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Summary 

The objective of this report is to increase the insight into squeeze film lubrication. This 
lubrication mechanism is supposed to be responsible for the excellent friction characteristics 
of the knee-joint. It is based upon the principle, that in a viscous fluid film, which is forced 
out from between a pair of normally approaching surfaces, pressures are developed, which 
resist the tendency of the surfaces to come together. 

Three special squeeze films have been investigated, i.e. a squeeze film between : 

1. 
2. 

two rigid impermeable approaching flat circular plates 
a rigid impermeable spherical indenter approaching an impermeable rigid flat 
plate 
a rigid impermeable circular flat plate approaching a rigid permeable biphasic 
fluid-solid mixture 

3. 

For each case the thickness of the squeeze film as a function of time and the pressure 
distribution over the squeeze film are calculated, given a prescribed load on the upper plate 
or indenter, By comparing the second with the first case, the pressure distribution appears to 
be remarkably affected by the geometry of the squeeze film. Moreover the squeeze film lasts 
much shorter in the second than in the first case. 
In the third case interaction between the viscous squeeze film and the viscous interstitial fluid 
of the mixture has been achieved by using the interface boundary conditions according to 
Hou (1989). For this case parameters are defined to characterize a mixture. The influence of 
the presence of a mixture has been clearly demonstrated by comparing the film thickness as 
a hunction of time for several combinations of parameters. 

It will be valuable to validate Hou’s interface conditions by experiments on a physical 

squeeze film model, which incorporates a rigid mixture. 
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Nomenclature 

m 

ma 

na 

P 

PO 

il" 
'i 

RO 

r 

t 

t0 

P 

û 

mass supply to cl* phase from other constituents 

load on upper platehndenter in z-direction 

load scaling factor 

&$urfzce pQ&iQn Qf ifidenter in SqUeeze &&=n 

= A, + 2ps = rigidity of solid matrix 

initial thickness of cartilage layer/mixture 

squeeze film thickness 

initial squeeze film thickness 

heatflux vector 

dragcoefficient = /k 

permeability 

total mixture mass 

mass of CL* phase 

partial volume fraction of CL* phase 

pressure 

pressure scaling factor 

external body force per unit mass 

radius of spherical indenter 

radial dimensional scaling factor 

( characteristic radius of load carrying area ) 

radial coordinate 

time 

time scaling factor 

force per unit area that a* phase outside a certain 

volume element exerts on a inside this volume element 

displacement of solid matrix 

displacement coordinates 

upper platehndenter velocity in squeeze action 

velocity scaling factor in z-direction 

mixture volume 

[ kg m" s-' 3 

[ N I  

[ N I  
ï m l  
1 J 

[ N m-2 3 

[ m l  
E m 1  

[ m l  
[ J m-2 s-l ] 

[ N s m-4 ] 

[ m4 N'l s-l ] 

kg 1 
[ kg 1 

[ - I  
[ N m-2 ] 

[ N m-2 ] 

[ N mJ kg-' ] 

[ m l  
[ m l  
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VU volume of CYth phase 

v velocity vector 

(v, vv, vJ velocity components 

vrh 

vzh 

Y 7 mid coordinate 

radial fluid velocity at fluid mixture interface 

axial fluid velocity at fluid mixture interface 

CY 

P 
ratio of h, and R, 

ratio of h, and Ho 

6 parameter = , / q a / ( ~ ~ ; )  

parameter = ( nf)’qf/q, 

specific entropy 

apparent viscosity of fluid phase 

viscosity of single phase fiuid 

absolute temperature 

Lagrange multiplier 

Lamé constants of solid matrix 

SU 

P mixture density 

Pa 

Pa* 

rp tangential coordinate 

body force due to interaction with other components 

apparent density of cxfh phase 

true density of ath phase 

specific internal energy 

4Ja specific Helmholtz free energy 

? gradient vector 

[ - I  
1 - 1  
[ - I  
[ - I  

[ J kg-’ IC1 ] 

[ N s m-2 ] 

[ N s m3 ] 

[KI 
[ N m-*] 

[ N m-’ ] 

[ N mJ ] 

[ kg m 3  1 
[ kg 1 
E kg I 

[ - I  
J kg-ll  

E J kg-l 1 
c m-l l  
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indices 

a, s, f 

C 

r, q 7  z 

+ 
e 

O 

tensors 

D 

E 

& 

F 

I 

P 

(T 

a& phase, solid, fluid 

conjugate 

r, cp, z direction 

fluid side of fluid mixture interface 

mixedrp, siup, of fluid mixturp, icterfuce 

undeformed state 

rate of deformation tensor 

Green-Lagrange strain tensor 

linear strain tensor 

deformation tensor 

unit second order tensor 

2de Piola-Kirchhoff stress tensor 

Gauchy stress tensor 

[ S'l 1 
[ - I  
[ - I  
[ - I  
[ - I  

[ N m-' ] 

[ N m-'] 
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When a film of viscous fluid is forced out @om between 

a pair of approaching surfaces, pressures are developed 

which resist the tendency of the surfaces to come 

together. Under such conditions the fluid layer is 

described as a squeeze film. 

(O’Connor and Boyd, 1968) 
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Chapter 1. Introduction 

The knee-joint (figure 1) ensures nearly frictionless motions of the shinbone (tibia) relative 
to the thighbone (femur) (McCutchen, 1978). It is generally believed that operation of the 
knee is due to the structure of the joint. However, insight into the mechanical behaviour of 
the hee-joint is still limited. 
Major components in the joint are the synovial lubricating fluid, and the cartilage layers 
which cover the two articular bone surfaces. Moreover, menisci, ligaments, joint-capsule, 
muscles etc. can be distinguished. The menisci, two semi-circular disks with wedge-shaped 
cross-sections fill the space in between the two incongruent articular surfaces. The joint- 
capsule and the ligaments connect femur and tibia. The lining membrane of the joint-capsule 
synovia is believed to secrete and maintain the synovial fluid (Mow, 1969). 

Recently a theoretical model has been developed by Schreppers (1991), focused on the force 
transmission through the knee-joint. Because the complete knee-joint is a very complex load 
transmitting connection, a modeling strategy, which is characterized by a stepwise approach, 
has been presented. First Schreppers distinguished three interacting sub-connections in the 
knee, i.e.: 

capsule and ligaments 
muscles, tendons, and related fibrous sheets 
the contact between the cartilage layers, directly as well as indirectly via both 
the menisci and the synovial fluid. 

Before these sub-connections can be integrated into a model of the complete knee-joint, 
insight into the distinct sub-connections has to be obtained. 
In his report Schreppers focused on the third subconnection, which provides load transmission 
via the contact between the cartilage layers (figure 2). He presented an axi-symmetric model 
which contains a planar disk, representing an articular cartilage layer, a spherical indenter and, 
in between, a toroid with a wedge-shaped cross-section, representing the meniscus. The lower 
end plane of the articular layer is fixed to a rigid support. The synovial fluid is enclosed in 
the resulting cavity between the indenter, the meniscus, and the cartilage layer. Frictionless 
sliding of the meniscal ring along the articular cartilage layer and the spherical indenter as 
well as sliding of the articular cartilage layer along the spherical indenter is allowed. The 
articular cartilage layer as well as the meniscus are considered to be mixtures of a purely 
elastic homogeneous solid and an ideal fluid. The synovial fluid is also considered as an ideal 
fluid. 

13 



i rigid indenter (femur) 

i 

figure 2 Cross-section of the axisymmetric model öf the load transmitting contact 
between the cartilage layers (Schreppers, 1991). 

From the numerical analyses based on this model (using the finite element method) the 
interaction between the components appeared to be an important aspect of the load 
transmission in the knee joint. 
Schreppers (1991) recommended to continue with a stepwise development of the model 
described above. Attention should be focused on the interaction between a mixture and its 
surrounding fluid as well as between mixtures mutually. Following this strategy, it may 
become possible to include the viscosity of both the synovial fluid and the interstitial fluid 
into the model. 

For the last decades researchers have imvestigated interaction effects between the synovial 
fluid and articular cartilage, in order to explain the excellent friction characteristics of the 
knee-joint. As a result many lubrication mechanisms have been proposed for this joint. Hou 
(1989) mentioned the most important among them, such as wedge-film hydrodynamic 
lubrication, elasto-hydrodynamic lubrication, squeeze film lubrication, weeping lubrication, 
and bo~sted !ub:ication. Each of these mechanisms will be explained briefly. 

In hydrodynamic lubrication the shape and relative motion of rigid sliding surfaces cause the 
formation of a wedge-shaped fluid film, having sufficient pressure to separate the surfaces 
(O’Connor and Boyd, 1968). If the deformation of the cartilage is taken into account, the 
mechanism is known as elasto-hydrodynamic lubrication. However both lubrication modes 
require a fast relative tangential motion between the two joint surfaces. This is not the case 
for the knee-joint, where high compressive loading stresses are combined with a low operating 
speed (Mow, 1969). 
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For squeeze film lubrication only normal surface motions are required. Squeeze film 
lubrication is based upon the principle, that in a fluid film, which is forced out from between 
a pair of normally approaching surfaces, pressures are developed, which resist the tendency 
of the surfaces to come together (O’Connor and Boyd, 1968). 

Alternative squeeze film mechanisms deal with the porous-permeable and deformable nature 
of cartilage. ’Weeping lubrication’ is a so called self-pressurized hydrostatic lubrication 
mechanism (McCutchen, 2978). The lubricating fluid film is assumed to be supplied by the 
interstitial fluid which is squeezed out from the cartilage by compressing the cartilage. 
Finally Hou (1989) mentioned an alternative theory called ’Boosted lubrication’, where the 
synovial fluid flows into the cartilage layer during squeeze action. However the large 
molecules in the synovial fluid are not able to penetrate the cartilage, resulting in a 
concentrated solution with high viscosity in the joint gap (Lai, 1978), which lubricates the 
articulating surfaces. 

For the squeeze film mechanism in the knee-joint, many mathematical analyses have been 
presented. Solutions of these analyses however highly depend on the various imposed 
boundary conditions (Hou, 1989). Thus, investigating interaction effects requires proper 
boundary conditions at the interface between mixtures or between a mixture and a viscous 
fluid. 

Hou (1989) proposed the ’pseudo-no-slip’ condition, based upon the principle that the 
conditions at the interface between mixtures or between mixtures and fluids must reduce to 
those boundary conditions in single phase continuum mechanics. From this proposed 
kinematic boundary condition, and balance of mass, momentum, and energy, the required 
boundary conditions at the interface between a biphasic mixture and a Newtonian fluid are 
mathematically derived. 

With these interface boundary conditions, Hou is capable to model the squeeze film 

mechanism in the tibio-femoral joint. This model is axi-symmetric. A rigid and impermeable 
underground is covered by a deformable permeable layer, representing the cartilage. The gap 
between the surface of the layer and a rigid impermeable spherical indenter contains a viscous 
fluid. No meniscus is incorporated into the model. Hou performs the analyses of the model 
almost fully analytically. Hou concluded that if the joint is loaded with a compressive force, 
the cartilage layers deform to form a pair of mating surfaces, more congruent than in the 
unloaded state, resulting in a spread of the load to a larger area. When the joint gap becomes 
very thin, the synovial fluid flows into the cartilage at the central region of the joint, which 
makes ’boosted lubrication’ likely to occur. 

15 



The objective of this study is to increase the insight into squeeze film lubrication by means 
of the analysis of three special cases of Hou’s model, i.e.: 

Two rigid impermeable approaching circular plates, 
A rigid impermeable spherical indenter approaching an impermeable rigid 
plane, 

fluid-solid mixture. 

- -  A rigid im-pc.m--&l- circular platp. approaching a rigid permeable hiphasi- 

Moreover, by working out the third case, where a mixture is incorporated, it may become 
possible in the future to verify the interface conditions experimentally. 
In chapter 2 the governing equations for the squeeze film model (Hou, 1989) are derived 
using the balance of mass and momentum, the theory of mixtures, and the interface boundary 
conditions according to Hou. In chapter 3 these general equations are simplified using power 
series expansions. For each case the film thickness as a function of time will be calculated, 
given the prescribed load on the upper plate or indenter. In chapter 4 conclusions and 
recommendations will be given in consequence of the results in chapter 3. 

16 



Chapter 2. A squeeze film between a spherical 
indenter and a cartilage layer 

2.1. Introduction 

TG investigate the lubrication mechanism of the human knee-joint, a squeeze film model may 
be used, in which the interaction between the synovial fluid and the cartilage layer is taken 
into account. Squeeze film lubrication is based upon the principle, that in a fluid film, which 
is forced out from between a pair of approaching surfaces, pressures are developed, which 
resist the tendency of the surfaces to come together. The squeeze film model, which will be 
described in this chapter, has a rotationally symmetric, simple geometry (figure 3) : 

figure 3 Schematic diagram of a squeeze f i lm between a rigid indenter and a cartilage 
layer. Symbols will be explained in the text. 

The rigid and impermeable siìbchondral bone is covered by a thin layer of cartilage with 
thickness Ho. Within the gap between the spherical indenter with radius Ri and the cartilage 
layer an incompressible Newtonian fluid with viscosity qf is found. The indenter is subjected 
to a prescribed load F(t) in the negative z-direction. As a result of the indenter load, the 
indenter moves in the negative z-direction with a velocity V(t). The distances h(r,t), u,,, and 
g(r,t) denote the film thickness, the axial deformation of the cartilage surface, and the position 
of the indenter surface respectively. 
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The cartilage is assumed to be a mixture of an elastic solid and a viscous fluid, which are 
homogeneously distributed over the whole mixture volume, while both continua follow their 
own motion. The model assumes Newtonian behaviour of the synovial fluid and isotropic 
linear elastic behaviour of the solid matrix, while the constitutive laws under consideration 
are based on finite deformations. The equations of motion are formulated for each constituent 
separately, but they are coupled because each position in the mixture is occupied by fluid as 
well as by solid. Moreover, the constituents may interact both mechanically and chemicaI!y 
(Oomens 1985, page 3.5). 

A fixed coordinate system is defined in space with origin O, axial coordinate z, radial 
coordinate r, and tangential coordinate cp. Since the model is axi-symmetric, the solid 
displacement and the fluid velocity in the tangential direction are equal to O. Moreover the 
derivatives with respect to cp are equal to O. 

18 



2.2. Equations of motion for the fluid film 

The motion of the fluid film is governed by the laws of conservation of mass, momentum and 
moment of momentum. The balance of mass for a fluid with density pf is given by : 

where i, 3, and vl denote the time, the gradient vector and the fluid velocity vector 
respectively. 

The balance of momentum is : pf(g + ,-r * -+-+ v v f )  = i? - (of)" + pfqf 

where (6)" is the conjugate of the fluid stress tensor and 4 is the external body force. This 
equation states that the change of momentum with time is equal to the sum of surface and 
body forces. 

The following assumptions are made to elaborate the equations of motion : 

assumption 1 Both unsteady and convective inertia forces will be neglected : 

assumption 2 Body forces will be neglected : 

assumption 3 Conservation of moment of momentum means : 

(of)" = of (2.5) 

assumption 4 The fluid is assumed to be incompressible (the density pf is constant) : 

- -  - o,  T p f  = o' 
at  

19 



assumption 5 
constitutive model reads : 

The fluid is assumed to be Newtonian with viscosity qf, so the 

1 
2 

of = -PI + 2q,Df with: Df = -((Vv'f)c + (Vv'f)) 

so the fluid stress tensor is split into a term due to the pressure and a term due to the shear 
i-.-.~:--~ nf :" 4 ~ -  -c A,C,..,,C:,, 4-..--.. 
i U Q U i i l ~ 3 ; 3 .  U 13 L U G  1 Q L C  UL UCLUllllQLlUIl LClWUl. 

The balance laws may thus be rewritten as : 

conservation of mass : 

conservation of momentum : 

V - V'f = O 

3 - of = 0 

Using equation (1.11) (Appendix I), the balance of mass for this cylinder-symmetrical problem 
is represented by : 

The balance of momentum will be rewritten as follows : 

-+ v - of = -v 'PI + q v - ((Wf)" + (Wf)) 
= -"p 
= -vp 

f 
+ qr ( v  * (m) + v * (Wf)) 
+ qf ((V * l q v  + v - (Wf)) 

= -up + qf v (Vv'f) 
= o '  

(2.10) 

where the balance ~f mass (2.9) is substituted during the last step. 

20 



Representing equation (2.10) in coordinates yields : 

(2.11) 

Since the problem is cylinder-symmetrical no derivatives with respect to the angle cp are 

found in the last equation. 
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2.3. Equations of motion for the cartilage layer 

2.3.1. Cartilage as a solid-fluid biphasic mixture 

Cartilage is modeled as a biphasic mixture, consisting of a fluid phase f and a solid phase s. 
The true density pa* of a phase a (either s or f) is defined as the ratio of the mass ma of the 
a& phase and the volume VG of the a& phase : 

a ma 
P *  = - 

V a  
(2.12) 

The volume fraction na of a phase a is defined as the ratio of the volume of the a& phase 
and the total mixture volume V : 

V a  na = - 
V 

One can easily see that : 

n a = í  

(2.13) 

(2.14) 
a 

The apparent density pa of a phase a is defined as the ratio of the mass of the cl& phase and 
the total mixture volume : 

ma 
V 

pa = - = napc: (2.15) 

The balance equations of mass for the mixture components read (Oomens 1985, page 3.9) : 

- 0" + v .(p"v'") = c s  
at 

- a Pf + v (p f iq  = cf 
at 

(2.16) 

These mass balances deviate from the standard mass balance (2.1) by an interaction term ca 
representing the mass supply to the a& phase from the other constituents. 

The balance equations of momentum for the mixture components read (Qomens 1985, 3.13) : 

22 



which deviate from the standard balance of momentum (2.2) by a vector 5a  representing the 
body force due to interaction effects with other constituents. For a solid-fluid biphasic mixture 
these body forces satisfy : 

(2.18) 

The following assumptions are made to elaborate the equations of motion : 

assumption 6 Both unsteady and convective inertia forces will be neglected : 

assumption 7 Body forces will be neglected : 

r = ö  

(2.19) 

(2.20) 

assumption 8 Mass exchange due to chemical interactions will be neglected : 

(2.21) Ca = o 

assumption 9 Both components are assumed to be intrinsically incompressible (pa. is 
constant) : 

- o, "vp: = O a P t  
a t  

- -  

The conservation laws for the mixture components now reduce to : 

(2.22) 

a ns - + "v - ( n s P )  = O 
ar 

d nf  - + V (n'flf) = O 
at 

conservation of mass : l 
conservation of momentum : V o' + 5' = O 

" v .  of - ?E" = o' 

conservation 01 mass : - + v - (n-v-) = u 
ar 

d nf  - + V (n'flf) = O 
at 

l 
conservation of momentum : V o' + 5' = O 

" v .  of - ?E" = o' 

(2.23) 

where (2.15) is used. 
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For later use it is remarked that addition of the balances of mass (from 2.23) leads to : 

?- ( ( i  - n f ) P + n f f l )  = ? . ( n f ( f l - ~ ) )  + V . V ' " = O  (2.24) 

2.3.2. Constitutive relations for the mixture 

Elaborating conservation of momentum requires constitutive relations for the mixture 
components and the body forces due to interaction. These relations have to satisfy 
conservation of mass and the second axiom of thermodynamics. In appendix 111 satisfying 
relations are proposed. 

solid 
The constitutive relation for the solid component of the mixture reads (111.9) : 

(2.25) 

where F, qs, and E denote the deformation tensor of the solid, the Helmholtz free energy, 
and the Green-Lagrange strain tensor respectively. To get a useful expression for this model, 
a relation for the derivative of the Helmholtz free energy with respect to the Green- 
Lagrange strain tensor E has to be found. 

The second term at the right hand side of equation (2.25) is known as the effective stress 

(Oomens 1985, page 3.13): 

(2.26) 

The effective stress is the stress required to deform the solid matrix ( with peres but withwit 
the interstitial fluid ). 
The relation between the Gauchy stress tensor deff and the second Piola-Kirchhof effective 
stress Peff is by definition equal to: 
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One can easily see from the equations (2.26) and (2.27) that : 

(2.28) 

For an isotropic purely elastic material the following linear relation between P eff and E" can 
L -  ut: GIluseIl f 

ps eff - - As tr(E") I + 2p"E" (2.29) 

where A, and ,us are Lamé constants. 

This relation between Peff and E" allows compression of the solid matrix. 
With (2.28) and (2.29) the constitutive model for the solid matrix (2.25) may be written as : 

CY = -pn"I + 1 F - {As tr(E") I + 2psE"} F" 
det F 

In case of infinitesimal deformations this model becomes : 

CT" = -pn"I + As tr(e) I + 2pse 

where E is the linear strain tensor : 

& = L { ( " v i l )  + ("v i l )"}  
2 

(2.30) 

(2.31) 

(2.32) 
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Fluid 
The constitutive relation for the fluid component of the mixture (the interstitial fluid) (111.10) 
reads : 

o f = -pn fI + dy (2.33) 

where # is the viscous part of the stress tensor of . 

For a compressible Newtonian fluid matrix, the stress tensor can be given by : 

ofi = --q,tr(Df) 2 I + 2q,Df 
3 

where D'is the rate of deformation tensor : 

Df = {(Wf) + (Wf)'} 
2 

(2.34) 

(2.35) 

and q, the apparent viscosity of the interstitial fluid (Hou, 1989). 

In consideration of the interaction at the interface between the fluid film and the interstitial 
fluid, the viscosity of the fluid mixture component has to be taken into account. If the 
interaction between the interstitial fluid and the surrounding fluid is not as important as other 
effects like mechanical loading or pressure gradients (e.g. in case of confined compression 
(Oomens, 1985)), the interstitial fluid may be considered to be inviscous. In those cases 
however, only the apparent viscosity in the stress tensor is neglected. The dragcoefficient still 
depends on the viscous nature of the interstitial fluid, because shear stresses can only be 
exerted on fluids, if they are viscous. 

Further, Hou states that the apparent viscosity qa usually deviates from the fluid film viscosity 
due to the solid matrix. Values for the apparent viscosity are not currently available. However, 
it is expected that they range from l o 3  to 10 Pa s (Hou 1989, page 83). 
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Body forces 
A linear relation between the body forces due to interaction 3' and ?tf and the relative 
velocity of the fluid with respect to the solid (Gf - 3') is proposed (111.14) : 

where K is the dragcoefficient. Lai and Mow (1980) gave a relation between the dragcoeffi- 
cient K and the permeability k : 

K = -  (nfI2  
k 

Summary of the constitutive relations 

(2.37) 

o' = -pn"I + As tr(e) I + 2pSe 

1 
2 

with e = -{(Viz> + (Vil)"} , tr(e) = 5 ü 

of = -pnfI  - .?q,tr(Df) I + 2qaDf 
3 

with Df=  L((Vi7f) + ($Gf)"} , tr(Df) = 9 .  i7f 
2 

(2.38) 
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2.3.3. Equations of motion 

The balance of mass is given by (2.23) : 

v (nf(gf - p)) + V - gs = 0 (2.39) 

Substituting the constitutive relations from (2.38) into the balance of momentum (2.23) yields: 

" v . &  +jp = 

- V  (n'p) + As? ( t r e )  + 2ps(V * E )  + K(Gf - v") = 

-V  (n'p) + (As + ps)V (3  2) + ps3 ($2) + K(gf - 17') = O 

(2.40) 

"v . af - 2" = 

- 9  (nfp) - q,? ( trDf)  + ar,(? - Df) - K(gf - v") = 

-3 (nfp) + 

(2.41) 

1 q, V ( 3  Cf) + q,V - ($17~) - K(Cf - v") = ö 
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Using vector identities with respect to a cylindrical coordinate system (see Appendix I), the 

equations above can be expressed by : 

(2.42): 
I 

(2.43) : 

+ K(v,f - V,") = O 

+ K(v! - v,") = O 

(2.44): 

Cylinder-symmetry has been taken into account. 
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2.4. Boundary conditions 

2.4.1. The indenter - fluid film interface 

Through the indenter, a load F(t) is exerted on the fluid. Neglecting inertia forces, the indenter 
load will be in equilibrium with the fluid normal stress in the z-direction a’, : 

d O’, r dcp d r  = -F(t) (2.45) 

In a first order approximation O’, is assumed to be equal to the hydrodynamic pressure -p. 
As a result of the indenter load, the indenter moves in the negative z-direction with a velocity 
V(t). Assuming a no-slip kinematic boundary condition at the indenter - fluid film interface, 
it holds : 

f l ( r , z = g ( r , t ) , t )  = - V(t) (2.46) 

2.4.2. The fluid film - mixture interface 

Hou (1989) considered the interface to be a ’surface of discontinuity’, which is a material 
surface fixed to the solid phase. This choice is consistent with the idea that the geometrical 
boundary of a biphasic material is defined by the solid phase. Across the ’surface of 
discontinuity’ any of the material properties of anyone of the phases may be discontinuous. 

Kinematic boundary conditions at a surface of discontinuity within a biphasic material must 
reduce, in the limiting case of nf=O on one side of the surface and ns=O on the other side, to 
the regular no-slip condition. Hou (1989) formulated a pseude-no-slip condition satisfying the 
above principle : 

The tangential component (parallel to the interface) of the volumefraction weighted 
average velocity of the mixture components has to be continuous across the surface 
of discontinuity. 

where the following assumption is used: 

assumption 14 The surface fractions are assumed to be equal to the volumefractions. 
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From application of the balance of mass for a volume element which is split into two parts 
by a surface of discontinuity, it can be conncluded that a similar condition holds for the 
velocity component normal to the surface. The following kinematic boundary condition 
results : 

n s  ii'" + n f  ii'f = gf 

where the index + is reserved for the fluid film side of the interface, and the index - for the 
mixture side. 

Elaboration of the balances of momentum and energy for a volume element which is split into 
two parts by a surface of discontinuity, using the pseudo-no-slip condition yields the 
following dynamic boundary conditions (Hou, 1989) : 

ñ - 0 :  = n " ñ * o +  f 

ñ * o f  = n f  ñ -o+ f 

(2.48) 

(2.49) 

These boundary conditions are known as jump conditions. 

From the equations (2.48) and (2.49) it can be seen that the stress which is exerted on the 
mixture by the fluid, is distributed over the fluid and solid component of the mixture in 
accordance with the volume fractions nf and ns respectively. 

If the unit outward normal of the mixture n' is equal to éz (see figure 3), the kinematic 
boundary condition (2.47) can be expressed in coordinates by : 

(2.50) 

(2.51) 
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and the dynamic boundary conditions (2.48) and (2.49) can be expressed in coordinates by : 

z - direction : 

r - direction f 

z - direction : 

r - direction : 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

2.4.3. The mixture - subchondral bone interface 

At the interface between the cartilage and the rigid subchondral bone (z=O), no-slip boundary 
conditions are assumed : 

It (r,z=O,t) = o 

flf ( r , z=û , t )  = ö 

(2.56) 

(2.57) 
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2.4.4. Additional boundary conditions 

Finally, the solution has to satisfy the ambient conditions for the pressure and displacement : 

(2.58) 

(2.59) 

(2.60) 

If the load carrying area has a radius R,, with R, e R, the pressure p and the solid 
displacement it are supposed to be O for r > R,. 
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2.5. Summary of equations and boundary conditions 

In the last section of this chapter, a summary will be given of the basic equations and the 
obtained boundary conditions. 

Fluid film: 

balance of mass: 
-+ v - f l f = o  

b balance of momentum: 

-vp + v (Wf) = O' 

b unknown variables: 

Cartilage layer: 
b balance of mass: 

v - ( n f ( f l  - P)) + + - P = O 

b balance of momentum: 

- V  (n'p) + (As + ps)$ ( 3  - 2) + psV ($2) + K(3f - v") = O 

1 -V  (nfp) + q, "v ( 9  * flf) + q,? - (''VI?) - K(3f - P) = 0' 

b moreover: 

b unknown variables: p, v'f, v", u. 

(2.61) 

(2.62) 

(2.63) 

(2.64) 

(2.65) 

(2.66) 

As well for the fluid film as for the cartilage layer there are as many equations as unknown 
variables, so it may be possible to solve this problem, if sufficient boundary conditions are 
available. 
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Boundary conditions: 

Since the highest order of the three leading differential equations (2.62), (2.64) and (2.65) 
is equal to 2, it is possible to solve the problem if 6 boundary conditions can be formulated : 

b at the surface of the spherical indenter (z = g(r,t)): 
v$f = V@) 0 

at the interface between the fluid film and the cartilage layer (z = Ho): 
< - {Astr(e)I + 2,uS&} = ns < - {2qfDf} 

< - { - :qatr(Df)I + 2q,Df} = nf < - {2qfDf} 

ns c + nf if = if 

b at the surface of the subchondral bone (z = O): 

t t = d  

(2.70) 

(2.67 

(2.68) 

(2.69) 

(2.71) 

(2.72) 

In the equations above E is the linear deformation tensor of the solid and Df is the rate of 
deformation tensor of the fluid. 
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Chapter 3. Solution of the equations of motion 
for three special cases 

3.1. Introduction 

Having the equations of motinn ($ 22, 2-31 and the houriday comditions (5 2.4), it should be 

possible to calculate the pressure distribution over the model, the deformation of the cartilage 
layers and the fluid flow throughout the model, which results from application of a load on 
the indenter. Hou (1989) performs these calculations almost fully analytically, but he is 
therefore restricted to a stepload on the indenter. At first instance, in this study, no restrictions 
are imposed upon the load. 

Three special cases of Hou’s squeeze film model will be investigated, i.e.: 

two rigid impermeable approaching circular plates (section 3.2), 
* a rigid impermeable spherical indenter approaching a rigid impermeable plane 

(section 3.3), 
- a rigid impermeable circular plate approaching a rigid permeable biphasic fluid-solid 

mixture (section 3.4). 

For each case a system of equations is derived, which will be used to determine numerically 
the film thickness as a function of time. Although an arbitrary load may be applied, in this 
report a stepload is used to facilitate comparison of the results for the successive cases. 
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3.2 . Two rigid impermeable parallel approaching plates 

3.2.1. Problem definition 

Within the gap between two rigid impermeable circular plates with radius R, a Newtonian 
fluid with viscosity qf is found (figure 4). The distance between the plates h(t) is, unlike the 
fi,m're suggests, much smaller than the radius of the plates. Ru* 

viscous fluid 

i 

figure 4 A squeeze film between two rigid impermeable parallel approaching plates 

A prescribed load F(t) is applied to the upper plate in the negative z-direction. As a result of 
F(t), the plate starts moving into the negative z-direction with a velocity V(t). The position 
of the surface of the upper plate is represented by the function h(t) : 

t t 

h ( t )  = h(t=O) - V(X)  d~ = ho - 

At the surfaces of the plates the no-slip condition is valid, resulting in the following boundary 
eomdit ions : 

z = h(t) : vr = O , vZ = -V(t) 

z = o  : v * = o , v z =  o 
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The scaling factor for the squeeze film thickness is chosen to be ho, the initial film thickness. 
The ratio of ho and Ro yields an important geometrical variable a, which will be used to 
expand the variables into power series : 

h0 

RO 
a=-<1 .  (3-3) 

3.2.2. Simplification of the equations of motion using power series 
expansions 

To get a general and simplified formulation of the equations of motion the variables are 
scaled according to: 

where 

v, I = - Vr  , v z = -  I z , vyt) = - V(t> 
VO VO VO 

Vo is a characteristic value of the velocity of the upper plate, 

Fo 

PO = Fo / (TGGR:), 

is a characteristic value of the load on the upper plate, 

t0 is the time scaling factor. 

After scaling the balance of mass for the fluid film (2.9) becomes: 

a ZI 
(3-5) 

3 9  



vi appears to be of the same order as av;. Since a << 1, v; is of much higher order than 
vi. In order to obtain a simple system of differential equations, vr will be rescaled : 

v l / = a -  
VO 

After rescaiing the balance of mass becomes (accents are ieft out) : 

The balance of momentum (2.10) becomes : 

The scaling factor V, is chosen in such a way that : 

Substituting the relation for Po in (3.10) yields : 

F, h i  

3% qf R, 
v, = 

4 

(3.10) 

(3.11) 

This choice for V, prevents important zero order terms from disappearing out of the 
momentum equations when power series are substituted. 
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Next, the dependent variables are expanded in terms of powers of a : 

(3.12) 

(3.13) 

(3.14) 

Substituting these power series into the equations of motion and collecting terms of equal 

power in a yields the following differential equations in the coefficients of the power series: 

balance of mass (3.7): 

r ar 

(3.15) 

(3.16) 

(3.1 7) 

balance of momentum in r-direction (3.8): 

ar a t 2  

(3.18) 

(3.19) 

(3.20) 
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balance of momentum in z-direction (3.9): 

(3.21) 

(3.22) 

(3.23) 

Finally the boundary conditions are scaled and rewritten as conditions on to the coefficients 

of the power series : 

z = h(t) : 

V r  = o - v!"' = o = 0 , v(2' = 0 (3.24) 

v, = -V(t )  (3.25) 

9 Vr 

=a v("' = -V(t)  , vil) = o , v("' = o 

(3.26) 

(3.27) 

A first order approximation is found by neglecting higher order terms of the power series 

(order a2 and higher), which is permitted since Q <e 1. 
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3.2.3. Film thickness and pressure distribution over the squeeze film 

Solving the differential equations, given the boundary conditions above, yields : 

A first order approximation is thus : 

vr(r,z,t) = - 1 - aP ( z2  - h ( t )  z) 
2 ar 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

Since both the pressure and the pressure gradient are independent of the z-coordinate, the 
radial fluid velocity v, forms a parabolic velocity profile, as expected. The relation between 
the upper plate velocity, the film thickness and the pressure gradient is found by substituting 
boundary condition (3.25) into equation (3.32), which results in a special case of the 
Reynolds-equation, an equation which is often used in tribology : 

i a  a9 ' V(t) = - - - ( r h 3 ( t )  dr J 
I 

12 r ar  I (3.34) 
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Since the film thickness for a squeeze film between two parallel rigid plates is no function 
of the r-coordinate, the Reynolds-equation (3.34) can be rewritten as : 

(3.35) 

integration of this equation from U to r and subsequently from r to i, given two pressure 
boundary conditions : 

r = 1 : p ( r , t )  = O (3.36) 

r = O :  - -  a p  - o ,  
ar 

yields : 

(3.37) 

(3.38) 

This relation was derived by Michell in 1950 (Michell, 1950). 
In order to solve this squeeze film problem however, two more equations are required, i.e. 
a relation between the film thickness h(t) and the upper plate velocity V(t) (3.1) and a relation 
between the load on the upper plate F(t) and the pressure distribution p(r,t) ((2.45), 0 2.4): 

h ( t )  = ho - V(t )  dt i 
2n i p ( r , t )  r dr  = F(t) 

Scaling these equations yields : 

h ( t )  = 1 - - V(t) dt 
vo h0 to i 

2 p ( r , t )  r dr = F(t) i 

(3.39) 

(3.40) 

(3.41) 

(3.42) 
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The scaling factor for the time to may be chosen arbitrarily. If to is chosen to be: 

h0 to = - 
VO 

the following system of equations results : 

(3.43) 

F(t) = 2 p ( ï , t )  ï d ï  d 
(3.44) 

The load on the upper plate F(t) will be prescribed. 

Since the film thickness h(t) is no function of the r-coordinate these equations may be 
rewritten as: 

3 V ( t )  F(t) = - - with: h ( t )  = (1  - 
h 3 W  

p ( r , t )  = 2 F ( t >  (I  - r 2 )  for r s Z 

(3.45) 

(3.46) 

To obtain these resulting equations, the pressure is integrated over the load carrying area. This 
solution is in accordance with literature (O’Connor and Boyd, 1968). 
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When the load on the upper plate is given as a function of time, the nonlinear equation (3.45) 
can be solved iteratively with the algorithm given in appendix 11.2.1. Although the load may 
be an arbitrary function of time, a stepload ( F(t)=O for te0 and F(t)=l for tzO ) is applied to 
the upper plate in order to facilitate interpretation and comparison of the results. In figure 5 

the pressure distribution over the fluid film is shown : 

figure 5 

2.5 

2 

- 
.L 1.5 

U . 
c 
6 1  
n 

0.5 

O 

dimensionless radius r [ - ] 

The dimensionless pressure distribution (divided by the dimensionless 
load F(t)) over the squeeze film 

figure 6 shows the calculated film thickness h(t) versus time. As a result of the load, the fluid 
is forced out from between. the two plates, while the gap between the plates gets smaller. The 
smaller the gag is however, the higher is the resistance for the fluid to flow out. Therefor the 
upper plate velocity decreases with time. 
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20 

figure 6 Dimensionless filmthickness h(t) versus time, when a stepload is applied to the 
upper plate at t=O. 

In the next section the fluid film between a spherical indenter and a rigid plane will be 
investigated. 
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3.3. A rigid impermeable spherical indenter approaching a 
rigid impermeable plane 

3.3.1. Problem definition 

Between a rigid impermeable spherical indenter with radius R, and a rigid impermeable plane, 
u 9 Nmutnnian I . V . .  C . , I X I U . I  fiiiid & with ..l--. vicrncity p. ,* (firnit-e , 7 )  ., is  -- foiind. ----- -. The ---- minimal -~~~~~~~~~ ~ distance between the 
indenter and the plane h(0,t) is, unlike the figure suggests, much smaller than R,, the radius 
of the load transmitting area. 

Ri 

viscous fluid 

figure 7 A squeeze film between a rigid impermeable spherical indenter and a rigid 
impermeable plíïize 

A prescribed load F(t) is applied to the indenter in the negative z-direction. As a result of 
F(t), the indenter starts moving into the negative z-direction with velocity V(t). The position 
of the surface of the indenter is represented by the function h(r,t): 

h ( r , t )  = h ( r , 0 )  - V ( t )  d-e i (3.47) 
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At the surfaces of the indenter and the plate, the no-slip condition is valid, resulting in the 
following boundary conditions: 

z = h(r,t) : vr = O , vz = -V(t) 

z = o  : v r = o , v z =  o 
(3.48) 

The scaling factor for the squeeze film thickness is chosen to be ho = h(O,O), the initial 
minimal film thickness. The variables will be expanded into power series of a : 

h0 

RO 
a = - .  (3.49) 

3.3.2. Film thickness and pressure distribution over the squeeze film 

Scaling according to (3.4) and rewriting the equations of motion (0 3.2.2) results in the 
Reynolds-equation : 

r h 3 ( r , t )  - 
12 r a r  a r  

Integration of this equation from O to r with : 

yields : 

ap - - 6 V(t) r - -  
ar .h3(r,t) 

(3.50) 

(3.51) 

(3.52) 

The pressure distribution p(r,t) is obtained by integr ting (3.52) from r to 00 with the formal 
boundary condition p( r -00, t )  = O . By evaluation of the pressure distribution p(r,t), the 

pressure appears to approximate to O at a finite distance from the axis of symmetry Ro c Ri : 

r 2 1 : p ( r , t )  = o . (3.53) 
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The scaling factor R, is not previously known. To determine R,, the pressure distribution will 
be calculated for increasing values of R, at t = O'. Above a certain value of R,, the pressure 
distributions do apparently not differ from each other. This specific value of R, will be chosen 
to be the scaling factor for the radius. 

In order to integrate (3.52) a relation for the film thickness h(r,t) in r and t is required. This 
relution only cie~e~?Cts on the geometry of the indenter. 

I I 1  

/ / / / / / / / / / / I  
/////////////////////// RO 

B- 

figure 8 The film thickness h(r,t) 

The coordinates of the centre of the sphere are : (O , h(0,t) + RJ. 
The surface of the sphere is described by the following equation : 

{ (Ri + h ( 0 , t ) )  - h ( r , t )  }2 + r2 = Rt , -R, r < R, (3.54) 

The minimal distance between sphere and plane h(0,t) depends on the time t according to : 

h(O, t )  = h(0 ,O)  - V ( t )  d t  = ho - (3.55) 
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Rewriting (3.54) and using dimensionless variables yields : 

h ( r , t )  = H ( t )  - 1 /- , - 1  c r c 1 
h0 

with : 

t 1 H ( t )  = - ( Ri + h o )  
ho 

(3.56) 

(3.57) 

Substitution of the relation for h(r,t) into (3.52) , and integration of the result from r to 1 with 
boundary condition (3.53) yields the pressure distribution as function of r and t : 

P ( V )  = (3.58) 

for Y s 1 .  

In summary, the equations which have to be solved are given by : 

for r s 1, 

t 
1 H ( t )  = - (Ri + ho) 

h0 

F ( t )  = 2 p ( r , t )  r dr  i (3.59) 
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It is not easy to obtain (analytically nor numerically) the minimal film thickness h(0,t) as a 
function of time from the system of equations given by (3.59). Since appreciable lubricating 
pressure is developed only in the region of small angles y (figure S), it is very common in 
tribology to approximate the film thickness in this region by a polynomial in r (Gross e.a., 
1980) : 

li(!-,$) = h ( 0 , t )  i - 1 - I* 
Ri 

(3.60) 

The real film thickness (3.54) and the approximated film thickness (3.60) for t = 0' and 
Ri = 50 mm are shown in figure 9 : 

50 

10 

real film thickness 

approximated film thickness 
- - - - - - - - -. 

radius r [ mm] 

figure 9 The real and approximated film thickness as a function of r for t = O+? 

and Ri = SO mm. 



Using dimensionless variables, (3.60) becomes : 

Integrating (3.52) again from r to 1, using (3.61) yields : 

(3.61) 

(3.62) 

which is a drastic simplification of the pressure distribution given by (3.58). 
Integrating p(r,t) over the load carrying area yields a relation between the indenter load F(t), 
the indenter velocity V(t) and the film thickness at r = O and r = 1 : 

F(t) = - 3 V(t> 
h(0, t )  h2(1,t) 

with : h(0,t) = 1 - V ( t )  d?; i (3.63) 

1 RO and : h(1,t) = h ( 0 , t )  + - - 
R,h, 

Because the dimensioniess film thickness h(î,t) is an explicit function of tine parameters ho, 
R, and R,, R, has to be determined given the values for Ri and ho. This has to be done in the 
dimensionfull space by calculating the pressure distribution at t = O', when a stepload 
F(t) = F, for t2O is applied to the indenter : 

where V(U+) is given by : 

V(O+) = - 2 Fo h(O,O+) h2(R,,0+) 
xrlfRo4 

(3.64) 

(3.65) 
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In figure 10 the pressure distribution p(r,O+) divided by F, is shown for three different values 
of R, ( R, = 10, 20 , and 30 mm ). The parameters R, ho and qf are chosen in accordance 
with Hou's squeeze film model for the knee-joint (Hou 1989), i.e.: Ri = 50 mm, ho = 0.1 mm, 
and qf = 1.0 Pa s. 
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figure 10 The pressure d&r-&utior, p(r,G') dbided by F, for three di8eerer.t vakes ofthe 
scaling factor R, ( 10, 20, and 30 mm ) at t = O' 

A marginal error between the two curves for R, = 10 mm and 20 mm can be seen, but the 
curves for R, = 20 mm and 30 mm are almost the same. Therefore R, is chosen to be 20 mm. 
For a radius r s pi, = 20 mm, the approximated film thickness deviates from the reaî fiim 
thickness with less than 4 percent. 
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A stepload is applied to the spherical indenter at t=O ( F(t)=O for tcO and F(t)=l for t2O ). 
The minimal film thickness versus time is calculated by solving the nonlinear equation (3.63) 
with the algorithm from appendix 11.2.2. figure 11 shows the minimal film thickness h(0,t) 

versus time: 
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figure 11 Dimensionless minimal film thickness h(0,t) versus time when a stepload is 
applied to the spherical indenter at t=O. (Ri=50 mm, R0=20 mm, ho=O.l mm) 

If compared with the solution for the first case ( squeeze film between two plates ) the film 

thickness decreases very fast. The fluid can easily flow out from between the spherical 
indenter and the plane, due to the geometry of the gap, which hardly changes with time. 

It is remarkable however, that resembling equations have to be solved for the plateplate and 

the sphereplane configuration ( compare equation (3.45) with (3.63) ). These equations only 
differ because h(1,t) is not equal to h(0,t) when the film thickness depends on the radius r. 
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3.4. A rigid impermeable circular plate approaching a rigid 
permeable biphasic fluid-solid mixture 

3.4.1. Problem definition 

Within the gap between a rigid impermeable circular plate with radius R, and a rigid 
perrne~bk hiphak fliiid-so!id mixture with porosity nf and dragcoefficient K, a Newtonian 
fluid with viscosity qr is found (figure 12). The viscosity of the interstitial fluid (fluid in the 
mixture) is equal to q, ( 3 2.3.2 ). The distance between the plate and the mixture h(t) is, 
unlike the figure suggests much smaller than the radius of the plate R,. 

viscous fluid 

I 

figure 12 A squeeze film between a rigid impermeable plate and a rigid permeable 
biphasic fluid-solid mixture 

A prescribed load F(t) is applied to the upper plate in the negative z-direction. As a result of 
F(t), this plate starts moving into the negative z-direction with velocity V(t). The position of 
the wr€ace of the upper plate is represeEted by the hnctiori g(t) : 

g(t) = Ho + h(t) = Ho + ho - V(-C) dz d (3.66) 

The equations of motion are separately solved for the squeeze film and the biphasic mixture. 
After that, the solutions will be matched by means of the interface boundary conditions, 
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3.4.2. Equations of motion for the fluid film 

In this section the equations of motion will be solved for the fluid film. The resulting 
equations for v, and v, and the Reynolds-equation however hold two unknown variables, i.e. 
v* and vZh, the radial and axial fluid velocity at the fluid-mixture interface respectively. These 
unknowns are determined by matching the solution for the squeeze film to that for the 
biphasic mixture. 
At the surface of the plate, the no-slip condition is valid : 

v,(r,z=g,t) = o 
vz(r,z=g,t) = -V(t) 

At the interface the fluid velocity in r and z-direction are assumed to be equal to : 

V,( Y, z =g  - h , t )  = vrh ( Y, t )  
vz(ï,z=g-h,t) = v,(Y,~) 

(3.67) 

(3.68) 

In section 3.2.2 scaling of equations and power series expansions have already been discussed. 
This resulted in differential equations in the coefficients of the substituted power series : 

balance of mass 
balance of momentum 

(3.15) and (3.16) 

(3.18), (3.19), (3.21) and (3.22). 

After scaling, the boundary conditions (3.67) and (3.68) can be rewritten as conditions on to 
the coefficients of the power series : 

z = g :  

vr = o * V!O) = o , v y  = o 

v, = -V(t) + v("' = -V(t) , vi1) = o 

z = g - h :  

v = v* 

v = VA 
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(3.69) 

(3.70) 

(3.71) 

(3.72) 



From the equations (3.21) and (3.22) it is found that : 

p(O)(r,z,t) = p(O)(r,t) ; p( ' ) ( r , z , t )  = p( ' ) ( r , t )  (3.73) 

In a first order approximation, the pressure in the fluid film is no function of the z- 

coordinate : 

(3.74) P = P ( V )  

Integration of differential equation (3.18) and (3.19), using boundary condition (3.69) and 
(3.71), yields : 

(3.75) 

In a first order approximation, the radial velocity profile is the summation of a Poiseuille 
profile, as a result of the pressure gradient, and a Couette profile, as a result of the fluid 
velocity at the interface v,,, : 

(3.76) 

Substitution of v y )  into the balance of mass and successive integration from (g-h) to z, using 
boundary condition (3.72) yields : 

(3.77): 

) } + v p  i a  ( z - g  + h )  ( z - g  -h) 
h 

- 
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In the same way vi" is calculated. Adding av:') and v("' yields a first order approximation 
of the axial fluid velocity v,. Substitution of boundary condition (3.70) into v, yields the 
Reynolds-equation for the fluid film in V(t), the pressure gradient, h(t) and the unknowns v,.,, 
and V,h : 

3.4.3. Equations of motion for the biphasic mixture 

In the preceding section the fluid velocity at the squeeze film side of the interface was 
assumed to be equal to : 

v'= v* q + V& < (3.79) 

This section will start with the same assumption. 
After scaling, a power series in a will be substituted in both the equation of motion and the 
boundary conditions. With the resulting equations v, and v, will be determined. Finally V,h and 
v,,, will be obtained by matching the solution for the squeeze film via the boundary conditions 
to the solution for the mixture. 

Equations of motion 
In chapter 2, the equations of motion for a mixture are derived. Since u and v are equai to U 

for a rigid mixture, the equations of motion reduce drastically. 

The balance of mass (2.42) becomes : 

60 

(3.80) 



The equation of motion for the solid (2.43) can be dropped. The equations of motion for the 
interstitial fluid (2.44) become : 

(3.8 1) : 

(3.82): 

The equations are scaled in the same way as shown in 
here : 

3.2.2. Only results will be given 

(3.83): 

(3.84): 

(3.85): 

The dependent variables are expanded into power series in terms of a : 
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where a equals h,JRo, a cc 1 . 

Substituting the power series into the differential equations mentioned above, and collecting 
terms of equal power in a yields differential equations in the coefficients of the substituted 
power series (see 9 3.2.2) : 

balance of mass (3.83): 

balance of momentum in r-direction (3.84): 

balance of momentum in z-direction (3.85): 

ap(O) - = o  
az 

(3.89) 

(3.90) 

(3.91) 

(3.92) 

(3.93) 

(3.94) 

A first order approximation is found by neglecting higher order terms in a (order a2 and 
higher), which is permitted since a <e 1 , thus : 

1 d(rvr) - I - = -  
az r ar 

(3.95) 

(3.96) 
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Boundary conditions 
Before equation (3.97) can be solved, the boundary conditions (2.50) to (2.5'7) have to be 
scaled and have to be reduced by means of power series substitution. 

Since the mixture is rigid, the boundary conditions (2.52), (2.53), and (2.56) will be dropped. 

At the interface between the mixture and the rigid - support, _ _  the following - lnnematk boundary 
conditions are valid : 

vr (r,z=O,t) = O 

vz (r,z=O,t)  = O 

(3.98) 

(3.99) 

At the interface between the squeeze film and the mixture both kinematic and dynamic 
boundary conditions are formulated : 

kinematic boundary conditions, 

dynamic boundary conditions, 

z=(g-h)' 

(3.100) 

(3.101) 

(3.102) 

(3.103) 
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Rewriting and scaling the kinematic boundary conditions yields : 

I vr (?-/,zI=O,tl) = o 

/ v, (?-l,zI=O,tl) = 0 

(accents will be left out from now on). 

The scaled dynamic boundary conditions are given by : 

(3.104) 

(3.105) 

(3.106) 

(3.107) 

(3.108) 

(3.109) 

where the balance of mass was substituted into (3.102). Since 01 cc 1, boundary condition 

(3.109) is in a first order approximation equal t~ : 

(3.110) 

Formally, this can be proven by means of power series substitution. 
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Solving the equations 
Before equation (3.97) is solved, three new dimensionless variables will be introduced : 

h0 f3 = -  
HO 

6 =p K H ~  

(3.111) 

(3.1 12) 

(3.113) 

f3 is the ratio between the initial fluid film thickness and the mixture thickness, q is the ratio 
between the fluid film viscosity and the viscosity of the interstitial fluid, weighted by the 
reciprocal squared porosity, and 6 is the ratio between the effect of the viscosity and the 
effect of the drag, which is exerted on the interstitial fluid by the solid. These parameters are 
introduced to obtain a relatively simple representation of the equations for the radial and axial 
fluid velocity (v, and v J  in the mixture. Moreover, during interpretation of the results only 
three parameters have to be varied. 

Using these parameters, equation (3.97) becomes : 

The solution of this differential equation is equal to : 

(3.1 14) 

(3.115) 

where the variab!es c1(r,t) and c,(r,t) have :u be detemined frûm the b=Undarjr cûnditiûns fû: 

vr (3.204) and (3.106): 

z = o  : v r = o  (3.116) 

(3.117) 
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The radial fluid velocity in the mixture v, becomes : 

(3.1 18) : 

Variable vh has to be determined by matching the solution for the radial velocity in the 
squeeze film via the dynamic boundary condition (3.110) to the above mentioned solution for 
the radial velocity in the mixture. 
Therefore both for the squeeze film and the interstitial fluid, the derivative of v, to z has to 
be determined at the interface z = (g-h). Next these derivatives are substituted into (3.110). 
Evaluation of the resulting equation leads to : 

where vr; only depends on the squeeze film thickness : 

(3.120): 

(3.119) 

* 
V..L = 

!! 6 h cosh($) + q sirih($) r,' 

For a rigid plate and a rigid plane mixture the film thickness is only a function o f t  : 

iI = h ( t )  (3.121) 

If a deformable mixture is investigated or the plate is replaced by e.g. a sphere, the film 

thickness will also become a function of r. This results in more complex calculations becausev,; 
and v; will become implicit functions of r in those cases. 
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To solve the Reynolds-equation for the squeeze film (3.78) independently of the equations of 
motion for the mixture, vZh is required. This is done by integrating the balance of mass for 
the mixture from z=O to H,Jho under the boundary conditions (3.105) and (3.107): 

z = o  : = = o  , 

H o - ?  . v& z = - - -  . V z = - .  
ho nf 

After some rearranging v,h can be shown to be equal to : 

(3.122) 

(3.123) 

(3.124) 

where Y; only depends on the squeeae film thickness via Y; : 

(cosh($) - 1) 62r 
- - (3.125) - 4 6  263q 

V A  = [ 
+ - ) B’ sinh (+) B’ 

Now vh and v,h are known, it is possible to solve the Reynolds-equation (3.78). Substituting 
vA and V,h into (3.789 yields : 

* q t )  vrh h 3 ( t )  i a (3.126) 
2 + - 12 ) --(r r ar g) 

At the right hand side of this equation, three terms from different origins can be distinguished, 
the first term is Que to the fluid flex across the surface, the second term results from the 

additional radial fluid flux due to the radial velocity on the interface, and the third term 
represents the effect of the radial fluid flux due to the pressure gradient in the fluid film gap. 

67 



3.4.4. Film thickness and pressure distribution over the squeeze film 

Integration of the Reynolds-equation (3.126) from O to r and subsequently from r to 1 with 
two boundary conditions for the pressure : 

r = 1 : p ( r , t )  = O 

r = O :  - -  ap - o ,  
d r  

(3.127) 

(3.128) 

yields : 

p ( r , t )  = 3 W )  (1 - r 2 )  (3.129) 
h3 + 6 h v i  - 12vL 

The relation between the film thickness and the velocity of the upper plate and the relation 
between the load and the pressure distribution complete the system of equations which has 
to be solved : 

p ( r , t )  = 3 W )  (i - r 2 )  
h 3 ( t )  + 6 h ( t )  v i  - 12vA 

h ( t )  = 1 - V ( Z )  d~ i 
i F(t) = 2 p ( r , t )  Y dr  

(3.130) 

The load on the upper plate F(t) will be prescribed. 
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By integrating the pressure distribution over the load carrying area, the system of equations 
(3.130) can be rewritten as : 

F(t) = - 3 V ( t )  

.6 

h 3 ( t )  + óh(t)v; - 12v; 2 

t 
---:*l- - ;t(ti = 1 - f xr/-\ 2- V \ C )  U L  w1111 

VA = vL(h(t)) 

v; = vA(h(t)) 

The pressure distribution appears to be : 

p ( r , t )  = 2F(t)(l - Y') for Y s 1 

Substitution of (3.132) in (3.119) and (3.124) yields : 

v*, = 4 F(t) vk Y 

vA = 8 F(t) v i  

for Y 5 1 

for Y s 1 

(3.13 1) 

(3.120) 

(3.125) 

(3.132) 

(3.133) 

(3.134) 
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3.4.5. Results 

In accordance with the two preceding special cases, a stepload (F(t) = O for tcO and F(t) = 1 
for trO) is applied to the upper plate. The pressure distribution over the fluid film (shown in 
figure 13) is equal to the pressure distribution for the plate-plate configuration. 
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A 1.5 

G 
LL . 

0.5 

O 

- 

- 

- 

- 

t 
-1 -0.5 O 0.5 1 

dimensionless radius r [ - 1 

figure 13 The dimensionless pressure distribution (divided by the dimensionless 
load F(t)) over the fluid film 

Equation (3.131) is solved numerically (see appendix 11.2.3) for several values for the 
parameters 6 and p. Because q depends on the apparent viscosity of the interstitial fluid qa 

and no value is currently available for q,, q is chosen to be equal to 1.0 . 

figme 14 shows the calculatecl f i lm thickness h(t> versus time for four different values of 6 
(1.0, 0.1, 0.01, and 0.001), while fJ = 1.0 (thus the initial film thickness h(0) being equal to 
the mixture thickness Ho), and q = 1.0. From this figure it can be seen that the smaller 6 gets, 
the more h(t) approaches the solution for the plate-plate configuration (see also figure 6). If 
6 is small, the drag in the mixture is very high as a result of a low permeability. 

figure 15 shows the radial velocity profile immediately after application of the step load, for 
three different values of 6 (1.0, 0.1, and O.Ol), while 8 = 1.0 and q = L O  . 
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For 6 = 0.01, corresponding to a low permeability of the mixture, there is almost no flow 
through the mixture (vh*= O and vZh*- O : figure 16 and figure 17), so the velocity profile in 
the gap approaches a parabolic velocity profile, which is found for a squeeze film between 
two rigid impermeable plates. In that case, equation (3.131) can be transformed into (3.45). 
For increasing ö (6 = 1.0, q = l.O), corresponding to increasing permeability of the mixture, 
the fluid flow in the mixture becomes more important. Besides through the gap between the 
upper plate and the mixture, the fluid can also escape through the mixture. This results in a 
faster decrease of h(t) with time down to O. 

For 6 = 0.1 (p = 1.0, q = 1.0), a nearly uniform velocity profile can be seen in the center 
area of the mixture. In this area the viscosity of the interstitial fluid is apparently not 
important. However, near the surfaces of the mixture there are boundary layers as a result of 
viscous interaction of the interstitial fluid. 
For 6 = 1.0 (6 = 1.0, q = l.O), the viscosity of the interstitial fluid is important in the whole 
mixture. The radial velocity profile is almost parabolic, as if no mixture is present. 

figure 16 shows vrh* versus the film thickness h(t). The radial fluid velocity at the fluid film - 
mixture interface vrh is proportional to vrh* and linearly depends on the radius r (3.133). 
For increasing 6, vrh* increases, which results in an increasing additional radial flow through 
the gap. vrh* decreases with decreasing h(t) down to O. 

figure 17 shows vzh* versus the film thickness h(t). The axial fluid velocity at the fluid film - 
mixture interface vzh is proportional to vZh* and is independent of the radius r (3.134), forming 
a uniform axial velocity profile at the interface. VZh* (and thus vzh> is negative, so the fluid 
penetrates the mixture. For increasing 6, the absolute value of VZh* increases, corresponding 
to an Increasing flow into the mixture. As the axial velocity component across the interface 
v z h  is not equal to O, even if h(t) approximates to O, the upper plate approaches the mixture 
with a finite velocity V(t) > O. 
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figure 14 The dimensionless film thickness h(t) versus time, when a stepload is applied 
to the upper plate at t=O 
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figure 15 Radial velocity profile at t=O'for f3 = 1.0, q = 1.0 and 6 = 1.0, 0.1, and 0.01 
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Also the parameter p, the ratio between the film thickness ho and the mixture thickness Ho, 
has a great influence on the upper plate velocity. 
figure 18 shows the calculated film thickness h(t) versus time for two different values f3 (1.0 
and O.l), while 6 = 0.01, and q = 1.0. When p = 0.1 (thus the mixture being 10 times as 
thick as the fluid film) it is relatively easy for the fluid to escape through the mixture, even 
though 6 = 0.01. This is primarily due to vzh which increases considerably if p becomes 
smaller (figure 20 : vzti m 0 for p = 1.0 and 6 = 0.01). Also v* increases if p becomes 
smaller (figure 19). The influence of 6 thus depends on p and vice versa. 
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figure 18 The dimensionless film thickness h(t) versus time, when a stepload is applied 
to the upper plate at t=O 
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Chapter 4. Conclusions and recommendations 

In this report three special cases of HOU’S squeeze film model for the human knee joint 
(Hou, 1989) have been investigated. 

First a squeeze film between two rigid impermeable circular plates has been evaluated. This 

is called the reference case. As the plates approach, the resistance €or the fluid to flow 
sidewards increases, which results in a decreasing upper plate velocity with time. If the film 
thickness is approximately equal to O, the upper plate velocity approximates to O too. In 
consequence of the load on the upper plate, a parabolic pressure profile is developed in the 
fluid film. Since the pressure gradient is maximal at the boundary of the plates, the radial 
flow is maximal there. 

Next a squeeze film between a rigid spherical indenter and a rigid impermeable plane has 
been evaluated. The squeeze film does not last as long as in the reference case as a result of 
a strongly decreased resistance for the fluid to escape through the gap. 
Yet the indenter velocity approximates to O if the film thickness approximates to O, like in 
the reference case. The influence of a film thickness, which increases with the distance to the 
axis of symmetry, can easily be seen, since the pressure decreases faster with the radius than 
in the reference case. At the boundary of the load carrying area, the pressure gradient and the 
radial velocity are approximately equal to O, which is in contrast with the reference case. The 
velocity profile in the gap is parabolic for both cases, since the fluid flows only as a result 
of a radial pressure gradient. 

Finally a squeeze film between a circular flat plate and a rigid biphasic fluid-solid mixture 
has been evaluated. By  means of the interface boundary conditions which were derived by 
Hou (1989), interaction between the fluid film and the interstitial fluid has been achieved. The 
number of boundary conditions appears to be sufficient for the system of equations for the 
squeeze film to be solved. 
The influence of the mixture mainly depends on the permeability and porosity of the mixture, 
but also on the thickness of the mixture and the viscosity of the interstitial fluid. It is essential 
to take into account the viscosity of the interstitial fluid in order to allow interaction with the 
squeeze film fluid. The pressure distribution over the fluid film is not affected by the presence 
of a mixture and is actually the same as for the plate-plate configuration. The influence of the 
mixture onto the fluid film is entirely derived from the fluid velocity vector at the interface 
between mixture and fluid film, which results in a fluid flow across the interface (from film 

to mixture) and an additional radial flow through the gap. The radial velocity profile in the 
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gap can be described as an addition of a Poiseuille flow due to the pressure gradient and a 
Couette flow due to the radial velocity component of the fluid at the interface. 
If the flow through the mixture contributes essentially to the decrease of the film thickness, 
the upper plate approaches the mixture with a finite velocity due to the axial fluid velocity 
component at the interface, which is directed from the fluid film to the mixture. 
As in this report a rigid mixture is considered, it is obviously beforehand from the balance 
of mass, that the fluid has to penetrate - the mixture. For the fluid in the mixture fiows away 
sidewards due to the pressure gradiemt, fluid has to be provided by the fluid film, since the 

mixture’s volume does not change. Although the fluid appears to penetrate the mixture in this 
analysis, this does not necessarily have to occur in case of deformable mixtures. 

It is recommended to continue this research by validating Hou’s (1989) interface boundary 
conditions in experiments on a physical squeeze film model, which incorporates a rigid 
mixture. Because it may not be possible to perform experiments on a parallel squeeze film, 
a squeeze film between a spherical indenter and a rigid permeable biphasic fluid-solid mixture 
could be evaluated first. 
Next a parameter study can be performed in order to choose a proper experimental set-up. 

It may also be valuable to investigate the influence of a deformable mixture on the squeeze 
film. The mixture and thus the interface will probably deform due to the pressure gradient and 
the fluid flow through the mixture, which may influence the formulation of the interface 
boundary conditions. 
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Appendix I Vector identities 

I. 1 Vector identities in Cartesian coordinates 

figure 21 Cartesian coordinate system 

a scalar field 

# vector field ä(x,y,z) = ax< +ay? +aZ< 

3 a + a  + a  
ax y a y  az 

gradient vector 3(x,y,z) = <-+e -+ez- 

+ a a  aa + d a  
ax y a y  az 

grad(a) = ex-+ë'-+ez- 

grad(ü) = 

aax aay aa, 
div(d) = V # = -+-+- 

ax ay az 
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a2a a2a a2a div(grada) = G ‘ (Ga)  = -+-+- 
ax2 ay2 az2 

grad(div@ = V ( 3  - @ = 
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1.2. Vector identities in cylindrical coordinates 

x' 

it 

position vector x'( r,cp ,z) = r<(cp) + z< 

velocity vector V' = 2 = t < + r q  +i< = vr<+v  c p ' p  ë +v,< 

figure 22 Cylindrical coordinate system 

a scalar field 

a' vector fieid 

(1.7) 

i a' ' +  a a 
ar r acp az 

+ e,- gradient vector 3( r,cp ,z) = <- + < -- 3 
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(1.11) 

a2a í aa 1 a2a d2a div(grada) = V (Va) = +a = - + -- + -- + - 
ar2 r a r  r2  acp2 aZ2  

grad(div@ = V (U d) = 

(1.12) 

(1.13) 

(1.14) 
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Appendix I1 Turbo Pascal programs 

11.1. Program to generate an input file 

program Generate-Input-File; 
I,,,,,,,,,,,,------------------------------------------------------------- 

The load on the upper plate is prescribed for a certain number 
of timesteps. A file is made in which the timebase and the load 
for each timestep will be put. 
A rampfunction is used to describe the load as a function of time: 

F(t) = t/T for t<=T 
F(t) = 1.0 for t> T 

1. Total-Time 
2.  Number-Of-Timesteps 
3 .  Time T (the time in which F grows from O to 1) 

Three positions on top of the inputfile are reserved for: 

The first column contains the time, the second the load F. 
1 ......................................................................... 

uses crt , dos ; 

const n = 2000; {maximum Number-Of-Timesteps} 

var i, j : integer; 
Number-Of-Timesteps : integer; 
Total-Time,T,Time-Step : real; 
InputFile : text; 
File-Name : string[20]; 
Dirinfo : searchrec; 
Time-Base,Load : array[O..n,O..û] of real: 

{------------------------------------------------------------------------- 1 
procedure Timebase; 

var i: integer; 

begin 
repeat write(*Totai Time 

until Total-Time > O; 

readln(Tota1-Time); 

repeat write ( 'T 

until T > O; 
readln(T); 

= * ) ;  

= * ) ;  

repeat write(*Number-Of-Timesteps [l,n] = ' ) ;  

until (Number-Of-Timesteps > O )  and (Number-Of-Timesteps C= n); 
readln(Number-Of-Timesteps); 

Time-Step := Total-Time/Number-Of-Timesteps; 
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if T >= Total-Time then 
writein('*** WARNING *** : T >= Total Time'); 

if T <= Time-Step then 
writeln('*** WARNING *** : T <= Time Step'); 

end ; 
{------------------------------------------------------------------------- 1 
procedure Load-Prescription; 

var i:integer; 

begin 
for i := O to Number-Of-Timesteps do 

begin 
if Time-Base[i,O] <= T then Load[i,O] := Time-Base[i,O]/T; 
if TimeBase[i,O] > T then Load[i,O] := 1.0; 

end; 

begin 
j :=O; 
repeat 
write('Fi1e name for inputfile 
readln ( File-?Jane) ; 
findfirst(Fi1e-Name,Archive,Dirinfo); 
if DosError = O then 

begin 
writeln('*** FILE ALREADY EXISTS *** ' ) ;  
j :=j+l; 

end; 
until (DosError <> O) or ( j=3 ) ;  

if j < 3  then 
begin 

ascian(InputPiie,Pile-~ame)F 
rewrite(1nput-File); 
writeln(Input-File,Total~Time:l2:6); 
writein(1nput-File,Number-Of-Timesteps); 
writeln(InputFile,T:12:6); 
for i := O to (Number-Of-Timesteps) do 
writeln(Input-File,Time-Base[i,O]:l2:6,' ',Load[i,0]:12:6); 

close(1nput-File); 
end 

else 
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begin 
w r i t e i n ( ' * * *  PROGRAM TERMINATED *** ' ) ;  
HALT; 

end; 
end ; 

beg in  
clrscr;  
T h e b a s e ;  
L o a d P r e s c r i p t i o n ;  
Write-Input-File; 

end. 
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11.2. Programs to calculate the squeeze film thickness 

11.2.1. Two plates 

program TwoPlates; 
.......................................................................... 

rnL- F ; l m  tL;-b---- ' 
A 1 1 5  ryuss&,s & A . U l l  LIIIb.IIIIG=Y 18 ea l íx la ted  g i v e n  the load P o;; the 
upper plate for a certain number of timesteps. 
The inputfile has to meet the next lay-out: 
- Three positions on top of the inputfile have to contain: 

1. Total-Time 
2. Number-Of-Timesteps 
3 .  T (see inPut.pas). 

- The first column has to contain the time base, the second the 

A three column outputfile is made; the first column contains the 
Timebase, the second the film thickness h and the third the upper 
plate velocity V. 

load F. 

uses crt, dos ; 

const n 
crit 

2000; 
le-6; 

{maximum Number-Of-Timestepc} 
{iteration criterion} 

var i : integer; 
Number-Of -Timest eps : integer; 
Total-Time,Time-Step,T : real; 
InputFile,Output_File : text; 
Fi 1 e-Name : string[20]; 
Dirinfo : searchrec; 
Time-Base, Load : array[O..n,O..O] of real; 
h-new,V-old,V-new : array[O..n,O..O] of real; 

{------------------------------------------------------------------------- 1 
procedure Read-Input-File; {Read Timebase and Load} 

var i, j : integer; 

begin 
i:=O; 
repeat 

write('Fi1e name for inputfile = ' ) ;  

readln(Fi1e-Name); 
findfirst(Fi1e-Name,Archive,Dirinfo); 
if DosError <> O then i:=i+l; 

until (DosError = O )  or (i=2); 
if i<2 then 
begin 

assign(1nput-File,File-Name); 
reset(InputFi1e); 
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readln(Input-File,Total-Time,Number-Of-Timesteps,T); 
for j:=O to Number-Of-Timesteps do 

close(1nput-File); 
Time-Step := Total-Time/Number-Of-Thesteps; 

readln(Input-File,Time-Base[j,O],Load[j,O]); 

end 
else 
begin 

w,r i tp ln( '***  FILE N^T ***fl; 
HALT p 

end ; 
end; 

{------------------------------------------------------------------------- 1 
procedure Write-OutputFile; {Write h and V} 

var i,j : integer; 

begin 
j :=O; 
repeat 
write('Fi1e name for outputfile = ' ) ;  
readln(Fi1e-Name); 
findfirst(File-NamefArchive,Dirinfo); 
if DosError = O then 

begin 
writeln('*** FILE ALREADY EXISTS ***I); 

j :=j+l; 
end; 

until (DosError <> O )  or (j=3); 
if j<3 then 
begin 

a s s i g n ( o u t g u t - ~ i l e , ~ ~ l e - ~ a ~ ~ ~ ~  
rewrite(OutputFi1e); 
writePn(Output-File,Total-Time:l2:6); 
writeln(0utput-File,Number-Of-Timesteps); 
writeln(Output-File,T:12:6); 
for i := O to Number-Of-Timesteps do 
writeln(Output-File,Time-Base[i,0]:12:6,' ', 

h_new[i,0]:12:6,' ', 
V_new[i,O]:12:6); 

close(0utput-File); 
end 

else 
begin 

Writeln('*** PROGRAM TERMINATED *** ' ) ;  
HALT ; 

end; 
end; 

90 



begin 

write('Initia1 dimensionless film thickness : ' ) ;  

readln(h-new[O,O]); 
write('Initia1 dimensionless upper plate velocity : ' ) ;  
- rnadln(V -...---* - npw[QiQ!); 

end ; 
{------------------------------------------------------------------------- 1 
function Power(mantisse,exponent:real):real; 

var helpl : real; 

begin 
if (mantisse = O) then Power := O 
else 

if (exponent = O) then Power := 1 
else 

if (mantisse > O) then Power := exp((ln(mantisse))*exponent) 
else 
begin 
if (exponent-int(exponent)=O) and (odd(round(exponent))=true) 
then helpl := 1 
else helpl :=-1; 
Power := helpl * exp(ln(-mantisse) * exponent); 

end; 
end; 

begin 

end; 
fvcon := (3/2)*(V/power(h,3))-F; 

{------------------------------------------------------------------------- 1 
function derfvcon(h:real):real; {derivative to V of the relation 

between V and Load} 

begin 

end ; 
derfvcon := (3/2)*(i/power(h,3!j: 
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{------------------------------------------------------------------------- 1 
procedure Iteration; {Newton-Raphson iteration} 

var help : real; 

begin 
repeat 
help := (fvcon(V~oid[i,O],h~new[i,0],Load[i,O])/derfvcon(h~new[i,O])); 

h-new[i,O] := h-new[i-l,O] - (i/2)*(V-new[i-i,O]+V-new[i,O])*Time-Step; 
V-old[i,O] := v-new[i,O]; 

g7 n=w[f,'] := TJ ^l.i[i,'] - help; - - 

until (fvcon(V-new[i,O],h-new[i,O],Load[i,O]) < crit); 
end; 

begin 
clrscr; 
Read-InputFile; 
Begin-Conditions; 
for i := 1 to Number-Of-Timesteps do 
begin 

V-old[i,O] := V-new[i-l,O]; 
h-new[i,O] := hnew[i-l,0]; 
Iteration; 

end; 
Write-Output-File; 

end. 
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11.2.2. Sphericd indenter - Plate 

program Plate-Sphere; 
I 

The squeeze film thickness is calculated given the load F on the 
upper plate for a certain number of timesteps. 
The inputfile has to meet the next lay-out: 
- ~l.r=e nneitinne on t ~ p  of thp i ~ n i r t f i l o  h a t 7 ~  to cont=in: r--------- I=------ ---- - 

1. Total-Time 
2. Number-Of-Timesteps 
3 .  T (see inPut.pas). 

- The first column has to contain the time base, the second the 

A three column outputfile is made; the first column contains the 
Timebase, the second the film thickness h and the third the upper 
plate velocity V. 

load F. 

1 ......................................................................... 
uses crt,dos; 

const n 
crit 
hO O 
RO 
Ri 

1500; 
le-6; 
0.1: 
20; 
50; 

{maximum Number-Of-Timesteps} 
{iteration criterion) 
{minimal film thickness at t=O} 
{scalingfactor for radius r} 
{radius of the sphere} 

var i : integer; 
Number-Of-Timesteps : integer; 
Total-Time,Time-Step,T : real; 
Input-File,Output-File : text; 
Fi levName : string[20]; 
Dirinfo : searchrec; 
Time-Base, Load : array[O..n,O..O] of real; 
h - newO,h-newl,V-old,V-new : array[O..n,O..O] of real; 

{------------------------------------------------------------------------- 1 
procedure Read-InputFile; 
var i, j : integer; 

{Read Timebase and Load) 

begin 
i:=O; 
repeat 

write('Fiie name for inpuffiie = ' 9 :  
readln(Fi1e-Name); 
findfirst(Fi1e-Name,Archive,Dirinfo); 
i:=i+l; 

until (DosError = O) or (i=2); 
if i<2 then 
begin 

assign(InputFile,File-Name); 
reset(InputFi1e); 
readln(InputFile,Total-Time,Number_Of-Timesteps,T); 
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for j:=O to Number-Of-Timesteps do 

close(1nput-File); 
Time-Step := Total-Time/Number-Of-Timesteps; 

readln(Input~File,T~e~Base[j,O],Load[j,O]); 

end 
else 
begin 

writein('*** FILE NOT FOUND * * * ' ) ;  

FiLT; 
end ; 

end ; 
{------------------------------------------------------------------------- 1 
procedure Write-Output-File; {Write h and V) 

var i,j : integer; 

begin 
j :=O; 
repeat 
write('Fi1e name for outputfile = ' ) ;  

readln(Fi1eName); 
f i n d f i r s t ( F i l e - N a m e , A r c h i v e , D i r i n f o ) ;  
if DosError = O then 

begin 
writein('*** FILE ALREADY EXISTS *** ' ) ;  
j:=j+l; 

end ; 
until (DosError <> O )  or (j=3); 
if j<3 then 
begin 

assign(Output-File,File-Name); 
r=write(Outpu~-~ile); 
writeln(Output-File,Total-Time:l2:6); 
writeln(OutputFile,Number-Of-Timesteps); 
writeln(Output-File,T:12:6); 
for i := O to Number-Of-Timesteps do 
writeln(Output~File,Time~Base[i,0]:12:6,' ', 

h_newO[i,0]:12:6,' ', 
V_new[i,0]:12:6); 

close(OutputFi1e); 
end 

else 
begin 

writein('*** PROGRAM TERMINATED ***I); 

HALT; 
end; 

end ; 
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begin 

write('Initia1 minimal dimensionless film thickness : ' ) ;  

readln(h-newO[O,O]); 
write('Initia1 dimensionless upper plate velocity : ' ) ;  
- readln(V-n~w[oiQ]); -- - --- 

end ; 
{------------------------------------------------------------------------- 1 
function Power(mantisse,exponent:real):real; 

var helpl : real; 

begin 
if (mantisse = O) then Power := O 
else 

if (exponent = O) then Power := 1 
else 

if (mantisse > O) then Power := exp((ln(mantisse))*exponent) 
else 
begin 
if (exponent-int(exponent)=O) and (odd(round(exponent))=true) 
then helpl := 1 
else helpl :=-1; 
Power := helpl * exp(ln(-mantisse) * exponent); 

end ; 
end; 

{------------------------------------------------------------------------- 1 
function fv6on(V,hO,hl,F:real):r~a~i (relation between V and Load} 

var help1:reai; 

begin 
fvcon := (3/2)*(V/(hO*sqr(hl)))-F; 
helpl := (3/2)*(V/(hO*sqr(hl)))-F; 

end ; 
{------------------------------------------------------------------------- 1 
function derfvcon(h0,hl:real):real; {derivative to V of the relation 

var help2:real; 
between V and Load} 

begin 
derfvcon := (3/2)*(l/(hO*sqr(hl))); 
heip2:=(3/2)*(l/(hO*sqr(hl))); 

end ; 
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{------------------------------------------------------------------------- } 
procedure Iteration; {Newton-Raphson iteration} 

var help : real; 

begin 
repeat 
help:=(fvcon(V_old[i,O],h~newO[i,O],h~newl[i,O],Load[i,O])/ 

V-new[i,Oj := V-oid[i,Oj - help; 
h-newO[i,O] := h-newO[i-l,O] - (1/2)*(V~new[i-i,O]+V~new[i,O])*Time~Step; 
h-newl[i,O] := h~new0[i,0]+(1/2)*sqr(RO)/(Ri*hOO); 
V-old[i,O] := V-new[i,O]; 

derfvcm(!? - ~ = ~ ~ ~ ~ , ~ ~ , ! ? - ~ = ~ ~ ~ ~ , ~ ~ ~ ~ ;  

until (fvcon(V-new[i,O],h-newO[i,O],h-newl[i,O],Load[i,O]) e crit); 
end; 

begin 
clrscr; 
Read-Input-File; 
Begin-Conditions; 
for i := 1 to Number-Qf-Timesteps do 
begin 

V-old[i,O] := V-new[i-l,O]; 
h_newO[i,O] := h-newO[i-l,O]; 
h-newl[i,O] := h-newO[i,0]+(1/2)*sqr(RO)/(Ri*hOO); 
Iteration; 

end ; 
Write-QutputFile; 

end. 
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11.2.3. Plate - Mixture 

program Plate-Mixture; 

The squeeze film thickness is calculated given the load F on the 
upper plate for a certain number of timesteps. 
The inputfile has to meet the next lay-out: 
- ~hr-e p n r i t i n ~ c f  ten ~f ifiniitfiTn havn ta centzin: 

I? I?------ ---- - 
1. Total-Time 
2. Number-Of-Timesteps 
3 .  T (see inPut.pas). 

- The first column has to contain the time base, the second the 

A three column outputfile is made; the first column contains the 
Timebase, the second the film thickness h and the third the upper 
plate velocity V. 

load F. 

uses crt , dos; 

const n 
crit 
delta 
beta 
eta 

2000; {maximum Number-Qf-Timesteps} 
le-6; {iteration criterion) 
0.1; 
1; 
1; 

var i, Counter : integer; 
Number-Of-Timesteps : integer; 
Total-Time,Time-Step,T : real; 
helpO,helpl,help2,help3,help4 : extended; 
InputFile,OutputFFle t text; 
File-Name : string[20]; 
Dirinf o : searchrec; 
Time-Base, Load : array[O..n,O..O] of real; 
h-new,V-old,V-new : array[O..n,O..O] of real; 

{------------------------------------------------------------------------- 1 
procedure Read-Input-File; {Read Thebase and Load} 

var i,j : integer; 

begin 
i:=O; 
repeat 
write('Fi1e name for inputfile = ' ) i  

readln(Fi1e-Name); 
findfirst(Fi1e-Name,Archive,Dirinfo); 
if DosError <> O then i:=i+l; 

until (DosError = O )  or (i=2); 
if i<2 then 
begin 
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assign(1nput-File,Fiie-Name); 
reset(Input-File); 
readin(Input-File,Total-Time,Number-Of-Timesteps,T); 
for j : = O  to Number-Of-Thesteps do 

close ( InputFile ) ; 
Time-Step := Total-The/Number-Of-Thesteps; 

readln(Input-File,Thne_BaCe[j,O],Load[j,O]); 

end 

begin 

-1 ..a c=&ac= 

writein('*** FILE NOT FOUND * * * ' ) ;  
HALT i 

end ; 
end ; 

c------------------------------------------------------------------------- 1 
procedure Write-OutputFile; {Write h and V) 

var i,j : integer; 

begin 
j :=O; 
repeat 
write('Fi1e name for outputfile = ' ) ;  
readln(Fi1e-Name); 
findfirst(File-Name,Archive,Dirinfo); 
if DosError = O then 

begin 
writein('*** FILE ALREADY EXISTS *** ' ) ;  
j:=j+i; 

end ; 
until (DosError <> O )  or ( j = 3 ) ;  
if j<3 then 
begin 

ascign(Output-File,File-Name); 
rewrite(0utput-File); 
writeln(Output-File,Total-Time:12:6); 
writeh(OutputFile,Number-Of-Tilnesteps); 
writeln(Output-File,T:12:6); 
for i := O to counter do 
writeln(Output-File,Thne-Base[i,0]:12:6,' ', 

h_new[i,O]:i2:6,' ', 
V-new[F,O]:12:6)p 

close(0utput-File); 
end 

else 
begin 

writein('*** PROGRAM TERMINATED *** ' ) ;  
HALT; 

end ; 
end ; 
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begin 

write('Initia1 dimensionless film thickness : ' ) ;  

readln(h-new[O,O]); 
write('Initia1 dimensionless upper plate velocity : ' ) ;  

reudln:'t'-rleV[Q,G] ) ;  

end; 
I 

function Power(mantisse,exponent:real):real; 

var help : real; 

begin 
if (mantisse = O )  then Power := O 
else 

if (exponent = O )  then Power := 1 
else 

if (mantisse > O )  then Power := exp((ln(mantisse))*exponent) 
else 
begin 
if (exponent-int(exponent)=O) and (odd(round(exponent))=true) 
then help := 1 
else help :=-1; 
Power := help * exp(ln(-mantisse) * exponent); 

end ; 
end; 

{------------------------------------------------------------------------- 1 
function sinh(arg:r9al):extended; 

begin 

end; 
sinh := (1/2)*(exp(arg)-exp(-arg)); 

{------------------------------------------------------------------------- 1 
function cosh(arg:real):extended; 

begin 

end i 
cosh := (1/2)*(exp(arg)+exp(-arg)); 

{------------------------------------------------------------------------- 1 
function vrh(h:real):real; {radial fluidvelocity at interface} 

begin 

end ; 
vrh := (help2*h+(1/2)*help4*sqr(h))/(help3*h+help4); 
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{------------------------------------------------------------------------- 1 
function vzh(h:real):real; {axial fluidvelocity at interface} 

var vzhl,vzh2 :extended; 

begin 
vzhl := ((-vrh(h)*delta/beta)+2*eta*power(deltaf3)/power(betaf3)); 
vzh2 := power(deltaf2)*eta/power(beta,3); 
y-rzh := (wrrh’l / h e l n l  i*(h~lpQ-1)-yzhz; - ----‘ ----c- I 

end ; 
{------------------------------------------------------------------------- 1 
function fvcon(V,h,F,vrh,vzh:real):real; {relation between V and load} 

begin 

end; 
fvcon := (3/2)*(V/(power(hf3)+6*h*vrh-12*vzh))-F; 

{------------------------------------------------------------------------- 1 
function derfvcon(h,vrh,vzh:real):real; {derivative to V of the relation 

between V and Load) 

begin 
derfvcon := (3/2)*(l/(power(h,3)+6*h*vrh-l2*vzh)); 

end ; 
1 

procedure Iteration; 
J 

{Newton-Raphson iteration} 

var controll,contro12,helplfhelp2 : real; 

begin 
repeat 
control1 := vrh(h_new[i,O]); 
control2 o =  vzh(h-new[i,O]); 
help1 := fvcon(V~o1d[i,0],h~new[i,0],Load[i,01,contro11,contro12); 
help2 := derfvcon(R~new[i,O],controllfcontroP2); 
V-new[i,O] := V-old[i,O] - (helpl/help2); 
h-new[i,O] := hnew[i-l,0] - (1/2)*(V~new[i-l,0]+V~new[ifO])*Time~Step; 
V-old[i,O] := V-new[i,O]; 

until (fvcon(V~new[i,0],h~new[i,0],Load[i,0],contro11,contro12) < crit); 
end ; 
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begin 

clrscr; 
Read-InputFile; 
sagin - CC2ndi t ims ;  

help0 := cosh(l/delta) ; 
help1 := sinh(l/delta) i 

help2 := (eta*delta/beta)*(helpO-1) ; 
help3 := (beta/delta)*helpO r 

help4 := eta*helpl I 

i := 1; 

repeat 
V-old[i,O] := V-new[i-l,O]; 
h-new[i,O] := h_new[i-l,O]; 
Iteration; 
i:=i+l; 

until (h-new[i-l,O]<O) or (i-l>Number-Of-Timesteps); 
Counter:=i-2; 
Write-OutputFile; 

end. 
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Appendix I11 Constraints on the constitutive 
relations for the mixture 

Constitutive relations have to satisfy the conservation laws and the axiom of thermodynamics. 
Since the balance of both momentum and energy contain source terms, these equations can 
always be satisfied. Therefore constitutive relations are called admissible if conservation of 
mass and the second axiom of thermodynamics are satisfied. 

The second axiom of thermodynamics, also called the entropy inequality, reads (Oomens 
1985, page 3.17): 

where: 

material time derivative 
specific Helmholtz free energy = 4 - 8q 

d 

dt 
- or 

3 
4 specific internal energy 
8 absolute temperature 
n specific entropy 
H heatflux vector 

(111.1) 

Note that by the entropy inequality, the internal entropy production for the mixture as a whole 
is always greater than or equal to zero, but that this is not necessarily required for each 
component separately. 
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assumption 10 
temperature 0 is constant and equal for all constituents : 

The process is assumed to be isothermal, in other words, the absolute 

- o, ve = a a0 - -  
at 

Moreover the mass exchange due to chemical interaction is neglected (2.21) : 
c" = 0 

Now (111.1) becomes : 

The balance of mass reads (2.24) : 

V (nf (3 -  - 3")) + V 3" = 8 

(111.2) 

(111.3) 

(111.4) 

(111.5) 

The balance of mass is incorporated into the entropy inequality, multiplied by a Lagrange 
multiplier h : 

- p"$ - pf$ + o" : D" + af : Df + 
- 5" V" - ?tf - $f + h(V (nf($f - 3")) + V - P) 2 O 

(111.6) 

The dependent variables are Q', Q', O', of and 3" , (3f = - 3"). The independent variables 
are chosen to be the deformation tensor for the solid F, the density of the fluid p', the density 
gradient Vpf , and the relative velocity of the fluid with respect to the solid ( V'f - v" ). 
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Inequality (111.6) now can be expressed as (Oomens 1985, page 3.22): 

(111.7): 

t 

: D" + 

- +  d f ( f l  - 17") 

dt 
+ p s  

a($f - P) a(gf - i7") 
- (  Pf 

assumption 11 Cartilage is assumed to be a 'simple' biphasic mixture, i.e., the 
Helmholtz free energy of each phase does not depend on the properties of the other phase 
(Hou, 1989). Also the Helmholtz free energy for the fluid phase 9' does not depend on the 
fluid density pf due to the negligible diffusion effect (Hou 1989, page 47-48). 

assumption 12 Changes in the mixture's volume only arise from fluid flow into or out 
of the mixture, since the constituents are incompressible. Resulting changes in the 
volumefractions nf and ns will be neglected. 
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Now (111.7) becomes : 

a w  
òE" 

-p"F - Fc + 0" + hn"1 
r 

: D" + 
1 

The following constitutive relations satisfy the inequality shown above : 

with 0" : D" 2 O, 

of = -hnfI + dv 

with dv : Df 2 O. 

(111.8) 

(111.9) 

(111.10) 

The tensor au" represents the viscous part of the stress tensor a". 

assumption 13 The cartilage is assumed to be a homogeneous, isotropic mixture of a 
purely elastic solid and a Newtonian viscous fluid. 

Therefore the viscous part of the solid stress tensor equals zero : 

0 " = 0  

The Lagrange multiplier h has to be interpreted as the hydrodynamic pressure p 
(Oomens 1985, page 3.23): 

ab. = p  
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Note that also : 

3" -(l7f - v") 2 o (111.13) 

The last restriction will be satisfied by the following relation for the body forces due to 
interaction (3" = -3f) : 

where K is a positive definite tensor, which for the isotropic case is K = K I (Hou 1989, 

page 47). K is called the dragcoefficient. 
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Samenvatting 

Het doel van dit rapport is het vergroten van het inzicht in squeeze film smering, een 
mechanisme dat verantwoordelijk wordt geacht voor de smering in de knie en dat mede tot 
stand komt als gevolg van de viscositeit van zowel de synoviaal vloeistof als de interstitiële 
vloeistof. Squeeze film smering is gebaseerd op het principe dat drukopbouw plaats vindt in 
een viskeuze vloeistoffilm die tussen twee loodrecht naderende oppervlakken wordt uitgeperst. 

Drie verschillende squeeze films zijn onderzocht, namelijk een squeeze film tussen: 

1. 
2. 
3. 

twee starre impermeabele cirkelvormige schijven 
een starre impermeabele bolkop en een star impermeabel vlak 
een starre impermeabele cirkelvormige schijf en een star permeabel mengsel 

Voor elke situatie zijn de dikte van de squeeze film als functie van de tijd en de drukverde- 
ling over de squeeze film berekend bij een gegeven belasting op de bovenste schijf of bolkop. 
Uit vergelijking van de tweede met de eerste situatie blijkt dat de drukverdeling opmerkelijk 
beïnvloed wordt door de geometrie van de squeeze film. Bovendien blijft de squeeze film in 
de tweede situatie veel korter in stand dan in de eerste situatie. 
In de derde situatie wordt interactie tussen de squeeze film en de interstitiële vloeistof bereikt 
middels de randvoorwaarden die Hou in 1989 heeft afgeleid. Bovendien zijn voor deze 
situatie parameters gedefiniëerd die het mengsel karakteriseren. De invloed van de 
aanwezigheid van een star mengsel wordt duidelijk naar voren gebracht door vergelijking van 
de filmdikte als functie van de tijd voor verschillende parametersets. 

Het is waardevol om in de toekomst de interface randvoorwaarden van Hou experimenteel 
te toetsen aan een fysisch squeeze film model waarin een mengsel is opgenomen. 
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