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SUMMARY 

Subject of this graduation report is fuzzy logic. It's aim is to provide the reader such 
an insight in this matter, that he/she will be able to fathom the working of a fuzzy 
controller and eventualy to apply the (base-)theory. 

Contrary to her name, which leads one to think that the theorie is not clear, fuzzy set 
theory is least of all vawe. Tbis b m o r d  is at mast m e a t  for the big freedom one 
has at using the many possible definitions. Fuzzy logic can be seen as a more general 
form of the traditional binary logic. Can classical logic only be characterized as being 
'black or white' (consider for example a set, then an element either is or isn't a 
member), fuzzy logic is familiar with greyvalues (an element can also partly belong to 
a set). One of the advantages that come along with that is that owing to this we are in 
are able to decribe linguïstic notions mathematically. Consider, for example, the 
notion "long", then it will be clear that we hardly can describe this with classical sets, 
after al where should we draw the line? Is a person of 1'80 meters "long"? If so, is 
then what about a someone of 1'79 meters, is that person not 'long"? In the fuzzy set 
"long" a person of 1,SO meters could for instance belong to that set with a value of, 
let's say 0.8 and someone who is 1'79 meters with a value of 0.75. Thanks to this 
particular property we can control processes on the basis of, from classical logic, the 
familiar if ... then ... rules, in which the conditional part and the conclusion part are 
now allowed to be linguïstic notions. An example of such a rule is: if 'temperature' 
'high' then 'close valve', in which the conditional part 'temperature high' and the 
conclusion part 'close valve' consequently are characterized by fuzzy sets. All rules 
together shape the so-called rule-base of fhe controller. 
The ultimate output of the controller is obtained by extracting one crisp (= exact) 
value out of the combination of the conclusion-parts of all rules. For this operation 
several methods have been suggested. The one most frequently used computes the 
centre of gravity of the fuzzy set that comes into being by the combination of all, 
from the d e s  resulting, fuzzy sets. 

In this report will, after treatment of a few basic definitions and operations, be 
explained how the degree of membership in the fuzzy set from the conclusion part is 
determined and how fuzzy sets can be aggregated. Some methods to come to one 
crisp outputvalue will be presented, after which the theory wich we came forward with 
will be used in an application. 
That fuzzy set theory isn't soul-saving will be demonstrated in the second part of the 
report, where some disadvantages are reviewed. 

As this report is build up in a different way as usual, in that sense that here is mainly- 
spoken about a theory and simulations merely formed a very small part in this 
investigation, conclusions are hardly to be drawn from the report itself. Hence that 
merely some general advantages and disadvantages of this method of control will be 
discussed. However, recommendations can (and will) be made in behalf of an 
eventual continuation of the investigation of this promissing field of control. 

gage vi 
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Chapter 1 INTRODUCTION 

Most methods for modelling, reasoning and calculating are by nature crisp, determin- 
istic and precise. By crisp I mean dichotomous, which means yes or no instead of 
more or less. In conventional binary logic, for instance, a proposition is either true or 
not true but cannot be something in between. In the set theory an element either is 
or is not a member of the set. Precision means that the parameters of a model 
exactly depict either our eûfiception ûf the mûdelled abject or the grsperties of the 
real system. At the same time precision (usually) also means that a model is unequi- 
vocal and thereby clear. This does not correspond to the real world, which is full of 
ambiguities. For example, let us take the set of "animals". Dogs, birds and horses are 
unmistakably members of this set. It is also obvious that rocks, liquids and plants 
cannot be regarded as members of this set. However, starfish and bacteria present us 
with a problem because it is hard to make out whether or not they belong to this set. 
A similar ambiguity can be discerned with regard to the number 10 if we look at the 
set of "real numbers much greater than one", and if we examine the set of "tall 
people", in which "tall" depends on the height of the observer and the culture to 
which he belongs. Nevertheless such unclearly defined "sets" play an important role in 
human thinking and feeling (intuition). The mere fact that we have several synonym 
for one word already illustrates that the force of our thoughts and feelings far exceeds 
that of spoken language. If we compare spoken language with the language of logic, it 
appears that the latter is even more inadequate. A one-to-one translation of that 
which we have in mind into mathematical or logic language therefore seems impossi- 
ble. It must be remarked, however, that mathematical language is not rejected. Its 
usefulness is still undisputed. But in certain cases it is found wanting because of its 
dichotomous nature. 

This report will discuss how we can handle the above types of sets as well as the 
(im)possibilities involved. The concept we are dealing with is referred to as a @zzy 
set, which is a set of which the membership may have any value in the interval [0,1]. 
This is a contrast to the traditional sets, of which the elements can only have a 
membership value of one or zero (to indicate that they belong or don't belong to the 
set). As will be shown in the course of this report, the notion of a fuzzy set provides a 
convenient point of departure for the construction of a conceptual framework wich 
parallels in many respects the framework used in the case of ordinary sets but is more 
general and, potentially, may prove to have a much wider scope of applicability. 
Essentially such a framework provides a natural way of dealing with problems in wich 
the source of imprecisions is the absence of sharply defined criteria of class member- 
ship (boundaries) [Zadeh 1965, p. 3391. 

After an introduction of the concept of membership function by means of classical 
sets, Chapter 2 will give a few definitions concerning fuzzy sets and will introduce a 
few properties we have not encountered in classical sets. 

I 
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1.2 Survey of other chapters 

The report is divided into two parts. The first one is the pMcipal part of the report, 
in the latter we will dig a little deeper in the theory which was already presented in 
the first part. A short description of the report is given below. 

In this core part we will merely discuss those subjects and definitions which are 
needed to gather a good notion of the way in which fuzzy c~ntr~llers are b d d  up and 
hew they wuík. 

After an introduction of the concept of membership function on the basis of classical 
sets, Chapter 2 will give a few definitions concerning fuzzy sets. Next we shall discuss 
a few properties we have not encountered in classical sets. 

Chapter 3 deals with operations on fuzzy sets, after first having executed these 
operations on classical sets. A few distinct operations will also be mentioned. Then 
the specific properties of the three major operators will be discussed: intersection, 
union and complement. In the final section of this chapter we shall consider fuzzy 
relations and fuzzy rules. 

Chapter 4 explains how the knowledge obtained in the previous chapters can be used 
to control a process. On the basis of a simple example, this chapter will illustrate how 
fuzzy rules can help us to get from a measuring value to an output value. 

In the last chapter of the first part we shall use the devices gathered from the 
previous chapters to work towards a solution, on the basis of the phase plane, for one 
more or less classical problem (for fuzzy controllers). 

In this second part we shall focus on the limitations of the theory, described in the 
first four chapters, and some important possiblities (which are not necessary for some 
basic umderstanding of the theory). Chapter 6 will present one of the most important 
properties of fuzzy logic, the ability to reason. We shall consider two inference rules. 
After having discussed a number of disadvantages of the max and min operator, 
Chapter 7 will provide an alternative for these two operators. Next a classification of 
all possible operators will be given. A disadvantage of the most used inference 
methods will be dealt with, after which the chapter is concluded with the presentation 
of a possible solution. 

Chapter 8 will examine fuzzy ranking methods. In certain cases it is required to rank 
fuzzy sets and, because of the gradated concepts used in fuzzy logic, this does not 
appear to be a trivial matter. Based on a few criteria, an improved ranking method is 
presented. 

Finally, this second part of the report will introduce a few alternative fuzzy control 
methods. After which some (general) conclusions and recommendations shall 
conclude this report. 

l 
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Chapter 2 FUZZY SETS 

2.1 Introduction 

This chapter contains the basic definitions of fuzzy sets. In addition, we shall indicate 
which notation systems are used in literature for fuzzy sets. This report consistently 
uses the same terminology. 

Mthough the reading of this report does not require a special mathematical back- 
ground, some elementary knowledge concerning classical sets will be needed. 
Concepts such as set, subset, elements, intersection, union, Cartesian product etc. are 
supposed to be familiar. Mathematical proof is omitted from this report and anyone 
who is interested in it will be referred to literature. 

2.2 Ordinary sets 

A classical (crisp) set A is a set of elements or objects x in universe of discourse 
(domain) X A set can be finite, infinite, countable on uncountable. Any x from X 
either belongs or does not belong to A, 

Classical set A can be described in several ways. Sometimes we can enumerate or give 
an analytic description of the set, for instance, by stating the conditions under which 
an element belongs to the set (A = {x I x ,< 5)).  We can also indicate whether or not 
an element is a member of a set by means of a so-called characteristicjùnction pA, in 
which pA(x) = 1 if x is an element of A and pA(x) = O if x is not an element of A. 
This characteristic function pA can therefore have only two values and mathematically 
looks as follows: 

cr, : x + il6, I 9 

The characteristic function can be regarded as a membership function: if pA(x) = i 
then x is a member of the set, otherwise it is not. 

The membership function of empty set 0 is identical to zero, so pJx) = O, Vx e X. 

23 Fuzzy sets: a few definitions 

The boundaries of classical set A are sharply defined: each x e: X is either an element 
of A or it is not. In fuzzy sets these boundaries are blurred in the sense that the 
membership function not only has values between zero and one, but can in fact 
assume any non-negative value! In concurrence with the definition of the empty set in 
the crisp situation, the value of the membership function of a fuzzy empty set of 
elements from the universe is zero. 
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Before giving a number of examples (in various notations), the formal definition of a 
fuzzy set will be given [Zadeh 1965, p. 3391. 

Definition 2-1 

k t  X be a space of pohts (objects). An arbitrary element of X is indicated as XI. A 
fizzy set A in X is characterised by a membership function pA, Which adds a real 
number from [0,1] to each x Q X. The value pA(x) indicates the membership degree of 
x baa A the doser #*(x) is to one, the more x belongs to -k can be hdicated as a 
collection of ordened pairs: 

Elements with a membership degree of zero are normally not indicated. If A is a 
classical set, pA(x) can only have two values, O and 1, which reduces pA(x) to the 
characteristic function of the non-fuzzy set. The range of the membership function is 
a subset of the non-negative real numbers with a finite supremum'. 

In literature different notations are used for hzzy sets. They can roughly be divided 
into two groups: 

I A fuzzy set is notated as a set of pairs of which the first part indicates the 
elements and the second part the membership degree of the element in the 
set. 

Examples: 

A = "the real numbers close to i 0  

X = R ;  

A = "the real numbers greater than 

= ( x ,  F A ( x ) )  

PA ( x )  = ( 1 + ( x  - 1 0 ) y  

10 

I X E X ) ,  in wich : 

x s  10, 

(1 +( 1 +(x-lO))-Z)-l, x> 10. 

The supremum sup xeXpA(~) is the smallest number which is larger than or 
equal to pA(x) €or all x E X. So sup xcB+( i-e-) = 1 i€ (Y 9 U. 

Page 4 
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A = "comfortable shower temperature" 

A = { (39,0.1), (40,03), (41,0.5), (42,0.8), 43(1.0), (44,0.5), (45,O.l) 1 
x = [0,100]. 

Zadeh suggests 
to notate A as: 

a simpler notation. If U represents a finite set {xl, ...,&I, he proposes 

In this formula + has nothing to do with a summation but represents an operation 
which meets a/x+ b/x = max(a,b)/x. Furthermore, af o stands for a pair and not for a 
mathematical division. If U is continuous (i.e. uncountable) we write the formula as 
follows: 

A = F A ( x ) / x ,  = ('9 F A ( x )  I x E u )  
u 

In this case the integral sign stands for the combination of all separate elements and 
does not represent the usual mathematical operation. 

I1 A fuzzy set is only represented by its membership function. 

Example: 

A = 'I The real numbers close to 1 0  

A = /  l x  
i+(x-nop 

Instead of pA, fA or xA are also frequently used in literature. 

As has already been mentioned before, the value of the membership function is not 
limited to the closed interval [0,1]. If the supremum sup x,xpA(~) = 1, fuzzy set A is 
called normal. Moreover, any fuzzy set A which is not empty, that is to say a set of at 
least one x E X SO that pA(x) > O, can be normalised by dividing pA(x) by SUP,,,~~(X). 
M e r  which pA:X -* [O, i]. 

In the rest of this report we shall, for the sake of convenience, start from normalised 
membership functions, unless stated otherwise. 
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In the fuzzy set theory we also have subsets which are defined as follows: 

Definition 2-2 

If the membership value of each element ikom universal set X in fuzzy set A is 
smaller than or equal to the membership degree in hzzy set B, then A is called a 
Subset of B, which is mathematically expressed as follows: 

Definition 2-3 

The support of fuzzy set A, S(A), is the crisp set of all x E X, to which applies that 
PA(x) ' 0. 

A slightly more general and useful concept is that of the a-ZeveZ set. 

Defmition 2-4 

The (crisp) set of elements x a X with pA(x)>a is called the a-level set Ba of A 

Corzvm'ty plays an important role in the fuzzy set theory. By contrast to the classical 
set theory, the convexity conditions are defined in terms of membership function 
instead of in terms of support. 

Definition 2-5 

A fuzzy set is convex if and only if: 

vx,yEX xE[O,ll: + ( ' - '>y)  h(FA(X), FA(y)) 

In other words, a fuzzy set is convex if all its a-level sets are convex. 
Examples of both a convex and a non-convex fuzzy set are given below. 

I 
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for a<a 

for $ < A  

for x > y  

Figwe 2-1: Convexe frizzy set A. 

2.4 Membership functions 

1- 

% -  

I I I I I I 

a F3 Y 

hx 
Tigure 2-2: A non-convex fuzzy set 

A few linguistic concepts which are frequently used as examples in the fuzzy set 
theory are old, tall, heavy and red. They are respectively defined on the domains of 
age, height, weight and colour. What these four concepts have in common is that they 
are very hard to describe by means of sharply defined boundaries. 

The fuzzy set theory tries to solve the ensuing problems by means of its fuzzy sets. 
The problem of giving an exact definition of each linguistic concept is avoided by 
aiming at the most general membership functions possible. 

The above Figure (2-1) of the convex fuzzy set gives one possible shape of a mem- 
bership function. The freedom of choice as regards the course of this function is very 
great, but is more or less restricted by the meaning of the fuzzy set to be characteri- 
sed. The above does not correctly depict a concept like "old". After all, a person is old 
above a certain age and the membership function should not decrease beyond this 

However, there is one requirement which should be met by all membership functions, 
and that is that the membership value can never be negative. Moreover, normalised 
membership functions must lie in the interval [O,l]. 

point. 

Zadeh has formulated two types of membership functions which cover a large group 
of linguistic concepts. 
The first of these is the S-function, which is defined as follows: 

1-2 (=y, 
Y - a  

in which p = (at + y)/2 is the "turning point". 

I 

Figure 2-3: A S-function. 
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Please note that the shape of the S-function is selected arbitrarily. This also holds for 
Zadeh's bell-shaped  function, which is defined as: 

It is very hard to indicate why an S- or Ir-function should be used instead of a 
possible alternative. At the same time it is very difficult to demonstrate what the 
membership degree really means for an object. According to some authors this is not 
relevant, as fuzzy sets are intrinsically vague and need only give an indication or 
tendency of the corresponding linguistic concept. 
We may (want to) have a function which strongly resembles the .Ir-function or a 
function which more or less approximates the S-function, depending on the choice of 
the fault function. Xence the striving for a membership €unction which is as universal- 
ly applicable as possible. This function should also give us the opportunity to repre- 
sent trapezoidal sets (fuzzy sets with membership degree 1 in interval [&y]). 
h exmpk O f  SU& a hCtiOn is the "Qaiadnipk" htKdaiCed by BQllkXUE: 

O, for x s a ,  

O, for x>8.  I 
ïgure 2-4: A Quadruple. 

If p#y ,  this function cannot be displayed by an S-function, nor by a Ir-function. 

We shall call the non-decreasing function, the r-function because the shape of the 
Greek letter I: shows some resemblances with the shape of an increasing function. 
(The S was already reserved by Zadeh). This function is defined as follows: 

o, for xs-a 

1 ..... . . . . . . . .. .. ... . . . . . ..... .. . . .. . ... ..... . ... .r 1 

igure 2-5: A G a m a  function. 
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The r-function is used to represent concepts like old, hot, tall, high, etc. 

For the decreasing function we have the Gfunction, which owes its name to its shape 
which resembles an L. This function is deiïned as follows: 

Figure 2-6: A Gfunction. 

SS the decreasing function is the complement of the non-decreasing €unction with 
one, L(x;a,P) = 1 - r(x;a,@). It can be used to describe concepts like young, cold, low, 
etc. 

A general trapezoidally shaped 11-function is defined by II(x;a,fl,y,S) and is equal to 
r(x;cr,fl) to the left of p and to L(x;y,S) to the right of y. Between p and y the 
membership value is 1. The membership function is used for concepts like middle 
age, normal weight, etc. Slightly more limited is the bell-shaped A-function, which 
equals II(x;a,P,&y) and is used to represent "approximate" concepts. A few examples 
of these are approximately zero, about three years, around 75 kilograms. 

2.5 Hedges 

Apart from concepts like long and old referred to above, our language alss makes use 
of modifiers such as very, rather, more or less, etc. How does fuzzy logic deal with 
those? Such modifiers are called hedges. 
Zimmerman [1991, p. 1371 defines these hedges as follows: 

"A linguistic hedge is an operation which changes the meaning of a term and creates 
a new fuzzy set." 

In order to represent hedges we need the following operations: normalisation, 
concentration, dilatation, and contrast intensification. By contrast to operations like 
intersection, union and complement (Chapter 3), these operations do not have 
counterparts in classical set theory. 

A non-empty fuzzy set can, as has been stated before, be normalised in such a way 
that at least one element is fully part of the set. 
The elements can also be concentrated by reducing the membership value of all 
elements which only belong partly to the (fuzzy) set (so O and not I) in such a way 
that the elements which belong least to the set are the most reduced. 
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As a result, the membership curve will become steeper. 
Conversely, we can also diZatate the set by increasing the membership values of 
elements which hardly belong to the set. This will make the membership curve less 
steep. Finally we can intern@ the curve by increasing the contrast between the 
elements that belong for more than fifty percent to the set and those that do not. 
Mathematically the operators mentioned, which act on fuzzy set A, are defined as 
follows (for a graphic representation, see Appendix I):) 

Each of these functions is regularly used in the fuzzy set theory to represent hedges. 

A few examples are the following, by Zadeh proposed, hedges, which have meanwhile 
become generally accepted and are often used in applications: 

very A = Con(A) = A2, 

more or less A = Dil(A) = A'.', 

plus A = A'*, 
min A = Int( plus A and not (very A)); 

A few other examples are : 

very very A = A4, 
minus A = A0.75. 
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2.6 Shifted hedges method 

Now let us examine the linguistic concept old in connection with the hedge very. 
Let us assume that old represents the following fuzzy set: 

I I 
Figure 2-7: The fuzzy set 'old'. 

ï%is means that people younger than 60 are n ~ t  old, whik people older than 80 are. 
As we have just seen, very(A) = Con (A) = AZ, and we can conclude that ve@(A) = 
A2". This is called a powered hedge approach. From this it follows that in our exam- 
ple someone of 60 is not old, nor is he very old etc. In fuzzy set old someone of 70 
would have a membership value of while in fuzzy set very old he would have a 
membership value of %. 

So far everything is alright. However, all functions very"(A) will reach the value of 1 
at the same point, i.e. SO years. In other words, someone of SO is both old and very 
old etc., which is not logical. 

For this reason a different approach, referred to as the shifted hedges method, is 
frequently chosen. This approach assumes that the f0110Wing formula is a betten: 
representation of, for instance, the concept very old: 

120 

very OU = j' r(~;70,90) / x  ; 
O 

Because a person of 70 is by no means very old. 

As this name already indicates, this method involves an adaptation of the boundaries 
or hedges! 
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Chapter 3 OPERATIONS ON FUZZY SETS 

3.1 Introduction 

As the previous chapter will have made clear, the membership function is the crucial 
characteristic of the k z y  set. It will therefore not come as a surprise that operations 
ilzvolvhg farzzy sets arre dehecl by means sf their membership h n c t h s .  Io this 
chapter we shall examine the concepts proposed by Zadeh as regards the basic 
operations. We shall also pay attention to a few alternatives. 

3.2 Operations on crisp sets 

In the classical set theory various operations on sets have been defined. For instance, 
we can calculate the intersection and union of two sets. The determination of the 
complement (negation) of a set is another example of such a basic operation. 

Let aas assume that we we looking at a space which consists of the integers 1 to 6, so 
X = {1,2,3,4,5,6} and at sets A and B within this space. 

A = {1,3,5,4} and B = {2,4,5,4} 

3.2.1 Intersection 

Intersection AnB of A and B equals {5,6}. If there is an element in the intersection, it 
is part of A and B. This is nothing new. We can also determine the intersection by 
means of the characteristic functions of both sets, which look as follows: 

1 i f x  E {1,3,5,6} and 
O otherwise 

1 i f x  E (2,4,5,6} 
O otherwise 

In this case pm(x) = min (pa(x), pB(x) applies to all xiX. 

Note that we can obtain the same result for p-, if we define this function by means 
of ph(x) = pA(x).pg(x) for all xéX. 

The intersection of an arbitrarily chosen set AcX with X yields the same set and the 
intersection with the empty set leads to an empty set. 

3.22 union 

Union AuB of A and B is the set of all elements which are 
B. 

lemen s of A and \ or of 
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In terms of characteristic functions this operation can be recorded by means of the 
maximum operator. In that case ~A"B(x) = max (pA(x), pB(x)) holds good for XEX. 

Here too there are several ways to obtain the same result for pAuB, for example by 
mea of = Ilaiai ( ' 9  + b6B(x))* 

3.2.3 Complement 

The complement of classical set A forms, together with its original, the total space 
within which the set is defined. Elements of A do not belong to complement A'. In the 
case of set A, complement A' = {2,4). This property is called the 'law of excluded 
middle' [Klir J., 1988 p. 71. The complement can also be determined with the help of 
the characteristic function. The following holds: pA,(x) = 1 - pA(x) for all xeX. 

As a crisp set by definition does not have elements in common with Its complement, 
the intersection with the complement also yields and empty set. This property is 
called the 'law of contradietion'. 
A few important characteristics ~f h t e ~ ~ t i ~ n ,  U ~ Q I I  and C Q I I I ~ ~ ~ I T E ~ ~ S  are menth 
ned in Appendix 11. 

3.3 Operations on fuzzy sets 

The clarity of the operations on crisp sets just discussed is the direct result of the fact 
that they are and, or and not operations with clearly defined semantics. In the fuzzy 
set theory their interpretation is not so easy because of the gradated concepts used. 
Moreover, the operations are no longer straightforward, as there may be different 
definitions for the various operations. Which definition is used also depends on 
(among other things) the application. Still, all definitions meet certain requirements. 
One of these requirements is that any operation working on a crisp set yields the 
ordinary operation for crisp sets. 

33.1 Fuzzy operations 

The intersection of two fuzzy sets A and B is fuzzy set AnB, of which membership 
function phB is for instance defined by: 

As is required of a intersection operation, the resulting set is a subset of both A and 
B. 

The union of two fuzzy sets A and B is fuzzlr set Awl3 with membership function pAuB 
which is for instance defined by: 
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Note that A and B are subsets of fuzzy set AUB. 

The membership fundon of complement A’ of normalised sei A is defined by: 

It should be noted, however, that the alternative operators suggested for the crisp 
intersection and the crisp union can also be applied in the fuzzy situation. 
But the results in that case are quite different! 

33.2 Graphic representation of fuzzy operations 

To indicate the difference with classical sets, we shall here sketch the results of the 
three operations mentioned, applied to two fuzzy sets A and B. In this explanation we 
asaaaaac= A = { Q(x$,3,5,6) I x e El and B = { Q @;§,6,8,9) I x ER 1, h which Q 
stands for the Quadruple introduced in section 2.4. 

The fuzzy intersection and the fuzzy union of A and B and the complement of A will 
look as follows (note that an element can be member of A as well as of A’!): 

PAd3 

1 

1 2 3 4 5 6 7 8 9 

Figure 3-1: Intersection AnB of two fuzzy sets. 

, 
1 

I 
i 
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1 2 3 4 5 6 7 8 9 

Figure 3-2 Union AuB of two fuzzy sets. 

1 2 3 4 5 6 7 8 9 

I 
Figure 3-3: Complement A’ of a fuzzy set G 

33.3 Other algebraic operations on fuzzy sets 

By way of supplement to the operations U ~ Q I I ,  intersection and complement we can 
define various other operations to combine and link fuzzy sets. Below we shall discuss 
some of the most important operations. 

In terms of membership functions of A and B, the algebraic product AB of A and B 
can be defined by the relation: 

The algebraic sum A+B of A and B is defined by: 

The bounded mm A e B is defined by: 
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The bounded difference A e B is defined by: 

In case of ordinary sets the absolute difference is reduced to the relative complement 
of AnB in AUB. 

Let Al ,... 
the product space X1*X1*, ...,*& with membership function: 

be fuzzy sets in Xi ,..., &. The Cartesian product will then be a fuzzy set in 

( x )  = Min { pAj(x i )  I x = (;di,...jJ h 4 ,  *Ap..,*RJ xieXi 1 
i 

The mth power of fuzzy set A is a fuzzy set with membership function 

FA' (x )  = F A ( x )  1" Y x E x  

EXAMPLES: 

If: A = { (3,0.5), (5,1), (7,0.6) } and B = { (3,1), (5,0.6) } 

Then above definitions lead to the following results: 
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3.4 Fuzzy relations 

Binary crisp relation R on Cartesian product X,*X2 of two sets Xl and X, links up 
elements of these sets in one way or another. Formally speaking R is a subset of 
&*X2 in such a. way that (xl, x2) E It, if the relation is correct, and (xl, x2) B It, if this 
is not the case. By way of example we shall examine relation y > x with domain R for 
both x and y. In that case the following holds: 

In other words: R consists of the part of the plane above line y=x. 

This relation can, of course, also be characterised in terms of function pR(x,y). In 
which case: 

1 V (x ,y )  ER* with x< Y 
V (X~Y)ER* with x z y  ccR(x*y)  = { 0: 

So a crisp relation indicates whether or not there is some kind of relation between 
two or more sets. 

This concept can be generalised by allowing a relation to have various degrees. The 
degrees of such a relation can be represented by the membership values in a fizzy 
relation, in the same way in which an element which is member of a set is represented 
by a fuzzy set. A fuzzy relation is a fuzzy set based on the Cartesian product of crisp 
sets in which the elements may assume different membership values. 
The formal definition of a fuzzy relation is as follows [Zimmerman, H.-J., 19911 

Let X, Y be universal sets, then 

is called the fuzzy relation in X*Y. 

The problem is how to determine the membership function pR of the fuzzy relation. 
We can represent this membership function by means of a formula or by means of a 
table. By way of illustration we shall give a few examples of a crisp relation and a few 
fuzzy relations [Klir G.J., 19881. 

Let R be a (crisp) relation between three sets X = {English, French), Y = {Dollar, 
Pound, Mark, Franc) and 2 = { United States, France, Canada, Great Britain, Ger- 
many}, which links a currency and a language to a country in the following way: 

R(X,Y,Z) = { (English,Dollar,U.S.), (French,Franc,France), (English,Dollar,Canada), 
(French, Dollar, Canada), (English, Pound, G.B.)}. 

This relation can also be indicated by means ~f a three-dhnensisnd matrix: 
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U.S. Fr Can G.B. Ger U.S. Fr Can G.B Ger 

Dollar 1 O 1  O O Dollar O o 1  O O 
Pound O O 0  1 O Pound O O 0  O O 

Franc O O 0  O O Franc O 1 0  O O 

Mark O O 0  O O Mark O O 0  O O 

ENGLISH FlRENCH 

Let R be a fuzzy relation between two sets X = {New York, Paris) and Y = {Peking, 
New York, London), representing the concept 'bery far''. The membership function of 
this relation can be depicted as follows: 

New York Paris 

Peking 1 
New York O 
London .6 

.9 

.7 

.3 

Another example of a fuzzy relation is the following: 

If X, Y belong to B and R and the fuzzy relation is "considerably greater than", the 
membership function of the fuzzy relation, which is also a fuzzy set (on X*Y), could 
be the following: 

I o  for nsy 

I -1 for x> l ly  

With the help of fuzzy relations we are able to represent so-called $..then rules. The 
relation has membershipvalue 1 if antecedent and consequent are in complete 
agreement with each other, and membershipvalue O if they don't fit. Membership- 
values between O and 1 point to a fuzzy relation. 

As has already been stated, a fuzzy relation is a fuzzy set in a product space (and not 
a mathematical function). We can therefore also define algebraic operations in 
analogy to the definitions for "ordinary" fuzzy sets defined in this chapter. 

Definition 3-1 

Let R and Z be two fuzzy sets in the same product space. Then the intersection and 
union of R and Z are defined as follows: 
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. .  A t h ~ ~ g h  we are dse wing the man!naiam md maximm for the defirnitiom of 
intersection and union in this case, there are alternatives as regards projection and 
cylindrical extension of fuzzy relations [Zimmerman H.-J., 1991 p.721. 

Fuzzy relations in various product spaces can be combined with the help of the 
cornposition operation. Various definitions have been proposed for this operation. 
These definitions differ as regards results and as regards mathematical properties. 
The max-min composition is the most familiar and the most frequently used operati- 
011. 

Max-min composition: Let Rl(x,y), (x.y) E X*Y and R2(y,z), (y,z) E Y*Z be two fuzzy 
relations. Then the max-min composition is fuzzy set: 

Alternative compositions are, for instance the max-prod and the max-av composition 
(product and average). 

Fuzzy relations also play a role in fuzzy preferential methods and in approximate 
reasoning (compositional pule of inference), which will both be discussed later in this 
report. 

3.5 Rules, implications 

In classical binary logic not only operators such as 4 or and not (which are, in 
terms of sets, associated with intersection, union and complement) are used, but also 
implications are applied. These implications, also called rules, usualy look like 

R: if antecedent then consequence. 

A simple example of such a rule is: if it rains then the streets will become wet. 
Rules play a very important part in fuzzy logic, which aims itself at reasoning in terms 
of fuzzy quantities. In fuzzy logic both the antecedent and the consequence can be 
formulated in terms of fuzzy quantities. The antecedent for instance might be of the 
form "x belongs to P and the consequence, in the same way, could run "y belongs to 
Q in which B and Q are fuzzy sets on universe X respectively universe Y. 
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It will be clear that this antecedent and this consequence are the equivalent of 
pp(x) >O, respectively pa&) > O, so that the rule R can be formulated as follows: 

We say that this rule is active if the antecedent is true, consequently if pp(x) >O.  
Just like in binargr logic only when the d e  is active sentence can be passed about the 
comeq~ence. Provided that a d e  is active, the fuzzy situation is much more compli- 
cated &an the one in the binary case. After all in binary logic applies that whenever a 
rule is active pp(x)=l, and it follows that pa(Y)=l. In fuzzy logic unfortunately this 
does not hold stand since pp(x)~[O,l] and pQ(Y)é[O,i]. For a given value xrX with 
pp(x)>O (so rule is active) not only we would infer that pQ&)>O but also we would 
like to be able to pronounce upon the magnitude of pa&). For that purpose a more 
detailed specification of rule R is necessary. To be able to provide this the notion 
tramfeereZatìon is introduced. This is in fact an operation working on the Cartesian 
product of both fuzzy sets IEP and Q. A transferreiation, belonging to rule W, is a fuzzy 
set on X*Y with membershipfunction pR: X*Y + [O,l], in which 

YJXYY) = f ( b L p ( X ) , b L Q ( Y ) )  Y v áXYY1 E x*y 
R 

where f R  : [O,l]*[O,l] + [0,1] is a, further to be specified, function. 
This function has to fulfill a certain number of demands [Klir G.J., 19881, for instance 

f(a,P)>O Y v aE(OY11 ; f (W=l 9 f (O,P)=O 
R R R 

Frequently used definitions in literature for this function are [Kouatli en Negouita]: 

f(a,P)=mWa,P) 9 v (aYP)~roJI*roY11 

f (a ,P)=a.P Y v (a,P)EroJl * l O , l l  

R 

R 

For a given input xéX for rule R, say x=a, the transferfunction pR(x,y) passes into a 

We will conceive this function as the membershipfunction pclo of fuzzy set Q’ on Y. 
This fuzzy set Q’ is a subset of Q! It should be noted that m general this function 
will not be normalised. 

function pR(a,y) of the output y. 

At the interpretation of rule R given above, an input x=a with aéX and p,(a) > O  does 
not lead to one value for the output yéY but to a fuzzy set Q’ on Y, of which the 
membership function pol ensues from p&) =pR(a,y). 
Stated otherwise: the result of the rule is a fuzzy set not one value for y. For a 
grahical presentation see Figure 3-4. In this picture the shaded area represents the 
result Q’ of the rule R (a fuzzy set). 
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I 
Figure 34:  Transferfunction pR(a,y) for crisp antecedent x=a. 

In some mes, 8.o. with fuzzy csntroUers, a saicla-like result is not merely useful and 
one value for the output y is wanted. This process is called d@zìjicatzbn, for which, 
several alternatives are put forward in literature. A very simple and obvious method 
is to take that value for y wich maximizes pQi=~.rQi(y) (the so-called "first of 
maxima"-method). However more in use is the "Centre of Area"-method, where 

y = 1 ss PQl 1 * 1 1 PQ' 1-1 
Y Y 

We are permitted to interpret this value being the y-coordinate of the geometrical 
centre of the surface beneath the graph of membership function pQ,. 

In mmy caes we 
number of rules and let rule i (i= 1,2, ..., n) be of the following type: 

have to deal With more then one rule. Let n (01) be the 

The transferrelation, which goes with rule R,, is a fuzzy set on X*Y with membership 
function pRi. For the determination of pRi we can, assuming that the fun~tion~ pp, and 
pQ, are known, for instance make use of 

P&(&Y) = m W P p , ( x ) ,  P,(Y)) 

For a given value for the input XE& say x=a, we would like to derive one fuzzy set 
Q' on Y from these rules R1,R2, ...,%. This can be accomplished in several ways. One 
possible procedure is to combine first all rules R1,R2, ..., R, to one new rule R and 
subsequently proceed with that new rule in the way described before. In fact it comes 
down in combining the transferrelations pR,p Rv...,pRn to one transferrelation pR. 
However, at this moment there is no optimal method known to execute this. Often 
the following formula is applied: 
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Further if x=a, the saught-after fuzzy set Q' can be tied up by its membership 
function: 

k diBerent approach Is to determine, for each rule R, (i=1,2, ..., n), first all the 
belonging fuzzy sets Q'i and next combine those sets Q'l,Q'2,...,Q'n to one new 
fuzzy set Q '. One of many ways of doing this is to appoint the membershipfunction 
po&) of Q '  wich can be derived from: 

PQ4Y 1 = m( PQ$Y 1 2  .e* Y PQ/"(Y)) 

While working Q U ~  the rule another problem may OCW: the antecedent can contain 
more antecedents. For example we consider an antecedent of the form "xi belongs to 
P, d x2 belongs to P; in which P, and P2 are fuzzy sets on universe X,, respective- 
ly X2 In order to be able to make use of the earlier given elaboration we have to 
rebuild this to one antecedent with two fuzzy variables. For this fuzzy set P on X,*X, 
can be defined from wich membershipfunction pp depends on a further to be 
specified way of the membership functions ppl and pp2. 
the membershipfunctions ppl and pp2. For the given composite antecedent we can for 
instance make use of 

For a composite antecedent of the form "xi belongs to PI or x2 belongs to P; we can 
go to work in a similar way, now pp can for instance be defined by 

Pp(+  x2) = =(Ppp,) ,  Pp2(X2)) 

Here we are also free too use one of the many alternative definitions. 

A last complication when elaborating rules in fuzzy logic occurs at the moment that 
input x of the antecedent in the rule 

R: if x belongs to P fhen y belongs to Q 

is not given as a precise (crisp) value, but if that input is also a fuzzy quantity. 
In this way x can be the result of a measurement and be given as "x is about 1,80 m.". 
This can be taken into account by defining a fuzzy set S on universe X for this 
quantity with membershipfunction ps representing the description "about 6,80 m.". 
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Subsequently, in the same way as described above, a transferrelation (that is to say a 
fuzzy set) with membershipfunction p,: X*Y + [0,1] upon rule R can be added. 
However fuzzy set Q' on Y for output y, which goes with this rule R and a specified 
input x, can at this point not be determined from por@) = pR(x,y) because x is now 
only given in terms of fuzzy sets. More precise: x is specified by the membershiphe- 
tion ps. A possibility for determining pal is provided by: 

In this way for every crisp xeX first the minimum p,(~,y) and ps(x) is computed for 
all yeY. This will result in a function $ of x and y (the bold printed "frame tent" 
within the pyramide, see Figure 3-5). The next step then is the computation of the 
maximum of that function for each yeY wile x accepts all possible values on X (the, 
in our picture shaded, fuzzy set for that value of x, which min(pp(x), ps(x)) is 
maximal). In (the particulair) case that ps(a)= 1 and ps(x)=O for all xeX with xza, so 
if for the input x crisp value a is given, then this relation for pol transforms into the 
above decribed relation. 

X 

Figure 3-5: Determination of fuzzy set Q' given a fuzzy input. 

Along the way we just described how too work out one rule and how to do that when 
more rules are involved we have made choises on several places. 

Those choises have (great) impact on the h a l  result of the rule(s), however at this 
moment, unfortunately enough, little is known about guidelines and fist-rules to come 
to optimal or at least acceptable choises in a certain situation. 

Roughly we can state that the theory as has been dicussed just now builds up the 
foundation on wich fuzzy logic is based. The next chapter will describe how one thing 
and another fits into a fuzzy controller. 
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Chapter 4 FUZZY CONTROL 

4.1 Introduction 

Fuzzy logic can, for instance, be used in control technology (fuzzy control). Conventi- 
onal control methods start from descriptions of the processes to be controlled. The 
controllers are determined on the basis of a description. These methods have a 
number sf eiisadvantages [Giesse! van, G.B. 1881, p.121: 

- In some cases a process which seems to be control easily will result in a highly 

Small changes in the process to be controlled sometimes call for the complete 

With non-linear processes it is often hard to determine a controller which 

complex mathematical model. 

redimensioning of the controller. It is in general impossible to add the know- 
ledge about the change to the existing controller. 

leads to an acceptable closed-loop behavior in the entire working-space. In this 
case the controller is frequently designed for one or a few previously defined 
operation points. 

- 

- 

The big difference with conventional control technology is that fuzzy control does not 
describe the process to be controlled by means of a more or less detailled mathemati- 
cal model. Fuzzy control tries to include expert know-how in the controller. It starts 
from a number of more or less intuitively rules. 

For humans who have been controlling a process manually for some time, these rules 
are relatively easy to compile. All fuzzy rules together form the knowledge-based 
system of the controller. What this controller looks like schematically will be discus- 
sed in section 4.2. 

4.2 Architectare of a fuzzy controller 

The first step while designing a fuzzy controller for a process consists, quite conventi- 
onal, of defining the quantities wich need to be controlled and determining the input- 
quantities of that process. For simplicity we take for granted that all quantities to be 
controlled are being measured without appreciable errors, so that the acquired 
measurement values can be regarded as crisp quantities. Besides it is assumed that 
the desired value is known for all quantities to be controlled. The difference between 
the desired value and the real value, the error signal, is the inputsignal for the fuzzy 
controller. The crisp output signals of the controller are the input of the process. 

In a fuzzy controller three functional blocks can be distinguished: the fuzzincation- 
block, the rules-block and the defwzifîcation-block. These blocks are very globaly 
discussed in the next paragraphs and explained on basis of a very simple example. 
This example concern a chemical process of which the temperature v and the 
pressure p have to be controlled. The input of this process is the adjustable culvert- 
opening @ of a hel-valve. 
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fuzzifier 

Consequently the controller consists of two inputs viz.: 

The (only) output is the variable culvert 9 or the variable Atp of that culvert. 

- the difference e, = vd - v between the desired and the red temperature & 
- the difference ep = pd - p between the desired and the real pressure 

- 
+ plocess 

f i y -  - aefuzzl- i 4 
de!3 fier 

I Fuzzy Controlíer 

I 
Figure 4-1: Block diagram of a fuzzy controller. 

4.2.1 Fuzzifier 

In the first block, the Fuzzifier, the inputsignals are being converted into membership- 
values in a number of fuzzy sets who are previously to be chosen. Therefore first the 
universe has to be chosen for each inputsignal, next some fuzzy sets have to be 
defined on that universe. Generally five to zeven fuzzy sets are used for each inputsig- 
nal, for example five fuzzy sets named B (positive big), S (positive small), Z (about 
zero), N (negative small) and L (negative big). We must also establisch what the 
membership functions of the fuzzy sets look like. In general we have to take care that 
the fuzzy sets partly overlap each other for each inputsignal so that each inputsignal 
at least belongs to two of those sets, The number, the shape and the position of the 
membership functions (on their respective universes) for any of the input quantities 
are for the, by the controller attainable, result of great importance: while the number 
is increasing the controller will behave itself ever flexible and deliver a beter result 
altough its complexity shall increase very drastic. 
At a given value of an inputsignal its possible to calculate the membership value in 
each of the, for that signal introduced, fuzzy sets. This has to be done for everyone of 
the inputsignals, consequently in our example both for e, as for ep. This is called 
fuzzification. 
When for both e, and ep  five fuzzy sets of the above given type are introduced this 
process returnes five membership values for e, as well as for ep at given crisp input 
values. Some examples for e, are: 

PP" (e,): membership value of e, in the fuzzy set P, 
It desired temperature much bigger then the real one" 

PZ" (e,): membership value of e, in the fuzzy set P, 
"desired temperature about the same as the real one" 
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Although there isn't a connection with the block "Fuzzifier", discussed in this para- 
graph, we remark here that not only the universe has to be defined for anyone of the 
outputsignals of the controller but also that the fuzzy sets who are situated on that 
universe need to be defined by choosing shape and position of the corresponding 
membership functions. In our example the output, so the change At$ of the culvert, 
can for instance contain the following five fuzzy sets G, (much further open), P, 
(little more open), 2, (almost don't alter the opening), N, (close a little more) and L, 
(close much further). 

4.2.2 Fuzzy Rules 

In the block "Fuzzy rules" (Figure 4-1) the rules, describing how the process should be 
controlled, are worked out. At this point we restrict ourselfs to rules of the type which 
already has been discussed in Chapter 3. So to rules of the form 

&: if antecedent t h  consequence. 

In our example i.a. the following rules might appear: 

R,: if (v much too high and p much too high) then close valve much further 

R2: if (v is about vd rmd p much too high) then close valve a little more 

Because the elaboration of these and similar rules already extensively came up for 
discussion in Chapter 3 we won't go in any deeper on this. The final result is a fuzzy 
set Q '  for the output At$ of the controller. 
In principle we have to formulate a rule for every possible antecedent. Suppose that 
m is the number of inputsignals of the controller and that there are in all 
n, (i= 1,2, ...,m) fuzzy sets defined for inputsignal xi. Then the number of all possible 
antecedents is equal to n = n,~~~-..:n,,, 
Considering more then one inputsignal rapidly leads to a very lage number of 
antecedents (and consequently to a large number of rules to be formulated), especial- 
ly when many fuzzy sets are introduced per inputsignal. Luckely enough many of 
these rules often deal with situations which don't hapen in practice (or anyhow aren't 
allowed to occur!). Also due to this the number of rules often can drasticaly be redu- 
ced. Formulating an as small as possible rule-base therefor only seems possible for 
experts with a very good insight in the process to be controlled! 

4.2.3 Defuzzifier 

It has in the previous section already been mentioned that the output of the block 
"Fuzzy rules" is a fuzzy set Q' for the output. However, such a result can't be offered 
to for instance a servomotor that has to realise the input of the process. FOP that 
purpose it's necesary to deduct one crisp value out of the fuzzy set Q' wich can be 
passed to the output. 

. 
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This can be done in one of the already in Chapter 3 outlined ways, for example with 
the "Centre of Area"-method. However, here we will introduce the "Centre of 
Gravity"-method as an alternative, because it will be made use of in Chapter 5. In this 
method the x-coordinate (Z) of the centre of gravity from the, out of the total rule- 
base, resulting fuzzy set is computed, by using the following formula: 

n= 1 ... N 

In which represents the local centre of gravity of the (local) area Z(t,,). 

This crisp value 2 is well suited for being used as control signal for the servomotor. 
In Figure 4-2 this method is being illustrated; the shaded part represents the resulting 
fuzzy set (the output set, which is obtained by adding up all fuzzy sets resulting from 
the different rules). 

1 

O 

4 
Z 

u 
output 

Figure 4-2: The 'Centre of Gravity' method. 
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Chapter 5 'BALL IN GROOVE' PROBLEM 

5.1 Introduction 

Comparable to the (traditional) inverted pendulum problem, we shall here try to use 
fuzzy logic to steer a ball in a groove from a random initial position to a (random) 
end position in a groove. The fuzzy control method used in this case is the method 
based on the phae ,!me. Io section 5.3 we d shortly get back this type of fuzzy 
control. 

5.2 Mathematical model 

In order to be able simulate or to generate measuring values, we need a mathemati- 
cal description of the system. This system (see Figure 5-1) is fairly complex 

I 

I 

I ...... 4 

7474%- ex 

igure 5-1: Schematical representation of the 'Ball in the groove' problem. 

By determining the body-related vectors and their derivatives, we can calculate the 
position, speed and acceleration of mass centre xM of the ball (as a function of the 
body-related vectors): 

3 = se' + Rn' ë = c0sa.ë' + sina.ëy M 
ñ = -&a.ë'' + cosa.ëy 

=+ ë =  an'; n'= -&e 
*ZM =ië + S e ' +  Rïi = ( S  - Ra )e '+ ~ à ñ  

3M = (s"-Rä )e' + ( S  - Rà )àZ + Sàñ + säñ - 

= ( S - Rä - sa2 )t + ( SC - RL2 + %à )ia- 

This means that we will find the following relations for the speed of the contact point: 
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; speed of the contact point, viewed as a point of the ball 

* iJp = 3' + R+Z = ( 3 - Rà + R+ )e' + sQR 

gP* : speed of the conúzct point, viewed as a point of the groove 

Condition for accurate rolling - 3' = vp 
* gp* = s t 3  

- r *  

! 
I ! 

! 
! 
! N ....... ........... ............ ....... ....... ...... 

W ......... __.. 
................ 

'\ ! 

I 
Figure 5-2: Schematical representation of the forces acting on the system. 

If Jg is the mass moment of inertia of the groove with regard to O, while O is the 
mass centre of that groove, then the following holds (see Figure 5-2): 

Jg.ä = M - s .N 

With q (mass of ball) and Jk (moment 
of inertia of ball with regard to mass 
centre M) the forces become (see Figure 
5-3): 

r 

* N = m&.ñ + mkgëy.fì I 
Figure 5-3: Detailed drawing of the ball. 

This means that the relevant motion equations will look as follows: 
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Jg ä = M - s.mk(XM.ñ) - smkg(êy.ñ) 

mk XM.ê = -ä Jk - -s Jk .. - mcg(êy.ë) 
R R2 

Which after some rephrasing yield the following system: 

And we can therefore use the following (non-linear) system equations to generate our 
measuring vahes (Fa is an auxiliary variable): 

5.3 Fuzzy control on the basis of the phase plane 

The system which has just been described can be controlled by (traditional) PID 
controllers, despite its highly non-linear character. However, the system may be 
expected to be rather slow in view of this aaon-line~v. This problem could be 
avoided by using the fuzzy control described below, i.e. a control on the basis of the 
phase plane for a second-order system. (Note: this system has not been calculated 
with a traditional PID controller so that no reference material is available.) 

5.3.1 Controller 

As has already been stated before, the controller has been developed on the basis of 
a phase plane of a second-order system. For the fault in position e, the fault in speed 
v (=e), and the 
control action U to be executed, the following fuzzy sets have been defined: 

Positive Big e = PEB 
Positive Small e = PES 
Positive Big v = PVl3 
Positive small v = PVS 
Positive Big U = PUB 
Positive Small U = PUS 

Negative Big e = NEB 
Negative Small e = NES 
Negative Big V = N W ,  
Negative Small v = N V S  
Negative Big U = NUB 
Negative Small U = NUS 

(0 
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By means of these linguistic variables and using the familiar if A then B rules, the 
control has been arranged as follows. 

The phase plane is divided into 6 parts A,..., F [Palm, R. 19881, see Figure 5-4. The 
line e+v = O is the switching line of the sign of control action U. 

B 

7 

, __ .__ .____________________________________________  

A 

E 
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .  

Figure 5-4: The phase plane divided into six parts. 

d 
Switching line 

e 

Combination of the various parts of the phase plane with the resulting control action 
to be executed leads to the following rule base: 

IF 
IF 
IF 
IF 

PART 
IF 
A O R D  
B O R C  
E 

THEN 
THEN 
THEN 
IFHIEN 

ACTION 
m 
NUS 
PUS 
PUB 
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If we now combine this rule base (11) with the fuzzy sets (I) defined before, using the 
logic and and the logic of operator, then we can describe the parts A,..., F as follows: 

A. (v > -e) AND PES AND (PVS OR N V S )  
B: (v I -e) AND NES AND (PVS OR NVS) 
C: (v I -e) AND (PES OR PEB) 
D: (v > -e) AND (NESORNEB) 
E (\7 0 -e) 
F (v > -e) 

AND (NES OR NEB) AND (NVB OR NEB) 
AND (PES OR PEB) ApIJi) (?W QR PEB) 

And in combination with (U) this ultimately produces the rule base, consisting of two 
rules: 

IFv  > -eTHEN 
IF (PES OR PEB) AND (PVB OR PEB) THEN NUB 
PF (NES OR NIEB) OR (PES IWB (PVS OR N V S ) )  THEN NUS 

PF v L< -e then 
I?? (IVES QR NEB) AND (NVB OR NEB) THEN PUB 
IF (PES OR PEB) OR (NES AND (PVS OR N V S ) )  THEN PUS 

It must be noted that premise parts v > -e and v I -e are used in their normal 
mathematical meaning and are therefore not fuzzy. 
The result of these rules is a fuzzy set of the (new) moment M which is to be 
exercised and from which a scalar value is determined by means of the centre of 
gravity method. 

5.4 Conclusion 

Based on the results (AppenátiX VI) it can be concluded that the controller is robust 
regarding variation in initial position as well as regarding variation in desired end 
position. The controller goes relatively quickly to the desired end position, considering 
the fact that only two rules are being used. 

As has already been pointed out, the ball in the groove problem discussed here is 
similar to the inverted pendulum problem. Controlling the inverted pendulum in this 
problem, which can also be described by means of two chained Berential equations, 
by means of traditional fuzzy control (as described in Part I) will require a rule base 
consisting of at least seven rules [Yamakawa T, 19891. Therefore it seems rather 
interesting to find out to which amount the number of rules used, in combination with 
the fuzzy control method, effects 

- the required calculation îime (for each cycle) 
- the speed by which the systeem converges towards its desired state. 
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Notes: 

- The values of e, v and M have been normalised by means of heuristically 
obtained values (these values also make the variables dimensionless). 

- The well-known oscillating behaviour (sliding mode), which can also be 

bot5 sides of ?.he switchirig k e .  
observed here, can be eliminated, if required, by applying a boundary layer on 

- If a different sampling frequency is used (for instance, 0.05 sec.) the program 
appears to be unstable. This is probably attributable to the integration program 
(ode23) used within Matlab. Another cause might be that the used sample 
frequency is a multiple of one of the own frequencies of the system (or is 
almost equal to one). 

The system doesn’t settle down. However that doesn’t matter here, because 
that wasn’t the goal of our experiment. But if desired, one can accomplish this 
by switching to a conventional controller as soon as the system enters a (to be 
defined) boundary layer. 
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Chapter 6 FUZZY REASONING 

6.1 Introduction 

Central theme with fuzzy reasoning is the dealing with inaccuracies. Suppose that an 
implication (rule) of the following form is given: 

if the temperature is too high then decrease fuel flow. 

Now lets assume that the temperature is not too high but that it's much too high. 
Then what should be concluded, that the fuel flow has to be decreased a lot? 
Drawing conclusions of this form is in general no problem at all for human beings. 
We do it all the time and are often unconscious of doing this. However an useful 
mathematical translation of it is least of all trivial, and is one of the subjects in the 
field of "approximate reasoning". Notions like fuzzy sets and fuzsr relations which 
have been spoken about earlier on, and the inference rules, to be discussed in this 
chapter, play a very important role near it. In "approximate reasoning" we make use 
of several inference mles, such as the modus ponem, the modus toZZem and the 
conîraposition. Hereafter some of those rules are reviewed. In that discussion we will 
make use of a couple of universus Xi and X2, and of the fuzzy sets P, and Q1, defined 
on X,, and the fuzzy sets P2 and Qz, defined on Xz. 

6.2 Generalised modus ponens 

The generaZised modus ponens (G.M.P.) is an extended form of the modus ponens 
commonly used in traditional logic and which is as follows for fuzzy sets: 

Premise 
Implication 

Conclusion x2 belongs to Q2 

xéXi belongs to Qi, consequently pCLQ (xi) > O  
if x belongs to Pi then x2rX2 belongs to P2 

By way of comment we will consider the example out of the introduction again. In 
that case x, is representing the temperature while x2 is representing the fuel flow. 
P, and Q1 are the fuzzy sets "temperature too high and "temperature much too high" 
while P2 and Q2 are the fuzzy sets "decrease fuel flow" and "decrease fuel flow a lot". 
For this example the implication translates into: 

Suppose now that a value for the temperature, so for x1 is given. Then pal(x,) can be 
determined. Then the GMP has to supply us a prescription which helps us to compute 
pQ2 (xJ, of course under the condition that bol (xl) >O. When pQl (x,) =O no sentence 
can be passed about pQ2(x2) (in general). 

I 
L 
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Some of the criteria that should be met by the G.M.P. are stated below [Hellendoorn 
1991, p. 681: 

O If Q, is the opposite of P,, we cannot say anything about Q2, any value 
is possible. 

O If Q1 is slight& smaller than Pi, then Q2 will also be slightly smaller than 
PD though it is not known how much smaller. So this is a departme 
from classical logic, in which an antecedent is either true or not true. If 
it is tide we cas draw. a conelusion, if it is not, we can't. 

b I€ Q, is slightly larger than P, then Q2 is slightly larger than P2 (see 
above). 

O If two fuzzy sets Q, and Q,' are almost identicd, then the correspon- 
ding fuzzy sets P, and P2' will also be almost identical. 

By means of these criteria (which have not all been mentioned) we can define a 
function with P,, P2 and Q1 as inputs, and Q2 as output. This is rather difficult, as 
fuzzy sets P, and Q, have to be compared with each other. This comparing of fuzzy 
sets will be discussed in Chapter 7. 

6.2 Compositional rule of inference 

An alternative for this generalised modus ponens is the compositional rule of Uzference 
proposed by Zadeh in 1973, a rule which does not occur in ordinary logic. This nile 
combines fuzzy sets with fuzzy relations. Fuzzy relations are, as has already been 
stated in section 3.4, fuzzy subsets defined on X*Y. 

In the implication "if A then B ,  a relation R(x,y) is assumed between the two fuzzy 
sets A in domain X and B in domain Y. 

Several translation rules have been proposed by, among others, Zadeh, Madani and 
Minimoto in order to translate the fuzzy rule if 'x is A' then 'y is B' into a fuzzy 
relation. Zadeh [1973, p. 1481 assumes that the relation is such that the consequent is 
the ma-min composition of fuzzy set A with fuzzy relation R(x,y), which can be 
represented as follows in a formula: 

FQ(X2) = - min { tgq> Cr,(x,4 1 
x 

An example of such an inference rule is: Its general appearance: 

xl is high, 
x, and x2 are almost equal, 

xi is P, 
xi is Rx2, 

x2 is more or less high x2 is Q. 
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So, instead of the $.then rule customary in fuzzy logic, there is a fuzzy relation R. In 
general it appears to be impossible to represent this $.then rule by means of a fuzzy 
relation, in any case not in such a way that the exact relation between the antecedent 
and the consequent of the $.then rule is indicated. 

6.3 Problems in approdate reasonhg 

IE view ~f what has been said in subsectkm 5.2.2 and 6.2.2 it will be clear that fuzzy 
sets allow us to make models which simulate approximate reasoning, i.e. models which 
enable us to deal with problems in the way we humans tend to deal with problems. 
The flexibility obtained by this linguistic approach is only valuable if it is efficient. 
This efficiency can be greatly affected if the output (of the model) must also be 
linguistic. 
The model which receives input in the form of fuzzy sets generates a fuzzy set as 
output. The problem, frequently referred to as "Iuzguistic approximation", consists in 
finding a label (a sentence or word from a language) of which the meaning, that is t~ 
say the representation of that label in the form of a fuzzy set, is identical to (or 
corresponds strongly to) the unlabelled fuzzy set which results feom the model. 
The fuzzy ranking problem, as this comparison ~f fuzzy sets is called, will be discussed 
in more detail in Chapter 7. 

Another problem may be that the conclusion obtained fails to coincide with what we 
intuitively expect. For this reason a number of criteria have been defined in the 
course of time to which inference methods should conform. This has resulted in 
alternative translation rules as well as a number of alternative compositions [Mizumo- 
to M, 19821. 

In order to keep my account readable I shall not go further into these alternative 
inference methods. This would make the account so mathematical that it would 
become entirely unreadable (and incomprehensible). 
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Chapter 7 DISADVANTAGES OF CLASSICAL FUZZY LOGIC 

7.1 Introduction 

Although the fuzzy set theory which has just been discussed will prove adequate in 
most cases, it must be said that this will not always be the case. It has certain 
drawbacks. This chapter will present an alternative for the max. and the min. 
operator, after having demonstrated the flaws of these classical operators. Next a 
classification of the various operators will be given. The chapter wi be c~ncluded 
with a brief description of the disadvantage of inference methods, which has already 
been hinted at earlier, and the presentation of a solution to this problem. 

7.2 Disadvantage of the max and the min operator 

As has already been stated before, in most of the current application of fuzzy logic 
the minimum, operator is used as a logic (= natural) rmd, whilst the maximum 
operator is used as a logic or. However, these operators are only a rough apgroximati- 
on of the linguistic concepts they represent. 
Eet us take another look at a rule from the controller in the chemical plant (4.2.2): 

LINGUISTIC 

IF Combustion chamber temp. (x) = low (Plow) 
AND Pressure in the advanced ignition chamber (y) = high (phi@) 

MATHEMATICAL 

THEN ('9 kideropen (z)) I z E Angular displacement > O 

in which z represents the new state which follows fiom the antecedent of the rule via the 
membership value of the currently valid fuzzy set within the linguistic variable. If the antecedent 
consists of several premisses, then the membership value of the consequence will be a combiati- 
on of the membership values of the premisses (the antecedents), which are calculated in the 
manner explained in 35 In many cases the consequence (i case of two conditions x and y) is 
notated as follows: Z-(XEFy). 

The above rule ensures that the methane valve is opened further when the combusti- 
on temperature is too low and the pressure in the advanced ignition chamber too 
high. In other words, if the condition is critical, the methane supply will be increased. 
To what extent the valve will be opened is calculated by means of the logic rmd 
operator. 
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Let us consider the following conditions in the plant: 

If we apply the minimum operator, state #1 and state #2 are assessed as equally 
critical by the fuzzy controller, whereas we would regard #2 as the most critical state. 
If state #3 is compared with state #1, the fuzzy controller will judge state #1 as the 
most critical one, whereas we evaluate #3 as the most critical state. This difference in 
evaluation is due to the fact that the minimum operator cannot make a compensatory 
distinction, the way we humans can. If a human being combines two concepts by 
means of linguistic mid, the following usually applies: "much more of the one will 
compensate a (small) shortage of another". The maximum operator is subject to the 
same flaw. 

This problem can be solved in two ways. One way is to define more fuzzy sets (within 
the linguistic variables). This solutions has two disadvantages. In the first place, it 
would lead to a dramatic increase in the number of rules (in the rule base). This will 
not only hamper the design process and result in a less clear system structure, but it 
will also require more effort from the computer. Secondly, if more terms are defined 
for the linguistic variable than were originally considered in the concept (at the time 
of development), this will rapidly reduce the system's interpretability. 

The second solution entails the definition of a so-called compensatory operator. 

7.3 The y-operator 

How this compensatory mid can be represented has been established by means of 
empirical investigations, which examined the applicability of the various operators. 
This research showed that the gamma-operator in particular provides an excellent 
representation of the linguistic concept of rmd in various meanings. 

By means of a selection of y, to which this operator owes its name, this operator can 
vary infinitely between logic and (no compensation) and Zogic or (full compensation), 
depending on its meaning (see drawing). 
A disadvantage of this operator is that it is unattractive from a mathematical point of 
view. Contrary to the minimum operator, for instance, it is not associative and leads 
to substantially higher computing costs. 
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I State 11 ~eaaip. I pressure 11 y = 0.0 1 y = 0.3 I y = 0.5 1 y = 8.7 1 y = 1 1 

920°C 60 bar 0.20 0.32 0.45 0.62 1.00 

Logical 
and 

Logical 
or 

%=O 
no compensation e- 

r=l 
-full compensation. 

The y-operator therefore is a combination of the algebraic product, modelling the 
natural mzd, and the algebraic sum, modelling of. With this operator entirely different 
conclusions are possible (of course, depending on the value of y) ,  as is clearly shown 
by the table below with regard to the same example as used before. 

Note: The case = O corresponds to the logic and which is calculated with the alternative of the max- 
min operator, the so-called max-prod. inference method. Both will extensively be come up for 
discussion in Appendix HI. 

7.4 Classes of operators 

Although the min. and max. operators are the most commonly used operators in 
everyday practice, other possibilities for the intersection and union of fuzzy sets have 
been suggested. These suggestions vary both as regards universality and adaptability 
of the operators and as regards the degree in which they are justified for the various 
problems. 

Whether an operator is justified (and to what extent) can be intuitively, empirically or 
axiomatically be determined. The adaptability ranges from uniquely dehed  (i.e. non- 
adaptive) concepts via parametered 'families' of operators to highly universal classes 
of operators which need only comply with a few requirements. 

L 

We distinguish two classes of operators: operators for intersection and union - 
referred to as triangular norms or t-norm and conom - and the class of averaging 
operators (for example, the y-operator). Each class contains both parametered and 
unparametered operators. 
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7.4.1 Triangular norms 

t-norms. For the intersection of fuzzy sets Zadeh suggested the min. operator and the 
algebraic product. Both belong to the t-norms or triangular norms, which owe their 
name to the shape of the resulting membership function. Operators belonging to this 
class are associative and it is therefore possible to calculate the membership values of 
the intersection of more than two fuzzy sets by applying the t-norm operator recursi- 
vely (for a mathematical definition, see Appendix IV). 

t-norms (or s-norms). Zadeh introduced the max. operator and the algebraic sum for 
the union of fuzzy sets. These intersection operators belong to the group of ~LIZZY set 
aggregating operators, the so-called t-conorms or s-norms (Appendix IV). 

It may be required to adapt the operator to be used to the context in which it is used. 
To this end different authors (e.g. Hamacher, Yager) have proposed parametrized 
families of t-norms and conorms, often maintaining their associativity property. Such 
parametrized t-norms can vary between the min. operator, the product operator and a 
few alternative intersection operators, depending on the value of the parameter. 

7.4.2 Averaging operators 

Operators giving a value between the value of logic and and that of logic of are called 
averaging operators. They combine the max and min operators with the mathematical 
average (of the two membership values). Dubois and Prade [1984] have done a great 
deal of research on these non-parametric averaging operators. 

Just as is the case with the triangular norms, there are also parametered operators in 
the class of averaging operators. These operators may vary between logic and and 
logic of, depending on the value of the parameter. An example of such an operator 
was already discussed: the gamma-operator. Alternatives have been suggested, but in 
all cases research has shown that the 'compensatory and' operator is the closest 
approximation to the way human beings tend to take their decisions. 

The relations between the various operators (for the union of two fuzzy sets A and B) 
are illustrated in Figure 7-1. 
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ïgure 7-1: Survey drawing of t-norms, t-conom and averaging operators. 

The great variety of possible operators can be very confusing and makes the selection 
of the most suitable one very difficult. For this reason Zimmerman has formulated a 
number of criteria which might facilitate a selection. I shall not mention all epiteria 
but only briefly sketch the most obvious ones. 

The operator must not only meet certain mathematical requirements (it must, 
for instance be associative or commutative), it should also be empirically 
suitable. In other words its must not be in confiict with the real system. 

It stands to reason that the operator must be numerically efficient (enough). A 
gamma-operator could, for instance, be very satisfactorily employed in case of 
a simple rule base with few rules. With rather large rule bases, containing two 
to eight hundred rules, application of the gamma-operator is out of the 
question on account of the number of calculations to be executed. 

The degree in which an operator must be compensatory distinctive, as well as 
the range within which the operator should lie if use of a compensatory 
operator is to be allowed (some operators require normalised membership 
functions, so the [0,1] range), obviously also play a role in the selection. 

The last criterion I want to put forward is the behaviour of the operator. If we 
combine several fuzzy sets by means of the product operator, the degree of the 
resulting fuzzy set will be reduced every time another set is added. This can be 
a desired result as well as an undesired one. 
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7.5 Disadvantage of the max-min inference method 

In order to explain the disadvantage of the traditional inference methods, we shall 
first describe the usual procedure concerning process control. 

A problem is usually roughly described by a number of logic rules. These are the 
rules which come to mind first when we consider the problem. Later the rule strategy 
is further refined. Some rules are eliminated and others are added. 

Finally we reach the stage in which adding or not adding a rule is too coarse a step to 
optimise the rule strategy. 

We could in that case adapt the membership functions in order to obtain the required 
behaviour. This would, however, be inconsistent with the concept of fuzzy control. 
The membership functions would have to represent the linguistic concepts of 
(physical) data in such a way that they become clear. 

Fiddling with the membership functions to fine tune the rule strategy appears to be 
counterproductive. The more complex the problem is, the more counterproductive it 
becomes. The solution is quite simple: i0 order to h e  tune a rule strategy we should 
adapt the rules and not the membership functions. However, only permitting a rule to 
be defined or not defined is dichotomous i.e. not fuzzy. ~ 

An advanced inference method consists of assigning weighing factors to the rules. So 
the tuning entails the adjustment of the weighing factors of the various rules. In 
practice, the values O and 1 are to be used first. Then for very accurate adjustments, 
values between O and 1 can be used. 
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Chapter 8 FUZZY RANKING METHODS 

8.1 Introduction 

As has already been briefly mentioned a few times, it will in certain cases be 
necessary to compare fuzzy sets. A specific example of this is the following case. Let 
us assume that we have a controller, which not only has fuzzy sets as input@), but 
which must also supply them tu the output, for h t m e e ,  in the form of a lingistic 
concept like 'greatly reduce the valve opening'. The problem in this case is that the 
fuzzy controller must compare its own output set with the fuzzy sets corresponding to 
the linguistic concepts. This comparison of fuzzy sets is called a fuzzy ranking 
problem. After having discussed a few criteria to which the fuzzy ranking method 
should conform, the ranking method worked out by Yuan [1991] will be presented. 

8.2 Required properties of a fuzzy preferential method 

Suppose our problem is the following: the choice between n alternatives, each with a 
Merent result, indicated by means of fuzzy set {Al: i = i...n>. 
For instance, if several rules are suitable for "firing", but they appear to have different 
resulting fuzzy sets, and we have to make a choice, which rule is the best? We limit 
ourselves to fuzzy sets with membership values between O and 1, and which are 
indicated by normal (the support is completely part of the domain), convex (no 'dips' 
in the membership function, see Chapter 2) and separate continuous membership 
functions. 

In order to be able to compare the alternatives a preferential relation P(A,q) is 
determined for each ranked pair (A, í$),i,j = l,..,n. From these preferential reiations 
the most suitable set can be derived.'According to Yuan, four properties are impor- 
tant in case of such a ranking method, viz.: 

1) fuzzy preferential presentation 
2) rationality of preferential ranking 
3) distinguishability 
4) robustness. 

These properties will be dealt with in the following subsections. 

8.2.1 Fuzzy preference presentation 

A fuzzy ranking method should be able to indicate the preference relations in 
linguistic terms. For instance, instead of simply concluding that A is to be preferred to 
B or not, the method should be able to represent the degree of preference by means 
of a (fuzzy) membership function. This property is desired in situations in which fuzzy 
sets represent uncertainty, in which case the decision to be taken must inherently also 
be vague. 
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It is not fitting to give the ultimate choice an artificial precision. Decisions should be 
linguistic rather than numeric. Employing this criterion, all methods can be divided 
into two groups. 

The first method projects all fuzzy figures in single points on the real line with the 
help of ranking function F. The order is then determined on the basis of this real line. 
This approach is relatively simple and easy to implement. However, by reducing the 
entire analysis to one single figure, we lose a great deal of information. 

The second method uses fuzzy relatisas to rank €way ambers. With *& g p p ~ ~ t ~ h  a 
fuzzy relation is determined for each pair of fuzzy numbers. Then the linguistic 
meaning of the relation can be interpreted on the basis from the membership of the 
relation [Baas and Kwaakernaak]. This method allows us to represent preference by 
means of a preferential degree. In this case it may occur, however, that we are unable 
to determine a consistent total ranking of all alternatives. 

8.2.2 Rationality of preference ordering 

A ranking method ought to be able to represent rational human behaviour in terms 
of consistency and coherence. Consistency in this case can point to antimetry, i.e. K A  
is preferred over B, then B should not be preferred over k Coherence may refer to 
transitivity, i.e. if A is preferred to B, and B over C, then A is preferred to C. If fuzzy 
relations are used to compare alternatives, the rationality requirements must be 
sufficiently met in order to obtain a consistent fuzzy ranking. 

8.23 Distinguishability 

By distinguishability Yuan means the ability to distinguish fuzzy figures in terms of 
preferential degree, if the differences represented by those fuzzy figures are important 
for taking a decision. As this is difficult to express in a mathematical formula, it is 
common to use several criteria, which together provide a definite answer. The four 
indices used by Dubois and Prade [1983] represent the possibility of dominance, the 
possibility of strict dominance, the necessity of dominance and the necessity of strict 
dominance. If one index is unable to distinguish between two alternatives, another 
will perhaps be able to do so. The problem is that all four indices may lead to 
different conclusions so that we still have to make a choice after all. 

8.2.4. Robustness 

A fuzzy ranking method should tolerate minor estimation faults concerning (fuzzy) 
membership functions. This means that the degree of relation between the two 
functions should not undergo a radical change if the shift in membership function is 
sufficiently small. This is a desired property because it is frequently difficult to make 
an accurate estimate of the membership function in a fuzzy environment. 
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The robustness can be formulated as follows: if A’ greatly resembles A for all B, then 
the preferential degree of A’ compared to B will lie very close to the preferential 
degree of A compared to B. 
In mathematical terms: 

in which A‘ is an approximation of A, and d(A, A’) is the maximum difference 
between A and A’. 

It must be remarked, however, that distinguishability and robustness may be inconsis- 
tent with each other, as the former requires a very sensitive method of comparison, 
whereas the latter does not. 

A great deal of research has been conducted into ’ranking methods’, for instance by 
Baas and Kwakernaak, and by Nakamura. Based on earlier methods, Yuan [1991] 
presents an improved method. 

8.3 The improved ranking method 

For a definition of the preferential relation of A, with regard to 4, Yuan does not 
look to the membership functions of A, and A,, but to the membership function of the 
difference 4-5 and then compares these with O. It will be clear that in a crisp 
situation this would be of no importance (the difference between two real figures A, 
and A, is equivalent to the difference between A, and A, and O), but in the fuzzy 
situation they are not the same. By using the fuzzy set of the difference, we are able 
to determine the differences between A, and A, for all possible combinations of A, 
and A, instead of simply calculating the difference between the best (worst) of A, and 
the best (worst) of A,. For this purpose we define Q(A,, A,) as a fuzzy preferential 
relation between A, And A, with membership function: 

which represents the preference of A, with regard to A.,. 
In order to keep this definition simple and make it easy to calculate, the following 
equivalent definition is introduced: 

For each A,, A, EU, Q(A,, A,) is defined as the fuzzy preferential relation between A, 
and A., by means of the following membership hnction: 
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in wich S = S, + S2 + S3 + S4, with: 

and 

0.2 0.4 0.6 0.8 1 

- A i  .___. Aj 

Figure 8-1: Two fuzzy sets. 

Figure 8-2: Computation of the preference 
degree of 2 fuzzy sets. 

Figures ïïï and Iv are an illustration of the cairnlation of b(4, A,). In this case q= 0.375, S2= 0.006, &= O, S, = 0.281 and 
b(a(Ai,A,) = 0575. 

Intuitively we can interpret this as follows. S, indicates the portion where A, 
is preferred to A, in the most favorable situation. S2 indicates the extent to 
which A, is preferred to A, in the most unfavourable case. S3 indicates the 
portion where A, is preferred to A, in the most favorable position. 
S4 indicates the portion where A, is preferred to A, in the most unfavourable position. 

A,) = (S, + S,)/(S,+S2+S3+S4) indicates the overall degree of preference of 
A, over A,. 
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The major difference between this method and Nakamura’s method is that in the 
most favorable case, we compare the best of A, with the worst of A, instead of the 
best of A, with the best of A,, and in the most unfavourable situation, we compare the 
worst of A, with the best of 5 instead of the worst of A, with the worst of A,. 
See Figure 8-2 for an illustration of the calculation of pa(&, A,). 

Using the preference relation defined for each ordered pair, it’s each to rank n 
alternatives {A,, &,...,kl. The procedure is the Îollowing: 

(1) Calculate pQ(&, 4) for i = 1 ,...$i, j = 1 ,..., n, which represents a n*n matrix. 
Making use of the fact that preferential relation Q is reciprocal, i.e. pa(A,,A,) 
= 1 - pQ(A1, A,), we need only determine %n*(n-i) membership values. 

(2) Sort {Al, A2 ,..., A,,} in {bl, pik2 ,..., &} SO that for all i<& pa(% A,) 1 %. The 
feasibility of this operation is guaranteed by the fact that Q is transitive (see 
required properties). In the ultimate ranking, b1 is the most favourable. 

(3) Give a linguistic interpretation of the fuzzy preferential relation. The linguistic 
interpretation can be defined as the fuzzy set ’calculated preferential degree’, 
the membership value of this set points to the truth value of the interpretation. 

According to Yuan, it can be demonstrated that this method is robust. And practice 
has meanwhile shown that the performances of this method exceed those of earlier 
methods. 

Note: If necessary, we can add a weighing factor to the formulas for SI to S4. 
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Chapter 9 ALTERNATIVE METHODS OF FUZZY CONTROL 

9.1 Introduction 

In Chapter 4 we already discussed a faizzy control method. There are, however, other 
methods, of which a few will be examined in this chapter. The first one to be 
considered is the method developed by Sugeno and Takagi, which is based on a 
different C S ~ ~ ~ Q I  structure. The next method to be dealt with is the one based on the 
phase plane. This method is very interesthg and wiii be hrther examined in Part PPI 
(Chapter 9), where this method will be used to control the ball in the groove. The last 
method to be discussed is the so-called fuzzy predictive controller. This method 
evaluates rules in advance, compares the results with reality and fires the most 
suitable rule. 

9.2 Sngeno and Tak@ 

Sugeno and Takagi [i9881 tackle a problem in a way which differs from the method 
usually employed. Usual in this case means that it is made of a relatively simple 
controller which works with simple rules, max. or min. operator and centre of gravity 
defuzzification. Sugeno and Takagi also start from a rule set, but their rules have an 
entirely different structure: 

i i i i i 

1 k O 1 k 
R1: if xi is A and...and xk is A, then  u i  = p + p xi +...+ p xk 

Ai...& are fuzzy sets like highly negative, moderately negative, highly positive, while 
xi..xk are crisp input values (real figures), such as fault e and derivative & of the fault. 
The values po...pk are parameters and u is the ultimate result. For a system with n 
rules, there are n output values u1 to u". 

In these fuzzy control systems the fuzzification does not depend on the result of the 
rule. This means that feasibility value pi ~[0,1] is determined for each rule &, but 
this value does not affect the value of U'. Sugeno and Takagi use the following 
formula to determine the ultimate result: 

n 

C pi ui 
i=l u =  

n 

So their method does not employ an explicit defuzzification operation. This fuzzy 
control method is highly suitable for application in so-called machine learning 
techniques because the parmetess can be derived from examples (e.g. by means of 
neural networks, see also Appendix V). Moreover, it is very easy to see which rules 
contribute to the result and which do not. 
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9.3 Phase plane 

Another method was suggested by Ostergaard, King and Palm in 1978. It is common 
to use the phase plane to design fuzzy controllers for second-order systems (see for 
instance the 'Ball in Groove' problem in Chapter 5). 

The rule set is usually symmetric in the switching line, which divides the phase plane 
into two. In one part of the plane the output value is positive, in the other part it is 
negative. The output value of each quadrant depends on, for instance, the distance to 
the switching h e .  The quality and robustness of fuzzy control system deve%~ped h 
this way are based on the system entering the so-called 'sliding mode'. In this sliding 
mode, the system is robust with regard to parameter changes and other interferences. 

The continuous distribution of the fuzzy output values in the phase plane greatly 
resembles the sliding plane with boundary layers [Jager, de et al., 19911. 
As a result the system is highly susceptible to input changes, but performs very well as 
regards (trajectory) tracking quality and robustness. 
The switching line in the normalised phase plane is usually described by means of the 
following formula: Ile + be/& = O, A > O. Such fuzzy applications can also be used in 
the case of non-linear second-order problems. 

9.4 Fuzzy predictive controller 

Finally, we have the so-called fuzzy predictive controller. This method calculates and 
evaluates all possibilities in advance. The rule with the best score in the evaluation is 
subsequently applied. 

This fuzzy control method is used in the public transport system of Sendai, Japan. On 
account of the enormous traffic congestion in this metropolis, City planners wanted to 
have an underground railway system which would offer the city's inhabitants a high 
degree ~f comfort, safety and efficiency. Fuzzy control appeared to be the most 
suitable technology because it allows the trains to accelerate and brake smoothly. 

Conventional fuzzy controllers were shown to have disadvantages in this special 
application on account of their inability to provide feedback on selected control 
actions. A solution to this problem turned out to be the application of f k z y  predictive 
control. 

In this Automm'c Train Operafion system (ATO) a control action is selected by 
evaluating all rules every 100 ms. The fuzzy AT0 outperforms conventional ATOs as 
regards travelling comfort and the accuracy with which trains are made to pull up at 
the platform (in Japan trains etc. always stop in exactly the same spot). The ride on 
the train and its braking to stop is so smooth that passengers in the usually overcrow- 
ded carriages ~f the Sendai underground trains consider the hanging straps to be 
totally superfluous! Moreover, fuzzy control appears to have reduced energy consump- 
tion by more than ten percent (or the travelling time has been reduced). 
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Prediction of 
requirements 
& states 

An example of a rule from the AT0 fuzzy controller is the following: "If the control 
degree is not changed when the train stops within the preset zone, then the controller 
will not change the control conditions". A graphical representation of the controller 
can be found in Figure 9-1. 

XSY System U Fuzzy evaluation 

I 
U 

I I 

Figure 9-1: Diagram of a fuzzy predictive controller. 

The controller has the following algorithm. In the fuzzy predictive controller the value 
of a control command is a crisp figure, u = c1, c2,...,cn, and x and y are performance 
indices. Evaluations of x and y - for instance, as 'good' and 'bad'- are fuzzy sets, 
characterised by pk (x) and pBi (y). The fuzzy controller (periodically) evaluates the 
effectiveness of (linguistic) rules like *'if the performance index x is 4 index y is Bi 
when control action u is Ci at that moment, then this control action is selected and Ci 
becomes the output of the controller". In actual fact this rule looks as follows: 

Ri: = IF (u is Ci + x is 4 and y is Bi), THEN u is Ci 

The performance indices, X(Ci,t) and Y(Ci,t) are predicted on the basis of a model of 
the system. 

In other words: On the basis of the actual state of the system we ascertain a certain 
deviation from the desired state. Next, all rules will be passed through, these will all 
result in a (possible to be fired) control action ui. The actions are being fed back to 
the state predictor. Finally that rule that reduces the deviation (with regard to the 
desired state) the most will be selected and fired. 

This method is therefore particularly suitable if we possess a dynamic model of the 
system and the number of (control) alternatives is relatively small. 
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Chapter 10 CONCLUSIONS & RECOMMENDATIONS 

10.1 Introduction 

As has already been announced in the introduction of this report conclusions are, in 
view of the course of the study, hardly to be drawn. That’s why we will here merely 
discuss the biggest disadvantages and advantages, these can for that matter be 
regarded as general conclusions (since they don’t implicitly ider f r ~ m  the report 
itself). 

10.2 Disadvantages of fuzzy logic 

- Although fine results are obtained in theory (in the field of simulations), only 
few serious applications are known. Even of famous applications (like for 
instance the fuzzy autofocus camera) the precise working of the used controller 
is not revealed. This might have something to do with what is know as ’the law 
of the restraining lead‘, through which companies will hardly incline to publish 
the exact construction c.q. working of their €uzq controllers. 

e likely though is that there are always problems with the unprovable 
stability of the controller during realization in practice. Stability (unfortunately) 
is a property which for fuzzy controllers can’t be proved in the way as we 
became acquainted with out of the classical control technology. although in a 
few cases it is let go at (for exampled in case of the metro in Sendai, see 
Chapter 9). 

- When the rule-base is rather big (more then eighthundred rules) the process 
becomes quite fast very reckon-intensive, and demands a large memory, for the 
variables. 

- In order to be able to construct a controller not only knowledge of fuzzy set 
theory is required, but the engineer also needs to have a very good insight in 
the process. 

- The knowledge of a process, captured by the rules, doesn’t necessarely lead to 
an optimal process control. In other words, a fuzzy regulation is not an 
optimizing one, yet it’s lonely describing a process. 

- The absence of fist-rules and directives to come to the right, or at least 
acceptable, choises, given a certain situation. 

10.3 Advantages of fuzzy logic 

- Fuzzy logic enables us to control very strong non-linear processes. This due to 
the fact that we are, with the help of fuzzy rules, able to build anykind of 
control law. 
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- A fuzzy controller can be implemented quickly, also thanks to the fact that a 
process merely has to be described roughly, this can be done without a 
complex analysis or model building. 

- A fuzzy controller is (in software) very structured, and through that is easily 
adaptable (or expandable). Alterations not too big (like for example a heavier 
motor) will in general only require the adjustment of a few variables. 

- Fuzzy control is robust because it can deal with uncertain and inaccurate 
inputs. More over, a controller on the basis of fuzzy control is able to draw 
correct conclusions everywhere in the state spacee for the output, not just in 
some previously defined working points. 

10.4 Recommendations 

Interesting to find out would be to which amount a fuzzy controller performs better 
with regard to a traditional PID controller (in scope of calculation time and stability). 
A mice problem to perform this on is the one described in Chapter 5. 

At the same time one could study the effect of the great many possible definitions for 
the various operators. What, for instance, is the effect whenever we apply pA(x).pg(x) 
for the logical and in stead of mUi(pA(x), pB(x))? 

Finally it is an advantage to compare the various methods of fuzzy control with each 
other, like for instance the 'traditional' method as has been discussed in Part I with 
regard to the one used in Chapter 5 (on the basis of the phase plane). 

One of the disadvantages of fuzzy control is that we have to generate the rules of the 
controller ourselfs. Altough it is still in its infancy, it seems possible to join fuzzy logic 
and neural nets (Appendix V). In such a Neuro-Fuzzy controller the rules can (more 
or less) be acquired with help of a neural net. This seems very promising, we should, 
in the furure (after more is known about fuzzy logic, and it's usefulness for our 
problems) pay attention to it! 
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Appendix I 

Graphic representation of the operators, as discussed op page 10. 
In the ñgures the original membershipfunction always will be denoted as PAX). 
The zdapted fuzzy set is represented by the dotted line. 

Figure 1-1: Normalisation 

Figure 1-3: Dilatation 

Tigure 1-2: Concentration - 

-_---  Contrast Intensificatie 

- CIF e) 
Figure 1-4: Contrast Intensification 
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Appendix 11 

SOME PROPERTIES OF INTERSECTION, UNION AND COMPLEMENT 

By means of the operations intersection, union and complement, which have been 
defined before, =any of the prqerties applyig to ordlaiary (dassical) sets can be 
extended to fuzzy sets. 
A few examples: 

Laws of De Morgan 
(A u B)' = AVB' 
(A n BI' = AWB' 

(3) 
(4) 

Distributive h s  
c n (A u B) = (c n A) u (c n B) 
c u (A n B) = (c u A) n (c U B) 

These and comparable equalities can be determined by showing that the correspon- 
ding relations for the membership functions of A, B and C are identical. In case (l), 
for example, we get: ~ 

- M a x ( p A ,  = Min ('-PA, ' - p B )  

of which the equality can be simply established by testing it in two possible cases: pA 
(x) ' pB(x) and < pg(x). 

In the same way the corresponding equation of (4) in terms of pAy pB, and pc will 
become: 

M a ( p C ,  M i n ( p A ?  p B ) )  = Min (Marl (PCY pA)Y Mm(bsCY hbg)) 
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Appendix III 

The two most used inference methods. 

As has already beeo pointed out ?ai Chapter 2, there are numerous operators which 
can be used, depending on the application. Moreover, these operators can also be 
combined, which is referred to as inference. It will be clear that such a aggregation 
(of several fuzzy sets) can be realised in various ways. For instance, compare the 
Max-& with the Max-dot inference method. 

Rules Temperature 0 Pressure (P) * Valve 

IF Temperature low 
OR Pressure low 

THEN Vahm-Haií 

\ 

t 
Figure III-1: The- Max-Min inference method. 
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In the max-min inference method the ultimate membership function of the output 
(for each output) is the union of all fuzzy sets assigned to this output (in the conse- 
quences of the rules), after these fuzzy sets have been cut off at the membership 
degree of the corresponding antecedent@), as is shown in Figure III-1. 

Formulated in another way: In Figure UI-1 the input of the controller consist of the 
fuzzy quanti~es "Input T' and "Input P respectively representing the measured 
temperature and the measured pressure. The dark hatched wea 'T is %o.y" idicates in 
how far the "Input T belongs to the fuzzy set "Low", this value is calculated by 
&("Input T, "Low"). Likewise "P is Low" represents the value in which "Input F 
belongs to the fuzzy set "Low". Of these two fuzzy sets (P and T), for each, the biggest 
value is calculated with the help of max("T is Low") respectively max("P is Low"). 
Hence the name of the method: Max-Min! In case that both antecedents in the rule 
are coupled by the ZogicaZ and the smallest of the two crisp values is taken (Chapter 
2). After which the fuzzy set defined on the output (for example "Half") is cut of at 
that value. 

In case of the h.llax-Brsd ( ~ S Q  h o m  as Max-Dot) method we go to work in exactly 
the same way, however now we don't cut off the (for the output defined) membership 
function at the smallest value in the final step, but we multiply the complete mem- 
bership function with this value (see Figure III-2). Consequently the name Max-Prod 
is in a certain way misleading because the Max-min inference is applied in the 
beginning! 
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Rules Temperabrem Pressure(P) * Valve 

IF Temperature low 
OR Pressure low 

MEN Vake- Half 

t 
-durnniy 

Tigure HI-2: The Max-Prod. inference method. 

In the max-dot or max-product inference method the ultimate membership function of 
the output (for each output) is the union of all fuzzy sets assigned to this output in a 
consequent, after these fuzzy sets have been multiplied by the (maximum) members- 
hip value of the antecedent@), as is illustrated in Figure III-2. 
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Appendix IV 

Demands with relation to t-norms and t-conorms [Dubois and Prade 1980, p. 171: 

t-conom are functions which satisfy the following demands (analogous): 
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APPENDIX V 

A newd netwmk ?s a sinactme consisthg ~f rdathdy simple elements (neurons) 
which have been linked up by means of various connections. Via these connections a 
neuron can influence the activities of other neurons. The degree in which this takes 
place depends on the variable weighing factors determining the strength of the 
influence. 
Neural networks are highly simplified copies of the human brain. They possess 
corresponding properties like parallelism, adaptive capacity, self-organising ability, the 
capacity to learn by means of examples and associative powers. 

The main properties distinguishing a neural network from classical artificial intelligen- 
ce technology is its self-learning capacity and parallelism. Thanks to its self-learning 
capacity, the neural network can detect relations in the Infomation supplied with the 
help of a learning algorithm. As the neurons in the network operate parallel to each 
other, a high processing speed can be achieved. Another advantage of parallelism is 
that, if one of the neurons breaks down, this does not immediately disrupt the entire 
network. Data transmission in the network proceeds via several neurons so that the 
breaking down of one part need not be fatd to the bctipsnhg of the network. 
Neural networks are suitable for a number of applications: 

- classification of data (detection of relations) 
data storage (compact and rapid-access memory) 
description of complicated functions (as complement of classical functi- 
on theory) 

- 
- 

- pattern recognition. 

Apart fiom advantages, neural networks unfortunately also have a number of 
disadvantages. The proper learning in of a neural network calls for a large quantity of 
data. Learning in is also a slow process, requiring a great deal of calculation. This 
means that application of a neural network in a continuous learning system will 
considerably slow down the operation of the system. 
Moreover, it is not or hardly possible to establish how a learned-in network "opera- 
tes". The way in which the information is stored in the network, and especially the 
accuracy of the output, the sensitivity to malfunctions, tolerances and the risk of an 
incorrect output value are hard to determine. 
As a result of the above advantages and disadvantages, the worldwide research efforts 
are mainly focused on applications which cannot or can hardly be achieved with 
classical methods and require parallelism. Pattern recognition is a good example of 
this. 
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Appendix VI 

Comment on the results: 

In this appendix some results shall be presented, which are obtained from simulations 
of the, by means of fuzzy control regulated, "Ball in Groove" problem. The control 
strategy, as well as the (non-linear) differential equations, describing the system, have 
detailled been under discussion in Chapter 5. At the same time some remarks have 
been made concerning the results, a.0. the strong switching of the sign of the output 
(the moment) came up for discussion. Although this is a phenomenon where fuzzy 
logic should be of some assistence to us, it appears that finding a solution for this 
switching is, in practice, very difficult. Simple introducing a boundary layer didn't turn 
out to be working, on the contrary, the solution &verged owing to this! Remark, 
several sample-frequencies were tried. Perhaps that the non-converging has something 
to do with the used fuzzy control method. 

The results of the simulations are least of all perfect. However, to demonstrate that a 
fuzzy controller can be implemented relative simple, and rather quick, and that it 
besides can deher quite acceptabk sesuh in the entk worEng space9 the plots are 
yet inserted in this report. One should realize that, when beholding the graphs, the 
goal of this graduation study was slightly different as usual. Drawing up some model, 
carrying out simulations with that, and pulling conclusions on that basis was not the 
objective of this investigation. This report merely has been trying to provide the 
reader some insight in the building and working of a controller operating on the basis 
of fuzzy logic. 

Comment on the graphs: XO is the starting position of the ball on the groove, Xg is 
the desired ending position. By the way, the groove is one meter long (L is half the 
lenght!), and thus excels half a meter to both sides, with regard to the centre (0,O). 
The desired ending speed equals the starting speed (in all cases considered) and 
amounts to O m/s. The mass of the ball is represented by Mk, while Jg represents the 
moment of inertia of the groove. 
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APPENDIX VI1 

Listing of the used Matlab program for simulating the ’Ball in Groove’ problem, as 
discussed in Chapter 5. 

FUZZY.M 

clear 
pack 
global R mk Jg g 1 M 
R=0.025;mk=0.1625;Jg=0.2;g=9.81; 
umax=lOo; 
1 = 0.5;vref = 6; 

xg = -0.l;vg = o; 
xO= [ O 3  O O O]; 
tO = 0;deltat = 0.03 1; 

ml  = nudstr(mk); 
m2 = numSstr(Jg); 
m3 = nWstr(1); 
m4 =numSstr(xO(:,l)); 
m!5 = nudstr(x0(:,2)); 
m6 = nudstr(xg); 

M=O;zl= 0;a = O; 
Mom=[];Zl=[];Z2=[]; 
T=[];Xl=[];X2=[];X3=[];X4=[]; 
E = -xg + xO( :, I); 
v=-vg+xO(:,2); 
El = [E];Vl= [VI; 

% ***LOOP ***  

tb = 0;tf = tb + deltatpb =x0; 

while abs(E/(2*l)) > 0.01 

PES = 0;PEB = 0;NES = 0;NEB = O; 
PVS = 0;PVB = 0;NVS = 0;NVB = O; 
u1 = O ; u 2  = O;u3 = O;u4 = O; 
Al  = O ; A 2  = O;A3 = O;A4 =O; 
g l  =O;@ = O;@ = O;g4 =O; 
Mom=[Mom MI; 

% system constants 
% maximum practised moment 
% Ref. length and speed in 
% orden to normalise E and V. 
% desired end position 
% start conditions 
% integration interval 

% Strings with values of the 
% constants, for use in 
% graphs. 

% Matrices for state 
% position error on t = O 
% speed error on t = O 
% Matrices for memorising all positi- 
% on and speed errors 

% As long as the desired state isn’t 
% accomplished we keep controlling. 
% Membership values are (at 
% each control action 
% initialy equal to zero. 

page 71 



Fuzzy Logic Appendix WI- 

% 
if E>O 

* * * Lidmaatschapsfuncties voor positie * * * 

PES = -1/(2*1)*E+ 1; 
PEB = 1/(2*1)*E; % E is the error in position 

NES = 1/(2*1)*E+ 1; % B short for 'big' 
NEB = -1/(2*1)*E; 

% P is short for Positive 

% S short for 'small' 

% N short for Negative 
% V is the error in speed 

else if E< = O  

end 
end 
% 
if V>O 

*** Membership function for speed *** 

PVS = -l/(vref)*V+l; 
PVB = l/(vref)*V; 

N V S  = l/(vref)*V+l; 
NVB = -l/(vref)*V; 

else if V< = O  

end 
end 
% *** RULE BASE *** 

if V>-E 
u1 =min( [ m a (  [PES PEB]) max( [PVB PEB])]); 
u2 = m a (  [max( [NES NEB]) min( [PES max( [PVS NVS])])]); 
U3=0; 
u4 = O; 

end 
if V< =-E 

u1 =o; 
u2 = o; 
u3 =min( [mm( [NES NEB]) max( [NVB NEB])]); 
u4=max([max([PES PEB]) min([NES max([PVS NVS])])]); 

end 

% 
% 
% the groove. 

*** Fixing the next control action *** 
That is to say the new Moment (=M), to be occupied on 

if V>-E 
p = -umax*u2/(ul+ d); % intersection (p,q) of NUS and 

NUB 
q=ul*u2/(ul+u2); 
Al=umax*q; 
A2=-0.5*(~2-q)*~; 
A3=-0.5*(ul-q)*(-umax-p); % for the determination of the C.O.G. 
gl  = -umax/2; 
82 = 1/3*p; 
g3 =p+2/3*(-umax-p); 

% A l  t/m A3 form the area beneath the 
% Resulting membership functions, necessary 

% centre of gravity of Al  (x-coordinate) 
% centre of gravity of A2 (x-coordinate) 
% centre of gravity of A3 (x-coordinate) 
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M=(gl*Al+g2*M+g3*A3)/(Al+A2+M); % centre of gravity of total m.s.f. 
else if V< =-E 
p =umax*u4/(u3 + u4); % intersection @,q) of PUS and PUB 

A l  =umax*q; % A l  t/m A3 form the area beneath the 
A2=0.5*(~4-q)*~; % Resulting membership function, necessary for 
A3 =0.5*(U3-q)*(~max-p); % the determination of the C.O.G. 
gl  =umax,í2; % centre of gravity of AI (x-coordinate) 
g2 = 1/3 *p; % centre of gravity of A2 (x-coordinate) 
g3 = @ + 2/3 *(urnax-p)); % centre of gravity of A3 (x-coordinate) 
M=(gl*Al+g2*M+g3*M)/(Al+M+M); % centre of gravity of total m.s.f. 

q=u3*u4/(u3 +u4); 

end 
end 

[ t ,XI = ode23 (‘ fuzzyrhs’, tb, tfjb) ; 
y =x(max(size(t)),:); % last state 
E=-xg +y( :, 1) 
v = -vg + y( 42); 
E1=[E1 E];VI=[VI VI; 
T=[T’ t’]’; 
xi = [xi’ X(:,i)’]’;x2 = [x2’ x(:,2)’~’; 
x3 = [x3’ x(:,3)’]’;X4 = [X4‘ x(:,4)’]’; 

% position error 
% speed error 

% expand time vector 
% expand state vector 

zl= [Zl z1];22 = [Z2 221; 
z l  =y(:,3); 
22 =y( :,4); 

tb = tetf = tf + deltat; 
xb = [Y(:,l) y(:,2) O O]; 

% alter the time interval 
% new start condition 

end % End of the WHILE loop 

Ti = O:T(max(size(T)), l)/(max(size(Zl))-l):T(max(size(T)), 1); 

plot(T,Xl),title([‘Position of Ball vs. Time XO =’,m4,’ Xg =’,m6]), ... 
xlabel(‘Tijd [sec]’),ylabel(‘Position [m]’),text(. 1 *max(T),... 
0.65 * (max(X1 (:, 1))-min(Xl( :, 1))) + min(Xl( :, i)), [‘Jg = ’,m2,. .. 
’, Mk = ’,ml,’, L= ’,m3]),pause 
% meta plotl 
plot(T,X2),title([‘Speed ball vs. Time VO = ’,m5,’ Vg = O’]), ... 
xlabel(‘Tijd [sec]’),ylabel(‘Speed [m/s]’),pause 
% meta plotl 
%plot(Tl,Zl),title(‘Angle distortion of groove vs. Time e0 = O eg = O’), ... 
%xlabel(’Time [sec]’),ylabel(’Angle e [rad]’),pause 
% meta plot2 
%plot(Tl,Z2),titIe(‘Angle speed of ball vs. Time se0 = O &eg= O’), ... 
%xlabel(‘Tijd [sec]’),ylabel(‘Angle speed [rad/s]’),pause 
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% meta plot2 
plo t(T1 ,Mom), title (‘ exercised moment on groove’),xlabel(‘Time [sec]’), . . . 
ylabel(‘Moment [Nm]’),pause 
% meta plot2 
plot(El,Vl),title(’Phaseplane’)$abel(‘Position error’),ylabel(’Speed error’),pause 

Listing of the Matlab program in behalf of the calculation of the new state of the 
system (out of two coupled differential equations), being the ’measured’ values of the 
state. 

function rhs = fuzzyrhs(t,x) 

Fa= (mk*x(l)*((R*x(4)-2*~(2))*~(4)-g*cos(x(3))) + M)/(Jg+ mk*x( l)*x(l)); 
% Fa is de hulpvariabele uit Hoofdstuk 5. 

rhs( 1) =x(2); 
rhs(2) = R*Fa + 5 * (x( 1) *x(4) *x(4)-g*sin(x(3)))/7; 
rhs(3) =x(4); 
rhs(4) =Fa; 

% the column rhs(i) (i= 1,2,3,4) represents the derivated state. 
% the derived state therefor is: [S, S, a, lilT. 
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