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Conclusions and recommendations 
~ 

Recommendations 

To continue the research in future the following aspects can be investigated. 

1) Application of the C CTC strategy to other systems 

The properties of the C C ï C  law that I have found during this research are related to the xy 
table. The question is: how will the properties of the C CTC strategy be if the control strategy 
is used for the controlling of other systems. 
In future, the C CTC law has to be used for controlling other systems. The elasticity of those 
systems has to play a (very) important role. Then it is possible to make more general conclusions. 

2) Implementation of an adaptation algorithm if system parameters are partially unknown. 

One of the big disadvantages of the control strategy is that we have to know all the system 
parameters. In practice this can cause problems. 
In future, it will be nice if an adaptation algorithm is implemented in the C CTC strategy. In 
practice this implementation can also lead to a reduction of the tracking - and velocity errors. 
Note: Ricky Doelman (student of the WSYY control group) is designing this mentioned adaptation 
algorithm for a flexible TR robot. 

3) Comparison with other control strategies 

During the research I have compared the results of the C CTC law with the general CTC law. 
It can be useful to make a comparison with other control strategies. 

4) Improvement of some global investigated aspects: 

- observer algorithm 
- output control 
- designing of a routine to chose the control - and observer parameters 

44 



Abstract 
~~ 

ABSTRACT 

This report gives a summary of the final state of my research. The research deals with the 
controlling of manipulators with flexible transmissions between the actuators and the stiff links. 
Ivonne Lammerts, member of the WFW group, has developed a control law for this kind of 
manipulators. Tnis control law deais with tracking the desired trajectory as weIi as controi of the 
elastic vibrations. The control law is composed out of two Computed Torque Control routines, 
and is called the Composite Computed Torque Control strategy (C CTC strategy). 
The goal of my research is to test the C CI'C strategy and to apply the control strategy in a 
practical situation. The flexible xy table, which is situated in the WFW lab, will be used as the 
test apparatus. The xy table has 3 degrees of freedom (ql, cp2, cp3) and 2 control inputs. The 
flexibility can be desrcribed by cpl-cp3. 
I have split up the research into two parts. At the first part of the research I focus my attention 
to get a picture of the properties of the C CTC strategy. I have designed a control law based on 
the C CI'C strategy for controlling a (simplificated) model of the xy table. The goal of applying 
the designed C CTC law is to track the desired trajectories cpld and cp2d and to control the 
flexibility cpi-cp3. This control law is a state control routine. By executing theoretical analysis and 
simulations with theoretical and practical situations ( a situation where unmoddeled dynamics, 
wrong estimated parameters, measure noise, etc. plays an important role) I have formed a picture 
of the properties of the C CI'C controller. 
For theoretical situations it appears that the stability is guaranteed, and that the simulation results 
are good. For a practical situation it appears that the simulation results are satisfactory and that 
the robustness of the controller is reasonable. There will be a considerable chance that the C CTC 
controller will be applicable in practice. 
At the second part of the research I focus my attention to the specific controlling of the 
experimental xy table. Now, we have to account for the limitations of the system. During this 
part of the research I have solved problems as: the redesigning of the C CTC law and the 
implementation of this control law in the control system, the handling of the measurements 
(observer design), the designing of a simulator to test designed control laws and the total 
organisation of executing experiments. 
I have designed a set of programs with which it is possible to execute simulations and 
experiments. During the execution of simulations and experiments I have determined a suitable 
control system configuration and I have determined suitable control and observer parameters for 
different situations. Futher I have investigated the robustness of the control system, and I have 
made a comparison between the control results of the C CTC controller and a CTC controller. 
It appears that the designed C CI'C controller answers to our desirements. The system behaviour 
stays stable and the tracking and velocity errors converge to zero (to small values). The 
robustness of the system is reasonable and the control results of the C CI'C controller are better 
than the control results of the considered CI'C controller. 



Abstract 

The final goal of applying a C CTC controller is that the end-effector will track a desired path. 
The end-effector of the xy table is fixed by (pi, (p2 and (p3. So, with the designed C CTC state 
control routine it is not possible to track a desired end-effector path. To achieve this, the C CTC 
state control routine has to be changed in an output control routine. During the last part of the 
research I have designed such an output control routine. The control results of the by trial and 
error designed C CTC output control routine are reasonable. 
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Notation 

á,&,à, .. .. .. 
a,a,a, 

NOTATION 

scalars 
vector 
matrix 

transposition 
inversion 
element of matrix A on row i, column j 

argument of function f between round brackets 

first order time derivative of a,a and a, 
second order time derivative of a,a and a, 



Introduction 

1. INTRODUCTION 

Today industrial robots are used for various purposes. Because of hardware limitations in 
on-line applications, until now, robot control has been studied extensively under the 
assumption that the actuator transmissions are stiff and that the links can be modelled as 
rigid bodies. Therefore, most of today’s robots have a very stiff construction in order to 
avoid deformations and vibrations. 
For higher operating speeds, industrial robots should be light-weight constructions to 
reduce the driving force/torque requirements and to enable the robot arm to respond faster. 
However a lightweight manipulator may have flexibility in the link structure and elasticity 
in the transmissions between the actuators and links. For most manipulators, elasticity of 
the motor transmissions has a greater significance for the design of the controller than the 
deformation of the flexible links. 
A well known approach to improve the behaviour of manipulators is the computed torque 
control method. In its original version this control method appears to be applicable only to 
rigid manipulators. If flexibility plays an important role, it often results in an instable 
system behaviour. Therefore, the control system must deal with control of the elastic 
vibrations as well as trajectory tracking. 
However, it is not possible to find a control input for a flexible manipulator which will 
accomplish perfect tracking ~f any desired trajectory in space while totally damping the 
undesired elastic deflections. It is more realistic to search for a control strategy achieving 
both a reasonable trajectory tracking and a certain stabilization of acceptable vibrations. 
Ivonne Lammerts, member of the WFW-group, has developed such a control strategy. This 
control strategy is an extended version of the familiar Computed Torque Control technique 
for rigid manipulators, and is called the Composite Computed Torque Control strategy (C 
C ï C  strategy). Ivonne Lammerts has proved, for a theoretical situation, that this control 
strategy will be applicable to systems with one or more flexible transmissions. The 
question is now: how will the C CTC strategy function in reality. During my research I 
have to answer this question. 
This report gives the final state of my research. In this report I will show the C CTC 
strategy and 1 will show the C CTC law which P have designed for controlling the xy table 
with a flexible transmission (the test-apparatus of the research). Further I will show and 
discuss how the C CTC law is implemented in the control system of the xy table. By 
showing and discussing theoretical analysis, simulation results and experimental results I 
will give an extensive review of the properties of the C CTC controller. At the end I will 
give some recommendations to continue the research in the future 

1 



The composite computed torque control strategy 

2. THE COMPOSITE COMPUTED TORQUE CONTROL STRATEGY 

A manipulator with elastic motor transmissions 

We consider manipulators that can be modelled as an open chain of n rigid links inter- 
connected bij joints with one degree of freedom per joint. One end of the chain is fixed to 
the ground and the other end has to follow a specified trajectory in space. 
Since each joint allows one relative motion of the connected link, n generalized 
coordinates are necessary and sufficient to describe the kinematics of the links. These 
coordinates are the components of a vector % E E”’ The desired path of g, in time is 

Each joint has its own actuator and its own transmission between the actuator and the 
driven link. The motor torques (used in a generalized sense, i.e. denoting both torques and 
forces) acting on the transmissions are the robot control inputs. In this report, we consider 
the case in which some or all transmissions are elastically deformable. Then, for each 
elastic deformation it is necessary to introduce an extra coordinate to desribe the rotation 
of the rotor of the motor. These extra coordinates are the components of a vector g,,, E &Y 
with e s n. 
For the sequel it is advantageous to regroup the coordinates g, of the links in two vectors 
9, E We and 9, E: W, where 9, and 9, contain the coordinates of the direct driven links (i.e. 
by the stiff transmission), respectively the coordinates of the elastically driven links (i.e. 
driven by the elastic transmissions). See fig 2.1. 

denoted by a d  = qtd(t). 

Fig 2.1 Elastically driven links - direct driven links. 
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The composite computed torque control strategy 

This completes the introduction of the total vector of generalized coordinates 9 E We. 

I 

P- 

The components of the vector E defined by 

charaterize the deformations of the elastic motor transmissions. Hence, if these 
transmissions are modelled as massless linear springs, the elastic torques being the 
components of a vector 2, E E are related to E by 

z = KE 
-e 

where K E ]BL"*" is the positive definite diagonal stiffness matrix. 

Dynamic model of the flexible robot 

Using a Langrangian approach, the dynamic model of the manipulator can be written as: 

where: 

9=[e4,9,IT 
M = positive definite inertia matrix. 
C& = is a vector with torques due to te Coriolis and centrifugal effects. 

- n = is the vector with torques due to friction. 
g = is the vedor with torques due to gravity. 
Mu - = is the vector with the inputs. 

= is the vector with elastic-transmission torques. 

3 



The composite computed torque control strategy 

The model can be given in a detailed form by: 

m s  S +mJ e + m g  m +c,Q +CA + c d  m +n -m +g m +K@ m -g) = ge (2.7) 

Composite computed torque control 

The first problem in controlling a rigid-link manipulator with elastic motor transmissions, 
is that only the desired link coordinates ad= $d(t) can be determined directly from the 
known desired gripper path, while there is no indication for a certain desired trajectory of 
of zJt) or gJt) (note: z-= K(a-gJ. 
To obtain a smooth robot performance in space, we define a reference trajectory %= dt) 
for the link variables, which will converge to &d after progression in time. Further, the 
idea is to formulate a 'reference manifold' s i t )  ( or Q~)) on which the controller tries to 
keep the elastic-transmissions torques zJt), instead of trying to supress them totally. 

The second problem is that there are more degrees of freedom than control inputs. The 
goal of the composite controller developed in this chapter is to track the reference 
trajectory of the links, while stabilizing the elastic vibrations around the specified 
reference manifold. 

It is appealing to try to find the analogue for flexible manipulators of the socalled 
computed torque control method for rigid robots. However, an elastic-transmission robot 
does not allow a nonlineair feedback control as for rigid manipulators, since there are less 
control inputs than degrees of freedom. Here, we choose the next computed torque 
notation for the (n+e)-th order dynamic model of the flexible robot (Ivonne Lammerts, 
October 1991). 

where, 

- K, is a diagona! positive gain matrix. 

4 



The composite computed torque control strategy 

- e is a chosen reference trajectory of all system variables; in this case, the vector 
- s= & is a sliding service for 9 according to Asada and Slotine (1986). 

- e= a-g is the total error. 
%= e-9 is the total reference error. 

- %= g+& Vtrt,; exto)= e(to). 
- 
- 

Note, that we do h o w  the desired trajectory of the link Variables, ad(t) and its time 
derivatives, but we haven’t any indication of how to determine a certaindesired trajectory 
qmd(t) for the elastic motor rotor variables, unless we make use of above computed torque 
expression in splitting it up again in a partitioned form according to the equations 2.5, 2.6 
and 2.7: 

u 
-e sr er mr sr er 

= m A  + m A  + m A  +CA +CA + ~ ~ m r + ~ m + ~ m + K @ m r - ~ e )  +K e (2.11) 

where K, K, and á, are diagonal, positive definite gain matrices. 

With equation (2.10) it is possible to find a reference trajectory for %(t), L ( t )  and L ( t ) .  
Now it is possible to determine the inputs us(t) and ue(t) with (2.9) and (2.11). 

One part of the controller deals with the tracking of a desired trajectory. This part of the 
controller is in fact a CTC controller. This CTC controller is described by (2.9) and (2.11). 
The question is: how can we find a reference trajectory of q, +. 9,. 
The second part of the controller deals with the controlling of elastic vibrations. With 
(2.10) and q, it is possible to calculate a reference manifold ze,= K(qm-qe,). The second 
part of the controller stabilizes the elastic vibrations around the specified reference 
manifold. This part of the controller is in fact also a CTC controller. 
So, to control a system with flexible transmissions we use a control law which is 
composed out of two CTC laws. This is the reason why the control law is called the 
Composite Computed Torque Control law. 

5 



Controlling the xy table with a C CTC law 

3. CONTROLLING THE X Y  TABLE WITH A COMPOSITE COMPUTED 
TORQUE CONTROL LAW 

The goal of my research is to test the Composite Computed Torque Control strategy ( C 
CTC strategy), and to find the properties of this control law. For the research I will use 
the xy table with one elastic transmission as test apparatus. The xy table is situated in the 
W e  lab. 
In this chapter I will show the C CTC law which I have designed for controlling the xy 
table. 

The xy table 

A schematic representation of the xy table is given in fig. 3.1 ( Heeren, 1989 and v.d. 
Molengraft, 1989). 

-, BELT WHEEL 

. .  
SPINDLE 

fig 3.1 Schematic representation of the xy table. 



Controlling the xy table with a C C ï C  law 

For control design we have to choose a suitable model of the xy table. I choose the next 
model ( v.d. Molengraft, 1989). 

fig 3.2 model of the xy table 

See appendix A for a more detailed description of the xy table. 

The dynamic model of the xy table can be written as: 

MïS+CcrLs>S+K~+r~cs> - = Hg 

If M,C and & are partitioned in accordance to the partitioning of g, the dynamic model 
can be given in detailed form (see also appendix A). 

7 



Controlling the xy table with a C CTC law 

The C CTC law 

We choose, as shown in chapter 2, the next C CTC strategy: 

Splitting the above computed torque expression into a partitioned form according to the 
equations 3.2, 3.3 and 3.4 gives: 

where, 

i = 1 , 2  
C p v  = @pid+hi(cppid-cpi) 

cp ir = reference trajectory 
c p a  = desired trajectory 

j = 1, 2, 3 
e .  = cp .  -cp 

1' I' i 

(3.9) 



Controlling the xy table with a C CïC law 

Now, we have to define a vector g,. In g, we put those variables of which we define a 
desired trajectory. The number of variables of g, is equal to the number of inputs. In the 
general case % exists of those variables which fix the position of the end-effector of the 
robot. 
In the case of the xy table we can put two variables in g,. The position of the end-effector 
of the xy table is fixed by three variables (qp,, q),, qpJ. So, we have to make a choice 
which variables we put in g,. We have two possibilities: we can choose g,= [cp2 cp3IT , or 
we can choose g,= [cp2 cpllT. 

If we choose g,= [r.p2cp3]T and define the desired trajectories sd, i d  and &, it is possible 
with (3.7) to determine the reference trajectorie cplr and its time-derivatives: 

Equation (3.10) is in most cases an instable differential equation. Only if we choose a very 
small springconstant k (something like ~ 3 1  or smaller), we will find a stable solution. This 
is not an usehl result, so we have to try the other possibility g,= [qp, vilT. After defining 
the desired trajectories and its time-derivatives we can determine the reference trajectory 
cp3r and its time-derivatives: 

(3.11) 

Equation (3.11) is a stable differential equation. We can determine cp3Xt) and its time- 
derivatives, and with this variables it is posible to determine the inputs us(t) and u,(t) with 
(3.6) and (3.8). 

Stability of the closed loop system 

Stability is an extremely important factor for control design, especially for the kind of 
flexible robot systems considered in this report. Lyapunov's stability theorems make 
possible a method of synthesizing control laws which guarantee stability of the closed loop 
system ( system and controller). 

9 



Controlling the xy table with a C CTC law 

In the second stability approach of Lyapunov ( Kok, 1991), the first step is the derivation 
of the equivalent error equations of the closed loop system. The equations which describes 
the closed loop error dynamics of the model of the xy table controlled by the C CïC law 
are: ( 3.6-3.2, 3.7-3.3, 3.8-3.4): 

m22ë2r+m23ë3r +cue3r+c21elr+k2è2r = 0 

mllëlr+m13ë3r+~12e2r+~13e3r+~11~lr+k(~lr-~3$ +kidlr = 0 

/3 I - \  
(3.1L) 

(3.13) 

(3.14) 

i = 1, 2, 3 
e, = rp,-rpi 

Then, we use the total reference error vector e, in order to obtain a short notation of the 
equivalent error equations of the overall closed loop system: 

Më +Ce +Kgr+KC = O (3.15) 
-r -r +r 

In the second step, a positive definite Lyapunov function candidate V(t) of the total 
reference error vector e, is chosen such that it represents the mechanical energy of the 
flexible system. 

V = -e 1 'Me +-e 1 'Kg, 
2-r -r 2-r (3.16) 

To guarantee the stability we have to come up the following 4 requirements: 

1) V(st)= O , with g= O 

=9 - x= h&] + oké 



Controlling the xy table with a C CTC law 

2) V(E7t)r 4lxll 
=> The inertia matrix M is positive definite and I(k is not negative definite. 
4 oké 

3) V(st)= continuous and differentiable. 

4 oké 

4) V(5t) c o 

=> With (3.16) we can find: 

1 V = e 'Më +,e 'Ah2 +e 'Kk e 
-r -r 2 - r  -r -r -r 

With (3.15) can be given by: 

(3.17) 

(3.18) 

I have defined the matrix C (see appendix A) such that the matrix [MM-C] is 
skew-symmetric, i.e.: 

[&-Cl 1 = -[-M-C]' 1 
2 2 

(3.19) 

. 
As a consequence, we can make use of the property of skew-symmetry of [%M-C] 
in that: 

xT[-i@-C]X 1 = O , for any arbritrary 
- 2  

(3.20) 



Controlling the xy table with a C CTC law 

so, 

Y = -e 'Kr e < O 
-r -r 

(3.21) 

+ oké, if it4 is ~hosen positive definite 

The Lyapunov function comes up to the 4 properties. So we can conclude that the closed 
loop system is asymptotically stable. 

Note: 

Expression (3.21) shows that the total reference velocity error converges to the sliding 
surface E= &= - -  ;+he= 0, which implies that both the velocity and position tracking errors 
go to zero. 

The research 

Now we have found a suitable way to control the xy table with a Bexible transmission. 
The designed C CTC law (3.6 3.8 3.11) guarantees stability of the closed loop system. It 
is possible to track a d =  [vu, v i d l T  and to stabilize the elastic vibrations. In fact this is a 
state control routine @1 + $2. 
The x - and y position of the end-effector of the xy table are fixed by cpl, cp2 and ip3 (see 
fig. 3.2). So, with the state control routine the x - and y position of the end-effector are 
not fixed. To control the end-effector, the C CTC law has to be changed in an output 
controller ( [x,y] + [xd, yd]). 
The mean goal of the research is to test the C CTC strategy and to find the properties of 
the C CTC strategy, and in first instance not to control the end-effector. For this research P 
use the designed state control routine. At the end of the research I have try to find a way 
of changing the C CTC law to control the end-effector ( output control). 
In the next chapters I will describe how the testing of the C CTC routines is executed, and 
which results I have found. 

12 



Properties of the C CTC strategy 

4. PROPERTIES OF THE C CTC STRATEGY 

I have split the research into two parts. At the first part of the research I focus my attention to 
get a picture of the properties of the C CTC strategy. At the second part I focus my attention to 
the specific controlling of the experimental xy table. The first part is described in this chapter, 
and the second part is desrcribed in chapter 5 and chapter 6.  
To get a picture of the properties of the C C ï C  strategy, I have executed a lot of simulations. 
I have made a distinction between theoretical - and practical situations. 

Theore tical situation 

The theoretical situation is the situation I was using in the previous chapters. This means that: 

- all parameters are known. 
- all variables + time derivatives are known (on every moment). 
- the model of the xy table fits the reality. 
- the inputs are continuous. 

In chapter 3 is proven that this theoretical situation leads to an asymptotically stable system 
behaviour. 

Simulations 

The simulations have been executed with the program MATLAB. The differential equations have 
been solved with a third order Runge Kutta integration algorithm (variable stepsize). The 
integration accuracy can be chosen. 
The goal of applying the C CTC law is to track the desired trajectory [cpzd (pidlT and its time 
derivative. The C CTC law calculates q~~~ (+ time derivatives) and the inputs u, and u, so that $, 

With the simulations I have to find the influence of: 
will track qld, &d (see chapter 3). 

- the control gain factors. 
- the desired trajectories. 
- the spring constant of the elastic transmission. 
- the integration accuracy. 

Further I have to find out: 

- if the system is stable ( if not something is wrong). 
- how good and fast is the tracking of the desired trajectory. 
- if the inputs are realistic ( possible to create). 

13 



Properties of the C CTC strategy 

Simulation results theoretical situations 

In this paragraph I will show and discuss the most important simulation results. 

I have chosen the following desired trajectory: 

CI - 
'3 1 ii 

.- 3. 3 - 
Y 

il. 
Y 

= - c. c 

O 1 2 3 

time [s] time [s] 

fig 4.1 desired trajectory 

I define the following standard situation: 

- desired trajectory: fig 4.1 
- 
- 
- integration accuracy: tol= 0.01 
- tracking error t=O: ~cp,(O)= O, ~cp,(O)= O, acp,(O)= O 
- velocity error t=O: ~cp,(O)= O, ~cpl(O)= O, ~ c p ~ ( O ) =  O 

spring constant: k= 1 Nm/rad 
control gain parameters: k,= 0.1, k2= k3= 0.01, hl= &= 5 

We get the following simulation results: 

tracking error phi2 0.02 1 0.04 r tracking error phi1 phi i-ohi3 
1 

-0.03 
O 1 2 3 

time [s] 

-0.04 ' 1 
O 1 2 3 

time [SI 

I 

0 1 I 3 
time [s] 

14 



Properties of the C CTC strategy 

input< 30- trackine error duhi2 

. . . . .  .... 

-20 
7 O 1 2 3 O 1 2 3 o 1 - 3 

time [SI time [s] time [s] 
~ 

dphi3-dphi3r 0.6 i 
I 

phi3 and phi3r 

-40 ' 1 -0.4 ' I 
0 1 2 3 O 1 2 3 

time [s] time [SI 

fig 4.2 simulation results standard situation 

It appears that the tracking errors cpZd-cpZ, cpld-91  and the velocity errors &d-&, (P ld-61  are not 
equal to zero, and that these errors will not converge to zero. 
According to the theory (proof of stability) the errors have to converge to zero. However, we 
may not forget that the simulations are an approach of reality. In the case of this situation the 
integration accuracy is equal to 0.01. This means that the integration algorithm will adapt the 
time step At so that the integration error will not be bigger as 0.01. 
So, in the case of the simulations we have to do with a discontinuous situation, and we have to 
do with integration errors. That is the reason why the errors will not converge to zero ( see also 
next situation). 
Futher it appears that the elasticity cpi-cp3 is controlled, and that the inputs are realistic. 

15 



Properties of the C CTC strategy 

20 5 5,  

IO-.. ?;.. 'L I.. ; .._,..............,. 
. a  t ~ , /', :';- 

, I I I I $ , ' %  : :  

5; . . .... ..,~. . .............:..~ ......... 1.1 ......., 

; ,  I 3  , I  

,~ I <  * >  I <  f s  8 

' I %  . .  . . . . . . . . .  0 -* : :  ' 
............... I <  ~ , ,  L (  <.: , I .  i '. ; .; ....................... ~ ..................._ 

- I ( )  2 
- 

Now I will change one or some aspects of the presented standard situation. I will consider the 
influence of the changed aspects. 

If we change the integration accuracy: 

- integration accuracy: tol= 0.001 

we get the following results: 

- -70 

- xlO-3 tr. error phi2 , xlO-3 tr. error phil - 1 

time [SI time [s] 

fig 4.3 influence of integration accuracy 

By reducing the integration accuracy with a factor 10 its appears that the errors will also reduce 
with a factor 10. We can conclude that the integration algorithm with a certain accuracy will 
introduce some small tracking- and velocity errors. These errors will reduce by reducing the 
integration accuracy (practical disadvantage computing time will increase). 

If we create a tracking error at t=O we get: 

- tracking error t=O: ~ c p , ( O ) =  -10 rad, ~rp,(O)= -10 rad, A C ~ ~ ( O ) =  -10 rad 
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Properties of the C CTC strategy 

Li 

......................... .............. 

s 1 -20 ..................................... 

-30 
O 1 3 O 1 2 3 

time Is] time [SI 

fig 4.4 influence of start errors 

It appears that the tracking errors are controlled to zero ( in fact to the same value as the standard 
situation). It also appears that the tracking error cp3;cp3 will not converge to zero, and that the 
velocity error G3;(j3 will converge to zero. It is possible to explain this aspect. 

With the p ~ ~ f  of stability I have proved that: 

lim, [er] = O - 

It appears that: 

In the case of $3r there is no relation between 63r and cp3, so ~ p ~ ~ - c p ,  will not converge to zero: 

t + m  ~ p 3 r - ~ p 3  * 0 (4.3) 

17 



Properties of the C CTC strategy 

If we change the control gain parameters and create the start errors as mentioned before we get: 

- control gain parameters: k,= 0.5, k,= 0.05, k3= 0.05, A,= 10 , &= 10 

7 
tr. error Phil 5 tr. error phi2 5 

N 

a 
.- - : j -5 0~~~ f -//-j 

-10 
O 1 2 3 o 1 2 3 o 1 2 3 

~ 

-IO 

time p] 

fig 4.5 influence of the control gain parameters 

To guarantee the stability we have to chose k,, k, andk, positive (see 3.21). The control gain 
parameters k,, k,, k, and A,, h, determine the poles of V. If we choose bigger values of k,, k,, 
k3 and A,, A, the negative real values of the poles of ? will increase. This leads to a faster 
convergion of the tracking errors to zero. It also leads to bigger inputs at the beginning of the 
simulation (hardly to see ). 

If we change the springconstant we get: 

- spring constant: k= 0.1 Nm/rad. 

tr. error phi2 0.015 I tr. error phi1 0.02 

O 1 2 3 

phil-phi3 200 

I 
3 

-200' 
O 1 7 

time [s] 

fig 4.6 influence of the spring constant k 
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It appears that if flexibility plays an important role, that the tracking- and velocity errors will stay 
small. It also appears that cpl-cp3 gets an unrealistic big value. 

I have executed the same set of simulations with other desired trajectories. The results of the 
simulations confirm with the expectations -., stable system behaviour and tracking errors converge 
to zero. These results don't iead to new insights. 
In appendix B I have shown some more simulation results of theoretical situations. 

Practical situation 

In reality we have to do with the following situation: 

- errors in the model of the xy table (unmodelled dynamics) 
- wrong estimated parameters 
- discontinuous inputs 
- it will cost time to determine the inputs 
- measurement errors and measurement noise 

The equations of motion in reality are ( see also 3.2 to 3.4): 

w227 w339 wll represents the unmodelled dynamics 
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In reality the C CïC law in partitioned form ( see also 3.6 to 3.8) can be given by: 

(4.9) 
where, 

i = 1,2,3 j = 1,2,3 k = 1,2 
mie, cie, I&, , wk are the estimated parameters (mie = m..+m. ...) 

11 YY 

@,, = @kd+'k(T,-(Pd 

e, = +.  urn -q - im 
qb = 'Pk+vp, @h = Cpi+vG are the measurements 

vp7 vy are the measure errors 
u,,, u,, are the discontinuous inputs 

To guarantee the stability we have to come up to V e O (see 3.21). In practice it follows: 

Y = - d K è  +q 
-r r-r 

(4.10) 

q + due to unmodelled dynamics, wrong estimated parameters, discontinuous inputs, 
time delay to calculate the inputs, measure noise and measure inaccuracy. 

From equation (4.10) it appears that the system is stable if M, is chosen in such a way that: 

In practice q is not (exactly) known. So, we don't have an idea how we have to choose &. An 
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other problem is that in practice we can’t choose y too big because of the fact that the inputs 
u, and u, will grow to unrealistic values (in practice the inputs are bounded). 

Measure situation 

We consider the next practica! situation ( = measure sitriation): 

time axis: 

Measure situation: 

1) 
2) 

3) 

On t= ti the measurements of rp, Ce,, (p2 G2 and ip3 G3 are executed. 
On t= t, the calculated inputs u, and u, are presented to the system. The calculation of 
the inputs costs Atr seconds. 
On t= ti+, the cyclus starts again. 

Notes: - the measure frequence = l/(Atr+atJ = l/at, 
- During an interval tui+& the inputs have a constant value 

§imps!sptiunn results of some practical situations 

The goal of this part of the research is to get a global picture of the robustness against 
unmodelled dynamics, wrong estimated parameters, discontinuous inputs, time delay to calculate 
the inputs, measure noise and measure inaccuracy of the C C ï C  strategy. 
In this paragraph I will show and discuss the most important simulation results. 

Compared with the standard situation (page 14) I have changed the next aspects: 

- control gain parameters: 
- integration accuracy: can not be chosen 

k,= 0.5, k2= 0.05, k3= 0.05, hl= 10 and h2= 10 
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1- discretization: Atr= 0.001 S, Ats= 0.005 S (Atm= 0.006 S) 

2- discretization: Att,= 0.002 s, AtSZ 0.008 s (At,= 0.01 s) 

This leads to the following simulation results: 

.................... e 10 ........ I'. ..................... l ................... * ..... 

- 0  

............ 

.- .- c 

-0.1 ' 1 
O 1 2 3 

time [s] 

O 1 2 3 
time [SI 

-20 u 
1 2 3 o 0.5 1 1.5 2 

-0.1 - 
O 

time {SI 
trackhe emr duhil 4 ,  I 

time [s] 

tr. error hi2 0.2 

0 1 i- .................... .'._.._. 

-0.2 
o 0.5 1 1.5 2 o 0.5 I 1.5 2 

fig 4.7 Influence of measure frequence and discontinuous inputs 

It appears that the system behaviour stays stable and that the tracking - 

time [SI 

and velocity errors will 
increase (compared with the standard situation). Further are the peaks in the velocity errors &-& 
and strange. I don't have a clear explanation of this phenomenom. It could be possible that 
numerical aspects will cause this peaks. 
Further it appears that the inputs stay realistic, and that the tracking errors will increase if we 
choose a lower measure frequence. Note: if we choose the measure frequence too low the system 
will get an instable system behaviour. See also appendix C where some more simulation results 
are shown. 
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Now I will consider the influence of wrong estimated parameters and unmodelled dynamics. 
Compared with the standard situation I have changed the next aspects: 

- control gain parameters: 

1- wrong estimated parameters: reality: wl=  0.47 Nm model: wle= 0.3 Nm 
w2e= 0.1 Nm 

2- unmodelled dynamics: reality: wl=  0.47 Nm model: wle= O Nm 
w2e= O Nm 

k,= 0.5, k2= 0.05, k,= 0.05, hl= 10 and A,= 10 
- discretization: At,= 0.001 S ,  Att,= 0.005 S (Atm= 0.006 s) 

w2= 0.15 Nm 

w2= 0.15 Nm 

simulation results: 

tr. error phi2 0.1 r 
I I 

tr. error Phil 0.1 r i 20,  ? 

0 0.5 1 15 o . 0 5  15 
~~ 

time [SI time [s] 

n - , ,- , I .  

\ ,. * -  -10 F..:. .. . ... ..~.. . . . ..... .... . 

inputs 
1 0.4 1 1 20 f tr. error phi1 0.1, [r. error phi2 

I 

I i - 0.21 

.- - 
9 

-0.2 ’ 

-0.4 
O 0.5 1 1.5 

! 1 
0.5 1 

time [s] time [SI time [b] 

fig 4.8 influence of unmodelled dynamics and wrong estimated parameters 

It appears that the system stays stable, and that the errors will increase (compared with the 
standard situation). The inputs are realistic. 
I have executed some other simulations with wrong estimated parameters (see appendix C). It 
appears that the system stays stable if the estimated parameters are not chosen too worse. 
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Now I will consider the influence of measure noise. Compared with the standard situation I have 
changed the next aspects: 

- control gain parameters: 

- measure errors: 

k,= 0.5, k2= 0.05, k3= 0.05, hl= 10 and &= 10 

- angular position + white noise vp= %rand(t) + a+ 0.1 
- angular velocity + white noise vv= uand( t )  

- discretization: Atr= 0.002 S ,  Ats= 0.008 s (Atm= 0.01 S )  

%= 1 

note: rand(t)= white noise, between -1 and 1. 

simulation results: 

o 0.5 1 1.5 2 O O 5  1 1.5 2 o 0.5 1 1.5 2 
time [SI time [SI time is] 

fig 4.9 influence of measure noise 

It appears that the presence of measure noise will cause a capricious expiration in time of the 
tracking- and velocity errors and of the inputs. In the case of this situation the tracking- and 
velocity errors don't have a bigger value as in the case without measurement noise. However, 
if we chose bigger values of and a, the errors will increase. 

In appendix C I have given some more simulation results of practical situations. 

It appears from the practical simulation results that the robustness against unmodelled dynamics, 
wrong estimated parameters, discontinious inputs, time delay to calculate the inputs, measure 
noise and measure inaccuracy is reasonable. 

The mean conclusion is that the theoretical - and practical simulation results are satisfying and 
confirm with the expectations. In practice there will be a reasonable chance that the C CTC law 
applied to the xy table will answer to our desirements (+ stable system behaviour, small tracking 
errors). 
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5. APPLYING OF THE CTC CONTROLLER TO THE XY TABLE 

Now that we have a good picture of the properties of the controlled system we can focus our 
attention to the specific controlling of the xy table. This is the second part of the research. 

The total system 

In chapter 3 and appendix A I have shown a schematic representation of the xy table. In this 
paragraph I will give some more details of the measure- and control system of the xy table 
(see fig 5.1). 

im 

! i][- 
! 

S L I D E W A Y ,  
- BELT WHEEL 
/’ 

k&& M O T O R  1 

fig 5.1 Schematic representation of the total system. 
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The designed control routine has been put in the computer. The inputs of the control routine 
are the measurements of the angular positions (pi, cp2 and cp3. The outputs are the by the 
control routine calculated small electrical currents. Before the currents are presented to the 
motors they are amplified. Depending on these electrical currents the motors deliver certain 
torques. These torques are the inputs of the system (us and uJ. 
For the total organisation of executing experiments I have the avaliability of the new 
software designed by Jos Banens ( member of the WFW group). This software is written in 
"C". The big advantage of using this software is that it is build up in standard routines and 
that the programs can communicate with Matlab programs. 

The total system has its limitations. The most important ones are: 

- 

- Inaccuracy of the amplifier. 
- 
- 

The calculated inputs are clipped (are bounded) on a certain positive and negative 
value. This to protect the amplifier and the motors. 

The elasticity of the xy table is restricted. It appears that max Icpi-cp3 I = I 3 rad. 
The computing time. It will cost time to calculate the inputs. The computing time may 
not be too big (see chapter 4). 
Inaccuracy of the measurements. The measurements of the angular position do have 
a certain inaccuracy. 
Curved axis (y direction) of the "y table. 

- 

- 

Implementation of the C CTC controller 

For the controlling of the experimental xy table I use the C C ï C  law which is shown in 
chapter 3 (3.6 to 3.8). However, I have changed the friction term n. It appears that in practice 
it is more realistic to model the friction as dry friction 
This C CTC law has been implemented in one of the routines of the C-program designed by 
Jos Banens. Because of the fact that we have to do with a discret time system, we have to 
discretisize the C CTC law. The dicretization has been executed as follows: 

(see appendix A). 

general method: Euler scheme 

X = a+bü  + xi+i = xi+at(axi+bu;) 

note: state xi+l is At seconds after xi. 
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The reference trajectories: 

(3, 3ri+1 = (3, 3ri +A@ 3ri 

For the calculation of the reference trajectories and the inputs, we need: 

1. 
2. 
3. 
4. 

desired trajectories cpld, cp2d (can be chosen) 
estimated system parameters (see appendix A) 
control gain parameters (can be chosen) 
the angular position and angular velocities (cpl, cp2, cp3, &, G2 and G3) 

The first two points needs no further discussion. The third point about the control gain 
parameters needs a short explanation. As shown in chapter 3 (proof of stability) and chapter 
4 the control gain parameters do partitial fix the poles o f ?  (see 4.10): 

If the poles of V have negative real values, the system is stable. Because of the fact that y 
is not known we have to find suitable control gain parameters by executing simulations and 
experiments. 

27 



Applying of the C CTC controller to the xy table 

Note: the control gain parameters can't be chosen too big, because of the fact that the inputs 
are clipped on certain values. This clipping of the inputs can lead to undesired system 
behaviour. 
The fourth point deals with the handling of the measurements. As already written, the angular 
positions cpl ,  cp2 and cp3 are measured. Out of these measurements and out of the (partial) 
known system behaviour we have to estimate the angular velocities &, G2 and (p3.  In other 
terms, we have to design an observer algorithm for the reconstruction of the angular 
velocities. In appendix D I have designed such an algorithm. 

Now it is possible to calculate the inputs u, and u, (see 3.6 and 3.8): 

The research 

The goal of this part of the research is to test the C CTC law in practice and to find a suitable 
(or optimal) way for controlling the xy table with a flexible transmission. Further I will 
consider the robustness of the controller. 
For the executing of a part of the research I have designed a simulator. The simulator fits the 
reality on a close way ( model with dry friction, time delay for the calculation of the inputs, 
clipping of the inputs, measure noise and the possibility to implement unmodelled dynamics 
and wrong estimated parameters). The reason why I have designed a simulator is: 

- Designed control laws and system configurations can be tested. This is to protect the 
xy table. 

- Some parts of the research can be executed on a more suitable way ( e.g. research 
robustness, determination of the observer parameters). 

In first instance the goal of applying the C CTC law is to track the desired trajectories of cpId, 
cp2d and the time derivatives. This is a state control routine. By executing simulations and 
experiments I have to find out how good the control law will answer to our desirements, and 
of which aspects the results are depending. 

The simulation - and experimental results 

During this part of the research I have executed a lot of simulations and experiments. Now 
I will show and discuss the most important results. 
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I have chosen the next desired trajectories: 

ü 

O 100 200 300 400 O 100 200 300 400 
time [-3 time [-I 

-40 

desired trajectory A 

(1 sec. = 100 time steps) 

phild 40 phi2d 40 

a 

, -40 -40 I 

O 100 200 300 400 O 100 200 300 400 
time [-] time [-I 

desired trajectory B 

fig 5.2 desired trajectories 

i define the next standard situation: 

desired trajectory: A 
springconstant: k = 0.5 Nm/rad 
control gain parameters: k,= k2= k3= 0.05, lab,= lab,= 25 
observer-poles (used by the pole-placement routine) : -25+0.21 

-25+0.3i 
-25+0.4i 

measure-frequence: l/0.005 herz + 1 second = 200 timesteps 
execution time: 3.5 s 
position t=O: (pi= cp2= cp3= O (middle of the xy table) 
velocity t=O: cpl= cp2= cp3= O 

29 



Applying of the C CTC controller to the xy table 

200 

- 

- - -  

The simulation results are: 

;: 
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tr. error dphi2 100 I 

y:/, , , I 
.c a 
0 -50 

-100 
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time [-I time [-] 

-4 ‘ 1 
O 200 400 600 800 

time [-I 

inputs 4000 

-4000 ‘ 
O 200 400 600 800 

time [-I 

fig 5.3 simulation results standard situation 

It appears that the simulation results are good. The system stays stable and the tracking - and 
velocity errors converge to zero (to small values). 
At the first part of the simulation the controller has to control the start errors to zero. This 
leads to big control actions. It appears that the by the control routine calculated inputs u, and 
u, are clipped. In this case the dipping of the inputs doesn’t lead to undesired system 
behaviour. 
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Now I will consider the experimental results of the standard situation: 

Note: the experiment is executed with a measure-frequence of 1/0.01 Herz (1 sec. = 100 time 
steps). 

tr- error phi2 tr. exo: phi1 2 

E 

D- 
y -4 

Y 

.c 

-20 

-6 -30 
O 100 200 300 400 o 100 200 300 4oa O 100 200 300 400 

time [-I time [-] time [-I 

fig 5.3 experimental results standard situation 

The difference between the simulation results and the experimental results is small. In the 
case ~f the experiments we have to do with unmodelled dynamics, wrong estimated 
parameters, inaccuracy amplifier, etc. It appears that this aspects will cause small tracking - 
and velocity errors. In the case of the simulations we don’t have the influence of above 
mentioned aspects (see also discussion of robustness against wrong estimated parameters page 

Executing experiments with a measure-frequence of 1/0.005 Herz is not possible. The 
computersystem can’t calculate the inputs u, and u, within 0.005 seconds. Of cause ithis will 
lead to undesired system behaviour. 

33). 

Now I will change compared with the standard situation one or some aspects, and I will 
consider the influence of the changes. 

If we change the desired trajectory we get: 

- desired trajectory: B 
- measure-frequence: 1/0.007 Hen  (1 sec. = 142 timesteps) 
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1 

Experimental results 

2 20 

- - O - 
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inputs 4000 
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time [-I 

fig 5.4 influence of desired trajectory 

It appears that the results are good. The choice of the desired trajectory has no influence to 
the control prestations (see also appendix E where I have shown some more simulation - and 
experimental results). 
The measure-frequence of 1/0.007 Herz is the maximum value with which the experiments 
can be executed. 

If we changed the springconstant k we get: 

- springconstant: k=0.05 
- desired trajectory: B 

Simulationresults 

fig 5.5 influence of the springconstant k 

If we change the elasticity it appears that the C CTC law can control the system. The 
tracking- and velocity e ~ ~ c r s  stzy smzll, even if we choose a small vahe of the 
springconstant. 
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Now I will consider the robustness of the controller against wrong estimated parameters. This 
research is executed with the simulator because of the fact that in that case the system 
behaviour is exactly known. 

- 

- 

-4 'v - 

-6 

Compared with the standar situation I have changed: 

1. wrong estimated parameter: reality : k=Q.5 Nm/rad (used in the simulator) 
(see also chapter 4) estimated parameter: k,=O.l Nm/rad 

(used in the control law) 

2 wrong estimated parameters: reality: wl= w3= 0.5 Nm, w2= 0.15 Nm 
estimated parameters: 0.3 Nm, w,=0.05 Nm 

Simulation results: 
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fig 5.6 influence of wrong estimated parameters 

121 

It appears that wrong estimated parameters leads to bigger tracking - and velocity errors. 
Wrong estimated springconstants and friction coefficients have a bigger influence than the 
other parameters (see appe~dix 8). 
It appears that the considerd wrong estimated Parameters don't lead to instable system 
behaviour. So the robustness of the system is reasonable. 
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To get an idea of the control prestations, I have made a comparison between the control 
prestations of a C CTC controller and a CTC controller. 
Till now the controlling of robots (with or without flexibilities) is in much cases executed by 
the CTC control strategy. To design a CTC controller the elasticity of the system is neglected. 
So, the starting point of designing a CTC controller to control the flexible xy table is a model 
of the xy table without flexibilities. 
The model of the xy table with a stiff transmission is (see v.d. Molengraft): 

7- 
-2 - 

-4 "' 

-6 

- 

- 

rn2Cp2+nd2 = us 
mlipi+nrul = ue 

This model is used to design the CTC controller: 

li, = m2@ 2 r + ~ d 2 2  

u, = ml@ lr+nrull +klei,, (5.9) 

I have used above CFC law t~ control the flexible xy table. The simulationresults are: 

- desired trajectory A 
- measure frequence UO.01 H e n  += 1 sec. = 100 timesteps 
- control gain parameters: k,= k2= 0.05, hl= h2= 25 

û e 
Y 

cl! c 

û 
E 
Y 

time [-] time [-1 

fig 5.7 simulation results CTC controller 

If we make a comparison between the control prestations of the C CTC controller (see 
standard situôtion) and the CFC controller, it appeôrs that the control prestations of the C 
CTC controller are (much) better. The flexibility of the system plays an important ïole, but 
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it appears that this flexibility doesn’t lead to an instable system behaviour (see also appendix 

Note: For a system with flexible transmissions controlled by the general CTC law it is not 
possible to guarantee the stability. 

E>. 

The mean conclusion of this part of the research is that the C CFC law answers to our 
desirements. The tracking - and velocity errors converge in all considered cases to zero (to 
small values). The speed of controlling is reasonable. Further it appers that the robustness of 
the control system is reasonable, and that the control prestations of the C CTC controller are 
better than the control prestations of the CTC controller. 
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6. CONTROLLING THE END-EFFECTOR 

The mean reason of controlling the xy table is that the end-effector will track a certain desired 
path. To achieve this, the designed C CI'C control routine has to be changed fkom a state control 
routine (a + g,J to an output control routine ( [x,y] - [xd,yd] ), see also page 12. During this part 
of the research I have try to find a suitable way to change the C CTC state control routine in a 
C CI'C output control routine. 
In this chapter I will show and discuss how the C @TC routine is changed, and I will show and 
discuss some simulation - and experimental results. 

Note: this part of the research has to be considered as trial and error research. 

Output control 

In order to get reasonable tracking of the desired end-effector path, I have try to find a routine 
to generate the desired trajectories qza and (Pld on-line. For the on-line generation of the desired 
trajectories (pa and the obliqueness of the slideway of the xy table (= ~ p i - ( ~ 3 )  is considered. 
This obliqueness is discounted in the on-line generation. The desired trajectories (pzd and cpld are 
generated in such a way that the end-effector will track a certain desired path [xd,Yd], no matter 
how big the value of the obliqueness (~pi'(~3). 

For the x-position of the end-effector it follows: 

end-effector 

X 

I 1 

fig 6.1 x-position end-effector 
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x = cpPr+sxr (6.1) 

See appendix F for s, 

The desired path in x-direction of the end-effector is xI. With equatie:: (6.1) it is possible to 
define an on-line generation routine of the desired trajectory of vi: 

On point of time t the routine generates the value of the desired trajectory cpld belonging to point 
of time t+At. So, on every discret timestep the routine generates the next value of cpld’ 

Now I will consider the y-position of the end-effector. It follows: 

I 
end-eff ector I 

c----j 
Y I 

fig 6.2 y-position end-effector 
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(6.3) y = cp,rcosp 

Equation (8.3) can be written in the following form (see appendix F): 

Y = cp,r-sy 

The desired trajectorie of cp, can be defined as: 

Now we have defined an output control routine which is based on the C C ï C  strategy. This 
routine generates with (6.2) and (6.5) on-line the desired trajectories (Pzd and cp1d . 

Simulations and experiments 

I have executed some simulations with the simulator mentioned in chapter 5, and I have executed 
some experiments. Now I will give the most important simulation results (see also appendix F 
where I have shown some simulation - and experimental results). 

First I will consider a situation where the end-effector is controlled with the general C CTC law 
(no on-line generation of the desired trajectories (P2d and cp,& This is the state control routine. 
I have chosen the following situation: 

desired trajectory: xd= 0.25*sin(3.14*t) , yd’ 0.25*sin(3.14*t) (see fig. 6.3) 
springconstant: k = 0.5 Nm/rad 
control gain parameters: k,= k,= k3= 0.05, lab,= lab,= 25 
observer-poles (used by the pole-placement routine): -25+0.21 

-25+0.31 
-25+0.4i 

measure-frequence: l/0.005 herz + 1 second = 200 timesteps 
execution time: 3.5 s 
position t=O: cpl= cp2= cp3= O (middle of the xy table) 
velocity t=O: epi= cp2= cp3= O 
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The simulation results are: 

tr. error x-pos 
1 

-6 I I o 100 200 300 400 
time [-] 

tr.error - s 
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-2000 
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-4000 
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e.e. oath 

fig 6.3 simulation results of controlling the end-effector with the general C CTC strategy. 

It appears that the control results are moderate. With the state control routine it is possible to 
control the end-effector, but the tracking errors don’t converge to zero, but to certain values. 
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Now I will consider the designed C CTC output controller (on-line generation of the desired 
trajectories cpZd and cpid with 6.2 and 6.5): 

The simulation results are: 

o 100 200 300 400 o 100 200 300 400 
time [-] time [-] 

o 100 200 300 400 o 100 200 300 400 
time [-] time [-I 

e.e. path 

x 

fig 6.4 

x-pos [cm] 

simulation results of controlling the end-effector with a C CTC law with an on-line 
generation of the desired trajectories 

/ 

It appears that the control results are becoming better but are not satisfying. It appears that the 
calculated inputs are growing too big and are clipped. This clipping of the inputs causes tracking 
errors of the end-effector. 
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Controlling of the end-effector 

In order to get better control results I have tried (trial and error research !) to find a way to 
change the on-line generation routine of the desired trajectories and vid. To reduce the inputs 
I have had the idea to scale the terms s, and sy of this generation routine (see 6.2 and 6.5): 

x-direction: 

ax= scaling factor x-direction 

y -direction: 

ay= scaling factor y-direction 

Now I will consider the C CTC controller with on-line generation of the desired trajectories cpZd 
and cpid with the scaled values of s, and sy. The optimal values of a, and ay are found by 
execution of trial and error research. 
The simulation results are: 

- a,= ay= 0.75 

tr. error Y-POS 
2, I 2,  I tr. error x-pos 

time [-3 time [-I 
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Controlling of the endeffector I 1 
. .._ . ._ . . . ~  ........._.__ ~ ......... _._,.._...__....... 

fig 6.5 

I 
-30 -20 -10 O LO ZO 30 

“pos [cml 

-301 

simulation results of controlling the end-effector with a C CïC law with an on-line 
generation of the desired trajectories. Now s, and sy are scaled. 

It appears that this on-line generation routine leads to the best control results. 

The mean conclusion of this part of the research is that the by trial and error research designed 
output control routine leads to reasonable control results. 
In order to get better results this part of the research has to be executed on a more fundamental 
way. 
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Conclusions and recommendations 

7. CONCLUSIONS AND RECOMMENDATIONS 

Conlusions 

For the controlling of the xy table with one flexible transmission it is possible to design a control 
law iwk_Lch is based on the C CTC strategy. The goal of applying this C CTC Controller is to 
track the desired trajectory qld= [qad 9p1JT and its time derivative. This is a state control routine. 

It can be proved that applying of the C CTC law to control the flexible xy table leads to a stable 
system behaviour. 

The simulation results which are related with the theoretical situation confirm with the 
expectations, and give a good picture of the properties of the C CTC controller. 

From the simulations it appears that there will be a reasonable change that the C CTC controller 
applied in a practical situation will answer to our desirements ( robust system behaviour, small 
tracking errors). 

The implementation of the C CTC law and an observer algorithm (for the reconstruction of the 
angular velocities) in the control system of the xy table is succeeded. 

For the testing of designed control laws or system configurations and for the execution of a part 
of the research I have designed a simulator. The simulator fits the reality on a close way. 

The new software designed by Jos Banens meant for the total organisation of executing 
experiments and simulations, is easy and pleasant to use. 

The experimental results and accessory simulation results answers to our desirements. The 
tracking - and velocity errors converge to zero (to small values). The control speed is reasonable. 
Further it appears that the robustness of the control system is reasonable and that the control 
results are better that the control results of the general CTC law. 

For the controlling of the end-effector I have designed (by trial and error) a C CTC output 
control routine. This routine generates on-line the desired trajectories of qi and cp2 . The results 
of this control method are reasonable. 
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The model of the xy table 

APPENDIX A: THE MODEL OF THE X Y  TABLE 

In this appendix I will give a detailed desricption of the model of the xy table ( see v.d. 
Molengraft, 1989). 

The model of the xy table: 

r 

J2 w2 4 X I 

fig a l  model of the xy table 

The equations of motion of the xy table can be written as: 

(Al.l) 
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The model of the xy table 

The following parameters have been determined by local identification. 

m,= 2.3 kg, mt= 8.5 kg, me= 2.3 kg, 1= 1.25 m, d= 1 m, r= 0.01 m 

The following parameters have been determined by some idemtification algorithmen ( v.d 
Molengraft, 1989). 

I,= 2.15 kgm2, J2= 1.45 íG4 k p 2 ,  wl- 0.47, w2= 0.15 

Note: At the second part of the research (chapter 5 and chapter 6) I have used an other 
friction model. This friction model fits the reality on a closer way. The friction model I 
have used during the second part of the research is a dry friction model: 

where, 

i f@,  # O -* Itdll = 0.25 Nm 
if@, # O + nd22 = 0.15 Nm 
if@, # O -* Itd3 = 0.25 Arm 

(A1.4) 

(A1.5) 

(A1.6) 

(A1.8) 
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B: Simulation results of some theoretical situations of the first part of the research 

APPENDIX B: SIMULATION RESULTS OF SOME THEORETICAL SITUATIONS 
OF THE FIRST PART OF THE RESEARCH 

In this appendix I will show some simulation results, These results are the most important results 
of the simulations I have executed with some theoretical situations. 

Theoretical situations 

I have considered the next theoretical situations: 

1) - desired trajectory: T2d= c~~+a~cos (w~t )  ; 02d= -a2m2sin(w2t) ; .. 
qld= al+cL1cos(wlt) ; cpld= -alm,sin(wlt) ; .. 
q= 25 rad, co2= 10 radls and al= 25 rad, m1= 10 rad/s 
see ’plot O’ for these trajectories. 

- spring constant: k= 1 Nm/rad 

- control gain parameters: k,= 0.1, k2= 0.01, k3= 0.01, h,= 5 and A,= 5 

- integration accuracy: tol= 0.01 

- tracking error t=O: A(P~(O)= O,  ~cp,(O)= O,  ~ c p ~ ( O ) =  O 
- velocity error t=O: arp2(0)= O,  ~ r p l ( O ) =  O, ~ c p ~ ( O ) =  O 

2). As situation 1 but now: 

- integration accuracy: tol= 0.001 

3). As situation 1 but now: 

- tracking error t=O: ~cp,(O)= -10 rad, ~cp,(O)= -10 rad, ~ c p ~ ( O ) =  -10 rad 

4). As situation 3 but now: 

- control gain parameters: k,= 0.5, k2= 0.05, k3= 0.05, hl= 10 , &= 10 

B. 1 



5). As situation 1 but now: 

- velocity error t=O: A(P*(O)= 100 rad/s, ~cp,(O)= 100 rad/s, acp3(0)= 100 rad/s 

6). &As situation 1 but now: 

- spring constant: k= 0.1 Nm/rad. 

The simulation results 

Of every situation I have made the following plots: 

1 tracking error cpzd-cp, 

2 tracking error cpld-ql  

3 velocity error cpzd-cp, 

4 velocity enor qid-q1 

6 velocity error cp3r-cp3 

8 inputs u, and u, 

5 cp3r-% and 9 3 %  

7 elasticity V3-9 1 

The structure of a page with plots is: 

Now I will give per situation the simulation results (see the following pages). 
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Simulation results of some theoretical situations 

Desired trajectorie: plot O 
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Simulation results of some theoretical situations 
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desired trajectory: plot O, k= 1 Nm/rad, 
integration accuracy: tol= 0.01, tracking error t=O: acpZ(O)= O, ~cp , (O)=  O,  acp,(O)= 0 
velocity error t=O: ~ c p ~ ( O ) =  O, ~ c p l ( O ) =  O, ~cp , (O)=  O 

control par.: k,= 0.1, k,= 0.01, k,= 0.01, Al= 5 and &= 5 



Simulation results of some theoretical situations 

situation 2 
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Simulation results of some theoretical situations 
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desired trajectory: plot O, k= 1 Nm/rad, control par.: kl= 0.1, k2= 0.01, k3= 0.01, hl= 5 and &= 5 
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Simulation results of some theoretical situations 
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Simulation results of some theoretical situations 
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Simulation results of some theoretical situations 
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c: Simulation results of some practical situations of the first part of the research 

APPENDIX C: SIMULATION RESULTS OF SOME PRACTICAL SITUATIONS OF 
THE FIRST PART OF THE RESEARCH 

In this appendix I will show and discuss some simulation results. These results are the most 
important results of the simulations I have executed with some practical situations. 

Practical situations 

I have considered the next practical situations: 

1) - desired trajectory: qZd= q+cr,cos(m,t), ... 
qld= a1+a1cos(6q), ... 
cx2= 25 rad, m2= 1 rad/§ and a,= 25 rad, ml= 1 radls 

- spring constant: 

- control gain parameters: 

k= 1 Nm/rad 

k,= 0.5, k2= 0.05, k3= 0.05, hl= 10 and A,= 10 

- integration accuracy: can not be chosen 

- discretization: Atr= 0.001 S ,  Att,= 0.005 S (Atm= 0.006 S )  

- particularies: none ( no start errors, no wrong parameter estimations, no 
unmodelled dynamics, etc.) 

2) As situation 1 but now: 

- m2= 10 rad/s, ml= 10 radh. 

3) As situation 2 but now: 

- discretization: At,= 0.002 S ,  Att,= 0.008 s (Atm= 0.01 s) 

4) As situation 2 but now: 

- discretization: At,= 0.005 S ,  Att,= 0.005 S (Atm= 0.01 S )  

c. 1 



c: Simulation results of some practical situations of the first part of the research 

5)  As situation 2 but now: 

- discretization: Att,= 0.005 S, Att,= 0 S (At,= 0.005 S )  

6) As situation 2 but now: 

- discretization: Att,= 0.005 S, Ats= 0.003 S (At,= 0.008 S) 

7) As situation 2 but now: 

- tracking errors t= O: A(P~= -10 rad, A(P~= -10 rad 

8) As situation 2 but now: 

- tracking errors t= O: 
- velocity error t= O: 

AT;= -25 rad, ~ p ~ =  -25 rad 
hcp2= -250 rad/s 

9) As situation 2 but now: 

- wrong estimated parameters: reality: w l=  0.47 Nm model: wle= 0.3 Nm 
w2e= 0.1 Nm w2= 0.15 Nm 

10) As situation 2 but now: 

- unmodelled dynamics: reality: w l=  0.47 Nm model: wle= O Nm 
w2e= O Nm w2= 0.15 Nm 

11) As situation 2 but now: 

- wrong estimated parameters: reality: J1= 2.15 lo5 model: Jlm= 1.075 10” 
J2= 1.45 lo4 J2m= 0.72 lo4 



c: Simulation results of some practical situations of the first part of the research 

12) As situation 2 but now: 

- unmodelled dynamics: reality: k= 1 Nmhad model: ke= 0.7 Nm/rad 

13) As situation 2 but now: 

- unmodelled dynamics: of situation 9:11 and 12. 

14) As situation 3 but now: 

- spring constant: k= 0.1 Nm/rad 

15) As situation 3 but now: 

- measure errors: - angular position + white noise vp= %rand(t) + %= 0.1 
- angular velocity white noise v,= wand(t)  + %= 1 

note: rand(t)= white noise, between -1 and 1. 

Simulation results 

I have made the same plots of every situation as of the theoretical situation ( see appendix B). 
The structure of a page with plots is the same as given in apendix B. 
Now I will give per situation the simulation results (see the following pages). 
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Simulation results of some practical situations 
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Simulation results of some practical situations 
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Simulation results of some practical situations 
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Simulation results of some practical situations 

situation 5 
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situation 7 
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0 0.5 1 I .5 

time [SI 
phi 1-phi3 

- 1 0 '  
o 0.5 1 1.5 

tinir [b] 

-30 1' I o 0.5 1 

linie [s] 

desired trajectory: plot O, k= 1 Nm/rad, control par.: kl= 0.5, k,= 0.05, k3= 0.05, hl= 10 and &= 10 
dicretization: A<= 0.001 s, at,= 0.005 s, tracking error t=O: acp,(O)= o, A ~ ~ ( O ) =  -10 rad, acp,(O)= -10 rad 
velocity error t=O: ~cp, (O)= O,  ~ c p l ( O ) =  O, acp3(0)= O 
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desired trajectory: plot O, 
dicretization: At,= 0.ûûí s, At,= û.ûû5 s, 
velocity error t=O: ~ c p , ( O ) =  -250 rad/s, ~ c p l ( O ) =  O, acp,(O)= O 

k= 1 Nm/rad, control par.: kl= 0.5, k,= 0.05, k,= 0.05, hl= 10 and &= 10 
tracking error t=û: AcpZ(0)= 0, Acpl(0)= -25 rad, Acp,(O)= -25 rad 
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situation 9 
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desired trajectory: plot O, k= 1 Nm/rad, control par.: k,= 0.5, k,= 0.05, Ir,= 0.05, hl= 10 and &= 10 
dicretization: aq= 0.001 s, at,= 0.005 s, tracking error t=O. acp,(O)= O, acp,(O)= O, acp,(O)= O 
velocity erroï t=0: ~qp, (O)= O, ~qpl(O)= O, ~cp, (O)= O, 
wrong estimated par.: (wl= 0.47 Nm, wie= 0.3 Nm) (wz= 0.15 Nm, wk= 0.1 Nm) 
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situation 11 
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0.2 a" 
2 
.- N O  ..................... Y 
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-0.2 

-0.4 O 0.5 1 1.5 O 0.5 1 1.5 
time [SI time [SI 

O 0.5 1 1.5 O 0.5 1 1.5 
time [SI time [SI 

time [SI 

..................... 

-15 
O 0.5 1 1.5 

time [SI 

desired traje-ctory: plot O, k= 1 Nm/rad, 
dicretization: Atr= 0.001 s, at,= 0.005 s, tracking error t d :  acp2(0)= O, ~cp,(O)= O, AQ(O)= O 
velocity error t=O: ~cp,(O)= O, ~ r p l ( O ) =  O, ~ c p , ( O ) =  O 
wrong estimated par. : (J1= 2.i5e-3 Jle= 1.075e-3) (J2= 1.45e-4 J2e= 0.72e-4) 

control par.: k,= 0.5, k,= 0.05, k,= 0.05, A,= 10 and &= 10 
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situation 12 
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desired trajectory: plot O, 
dicretization: At,= O.Oo1 s, At,= O.OOS s, 
velocity error t=O: ~ c p , ( O ) =  O, ~ c p í ( O ) =  O, ~ c p ~ ( O ) =  O 
wrong estimated par. : k= 1 Nm/rad &= 0.7 Nm/rad 

k= 1 Nm/rad, control par.: k,= 0.5, k,= 0.05, k3= 0.05, Al= 10 and %= 10 
tracking error t=O: ~cp , (O)=  O, ~ c p , ( O ) =  O, ~ c p ~ ( O ) =  O 
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desired trajectory: plot O, 
dicretization: aq= 0.002 s, at,= O.ûû8 s, tracking error t=O: acp,(O)= O, acp,(O)= O, arp,(O)= O 
velocity error t=O ~cp,(O)= O, ~ c p l ( O ) =  O, acp3(0)= O 

k= 0.1 Nm/rad, control par.: k,= 0.5, k,= 0.05, k3= 0.05, Al= 10 and &= 10 
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situation 15 
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desired trajectory: plot O, k= 1 Nm/rad, control par.: kl= 0.5, k2= 0.05, k3= 0.05, hl= 10 and &= 10 
dicretization: at;= 0.001 s, at,= 0.005 s, tracking error t=û: ~cp,(O)= O, ~cp,(O)= O, ~ c p @ ) =  0 
velocity error t=O: A C ~ ~ ( O ) =  0, ~pl(O)= O, ~ c p , ( O ) =  O 
measure noise: ay= 0.1, aw= 1 
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APPENDIX D: THE OBSERVER ALGORITHM 

For the designing of the observer I use the theory which is presented in Regelen 2 (Kok,1990). 

The system behaviour has been written in the state space form: 

X( t )  - = Ax(t)+Bu - ($1 (D.1) 
s 

- x= state 
%= inputs 
A, B= system matrices 

y= output 
E= measureme ts f the output 
C= system matrix 
y= measure noise 

Out of the measurements 
to reconstruct the state 5. From chapter 5.1 of Regelen 2 it follows: 

and the known (or estimated) systembehaviour (D.l) it is possible 

X -rec (t) = (A -KC')X -rec (t) +Bu s (t) +Km(t) - (D.3) 

xm= reconstructed state 5 
K= an arbitrary matrix 

For the reconstruction error e= 5 - ~  it follows: 

- e( t) = (A -KC)e( t) +E( t) 

- n= vector with (small) values due to noise 
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There are several ways to chose the matrix K. One of the possibilities is pole-placement. We 
have to chose K in such a way that the poles of (A-KC) have certain optained values ( e.g. have 
negative real values). This pole-placement routine can be executed with a Matlab program (K is 
calculated). 
An other possibility is the optimal observer or Kalman-Bucy filter. For the execution of this 
routine we have to know something about the measure - and system noise. The Kalman-Bucy 
routine (see chapter 5.2 regelen 2) can alsi be executed with a Matlab program (R is calculated): 
Now that I have define a genera! method for the reconstruction, I can work out this method for 
the case of the xy table. 

The reconstruction of the angular velocities of the xy table 

First I have to define the state space form. I use equation (3.1) with dry friction: 

g'[(PD q 1 7  %IT 
M7C and n, are (partial) depending on g and or 4 

I split up equation (D.5) into the following way: 

M,= exists of the constant terms of M 
M,= exists of the variable terms of M (terms which are depending on 9 and s> 
Cv= C= exists only of variable terms 

I will explain the reason of splitting up equation (D.5) later on in this appendix. 

After rewriting (D.6) it follows: 

D .2 
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A =  

Out of (D.7) the state space form (D.l) can be determined. I define: 

r 

O E(1,l) O E(1,2) O E(1,3) 

1 0  O 0  O 0  

O E(2,l) O E(2,2) O E(2,3) 

O 0  1 0  O 0  

O E(3,l) O E(3,2) O E(3,3) 
L 0 0  O 0  1 0  

It follows that (see D.1): 

(D.lO) 

Now I consider the output- and the measure equation (D.2). I define: 

Y= CCP2, Vi, %IT 7 m= [V2+n2, CPi+ni, %+n31T 

D.3 
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c=o 

It follows: 

- 
0 1 0 0 0 0  

o o 1 o o 
- 0 0 9 0 0 1 ,  

(D.ll) 

Now it is possible with a pole placement routine or a Kalman-Bucy filter to determine a K 
matrix. Because of the fact that A,B and C are constant matrices, the determination can be done 
before the execution of experiments, and has been done once. 
If we had not split up equation (D.5) the system matrices A and B were not constant matrices. 
In that case the matrix K has been calculated during the execution of the experiments. The on- 
line calculation of K can cause problems, this because of the fact that the calculation of K costs 
much computing time (if the computing time grows too big, the system can’t calculate all the 
variables within one timestep). 

The last step of the designing of the observer is the dicretization of equation (D.3): 

(D.12) 

Equation (D.12) can be implemented in the control system of the xy table. With (D.12) it is 
possible to reconstruct the state &= [ 6 2 7  (p2, GI, cpl, (P3, cp3] T . 

During the research I have try first to execute the Kalman-Bucy routine for the calculation of K. 
The problem of executing this routine is the fact that the measure - and system noise is not 
exactly known. The reconstruction results are reasonable but not good enough. 
However, if we execute the pole-placement routine, we can find better results (smaller 
reconstruction errors). If we choose the poles of (A-KC) with negative real values of 25 we can 
obtain good reconstruction results. 

Now I have define a way for the reconstruction of the angular velocities. With equation (D.12) 
I can execute the reconstruction, and with a pole-placement routine I can calculate a suitable K 
matrix. 

D.4 
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APPENDIX E: SIMULATION - AND EXPERIMENTAL RESULTS OF THE 
SECOND PART OF THE RESEARCH 

In this appendix I will show some simulation - and experimental results of the second part of the 
research (see chapter 5). 

Situations 

I have considered the next desired trajectories: 

c> - cp2d= win(m2t) ; 9),<= am2cos(m2t) ; .. 
min(o,t) ; (Pld= amlcos(mlt) ; .. - 

The reference trajectories are showed on page ES - E.7 (1 sec. = 100 timesteps) 

I have considered the next situations: 

simulation 
desired trajectory: A, a= 25 rad co= 3.14 rad/s 
springconstant: k = 0.5 Nm/rad 
control gain parameters: k,= k2= k3= 0.05, lab,= lab,= 25 
observer-poles (used by the pole-placement routine): -25+0.2i 

-25+0.3i 
-25+0.4i 

measure frequence: 1/0.01 Herz ( 1 sec. = 100 timesteps) 
execution time: 2 s 
position t=O: cpl= ip2= 'p3= O (middle of the xy table) 
velocity t=O: vi= 'p2= cp3= O 
particularies: none 

E. 1 
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2) As situation 1 but now: 

- experiment 
- execution time: 3.5 s 

3) As situation 2 but now: 

- 
- observer-poles: -50+0.2i, -50+0.3i, -50+0.4i 
- 

control gain parameters k,= k2= k3= 0.05, lab,= 50, lab,= 25 

measure frequency: V0.007 Herz (1 sec. = 142 timesteps) 

4) As situation 2) but now: 

- 
- measure frequency: 1/0.007 Herz (1 sec. = 142 timesteps) 

trajectory A, a= 25 rad co= 1.57 rad/§ 

5) As situation 1) but now: 

- trajectory B, a= 25 rad o)= 3.14 rad/s 
- execution time: 3.5 s 

6) As situation 5) but now: 

- experiment 

7) As situation 1) but now: 

- 
- execution time: 3.5 s 

trajectory C, ct= 25 rad o),= 3.14 rad/s, 02= 1.57 rad/s 

8) As situation 7) but now: 

- experiment 
- 
- observer-poles: -50+0.2i, -50+0.3i, -50+0.4i 
- 

control gain parameters k,= k,= k3= 0.05, lab,= 50, lab,= 25 

measure frequency: U0.007 Herz ( 1 sec. = 142 timesteps) 

E.2 
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9) As situation 1) but now: 

- springconstant: k=0.05 

10) As situation 1) but now: 

- springconstant: k=l 

11) As situation 1) but now: 

We don’t use the C CTC law but the general CTC law. This control law can be used to 
control the xy table with a st i f f  transmission. 

The CTC law: 

12) As situation 11) but now: 

- trajectory B, a= 25 rad ct)= 3.14 rad/s 

13) As situation 5) but now: 

- wrong estimated parameter: reality : k=0.5 Nm/rad (used in the simulator) 
(see also chapter 4) estimated parameter: k,=O.l Nm/rad 

(used in the control law) 

14) As situation 5) but now: 

- wrong estimated parameter: reality: k=OS Nm/rad 
estimated parameter: k,=l Nm/rad 

E.3 
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15) As situation 5) but now: 

- wrong estimated parameters: 

16) As situation 5) but now: 

- wrong estimated parameters: 

17) As situation 5) but now: 

- wrong estimated parameters: 

18) As situation 5) but now: 

wrong estimated parameters: 

Simulation results 

reality: wl= w3= 0.25 Nm, w2= 0.15 Nm 
estimated parameters: wie= w ~ ~ =  0.1 Nm, wZe= 0.05 Nm 

reality: wl= w3= 0.25 Nm, w2= 0.15 Nm 
estimated parameters: wie= wfe= 0.5 Nm, wze= 0.3 Nm 

reality: J,= 2.15 10” kgm’, J,= 1.45 
est. par.: Jle= 3 10” kgm’, J,,= 2 lo4 kgm’ 

kgm’ 

reality: ms= 2.3 kg, m:= 8.5 kg, me= 2.3 kg 
est. par.: mse= 3kg, mk= 10 kg, m,= 3 kg 

I have made the same plots of every situation as of the theoretical situation (see appendix B). The 
structure of a page with plots is the same as given in appendix B. 
Now I will give per situation the simulation results ( see following pages). 

E.4 
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trajectory A 

-100‘ I o 100 200 300 400 
time [-I 

o 100 200 300 400 
time I-] 

o 100 200 300 400 
time [-] 

o 100 200 300 400 
time [-I 
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trajectory B 

o 100 200 300 400 o 100 200 300 400 
time E-] time [-J 

O 100 200 300 400 o 100 200 300 400 
time [-] time [-I 

E. 6 
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trajectory C 

phi2d 40 

z e 
Y 

.-( 

E a 
.- 

-40‘ I 
o 100 200 300 400 

time [-I 
dphi2d 40 1 

20 ......... ___.i ................ :: ................. .............. I/, ; E 
............... \ ................. ................. p .............. 

100 200 300 400 
time [-I 

o 100 200 300 400 
time [-I 

.loo - o 100 200 300 400 
time [-I 

E.7 
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...._..........<i ............................... - 

................. i.... ............ :; ............... - 

situation 1 

tr. error phi2 
2 

time [-I 
tr. error dohi2 1001 1 

-100- O 50 100 150 200 
time [-I 

phi3 and phi3r 60 
--*-__ 

I . .  : 
I :  . .  

, :  . .  40 .......................... A . .  ...... ............................ 

50 100 150 200 
-40 

O 
time E-] 

phil-phi3 
i 

time [-I 

rl c a z 

w 

time [-I 

-100' i 

V 50 100 I50 200 
time [-I 

O 50 100 150 200 
time [-I 
inputs 

4000 

I 
50 100 150 200 

-4000l O 

time [-I 

simulation, desired trajectory: A , k= 0.5 Nm/rad, control par.: k,= 0.05, kz= 0.05, k,= 0.05, h,= 25 and &L= 25 
meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=O ~cp, (O)= O, ~ c p ~ ( O ) =  O, A%(O)= O 
velocity t=O: ~cp~(û)= O, ~ c p l ( O ) =  O, ~cp , (O)= O 
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situation 2 

o 100 200 300 400 
time [-I 

z e 
c e 
Y 

+ 

0 

tr. error hi1 5 

0 ........... ............... 

-5 ................ ................................. 

v i  

-10 o 100 200 300 400 
time [-] 

tr. error dphi2 100 

-50 .................. ! ............... ................. ! ........... 
a 

I 

O 100 200 300 400 O 100 200 300 400 -100 

time [-] time [-I 

O 100 200 300 400 O 100 200 300 400 
time E-] time [-] 

O 100 200 300 400 O 100 200 300 400 
time [-I time [-J 

experiment, desired trajectory: A , k= 0.5 Nm/rad, control par.: k,= 0.05, k,= 0.05, k3= 0.05, &= 25 and &= 25 
meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=O: ~cp, (O)= O, ~ c p , ( O ) =  O, acp3(0)= O 
velocity t=O ACP,(O)= O, ~ c p l ( O ) =  O, ~ c p , ( O ) =  O 
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7 -100 
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_. ................................................................... - 

-100 

dphi3dphi3r 400 phi3 and phi3r 200 

150 ........................................................ 
~~~ 

- 
: '* 100 ........ .................................................... 

500 
-600 

500 O 
time [-I time [-I 

-50 
O 

....................... 

................................. ........................ 

O 500 O 500 
time (-1 time [-I 

experiment, desired trajectory: A , k= 0.5 Nmhad, control par.: k,= 0.05, k,= 0.05, k3= 0.05, hl= 50 and b= 25 
meas. freq.: 1/0.007 Herz, observ. poles: -50, position t=O: ~cp, (O)= O, ~rp,(O)= O, ~ c p , ( O ) =  O 
velocity t=O ~cp,(û)= O, ~ c p l ( O ) =  O, ~ c p , ( O ) =  O 
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situation 4 

tr. error phi2 1 
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O 500 
time [-I 

tr. error dphi2 so I 1 

-100 
O 500 

time [-] 

phi3 and phi3r 40 1 

c a 

-40 ' I 
O 500 

time [-I 
phi 1-phi3 1.5 

f I 

-1 - 
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time [-I 

2 tr. error phi1 
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O 500 
time {-I 

tr. error dphil 50 

............................. .k- 

....................................... - 

-100 + 
o 500 

time [-I 

50 dphi34phi3r 
I 

U 
f! u -50 .- 
E a 

-150' I 
O SO0 

time [-I 

7 2000 
I 

-2000' I 
O 500 

time [-I 

experiment, desired traj: A with w=1.57, k= 0.5 Nm/rad, control par.: kl= 0.05, k2= 0.05, k3= 0.05, hl= 25 and &= 25 
meas. freq.: 1/0.007 Herz, observ. poles: -25, position t=& acp,(O)= o, acp,(O)= o, AT,(o)= 0 
velocity t=& ~cp,(û)= 0, ~ r p l ( O ) =  O, acp3(û)= O 
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................................... 1 ............. 

...... _ 
................. .................. 

-100 

situation 5 

û 
Ì? 
Y 

(v 

E 
.- 
2 

tr. error phi1 20 I 

O 200 400 600 800 O 200 400 600 800 
time [-] time [-I 

600 800 O 200 400 600 800 
time [-3 time [-] 

simulation, desired trajectory: B , k= 0.5 Nm/rad, control par.: k,= 0.05, k2= 0.05, k3= 0.05, 
meas. freq.: 1/0.005 Herz, observ. poles: -25, position t=O ~cp,(O)= O, acp,(O)= O, acp3(Q)= 0 
velocity t=O: AV@)= O, ~ ' p l ( O ) =  O, ~ c p , ( O ) =  O 

25 and %= 25 
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a 
F -50 

situation 6 

................................... ; ................... 
I 

tr. error phi2 2 1 

I ,  : > ,  : 
I ,  : 
I I  : 

I , :  
5 ,  

....................... : .................. : 

O 100 200 300 400 
time [-] 

tr. error dphi2 100 1 

time 1-1 

phi3 and phi3r 100, i 

time 1-1 
phil-phi3 4 1 

O 100 200 300 400 
time [-I 

-30 I 
O 100 200 300 400 

time [-3 
tr. error dphil 200, 1 

O 100 200 300 400 
time [-I 

dphi3-dphi3r 400 1 

time [-I 
inputs 4Ooo 

z 2000 
N 
Ni = o  
4 * .- 
2-2000 

-4000 ' I o loo 200 300 400 
time [-I 

experiment, desired trajectory: B , k= 0.5 Nm/rad, control par.: k,= 0.05, k,= 0.05, k,= 0.05, hl= 25 and &= 25 
meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=O: ~cp, (O)= O, ~ c p , ( O ) =  O,  ~cp,(O)= O 
velocity t=O: ~cp, (O)= O, ~ r p l ( O ) =  O, ~ c p , ( O ) =  O 
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...... - 

~~ 

situation 7 
tr. error phi2 0.5 r I 

time [-I time [-I 
tr. error dphil 100 tr. error dphil 40 I 

time [-] time 1-3 

phi3 and phi3r 
I 

-40 I 
O 100 200 300 400 

time [-I time [-] 

I - 
-40000 200 300 400 

-41 
O 100 200 300 400 

time (-1 time [-I 

simulation, desired trajectory: C , k= 0.5 Nm/rad, control par.: k,= 0.05, k,= 0.05, k3= 0.05, LI= 25 and &= 25 
meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=O AT,(O)= O, ~ c p , ( O ) =  O, acp,(O)= 0 
velocity t=O ~rp,(O)= O, ~ c p l ( O ) =  O, ~ c p , ( O ) =  O 
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. . . . . . . . . . . . . . . . . . .  -8 

.......................................... - 

situation 8 

tr. error phi2 1, 

0 ............................................................... 

~ -1 ................................................................... 
2 

8 .  u 

.... - E l r n  ................................................................... 

i .? -2 [ 
IJ I 

I 

500 
-3 ' 

O 

F 
ì2 
Y 

r( 

c .d a 
a i  

I 

500 
-10 

O 

dphi3-dphi3r 200 phi3 and phi3r 400 

150 ................................................................ - 

500 
-600 - 

500 O 
time (-1 time [-I 

-50 
O 

500 O 500 O 
time [-I time [-I 

experiment, desired trajectory: C , k= 0.5 Nm/rad, control par.: kl= 0.05, k2= 0.05, k3= 0.05, hl= 50 a d  &= 25 
meas. freq.: 1/0.007 Herz, observ. poles: -50, position t=O: ~cp, (O)= O, ~ c p , ( O ) =  O, acp,(O)= O 
velocity t=O: ~rp,(O)= O, ~ c p l ( O ) =  O, ~cp , (O)=  O 
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I "  

situation 9 

-;-2000 a 
-.I ............. ;.. . . . . . . . . . . .<<...I .................. , 

-1001 I 
O 100 200 300 400 

time [-I 

û 
i! 
Y .- c a 

phi3 and phi3r 
4 ,- - 
: I 4, 
: ' :< 
: I  :> 

,<-.- 
30 

20 
: ,  3 ;  

......... .:.. ...... ....: ....,... ......... ;! ,. ........... - 

-20 
O 100 200 300 400 

5- 
;3 
Y 

tr. error phi1 

O 100 200 300 400 
time [-I 

- e 
E 
Y 

m 
c c. 
.- 

time [-I 

20 

O 

-20 

I 
O 100 200 300 400 

simulation, desired trajectory: A , k= 0.05 Nm/rad, control gar.: k,= 0.05, k2= 0.05, k3= 0.05, hl= 25 and &= 25 
meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=O: AqP2(0)= o, Aqp,(O)= o, AT@)= 0 
velocity t=O: ~cp , (O)=  O, ~ c p í ( O ) =  O, acp,(O)= O 
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situation 10 

O 100 200 300 400 O 100 200 300 400 
time [-I time [-I 

-1001 -100 - 
O 100 200 300 400 o 100 200 300 40' 

time [-I time [-I 

-40 - 
O 100 200 300 400 

time [-] 

phil-phi3 3 

2 t .......................................................... . .  

-2 - 
O 100 200 300 400 

time [-I 

dphi3-dphi3r 
1 

-200 I I 
0 100 200 300 400 

time I-] 
inputs 4000 

...................... 

-4000 I I 
O 100 200 300 400 

time [-I 

simulation, desired trajectory: A ,  k= 1 Nm/rad, control par.: k,= 0.05, k,= 0.05, k,= 0.05, hl= 25 and &= 25 
meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=O: ~ c p , ( O ) =  O,  acpI(O)= O, ~ c p , ( O ) =  O 
velocity t=O: AC@)= o, ~ c p l ( O ) =  O, a(p3(O)= O 
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-50 

situation 11 

._ ............... ; ............... + ...................... ..........._ 

O 100 200 300 400 o 100 200 300 400 
time [-I time [-I 

tr. error dphi2 1001 1 

- 50 ............. ............. ...; .......................... e 
2 

3 
2 

z 
Y 

U 

ri 

a 

Y 

.- c a 
-50 ............................ ............ . _  

-100- - 
O 100 200 300 400 

time [-I time [-I 

O 100 200 300 400 O 100 200 300 400 
time [-I time [-I 

-4 ' I 

O 100 200 300 400 O 100 200 300 400 
time E-] time [-I 

simulation with CTC controller, desired trajectory: A , k= 0.5 Nmhad, control par.: k,= 0.05, k2= 0.05, hl= 25, &= 25 
meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=O ~cp,(O)= O, ~ c p , ( O ) =  O, AT@)= 0 
velocity t=O: ~cp,(O)= O, ~ c p î ( O ) =  O, ACP,(O)= O 



.I c a X -50 

~ 

O 100 200 300 400 O 100 200 300 400 ~ 

time [-1 time [-3 

I 
O 100 200 300 400 

-4 L 
O 100 200 300 400 

time [-I time [-I 

__.__.__.~ ___.........._.__ _.._ ._.__....__._ i 

simulation with CTC controller, desired trajectory: B , k= 0.5 Nm/rad, control par.: k,= 0.05, k2= O.O§, A,= 25, &= 25 
meas. freq.: 1/0.01 Herz, observ. poles: -25, position t = o  acp,(O)= O, ~cp,(O)= O, ~cp,(O)= O 
velocity t=O: ACP,(O)= O, ~ c p l ( O ) =  O, ~cp,(O)= O 
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situation 13 

û E -2 .............i. ................ ................. ............... 

.......... ............... 

10 

O 
û E 
r( -10 

-20 

Y 

.- c a 
0 

1 -30 
O 200 400 600 800 

time [-I 
tr. error dphi2 100 

a ì  

tr. error phi1 
1 

200 400 600 800 
time [-3 

-100' -50 ' I 
O 200 400 600 800 O 200 400 600 800 

time 1-1 time [-3 

dphi34phi3r 
I 100 phi3 and phi3r 100 I 

O 200 400 600 800 
time [-I time [-3 

O 200 400 600 800 O 200 400 600 800 
time [-I time [-I 

simulation, desired trajectory: B , k= 0.5 Nm/rad, control par.: k,= 0.05, k2= 0.05, k3= 0.05, A,= 25 and &= 25 
meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=O: ~cp, (O)= O, acp,(O)= O, acp,(O)= O 
velocity t=O acp2(û)= O, ~ c p l ( O ) =  O, acp,(O)= O 
wrong estimated par. : ( k= 0.5 Nm/rad &= 0.1 Nm/rad) 
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situation 14 

ü O[. IjTl ...... 

ì2 
N -2 ............... j_ ................ ................. i ............... 

F 

Y 

.- 

4 -41  ................................ : ................................. 
c 

I "  I 

10 

O z 
ì2 
+ -10 
3 
9 

-20 

Y 

8 

- 
O 200 400 600 800 

time [-3 
tr. error dphi2 100 

o 200 400 600 800 
time [-I 

phi3 and phi3r 150 

................................................. 

..... ........................... 

..... 

-50' I 
O 200 400 600 800 

time [-] 

phil-phi3 
1 

b Y 

m .- c o  
F 

a -1 
r( 

c .- 

-2' I 
O 200 400 600 800 

time [-I 

-30 
O 200 400 600 800 

time [-] 

tr. error dphil 150 I i 

time [-I 

dphi3dphi3r 400 I 

O 200 400 600 800 
time [-I 
inputs 4000 1 

-4000 
O 200 400 600 800 

time [-I 

simulation, desired trajectory: B , k= 0.5 Nm/rad, control par.: k,= 0.05, k2= 0.05, k,= 0.05, hl= 25 and &.= 25 
meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=O: Acp2(0)= o, Acpi(o)= o, AV@)= 0 
velocity t=& ~cp,(O)= O, ~ c p i ( O ) =  O, acp,(O)= O 
wrong estimated par. : ( k= 0.5 Nm/rad k,= 1 Nm/rad) 
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situation 15 

0 .............................. .;, ............................... - 

o 100 200 300 400 o 100 200 300 400 
time [-] time [-I 

tr. error dphil 
I 

tr. error dphi2 100r 

-1001 I 

o 100 200 300 400 o 100 200 300 400 
time [-I time [-I 

phi3 and phi3r 100 
;I, i 

-501 1 
O 100 200 300 400 

time [-I time [-I 

o 100 200 300 400 
time [-] time [-I 

simulation, desired trajectory: B , k= 0.5 Nm/rad, control par.: kl= 0.05, k2= 0.05, k,= 0.05, hl= 25 and b= 25 
meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=O ~ c p , ( O ) =  O, ~ c p , ( O ) =  O, ~cp , (O)=  O 
velocity t=& ~cp,(o)= 0, ~ c p î ( O ) =  O,  ~ c p , ( O ) =  O 
wrong estimated par. : (wl= w,= 0.25 Nm w2= 0.15 Nm wlc= w%= 0.1 Nm wZ= 0.05 Nm) 
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situation 16 
tr. error phi2 4 ,  1 

o 100 200 300 400 
time [-] time [-I 

O 100 200 300 400 o 100 200 300 400 
time [-] time [-] 

7 s 
z 
Y 

a 

phi3 and phik 100 I I 

-50 I 
O 100 200 300 400 

400, dphi3-dphi3r 

o 100 200 300 400 
time E-] time [-I 

4000 

z 2000 
N .- 
$ 0  
4 
r( .- 
5-2000 

-4000 o 100 200 300 400 O 100 200 300 400 
time [-I time [-I 

simulation, desired trajectory: B , k= 0.5 Nm/rad, control par.: kl= 0.05, k2= 0.05, k3= 0.05, hl= 25 and &= 25 
meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=O: ~ c p ~ ( O ) =  O, ~ c p , ( O ) =  O, ~ c p , ( O ) =  O 
velocity t=& AC@)= O, ~cpl(O)= O, ~cp,(O)= O 
wrong estimated par. : (wi= w3= 0.25 Nm w2= 0.15 Nm wlc= wse= 0.5 Nm wk= 0.3 Nm) 
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situation 17 
tr. error phi2 

...... - 
G 
E 
c? 
Y 

-4 .............. ....................... ! ............... - 

-6 

E 

? 

o 100 200 300 400 o 100 200 300 400 
time [-I time [-] 

100 - tr. error dphi2 

...... 

a 
................ ...... ...........i .................. 

tr. error dphi2 100 

-100- o 100 200 300 400 
time [-I time (-1 

phi3 and phi3r 1óO 
I-* : 
, I  . 
I k  - 
, I  : 
, I  

$ 8 :  
................. 50 -; ..... ....... : .................. : ..............._ 

-50 
O 100 200 300 400 

dphi3dphi3r 400 

o 100 200 300 400 
time [-] time [-I 

, 

I 

, 

o 100 200 300 400 o 100 200 300 400 
time [-I time (-1 

simulation, desired trajectory: B , k= 0.5 Nm/rad, control par.: k,= 0.05, k2= 0.05, k,= 0.05, &= 25 and &.= 25 
rneas. freq.: 1/0.01 Herz, observ. poles: -25, position t=O: ~cp,(O)= O, ~ c p , ( O ) =  O, acp,(O)= O 
velocity t=O: acpZ(O)= O, ~ c p l ( O ) =  O, acp,(O)= Ca 
wrong estimated par. : (J1= 2.15e-3, J,= 1.45e-4 J1,= 3e-3 Ja= Ze-4) 
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situation 18 

T 
6 
Y .- 
E 
p. 

Y 

m 
E 
.- 
I. 
z a 

o 100 200 300 400 
time [-] 

-100' 1 o 100 200 300 4oQ 

time [-I 

o 100 200 300 400 
time [-I 

tr. error dphil 
1 

time [-3 

phi3 and phi3r 

-200 

-400 

..._ ...........,.i .........,........ i ................. ~ 

J 
o 100 200 300 400'  

-50 o 100 200 300 400 

time [-I 
phil-phi3 4,  I 

-4 ' I 
O 100 200 300 400 

time [-I 

dphi3-dphi3r 400, 1 

time [-I 

-4000 I I o 100 200 300 400 
time [-I 

simulation, desired trajectory: B , k= 0.5 Nm/rad, control par.: k,= 0.05, k,= 0.05, k,= 0.05, &= 25 and &= 25 
meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=O: ~ c p , ( O ) =  O, ~ c p , ( O ) =  O, aq,(O)= O 
velocity t=O: ~ c p , ( O ) =  O, ~ c p l ( O ) =  O, ~cp,(O)= O 
wrong estimated par. : (ms= 2.3 kg mt= 8.5 kg me= 2.3 kg msc= 3 kg mte= 10 kg me= 3 kg) 
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APPENDIX F OUTPUT CONTROL 

I 
Iii this appeiidiri I =ill give s, and sy of equation (ó.2j and (6.5) Further I wiii snow some , 
simUl2ttiûii - aiid eripeniiieiiíal mulis. 

s, and s, 

From fig 6.1 it follows: 

Q.51+cp2r 

>> cp 3r-cp 
I>( cp3r-cp sxr = sin(atan( 

1 
cos( atan( 

I 

Because of the fact that cp3r-cplr is small, we can simplify equation (F.1): 

Now I will consider the s,,. From fig. 6.2 it follows: 

y = cp2rcosp 

>> cp 1Y-T fr 
E 

cosp = cos(atun( 

F. a 
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Because of the fact that cp3r-cp,r is small, we can simplify equation (F.4): 

This leads to: 

In the on-line generation routine of qld and cp2d (6.2, 6.5 and 6.6 and 6.7 ) I have used s, and sy 
of equation (F.2) and (F.6). 
We have to derivate s, and s, twice (to calculate ?d, ?d and fd, ?,J. If we had use F.1 anf F.3 we, 
get long terms, ~~ this ~- Iead to pmblems during t&i~e~~it t ioi  of experiments ( computing time 
can grow too big). 

- 
i ~~~ 

Simulationresults 

I have considered the next situations: 

simulation 
desired trajectory: xd= asin(cr>t) Yd= min(ot) a= 25 rad co= 3.14 rad/s 
springconstant: k = 0.5 Nm/rad 
control gain parameters: k,= k,= k3= 0.05, lab,= lab,= 25 
observer-poles (used by the pole-placement routine): -25+0.2i 

-25+0.3i 
-25+0.4i 

measure frequency: 0.01 s 
execution time: 3.5 s 
position t=O: (pi= cp2= cp3= O (middle of the xy table) 
velocity t=O: 'pi= cp,= cp3= O 
particularies: no on-line generation of (P1d and (P2d 

Note: This is the same situation as situation 1 of appendix E. 

F.2 
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2) As situation 1) but now: 

- : ax= ay= 1 

Note: This is the same as the on-line generation routine of T1d and T,d with (6.2) and (6.5) 

3) As situation 2) but now: 

- scaled on-line generation of and T2d: ax= ay= 0.75 
( see 6.6 and 6.7) 

4) As situation 2) but now: 

- scaled on-line generation of T1d and T2d: ax= ay= 0.5 

5)  As situation 2) but now: 

- experiment 
- 
- observer-poles: -50+0.2i, -50+0.3i, -50+0.4i 
- measure frequency: 0.007 s 
- 

control gain parameters k,= k2= k3= 0.05, lab,= 50, lab,= 25 

scaled on-line generation of cpld and vu: ax= ay= 0.25 

6) As situation 5)  but now: 

- desired trajectory: xd= acos(ot) yd= crsin(ot) , a= 25 rad o= 3.14 rad/s 

7) As situation 6) but now: 

- desired trajectory: xd=acos(o&) yd=asin(02t), a=25 rad 01=3.14 rad/s, m2=î.57 rad/s 

F.3 
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The simulation - and experimental results 

Of every situation I have made the following plots: 

1 tracking error x-direction: x,-x 
2 tracking error y-direction: y,-y 
3 input x-direction: u, 
4 input y-direction: us 
5 desired and real trajectory of the end-effector 

The structure of a page with plots is: 

Now I will give per situation the simulation - and experimental results (see the following pages). 

F.4 
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situation 1 

- o o u 

- 
Y 

& 

-6 I 
o loo 200 300 400 

time [-I time [-I 

O 100 200 300 400 
time [-I time [-] 

e.e. path 

x-pos [cm] 

simulation, desired trajectory: xd= 25sin(3.14t) yd= 25sin(3.14t), 
k= 0.5 Nm/rad, control par.: kl= 0.05, k,= 0.05, k3= 0.05, hl= 25 and &= 25 
meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=O: ~cp,(o)= o, aV,(O)= o, AT,(O)= 0 
velocity t=& ~cp,(O)= O, ~cpl(O)= O, ~cp,(O)= O, ax= ay= O 
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situation 2 

- 
E o 
Y 

E e, 

tr. error x-pos 
1 

o 100 200 300 400 

tr. error y-pos 2 

o 100 200 300 400 
time [-I 
input u2 4000 I 

time [-I 
input u1 

- 
-40000 100 200 300 400 

time [-I 

30 I 

20 I 
E o 

0 ........................ 

& x : I  -10 ......................... 

-20 ........................ i /  

-4000 - o 100 200 300 400 
time [-I 

e.e. path 

-30 I I 
-io O 10 20 30 -30 -20 

simulation, desired trajectory: x,= 25sin(3.14t) y,,= 25sin(3.14t), 
k= 0.5 Nm/rad, control par.: k,= 0.05, k,= 0.05, k3= 0.05, Al= 25 and &= 25 
meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=O ~cp,(O)= O, acp,(O)= O, acp,(O)= O 
velocity t=O: ~cp,(O)= O, ~cpl(O)= O, acp3(0)= O, ax= a,,= 1 
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situation 3 
tr. error x-pos 2, i 

- o 
Y 

0 
B 

-6' I 

O 100 200 300 400 
time [-I 

____..______._._____. - 

.._. <............ > ...,............. $ ...............- 

-6 ' o 100 200 300 400 
time [-I 

-40000 100 200 300 400 O 100 200 300 400 
time [-I time [-I 

e.e. path 

8, x 

x-pos [cm] 

simulation, desired trajectory: xd= ~Ssin(3.14t) Yd= 25sin(3.14t), 
k= 0.5 Nm/rad, control gar.: k,= 0.05, k2= 0.05, k3= 0.05, hl= 25 and &= 25 
meas. freq.: 1/0.01 Herz, obsew. poles: -25, position t=O: ~cp~(o)= o, ~%(o)= o, A d o ) =  0 
velocity t=O: ~cp,(o)= O, ~rpl(O)= O, ~ip, (O)= O, a,= ay= 0.75 
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situation 4 
tr. error y-pos 

I 2 tr. error x-pos 2 ,  I 
..- - 

.................. 
Y o 
8 

..........<.+.................i ...............- 

j ...............- ................ e, 

o 100 200 300 400 
-6 o 100 200 300 400 

time [-I time [-] 

o 100 200 300 400 O 100 200 300 400 
time [-I time [-I 

e.e. path 

simulation, desired trajectory: x,= 25sin(3.14t) yd= 25sin(3.14t), 
k= 0.5 Nm/rad, control par.: kl= 0.05, k2= 0.05, k,= 0.05, hl= 25 and &= 25 
meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=O: A ~ , ( O ) =  O, ~ q p , ( O ) =  O, ~rp,(O)= O 
velocity t=O: ~ c p , ( O ) =  O,  ~ c p l ( Q ) =  O, ~ c p , ( O ) =  O, a,= ay= 0.5 
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- 0  E 

I V  I 
-10- 

O 500 

tr. error y-pos 2 1 

8 

-6 I I 
O 500 

time [-I time [-I 
input u2 input u1 

1 3000 4Ooo 

........................... 

I - 2 m  - 
O 500 O 500  

time [-I time [-] 

e.e. uath 

experiment, desired trajectory: xd= Zsin(3.14t) Yd= 25sin(3.14t), 
k= 0.5 Nm/rad, control par.: k,= 0.05, k,= 0.05, k,= 0.05, hl= 50 and &= 25 
meas. freq.: 1/0.01 Herz, observ. poles: -50, position t=O acpZ(o)= o, A%(O)= 0, AT@)= 0 
velocity t=O ~cp, (O)= O,  ~cpl(O)= O, ~ c p , ( O ) =  O, ax= ay= 0.25 
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situation 6 

- 
E o 

- 
Y 

E o 
Y 

u 8 0 8 
-61 I 1 

-30; 100 *00 3x0 400 o 100 200 300 400 
time [-I time [-] 

input u2 input u1 4000 4000 

2000 

F l 0  a 

-2000 

- 
Y 

-4000 I -4000 ' J o 100 200 300 400 O 100 200 300 400 
time [-] time [-I 

x-pos [cm] 

simulation, desired trajectory: xd= 25cos(3.14t) yd= 25sin(3.14t), 
k= 0.5 Nm/rad, control par.: k,= 0.05, k,= 0.05, k,= 0.05, hl= 50 and &= 25 
meas. freq.: 1/0.01 Herz, observ. poles: -50, position t=O: ~ c p , ( O ) =  O, ~ c p , ( O ) =  O, acp,(O)= 0 
velocity t=O: ~cp , (O)=  O, ~cpl(O)= O,  ~ c p , ( O ) =  O, a,= ay= 0.25 



F: Results of the controlling of the end-effector of the xy table 
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simulation, desired trajectory: xd= 25cos(3.14t) yd= 25sin( 1.57t), 
k= 0.5 Nm/rad, control par.: k,= 0.05, k2= 0.05, k,= 0.05, Al= 50 and &= 25 
meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=O: ~cp,(O)= O, acp1(O)= O, ~ c p ~ ( O ) =  O 
velocity t=O: ~cp,(O)= O, ~ c p l ( O ) =  O, ~ c p ~ ( O ) =  O, ax= ay= 0.25 
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