusarczyk, M. Perkowski: Term Trees in Application to an Effective and
Efficient ATPG for AND-EXOR and AND-OR Circuits, VLSI Design: An International
Journal of Custom Chip Design Simulation and Testing, vol. 14, No 1, April 2002,

P.A. Konieczny: General Decomposition of Sequential Machines — Algorithms and
Programs Eindhovense School voor Technologisch Ontwerpen, IVO. — II1. ISBN 90-5282-
469-X

P.A. Konieczny and L. Jozwiak: Minimal Input Support Problem and Algorithms to Solve
It, Eindhoven University of Technology Research Reports, EUT Report 95-E-289,
Eindhoven University of Technology, The Netherlands, April 1995.

M. Rawski, L. Jozwiak, T. Luba: Functional Decomposition with an Efficient Input Support
Selection for Sub-functions Based on Information Relationship Measures, Journal of
Systems Architecture, ISSN 1383-7621/01165-6074, Elsevier Science, Amsterdam, The
Netherlands, 2001, Vol 47/2, pp 137-155.

A. Slusarczyk: Decomposition and Encoding of Finite State Machines for FPGA

Implementation, Ph.D. Dissertation, ISBN 90-386-1663-5, Faculty of Electrical
Engineering, Eindhoven University of Technology, The Netherlands, 2004, pp. 1-187.

102

References

[23] F.A.M. Volf: A Bottom-up Approach to Multiple-level Logic Synthesis for Look-up Table
FPGAs, Ph.D. Dissertation, Eindhoven University of Technology, Eindhoven, The
Netherlands, 1997 (ISBN 90-386-0380-0).

103

	Titlepage
	Abstract
	Acknowledgements
	Contents
	List of figures
	1. Introduction
	2. Theoretical background
	3. Basic data structures and operations
	4. Main algorithms and their implementation
	5. Experimental research
	6. Conclusion
	References

