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ABSTRACT 

In mechanical systems the presence of deformable subsystems is responsible for 
the increase of the number of generalized coordinates, i.e. the number of indepen- 
dant coordinates necessary and sufficient to adequately describe the configuration 
of the system under control, This means that there are more degrees of freedom to 
be controlled / stabilized than control input signals available. To tackle the control 
problem for systems which possess the above described property, a control 
algorithm is derived. The controller designed according to this algorithm is capable 
of accomplishing a reasonable trajectory tracking, while hereby limiting the elastic 
vibrations, which occur due to the flexibility in the system. To make the robot also 
able to perform satisfactorily in the presence of uncertain systemparameters, such 
as for example a payload with unknown mass, an adaptive version of the control 
algorithm is derived. 

The design of the adaptive controller is based on a ‘Basic Algorithm’ presented by 
Slotine and Li in [2] and [3]. However, their method requires the robot to be rigid, in 
other words, there have to be as many control input signals as generalized 
coordinates. The adaptive controller presented in this report, called Adaptive 
Computed Torque Computed Reference Controller, effectively deals with the 
tracking control problem for a flexible TR - robot, i.e. a Translation - Rotation - 
Robot with an elastic transmission between the actuator driving the robot arm and 
the robot arm itself. This system has three degrees of freedom and two control 
inputs. 

To illustrate the qualities of the designed controller, several simulation results are 
presented in which the performance of the controller developed by Slotine and Li, 
as well as the Computed Torque Computed Reference Controller, both adaptive 
and non-adaptive, are discussed and mutually compared. 



CONTENTS 

Chapter One: Introduction to Adaptive Control of Flexible Robots 

Chapter Two: Adaptive Control of a Rigid TR-Robot 

2.1 Designing the control law and adaptation algorithm 
2.2 Equation of motion and desired trajectories 
2.3 Adaptive control of a rigid TR-robot 
2.4 Summary 

Chapter Three: Adaptive Control of a Flexible TR-Robot 

3.1 Problem description 
3.2 Designing the adaptation algorithm 
3.3 Designing the control law 
3.4 Equation of motion and desired trajectories 
3.5 Adaptive control of a flexible TR-robot 
3.6 Summary 

Page 

1 

3 

3 
8 
10 
14 

15 

15 
18 
22 
27 
28 
34 

Chapter Four: Further Investigation into Adaptive Control of a Flexible 
TR-RO bot 35 

4.1 ‘Playing’ with the control gains K, A and I? 35 
4.2 An alternative value for the spring stiffness k 38 
4.3 Time - varying mass of the payload 39 
4.4 Actuator saturance 41 
4.5 Estimation of the spring stiffness 42 
4.6 Simplification of the control algorithm 44 

Chapter Five: Summary and Recommendations 50 

5.1 Summary 
5.2 Recommendations 

50 
51 

References 



Chapter One 

INTRODUCTION TO ADAPTIVE CONTROL 
OF FLEXIBLE ROBOTS 

To conform to modern standards, robot manipulators have to maintain high 
accuracy in trajectory control for a large range of speeds. In order to operate at 
high speeds, industrial robots have to be lightweight constructed. However, a 
lightweight manipulator has flexibility in the link structure and in the transmissions 
between actuators and links. It has been shown that joint elasticity is the dominant 
source of compliance in most manipulator designs. This joint elasticity may arise 
from several sources, such as elasticity in the gears, belts, bearings etc. As a 
result of this compliance in the manipulator, the control system not only has to take 
account for achieving a reasonable trajectory tracking, but also for a certain 
stabilization of the occuring vibrations! Now also powerful, low-cost microproces- 
sors necessary dor real-time manipulator control have become available, an 
extensive (re)search for control algorithms designed assuming irrigidity at the joints 
is justified. Several techniques for designing controllers, able to govern flexible 
manipulators, have already been developed (e.g. feedback linearisation, singularly 
perturbed systems, integral manifold approach). 

At the Eindhoven University of Technology the approach to the control problem for 
flexible robots is based upon the familiar Computed Torque Control technique. 
Ivonne Lammerts has developed a method which is capable of tackling control 
problems for flexible manipulators, i.e. mechanical systems with more degrees of 
freedom than control input signals. This so-called Computed Torque Computed 
Reference Control (CTCRC) technique is therefore well-suited for controlling 
flexible robots, like for instance manipulators with elastic motor transmissions. 
'Computed Torque Control' refers to the fact that the control law is designed 
explicitly on the basis of a model in order to compensate for robot nonlinearities 
and to guarantee a desired closed loop behaviour. 
'Computed Reference Control' refers to the fact that an expression is derived for 
the reference trajectories of the motor rotors of the actuators controlling the 
elastically driven links, i.e. the links driven via the elastic motor transmission. This 
is necessary, because an explicit expression for the desired elastic motor rotor 
variables is not beforehand. Goal of the controller is not only to take care of the 
tracking of the desired link-based trajectories, but also to stabilize the occuring 
elastic vibrations. 

As robots often carry loads of uncertain mass, the robot dynamics constantly 
experiences unpredictable parameter variations. Mostly, there is also the problem 
of other unknown systemparameters, such as inertias, friction coefficients, etc. 



To maintain a good performance of the system in the presence of uncertain or 
unknown plant parameters, adaptive control is required. An adaptive control 
system is capable of adjusting one or more parameters of the control system so as 
to force the response of the resulting closed loop system towards a desired one. 
The adaptive control system estimates the uncertain plant parameters on basis of 
the measured system signals, and uses these on-line estimated parameters in the 
control input computation. The question whether adaptive control can be applied 
and how this could be done in the case of the newly developed Computed Torque 
Computed Reference Control technique, will be the main issue in this report. 

The controller design problem can be stated as follows: 

given a desired trajectory of the end-effector x(t), and with some or all 
constant manipulator parameters p being unknown, derive an adaptive 
version of the Computed Torque Computed Reference Control technique 
applied to a flexible TR-robot. This means, derive a CTCRC control law and 
an adaptation algorithm for the parameter estimation vector p(t), such that 
aller an initial adaptation process: 

- system stability is guaranteed for all t>to 
- the goal of trajectory tracking is achieved 
- the occuring eìastic vibrations remain bounded 

In this report we focus our attention to the adaptive control of 
As a model we use a carriage on which an inverted pendulum 
ge is driven by an actuator with a stiff transmission, while the 

a flexible TR-robot. 
is fixed. The carria- 
pendulum is driven 

by a motor with an elastic transmission. The elasticity in the revolute joint is 
modeled as a linear, torsional spring with known characteristics. This mechanical 
system has three degrees of freedom and two control inputs. 

To illustrate what is meant by a flexible TR-robot, we consider the following figure 
(figure extracted from m). 

2 

For simplicity we suppress the 
rotation around the a-, y- and 
6-axis; we then obtain a TR- 
robot. 
Now suppose that the shaft 
between body I and body II is 
not torsional rigid; we then 
obtain a flexible TR-robot. 
If we model the elastic revolu- 
te joint as a linear, torsional 
spring, we obtain a TR-robot 
with 2 inputs and 3 degrees 
of freedom. 



Chapter Two 

ADAPTIVE CONTROL OF A RIGID TR = ROBOT 

This chapter serves as an introduction to the adaptive control 
problem for a flexible TR - robot. We start with how to design 
adaptive control iaws based M ~ C C ?  Lyapunov’s secom! .method 
and designed according to the Basic Algorithm of Slotine and 
Li. After derivation of Lagrange’s equations of motion and 
specification of the desired trajectories, an investigation of the 
control problem for the rigid TR - robot is presented including 
simulation results. 

2.1 Designing the control law and adaptation algorithm 

According to Lyapunov’s stability analysis, a globally stable adaptive controller can 
be obtained if there exists a scalar function V of the state x, V(x), which meets the 
following requirements: 

V(x ) ) O for x # O positive definite 

V(x)  ( O for x # O negative definite 

V(0) = O 

Suppose the equations describing the dynamics of the rigid manipulator (in the 
absence of friction and other disturbances) can be written as 

with nxl vector of generalized coordinates 
nxl vector of generalized velocities 
nxd vector of generalized accelerations 
mxl vector of constant systemparameters 
nxn symmetric, positive definite manipulator inertia matrix 
nxl vector of centripetal and Coriolis torques 
nxl vector of gravitational torques 
nul vector of applied joint torques / forces 

3 



According to the Basic Algorithm of Slotine and Li (see [2] - S9.2.1) we choose the 
adaptive control law 

This control law consists of two parts. The first part consists of terms corresponding 
to inertial, centripetal and Coriolis, and gravitational torques. The second part 
contains terms representing PD feedback 

with 4; nxl vector of reference velocities 
4; e: 
y94): 
C(q,tj,@)q; 
mt3: 
e, = 4, - q: 
U .- 

nul vector of reference accelerations 
rxl vector of estimated parameters (r s m) 
nxn symmetric, estimated manipulator inertia matrix 
nxl vector of estimated centripetal and Coriolis torques 
nul vector of estimated gravitational torques 
nul vector of reference velocity errors 
nun diagonal, constant, positive definite matrix 

The reference velocity vector q, is formed by shifting the desired velocity qd 
according to the position error q = qd - q, thus 

with Qd: nxl vector of desired link coordinates 
Qd: 
A: 

nul vector of desired link velocities 
nxn diagonal, constant, positive definite matrix 

For the reference velocity error we then find 

with q: 
Q-. 

nxl vector of position errors 
nxl vector of velocity errors 

4 



According to Slotine and Li (see [2] - S7.1.1) e, can be considered as a sliding 
surface for q. The equation for e, can also be seen as a stable first-order differenti- 
al equation in q, with e, as an input ( b o ) .  If we can somehow arrange for e, to 
tend to O as time t tends to infinity (assuming bounded initial conditions), then also 
the position error q and the velocity error q will tend to zero, and trajectory control 
is achieved. 

The following question arises, and that is, how can we arrange for the reference 
velocity error ë, to tend to O? 
We therefore substitute the control law into the equations of motion. This yields 

Define the reference position error e, = q, - q and we find for the equivalent error 
equation of the closed loop system 

mr + Cd, + Kd, = - [(R -Mij, + (C -qq, + (@ -g)] 

with P(0 = P(0 - P 
w, 

txl vector of parameter errors 
nxr matrix of functions q, 4, cj,, 4, 

It must be said that the above derivation is only valid if the error equation of the 
closed loop system is linear in terms of the adjustable parameters P(t) (so - called 
linearly parameterized). 

To show global stability of this adaptive control system, we have to find a suitable 
Lyapunov - function. We use the function 

1 
2 

v =  - éTHé, + pTr-'p 1 

with r: txr diagonal, constant, positive definite matrix 

The first term in this expression represents a virtual mechanical energy in the error 
system, while the second term is a positive definite quadratic expression of the 
parameter error vector F>(t) = P(t) - p. 

5 



Differentiating this Lyapunov - function with respect to time yields 

V = éT[ Hë, + -Hé, 1 ] + pTï-lS 
2 

Substituting the error equation of the closed loop system 

Hë, = - [ Wr p + Ce, + K é , ]  

gives 

i / =  -é,'Ké, + -é,'<H 1 '  -2C)e, + PTr-lS - éTw, p 
2 

In [2] - 59.1.2 Slotine and Li prove the skew-symmetry of the matrix Hac, which 
means that for all e, 

éT(H -2C)é, = o 

Rearranging the equation for V and using the skew - symmetry of b-2C yields 

To meet the requirements imposed upon the Lyapunov function and its time 
derivative, the gain matrix K is chosen positive definite and the second term is 
chosen equal to O. This yields the adaptation algorithm for the parameter estimati- 
on vector j5(t): 

By choosing the above adaptation algorithm and control law, we arranged for the 
positive definite Lyapunov-function V(x) to be a monotonically decreasing function. 
This means that the 'kinetic energy' in the error system constantly decreases, and 
hence, the 'velocity' in the error system er reduces to zero. 

6 



We have shown in this section that with the control law 

it is guaranteed that 

* the steady state position error becomes zero, q + q d  as t + 00 

* the steady state velocity error becomes zero, q 4 q d  as t + 00 

The structure of the adaptive controller is sketched in fig. 2.1. 

fig. 2. I structure of the adaptive controller according to Slotine and Li 

In the following section we applicate the above theory to the (adaptive) control pro- 
blem of a rigid TR - robot. First, we continue with the derivation of the equations of 
motion and specification of the desired trajectories. 

7 



2.2 Equation of motion and desired trajectories 

The following figure provides a schematical model of a rigid TR - robot 

F -- J\I 

me1 

me2 

x J 

m,: 
ml?, 
m,: 
I: 
J: 

x: 
Pp1 

F: 
T: 

fig. 2.2 rigid TR - robot 

mass of the carriage 
mass of the payload at the end of the arm 
mass of the robot arm 
length of the robot arm 
inertia of the motor rotor 

horizontal translation of the carriage 
rotation of the robot arm 

force acting on the translating carriage 
torque acting on the rotating arm 

Using Lagrange’s equations it can be shown that the dynamic equations of the rigid 
TR - robot are: 

With wil = me, + me + nis 

m2 = m, + (1/2)m, 
m, = meJ2 + (1/3)me12 + J 

8 



The desired trajectories for link - motion control h ( t )  cp,,(t)lT are derived from a 
certain trajectory of the payload at the end of the robot arm [xd(t) yd(t)IT. This 
gripper trajectory is specified to be a constant circulation in two - dimensional 
space. 

fig. 2.3 desired trajectory of the payload 

I: 
(xM,yM,r): 
o: 

length of the robot arm 
defining the circle to be tracked 
angular velocity of the payload 

The following figure depicts the desired trajectories for the carriage and pendulum 

- 
Y 
E -0.5 - 
8 .o 

A 
O 2 4 6 8 10 12 14 16 18 20 

tlmo [s] 

9- 

O 2 4 6 8 10 12 14 16 20 

time [s] 

fig. 2.4a desired trajectory of the carriage &(f) 
fig. 2.46 desired trajectoty of the pendulum cpd(f) 
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2.3 Adaptive control of a rigid TR - robot 

0.0 

0.5 \ 
0.4 4 - 

- 
I hap = 1 0 0  

lab = 2 

- 
- 
- 

- 

In this section some simulation results are presented. We assume that the pendu- 
lum rotates in the horizontal plane (g = O). 

parameters used for simulation 

= 2: 
= 3: 

= 5: 
r n  = iv: 

mass of the payload [kgl 
[kgl 

maSS of the Car7iage Kkll 
[kgm21 

macs of the robot arm 

inertia of the motor rotor 

= 0.35: radius of the circle to be tracked [m] 
= 0.75: length of the robot arm rm1 
= 1: angular velocity payload [rad/s] 

= o: 
= v2: 

x-coordinate circle center [ml 
y-wordinate circle center [ml 

Example 2.1 : comparison of the adaptive controller with the non-adaptive controller 

In this example we consider the case in which the links of the rigid TR - robot are 
required to follow the desired trajectories according to fig. 2.4. We initiate the 
simulations with the end-effector starting from the origin with zero initial velocity 
(x(tJ=O and cp($,)=O). Despite of the fact that the initial link coordinates x(tJ and 
cp(t,,) and their time derivatives are not according to the desired trajectories, after a 
transient, the controller is still able to reduce the position error q to zero (fig. 2.5a). 

fig. 2.5a non-adaptive control of a rigid TR-robot 
me,-control law = me,-model 



Suppose we do not have full knowledge about the mass of the payload mel. For 
example, we substitute a value for the mass me, in the control law, which is 5 times 
larger than 'in reality'. It is easy to see that the performance of the system is 
beyond acceptance (fig. 2.5b); the steady state position error is much larger than 
the tolerance on the integration algorithm (tol = IO4). 

- - 
- 
- 

podtion orrom: S&L non aäaptivr 
0.6 I 1 

kap = 1OQ 
lab = 2 

0.5 - 
0.4 gam - 1000 - 

- 
- 
- 

- 
- 

tlmr [o] I 
fig. 2.5b non-adaptive control of a rigid TR-robot 

me, -control law = 5*me, -model 

To deal with the problem of tracking control in the case of uncertain or unknown 
parameters, adaptive control is required. Fig 2 . 5 ~ ~  see below, shows the simulation 
result when an adaptive control law is used to govern the rigid TR - robot. The 
mass of the payload me, is estimated on-line, and this estimation is used in the 
control input computation. The simulation is started with no a priori information 
about me,, thus @,(to) = O. Notice that tracking control is achieved. Remark: the 
estimated parameters converge to their true values. 

position orroc.: S&L adaptlvo 
0.6 I 1 

fig. 2 . 5 ~  adaptive control of a rigid TR-robot 
the confrol law is computed with an estimated value for me,, with rhe1(tJ = O 



Example 2.2: finding proper values for the control gains K, A and I? 

Qualitatively, we can describe the effects of the gain matrices as follows 

K determines how fast the reference velocity error e, is reduced to O 
A determines how fast the position error q and velocity error q damp out 
F determines at what rate the estimated parameters are adjusted 

Unfortunately, properly quantifying the gain matrices is a process of trial-and-error. 
To illustrate the difficulty in finding a suitable value for a gain matrix, in this case I?: 
we consider the adaptive control of a mass m on a frictionless surface by a motor 
force u, with the plant dynamics being mx = u. 

fig 2.6 mass on a frictionless surface 

If we choose r too high, we make too great demands upon the adjusting rate for 
the parameter estimate 0. The 'wild' behaviour of p(t) results in a high control 
activity, and thus strongly influences the link positions and velocities. Observe that 
peaks appear in u and q at the same time that peaks appear in p(t) (fig. 2.7a). 

position and velocity error 
'ka0 = f00 I 

-_- 
O 1 2 3 4 5 6 7 8 3 l o  

tim [SI 

estimated macm and control input 
I 

- sstirnated 1~188 --- control input 
E 

-200 
O 1 2 3 4 5 6 7 8 3 10 

tlme [a] 

fig. 2.7a = 'too high' 
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By lowering ì7 we obtain a smoother progress in time for the parameter estimate p, 
and thus a smoother progress in time for the system states q and q (fig 2.7b). So, 
peaks in the system variables, occuring at places where we do not expect them at 
first sight, do not necessarily have to result from implementation errors !!! 

'kap = f00 
lab = 2 
gam = 40 

-7 - 

positiin and velocity error 
'ka0 = f00 i 

a I --- veiocity error - pasition error 
-0.5 

O 1 2 3 4 5 e 7 8 B 10 

time [a] 

estimated mass and control input 20 I I 

.- 
O 1 2 3 4 5 6 7 8 9 l o  

time [a] 

fig. 2.7b Pr& = 'properly chosen' 

However, if is chosen too low, the adaptive mechanism is not stimulated enough 
to arrange for the parameter error p to become constant within the simulation time- 
interval (fig. 2.7~). 

- pasithmermr --- velocity error 
0 

-0.5 
O 1 2 3 4 5 6 7 8 0 10 

- eetimated maw --- control Input 
t 

-40 
O 1 2 3 4 5 8 7 8 B 10 

time [SI 

fig. 2.7~ XrX, = 'too IOW' 
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Notice that in the case of an input signal of "sufficiently richness", both the tracking 
error 4, as well as the parameter error p, converge to zero (fig. 2.7b). If the control 
input is not persistently exciting] the tracking error q converges to zero, but the 
parameter error p does not: see fig. 2.7d (m = 15, while fi(t,) = 8,3). 

I 
'kap = f00 
lab = 2 

n - 

- 
p o s î t î o n m r  --- velocity OTTOT 

-2- 

tim I 
astimated mass 

E -10 

y -20 l ~ i  O 1 rstimated 2 maw 3 4 5 6 7 8 9 10 

tim [ei 

fig, 2.7d Irk = 'properly chosen' 
the controì input is not persistently exciting 

2.4 Summary 

Adaptive control is a powerful method for controlling dynamic systems with 
uncertain or unknown parameters. An adaptive control technique based on 
Lyapunov's stability theory and developed by Slotine and Li, is used for controlling 
a rigid TR-robot manipulating a payload with an uncertain mass. Simulations show 
that the addition of an adaptive mechanism to a non-adaptive controller greatly 
improves the performance of the overall system. However, the gain matrix determi- 
ning the adaptation rate for the adjustable parameters, needs to be 'properly' 
quantified. Also, the adaptive controller requires availability of the full state vector 
and the error equation of the closed loop system to be linearly parametrized. 

14 



Chapter Three 

ADAPTIVE CONTROL OF A FLEXIBLE TR-ROBOT 

In the previous chapter we considered a rigid TR - robot. In 
other words, we assumed the spring stiffness in the elastic 
~evoiute joint to be infinitely Parge. Ir? this chapter, we study the 
system's performance in the case of an elastic transmission 
between actuator and link. To illustrate the effects of the flexibi- 
lity in the transmission, special attention is given to Simulations 
where the magnitude of the spring stiffness k is chosen to be 
'relatively small'. One might think that the adaptive control 
problem for a flexible TR - robot is a straightforward extension 
of its rigid equivalent. This is certainly not the case. The dim- 
culty in controlling flexible robots is that there are more de- 
grees of freedom to be controlled / stabilized than control input 
signals. Especially calculation of the torque acting on the 
elastic transmission turns out to be quite long- winded. 
The same strategy is followed as in the rigid case. First, we 
start with a description of the control problem. Then, we outline 
the methodology of how to design an adaptation algorithm and 
a control law. Next, Lagrange's equations describing the dyna- 
mics of the plant and the trajectories to be tracked are derived. 
We end this chapter with an investigation of the control pro- 
blem for a flexible TR - robot including simulation results. 

3.1 Problem description 

To illustrate the effect of an elastic revolute joint on the control system design, we 
consider the following figures depicting a rigid TR - robot (fig. 3.1), respectively a 
flexible TR - robot (fig. 33). 

fig. 3.1 rigid TR-robot: 
TR - robot with a rigid transmission between actuator and link 

15 



fig. 3.2 flexible TR-robot: 
TR - robot with an elastic transmission befween actuator and iink 

Remark that in the case of a rigid TR-robot (fig. 3.1) there are two degrees of 
freedom and two control inputs. However, if the transmission between actuator and 
link is modeled as being flexible instead of rigid, the set of generalized coordinates 
q: = [q, qd has to be augmented with an extra coordinate q, to a new set q: = [q, 
q, qd (fig. 3.2). This extra coordinate defines the rotation of the motor rotor, and is 
necessary and sufficient in order to adequately describe the kinematics of the 
system. Yet, there are only two control input signals available !!! Appearantly, in 
mechanical systems the presence sd deformable subsystems introduces the 
problem that the number of degrees of freedom to be controlled / stabilized is 
greater than the number of control input signals. In our case, the mechanical 
system is a TR-robot, and the deformable subsystem is an elastic transmission 
between the actuator driving the robot arm and the robot arm itself. 

What we would like to have is a controller, which despite of the elasticity in the 
transmission, makes the end-effector of the flexible robot track the same desired 
trajectory as its rigid counterpart, and hereby keeping the occuring vibrations 
between acceptable bounds. 

The Computed Torque Computed Reference Control Technique (presented in 
[I]) is a powerful tool for designing such a controller. The basic idea behind the 
technique is to replace the desired trajectories of the generalized coordinates by 
reference trajectories in order to obtain a smoother robot performance in space. In 
time, the reference trajectories converge to the desired trajectories. However, there 
is one major problem, and that is that not all the desired trajectories of the generali- 
zed coordinates are known. In the case of our TR-robot we are able to derive the 
desired trajectories of the carriage and pendulum from the known desired gripper 
path. But when the transmission is elastically modeled, we do not have the 
slightest idea about the desired trajectory of the motor rotor, and consequently, a 
reference trajectory for the rotation of the motor rotor cannot be obtained. We cope 
with this problem by extracting an expression for this reference trajectory from the 
control law, instead of obtaining the reference trajectory through an adjustment of 
the desired trajectory. 

16 



This extraction of the reference trajectory from the control law is typical for the 
Computed Torque Computed Reference Control Technique. Therefore, it is unique 
and it distinguishes itself from other control techniques, such as for example the 
‘Basic Algorithm’ developed by Slotine and Li in [2] and [3]. Though the CTCRC 
technique has its roots in the Basic Algorithm of Slotine and Li, its main merit is 
that it is applicable to the control of flexible systems. One could consider Computed 
Torque Computed Reference Control as an Extended Version of the Basic Algo- 
rithm by Slotine and Li. 

In [4]; Brevoord applies the CTCRC-technique to the control of an xy-table with an 
elastic motor transmission. in many other practical appiications, however, we must 
deal with unknown or uncertain systemparameters. In order to arrange for an 
acceptable performance of the system in the case of parameter uncertainty, 
adaptive control might be required. In [5], Vijverstra presents the theoretical and 
experimental results of various adaptive schemes used for controlling rigid manipu- 
lators. 

In this report our main concern is how to tackle the adaptive control problem of a 
flexible manipulator. The complexity of the control problem contains the following 
aspects: 

1. the system is multivariable 
2. the system is nonlinear 
3. the system is flexible 
4. the system has unknown parameters 

We deal with this complexity by 

1. using the State Space Approach 
2. applying Computed Torque Control 
3. applying Computed Reference Control 
4. applying Adaptive Control 

The way we synthesize the above individual concepts into one control algorithm, 
Adaptive Computed Torque Computed Reference Control, is described in the 
following sections. 

17 



3.2 Designing the adaptation algorithm 

In this section, we derive the adaptation algorithm for the adjustable parameter 
using Lyapunov’s second method. We carry out the derivation under the assumpti- 
on that the reference velocity and reference acceleration q,, respectively q, are 
totally known. This is not the case, because we do not (yet) possess an expression 
for the reference trajectory of the motor rotor q,, and its time derivatives. In the 
next section, however, we show how with the Computed Reference Method we 
derive expressions for the motor rotor variables. 

Suppose the equation describing the dynamics of the flexible system (in the 
absence of friction and other disturbances) can be written as 

with n: 

e: 

number of generalized coordinates necessary and sufficient to 
describe the kinematics of the n rigid links 
number of generalized Coordinates necessary and sutficient 
to describe the deformations in the elastic transmissions 
(n+e)xl vector of generalized coordinates 
(n+e)xl vector of generalized velocities 
(n+e)xl vector of generalized accelerations 
mxl vector of constant systemparameters 
(n+e)x(nte) symmetric, positive definite manipulator inertia matrix 
(n+e)xl vector of centripetal and Coriolis torques 
(n+e)xl vector of gravitational torques 
(n+e)x(nte) symmetricl semi-positive definite stiffness matrix 
(n+e)xn distribution matrix 
nxl vector of applied joint torques / forces 

Following the Basic Algorithm of Slotine and Li (see [2] - §9.2.1), we choose the 
adaptive control law 

with (nte)xl vector of reference positions 
(n+e)xl vector of reference velocities 
(n+e)xl vector of reference accelerations 
1x1 vector of estimated parameters (r s m) 
(n+e)x(n+e) symmetric, estimated manipulator inertia matrix 
(n+ e)xl vector of estimated centripetal and Coriolis torques 
(n+e)xl vector of estimated gravitational torques 
(n+e)xl vector of reference velocity errors 
(n+e)x(nte) diagonal, constant, positive definite matrix 
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This control law consists of two parts. The first part consists of terms corresponding 
to inertial, centripetal and Coriolis, gravitational and elastic transmission torques. 
The second part contains terms representing PD feedback. 

The reference velocity vector q, is formed by shifting the desired velocity qd 
according to the position error = qd - q, thus 

with (n+e)xl vector of desired link coordinates 
(n+e)xl vector of desired link velocities 
(n+e)x(nte) diagonal, constant, positive definite matrix 

For the reference velocity error we then find 

with q: 
q: 

(n+e)xl vector of position errors 
(n+e)xl vector of velocity errors 

Analogous to the derivation of the adaptation algorithm in the case of a rigid TR- 
robot (see section 2.1), the following question arises, and that is how can we 
arrange for the reference velocity error e, to tend to O? 

We therefore substitute the control law into the equations of motion.This yields 

H(q -qd + c(0 -0,) + g + Kk9 = (i -wq, + (6 -C)g, + 6 + Kk9, + K e f  

Define as reference position error vector: e, = q, - q and we find for the equivalent 
error equation of the closed loop system: 

Hë, + Ce, + Kke, + KC!, = - [(fi -44, + (6 -C)Q, + (6 -@I 

= - Wf(9,QrQpQJP 

with txl vector of parameter errors 
(n+e)xr matrix of functions 9, q, 9, gr 
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It must be said that the above derivation is only valid if the error equation of the 
closed loop system is linear in terms of the adjustable parameters p(t) (so - called 
linearly parameterized). 

To show global stability of this adaptive control system, we have to find a suitable 
Lyapunov - function. We use the function: 

with r: txr diagonal, constant, positive definite matrix 

The first two terms in this expression represent a virtual mechanical energy in the 
error system (sum of the kinetic and potential energy), while the last term is a 
positive definite quadratic expression of the parameter error vector p(t) = p(t) - p. 

Differentiating the Lyapunov-function with respect to time yields 

Substituting the error equation of the closed loop system 

Hë, = - [ Cé, + Kker + K e f  + Wf $5 ] 

gives 

In [2] - S9.1.2 Slotine and Li prove the skew symmetry of the matrix H-2C, which 
means that for all e, 

@T(H-2C)ér = o 
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Rearranging the equation for V and using the skew symmetry of H-2C yields 

To meet the requirements imposed upon the Lyapunov-function V and its time 
derivative, the gain matrix K is chosen positive definite and the second term is 
chosen equal to O. This yields the adaptation algorithm for the parameter estimati- 
on vector fqt!: 

By choosing the above described adaptation algorithm and control law, we arran- 
ged for the Lyapunov function V(x) to be monotonically decreasing. This means 
that the 'kinetic energy' in the error system constantly decreases. It is essential to 
notice that then the reference velocity error O, reduces to zero, and as a conse- 
quence, the links are able to track their desired path. 
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3.3 Calculation of the control input signal u = [u, uJT 

Assume that the dynamics of a TR-robot with elastic motor transmissions can be 
given in the following general form 

H(q,p)g + ~(q,,,P) = Du 

written out 

with d = t q s  q e  qJ: 
Qs-. 

Qe-- 

9;' = íqs qJ: 

Qm: 

(n+e)xl vector of generalized coordinates 
(n-e)xl vector of coordinates of the links driven by a stiff 
transmission 
ex1 vector of Coordinates of the links driven by an elastic 
transmission 
nxl vector of coordinates defining the positions and orientation 
of the n rigid links 
ex1 vector of wordinates defining the rotations of the motor 
rotors of the actuators with an elastic transmission 

Following the algorithm of Slotine and Li, we choose as adaptive control law 

written out 

with reference trajectory of qs Qsr' 
qw; reference trajectory of qe 

reference trajectory of q, 
Bmr' reference trajectory of q,,, 
q / r  = h s r  qJ: 
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6, = 4, - e 
6s. = 4, - 4: 
6mr = 4 m r  - Qrn 

reference velocity error of qs 
reference velocity error of qe 
reference velocity error of q, 

Let us first consider the control law u, for the direct driven links, i.e. the links 
driven by stiff transmissions. The expression for u, is given by 

Notice that for the computation of this input signal we need the reference velocities 
and accelerations of the links q,: = [q,, qeJ, respectively q,: = [q,, $,J. 
We obtain the expression for the reference velocity by shifting the desired velocity 
according to the position error, thus [ 9 " ] = [  ? ] + A [  (a, - a3 ] 

Qef aed (9, - a3 

By differentiating 
links 

and so, the input 

with respect to time we find for the reference accelerations of the 

signal u, controlling the direct driven links can be computed. 

If we want to compute the control law u, for the elastically driven links, i.e. the 
links driven by elastic transmissions, we meet the following problem. The expressi- 
on for u, is given by 

A 

u, = H m m 9 m r  - - + Kmm'mr 

Notice that in order to compute u, we have to have an expression for the reference 
trajectory of the motor rotor q,, and its first and second time derivative. Obtaining 
the reference velocity qmr by shifting the desired velocity q m d  according to the 
position error ( q m d q m )  as shown above is not possible, simply because we do not 
have any notion about the desired motor rotor variables. We solve this problem by 
computing the reference trajectory of the motor rotor from the control law. To do 
this, we use the equation 
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Writing the elastic transmission torques explicitly yields 

Writing the rotation of the motor rotor q,, explicitly yields 

and by differentiating once, respectively twice 

9, = K-' { q A, A,] + [ A, A,] d 

+ q 6, e,] $,, + [ e, + @eel BI, 
d 

+ -[ cf e, e,] t j l r  + 2 4  d e, e,] a/r + [ e, + L] @?, 
dt2 dt 

However, before we come to the computation of q,,, we have to make some 
preliminary calculations. A closer look at the equation for the reference acceleration 
of the motor rotor q,,, shows that we need an expression for qoW,,. The equation for 
q(lW,, is given by 

#Wlr = #uId + A (#'Old - @"OS 
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The following steps dictate how we come to the calculation of this equation: 

1. After partitioning of Lagrange's equations of motion and writing the highest 
derivative explicitly, we determine the accelerations of the links ql via 

then we are able to define 

2. After partitioning and differentiation of Lagrange's equations of motion and 
writing the highest derivative explicitly, we determine the jerks of the links 
q("'), via 

then we are able to define 

All the signal variables necessary to compute q,, and q,, are available and are 
used in the computation of the control input signal for the elastically driven links u,. 
With the expression derived for u, we possess the complete control input signal uT 
= [u, u J. Together with the adaptation algorithm for p(t) we are able to simulate the 
behaviour of the system under adaptive control. 
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The structure of the Adaptive Computed Torque Computed Reference Control- 
ler is sketched in fig. 3.3. The dotted lines and blocks refer to the extensions made 
in relation to the Basic Algori hm by Slotine and Li (see fig. 2.1). 

-........................................................? 
'~~~ 33- -7 

T 5- 
c3- 

s a ,  
b $0' 

t e c 7  _1 

\..* . s 

rn 

. 

. 

. . 
rn . . . 
s . 
. . 
D . 
* P 

. . . . 

. . . . 

. * . . . . . . . 

. . . 

. 

fig. 3.3 Adaptive Computed Torque Computed Reference Controller 
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3.4 Equation of motion and desired trajectories 

The following figure schematically depicts the model of a flexible TR - robot 

- 
r m, -m,/sin(qJ O - ii, 

- O O J - _  0, 
-m,/sin(q,) m,f O qe 

uT=[us ue] 

us 

7 - 
-m*lcos(sJ 6 1 0  [:] + m,/gcos(qe) - k(q,,,-qJ = 0 0 

o 1  k ( q m - q J  - - - 

me4 

me2 

m,: 
me1 : 
me: 
I: 
J: 
k: 
q,: 
qe: 
q,: 
U,: 

U,: 

fig. 3.4 flexible TR - robot 

mass of the carriage 
mass of the payload at the end of the arm 
mass of the robot arm 
length of the robot arm 
inertia of the motor rotor 
stiffness of the linear torsional spring 
horizontal translation of the carriage 
rotation of the robot arm 
rotation of the motor rotor 
force acting on the carriage through a stiff transmission 
torque acting on the elastic transmission 

with rn, = me, + me + m, 
m2 = me, + (1/2)m, 
m3 = me, + (1/3)m, 

The desired trajectories to be tracked by the carriage and pendulum are the same 
as in the case of a rigid TR-robot (see fig. 2.4). 
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3.5 Adaptive control of a flexible TR - robot 

in this section some simulation results are presented. We assume that the pendu- 
lum rotates in the horizontal plane (g = O). 

parameters used for simulation 

k = 4980: spring stiffness revolute joint [Nmhadl 

me: = 2: 

ms = 10: 
me = 3: 

J = 5: 

r = 0.35: 
I = 0.75: 
w = 1: 
XM = o: 
Y, = u2: 

mass d the pay!md [kgj 
mass of the robot arm 
mass of the carriage Iksl 
inertia of the motor rotor [kgm7 

radius of the circle to be tracked [ml 
length of the robot arm rm1 
angular velocity payload [radhl 
x-coordinate circle center [ml 
y-coordinate circle center [ml 

Example 3.1 : uncontrolled flexible TR-robot 

Characteristic for the system behaviour is its free response, i.e. the response 
generated when there is no control input signal and an initial state unequal to zero. 
In this example we consider the undamped, free oscillation of the flexible TR-robot. 
The state vector defining the positions and velocities within the system is chosen to 
be xT = [q, q, q, q, q, qJ. As initial condition we choose xT = [O O 1 O O O]. Figure 
3.5 shows the displacement of the carriage q,, the angular rotation of the pendulum 
qe, the angular rotation of the motor rotor q, and the flexibility (q,-qe). 

I ...................._._____...__ ~ ...... 

I 
figuur 3.5a 
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8 0  

O 02 0.4 0.6 0.8 1 1.2 1.4 1.6 1.E 2 

time Is] 

wr spgtml deiis@ lW, . . . p. . 1 . 0 . , 

buur 3.56 
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[Nm/rad]. This choice can be motivated as follows: 

the state equation describing the dynamics of the system can be written as 

x =  fl* 

with X: 2(n+e)xl state vector 
f: 2(n+e)xl nonlinear vector function 

Linearization of the original nonlinear state equation at x = O yields 

A = [3x=0 X = Ax with 

Analytically computing the eigenvalues of A results in 

with I = (me,+(l/3)meJf: 
J: inertia motor rotor 

inertia robot arm + payload 

This yields for the period p of the oscillation 

By chosing k = 4980 [Nmlrad] we obtain for the period p = 0.1 [s], which is 
equivalent to an undamped frequency f = 10 [Hz]. 
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Simulations of the dynamical behaviour of the linearized system show that the 
numerically obtained period of the oscillation equals the analytically computed 
period. Simulations of the local behaviour of the nonlinear system, i.e. near the 
equilibrium point x = O, x = O (i1 x(to) II cc I), show consistency with its linear ap- 
proximation. As can be seen in fig. 3.5, the response of the system when the initial 
condition is some distance away from x = O, X = O (i1 x(to) II = I), displays that there 
are more frequency components in the system signals besides the frequency of 10 
[Hz]. However, an FFT analysis shows that the highest frequency occuring in the 
free response is about 20 [Hz] (see fig. 3.5a). 

Example 3.2: controlling a flexible system with a 'rigid' control law 

It is evident that in order for the payload to track a prespecified path, the TR-robot 
needs to be controlled. In Chapter Two we showed how this control problem for a 
rigid manipulator can be tackled using the Basic Algorithm by Slotine and Li. To be 
able to cope with the tracking control problem in the case of flexible manipulators, 
the Basic Algorithm was modified into a 'flexible' control algorithm: Computed 
Torque Computed Reference Control. In this example, we demonstrate what 
happens if we mistakenly assume that the manipulator is rigid. In other words, we 
apply a 'rigid' control law to a flexible system. Therefore, we consider the following 
system consisting of two masses m l  and m2, coupled by a linear elastic spring 
with stiffness k, and under control by one actuator force u. The control law is 
designed as if the two-mass-spring system in fig. 3.6 were completely rigid (like in 
fig. 2.6 with m = m,+m.J. Goal of the controller is to achieve for m2 to track the 
desired trajectory according to fig. 2.4b. 

fig. 3.6 flexible system fig. 3.7 rigid control of 
a flexible system 

Notice that the amplitude constantly grows in time; the system under control is 
unstable. This was to be expected, as the control law totally ignores the extra 
degree of freedom in the system. 



Example 3.3: control of a flexible system with the non adaptive CTCRC control law 

In this example, we take the elasticity in the transmission into account, in other 
words, we control the flexible system with the CTCRC control law (see fig. 3.6). 
Figure 3.8 depicts the simulation result when we possess exact knowledge about 
the value of the spring stiffness k, i.e there is no parameter uncertainty about k. 
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fig. 3.8 k-controller = k-model 

Figure 3.9 depicts the result in the case of parameter uncertainty in k. The control 
law is computed under the assumption that the spring is 5 times more rigid than 'in 
reality' . 
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fig. 3.9 k-controller = 5*k-model 

Compared to the performance in the case of no parameter uncertainty, the result 
may be considered acceptable; the steady state position error is in the order of 
magnitude of the tolerance of the integration algorithm. Application of a control law 
with an adaptation mechanism working on m2, gives similar results as shown in fig. 
3.7, 3.8 and 3.9. 
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Example 3.4: Non Adaptive Computed Torque Computed Reference Control of a 
Flexible TR-robot 

In this example, we consider the flexible TR-robot under non-adaptive CTCRC- 
control. The robot is initially at rest at q,=O and q,=O (the desired link trajectories 
are acc. to fig. 2.4). Notice that the controller effectively handles the trajectory 
tracking of the carriage and pendulum. Now let us zoom in on the last 10 seconds 
of the simulation time interval. We see that there remains a 'rest oscillation' whose 
amplitude is smaller than the tolerance of the integration algorithm (tol = IO4). 
Faeducing the to!erance to -IO4 has no effect on the amplitude of the oscillation. The 
vibration can be narrowed down by increasing the controi gain K. The flexibility in 
the system, and thus the torque in the spring z,=k(q,-q,), remains between 
acceptable bounds. 
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fig. 3.1 O 13.1 1 non adaptive CTCRC-control of a flexible TR-robot 
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Example 3.5: Adaptive Computed Torque Computed Reference Control of a 
Flexible TR-robot 

Now suppose that we have no a priori knowledge about the mass of the payload 
mel. Choosing a value for me,, and substituting this choice in the non-adaptive 
control law, would surely lead to an unacceptable system performance (see fig. 
2.5b), or even instability. We deal with this parameter uncertainty by applying the 
adaptive control law developed in section 3.3. Based on the measured system 
signals (position and velocity of the carriage, pendulum and motor rotor), the mass 
me, is estimated on h e ,  and this estimate is used in the control input computation 
(with rhel!t0) = O). Notice that the adaptive CÏCRC controller seiccescftiily deals with 
the tracking control problem of the carriage and pendulum, and that the estimated 
parameter converges to the manipulator paramater p (p = p - p := O). 

note: bear in mind that the mass of the payload me, is the only unknown systemparameter. Yet, three 
parameters have to be estimated. Examine the mass matrix in the Lagrange’s equations (see 
section 3.4-page 27)’ and you will notice that me, occurs in three expressions in the mass matrix 
(p’ = [rn, m2 mg. 
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3.6 Summary 

In Chapter Two, we considered an adaptive control algorithm as proposed by 
Slotine and Li. The restriction of this algorithm is that it requires the plant to have 
as many control input signals as there are degrees of freedom to be controlled / 
stabilized. In the case of robots with elastic motor transmissions, the number of 
generalized coordinates is greater than the number of control inputs. 
In this chapter, we modified the Basic Algorithm by Slotine and Li such that it can 
be used for controlling flexible robots: Adaptive Computed Torque Computed 
Reference Contrs!. The method has 2 number ~f IirnItaationa: 

1. the error equation of the closed loop system must be linear in terms of the 
adjustable parameters, but far more important is that 
2. the full state vector has to be available 

Nevertheless, the new adaptive robot control algorithm is capable of effectively 
dealing with the tracking control problem of a TR - robot with an elastic transmissi- 
on between actuator and link. Though the trajectory tracking is not perfect, we 
consider it as acceptable, because the steady state position error remains in the 
order of magnitude of the tolerance of the integration algorithm. Due to the 
elasticity in the system, vi brations occur. These vibrations also remain stabilized. 

We may conclude that both the adaptive, as well as the non-adaptive CTCRC 
controller are capable of making a flexible TR-robot display a prespecified, desired 
system behaviour. However, the non-adaptive controller requires more or less 
precise, a priori knowledge about the system parameters. The adaptive controller is 
able to perform equivalently, but with less information! There is, however, a price 
we have to pay: the adaptive controller is slower, because the control algorithm is 
computationally more extensive. 
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Chapter Four 

FURTHER INVESTIGATION INTO 
ADAPTIVE CONTROL OF A 

FLEXIBLE TR-ROBOT 

Unfortunately, control theory still lacks a general method for obtaining 
optimal control gains in nonlinear control system design. The simulati- 
on results presented in the previous chapters are performed with 
values for the gains we think are most suitable. In the first section of 
this chapter, we ‘play’ with the control gains in order to study their 
influence on the system 3 performance. Subsequently, simulations are 
performed with a more flexible transmission between actuator and 
link. Then, we consider cases in which the mass of the payload is 
time-varying, the actuators display saturation characteristics and the 
spring stiffness k is estimated instead of the mass of the payload. We 
end this chapter with the presenfatiom sf an equivalent, but computati- 
onally less extensive algorithm. It is less extensive, because we 
numerically differentiate the computed references twice, instead of 
computing their first and second time-derivative exactly in an analyti- 
cal and time-consuming way. 

4.1 ‘Playing’ with the control gains K, A and 

In example 2.2 we considered the adaptive control of a rigid mass. We stated that 
the performance of the system strongly depends on an appropriate tuning of the 
control gains. These statements, of course, also hold for the control of flexible 
systems. The following question now arises, and that is, if a general theory for 
providing optimal control gains is not available, how can we find ‘properly chosen’ 
control settings? First, we linearize the system around its equilibrium point x = O, 
X = O. Then, we determine an optimal control law U’, i.e. in our case a state 
feedback law uo = -Lox, which, when applied as the system input, optimizes the 
system’s performance with respect to some cost criterion. Next, we ‘convert’ the 
state feedback matrix Lo into our control gains K and A, and apply these values in 
the control law for the nonlinear system. Seen from a mathematical point of view, 
this procedure is not correct, but it yields an initial value from which we can 
continue the process of finding ‘proper’ values for the control gains by means of 
trial-and-error. Finding a ‘proper’ value for i’ is purely a matter of trial-and-error. 
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Example 4.1 : influence of A 

The factor A determines how fast the position error 4 and the velocity error q damp 
out once the reference velocity error e, is zero. The following simulation results 
confirm this statement. 
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fig. 4.2 A = 81 

Notice that for A = 0.51 the convergence time for the position error lasts longer 
compared to the simulation in which A = 81. 
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Example 4.2: influence of K 

k = 4980 

kib = 2 - 
gam = 1000 

2 

1 -  
kop = 250 

5 O 

0 -  

- --- iaae I -1 motor rotor 

By increasing K we arrange for the system to come more quickly into sliding 
motion. That is just what we want, because then the position error can damp out as 
demonstrated in the previous example. The next simulation results show that the 
control gain K determines how fast the reference velocity error e, is reduced to zero. 
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fig. 4.4 K = 2501 

In example 2.2 we already demonstrated the effects of a change in r. Simulations 
showed that determined at what rate the estimated parameters are adjusted. 
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4.2 An alternative value for the spring stiffness k 

In example 3.1, we motivated our choice for k = 4980 [Nm/rad]. But, can the 
control system also cope with the trajectory tracking problem for a TR - robot with a 
more flexible transmission between actuator and link? To answer this question we 
simulate the behaviour of the system for k = 199.2 [Nm/rad]. 

Example 4.3: non-adaptive / adaptive controller k = 199.2 [Nm/rad] 
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fig. 4.6 adaptive: k = 199.2 

As the efforts which the actuators have to make to arrange for a satisfactory 
system behaviour are too great at t = 6, we conclude that the more flexible the 
transmission between actuator and link, the harder it is to accomplish a reasonable 
trajectory tracking and hereby limiting the occuring elastic vibrations. The same 
conclusion holds for the adaptive controller. 
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4.3 Time - varying mass of the payload 

As an adaptive controller has to process more information than its non-adaptive 
equivalent, it is slower. Now, if the plantparameters vary considerably faster than 
the parameter adaptation, it is difficult for the adaptive controller to keep up. In 
order for an adaptive control system to perform satisfactorily, the basic assumption 
that the unknown plantparameters are constant or slowly time-varying has to be 
made. In this section, we consider the payload to be a time-varying mass. 

The mass me1 pragreacea in time according to 

me, = me,(l + cos(~l>l)) 

with w, = 2n / 120: 
w2 = 2z / 6: 

slowly time-varying 
rapidly time-varying 

Example 4.4: adaptive controller: slowly / rapidly time-varying mass 

osition error 
tol = 0.0001 

e 
Y 0.5 
EI 

I 

gam = 1000 

-5 endulu -0.5 
O 20 40 80 45 50 55 so 

time [s] time [a3 

mass of the payload - estimation 20 

- me1 --- mkaD-01 -20 I 
O 10 20 30 40 50 60 

time [s] 

fig. 4.7 slowly-time varying mass 
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position error 
k 0 4980 1 1 

-0.5 
o 20 4.0 60 

x10-3 position error 
tol’= 0.0001 

45 50 55 80 

time [s] time [a] 

moss of the payload - estimation 20 

I 
n m Y Y 

8 0  
E 

- mei --- mkaD-01 -20 I I 
O 10 20 30 40 50 60 

time [s] 

fig. 4.8 rapidly time-varying mass 

Notice that the adaptation mechanism is still able to estimate the mass of the 
payload, despite of the fact that it varies slowly with time (fig. 4.7). However, if the 
mass of the payload changes more rapidly in time, the adaptation mechanism 
cannot keep up; a correct estimate fails to appear (fig. 4.8). 
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4.4 Actuator saturance 

Most actuators display saturation characteristics. This means that when the input 
signal for the actuator reaches a certain level, an extra increase of the input hardly 
leads to an extra increase of the output. The output remains around a certain 
maximum value. In this section, we simulate the behaviour of the TR-robot when 

k = 4980 1 -  

:abp=;oo - 

- --- m 

the actuator torques are limited to 

I U,+,,, I = 15 [NI 
I u,-max I = 10 [Nm] 

Example 4.5: non-adaptive / adaptive controller with actuator saturance 

- --- -20 I I 
O 5 i o  i s  20 25 30 

time [a] 

fig. 4.9 non-adaptive controller 

k - 4980 

o 
-0.6 

O 5 10 15 20 25 30 

t h e  [o] 

20 
Ë r 
Y 

81 - 3 0  
r 
Y 

3 
-200 -20 

O 4 0  20 30 O 10 20 30 
time [a] time [a] 

tïg. 4.10 adaptive controller 
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Note that the problem of tracking control is effectively handled in both the adaptive, 
as well as in the non-adaptive case. The difference in the amount of time necessa- 
ry for the position error to reduce to zero is negligible compared to the case with no 
actuator saturance (compare fig. 4.9 vs. fig. 3.10, and fig. 4.10 vs. fig. 3.12). 

4.5 Estimation of the spring stiffness k 

Lip te now, we regarded the macs of the pay!oad me, as the unknown system 
parameter. Suppose there is no uncertainty on the mass properties, but that the 
spring stiffness k of the elastic revolute joint is not exactly known. Is the controller 
then able to accomplish a reasonable trajectory tracking? Does the adaptation 
mechanism yield a correct estimate for the unknown parameter? To answer these 
questions, we consider the trajectory control of the flexible TR-robot in the case of 
uncertainty in k. 

An extra complication arises if we want to tackle the above described control 
problem. The adaptation algorithm for m yielded 

We simply found the reference velocity by shifting the desired velocity according to 
the position error, and the reference acceleration by shifting the desired accelerati- 
on according to the velocity error. If we derive the adaptation algorithm for k we 
find 

5 

k = B (9, ~ e p  Oe1 q m p  Om, QJ 

Deducing the expression for q,, yields 

0 e 

So in order to compute k we need Q,,, but to compute qmr we need i< !!! To avoid 
the issue of (in)stability, we neglect k in the computation of q,,,,, thus 

We consider tbis neglect as allowed, because in the long run k must become 
constant, thus k := O. 

42 



Example 4.6: estimation of k 

As state vector x we choose 

xT = 9 s  q s  ge q e  q m  c im q m r  qer  q s r  I 
We initiate the simulation with 

xT(t,=0) = [ 0 0 0 0 0 0  1000000] 
Sirnulatior! seauIt: 

position error - adaptive control - estimation k 
k 4 199.2 

V kap = 100 
lab 2: 2 e - 0.5 
gam = le+04 8 

t 

1 - 
- 

y 
-carriaae 7-- D endulum 

60 
-0.5 

O 10 20 30 40 so 
time [s] 

x10-= position error 
tol = 0.006l 

R 

u 
! i  . .  e 

s o  Ê Y 

-2 
0 20 40 60 40 45 50 55 80 

time [s] time [s] 

-0.1 

Notice that the trajectory control problem is effectively dealt with and that the 
flexibility in the system remains limited. For a controller tackling trajectory control 
problems, this is the decisive criterion. However, a correct estimate of the spring 
stiffness k fails to appear. This is in contrast with the simulation in which the mass 
of the payload is estimated. Appearantly, the control input signal does not contain 
sufficient information to provide for a correct estimate (the input signal ia nod: 
persistently exciting). 
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4.6 Simplification of the control algorithm 

To be able to apply the control algorithm presented in Chapter Three, we have to 
derive an expression for the accelerations and jerks of the links from the differential 
equation describing the dynamics of the plant. Often, however, the model descri- 
bing the system under control is so complex, that analytically deducing an expressi- 
on for the accelerations and jerks of the links, is practically unfeasible. In this 
section, we demonstrate how the (non-)adaptive control problem for a flexible TR- 
robot is tackled, using an approximation scheme for the calculation of some system 
variables. 

simplified alqorithm 

The full state vector, i.e. the positions and velocities of the links, has to be availa- 
ble at all times and the desired trajectories have to be known up to a sufficiently 
high order. The adaptation algorithm remains unmodified. 

The time derivative of a signal is computed with the following two-points differentia- 
tion scheme: 

I - t t l  

fig. 4.13 linear approximation 

Lagrange’s interpolation polynom [4]: 

t - t ,  f i  t - tl 

4 - tl 
p(t) = - + - fo 

tl - to 

After differentiation we find 

with P( t )  = - 1 ( f ;  - 6) 
h 

with to s t s tl 

h = t l  - 4  

44 



The control input signal is computed as follows: 
We obtain the reference velocity of the links by shifting the desired velocity 
according to the position error 

The accelerations of the links are computed via the two-points differentiation 
scheme: 

Qs( tn )  - Qs(tn-1) 

tn - 4 - 1  
qs(tn) = 

The reference jerks of the links are given by 

The reference velocity of the motor rotor is computed through 

9, = K-' L[ d H, H,] 9/f + [ HB fl,] V4/f 
dt 

+ 9 e, e,] Qlf + [ e, + e,] Qt 
d 

45 



For the reference acceleration of the motor rotor we find 

Qmr(t=tn) = Qmr(tn> - Qmr(tn-1) 

tn - tn-1 

0.02 

73 0.01 - - 
Y 

.- g 
3 01 
o, 

-0.01 

Now, we are able to compute the control law for the direct driven links via 

10 

9 5  
8 

& O  
8 

- 
-5 

The purpose of the following simulations is to examine which differences occur, 
when we use the approximation scheme presented above, instead of the 'exact' 
scheme presented in Chapter Three. We first consider the non-adaptive controller. 

Example 4.T non adaptive control using an bxaact' algorithm 

-+ -O- O 

I I 
I io ia -DOL a i 0  i a  

tlmr C-ï tlmr C o l  

fig. 4.14 / 4.15 non adaptive exact 
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Example 4.8: non adaptive control using an 'approximated' algorithm 

1 ' k = 4986 
CI 
W kap - 100 

lab = 2 - 

- 
,- carriaae ---, Denduium 

7 0.01 

s 

-0.01 
O 5 10 

time [a] 

poaition error 
tol = 0.001 0.5 ''O4 

I 
10 15 

time [a] 

fig. 4.16 / 4.17 non adaptive approximated 

At first sight, it looks like that there is no difference in the performance of the 
controller. However, closely examining the plots displaying the steady state position 
error shows that in the 'exact' case the position error remains within the tolerance 
range of the integration algorithm, while in the 'approximated' case the position 
error is about 5 times larger. 
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Comparing the simulation results for the adaptive controller, leads to the same 
conclusions as for the non-adaptive controller, namely the use of an approximation 
technique leads to a slight performance degradation in the sense of less smaller 
steady state position errors. 

Example 4.9: adaptive control using an 'exact' algorithm 

k = 4980 

lab = 2 - 
gem - :303 

1 -  - 
u kap - 100 

- oarn'aae --- D endulum 

i --- mraCL ... mlcl-5 

10 

a 

::I 
i ao 

-1 a0 

O 
-m -Lo tlmr C-i --o tlmr Co3 

fig. 4.18 / 4.19 adaptive exact 
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Example 4.1 O: adaptive control using an 'approximated' algorithm 

position error - adaptive - oppmxîrnation 
1 k = 4'980 - -0 kap - 100 

lab = 2 - 
gam - 1000 

7 cam-aae 7-- Dendulum 
5 10 15 20 25 30 -0.5 

O 
time [PI 

1 

Y 

8 0  

8( 

- 
Y 
E 

30 
-1 

O 10 20 30 20 25 -5 

time [a] tlme [a] 

fig. 4.20 14.21 adaptive approximated 

In practical applications, the question which choice to make between a computati- 
onally extensive algorithm with smaller errors, or a computationally less extensive 
algorithm with larger errors, can only be correctly answered if the demands 
imposed upon the performance of the overall system are taken into account. 
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Chapter Five 

SUMMARY AND RECOMMANDATIONS 

5.1 Summary 

Adaptive C~ntroI is a pcwerf~ll tcol for c~ntrollling systems with uncertain plantpara- 
meters. In [2] and [3] Slotine and Li present a ‘Basic Algorithm’ which effectively 
deals with the trajectory control of mechanical systems, provided that the number 
of degrees of freedom equals the number of control input signals (so - called rigid 
robots). In a flexible manipulator, i.e. a manipulator with deformable elements, the 
number of degrees of freedom is greater than the number of control input signals. 
This means that there are more degrees of freedom to be controlled / stabilized 
than that there are input signals available. Simulations show that the controller 
designed according to the Basic Algorithm fails to arrange for a stable system 
behaviour when applied to a flexible system. 

To cope with the trajectory control problem for flexible manipulators, an algorithm is 
derived which is capable of accomplishing a reasonable trajectory tracking, while 
hereby limiting the vibrations which occur due to the elasticity in the system. The 
algorithm is called Adaptive Computed Torque Computed Reference Control 
(abbreviated: ACTCRC). 

Simulations show that the non-adaptive controller requires more or less precise, a 
priori knowledge about the systemparameters. The adaptive controller performs 
equivalently, but with less information. However, the adaptive control algorithm is 
computationally more extensive. 

The performance of the system strongly depends on an appropriate tuning of the 
control gains. As a general theory for obtaining optimal control gains is not (yet) 
available in nonlinear control system design, the simulations are performed with 
values for the gain matrices we think are most suitable. 

Actuator saturation hardly influences the performance of the control system. If the 
mass of the payload is time-varying, the trajectory tracking is still considered as 
acceptable. In some robot applications it is not the mass of the payload which has 
to be estimated, but other systemparameters. Simulations are included, in which is 
demonstrated how the ACTCRC-controller tackles the trajectory control problem in 
the case of an uncertain spring stiffness. It is shown that to achieve a reasonable 
trajectory tracking, it is not necessary for an estimated parameter to converge to its 
true value. 
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Further, a simplified algorithm is presented. In this algorithm the time derivative of 
some system variables is calculated by using an approximation technique, instead 
of deducing them analytically from the Lagrange’s equations of motion. The 
simplified algorithm is computationally less extensive, but leads to a slight perfor- 
mance degradation in the sense of less smaller steady-state position errors. 

5.2 Recommandations 

In this report we only considered the numerical analysis of the control system. In 
order to check whether the designed controller performs satisfactorily in practice, 
an experimental analysis has to be performed. The XY-table situated in the WFW- 
lab is therefore suitable. In [5], Brevoord presents the experimental results of the 
non-adaptive CTCRC-controller. Considering the simulation results presented in this 
report, we do not doubt that the ACTCRC-controller will do well in governing the 
XY-table. 

In [6], Vijverstra presents the results of various adaptive schemes used for control- 
ling ai rigidTR-robot. An interesting issue for further research could be to investiga- 
te if these schemes are also suitable for adaptive control of a flexible TR-robot. 
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