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Conclusions and recommendations

Recommendations

To continue the research in future the following aspects can be investigated.

1) Application of the C CTC strategy to other systems

The propertties of the C CTC law that I have found during this research are related to the xy
table. The question is: how will the properties of the C CTC strategy be if the control strategy
is used for the controlling of other systems.

In future, the C CTC law has to be used for controlling other systems. The elasticity of those
systems has to play a (very) important role. Then it is possible to make more general conclusions.

2) Implementation of an adaptation algorithm if system parameters are partially unknown.

One of the big disadvantages of the control strategy is that we have to know all the system
parameters. In practice this can cause problems.

In future, it will be nice if an adaptation algorithm is implemented in the C CTC strategy. In
practice this implementation can also lead to a reduction of the tracking - and velocity errors.
Note: Ricky Doelman (student of the WFW control group) is designing this mentioned adaptation
algorithm for a flexible TR robot.

3) Comparison with other control strategies
During the research I have compared the results of the C CTC law with the general CTC law.
It can be useful to make a comparison with other control strategies.
4) Improvement of some global investigated aspects:
- observer algorithm

- output control
- designing of a routine to chose the control - and observer parameters
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Abstract

ABSTRACT

This report gives a summary of the final state of my research. The research deals with the
controlling of manipulators with flexible transmissions between the actuators and the stiff links.
Ivonne Lammerts, member of the WFW group, has developed a control law for this kind of
manipulators. This control law deals with tracking the desired trajectory as well as control of the
elastic vibrations. The control law is composed out of two Computed Torque Control routines,
and is called the Composite Computed Torque Control strategy (C CTC strategy).

The goal of my research is to test the C CTC strategy and to apply the control strategy in a
practical situation. The flexible xy table, which is situated in the WFW lab, will be used as the
test apparatus. The xy table has 3 degrees of freedom (¢,, @,, ¢;) and 2 control inputs. The
flexibility can be desrcribed by @,-@;. )

I have split up the research into two parts. At the first part of the research I focus my attention
to get a picture of the properties of the C CTC strategy. I have designed a control law based on
the C CTC strategy for controlling a (simplificated) model of the xy table. The goal of applying
the designed C CTC law is to track the desired trajectories @, and ¢,, and to control the
flexibility ¢,-¢,. This control law is a state control routine. By executing theoretical analysis and
simulations with theoretical and practical situations ( a situation where unmoddeled dynamics,
wrong estimated parameters, measure noise, etc. plays an important role) I have formed a picture
of the properties of the C CTC controller.

For theoretical situations it appears that the stability is guaranteed, and that the simulation results
are good. For a practical situation it appears that the simulation results are satisfactory and that
the robustness of the controller is reasonable. There will be a considerable chance that the C CTC
controller will be applicable in practice.

At the second part of the research I focus my attention to the specific controlling of the
experimental xy table. Now, we have to account for the limitations of the system. During this
part of the research I have solved problems as: the redesigning of the C CTC law and the
implementation of this control law in the control system, the handling of the measurements
(observer design), the designing of a simulator to test designed control laws and the total
organisation of executing experiments.

I have designed a set of programs with which it is possible to execute simulations and
experiments. During the execution of simulations and experiments I have determined a suitable
control system configuration and I have determined suitable control and observer parameters for
different situations. Futher I have investigated the robustness of the control system, and I have
made a comparison between the control results of the C CTC controller and a CTC controller.
It appears that the designed C CTC controller answers to our desirements. The system behaviour
stays stable and the tracking and velocity errors converge to zero (to small values). The
robustness of the system is reasonable and the control results of the C CTC controller are better
than the control results of the considered CTC controller.




Abstract

The final goal of applying a C CTC controller is that the end-effector will track a desired path.
The end-effector of the xy table is fixed by ¢,, ¢, and @,. So, with the designed C CTC state
control routine it is not possible to track a desired end-effector path. To achieve this, the C CTC
state control routine has to be changed in an output control routine. During the last part of the
research I have designed such an output control routine. The control results of the by trial and
error designed C CTC output control routine are reasonable.
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Notation

NOTATION
a,0,a, scalars
a vector
A matrix
a’, AT transposition
Al inversion
A(l,j) element of matrix A on row i, column j
f(t) argument of function f between round brackets
a,8,3, first order time derivative of a,a and a_
4,04, second order time derivative of a,a and a_




Introduction

1. INTRODUCTION

Today industrial robots are used for various purposes. Because of hardware limitations in
on-line applications, until now, robot control has been studied extensively under the
assumption that the actuator transmissions are stiff and that the links can be modelled as
rigid bodies. Therefore, most of today’s robots have a very stiff construction in order to
avoid deformations and vibrations.

For higher operating speeds, industrial robots should be light-weight constructions to
reduce the driving force/torque requirements and to enable the robot arm to respond faster.
However a lightweight manipulator may have flexibility in the link structure and elasticity
in the transmissions between the actuators and links. For most manipulators, elasticity of
the motor transmissions has a greater significance for the design of the controller than the
deformation of the flexible links.

A well known approach to improve the behaviour of manipulators is the computed torque
control method. In its original version this control method appears to be applicable only to
rigid manipulators. If flexibility plays an important role, it often results in an instable
system behaviour. Therefore, the control system must deal with control of the elastic
vibrations as well ‘as trajectory tracking.

However, it is not possible to find a control input for a flexible manipulator which will
accomplish perfect tracking of any desired trajectory in space while totally damping the
undesired elastic deflections. It is more realistic to search for a control strategy achieving
both a reasonable trajectory tracking and a certain stabilization of acceptable vibrations.
Ivonne Lammerts, member of the WFW-group, has developed such a control strategy. This
control strategy is an extended version of the familiar Computed Torque Control technique
for rigid manipulators, and is called the Composite Computed Torque Control strategy (C
CTC strategy). Ivonne Lammerts has proved, for a theoretical situation, that this control
strategy will be applicable to systems with one or more flexible transmissions. The
question is now: how will the C CTC strategy function in reality. During my research I
have to answer this question.

This report gives the final state of my research. In this report I will show the C CTC
strategy and I will show the C CTC law which I have designed for controlling the xy table
with a flexible transmission (the test-apparatus of the research). Further I will show and
discuss how the C CTC law is implemented in the control system of the xy table. By
showing and discussing theoretical analysis, simulation results and experimental results I
will give an extensive review of the properties of the C CTC controller. At the end I will
give some recommendations to continue the research in the future



The composite computed torque control strategy

2. THE COMPOSITE COMPUTED TORQUE CONTROL STRATEGY

A manipulator with elastic motor transmissions

We consider manipuiators that can be modeiied as an open chain of n rigid links inter-
connected bij joints with one degree of freedom per joint. One end of the chain is fixed to
the ground and the other end has to follow a specified trajectory in space.

Since each joint allows one relative motion of the connected link, n generalized
coordinates are necessary and sufficient to describe the kinematics of the links. These
coordinates are the components of a vector g, € R" The desired path of g, in time is
denoted by gy = gi(t)-

Each joint has its own actuator and its own transmission between the actuator and the
driven link. The motor torques (used in a generalized sense, i.e. denoting both torques and
forces) acting on the transmissions are the robot control inputs. In this report, we consider
the case in which some or all transmissions are elastically deformable. Then, for each
elastic deformation it is necessary to introduce an extra coordinate to desribe the rotation
of the rotor of the motor. These extra coordinates are the components of a vector g, € R°
with e < n.

For the sequel it is advantageous to regroup the coordinates g; of the links in two vectors
g€ R™ and g, € R°, where g, and g, contain the coordinates of the direct driven links (i.e.
by the stiff transmission), respectively the coordinates of the elastically driven links (i.e.
driven by the elastic transmissions). See fig 2.1.

glastic transmission stiff trmssnon
1
! ical ! direct
P gRstcally 1 &wen
N e dhdbedidindiigandidint PR
[ lir | stator (= rotor AAAA lirk stator [=jrotor ' | lirk
1 ' y actuatoer ! '
: P ST :
Am » Jea » Qg

Fig 2.1 Elastically driven links - direct driven links.



The composite computed torque control strategy

This completes the introduction of the total vector of generalized coordinates g € R™*.

g,
g = ]g‘e (2'1)
The components of the vector € defined by
=4 -4, 2.2)

charaterize the deformations of the elastic motor transmissions. Hence, if these
transmissions are modelled as massless linear springs, the elastic torques being the
components of a vector z, € R® are related to £ by

z =Ke (2.3

where K € R°™ is the positive definite diagonal stiffness matrix.

Dynamic model of the flexible robot

Using a Langrangian approach, the dynamic model of the manipulator can be written as:

M(9§+C(g.99+K,g+m(§)+&(q) = Hu (24

where:

1=[889%W]
M = positive definite inertia matrix.

Cq = is a vector with torques due to te Coriolis and centrifugal effects.
K,q = is the vector with elastic-transmission torques.

n = is the vector with torques due to friction.

g = is the vector with torques due to gravity.

Hu = is the vector with the inputs.




The composite computed torque control strategy

The model can be given in a detailed form by:

m&gs+msﬁe+mmﬁm+cssg's+csﬁ'e+cmgm+ﬂs+gs =u (2.5)

~
!\)
O}

- )13 o L3 = o8 - . . s ~ . . . 77 —77 AY . n
mg +m.g +m,g4 +c g +c. g +c,g +n +g +K(g -q ) =0

m, g +m,g +m, g +c,g +c, g4 +c,,d +n +g +K(g -q) =u 2.7

Composite computed torque control

The first problem in controlling a rigid-link manipulator with elastic motor transmissions,
is that only the desired link coordinates g,= q,(t) can be determined directly from the
known desired gripper path, while there is no indication for a certain desired trajectory of
of z(t) or q,(t) (note: z.= K(q,-9.)-

To obtain a smooth robot performance in space, we define a reference trajectory q,= q,(t)
for the link variables, which will converge to g, after progression in time. Further, the
idea is to formulate a ’reference manifold’ z,(t) ( or g,y ) on which the controller tries to
keep the elastic-transmissions torques z(t), instead of trying to supress them totally.

The second problem is that there are more degrees of freedom than control inputs. The
goal of the composite controller developed in this chapter is to track the reference
trajectory of the links, while stabilizing the elastic vibrations around the specified
reference manifold.

It is appealing to try to find the analogue for flexible manipulators of the socalled
computed torque control method for rigid robots. However, an elastic-transmission robot
does not allow a nonlineair feedback control as for rigid manipulators, since there are less
control inputs than degrees of freedom. Here, we choose the next computed torque
notation for the (n+e)-th order dynamic model of the flexible robot (Ivonne Lammerts,
october 1991).

Hu = M(@)4 +C(a.4)q +Kig +nD+8@)+K¢, (2.8)

where,

- K., is a diagonal positive gain matrix.
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- q,is a chosen reference trajectory of all system variables; in this case, the vector

s= ¢, is a sliding service for q according to Asada and Slotine (1986).
= é+Ae Vizty  efto)= e(to).
g4-q is the total error.

= g,-q is the total reference error.

1
@ |

I<IT'>L

L('D

Note, that we do know the desired trajectory of the link variables, g,(t) and its time
derivatives, but we haven’t any indication of how to determine a certain desired trajectory
d..4(t) for the elastic motor rotor variables, unless we make use of above computed torque
expression in splitting it up again in a partitioned form according to the equations 2.5, 2.6
and 2.7:

u =mg +mg +m.g +cg +C g +C,g +n +g +Ké 2.9)
9 = me‘ﬁsr +meﬁer +me”'qmr +ce‘£sr +ce£er +ce”‘qmr +Zl"e +'ge +K(ger —gmr) +Ke'e"'er (2 10)
Ee = m”“qsr +m”’9qer +mm"ﬁmr +c'”‘°gsr +c’”£er+cmm’qmr +ﬂm +gm +K(gmr —ger) +I<""e;mr (2. 1 1)

- where K, K, and K, are diagonal, positive definite gain matrices.

With equation (2.10) it is possible to find a reference trajectory for g, (t), 4..(t) and g_(t).
Now it is possible to determine the inputs u(t) and ut) with (2.9) and (2.11).

One part of the controller deals with the tracking of a desired trajectory. This part of the
controller is in fact a CTC controller. This CTC controller is described by (2.9) and (2.11).
The question is: how can we find a reference trajectory of q, — q,,,.

The second part of the controller deals with the controlling of elastic vibrations. With
(2.10) and q,, it is possible to calculate a reference manifold z, = K(q,,-q.,). The second
part of the controller stabilizes the elastic vibrations around the specified reference
manifold. This part of the controller is in fact also a CTC controller.

So, to control a system with flexible transmissions we use a control law which is
composed out of two CTC laws. This is the reason why the control law is called the
Composite Computed Torque Control law.



Controlling the xy table with a C CTC law

3. CONTROLLING THE XY TABLE WITH A COMPOSITE COMPUTED
TORQUE CONTROL LAW

The goal of my research is to test the Composite Computed Torque Control strategy ( C
CTC strategy), and to find the properties of this control law. For the research I will use
the xy table with one elastic transmission as test apparatus. The xy table is situated in the
WFW lab.

In this chapter I will show the C CTC law which I have designed for controlling the xy
table.

The xy table

A schematic representation of the xy table is given in fig. 3.1 ( Heeren, 1989 and v.d.
Molengraft, 1989).

o I-— BELT WHEEL
1 SLIDEWAY

=F

=T SLIDE
X SLIDEWAY
- END-EFFECTOR e
\ MOTOR 2

X

s Voo
l[.h'—_—'::—frp—c:_"—{“k(__- MOTOR !

SPINDLE

fig 3.1 Schematic representation of the xy table.



Controlling the xy table with a C CTC law

For control design we have to choose a suitable model of the xy table. I choose the next
model ( v.d. Molengraft, 1989).

r
h
r
mt / My
- m
m, ¢
X i
I, Wy & X
@, r k yJ,Jr @, i,
p IR

fig 3.2 model of the xy table
See appendix A for a more detailed description of the xy table.
The dynamic model of the xy table can be written as:

M(@i+C(a.99+K,g+mq) = Hu (3.1

If M,C and K, are partitioned in accordance to the partitioning of g, the dynamic model
can be given in detailed form (see also appendix A).



Controlling the xy table with a C CTC law

M@ o + My P 3 +CpsP 3 +C @ +1yy = U, (3-2)
My @ +m,§,+m § +Co,P,+C P+ @ k(@ -@,) = 0 (3-3)
1y, @ | +111 P s +C P, +C P e, @+, AP, -9,) = U, (3.4)

The C CTC law

We choose, as shown in chapter 2, the next C CTC strategy:

Hu = M(g)_c'zr+C(_g,_cZ)g'r+Lz_(g‘)+qur+Kr_e;r (3.5)

. Splitting the above computed torque expression into a partitioned form according to the
equations 3.2, 3.3 and 3.4 gives:

U = My, +M Qo +C) Q3 +C) 41, +k2é2r (3.6)
0 = m3lq.) 1r+m3zép 2 +m33c'p 3r +c32¢ 2r+033¢ 3 +c31q') 1r _k(q) P 3r) +k3é3r (37)
u, = mQ, +m G, +c,§, +C .9, +C @, +n, +h(Q, —¢, ) +ké, (3-8)
where,
i=1,2
9, = 9 M P,-9)
¢, = reference trajectory (3.9)
¢,, = desired trajectory ’
j=123
€ = 9@,



Controlling the xy table with a C CTC law

Now, we have to define a vector g, In g, we put those variables of which we define a
desired trajectory. The number of variables of g, is equal to the number of inputs. In the
general case g, exists of those variables which fix the position of the end-effector of the
robot.

In the case of the xy table we can put two variables in g;. The position of the end-effector
of the xy table is fixed by three variables (¢,, @, @;). So, we have to make a \,hoice
which variables we put in g, We have two pOSSlblhtleS we can choose a= [, ¢;]",

we can choose g,= [¢, ¢,]"

If we choose g= [@, ¢,;]" and define the desired trajectories gy, 4y and Jy, it is possible
with (3.7) to determine the reference trajectorie @, and its time-derivatives:

c k 1
. 31 . on . . . .
Pt~ —@;, = (M, P, M P, +C, P iP5, A, R, ) (3.10)
ms, ms, my,

Equation (3.10) is in most cases an instable differential equation. Only if we choose a very
small springconstant k (something like c,; or smaller), we will find a stable solution. This
is not an useful result, so we have to try the other possibility g,= [¢, ¢,]". After defining
the desired trajectories and its time-derivatives we can determine the reference trajectory
@5, and its time-derivatives:

+h, .k 1 . . . . .
- )P 3r+7(p s = ——(My @ rm B, +Cy 0, +e, 0, K, kD)

33 33 33

C.
.- 33
¢4, +(

(3.11)

Equation (3.11) is a stable differential equation. We can determine @,(t) and its time-
derivatives, and with this variables it is posible to determine the inputs u(t) and u(t) with
(3.6) and (3.8).

Stability of the closed loop system

Stability is an extremely important factor for control design, especially for the kind of
flexible robot systems considered in this report. Lyapunov’s stability theorems make
possible a method of synthesizing control laws which guarantee stability of the closed loop
system ( system and controller).




Controlling the xy table with a C CTC law

In the second stability approach of Lyapunov ( Kok, 1991), the first step is the derivation
of the equivalent error equations of the closed loop system. The equations which describes
the closed loop error dynamics of the model of the xy table controlled by the C CTC law
are: ( 3.6-3.2, 3.7-3.3, 3.8-3.4):

. s - - ¥ - ~ £ 17\

3 4 2 = 3.12

M€y, + My €5, +Cps€3,+Cp1€,,7KEy, = U { )

My 8, +my 8, +Mm 8. +C8, +Cy 6, +C; 6 ~k(e, ~e,)+ké, =0 (3.13)
m &, +m @, +C 8, +C @, +c, @, +k(e —e,)+ké, =0 (3-14)

Then, we use the total reference error vector €, in order to obtain a short notation of the
equivalent error equations of the overall closed loop system:

Me +C¢ +Kie +K¢ =0 (3.15)

In the second step, a positive definite Lyapunov function candidate V(t) of the total
reference error vector e, is chosen such that it represents the mechanical energy of the
flexible system.

V= te e +le ke (3.16)

To guarantee the stability we have to come up the following 4 requirements:
1) Vix)=0 , withx=0

= x=[e, &] — oké

10



Controlling the xy table with a C CTC law

2) V(x.hH= alx|

=> The inertia matrix M is positive definite and K, is not negative definite.
— oké

3) V(x,t)= continuous and differentiable.
— oké
4) V(x,t) < 0

=> With (3.16) we can find:

V= g’rTMg'r+.%_e'_rTM_e'_r+_e_rTK e (3.17)

k =r
With (3.15) V can be given by:

r

V- ng(%M_C)_e'_r-ngKr ¢ (3.18)

I have defined the matrix C (see appendix A) such that the matrix [%M-C] is
skew-symmetric, i.e.:

Ty o 1y o .
[54-C) = -[ZM-C] (3.19)

As a consequence, we can make use of the property of skew-symmetry of [%M-C]
in that:

f[%M -Clx = 0 , for any arbritrary x (3.20)

11



Controlling the xy table with a C CTC law

So,

V==K ¢ <0 (3.21)

— oké, if K, is chosen positive definite

The Lyapunov function comes up to the 4 properties. So we can conclude that the closed
loop system is asymptotically stable.

Note:

Expression (3.21) shows that the total reference velocity error converges to the sliding
surface s= €= é+Ae= 0, which implies that both the velocity and position tracking errors
go to zero.

The research

Now we have found a suitable way to control the xy table with a flexible transmission.
The designed C CTC law (3.6 3.8 3.11) guarantees stability of the closed loop system. It
is possible to track q,= [@s @1a]" and to stabilize the elastic vibrations. In fact this is a
state control routine (q; = q;y)-

The x - and y position of the end-effector of the xy table are fixed by @,, ¢, and @, (see
fig. 3.2). So, with the state control routine the x - and y position of the end-effector are
not fixed. To control the end-effector, the C CTC law has to be changed in an output
controller ( [X,y] = [Xs Yd])-

The mean goal of the research is to test the C CTC strategy and to find the properties of
the C CTC strategy, and in first instance not to control the end-effector. For this research I
use the designed state control routine. At the end of the research I have try to find a way
of changing the C CTC law to control the end-effector ( output control).

In the next chapters I will describe how the testing of the C CTC routines is executed, and
which results I have found.

12



Properties of the C CTC strategy

4. PROPERTIES OF THE C CTC STRATEGY

I have split the research into two parts. At the first part of the research I focus my attention to
get a picture of the properties of the C CTC strategy. At the second part I focus my attention to
the specific controlling of the experimental xy table. The first part is described in this chapter,
and the second part is desrcribed in chapter 5 and chapter 6.

To get a picture of the properties of the C CTC strategy, I have executed a lot of simulations.
I have made a distinction between theoretical - and practical situations.

Theoretical situation
The theoretical situation is the situation I was using in the previous chapters. This means that:

- all parameters are known.

- all variables + time derivatives are known (on every moment).
- the model of the xy table fits the reality.

- the inputs are continuous.

In chapter 3 is proven that this theoretical situation leads to an asymptotically stable system
behaviour.

Simulations

The simulations have been executed with the program MATLAB. The differential equations have
been solved with a third order Runge Kutta integration algorithm (variable stepsize). The
integration accuracy can be chosen.

The goal of applying the C CTC law is to track the desired trajectory q;= [@,q ¢14]" and its time
derivative. The C CTC law calculates @, (+ time derivatives) and the inputs u_ and u, so that g,
q, will track g, §,, (see chapter 3).

With the simulations I have to find the influence of:

- the control gain factors.

- the desired trajectories.

- the spring constant of the elastic transmission.
- the integration accuracy.

Further I have to find out:
- if the system is stable ( if not something is wrong).

- how good and fast is the tracking of the desired trajectory.
- if the inputs are realistic ( possible to create).

13
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Properties of the C CTC strategy

Simulation results theoretical situations

In this paragraph I will show and discuss the most important simulation results.

I have chosen the following desired trajectory:

phild frad)

0.02 trag(ing error phiz ' 0.04 traqking error pfhil
0.01 ppflerm ol o) L 0.02k _S 4 -
=z ; 2
of AN E
0.01 Z : \ / \ / =
P N : L=
0.02 <002 Yoy =
-0.03 -0.04 5 i
Q i 2 0 1 2 3
time [s] time [s]

40 §pzuh phild‘ 40 ,path phi2d _
=)
E
=
Q
=
-40 -40
Q 1 2 3 0 1 2 3
time [s] time s}

fig 4.1 desired trajectory
I define the following standard situation:

- desired trajectory: fig 4.1

- spring constant: k= 1 Nm/rad

- control gain parameters: k;= 0.1, k,= k,= 0.01, A= A,= 5
- integration accuracy: tol= 0.01

- tracking error t=0:  A@,(0)= 0, ag,(0)= 0, ag;(0)=0

- velocity error t=0:  A@,(0)= 0, ap1(0)= 0, ap;(0)=0

We get the following simulation results:

14
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L tracking error dphi2 1 tracking error dphil 0 inputs
3 Z
0 = fo 3
=2 2 /
0.5 I z -10p PSS Y LU Y
-1 . -1 . 20
0 1 2 3 0 1 2 3 0 1 2 3
time {s} time {s} time {s]

40

204 T

= 0 2

& £

<

2200 °
-40 :

0 1 2 3

time {s}

fig 4.2 simulation results standard situation

It appears that the tracking errors @,,;-¢,, @;,-¢; and the velocity errors @,.-¢,, ¢, are not
equal to zero, and that these errors will not converge to zero.

According to the theory (proof of stability) the errors have to converge to zero. However, we
may not forget that the simulations are an approach of reality. In the case of this situation the
integration accuracy is equal to 0.01. This means that the integration algorithm will adapt the
time step at so that the integration error will not be bigger as 0.01.

So, in the case of the simulations we have to do with a discontinuous situation, and we have to
do with integration errors. That is the reason why the errors will not converge to zero ( see also
next situation).

Futher it appears that the elasticity ¢,-¢; is controlled, and that the inputs are realistic.
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Properties of the C CTC strategy

Now I will change one or some aspects of the presented standard situation. I will consider the
influence of the changed aspects.

If we change the integration accuracy:
- integration accuracy: tol= 0.001

we get the following results:

5 X103 tr. error phi2 , %1073 tr, error phil

¢-phi2 Jrad)

e-phil [rad)

time [s] time {s]

fig 4.3 influence of integration accuracy

By reducing the integration accuracy with a factor 10 its appears that the errors will also reduce
with a factor 10. We can conclude that the integration algorithm with a certain accuracy will
introduce some small tracking- and velocity errors. These errors will reduce by reducing the
integration accuracy (practical disadvantage computing time will increase).

If we create a tracking error at t=0 we get:

- tracking error t=0: A@,(0)= -10 rad, ag,(0)= -10 rad, ag;(0)= -10 rad

i < g hi inputs
5 tr. error phl% s tr error p '1; 20 _ -
oF T 0k _;
'é: ; : [ Y
Sk H ~ 0 1 207 ST 8. Ve M “’; \_‘:r
. e ‘ OF M YIS
- . . -10 A L -20
10 1 2 3 1 2 3 0 1 2 3
time [s] ' time {s] time (s}
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40 prhi.’: and phi3lr gphi3-dphi3lr

phi [rad)
¢-dphi3 [rad/s)

time [s]

fig 4.4 influence of start errors

It appears that the tracking errors are controlled to zero ( in fact to the same value as the standard

situation). It also appears that the tracking error ¢,-¢p; will not converge to zero, and that the
velocity error @,,-¢, will converge to zero. It is possible to explain this aspect.

With the proof of stability I have proved that:

lim__[é]=0 =

é,, = (¢ ld_¢1)+)\’1(q)1d_q)1) 4.1)
€y = (92 P) AP —9)
€, = 95,9,
It appears that:
=0 @, -9, =0 4.2)

In the case of @,, there is no relation between @5, and @, S0 @5, will not converge to zero:

[ = Q-9 = 0 4.3)

17



Properties of the C CTC strategy

If we change the control gain parameters and create the start errors as mentioned before we get:

- control gain parameters: k;= 0.5, k,= 0.05, k;= 0.05, A= 10, A= 10

3 tr, error phiZ_ 3 tr. error phil‘ 60 inputs
- - 40 e :
g (1] ST 3-‘ O+ : 5
5 -5 @ " 0k i ( ! 2
-10 -10 5 20 -
1 2 3 0 1 2 3 0 1 2 3
) time [s]

fig 4.5 influence of the control gain parameters

To guarantee the stability we have to chose k;, k, and k; positive (see 3.21). The control gain
parameters k;, k,, k; and A,, A, determine the poles of V If we choose bigger values of ki, k,,
k; and A,, A\, the negative real values of the poles of V will increase. This leads to a faster

convergion of the tracking errors to zero. It also leads to bigger inputs at the beginning of the
simulation (hardly to see ).

If we change the springconstant we get:

- spring constant: k= 0.1 Nm/rad.

0.015 ir. error phi2 0.02 . error phil e _phil-phi3
E_o 005 /\ /\ {\ .4 / \ j . ;'5—
%_ Y Vs WOV A0 0 LU .'_i 0 \—\j V \ / -_-;.-_
0_0,005 U \/ © .0.01 'é. .
0% 1 | 2 3 002, 1 2 3 200 1 2 3

fig 4.6 influence of the spring constant k
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It appears that if flexibility plays an important role, that the tracking- and velocity errors will stay
small. It also appears that @,-¢, gets an unrealistic big value.

I have executed the same set of simulations with other desired trajectories. The results of the
simulations confirm with the expectations — stable system behaviour and tracking errors converge
to zero. These results don’t lead to new insights.

In appendix B I have shown some more simulation results of theoretical situations.

Practical situation
In reality we have to do with the following situation:
- errors in the model of the xy table (unmodelled dynamics)
- wrong estimated parameters
- discontinuous inputs
- it will cost time to determine the inputs

- measurement errors and measurement noise

The equations of motion in reality are ( see also 3.2 to 3.4):

My, @, + M), P o +C P +Cp @ +W,SIGN(P ) +W,, = U (4.4)

My @+, ) + M@, +Co P, +C P +Cy @~k @) 4wy, = 0 (4.5)

My @M@ +C P, +C @y +C P W SIgN(§ ) +h(Q -9 ) +w,, = U, (4.6)
Wy, Wi, W, Fepresents the unmodelled dynamics
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In reality the C CTC law in partitioned form ( see also 3.6 to 3.8) can be given by:
usc = r’122e(:p 2rm +m23e¢’ 3rm +c23eq.) 3rm +c21ecp 1rm +WZeSig n((b bn) +k2é2m (4'7)
0 = m31e¢ 1rm +m32e¢ 2m 339 3m +032e¢ 2m +633e¢ 3rm +C31.D 1m _ke(q) 1rm~ P 3rm) +k3é3m (4.8)

uec = mlle(p 1rm +rn13e(p 3rm +C122(p 2m +cl3e(p 3m +clle(p 1rm +w1eSlg n(cp lm) +ke(q) 1rm _(P 3rm) +k1e1rm

(4.9)
where,

i=123 j=123 k=12
w, are the estimated parameters (mi].e = my+am,; )
P = PratM(P 1= Prr)
i = PimPim
Piw = OptV, ¢,, = ¢,+v,, are the measurements
v, V, are the measure errors
u_, u_ are the discontinuous inputs

c., k

ije> e’ e ?

To guarantee the stability we have to come up to V < 0 (see 3.21). In practice it follows:

V=-¢ K¢ (4.10)
= r

n — due to unmodelled dynamics, wrong estimated parameters, discontinuous inputs,
time delay to calculate the inputs, measure noise and measure inaccuracy.

From equation (4.10) it appears that the system is stable if K is chosen in such a way that:
¢eKe >

-y I~

In practice m is not (exactly) known. So, we don’t have an idea how we have to choose K. An
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Properties of the C CTC strategy

other problem is that in practice we can’t choose K too big because of the fact that the inputs
u, and u, will grow to unrealistic values (in practice the inputs are bounded).

Measure situation

We consider the next practical situation { = measure situation):

time axis:

at,

at, At

ti tui ti+1 tui+1 ti+2

Measure situation:

1)  On t=t, the measurements of @, ,, P, ¢, and @, P; are executed.

2) On t= t,; the calculated inputs u_, and u,_ are presented to the system. The calculation of
the inputs costs at, seconds.

3) On t= t,,, the cyclus starts again.

Notes: - the measure frequence = 1/(at+at) = 1/at,
- During an interval t,, -t the inputs have a constant value

Simulation results of some practical situations
The goal of this part of the research is to get a global picture of the robustness against
unmodelled dynamics, wrong estimated parameters, discontinuous inputs, time delay to calculate
the inputs, measure noise and measure inaccuracy of the C CTC strategy.
In this paragraph I will show and discuss the most important simulation results.
Compared with the standard situation (page 14) I have changed the next aspects:

- control gain parameters:  k,= 0.5, k= 0.05, k;= 0.05, A,= 10 and A,= 10

- integration accuracy: can not be chosen
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1- discretization:
2- discretization:

This leads to the following simulation results:

0.1 tr error phiZ! 0.1 tr, error philz 20
005 5 PO TS— | = 10
LT
g 0 2 o~
= H : =
: I"as
° -0.05 \ T 3 -0

-0.1 - i -
0 1 2 3 20
time [s] time [s]
4 tracking error dphi2 4 tracking error dphil
- 2 . o i
< : ; Ed : :
ERY f\j;ff\{/f\ 4 3 ;
—_— ,_/I 4 v = ;
S : = oh. LAAAL f U
= 3 :
o 4 o -2 :
-6 i 4 i
0 1 2 3 ] 1 2 3
time (s] time s}
02, tr. error phi2 ‘ 0.2 T error phil
0.1 ~ 0.1

¢-phi2 [rad)

/\/”\ﬂ\/

0 \A/ \J \,/
0.1
0.2 5 i

0 0.5 1 L3 2

c-phil [rad)

at= 0.001 s, at= 0.005 s (at,= 0.006 s)
at= 0.002 s, at=0.008 s (at,= 0.01 s)

s -

1 “\r/ v\F M
0.1
02 i i i
0 0.5 1 1.3 2

fig 4.7 Influence of measure frequence and discontinuous inputs

fo]
th
—
(¥
3

It appears that the system behaviour stays stable and that the tracking - and velocity errors will
increase (compared with the standard situation). Further are the peaks in the velocity errors @,-¢,
and ¢,,-¢, strange. I don’t have a clear explanation of this phenomenom. It could be possible that

numerical aspects will cause this peaks.

Further it appears that the inputs stay realistic, and that the tracking errors will increase if we
choose a lower measure frequence. Note: if we choose the measure frequence too low the system
will get an instable system behaviour. See also appendix C where some more simulation results
are shown.

22



Properties of the C CTC strategy

Now 1 will consider the influence of wrong estimated parameters and unmodelled dynamics.
Compared with the standard situation I have changed the next aspects:

- control gain parameters:  k,= 0.5, k,= 0.05, k,= 0.05, A= 10 and A,= 10

- discretization: at=0.001 s, at=0.005 s (at,= 0.006 s)

1- wrong estimated parameters: reality: wl= 0.47 Nm model: wle= 0.3 Nm
w2=0.15 Nm w2e= 0.1 Nm

2- unmodelled dynamics: reality: wl= 0.47 Nm model: wle= 0 Nm
w2= 0.15 Nm w2e= 0 Nm

simulation results:

o1 . error phi% 01 tr rror Dh|1: 20 inputs
_ - "E- 10k . ..'..‘.‘.“ e ,l".;
.2 005 e 32 Z s
- — u ot T J
~ = - z U e
5 0 1 °® z -10F o -
-0.05 Ol ; i .20 ;
1.5 V] - 0.3 H 1.5 0 0.5 1
o time [s] time fs}
& E’l:]
0.4 tr. error phi2 0.1 tr. error phil : 20 inputs
- - 4 _ 005 /V\‘ 4 T 1wt PR i3
3 \ =z E, N .
E \ S = -
o - 1z O \ /\/ 1 T
b . Y S 2 0.05k - \ £ -l0p- A -
04 ; ; 0.1 ; i -20t :
0 0.5 13 1.5 0 0.5 1 1.5 0 0.5 1
time {s] time [s] time [5]

fig 4.8 influence of unmodelled dynamics and wrong estimated parameters

It appears that the system stays stable, and that the errors will increase (compared with the
standard situation). The inputs are realistic.

I have executed some other simulations with wrong estimated parameters (see appendix C). It
appears that the system stays stable if the estimated parameters are not chosen too worse.
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Now I will consider the influence of measure noise. Compared with the standard situation I have
changed the next aspects:

- control gain parameters:  k;= 0.5, k,= 0.05, k,= 0.05, A,= 10 and A,= 10

- discretization: at=0.002 s, at= 0.008 s (at,= 0.01 s)

- measure €rrors: - angular position —> white noise v,= a rand(t) — a,= 0.1
- angular velocity — white noise v,= a, rand(t) = a, =1

note: rand(t)= white noise, between -1 and 1.

simulation results:

0.2 g tr. error phiZ - 02 tr. em?r phil : ! 20 : ianuts
0.1 A A’V - 01 E
" /\ |1 % :
i L
0 - 0 3
M J \w LYa Wil
0.1 ¢ 01 3
02 G i 1 02 i 1 H L i H
0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2
_time [s] time (s} time {s]

fig 4.9 influence of measure noise

It appears that the presence of measure noise will cause a capricious expiration in time of the
tracking- and velocity errors and of the inputs. In the case of this situation the tracking- and
velocity errors don’t have a bigger value as in the case without measurement noise. However,
if we chose bigger values of a , and a,, the errors will increase.

In appendix C I have given some more simulation results of practical situations.

It appears from the practical simulation results that the robustness against unmodelled dynamics,
wrong estimated parameters, discontinious inputs, time delay to calculate the inputs, measure
noise and measure inaccuracy is reasonable.

The mean conclusion is that the theoretical - and practical simulation results are satisfying and
confirm with the expectations. In practice there will be a reasonable chance that the C CTC law
applied to the xy table will answer to our desirements (— stable system behaviour, small tracking
€ITors).
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Applying of the C CTC controller to the xy table

S. APPLYING OF THE CTC CONTROLLER TO THE XY TABLE

Now that we have a good picture of the properties of the controlled system we can focus our
attention to the specific controlling of the xy table. This is the second part of the research.

The total system

In chapter 3 and appendix A I have shown a schematic representation of the xy table. In this
paragraph I will give some more details of the measure- and control system of the xy table

(see fig 5.1).

B ¥F-— BELT WHEEL
o SLIDEWAY e
;
' SLIDE
|amplifier . END-EFFECTOR ||~ SHIPFFAY
[ = . :

1 LA\ MOTOR 2 |
N T X

2 _?« - MOTOR 1

\ SPINDLE |
\ l

t

¥

L §

computer

N

angular position encoders

4

fig 5.1 Schematic representation of the total system.
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Applying of the C CTC controller to the xy table

The designed control routine has been put in the computer. The inputs of the control routine
are the measurements of the angular positions @,, ¢, and ¢,. The outputs are the by the
control routine calculated small electrical currents. Before the currents are presented to the
motors they are amplified. Depending on these electrical currents the motors deliver certain
torques. These torques are the inputs of the system (u, and u,).

For the total organisation of executing experiments I have the avaliability of the new
software designed by Jos Banens ( member of the WFW group). This software is written in
"C". The big advantage of using this software is that it is build up in standard routines and
that the programs can communicate with Matlab programs.

The total system has its limitations. The most important ones are:

- The calculated inputs are clipped (are bounded) on a certain positive and negative
value. This to protect the amplifier and the motors.

- Inaccuracy of the amplifier.

- The elasticity of the xy table is restricted. It appears that max |@,-¢@;| = £ 3 rad.

- The computing time. It will cost time to calculate the inputs. The computing time may
not be too big (see chapter 4).

- Inaccuracy of the measurements. The measurements of the angular position do have
a certain inaccuracy.

- Curved axis (y direction) of the xy table.

Implementation of the C CTC controller

For the controlling of the experimental xy table I use the C CTC law which is shown in
chapter 3 (3.6 to 3.8). However, I have changed the friction term n. It appears that in practice
it is more realistic to model the friction as dry friction n, (see appendix A).

This C CTC law has been implemented in one of the routines of the C-program designed by

Jos Banens. Because of the fact that we have to do with a discret time system, we have to
discretisize the C CTC law. The dicretization has been executed as follows:

general method: Euler scheme

X =ax+bu — x,, = x+Aal(ax+bu) (5.1

note: state x;,, is at seconds after x;.
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Applying of the C CTC controller to the xy table

The reference trajectories:

$y = ¢+ A(9,,-9)
Py, = M9 ,-9) (5.2)
olr, ,

i+vi

Qlr+atg lri+.%_At2(I) 1r,

Q=@ 2d+)\’2(¢ 2d_¢7)
Dy = Dot M(P0mP) (5.3
Q2r,,, = Q2r+alp2r, +%At2¢) 2r,

c33 +k3 o k 1 o . . . k .
) Py ——9 3r_—(m31q) 1 M0 ,5, 765194, +C3, P, —k(p 1 P33 ~K3P 3)
33 ms, My,

¢3r,,, = Q3r,+at(3r,

(.pe,,- = _(
. 1 5.
Q3r,, = q)3ri+Atq)3ri+_2_At ¢3r,

5.4)
For the calculation of the reference trajectories and the inputs, we need:

desired trajectories @4, @,; (can be chosen)

estimated system parameters (see appendix A)

control gain parameters (can be chosen)

the angular position and angular velocities (¢;, @, @3, ¢;, P, and @)

b s

The first two points needs no further discussion. The third point about the control gain
parameters needs a short explanation. As shown in chapter 3 (proof of stability) and chapter
4 the control gain parameters do partitial fix the poles of V (see 4.10):

V= -—e'Kﬁg'y+n (5-5)

~r

If the poles of V have negative real values, the system is stable. Because of the fact that 7
is not known we have to find suitable control gain parameters by executing simulations and
experiments.
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Applying of the C CTC controller to the xy table

Note: the control gain parameters can’t be chosen too big, because of the fact that the inputs
are clipped on certain values. This clipping of the inputs can lead to undesired system
behaviour.

The fourth point deals with the handling of the measurements. As already written, the angular
positions ¢,, ¢, and @, are measured. Out of these measurements and out of the (partial)
known system behaviour we have to estimate the angular velocities ¢;, @, and @;. In other
terms, we have to design an observer algorithm for the reconstruction of the angular
velocities. In appendix D I have designed such an algorithm.

Now it is possible to calculate the inputs u and u, (see 3.6 and 3.8):

U, = My, +My§, +Cpfy +C) @+ +he, (5.6)

$

ue = mllq) 1r +ml3(p 3r+012cp 2r +cl3(p 3r+cll(p 1r+nd11 +k((p 1r - 3r) +k1e ir (5.7)

The research

The goal of this part of the research is to test the C CTC law in practice and to find a suitable
(or optimal) way for controlling the xy table with a flexible transmission. Further I will
consider the robustness of the controller.

For the executing of a part of the research I have designed a simulator. The simulator fits the
reality on a close way ( model with dry friction, time delay for the calculation of the inputs,
clipping of the inputs, measure noise and the possibility to implement unmodelled dynamics
and wrong estimated parameters). The reason why I have designed a simulator is:

- Designed control laws and system configurations can be tested. This is to protect the
xy table.

- Some parts of the research can be executed on a more suitable way ( e.g. research
robustness, determination of the observer parameters).

In first instance the goal of applying the C CTC law is to track the desired trajectories of @,,,
¢,y and the time derivatives. This is a state control routine. By executing simulations and
experiments I have to find out how good the control law will answer to our desirements, and
of which aspects the results are depending.

The simulation - and experimental results

During this part of the research I have executed a lot of simulations and experiments. Now
I will show and discuss the most important results.
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Applying of the C CTC controller to the xy table

I have chosen the next desired trajectories: ‘
(1 sec. = 100 time steps).

40 ! ph§2d

phi2 [rad]
phil {rad}

[Ava.

. i i i .40 i H i
“ 100 200 300 400 0 100 200 300 400
time [-] time [-]
desired trajectory A
(1sec. =100 time steps)

40 ph§2d

phi2 [rad]
phil [rad]

100 200 300 400 0 100 200 300
time [-]
desired trajectory B

400
time {-]

fig 5.2 desired trajectories

I define the next standard situation:

- desired trajectory: A

- springconstant: k = 0.5 Nm/rad

- control gain parameters: k,= k,= ky= 0.05, lab,= lab,= 25

- observer-poles (used by the pole-placement routine): -25+0.2i

-25+0.3i
-25+0.4i
- measure-frequence: 1/0.005 herz — 1 second = 200 timesteps
- execution time: 3.5 s
- position t=0: @,= @,= @;= 0 (middle of the xy table)
- velocity t=0: @,= @,= ¢,= 0
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Applying of the C CTC controller to the xy table

The simulation results are:

5 : tr. crro!r phi2 ! 20 ? tr. errc;r phil 4 phllgph13 ;
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time {-] time {-] time {-]
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time [-] time {-] time [-]
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i T
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[=% e/ I
o
-400 i i i
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time [-]
fig 5.3 simulation results standard situation

It appears that the simulation results are good. The system stays stable and the tracking - and
velocity errors converge to zero (to small values).

At the first part of the simulation the controller has to control the start errors to zero. This
leads to big control actions. It appears that the by the control routine calculated inputs u_ and
u, are clipped. In this case the clipping of the inputs doesn’t lead to undesired system
behaviour.
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Applying of the C CTC controller to the xy table

Now I will consider the experimental results of the standard situation:

Note: the experiment is executed with a measure-frequence of 1/0.01 Herz (1 sec. = 100 time

¢-phi2 frad}

steps).
5 : tr. crrcf)r phi2 ‘ 10 - tr, errc?r phil 4000 Y inp!uts
— Z 2000 by .
E I
= R
= T ; N
< - :
L3 - :
=-2000 b
: : : -4000 i ; ;
100 200 300 400 0 100 200 300 400
time {-] time [-]

fig 5.3 experimental results standard situation

The difference between the simulation results and the experimental results is small. In the
case of the experiments we have to do with unmodelled dynamics, wrong estimated
parameters, inaccuracy amplifier, etc. It appears that this aspects will cause small tracking -
and velocity errors. In the case of the simulations we don’t have the influence of above
mentioned aspects (see also discussion of robustness against wrong estimated parameters page
33).

Executing experiments with a measure-frequence of 1/0.005 Herz is not possible. The
computersystem can’t calculate the inputs u; and u, within 0.005 seconds. Of cause this will
lead to undesired system behaviour.

Now I will change compared with the standard situation one or some aspects, and I will
consider the influence of the changes.

If we change the desired trajectory we get:

- desired trajectory: B
- measure-frequence: 1/0.007 Herz (1 sec. = 142 timesteps)
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Applying of the C CTC controller to the xy table

Experimental results

2 tr. error phi2 10 ir. error phil 4000 inputs
—_ SpeeNe 222000
— o~
= O frofor o\ e ; 0
= / =
-4 ¢ s =-2000
-6 -10 -
0 500 0 500 40000 500
time {-] time {-] time {-}

fig 5.4 influence of desired trajectory

It appears that the results are good. The choice of the desired trajectory has no influence to
the control prestations (see also appendix E where I have shown some more simulation - and
experimental results).

The measure-frequence of 1/0.007 Herz is the maximum value with which the experiments
can be executed.

If we changed the springconstant k we get:

- springconstant: k=0.05
- desired trajectory: B

Simulationresults

5 _ . err(?r phi2 : 5 : tr. errc!)r phil : 20 phil-!phi.’:
) : : E
= ; : =
e e e e I 1
= oy :
o : : : = :

-4 : B C10F i N =
. i ; ; . ; i ; 20 ; ; :
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400

time {-] time [-] time {-]

fig 5.5 influence of the springconstant k
If we change the elasticity it appears that the C CTC law can control the system. The

tracking- and velocity errors stay small, even if we choose a small value of the
2
springconstant.
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Now I will consider the robustness of the controller against wrong estimated parameters. This
research is executed with the simulator because of the fact that in that case the system
behaviour is exactly known.

Compared with the standar situation I have changed:
1  wrong estimated parameter: reality : k=0.5 Nm/rad (used in the simulator)

see also chapter 4 estimated parameter: k=0.1 Nm/rad
p p &
(used in the control law)

2  wrong estimated parameters:  reality: w,= w,= 0.5 Nm, w,= 0.15 Nm
estimated parameters: w; .=w,.= 0.3 Nm, w,,=0.05 Nm

Simulation results:
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o 4 o
-6 ; ; H .30 i i H
0 100 200 300 400 0 100 200 300 400

time [-] time [-]

fig 5.6 influence of wrong estimated parameters

It appears that wrong estimated parameters leads to bigger tracking - and wvelocity errors.
Wrong estimated springconstants and friction coefficients have a bigger influence than the
other parameters (see appendix E).

It appears that the considerd wrong estimated parameters don’t lead to instable system
behaviour. So the robustness of the system is reasonable.
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To get an idea of the control prestations, I have made a comparison between the control
prestations of a C CTC controller and a CTC controller.

Till now the controlling of robots (with or without flexibilities) is in much cases executed by
the CTC control strategy. To design a CTC controller the elasticity of the system is neglected.
So, the starting point of designing a CTC controller to control the flexible xy table is a model
of the xy table without flexibilities.

The model of the xy table with a stiff transmission is (see v.d. Molengraft):

m2?2+nd22 = U, (5.8)

mlq) 1 +nd11 — e

|
x

This model is used to design the CTC controller:

= mQ,,+n,,+ke,
= mQ, tl +k1e1r

&
1

(5.9)

&
|

I have used above CTC law to control the flexible xy table. The simulationresults are:

- desired trajectory A
- measure frequence 1/0.01 Herz — 1 sec. = 100 timesteps
- control gain parameters: k= k,= 0.05, A= A= 25
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5 __tr. error phi2 : 10 ; ; P .

S Y S — 4

= el

g =3

ey 1 =

£, =

5 g o
-6

0 100 200 300 400 o 100 200 300 400
time [-] time [-]

fig 5.7 simulation results CTC controller
If we make a comparison between the control prestations of the C CTC controller (see

standard situation) and the CTC controller, it appears that the control prestations of the C
CTC controller are (much) better. The flexibility of the system plays an important role, but
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Applying of the C CTC controller to the xy table

it appears that this flexibility doesn’t lead to an instable system behaviour (see also appendix
E).

Note: For a system with flexible transmissions controlled by the general CTC law it is not
possible to guarantee the stability.

The mean conclusion of this part of the research is that the C CTC law answers to our
desirements. The tracking - and velocity errors converge in all considered cases to zero (to
small values). The speed of controlling is reasonable. Further it appers that the robustness of
the control system is reasonable, and that the control prestations of the C CTC controller are
better than the control prestations of the CTC controller.
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Controlling of the end-effector

6. CONTROLLING THE END-EFFECTOR

The mean reason of controlling the xy table is that the end-effector will track a certain desired
path. To achieve this, the designed C CTC control routine has to be changed from a state control
routine (g, —> q,,) to an output control routine ( [X,y] — [X4Y4] ), see also page 12. During this part
of the research I have try to find a suitable way to change the C CTC state control routine in a
C CTC output control routine.

In this chapter I will show and discuss how the C CTC routine is changed, and I will show and
discuss some simulation - and experimental results.

Note: this part of the research has to be considered as trial and error research.

Output control

In order to get reasonable tracking of the desired end-effector path, I have try to find a routine
to generate the desired trajectories ¢,; and @4 on-line. For the on-line generation of the desired
trajectories @,; and @,,;, the obliqueness of the slideway of the xy table (= @,-¢,) is considered.
This obliqueness is discounted in the on-line generation. The desired trajectories @, and @, are
generated in such a way that the end-effector will track a certain desired path [x,y,], no matter
how big the value of the obliqueness (¢;-¢,).

For the x-position of the end-effector it follows:

end-effector

fig 6.1 x-position end-effector
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Controlling of the end-effector

X = Qr+sy (6. 1)

See appendix F for s,

The desired path in x-direction of the end-effector is x,. With equation (6.1) it is possible to
define an on-line generation routine of the desired trajectory of ;:

_l.xd X (6.2)

q)ld r (t+4t)_s ®

Crat) T

On point of time t the routine generates the value of the desired trajectory @, belonging to point
of time t+at. So, on every discret timestep the routine generates the next value of @,

Now I will consider the y-position of the end-effector. It follows:

end-effector

fig 6.2 y-position end-effector
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Controlling of the end-effector

y = @,rcosf (6.3)

Equation (8.3) can be written in the following form (see appendix F):

y = q)zr-sy (6.4)

The desired trajectorie of ¢, can be defined as:

g = 9% (6.5)

Now we have defined an output control routine which is based on the C CTC strategy. This
routine generates with (6.2) and (6.5) on-line the desired trajectories @,; and @, .

Simulations and experiments

I have executed some simulations with the simulator mentioned in chapter 5, and I have executed
some experiments. Now I will give the most important simulation results (see also appendix F
where I have shown some simulation - and experimental results).

First I will consider a situation where the end-effector is controlled with the general C CTC law
(no on-line generation of the desired trajectories ¢,; and @, ). This is the state control routine.
I have chosen the following situation:

- desired trajectory: x,= 0.25*sin(3.14*t) , y,= 0.25%sin(3.14*t) (see fig. 6.3)

- springconstant: k = 0.5 Nm/rad

- control gain parameters: k,= k,= k= 0.05, lab,= lab,= 25

- observer-poles (used by the pole-placement routine): -25+0.2i
-25+0.3i
-25+0.4i

- measure-frequence: 1/0.005 herz —> 1 second = 200 timesteps

- execution time: 3.5 s

- position t=0: @,= @,= p;= 0 (middle of the xy table)

- velocity t=0: @,= @,= ¢,= 0
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Controlling of the end-effector

The simulation results are:

2 tr. erro!r X-pos 2 . tr. erro!r Yy-pos :
_ 0 . -
) &
@ -2 b @ "]
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o . <
-4 _v S -
. i i i 6 i i H
60 100 200 300 400 0 100 200 300 400
time [-] time -]
4000 mput ul , 4000 : inpl}t u2
e
. 200011 R . e o]
-4000 : L L 4000 N L 1
0 100 200 300 400 0 100 200 300 400
time {-] time [-]
e.e. path
30 ;
20 -
10} E
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2,
ﬁ 0 ™ -
&
e
-10} -
20k / B
30 i H H ; ;
-30 -20 -10 0 10 20 30

x-pos [em]
fig 6.3 simulation results of controlling the end-effector with the general C CTC strategy.

It appears that the control results are moderate. With the state control routine it is possible to
control the end-effector, but the tracking errors don’t converge to zero, but to certain values.
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Controlling of the end-effector

Now I will consider the designed C CTC output controller (on-line generation of the desired
trajectories ,, and ¢, with 6.2 and 6.5):

. ' {r. ErTor X-pos {I. eITOT Y-POS
The simulation results are: 2 2
o Mw WMN | SN ™
gl lEL
@ -2 : «n -
g £
s ! ° |
-4 -4
V H H
-6 H i -6 i
0 100 200 300 400 0 100 200 300 400
time [-] time [-]
4000 input ul . 4000 , input u2
2000
= 0
=
-2000--M .
4.0000 100 200 300 400 0 100 200 300 400
time {-] time -]
30
20
10 .
E)
3,
P 0 4
2
-
-10
-20
-30 H H : i H
-30 -20 -10 0 10 20 30
x-pos [cm]}
fig 6.4 simulation results of controlling the end-effector with a C CTC law with an on-line

generation of the desired trajectories

It appears that the control results are becoming better but are not satisfying. It appears that the
calculated inputs are growing too big and are clipped. This clipping of the inputs causes tracking
errors of the end-effector.
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Controlling of the end-effector

In order to get better control results I have tried (trial and error research !) to find a way to
change the on-line generation routine of the desired trajectories @,; and 4. To reduce the inputs
I have had the idea to scale the terms s, and s, of this generation routine (see 6.2 and 6.5):

x-direction:

1
old,,,, = —r'xd(t-t-At)_axsx(t) (6.6)
a,= scaling factor x-direction
y-direction:
92d, = DlensVe) (6.7)

(t+a) —

a,= scaling factor y-direction

Now I will consider the C CTC controller with on-line generation of the desired trajectories @,
and @,4 with the scaled values of s, and s,. The optimal values of a, and a, are found by
execution of trial and error research.

The simulation results are:

-a=a~ 075

{r. 10T X-pos __° 5 __IT. SITOT y-POS

e-pos [cm]
o

e-pos [cm]
& 0
<l?'_—‘

0 160 200 300 400 0 100 200 300 400
time -] time {-]
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Controlling of the end-effector

4000 _imputul 4000 ~—ioputuz
= g N: 0_,{9[ MW\\‘ -
3 = b{ ‘_rf

-2000

: ; -4000 . '
0 100 200 300 400 V] 100 200 300 400
time {-] time {~]

20

10

-pos fem]
=3

-10

-30
-30

20 -10 0 10 20 30

x-pos em}
fig 6.5 simulation results of controlling the end-effector with a C CTC law with an on-line

generation of the desired trajectories. Now s, and s, are scaled.
It appears that this on-line generation routine leads to the best control results.

The mean conclusion of this part of the research is that the by trial and error research designed
output control routine leads to reasonable control results.

In order to get better results this part of the research has to be executed on a more fundamental
way.
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Conclusions and recommendations

7. CONCLUSIONS AND RECOMMENDATIONS

Conlusions

For the controlling of the xy table with one flexible transmission it is possible to design a control
law ,which is based on the C CTC strategy. The goal of applying this C CTC controller is to

track the desired trajectory q,= [@,q 9;4]" and its time derivative. This is a state control routine.

It can be proved that applying of the C CTC law to control the flexible xy table leads to a stable
system behaviour.

The simulation results which are related with the theoretical situation confirm with the
expectations, and give a good picture of the properties of the C CTC controller.

From the simulations it appears that there will be a reasonable change that the C CTC controller
applied in a practical situation will answer to our desirements ( robust system behaviour, small
tracking errors).

The implementation of the C CTC law and an observer algorithm (for the reconstruction of the
angular velocities) in the control system of the xy table is succeeded.

For the testing of designed control laws or system configurations and for the execution of a part
of the research I have designed a simulator. The simulator fits the reality on a close way.

The new software designed by Jos Banens meant for the total organisation of executing
experiments and simulations, is easy and pleasant to use.

The experimental results and accessory simulation results answers to our desirements. The
tracking - and velocity errors converge to zero (to small values). The control speed is reasonable.
Further it appears that the robustness of the control system is reasonable and that the control
results are better that the control results of the general CTC law.

For the controlling of the end-effector I have designed (by trial and error) a C CTC output

control routine. This routine generates on-line the desired trajectories of ¢, and ¢, . The results
of this control method are reasonable.
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The model of the xy table

APPENDIX A: THE MODEL OF THE XY TABLE

In this appendix I will give a detailed desricption of the model of the xy table ( see v.d.
Molengraft, 1989).

The model of the xy table:

I P,
I, W, &

fig al model of the xy table

The equations of motion of the xy table can be written as:

(AL.1)
M(@d+C(g.99+Kg+n(g) = Hu

Al



The model of the xy table

The following parameters have been determined by local identification.
m= 2.3 kg, m= 8.5 kg, m ;=23 kg, I=1.25m,d=1m, =001 m

The following parameters have been determined by some identification algorithmen ( v.d
Molengraft, 1989).

[

= 2.15 10 kgm?, J,= 1.45 10 kgm®, wl= 0.47, w2= 0.15

Note: At the second part of the research (chapter 5 and chapter 6) I have used an other
friction model. This friction model fits the reality on a closer way. The friction model I
have used during the second part of the research is a dry friction model:

Al4
n, = s (AL4)
[ndu
where,
ifci)l#O - n,, = 0.25 Nm
ifg,=0 — n, =015 Nm (A15)
f e, =0 — n, =025 Nm
fo, =0
f0,20 —~ (AL6)
Rapp = UMy =My —Cp@3-Cp P,
fo,. =0
A R (AL7)
Ryzs = My @~ Q=M ~Coy 27 6P 369, +k(cp 179 3)
fo, =0
f &, - (A1.8)

Rur = UMy Py~ @ 3—C®,—CisP5—C 9, e 179 3)
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B: Simulation results of some theoretical situations of the first part of the research

APPENDIX B: SIMULATION RESULTS OF SOME THEORETICAL SITUATIONS
OF THE FIRST PART OF THE RESEARCH

In this appendix I will show some simulation results. These results are the most important results
of the simulations I have executed with some theoretical situations.
Theoretical situations
I have considered the next theoretical situations:
1) - desired trajectory: = @,;= 0L,+0,COS(W,t) ; Pp= -, w,Sin(W,t) ; ..
Q= o+ cos(mgt) 5 Q= -0 0sin(w,t) ; ..
o,= 25 rad, w,= 10 rad/s and a,= 25 rad, w,= 10 rad/s
see ’plot 0’ for these trajectories.
- spring constant: k= 1 Nm/rad
- control gain parameters:  k;= 0.1, k,= 0.01, k;= 0.01, A,= 5 and A,= 5
- integration accuracy: tol= 0.01
- tracking error t=0: AQ,(0)= 0, ag,(0)= 0, ap;(0)= 0
- velocity error t=0:  a@,(0)= 0, a91(0)= 0, ap;(0)=0

2). As situation 1 but now:

- integration accuracy: tol= 0.001

3). As situation 1 but now:

- tracking error t=0: a@,(0)= -10 rad, ag,(0)= -10 rad, ap,(0)= -10 rad

4). As situation 3 but now:

- control gain parameters: k,= 0.5, k,= 0.05, k,= 0.05, A,= 10, A,= 10
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5). As situation 1 but now:

- velocity error t=0: ag,(0)= 100 rad/s, ag,(0)= 100 rad/s, a@;(0)= 100 rad/s

6). As situation 1 but now:

- spring constant: k= 0.1 Nm/rad.

The simulation results
-Of every situation I have made the following plots:

tracking e1ror @,
tracking error @@,
velocity error @9,
velocity error @, ,-¢1
@50y and @s-oy
velocity error @3r-@;
elasticity P39,
inputs u, and u,

0O N W

The structure of a page with plots is:

0 @
3 @
) ©
(7 ®)]

Now I will give per situation the simulation results (see the following pages).
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Simulation results of some theoretical situations

Desired trajectorie: plot 0
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Simulation results of some theoretical situations

situation 1
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desired trajectory: plot 0, k= 1 Nm/rad, control par.: k,= 0.1, k= 0.01, ky= 0.01, \;= 5 and A= 5
integration accuracy: tol= 0.01, tracking error t=0: a@,(0)= 0, ag,(0)= 0, ag;(0)= 0
velocity error t=0: ag,(0)= 0, a@1(0)= 0, ag,(0)=0



Simulation results of some theoretical situations

situation 2
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integration accuracy: tol= 0.001, tracking error t=0: AQ,(0)= 0, a@,(0)= 0, Ap;(0)= 0
velocity error t=0: AQ,(0)= 0, Ap1(0)= 0, ap,(0)=0



Simulation results of some theoretical situations

situation 3
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desired trajectory: plot 0, k= 1 Nm/rad, control par.: k= 0.1, k,= 0.01, ky= 0.01, A,;= 5 and A= 5

integr_ation accuracy: tol= 0.01, tracking error t=0: A(,(0)= -10 rad, A@,(0)= -10 rad, a@;(0)= -10 rad
velocity error t=0: a@,(0)= 0, ap1(0)= 0, aq,(0)= 0



Simulation results of some theoretical situations

situation 4
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Simulation results of some theoretical situations

situation 5
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Simulation results of some theoretical situations

situation 6
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C: Simulation results of some practical situations of the first part of the research

APPENDIX C: SIMULATION RESULTS OF SOME PRACTICAL SITUATIONS OF
THE FIRST PART OF THE RESEARCH

In this appendix I will show and discuss some simulation results. These results are the most
important results of the simulations I have executed with some practical situations.
Practical situations
I have considered the next practical situations:
1) - desired trajectory: @,;= 0,+0,cOS(W,t), ...
Q15= oyt cos(mgt), ...
a,= 25 rad, w,= 1 rad/s and o,= 25 rad, w,= 1 rad/s
- spring constant: k= 1 Nm/rad
- control gain parameters:  k;= 0.5, k,= 0.05, k;= 0.05, A= 10 and A,= 10
- integration accuracy: can not be chosen
- discretization: at= 0.001 s, at= 0.005 s (at,= 0.006 s)
- particularies: none ( no start errors, no wrong parameter estimations, no
unmodelled dynamics, etc.)
2) As situation 1 but now:

- w,= 10 rad/s, w,= 10 rad/s.

3) As situation 2 but now:

- discretization: at=0.002 s, at=0.008 s (at,= 0.01 s)

4) As situation 2 but now:

- discretization: at=0.005 s, at=0.005 s (at,= 0.01 s)
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C: Simulation results of some practical situations of the first part of the research

5) As situation 2 but now:

- discretization: at=0.005 s, at=0s (at,= 0.005 s)

6) As situation 2 but now:

- discretization: at=0.005 s, at= 0.003 s (at,= 0.008 s)

7) As situation 2 but now:

- tracking errors t= 0: A@,= -10 rad, ag,= -10 rad

8) As situation 2 but now:
- tracking errors t= 0: AQ,= -25 rad, aQ,;= -25 rad
- velocity error t= 0: aQ,= -250 rad/s

9) As situation 2 but now:

- wrong estimated parameters: reality: wl=0.47 Nm model: wle= 0.3 Nm
w2= 0.15 Nm w2e= 0.1 Nm

10) As situation 2 but now:

- unmodelled dynamics: reality: wl= 0.47 Nm model: wle= 0 Nm
w2=0.15 Nm w2e= 0 Nm

11) As situation 2 but now:

- wrong estimated parameters: reality: J1= 2.15 10® model: J1m= 1.075 103
2= 1.45 10* J2m= 0.72 10*
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C: Simulation results of some practical situations of the first part of the research

12) As situation 2 but now:

- unmodelled dynamics: reality: k=1 Nm/rad model: ke= 0.7 Nm/rad

13) As situation 2 but now:
- unmodelled dynamics: of situation 9,11 and 12.
14) As situation 3 but now:

- spring constant: k= 0.1 Nm/rad

15) As situation 3 but now:

- measure errors: - angular position — white noise v= a,rand(t) = a,= 0.1
- angular velocity — white noise v,= a,rand(t) = a, =1

note: rand(t)= white noise, between -1 and 1.

Simulation results

I have made the same plots of every situation as of the theoretical situation ( see appendix B).
The structure of a page with plots is the same as given in apendix B.
Now I will give per situation the simulation results (see the following pages).
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Simulation results of some practical situations
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time [s] time [s]
0.02 .r phil-phi3 : 0.2 inputs
—_ — 0r ~
T ok ] Z
= Z 2k .
(341 v ]
z :
i \ 2 041 -
= -0.02+ - = !
— i 7 ', el PPEE TN - S
= \ = 06 R T hE LTS pt S -
-0.04 -00.8
0 0.6 0 0.5
time [s] time {s]

desired trajectory: plot 0 now: w, =m,= 1 rad/s, k= 1 Nm/rad, con. par.: k,;= 0.5, k,= 0.05, ky= 0.05, \,= 10 and )\2;—- iOV
dicretization: at= 0.001 s, at= 0.005 s, tracking error t=0: ag,(0)= 0, a@,(0)= 0, ap;(0)= 0
velocity error t=0: a@,(0)= 0, aAp1(0)= 0, ap,(0)=0



Simulation results of some practical situations

situation 2

e-phi2 [rad]

tr. error phi2r

e-phil [rad)

tr. error phil

time {s] time [s]
4 4
z T 2
g , 3 Of
e £
o 4L o -2
- 4 1 -4 L 1
60 1 2 3 0 1 2 3
time [S] time [S]
20

phi [rad]

time [s]

in

phil-phi3 rad.]

phil-phi3

time [s)

€-dphi3 [rad/s)

dphi3-dphi3r

us and ue [Nm]

desired trajectory: plot 0, k= 1 Nm/rad, control par.: k= 0.5, k,= 0.05, k;= 0.05, A,= 10 and A= 10
dicretization: at= 0.001s, at=0.005s, tracking error t=0: 49,(0)= 0, Ap,(0)= 0, ap;(0)= 0
velocity error t=0: ag,(0)= 0, a@1(0)= 0, Ag,(0)= 0
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situation 3

¢-phi2 [rad]

€-dphi2 [rad/s)

phi [rad}

phil-phi3 [rad.]

0.2 : tr. errc?r phi2

-10
0 0.5 1 1.5 2
time [s] time [s]
40 phi3 anrd phi3r ‘ 40 dphi3—‘dphi3r

time [s]

e-phil [rad]

tr. error phil

-0.2
0
time {s]
10 t?'ackmg e!rror dphlgl

e-dphil {rad/s]

e-dphi3 [rad/s]

-40
0
time {s]
20 inputs

us and ue [Nm}

time [s]

dfesire.d tr'ajectory: plot 0, k=1Nm/rad, control par.: k= 0.5, k,= 0.05, k;= 0.05, A,= 10 and A= 10
dlcret'lzatlon: at=0.002 s, at;= 0.008 s, tracking error t=0: ag,(0)= 0, ag,(0)= 0, ap;(0)=0
velocity error t=0: a,(0)= 0, ag1(0)= 0, A,(0)=0
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situation 4

e-phi2 [rad]

tr. error phi2

0.2 0.4 0.6
time {s]
10 trac}<1n<l error d;gh]Z
'\7‘ -
ey o
2
=)
> 4
_10 ; 1
0 0.2 0.4 0.6
time [s]
=
=
0 0.2 0.4 0.6
time [s}]
6 ‘ phil-phi3 _
-:? .
E _
0.6

desired trajectory

dicretization: at= 0.005 s, at.= 0.005 s, tracking
velocity error t=0: ag,(0)= 0, ap1(0)= 0, Ap;(0)=0

:plot O, k=1 Nm/rad, control

par.: k;= 0.5, k,= 0.05, k;= 0.05, \,=
€rror t

0.4 tr. error phil
— 0.2 .
= .
=
¥ 02k : .
-0.4 : :
0 0.2 0.4 0.6
time [s}
40 tracking error dphil
,\T =
=
3 -
-40 : i ,
0 0.2 0.4 0.6
time [s]
50 dphi3-dphi3r
7
5" opk _
5 :
-50) . .
0 0.2 0.4 0.6
time [s]
30 inputs
zZ ":
2 |
Z . ’ ;: b :‘J‘ “‘”‘
-10 _. \‘ ; “/. Gy
“':
-20
V)

time [s] B

10 and A= i0

=0: a,(0)= 0, ap,(0)= 0, ap,(0)=0
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situation 5

0.2 tr error phi% |tr €rTor philg

¢-phi2 [rad]
e-phil [rad]

time {s] time s]

e-dphi2 [rad/s]
e-dphil [rad/s]

-10 i :
0

phi [rad]
¢-dphi3 [rad/s}

time {s}] time [s]

10 : phil-phi3 : 20 : inputs

phil-phi3 [rad.}
us and ue [Nm}

time [s}

desired trajectory: plot 0, k= 1Nm/rad, control par.: k;= 0.5, k,= 0.05, ky= 0.05, ;= 10 and A= 10
dicretization: at= 0.005 s, at=0s, tracking error t=0: aQ,(0)= 0, ag,(0)= 0, ap;(0)=0
velocity error t=0: ag,(0)= 0, ap1(0)= 0, aps(0)=0
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situation 6

0.2 tr. erro!r phi2 0.4 1r. errc?r phil

e-phi2 [rad]
¢-phil [rad]

-0.2 ' -0.4 .
0 0.5 1 0 0.5 1
time [s] time [s]
10 tracking e!rror dphi2 40 tracking e!rror dphil

€-dphi2 [rad/s]
e-dphil [rad/s]

-10 L -40 .
0 0.5 1 0 0.5 1
time [s} time [s}
40 phi3 angd phi3r 50 dphi3-fiphi3r
)
—_ g
3 3
] =
= o Of
z z
el
&
-40 L -50 i
0.5 1 0 0.5 1
time [s] time [s]
5 phil:phi3 40 inquts
2 0 :
o =
= 5
= 2
-5 2 40 i
0 0.5 1 0 0.5 1
time [s] time [s}

d“asire.d tr.ajectory: plot 0, k=1Nm/rad, control par.: k;= 0.5, k,= 0.05, k,;= 0.05, A= 10 and A,= 10
dlcret.lzatlon: at=0.005s, at=0.003s, tracking error t=0: ag,(0)= 0, A@,(0)= 0, ag,(0)= 0
velocity error t=0: a@,(0)= 0, ap1(0)= 0, A@;(0)= 0
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situation 7

tr. error phi2

tume [5]

tr. error phil

0.1 5
T 0.05 ) .
o —
£ S
QI) 0 . - 1.) —
-0.05 _
0 1.5 1.5
time [s] time [s]
6 tracl:ing error dphiz 150 trac}dng error dPhil
RN 1z .
N';' 2L B . _ __"——' i
£ £
=5 ! , =
i N
-2 — : . -50 ‘ 1
0 0.5 1 1.5 0 0.5 1 1.5
time [s] time [s]
60 Rhi3 and phi?slr 20 SlphiS-dphiBl;
40 1 = ot | ]
= a Ok 4 o
£ O 1 =
20k | 5 10 F / ..... =
-40 ' ) 20t : ,
0.5 i 1.5 0 0.5 1 1.5
time [s] time [s]
hil-phi3 inputs
10 D 50
1 H T '—‘l I T
5 / 4 Z 40p -
E , Z
@ / 12 ot .
= \ E - .
-10 : ; gt 1
0 0.5 i 1.5 0 0.5 1

time {s]

desired trajectory: plot 0, k=1 Nm/rad, control par.: k= 0.5, k,= 0.05, ky= 0.05, A,= 10 and A,= 10
dicretization: at= 0.001 s, at= 0.005 s, tracking error t=0: AQ(0)= 0, ap,(0)= -10 rad, ap;(0)= -10 rad
velocity error t=0: a@,(0)= 0, A@1(0)= 0, ag;(0)= 0
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situation 8

0.5 tr error phi; 10 tr error phll}
— B . Ok
= =
=2 : £
S:’: o = -10k
‘s =
° 4 ° a0l
-1.5 : - ) 230 - H
0 0.5 1 1.5 0 0.5 1 1.5
time [s] time [s]
100 tracfcing error dphx’Z 300
'T\,T [0 S e — —— I . z' 2
= : 3
E S100 b ...................................... - = 100
= =
= : -
5 =200 b : | 7
-300 ? : . -100 z )
0.5 1 1.5 0.5 1 1.5
time [5} time {s]
100 p!hx3 and pht;r
z -
oy 50 add S - -
= =
= =
= e} _
3 .
1.3 1.3
time [s]
10 — ohxl-nqu ,
r z’\ |
E Z\‘Z\f’r\/’\/! = 10} .
= okl PR e Lz
£ U ; 2 sop B
-= PN ! i Vi i ; —
Sl I A SRERE B R Y - 2
= Pl ‘ v o Y B ; = e
= _10% o 1E Ok e
( i
-15¢ -50
0 0.5 1 1.5 0 0.5 1

desired trajectory: plot 0, k= 1 Nm/rad, control par.: k;= 0.5, k,= 0.05, k;= 0.05, A,= 10 and A= 10
dicretization: at= 0.001 s, at=0.005 s, tracking error t=0: A@,(0)= 0, aq,(0)= -25 rad, A@,(0)= -25 rad .
velocity error t=0: Ag,(0)= -250 rad/s, ap1(0)= 0, ap;(0)=0
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situation 9

0.1 tr error phi% 0.1 tr eITor phil@
5 0.05 )
] = =
E~3 E—
= 3 - =
v v 5
-0.05 i -0.1 i L
0 0.5 1 1.5 0 0.5 I 1.5 ‘
time [s] time [s]
6 tracking error dphi2 4 tracking error dphil
- !
I~
=
2.
el
S
40 pghiS and phi}r } 20 Siphi3-dohi31;
P z -
e
- E §
=3
=
. 3 4
: -20 :
0 0.3 1 1.3 O 0.3 1 1.5
time [sj time {s]
5[ . nhil-phi3 . { 20 ingu‘:s
| /\ | ,
: : = 10k e
E | :/\ j ‘ z S
= iy Ny - o :
- 3 Vi | £ -10pF - -
-5t : : -20 :
0 0.5 ! 1.5 0 0.5 1
time 5] time fs]

desired trajectory: plot 0, k= 1Nm/rad, control par.: k;= 0.5, k,= 0.05, k,= 0.05, ;= 10 and A,= 10
dicretization: at= 0.001 s, at=0.005 s, tracking error t=0: a@,(0)= 0, A9, (0)= 0, ap5(0)=0

velocity error t=0: a@,(0)= 0, a91(0)= 0, ap;(0)= 10,

wrong estimated par.: (w,= 0.47 Nm, w, = 0.3 Nm) (w,= 0.15 Nm, w,= 0.1 Nm)
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situation 10

- -
0.4 tr. error phiZ 0.1 tr. error ph11|

e-phi2 [rad]

0 0.5 1 1.5 0.5 1 1.5
time [s] time [s]
10 tracking error dphi2 4 tracking error dphil
E E
I~y 4 = op 4
53 =
o . 5 -2k —
-10 | : -4 L i
0 0.5 1 1.5 0 0.5 1 1.5
time [s] time {s]
40 p}n’S and phi3]r 20 c}phi3-dphi3{

phi [rad]
c-dphi3 [rad/s)

-40 1 B 220 I 1
0 0.5 l 1.5 0 0.5 1 1.5
time [s] time [s]
5 ‘ phil-phi3 20 inpxuts

phil-phi3 [rad.]

_ R
S —
&\-‘ —

us and ue [Nmj
T

P
L

time [s] time [s]
desired trajectory: plot 0, k= 1 Nm/rad, control par.: k;= 0.5, k,= 0.05, k;= 0.05, A,= 10 and A= 10
dicretization: at= 0.001 s, at= 0.00S s, tracking error t=0: a@,(0)= 0, a@,(0)= 0, a@;(0)= 0
velocity error t=0: ag,(0)= 0, a91(0)= 0, ag;(0)=0
wrong estimated par.: (w,= 0.47 Nm, w, .= 0 Nm) (w,= 0.15 Nm, w,.= 0 Nm)
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situation 11

0.5 tr error phll

0.4 tr error pluzg

¢-phi2 [rad]
-
—
¢-phil {rad]
(=4

1.5

-0.4 L -0.5
0 0.5 1 1.5 0 1.5
time [s] time [S]
10 tracking error dphi2 10 trac}cing error d?hil
T » z
.g' 5 1 . ........ - g
= =
g 0 5 C
o \/’/ \ kY
s s z
0 0.5 1 1.5 1.5
time [s] time {s}
40 phi3 and phi3r 10 (liphi3-dphi3f
e p : =]
ARAT A :
) H et
= 0 1 02
g O\ £
220 ; o
-40 i i .15 i L
0 0.5 1 1.5 0 0.5 1 1.5
time [s] time [s]
4 phil-phi3 20 inppts
'? "E" 10F- i i\ .
£ Z FERNN
2 R )
g E /
= = . AT
g 3 -10p
20 L
0 0.5 1

desired trajectory: plot 0, k= 1Nm/rad, control par.: k;= 0.5, k,= 0.05, k,= 0.05, A= 10 and A= 10 -
dicretization: at= 0.001 s, at= 0.005 s, tracking error t=0: A@,(0)= 0, Ag,(0)= 0, ag4(0)= 0

velocity error t=0: ag,(0)= 0, ap1(0)= 0, ag;(0)=0

wrong estimated par. : (J1= 2.15e-3 Jle= 1.075e-3) (J2= 1.45e-4 J2e= 0.72¢-4)
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situation 12

01 tr error phi2E 02 tr. error philg
- 0.05F _. o1 :
AN VAN - I
2 : : =,
E Y = 0 .
2 \/ \ Y "\
© .0.05 ° 04 \f \vlg
-0.1 L -0.2 L
0.5 1 1.5 0 0.5 1 1.5
time [s] time [s}
6 tracking error dphi2 4 tracking error dphil
— 4 ; — -
2 : ; 2
2 2 : 3 \
S ~| = il
it s i
Q 2 l o Y :: s
-4 1 _4 1 i
0 0.5 i i.5 it 0.5 1 1.5
time [s] time [s]
40 p!hi3 and phi:?r 40 flphi3-dphi31;
201\ T oy
HiwAuEE
& : =
= 0 : : Q
] o\ Z
H : s
-20 : \/ o
_40 i |
0 0.5 1 1.5
time [s]
4 phil-phi3 : |
= A T
=NV <
[ae] : /\ QL
g 0 \ U =
= <
= <2 k %
-4 H i 20 i
0 0.5 1 1.5 0 0.5 1
time [s] time [s]

ds'asired trajectory: plot 0, k=1 Nm/rad, control par.: k;= 0.5, k,= 0.05, k;= 0.05, A,= 10 and A= 10
dlcret.ization: at=0.001 s, at= 0.005 s, tracking error t=0: ag,(0)= 0, a,(0)= 0, ag;(0)= 0

velocity error t=0: ag,(0)= 0, A91(0)= 0, ap;(0)= 0

wrong estimated par. : k= 1 Nm/rad k= 0.7 Nm/rad
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situation 13

0.4 ,tr error phi2g 0.5 ‘tr erTor Dhll!
JETINA W S—as _
g 0 A A g ° /
& / < i
Q -~ L]
-0.2 U
-0.4 i .05 i ;
0 0.5 1 1.5 0 0.5 1 1.5
time {s] - time [s}
10 tracking error dphi2 10 tracking error d;lnhil
z z S
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= = :
m W
= H
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_10 i i
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time {s] time [s]
40 pghi3 and phi?g»r 40 slphi3-dphi3§
20 N 7 N
— i : = : :
] : ) : i
s 0 \ / \ ? = [\V/\\,
i N/ z Vo
-2 : ; S : :
Voo
.40 i i i
0 0.5 1 1.5
time [s]
4 phil-phi3

phil-phi3 [rad.]
us and ue [Nm]

time [s}

desired trajectory: plot 0, k= 1 Nm/rad
dicretization; at=0.001s, at=0.005 s,
velocity error t=0: a@,(0)= 0, ap1(0)= 0, aq;(0)= 0
wrong estimated par. :

0.5 1
time [s]

X cont.rol par.: k;= 0.5, k,= 0.05, k;= 0.05, A,= 10 and =10
tracking error t=0: ag,(0)= 0, ag,(0)= 0, AQ;(0)=0

W= 0.3 Nm, w,= 0.1 Nm), J1e= 1.075e-3, J2e= 0.72e-4, k= 0.7 Nm/rad
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situation 14

o
=

o
o

tr. error phi2

tr. error phil

o
'S

— — 0_1 ............................................................
2 o2 E
S = 0
£ of £
) o

0.2 01

-0.4 s s : 0.2 ' : :

0 0.5 i 1.5 2 0 0.5 1 1.5 2
time [s] time [s]
20 t!racking e;’ror dphi!Z 10 t!racking e!rror dphi!l

e-dphi2 [rad/s]

05 1 15 2 0 05 1 5 2
time [s] time [s]
200 ~phi3 and phisr so —dphi3-dphi3r

phi frad]
¢-dphi3 frad/s)

time [s]
200 _ phll-phl3

; 100 E*

= Z

2 0 g

=~ =

- =1

- 3

<, -100 2

2200 ; ; ; 40 : : :
o 05 1 15 2 o 05 1 15 2

time [s] time [s]

desired trajectory: plot 0, k= 0.1 Nm/rad, control par.: k;= 0.5, k,= 0.05, k,= 0.05, A= 10 and A,= 10
dicretization: at=0.002 s, at=0.008 s, tracking error t=0: a@,(0)= 0, a@,(0)= 0, Ap;(0)=0
velocity error t=0: a@,(0)= 0, A@1(0)= 0, ag;(0)= 0
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situation 15

S e e s

0.2 : tr. cm?r phi2 : 02 g tr. errc;r phil

o1 ‘\/V\!\ﬂ ..............

e¢-phi2 [rad]
e-phil [rad]

o
o

0.5 1 1.5 2
time [s] time {s]

10 t!racking e‘:rror dphi!2 10 tgracking egrror dphigl

l'l I ' i ‘ ‘l| !

¢-dphi2 [rad/s]
=
¢-dphil {rad/s]

phi [rad]
e-dphi3 {rad/s}

time [s]

5 : phll;Dhl3

phil-phi3 [rad.j
us and ue [Nm]

time {s] time [s]

df:sue.d tr_ajectory: plot 0, k= 1Nm/rad, control par.: k,= 0.5, k,= 0.05, k,= 0.05, A= 10 and A= 10
dlCI‘Ct.IZatlon: at=10.001s, at=0.005 s, tracking error t=0: A@,(0)= 0, Ag,(0)= 0, Ap;(0)= 0

velocity error t=0: ap,(0)= 0, ap1(0)= 0, ag;(0)= 0

measure noise: a,= 0.1, a,,= 1



D: The observer algorithm

APPENDIX D: THE OBSERVER ALGORITHM

For the designing of the observer I use the theory which is presented in Regelen 2 (Kok,1990).

The system behaviour has been written in the state space form:

#(0) = Ax(t)+Bu (9 (D.1)
x= state
u= inputs
A, B= system matrices
9 = Cx(» (D.2)

m(s) = Cx(d) )

y= output

m= measurements of the output
C= system matrix

V= measure noise

Out of the measurements m and the known (or estimated) systembehaviour (D.1) it is possible
to reconstruct the state x. From chapter 5.1 of Regelen 2 it follows:

£ () = (A-KO)x_()+Bu (1) +Km(1) (D3)

X, .= reconstructed state x
K= an arbitrary matrix

For the reconstruction error e= x-x,,, it follows:
&#) = (A-KC)e(t) +n(t) (D.4)

n= vector with (small) values due to noise

D.1



D: The observer algorithm

There are several ways to chose the matrix K. One of the possibilities is pole-placement. We
have to chose K in such a way that the poles of (A-KC) have certain optained values ( e.g. have
negative real values). This pole-placement routine can be executed with a Matlab program (K is
calculated).

An other possibility is the optimal observer or Kalman-Bucy filter. For the execution of this
routine we have to know something about the measure - and system noise. The Kalman-Bucy
routine (see chapter 5.2 regelen 2) can also be executed with a Matlab program (K is calculated).
Now that I have define a general method for the reconstruction, I can work out this method for
the case of the xy table.

The reconstruction of the angular velocities of the xy table

First I have to define the state space form. I use equation (3.1) with dry friction:
Mg+Cq+Kg+n = Hu (D.5)

a=[9 91, @5]" .
M,C and n, are (partial) depending on q and or q

I split up equation (D.5) into the following way:
MgG+M g+C g+Kg+n = Hu (D.6)

M = exists of the constant terms of M
M,= exists of the variable terms of M (terms which are depending on g and q)
C,= C= exists only of variable terms

I will explain the reason of splitting up equation (D.5) later on in this appendix.

After rewriting (D.6) it follows:

4 = -M;'K,g+M (Hu-M g-C g-n ) (D.7)

D2



D: The observer algorithm

Out of (D.7) the state space form (D.1) can be determined. I define:

X= [q"z: P2 P Py q"sa cPs]T
E=-M,K,

It follows that (see D.1):

(0 E(1,) 0 E(L,2) 0 E(L3)]
1 0 0 0 0 0
0 E21) 0 EQ22) 0 E23)

L (D.8)
0 0 1 0 0 ©
0 E(321) 0 EB3,2) 0 E@3)3)
0o 0 0 0 1 0
i M(1,1) M(12) Mc(1,3).
0 0 0
. M(2,1) M(22) M(23) (D.9)
0 0 0
M@3,1) M(32) M(33)
0 0 0
Es — (HE—Mﬁ—Cﬁ—Ed) (D.].O)

Now I consider the output- and the measure equation (D.2). I define:

¥= (92 @y, %]T ,  m= [@ytn, @+n,, (p3+n3]T

D3
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It follows:

0 10000
C=0 00100
0 06 000 1j

(D.11)

Now it is possible with a pole placement routine or a Kalman-Bucy filter to determine a K
matrix. Because of the fact that A,B and C are constant matrices, the determination can be done
before the execution of experiments, and has been done once.

If we had not split up equation (D.5) the system matrices A and B were not constant matrices.
In that case the matrix K has been calculated during the execution of the experiments. The on-
line calculation of K can cause problems, this because of the fact that the calculation of K costs
much computing time (if the computing time grows too big, the system can’t calculate all the
variables within one timestep).

The last step of the designing of the observer is the dicretization of equation (D.3):

X =X eci+At((A -KC)x. " +B u, +Km) (D.12)

LCWY

Equation (D.12) can be implemented in the control system of the xy table. With (D.12) it is
possible to reconstruct the state x= [ 5 @ P1r P> 5 P5]"

During the research I have try first to execute the Kalman-Bucy routine for the calculation of K.
The problem of executing this routine is the fact that the measure - and system noise is not
exactly known. The reconstruction results are reasonable but not good enough.

However, if we execute the pole-placement routine, we can find better results (smaller
reconstruction errors). If we choose the poles of (A-KC) with negative real values of 25 we can
obtain good reconstruction results.

Now I have define a way for the reconstruction of the angular velocities. With equation (D.12)

I can execute the reconstruction, and with a pole-placement routine I can calculate a suitable K
matrix.

D4



E: Simulation - and experimental results of the second part of the research

APPENDIX E: SIMULATION - AND EXPERIMENTAL RESULTS OF THE
SECOND PART OF THE RESEARCH

In this appendix I will show some simulation - and experimental results of the second part of the
research (see chapter 5).

Situations
I have considered the next desired trajectories:

A) - = asin(wt) ; @,g= awcos(wt) ; ..
- = osin(wt) ; @,= awcos(wt) ; ..

B) - q)2d= aSin(wt) ’ q)2d= O!.(.OCOS((,Ot) 3 e
- @1~ acos(wt) ; @= -awsin(owt) ; ..

®)) - Q= 0Sin(m,t) ; @,e= 0w,cos(w,t) ; ..
- = asin(wgt) ; @= amcos(w;t) ; ..

The reference trajectories are showed on page E.5 - E.7 (1 sec. = 100 timesteps)

I have considered the next situations:

1 - simulation

- desired trajectory: A, o= 25rad w= 3.14 rad/s

- springconstant: k = 0.5 Nm/rad

- control gain parameters: k,= k,= k;= 0.05, lab,= lab,= 25

- observer-poles (used by the pole-placement routine): -25+0.2i
-25+0.3i
-25+0.4i

- measure frequence: 1/0.01 Herz ( 1 sec. = 100 timesteps)

- execution time: 2 s

- position t=0: @,= @,= @,= 0 (middle of the xy table)

- velocity t=0: @;= @,= ¢,= 0

- particularies: none

E.1



E: Simulation - and experimental results of the second part of the research

2) As situation 1 but now:
- experiment
- execution time: 3.5 s
3) As situation 2 but now:
- control gain parameters k;= k,= k;= 0.05, lab,= 50, lab,= 25
- observer-poles: -50+0.2i, -50+0.3i, -50+0.4i
- measure frequency: 1/0.007 Herz (1 sec. = 142 timesteps)
4) As situation 2) but now:
- trajectory A, a= 25 rad w= 1.57 rad/s
- measure frequency: 1/0.007 Herz (1 sec. = 142 timesteps)
5) As situation 1) but now:
- trajectory B, a= 25 rad w= 3.14 rad/s
- execution time: 3.5 s
6) As situation 5) but now:

- experiment

7) As situation 1) but now:

- trajectory C, o= 25 rad w,= 3.14 rad/s, w,= 1.57 rad/s
- execution time: 3.5 s

8) As situation 7) but now:
- experiment
- control gain parameters k;= k,= k,= 0.05, lab,= 50, lab,= 25

- observer-poles: -50+0.2i, -50+0.3i, -50+0.4i
- measure frequency: 1/0.007 Herz ( 1 sec. = 142 timesteps)
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9) As situation 1) but now:

- springconstant: k=0.05

10) As situation 1) but now:

- springconstant: k=1

11) As situation 1) but now:

We don’t use the C CTC law but the general CTC law. This control law can be used to
control the xy table with a stiff transmission.

The CTC law:

oo

= m, +n,,+ké,
u,6 = maq, +n,, +klelr

=
|

12) As situation 11) but now:

- trajectory B, a= 25 rad w= 3.14 rad/s

13) As situation 5) but now:
- wrong estimated parameter: reality : k=0.5 Nm/rad (used in the simulator)
(see also chapter 4) estimated parameter: k,=0.1 Nm/rad
(used in the control law)

14) As situation 5) but now:

- wrong estimated parameter: reality: k=0.5 Nm/rad
estimated parameter: k,=1 Nm/rad

E3
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15) As situation 5) but now:

- wrong estimated parameters:

16) As situation 5) but now:

- wrong estimated parameters:

17) As situation 5) but now:

- wrong estimated parameters:

18) As situation 5) but now:

wrong estimated parameters:

Simulation results

reality: w,= wy= 0.25 Nm, w,= 0.15 Nm
estimated parameters: w; .= w;.= 0.1 Nm, w,.= 0.05 Nm

reality: w,= w,= 0.25 Nm, w,= 0.15 Nm
estimated parameters: w, .= w;.= 0.5 Nm, w, = 0.3 Nm

reality: J,= 2.15 10? kgm?, J,= 1.45 10* kgm?
est. par.: J, .= 3 10° kgm?, J, = 2 10 kgm?

reality: ms= 2.3 kg, m;= 8.5 kg, m ;= 2.3 kg
est. par.: m_= 3kg, m_= 10 kg, m_= 3 kg

I have made the same plots of every situation as of the theoretical situation (see appendix B). The
structure of a page with plots is the same as given in appendix B.
Now I will give per situation the simulation results ( see following pages).
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trajectory A

i phild
40 ; @A ; 40 o

phi2 [rad}
o
phil [rad}

400

= T

= 3

= <

= E i

& £

2 2

£ g

- -] .
400
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trajectory B

phi2 [rad]
<

qQ
phil [rad}

dphi2 [rad/s]

i
dphil [rad/s]

100

200
time {-]

300 400

40 phild

A

IRNVERNY/

-20

0 ; ; z

0 100 200 300 400
time [-]

100 —————otild

0 100 200 300 400
time [-]
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trajectory C

phi2 [rad]
)
phil [rad]
° 8
)
et
‘\)

oA ¢

0 100 200 300 400
time [-]

dphild

dphi2 [rad/s]
dphil {rad/s]

0 100 200 300 400
time {-]

time [-]
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situation 1

5 : tr. em?r phi2 : 2 ; tr. em?r phil
= = 0 e
2 2
S i = 2 -
) <
o L I
-4
-6 1 : 1 6 \/ i
0 50 100 150 200 0 50 100 150 200
time {-] time {-]
100 : tr. enogr dphi2 : , ir. errg; dphil :
g : g
S : =
S =
) z
~ : <
6 I 1 T ................................ - Q'J
_10@ f 1 i i i {
0 50 100 150 200 50 100 150 200 |
time [-] time [-] f
60 50 - dphi3-!dphi3r
40 = o}
ja— 3
g 20p £
:"_‘..a o -50
B oy |
o -100 \/ ‘
.40 f I L -150 i H i
0 50 100 150 200 0 50 100 150 200
time {-] time [-] j
3 - philgphi3 4000 ! inguts : |
- Z_MM ,,,,,,, - —— |
g i o 3
) 0 : 3 i
= V = |
-g_ 1 ;_2
2 4000 - - i
0 50 100 150 200

time {-]

simulation, desired trajectory: A , k= 0.5 Nm/rad, control par.: k;= 0.05, k= 0.05, k;= 0.05, A,= 25 and A= 25
meas. freq.: 1/0.01 Herz, observ. poles: 25, position t=0: ap,(0)= 0, ap,(0)= 0, ag;(0)= 0
velocity t=0: ag,(0)= 0, ap1(0)= 0, aps(0)=0
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situation 2

e-phi2 [rad]

e-dphi2 [rad/s]

phi [rad]

phit-phi3 [rad]

experiment, desired trajectory: A , k= 0.5 Nm/rad, control par.: k= 0.05, k,= 0.05, k;= 0.05, A= 25 and A= 25

5 tr. error phi2
YN —
% U ; : i
0 100 200 300 400
time {-}
100 tr. error dphi2 :
100 ; i i
0 100 200 300 400
time [-]
100 phi3 an'd phi3r ,
50 H i i
0 100 200 300 400
time [-]
4 philjphi3
"0 100 200 300 400
time {-]

5 ; fr. err(!)r phil ,
= I
:a :
- s z
° \/
v
-10 : i .
0 100 200 300 400
time [-]
100 : tr. erro!rdphll %
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] H
o -50 N
-100 : : ‘
0 100 200 300 400
time [-]
100 dph13—!dph13r
@
< 0
S
@
=
£ -100
& \/
-200 ; : :
0 100 200 300 400
time [-]
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2000 o 7

(=

uLil & u2,i2[-]
ES I

:

-4000
0

200 300

time [-]

400

meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=0: a@,(0)= 0, a@,(0)= 0, ap,(0)= 0
velocity t=0: a@,(0)= 0, ap1(0)= 0, Ag;(0)= 0
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situation 3

2 tr. error phi2 10 tr. error phil
O TN i = SEe
E / g
E‘ _2 p= ‘.: 0 T
£ 2
¢ 4 ¢ 5
/ /
-6 -10 Y
0 500 0 500
time [-] time [-]
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3 1
LM _100 A [+
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150 500 0 500
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-600
0 500
time [-] time [-]
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=
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8
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-2 -4000
00 0

time {-] time [-]

experiment, desired trajectory: A , k= 0.5 Nm/rad, control par.: k,= 0.05, k= 0.05, k;= 0.05, A= 50 and )= 25
meas. freq.: 1/0.007 Herz, observ. poles: -50, position t=0: ap,(0)= 0, a,(0)= 0, a@,(0)= 0
velocity t=0: ap,(0)= 0, ap1(0)= 0, ag;(0)= 0
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situation 4

€-phi2 [rad]

e-dphi2 [rad/s]

phi [rad]

phil-phi3 [rad]

experiment, desired traj: A with 0=1.57, k= 0.5 Nm/rad, control par.: k,= 0.05, k,= 0.05, ky= 0.05, A,;= 25 and A= 25

tr. error phi2
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time [-}
50 dphi3-dphi3r
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3000
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e R

-2000
0

500
time {-]

meas. freq.: 1/0.007 Herz, observ. poles: 25, position t=0: Ap,(0)= 0, a@,(0)= 0, ap,(0)= 0
velocity t=0: ap,(0)= 0, a@1(0)= 0, ap;(0)=0
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situation 5

2 , tr. errc?r phi2 ! 20 ! tr. errc!)r phil
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) %)
g o 8
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S
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simulation, desired trajectory: B , k= 0.5 Nm/rad, control par.: k,= 0.05, k,= 0.05, k,= 0.05, A= 25 and A= 25
meas. freq.: 1/0.005 Herz, observ. poles: -25, position t=0: 29,(0)= 0, ag,(0)= 0, ap;(0)= 0
velocity t=0: a@,(0)= 0, a@1(0)= 0, aq;(0)= 0
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situation 6

tr. error phi2
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experiment, desired trajectory: B , k= 0.5 Nm/rad, control par.: k= 0.05, k,= 0.05, k;= 0.05, A,= 25 and A= 25
meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=0: A@,(0)= 0, ag,(0)= 0, Ap;(0)=0
velocity t=0: ag,(0)= 0, a@1(0)= 0, a@;(0)= 0
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situation 7

0.5 tr. error phi2 2 . tr. error, phil
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simulation, desired trajectory: C , k= 0.5 Nm/rad, control par.: k= 0.05, k= 0.05, k;= 0.05, A\;= 25 and A= 25
meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=0: A9,(0)= 0, ag,(0)= 0, ap,(0)=0
velocity t=0: a@,(0)= 0, ap1(0)= 0, Ap;(0)= 0 V
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situation 8

¢-phi2 {rad)

¢-dphi2 [rad/s}

phil-phi3 [rad}

experiment, desired trajectory: C , k= 0.5 Nm/rad, control par.: k;= 0.05, k,= 0.05, k;= 0.05, A,;= 50 and A,= 25
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meas. freq.: 1/0.007 Herz, observ. poles: -50, posmon t=0: AQ,(0)=0, aq,(0)= 0, A(p3(0)—
velocity t=0: ag,(0)= 0, a@1(0)= 0, aq,(0)= 0
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situation 9
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simulation, desired trajectory: A , k= 0.05 Nm/rad, control par.: k;= 0.05, k,= 0.05, k;= 0.05, A= 25 and A= 25
meas. freq.: 1/0.01 Herz, observ. poles: 25, position t=0: ag,(0)= 0, ag,(0)= 0, ag;(0)= 0 ‘
velocity t=0: ag,(0)= 0, a@1(0)= 0, ag;(0)=0
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situation 10
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simulation, desired trajectory: A , k= 1 Nm/rad, control par.: k= 0.05, k,= 0.05, k;= 0.05, A= 25 and A= 25
meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=0: ag,(0)= 0, A, (0)= 0, ap,(0)= 0
velocity t=0: a@,(0)= 0, ap1(0)= 0, ap;(0)=0
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situation 11

2 tr. error phi2 4 tr. error phil
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simulation with CTC controller, desired trajectory: A , k= 0.5 Nm/rad, control par.: k,= 0.05, k,= 0.05, A,= 25, A= 25
meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=0: ag,(0)= 0, a9,(0)= 0, ap,(0)= 0
velocity t=0: ag,(0)= 0, a91(0)= 0, ag;(0)= 0
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situation 12

2 : tr. em?r phi2 : 10 . tr. em?r phil !
0 b N
=) o) / o~
= 8 ; : :
E ...... 4 - -10 ......
& < : :
® ¢ 20
-6 i . ; .30 i H i ‘
0 100 200 300 400 0 100 200 300 400
time [-] time [-]
100 ! tr. cn'o!r dphi2 ! 150 ? tr, errogr dphil ‘

e-dphi2 [rad/s]
e-dphil {rad/s}

i i i .50 i i i
100 200 300 400 0 100 200 300 400
time [-] time {-]
40 ! phi3 an!d phi3r : 40 dphi3-€dphi3r .
20 /ﬁ\ oy ‘;
— H i H ‘U i
3 : ; : 1 \
: : : =, \
I VAN S TR W
z /N z ;
20 : : : 4 9 |
|
-40 i L { .40 1 L i ‘
0 100 200 300 400 0 100 200 300 400 |
time [-] time {-] |
4 phil?phifi : 4000 g inp!uts
5 2 “M = 2000
2 : o ‘
[2a] oF i
Pl = J i
..a‘ Q 3 0
= =
2 L <-2000
4 " 1 1 -4000 i H L
0 100 200 300 400 0 100 200 300 400
time [-] time [-]

simulation with CTC controller, desired trajectory: B , k= 0.5 Nmy/rad, control par.: k;= 0.05, k,= 0.05, A= 25, A= 25
meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=0: ag,(0)= 0, ag,(0)= 0, ap;(0)=0
velocity t=0: a@,(0)= 0, ap1(0)= 0, ap;(0)=0
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situation 13

e-phi2 {rad]

e-dphi2 [rad/s]

phi [rad}

phil-phi3 [rad]

simulation, desired trajectory: B , k= 0.5 Nm/rad, conirol par.: k,= 0.05, k,= 0.05, k,= 0.05, A,= 25 and A,= 25
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meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=0: a@,(0)= 0, ag,(0)= 0, ag,(0)= 0
velocity t=0: A@,(0)= 0, ap1(0)= 0, ap4(0)= 0
wrong estimated par. : ( k= 0.5 Nm/rad k= 0.1 Nm/rad)
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situation 14
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simulation, desired trajectory: B , k= 0.5 Nm/rad, control par.: k= 0.05, k,= 0.05, ky= 0.05, A= 25 and A= 25
meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=0: AQ,(0)= 0, aq,(0)= 0, ap;(0)=0

velocity t=0: ag,(0)= 0, A@1(0)= 0, ap;(0)= 0

wrong estimated par. : ( k= 0.5 Nm/rad k= 1 Nm/rad)
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situation 15
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100 2 tr. errogr dphi2 : 200 : tr. errogr dphil :
z 50 jAL\ o]
= H : :
s s \ g
o 0 : S - =
= . J \l £
< <
4‘) _50 ................ VORI .............. ............. - o
-100 H ; i -100 i ; i
0 100 200 300 400 0 100 200 300 400
time {-] time {-]

400 ! dphlS-gdpthr

phi [rad]
e-dphi3 [rad/s]

-0 100 200 300 400 0 100 200 300 400
time [-] time -]
4 : phil-!phiS 4000 inguw
= 22000
2 |
1 o
- 118 -
& 3
3 =
i =-2000
-4 . . . -4000 i i i
0 100 200 300 400 0 100 200 300 400
time {-] time {-]

simulation, desired trajectory: B , k= 0.5 Nm/rad, control par.: k;= 0.05, k,= 0.05, k;= 0.05, A,= 25 and )»2— 25
meas. freq.: 1/0.01 Herz, observ. po]es -25, position t=0: ap,(0)= 0, a@,(0)= 0, ag;(0)=0
velocity t=0: ag;(0)= 0, Ap1(0)= 0, ag,(0)= 0

wrong estimated par. : (wW;= w;= 0.25 Nm w,= 0.15 Nm w, = w;= 0.1 Nm w,= 0.05 Nm)
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Simulation - and experimental results of the second part of the research

situation 16

e-phi2 [rad]

e-dphi2 [rad/s}

phi [rad]

phil-phi3 [rad]

simulation, desired trajectory: B., k= 0.5 Nm/rad, control par.: k,= 0.05, ky= 0.05, k;= 0.05, A= 25 and A= 25

4 i ir. error phi2 -
ob /\v/ V\V/\
Y
-4 :
! : :
-6 v " H i
0 100 200 300 400
time {-}
100 . {r. error dphi2 -
50+
ok o]
-50
-100 i i i
0 100 200 300 400
time {-]
100 i phi3 an'd phi3r '
50 -
’ /:\\/ |
-50 ; i
200 300 400
time [-]
4 . phil-phi3
2l it
ot N
I L WY
-6 : 3 L
0 100 200 300 400
time {-]

e-phil {rad}

IT. error phil

100 200 300

time [-]

e-dphil [rad/s]

tr. error dphil

1

=200 i !
0 100 200 300 400
time [-}
400 dphi3-¥dphi3r .
= :
s :
o Of j
= :
-9 :
= B
o -200
-4 i i i |
0 100 200 300 400
time [-]
4000 inputs
-4000 i i 1 .
0 100 200 300 400
time [-]

meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=0: ag,(0)= 0, aq,(0)= 0, A, (0)=0
velocity t=0: ag,(0)= 0, A@p1(0)= 0, agp;(0)= 0
wrong estimated par. : (w;= w;= 0.25 Nm w,= 0.15 Nm w, = w,= 0.5 Nm w,= 0.3 Nm)
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Simulation - and experimental results of the second part of the research

situation 17

simulation, desired trajectory: B , k= 0.5 Nm/rad, control par.: ky= 0.05, k,= 0.05, ky= 0.05, A,= 25 and A= 25

tr. error phi2

20 : tr. errc;r phil
[ I =
| % o
[+ <
-4 T —
6 : H ; 30 i H ;
0 100 200 300 400 0 100 200 300 400
time [-] time [-]
100 : tr. erro?r dphi2 § 200 . tr. erro?' dphil :
=] )
g -E 100/ A\
= =
53 5 oF
[ ] LH]
-100 I i i -100 1 i i
0 100 200 300 400 0 100 200 300 400
time [-] time {-]
160 : phi3 angd phi3r ! 400 : dphi3-?1phi3r :
P 7 200/ — i
g 1 E [\
= Pl g O
I 2\ » = 5 :
e B 200 R |
100 200 300 400 0 100 200 300 400
time [-] time (-]
4 x phil:phB . 4000 inp.uts‘
g é
= : : f ] g
= :
= :
[~ 1
; i -4000 i ; i
200 300 0 100 200 300 400
time [-] time {-]

meas. freq.: 1/0.01 Herz, observ. poles: 25, position t=0: A _ _
i S =0: 29,(0)= 0, a¢;(0)= 0, ap;(0)= 0
velocity t=0: ag,(0)= 0, ap1(0)= 0, ag,(0)= 0 2 i ¢50)

wrong estimated par. : (J,;= 2.15¢-3, J,= 1.45¢-4 J, ;= 3e-3 I, = 2e-4)
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Simulation - and experimental results of the second part of the research

situation 18

2 tr. en'ogr phi2
— 0 i
£
&
a 2
<=
[=%
s -4
v : b
-6 i i i
0 100 200 300 400
time [-]
100 ! fr. errogr dphi2 !
=
=
]
;,:‘ ............ -
-
=%
3
DG 1 SRR SO SR S i
_100 H i i
0 100 200 300 400
time [-]
100 . phi3 angd phi3r !
o S0pi e
b= oy ! :
g Py ;
50 H i i
0 100 200 300 400
time [-]
4 phll;phx?a

phil-phi3 frad]
(=

0 100

200
time [-]

300

400

tr. error phil

e-phil [rad]

200 300 400
time [-]
tr. error dphil
= H
=
vy
=
[=% /A -
-c H
:
100 200 300 400 |
time {-] !
400 dph13-gdph13r :’
T 2001
) : H
£ : ;
o OF : f
= : :
S ; : !
el H : i
S =200 \/ |
0 100 200 300 400

100

200
time [-]

simulation, desired trajectory: B , k= 0.5 Nm/rad, control par.: k,= 0.05, k,= 0.05, k,= 0.05, A= 25 and A,= 25
meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=0: ag,(0)= 0, ap,(0)= 0, ap;(0)= 0

velocity t=0: ap,(0)= 0, ap1(0)= 0, agp;(0)=0
wrong estimated par. : (m= 2.3 kg m= 8.5 kg m = 2.3 kg m_= 3 kg m,= 10 kg m_= 3 kg)



F: Output control

APPENDIX F: OUTPUT CONTROL

|
i
I
|
In this appendix I will give s, and s, of equation (6.2) and (6.5). Further I will show some |

Py Amdbnl o

emmaz and Avrran e R
simulation - and exXperimental resuits.

s,and s,

From fig 6.1 it follows:

0.51+p,r

Q.r- (F.1)
cos(atan(w

r-g.r
sy o= sin(atan(cp"’ P

N

)

Because of the fact that @,r-;r is small, we can simplify equation (F.1):

r-.r
Sy = (@_3_1cp_1)(0.51+cp2r) (F.2)

Now I will consider the s,. From fig. 6.2 1t follows:

y = @rcosP (F.3)

r-Q,r
cosf = cos(atan(f_ll&

)) (F.4)

F.1




F: Output control

Because of the fact that @,r-@,r is small, we can simplify equation (F.4):

cosPp = 1—; _c.'i_’.‘_;&.) (F.5)

This leads to:

r-g,r
M)z = @ r-s (F.6)

y=fpr~1cpr(
z 2 ]

In the on-line generation routine of ¢,4 and ¢, (6. 2 6.5 and 6.6 and 6.7 ) I have used s, and s,
of equation (F.2) and (F.6). )

We have to derivate s, and s, twice (to calculate X,, X, and yd, 7). If we had use F.1 anf F.3 we
get long terms, this can lead to problems ns during the execution of experiments ( computing time,

can grow too bl'g')
Simulationresults

I have considered the next situations:

1) - simulation

- desired trajectory: x;= asin(ot) y,= osin(ot) o= 25 rad w= 3.14 rad/s

- springconstant: k = 0.5 Nm/rad

- control gain parameters: k;= k,= k;= 0.05, lab;= lab,= 25

- observer-poles (used by the pole-placement routine): -25+0.2i
-25+0.3i
-25+0.4i

- measure frequency: 0.01 s

- execution time: 3.5 s

- position t=0: ¢,= @,= @;= 0 (middle of the xy table)

- velocity t=0: ¢;= @,= @;= 0

- particularies: no on-line generation of ¢,; and ¢y,

Note: This is the same situation as situation 1 of appendix E.

F2




F: Output control

2) As situation 1) but now:
- :a=a~1

X y

Note: This is the same as the on-line generation routine of ¢4 and ¢,y with (6.2) and (6.5)

3) As situation 2) but now:

- scaled on-line generation of @,4 and @, a,= a,= 0.75
( see 6.6 and 6.7)

4) As situation 2) but now:

- scaled on-line generation of @,y and @, 2,= 3= 0.5

5) As situation 2) but now:
- experiment
- control gain parameters k,= k,= k= 0.05, lab,;= 50, lab,= 25
- observer-poles: -50+0.2i, -50+0.3i, -50+0.4i
- measure frequency: 0.007 s
-  scaled on-line generation of ¢, and @, a,= a= 0.25
6) As situation 5) but now:
- desired trajectory: x,= acos(ot) y,= osin(wt) , a= 25 rad o= 3.14 rad/s

7) As situation 6) but now:

- desired trajectory: x;=acos(w,t) y,=asin(w,t), a=25 rad w,=3.14 rad/s, w,=1.57 rad/s

F3
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The simulation - and experimental results

Of every situation I have made the following plots:

tracking error x-direction: ;X

tracking error y-direction: y;y

input x-direction: u,

input y-direction: us

desired and real trajectory of the end-effector

n & W=

The structure of a page with plots is:

n @
G @
)

Now I will give per situation the simulation - and experimental results (see the following pages).

F4




F: Results of the controlling of the end-effector of the xy table

situation 1

2 tr. error X-pos__ 2 __ . eIror y-pos _
ok _
g 8
2 2 P
& &
[ [+
48
% ; . i
0 100 200 300 400
time [-] time [-]
4000 : mpugt ul ; 4000 : mpugt u2
2000 -
- = 9 .
‘; (; d : .
-4000 i i : -4000 : : i
0 100 200 300 400 0 100 200 300 400 |
time [-] time {-]
e.c. path
30 T

y-pos [cm]

-30 -20 -10 0 10 20 30

x-pos [cm}

simulation, desired trajectory: x,= 25sin(3.14t) y = 25sin(3.14¢),

k= 0.5 Nm/rad, control par.: k;= 0.05, k,= 0.05, k,;= 0.05, A= 25 and A= 25

meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=0: a@,(0)= 0, a@,(0)= 0, ap;(0)= 0
velocity t=0: ag,(0)= 0, a@1(0)= 0, ap;(0)= 0, a,=a,= 0



F: Results of the controlling of the end-effector of the xy table

situation 2

2 : tr. e1ror X-pos : 2 : ir. e11Or y-pos
— itaales i =
2 2 : Py
g g
"y » o
-6 i 1 i -6 ; .
0 100 200 300 400 0 100 200 300 400
time {-] time {-] |
4000 . inpt}t ul 4000 . inpgj u2

0 100 200 300 400
time [-}

30

20

10

y-pos [cm]
=

-30

-30 -20 -10 0 10 20 30

i

x-pos [cm]

simulation, desired trajectory: x,;= 25sin(3.14t) y= 25sin(3.14t),

k= 0.5 Nm/rad, control par.: k;= 0.05, k,= 0.05, k,= 0.05, A= 25 and A= 25

meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=0: ap,(0)= 0, ag,(0)= 0, ag;(0)=0
velocity t=0: ag,(0)= 0, Ap1(0)= 0, ap;(0)=0, a,=a,=1




F: Results of the controlling of the end-effector of the xy table

situation 3

2 : tr. errogr X-pOs : 2 : tr. en'o!r y-pos
[pu— 0 ™ p—
g &
w -2 P
L , _ ; &
o : : : Q
N _4_ _4 ......
6 i H i -6 i
0 100 200 300 400 0 100 200 300 400
time [-] time [-]
4000 ‘ inpugt ul ‘ 4000 inptgt u2
2000 T

Pl

-2000}-
-4000 : : -4000 : . i
0 100 200 300 400 0 100 200 300 400
time [-] time [-]

B
e : :
&
-30 i 5 ; ;
-30 -20 -10 0 10 20 30
x-pos [cm]

simulation, desired trajectory: X;= 25sin(3.14t) y= 25sin(3.141),

k= 0.5 Nm/rad, control par.: k;= 0.05, k= 0.05, k= 0.05, A=
meas. freq.: 1/0.01 Herz, observ. poles: 25, position t=0: Ap,(0)=0, Ap,(0)= 0, ap;(0)= 0

velocity t=0: ag,(0)= 0, a91(0)= 0, 2@5(0)= 0, a,= ;= 0.75

25 and A= 25



F: Results of the controlling of the end-effector of the xy table

situation 4

5 2 tr. erro!r X-pos : 2 ! tr. erro:rr y-pos :
r— N r— 0 B
g g
= 2
@ w -2
a‘ I : < a’
Q : : : L)
-4 ; : -4
6 ; i i 6 : ;
0 100 200 300 400 0 100 200 300 400
time [-] time [-]
4000 inpu} ul . 4000 input u2
2000 - 2000
= of 1 5 ofF
= =
-2000}- 4 2000}
-4000 i ; - -4000 i i i
0 100 200 300 400 0 100 200 300
time [-] time [-]
30
20
10 7
T
= :
&
>
-10
-20
-30 i i i : i
-30 -20 -10 0 10 20
x-pos [cm]

simulation, desired trajectory: x;= 25sin(3.14t) y,= 25sin(3.14t),
k= 0.5 Nm/rad, control par.: k;= 0.05, k,= 0.05, ky= 0.05, A;= 25 and A,= 25

meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=0: a@,(0)= 0, a@,(0)= 0, ag;(0)=0

velocity t=0: ag,(0)= 0, a91(0)= 0, ag;(0)= 0, a,= a,= 0.5



F: Results of the controlling of the end-effector of the xy table

situation 5

5 {1, eITor X-pos

2 {r. error y-pos
g ° / i T
-y - &
8 a
£ 2
\VI
-10
0 500
time [-] time [-]
40()0 input ui 3000 input u2

time [-] time [-]

30

20

10

y-pos fcm]
=

-30 . L
-30 -20 -10 0

1

10 20 30
x-pos {cm]

experiment, desired trajectory: X,= 25sin(3.14t) y,= 25sin(3.14t),

k= 0.5 Nm/rad, control par.: k,= 0.05, k,= 0.05, k;= 0.05, A= 50 and A= 25 o
meas. freq.: 1/0.01 Herz, observ. poles: -50, position t=0: a@,(0)= 0, ap,(0)= 0, Aq;(0)=
velocity t=0: a@,(0)= 0, ap1(0)= 0, aps(0)=0, a,= a;= 0.25
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Results of the controlling of the end-effector of the xy table

situation 6

ul {-]

y-pos [cm]

N

{r. error x-pos

g

S

w -10
& /
L ]

e-pos [cm]
0

{I. eIror y-pos

-20 -4
1] 100 200 300 0 100 2000 300 400
time [-] time [-] |
4000 inpg}t ul 4000 : inpuzrt u2 —
-4000 i : i -4000 : : :
0 100 200 300 0 100 200 300 400
time (-] time -]
€.¢. path
30 —T T j T ;
-30 -20 -10 0 10 20 30
x-pos {cm]

simulation, desired trajectory: x,= 25cos(3.14t) y,= 25sin(3.14t),
k= 0.5 Nm/rad, control par.: k,= 0.05, k,= 0.05, ky= 0.05, A= 50 and A,= 25

meas. freq.: 1/0.01 Herz, observ. poles: -50, position t=0: A@,(0)= 0, ap,(0)= 0, ap,(0)= 0

velocity t=0: a@,(0)= 0, a@1(0)= 0, ag,(0)= 0, a,= a,= 025




F: Resulis of the controlling of the end-effector of the xy table

situation .
2 AT error X-pos . 05 : tr, erro;r y-pos
[ i T LR e - —_
: g
2 2 2
2 g
< 4 O
-5 i i
0 100 200 300 400
time {-]

3000 ! mpugt u2

400
g ?
& i
w i
2 |
> :

|

|

% 20 .10 0 10 20 30
x-pos [cm}]

simulation, desired trajectory: X,= 25cos(3.14t) y,= 25sin(1.57t),

k= 0.5 Nm/rad, control par.: k,;= 0.05, k,= 0.05, k;= 0.05, A,= 50 and A,= 25

meas. freq.: 1/0.01 Herz, observ. poles: -25, position t=0: ag,(0)= 0, ag,(0)= 0, ap;(0)=0
velocity t=0: Ap,(0)= 0, ap1(0)= 0, a@;(0)= 0, a,= a;= 0.25
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