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Abstract 

Structured and layered thin sheets are used in a variety of innovative applications, e.g. fl.exible 
displays, rollable solar cells or fl.exible electronics. Stacks of different materials, with often 
highly complex interconnects between layers, are thereby used which are typically loaded in 
bending combined with intrinsic thermo-mechanical mismatches. As aresult different failure 
mechanisms at the level of the layered substructure occur, which constitute a serious reliability 
concern. 

The development of these functional structures often eaUs for an analysis of the complex 
micro-macro structure-properties relations. The objective of this research is to develop a two­
scale computational homogenization approach for structured thin sheets. This computational 
homogenization technique is essentially based on the solution of two nested boundary value 
problems, one for each scale. No closed-form constitutive model needs to he chosen for the 
macrolevel, which makes the technique suitable for dealing with complex loading and an 
evolving microstructure. 

The three dimensional macroscopie structure is modelled as a shell-type boundary value 
problem derived from a classica! shell theory. The shell theories used in this research are the 
Kirchhoff-Love and the kinematically more rich Mindlin-Reissner theories. The computational 
homogenization scheme can he imbedded in shell theory without any additional restrictions 
(with respect to the restrictions inherent to shell theory) to the macroscopie deformation. 
Large macroscopie displacements and rotations of the structure are possible. 

The microstructure can he modelled and then solved as a standard boundary value prob­
lem. The different phases of the microstructure can he modelled with arbitrary constitutive 
models, e.g. non-linear or time-dependent. In this research a finite element method was 
used to solve the microscopie boundary value problem, but any other appropriate solution 
technique may he used as well. 

The computational homogenization of structured thin sheets fits entirely in a standard 
shell mechanics framework. Generalized strains descrihing the local membrane strain, and 
curvature (and transverse shears for Mindlin-Reissner-sheets) are calculated for every material 
point and are used to formulate kinematic boundary conditions for the associated microstruc­
tural representative volume element (RVE). The three-dimensional RVE represents the full 
thickness and a periodic in-plane cellof the microstructure. The stress integration through the 
thickness of the shell is combined with an in-plane homogenization by averaging the resulting 
RVE stress field over the in-plane area of the microstructural cell after the solution of the 
microstructural boundary value problem. The hereby obtained generalized stress resultants 
are energy consistent with the definitions used in shell theories. As a result, the (numerical) 
generalized stress-strain relationship at every macroscopie point is readily available. 

To illustrate the proposed framework, first the homogenized response ofthe a homogeneaus 
RVE is compared to the generalized stress-strain response of the classica! shell theories. Next, 



the homogenized response of a heterogeneaus microstructure for different prescribed macro­
scopie deformation modes is calculated. Two examples of multi-scale analyses are given, one 
for the transversely loaded sheet, and one for the sheet subjected to a twisting loading. 

The developed multi-scale computational homogenization procedure is a useful and pow­
erful tool for the analysis of structured thin sheets with any, possible complex, type of periodic 
microstructure. 
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Samenvatting 

Dunne schalen bestaande uit lagen of een zekere microstructure worden gebuikt in vele inno­
vative toepassingen, zoals flexible beeldschermen, oprolbare zonnencellen en flexibele elektro­
nica. Een stapeling van verschillende materialen, met veelal zeer complexe verbindingen 
tussen de lagen, worden typisch belast door buiging vaak gecombineerd met belastingen re­
sulterend uit verschillen in thermo-mechanische eigenschappen. Hierdoor ontstaan verschil­
lende schade-mechanismen op het niveau van de gelaagde substructuur, welke een ernstige 
bedreiging voor de betrouwbaarheid zijn. 

De ontwikkeling van deze functionele structuren vraagt vaak om een analyse van de com­
plexe micro-macro gecombineerde mechanische eigenschappen. Het doel van dit onderzoek 
is het ontwikkelen van een twee-schalige numerieke homogenisatiemethode for dunne schalen 
bestaande uit een periodieke microstructuur. De numerieke homogenisatiemethode komt in 
feite neer op het oplossen van twee gekoppelde randwaardeproblemen, één op de macroscopi­
sche en één op de microscopische schaal. Er hoeft geen expliciet constitutief model gekozen te 
worden voor het beschrijven van het macroscopisch mechanisch gedrag. Hierdoor is de tech­
niek geschikt voor gecompliceerde belastingspaden en houdt het rekening met veranderingen 
in de microstructuur. 

De drie-dimensionele schaal wordt gemodelleerd door een schaalachtig randwaardeprobleem 
afgeleid van een klassieke schaaltheorie. De theorieën gebruikt in dit onderzoek zijn de 
Kirchhoff-Love en de kinematische rijkere Mindlin-Reissner theorieën. De numerieke ho­
mogenisatieschema's kunnen ingepast worden zonder extra restricties anders dan de restric­
ties die samengaan met de klassieke schaaltheorieën. Grote macroscopisch verplaatsingen en 
rotaties zijn mogelijk. 

The microstructuur kan gemodelleerd en opgelost worden als elk standaard randwaarde­
probleem. De verschillende materialen in de microstructuur kunnen beschreven worden door 
elk willekeurig materiaalgedrag, bijvoorbeeld niet-lineair of tijdsafhankelijk. In dit onderzoek 
is de eindige elementen methode gebruikt voor het oplossen van het microscopisch rand­
waardeprobleem. Echter elke geschikte andere oplossingsmethode kan ook gebruikt worden. 

Het numerieke homogenisatieschema voor schalen met een microstructuur past geheel 
binnen een standaard schaalmechanica-raamwerk Gegeneraliseerde rekken, welke de lokale 
membraanrek en buiging (en voor MR-schalen afschuiving in de dwarsrichting) beschrijven, 
worden berekend voor ieder materieel macroscopisch punt. Deze worden vervolgens gebruikt 
om kinematische randvoorwaarden te formuleren voor een microstructureel representatief 
volume-element (RVE). Het drie-dimensionele RVE vertegenwoordigd de gehele dikte en een 
periodieke cel in het vlak van de macro-schaal. De integratie over de dikte en de homogenisatie 
in het vlak van de schaal, worden gecombineerd door het bepalen van een zeker gemiddelde van 
het RVE spanningsveld, nadat het microstructurele randwaardeprobleem is opgelost. Hier­
door worden de gegeneraliseerde rek-spanning relaties verkregen voor elk macroscopisch punt. 
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De verkregen gegeneraliseerde spanningresultanten zijn energie consistent met de definities 
gebruikt in de schaaltheorieën. 

Om het voorgelegde raamwerk te illustreren, wordt allereerst het gehomogeniseerde gedrag 
van een RVE met homogene materiaaleigenschappen vergeleken met de gegeneraliseerde rek­
spanning relatie verkregen uit klassieke schaaltheorieën. Daarna is de gehomogeniseerde re­
sponse van een heterogene microstructure voor verschillende voorgeschreven macroscopische 
vervormingsmodes berekend. Twee voorbeelden van de gekoppelde twee-schalige analyses zijn 
gegeven, een voor een schaal welke wordt belast in de dwarsrichting en een voor een schaal 
welke wordt belast door een wringende belasting. 

Het gepresenteerde numerieke homogenisatie procedure is nuttig en krachtig voor de ana­
lyse van dunne schalen met een willekeurig, mogelijk zeer complex, type microstructuur. 
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Notation 

Veetors and tensors 

The tensors and tensor products are used in a Cartesian coordinate system, with ei, i= 1, 2, 3 
a set of unit base vectors. Summation convention is applied over repeated indices. The 
following notation is used throughout the report 

Notation 

a 

A= Aijeiëj 
3A = AijkeiëJek 

nA = Aijk ... neiejek ... en 

Description 

scalar 

vector 

secoud-order tensor 

third-order tensor 

n-order tensor 

In this report veetors ä are additively decomposed in an in-plane if and transverse parts a 

a=a+ä with ~ ::: -a= I ·a and a= I·a 

A -

(1) 

where Î =el el +e2e2 is the in-plane unit tensor and î = e3e3 is the transverse unit tensor. 
Consistent with this definition also a secoud-order tensor A can be additively decomposed as 

Notation 
A A A 

A = AjkÎi)kteiet 
- - A 

A = Ajkii)kteiet 
A A -

Ä = AjkÎi)kteiet 

A = Ajklijlkteiëz 

Description 

in-plane to in-plane tensor 

in-plane to out-of-plane tensor 

out-of-plane to in-plane tensor 

out-of-plane to out-of-plane tensor 
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The following operations are used 

Operation Description 
.... 

äb = aibjëis 

A· B = AijBjkëiëk 

A: B = aijbji 

[) 

\la= "Viajëis 

"V·ii="Viai 

Ac, Aij = Aji 

3 A LC ALG - A .. k 
fi. ' ijk - J~ 

3A RC ARC- A·k· 
fi. ' ijk - ~ J 

A-1 

ó 

det(A) 

Matrices and Columns 

dyadic product 

inner product 

double inner product 

partial derivative 

gradient operator 

divergence operator 

conjugate of a second-order tensor 

left conjugate of a third-order tensor 

right conjugate of a third-order tensor 

inverse 

variation 

determinant 

The matrix and column notation used throughout this work is 

Notation Description 

a scalar 

Q column 

A matrix 

Operation Description 

A-1 inverse 

AT transpose 

Ail matrix product 
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Chapter 1 

Introduetion 

Structured and layered thin sheets are used in a variety of innovative applications, e.g. flexible 
displays, rollable solar cells or flexible electronics. Stacks of different materials, with aften 
highly complex interconnects between layers, are thereby used which are typically loaded 
in bending combined with intrinsic thermo-mechanical mismatches. As a result, different 
failure mechanisms at the level of the layered substructure occur, which constitutes a serious 
reliability concern. 

For the design of these structured and heterogeneaus systems the observed overall macro­
scopie behaviour is important. In many cases, the loading is cyclic and mechanica! fatigue 
effects arise, originating from evolving microstructural morphology and properties. Conse­
quently, the behaviour of the microstructure and its influence on the macroscopie response 
needs tobetaken into account. 

Direct computational simulations of the structured thin sheets are very expensive, when 
rnadelling the heterogeneities in detail. Also, rnadelling thin structures with continuurn el­
ements aften leads to high aspect ratios, which degrades the conditioning of the equations 
and the accuracy of the salution [1]. Therefore, the analysis of structured thin sheets is 
mostly performed in terros of effective properties combined with shell theories. The effective 
stress-strain material behaviour can be obtained by experimental methods. Extensive testing 
of sheet samples with different microstructures subjected to various deformation modes and 
loading paths, is very expensive and may be avoided by determining the effective properties 
by means of analytica! or numerical homogenization techniques. 

The homogenization theory is based on the asymptotic expansion method, which assumes 
the ratio of the characteristic dimensions of the heterogeneities and the macrostructure to 
approach zero. For structured sheets this ratio applies to the in-plane dimensions. The 
ratio of the thickness of the sheet and its in-plane dimensions also should tend to zero for 
shell theories to apply. It was shown in the workof Buannic and Cartraud[2] that different 
efl'ective stiffnesses can be obtained depending on the order in which the two ratios approach 
zero relative to each other. 

The effective properties of materials with a complex evolving microstructure can be de­
termined by a computational homogenization methods using the concept of a representative 
volume element (RVE). These so-called unit cell methods serve a twofold purpose: they pro­
vide valuable information on the local microstructural fields as well as the effective material 
properties. The unit cell methods take benefit from the assumption of local periodicity exhib­
ited by the microstructure. The microstructure can have different morphologies corresponding 
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F(t) 
? - u(t) 

Figure 1.1: Example structured thin sheet. 

to different macroscopie points [5]. The concept of local periodicity is schematically illustrated 
in Figure 1.1. 

When the unit cell-method is used within a multi-scale computational homogenization 
analysis, the rnadelling procedures do not lead to closed-form overall constitutive equations. 
The stress-strain relationship is computed at every point of interest of the macroscopie struc­
ture by detailed modeHing of the microstructure attributed to that point as schematically 
shown in Figure 1.1. Such a multi-scale approach [5] a) does not require any constitutive 
assumption on the macrolevel; b) enables the incorporation of large deformations and rota­
tions on both micro and macrolevels; c) is suitable for arbitrary material behaviour, including 
physically non-linear and time-dependent response; d) provides the possibility to introduce 
detailed microstructural information, including the physical and geometrical evolution of the 
microstructure into the macroscopie analysis and e) allows the use of any modeHing technique 
on the microlevel, e.g. the finite element method. 

Computational homogenization theory appears to be a powerfull method, since it can be 
applied toa microstructure of general shape, and arbitrary heterogeneity. But, the "classical", 
here called "first-order", computational homogenization techniques are built entirely within a 
standard local continuurn mechanics concept, where the response at a (macroscopie) material 
point is taken to depend on the deformation (i.e. the first gradient of the displacement field) 
history at that point only [6]. In general, the upscaling of the deformation of structured 
thin sheets towards a shell-type continuurn is second-order in nature. Therefore, only certain 
types of structured thin sheets, e.g. some composite and sandwich sheets, can be homogenized 
by using first-order computational homogenization layerwise. The through-thickness domain 
of the sheet is in this case assumed to consist of several independent (homogenized) layers. 
The effective material properties of the layers can be determined by first-order computational 
homogenization techniques and the shell-structure can then be analyzed by application of an 
appropriate composite shell theory [4]. 

For example, a homogenization technique for sandwich structures has been presented in 
[10, 8]. Here the core section of the structure was modelled with continuurn elements with 
the constitutive behaviour obtained by classical homogenization of the core, whereas beam 
elements were used to model the face sheets. When it is assumed that the face sheets carry the 
in-plane loads and bending moments, while the core has to keeptheface sheets at the desired 
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distance and carries the transverse shear loads, the core is subjected to only simple first-order 
deformation modes and a first-order homogenization technique is suflident to determine the 
effective properties of the core. 

Fora shell with an arbitrary (in-plane periodic) microstructure, the reduction toa stack of 
independent homogeneaus layers, is not appropriate. Both the first-order (membrane strain, 
and transverse shear) and second-order (bending) through-thickness effective propertiesneed 
tobetaken into account. This has been done for the homogenization of a periadie beam-like 
structures in [3], where theelastic properties of the beam were determined. The obtained ef­
fective properties only apply to small deformation and simple-loading path, also the evolution 
of the microstructure can not be taken into account. 

The methodology used in this master project relies on asecond-order computational ho­
mogenization procedure, which is suitable for multi-scale modeHing presented previously in [5] 
for a second-gradient continuum. It has the advantages of a multi-scale analyses as discussed 
above, because it solves the boundary value problems at the microlevel and the macrolevel 
simultaneously. The actual three-dimensional heterogeneaus sheet is represented by a ho­
mogenized shell with the homogenized high-order properties obtained from the analysis of a 
microstructural RVE, which represents the full thickness and a periadie in-plane cell of the 
macroscopie structure (e.g. a single pixel in a flexible display). 

In Chapter 2 two shell type formulations used at the macrolevel are summarized. The 
macro-sheet is represented by Kirchhoff-Love and the kinematically more rich Mindlin-Reissner 
( with transverse shear) shell elements. The quasi-static equilibrium equations are formulated, 
which state that the farces and moments acting on a through-thickness fiber of a shell should 
be in equilibrium. 

The vicinity of such a through-thickness fiber is represented by the microstructural RVE 
for which details on the microscopie boundary value problem are given Chapter 3. At the small 
RVE scale all microstructural constituents are treated as an ordinary continuum, described by 
standard first-order equilibrium and constitutive equations. The microscopie boundary value 
problem is completed by essential and natural boundary conditions derived for the homoge­
nization towards Kirchhoff-Love and Mindlin-Reissner shell types. The obtained micro-scale 
stress state is homogenized towards a three-dimensional macroscopie shell structure, the re­
lations for the determination of the overall macroscopie stress resultants are elaborated. 

The microstructural boundary value problem is solved by the finite element (FE) method. 
The implementation and the salution approach are described inSection 4.1. The macroscopie 
stress measures are extracted from the FE salution and macroscopie consistent tangents are 
obtained by a condensation of the total microstructural stiffness. This is outlined in Section 
4.2. 

In Chapter 5 properties of the homogenized microstructural response are discussed and 
two example of the coupled numerical analysis are given. Chapter 6 gives a summary of the 
conclusions and recommendations on the practical use of the computational homogenizing 
technique for structured thin sheets. 
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Chapter 2 

Macro mechanics of a shell-type 
structure 

The mechanica! system considered at the macrolevel is a shell. Depending on the structural 
assumptions made, different shell theories can be derived. In this chapter, the kinematics of 
thin sheets is described using assumptions of two most widely used shell theories. The shell 
equilibrium equations based on the stress and couple-stress resultants are derived. 

Within the multiscale computational homogenization framework, the shell problem con­
sidered at the macrolevel belongs to the class of large deformation problems. In general the 
displacements can be large, therefore an "in-plane" updated Lagrange approach combined 
with the co-rotational formulation will be used. The membrane strains can be large while 
the radius of curvature and the transverse shear strains need to be small to comply with the 
assumptions of standard shell theories as will be shown in this chapter. 

The boundary value problem at the mieraseale makes use of a total Lagrange approach. 
Therefore a strain pull-back and stress push-forward is necessary to account for the different 
reference configurations used at the micro- and macro-scales. 

2.1 Shell theories 

Midsurface 
(Reference 

surface) 

Figure 2.1: Position veetors with respect to the global coordinate system at points within the 
shell in the reference (a) and current (b) configurations. 
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A shell belongs to the class of structural elements and the term applies to a thin body 
bounded by two curved surfaces. In shell theory a smooth surface, called the reference surface, 
is introduced. The reference surface is parameterized by two material curvilinear coordinates 
Ç0 , a= 1, 2. A material point on the reference surface in the undeformed reference configu­
ration is described by the position vector Xr(Ç0 ) and in the current deformed configuration 
by Xr(Ç0 ), see Figure 2.1. For a sufficiently large radius of curvature in the reference config­
uration, any point in the shell body is uniquely identified in the undeformed configuration 
according to its reference position 

(2.1) 

where Dis the unit normalto the undeformed reference surface, also called the initial director, 
and ( is the material coordinate descrihing the distance between a point and its conesponding 
point on the reference surface. Material lines, in the reference configuration oriented along 
the initial director .i5, are called fibers. The thickness h of a shell is defined as the distance 
between the bottorn and the top surfaces along the fiber. The initial local thickness of the 
shell is denoted H. Each surface of constant ( is called lamina. The reference surface is the 
lamina that corresponds to ( = 0. In this work the reference surface is chosen to be midway 
between the top and bottorn surfaces and therefore it will be called midsurface. 

(a) 

Figure 2.2: Reference configuration of a shell (a) and the deformed configuration of a 
Kirchhoff-Love (b) and Mindlin-Reissner ( c) type shell. 

The key feature that distinguishes shells from continua is that certain assumptions are 
made with respect to the kinematics and the state of stress. The major kinematica! as­
sumption concerns the deformation of the fibers. Two types of shell theory are widely used: 
Kirchhoff-Love (KL) shell theory and Mindlin-Reissner (MR) shell theory. In the KL theory 
the fibers are assumed to remain straight and normalto the midsurface, see Figure 2.2b. In 
the MR theory the fibers are also assumed to remain straight, but not necessarily normalto 
the midsurface, thereby admitting transverse shear [1], see Figure 2.2c. Taking into account 
that the fibers are assumed rigid, the position vector of a material point in the deformed 
configuration is written as 

x(Ça, () = X'r(Ça) + (d(Ça) (2.2) 

where dis vector along a fiber in the current configuration, called current director. 

2.2 Displacement and strains 

The local deformation of a shell is described using the local co-rotational basis {ë1, ë2, ë3}. 
This coordinate system in general varies from point to point and it is constructed in such a 
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way that the plane (ë1, ë2) is always tangent to the current midsurface. The ë3-direction is 
the local normal to the current midsurface. Initially, ë3 coincides with the director D. 

In the reference configuration, the position of a material point at the infinitesimal distance 
from the local basis origin can be written as a superposition of its corresponding position on 
the midsurface dXr and a distance ( along the rigid fiber 

(2.3) 

In the current configuration the position of this material point is then written as 

(2.4) 

with dxr the position on the midsurface in the current configuration. In this report veetors 
i1 are splitted into an in-plane part fi and a transverse part 'à. The in-pla_ne part of the 

position vector of the midplane d:Îr and the in-plane part of the director Jare described 
by "generalized" strains. KL shells use the generalized strain tensors E0 and 1Co called the 
membrane strain and the curvature tensor, respectively. In addition tothese two generalized 
strains, the MR shell has a transverse shear strain -?o, which describes the rotation of the fiber 
with respect to the midsurface. Because of the shell assumptions, the midsurface position 
vector Xr and the director J depend only on two parameters (here the in-plane coordinates 
X1 and X2) their gradient is fully determined by the in-plane gradient operator 

(2.5) 

The generalized strain tensors are defined as 

and (2.6) 

where Î is the in-plane unit tensor. Note that the tensors Eo and 1Co and the vector 1o 
have only the in-plane components. The subscript "0" refers to the undeformed reference 
configuration. Using these generalized strain definitions the material line element in the 
undeformed reference configuration (2.3) can be mapped to the in-plane part of this material 
line element in the current configuration d:Î as 

d:Î = (I+ Eo + (1Co) · d.f + (-):o, (2.7) 

In KL-theory, the transverse shear is assumed to be zero and the last term of equation (2.7) 
vanishes. The combined tensor 

(2.8) 

can be consider as a two dimensional in-plane deformation gradient tensor descrihing the 
deformation of an infinitesimalline element within a lamina. The in-plane displacement of 
the director uses an infinitesimal rotation description, therefore transverse shear strains and 
the radius of curvature are limited, i.e. 1o « 1 and H K,Q « 1. Here K,o is the local maximum 
radius of curvature. The latter condition HK,o « 1, is an important requirement for the 
application of shell theories. When it is not met, the classical shell theory is not applicable 
[1]. 
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Last known contiguration 
Current contiguration 

Reference 
Figure 2.3: The total and updated Lagrange approach. 

The transverse part di of the material line element (2.3) may al~o be described by the 

generalized strains. The transverse displacement vector d.fr =di- dX is written as 

(2.9) 

where 16 = ~oir · ë3 = Ö. In shell theories it is usually assumed that the midsurf8;_ce ( and thus 

also the laminas) remains tangent to the plane (ë1, ë2), therefore typically 16 = Ö, however it 
is included here and in following for the sake of generality and ease of some derivations. The 
transverse displacement vector will be of special importance in the MR shell-type, sirree the 
related generalized stresses counterbalances the transverse shear. 

Furthermore, for the forthcoming derivations it is convenient to write the deformation 
gradient tensor of the midsurface as 

(2.10) 

Note, that when the shell theories are taken into account, i.e. h = H and 16 = Ö then (2.10) 
simplifies to 

(2.11) 

2.3 Numerical implementation: Updated Lagrange 

The engineering generalized strains êo, K.o, and -?o are defined with respect to the undeformed 
reference configuration, see Figure 2.3. In the computational homogenization framework an 
updated Lagrange approach will be used for the finite element salution procedure at the 
macroleveL Therefore, the generalized strains need to be rewritten with respect to the current 
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configuration. The }n-plane gradient operators of the current and reference contiguration are 

related by V(()= F_Cc(() ·Va. Because Eo and JCo are defined with respect to the reference 
surface, only the in-plane gradient operators at the reference surface is needed for the push­
forward of the strains. So, the current in-plane gradient operator at the reference surface V 
can be written as the push-forward 

(2.12) 

The contiguration update is only an in-plane update, since the thickness changes arenottaken 
into account in the shell theory. Substitution of (2.12) in the definitions of the generalized 
strains (2.6) expressed as gradient of variation of the veetors and taking into account that 
there is no update in the transverse direction, gives 

8Eo = (V8Îr)c · (Î + Eo) = 8E · (Î + Eo) (2.13) 

81Co = (V8d)c · (Î + Eo) = 8JC · (Î + Eo) (2.14) 

8-?o 8fy. (2.15) 

These relations define the true generalized strain increments as 

and (2.16) 

The incremental true strain tensors 8E and 8JC, may be compared to be rate of deformation 
tensors. 

2.4 The generalized stress resultants 

In the case of plane stress, the stress components in the thickness direction vanish. In shell 
theory, the stress component along a fiber is assumed to be zer:_o. The generalized stress 
resultants used in shell theories are calculated from the in-plane fr and the transverse shear 
J- parts of the Cauchy stress tensor. The true stress resultant N is defined as 

N = 1 frdh (2.17) 

where N represents the resulting force per unit length working on a line in the midsurface 
in the current configuration. Consiclering the balance of farces on such a line leads to the 
requirement that the in-plane divergence of the stress resultant tensor is zero [1] 

(2.18) 

The moment per unit length working on a line in the midsurface in the current contiguration 
is given by the true couple-stress resultant tensor M. When making use of the assumption 
that the fibers are inextensible the true couple-stress resultant is defined as 

M = 1 (frdh (2.19) 

In the Mindlin-Reissner shell-type also a true transverse shear resultant along a fiber is defined 

Q = ë3 ·1 irdh (2.20) 
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Consiclering the equilibrium of moments on a line in the midsurface the following balance 
equation can be derived 

(2.21) 

In KL-shells the transverse shear is zero, requiring a constant moment for bending [1] 
For the finite element salution of the boundary value problem at the microlevel a total 

Lagrange formulation is used therefore, a relation between the true stress resultants and the 
engineering stress resultants need to be established. The virtual work performed on a fiber in 
the current contiguration (i.e. the virtual work per unit of current midsurface area) by virtual 
displacement is written using the incremental true generalized strains as 

(2.22) 

By definition the first Piola-Kirchho:ff stress tensor P is related to the Cauchy stress tensor 
u by the deformation gradient tensor F as 

P = det(F)u · p-c (2.23) 

It can be shown that when it is assumed that the stress component along a fiber is zero and 
when ')'o is small, the pull-back of the in-plane stresscomponentscan be written as 

(2.24) 

and the pull-back of the transverse shear componentsis here defined by 

P = det(F)J. (2.25) 

Substituting these pull-back relations in equation (2.22), taking into account the relations 
between the increments of the engineering and true strains (2.13)-(2.15), and consiclering 
that dh = dH, the virtual workis written as 

(2.26) 

A ' -

with J = det(Î + Eo) and P the in-plane components and P the transverse traction compo-
nents of the first Piola-Kirchhoff stress tensor. The stress, coupie-stress and transverse shear 
resultants with respect to the reference contiguration are now defined as 

N 0 L p dH = JN . ( e 0 + I) -c 

Mo = L(PdH=JM-(Eo+l)-c 

äo = e3·iPdH=JQ. 
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(2.29) 



2.5 Inconsistencies of shell theories 

The assumptions of the shell theories introduce several inconsistencies. For example, the stress 
component along a fiber is assumed zero, inextensibility of the fibers, however, contradiets 
this assumption. Furthermore, a constant shear strain in the transverse direction supposes 
a constant shear stress through the thickness of the shell. However, unless a shear traction 
is applied to the top or bottorn surfaces, the transverse shear must vanish at these surfaces. 
Therefore, in general a constant shear stress and corresponding straight fibers are nat possible. 
Omitting the transverse shear in KL shell theory, requires the moment to be constant as can 
beseen from the moment equilibrium equation. In general, the moment is nat constant and 
the assumption of zero transverse shear contradiets the equilibrium equation. 

Also, traction in the direction of the fibers applied to either surface of the shell are 
inconsistent with the assumption that the stress component along a fiber is zero. Obviously, 
the stress component must equal the applied traction. However, this is neglected in structural 
theories because this stress component is much smaller than the in-plane stresses; only a small 
fraction of the energy is absorbed by these stresses and it has little effect on the deformation 
[1]. 

These contradictions will be reconciled in the macro-micro transition described in chapter 
3, where the constitutive relation between the macrostructural engineering generalized strains 
and the stress resultants, will be provided by the homogenization of the mechanical response 
of a microstructural RVE. 
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Chapter 3 

Computational homogenization of 
shell-type continua 

The two-scale homogenization scheme is based on the salution of two nested boundary value 
problems, one for the macroscopie and one for the microscopie scales. A scheme of the 
computational homogenization towards a shell continuurn is presented in Figure 3.1. In 
the homogenization of structured thin sheets, the generalized strains Eo, JCo (and -);0 ) are 
calculated for every material point of t he macrostructure (e.g. the integration points of the 
macroscopie mesh within a fini te element environment) . 

The generalized strains are used to prescribe kinematical boundary conditions on the 
microstructural RVE. The mieraseale boundary value problem will be described in more 
detailinSection 3.1 and the kinematical boundary conditions for the KL and the MR shell­
types are derived in Sections 3.2.1 and 3.3.1, respectively. The microscopie inconsistencies 
are reconciled by no longer assuming the fibers to be rigid. This is of special importance for 
the MR shell-type. 

After t he salution of the RVE boundary value problem (which will be summarized in 
Section 4.1), t he obtained mieraseale stress state is homogenized. The macroscopie stress 

resultants N o, Mo (and Qo) are derived exploiting the Hill-Mandel energy condition. 

3.1 Microscopie boundary value problem 

The problem at the microstructural (RVE) level is formulated as a standard problem in quasi­
static continuurn solid mechanics. In the absence of body forces the equilibrium equation for 
the microstructural RVE in termsof the first Piola-Kirchhoff stress tensor P m (related to the 
Cauchy stress tensor by P m = det(F m) u mF ;;;c), has the form 

c -'Vom · P m = 0. (3.1) 

The material behaviour of each microstructural constituent a (e.g. matrix, inclusion etc.) 
is described by its constitutive law, specifying a time and history dependent stress-strain 
relationship 

(3.2) 

It is emphasized that the present framework is not specifically designed for any particular 
constitutive law; the microstructural material behaviour may be very complex and include a 
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Figure 3.1: Schematic representation of the computational homogenization for structured thin 
sheets. 

physical and/ or geometrical evolution of the microstructure (e.g. phase decomposition, phase 
transformations, decohesion, delamination, inter or intragranular fracture etc.). 

The actual position vector x of a point in the microstructural RVE is based on (2. 7) and 
(2.9). To account for the effect of alocal microscopie displacement field due to microstructural 
heterogeneities, an unknown microfluctuation field w is superimposed on the macroscopie 
displacement field. For given macroscopie generalized strains, the only unknown contribution 
to the microstructural displacement field comes from the microfluctuation field w. Adding 
boundary conditions for the microfluctuation field completes the microstructural boundary 
value problem. The kinematical boundary conditions for the Kirchhoff-Love and the Mindlin­
Reissner shell-types are described in Sections 3.2.1 and 3.3.1, respectively. 

The solution of this boundary value problem may be obtained directly in terms of the 
unknown microfluctuation field. However, if one wishes to use a general purpose numerical 
code for the solution of boundary value problems, it is more convenient to reformulate the 
boundary conditions in terms of the total microstructural displacements, without separation 
of the coarse and fine scale contributions. This is also done in Sections 3.2.1 and 3.3.1. 

3.2 Homogenization towards a Kirchhoff-Love shell-type 

3.2.1 Micro-Macro kinematics 

The top and bottorn surfaces of the shell and thus of the microstructural RVE are traction 
free surfaces. Therefore, in this research, the top T and bottorn D surface of the RVE are 
required to be traction free 

ih = PD = i5 (3.3) 

These traction free top and bottorn faces of the RVE leave the strain in the thickness direction 
undetermined. This condition is typically relevant for shells that are not loaded in the out­
of-plane direction, which is the case for e.g. flexible displays or solar cells. The elaboration 
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of the kinematica! boundary conditions for the transverse boundaries of the microstructural 
RVE are based on the expression for the infinitely small material line element in the current 
configuration given by the relation (2.7). Where for a KL-shell the transverse shear -?o is 
assumed to be zero and the microfluctuation fieldwis superimposed. The in-plane position 
vector !:1X of a finite yet small material vector line element in the current configuration is 
written as 

(Î + eo +(/Co) · 1:1Jt + !:17Îi (3.4) 

This relation is applied to an undeformed volume of the microstructural representative cell 
with respect to its geometrical center Xe, located in Xe after deformation. From a physical 
point of view the center of the RVE is identified as the macroscopie point on the midsur­
face, at which the generalized strain tensors are calculated. The RVE volume represents the 
underlying microstructure in the full thickness of the shell and a finite, yet small, in-plane 
vicinity of this point. For simplicity the origin of the used Cartesian vector basis is placed 
at the geometrie center of the undeformed RVE, i.e. Xe= Ö, thus !:1X =X- Xe= X and 
!:1x =x- Xe. 

8 
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____ .-_ .... -··· ---- - :· . ---------- " 

1 

(a) w (b) 

Figure 3.2: (a) The RVE depicted in a shell (b) and the through-thickness representative 
volume element (RVE). 

The kinematica! constrains, which are defined in this section apply to the boundaries of 
a three-dimensional initially rectangular RVE, with width W, depth D, and height H, see 
Figure 3.2.b. The initial volume of the RVE is denoted by Vo. The initially rectangular 
RVE represents a periadie in-plane cellof the initially flat macroscopie shell, see Figure 3.2.a. 
Since the RVE represents the full thickness of the macroscopie structure, H equals the local 
thickness of the shell. In the undeformed reference state the opposing transverse boundary 
normals are NL = -NR, and NB = -NF, where the subscripts L, R, B, and F denote 
quantities corresponding to the left, right, back, and front boundary of the RVE, respectively. 
These boundaries are called the transverse boundaries and their combined undeformed area 
is denoted by Î'o. The initial area of each lamina A€(() = WD is equal for each lamina for 

15 



this particular choice of RVE, and is schematically depicted in Figure 3. 2. b by the gray plane. 
The intersection line of the transverse boundaries and a lamina is a closed line and is denoted 
by s€((). 

The in-plane gradient of the in-plane position vector (3.4) of the finite material vector is 
determined as 

(3.5) 

This deformation gradient tensor (.ç o~:Î)c represents the in-plane deformation of a lamina 
at position (. In the scale transition in both the classica! homogenization theories (e.g. 
[6, 11]) and the second-order computational homogenization [7], the macroscopie deformation 
gradient tensor is required to be equal to the RVE volume average of the microstructural 
deformation gradient tensor. In the homogenization of thin sheets only an in-plane homog­
enization is required since the homogenization in the through-thickness direction is, in fact, 
accomplished by the stress resultants definition used in shell theories. Therefore, a modified 
scale transition relation is proposed that requires the local macroscopie laminair deformation 

gradient tensor t c to be equal to the surface average (over the undeformed area A€ of the 
lamina) of the microstructural in-plane deformation gradient tensor (.ç o~:Î)c for each lamina. 
Hence it is required that, 

V( E [-H/2, H/2] (3.6) 

Integrating (3.5) over the area of a lamina and using the divergence theorem totransfarm the 
area integral to the integral along the boundary of the lamina, it follows that the condition 
(3.6) can be satisfied by applying the following constraints on the microfluctuation field ~Ji 

V( E [-H/2, H/2]. (3.7) 

For an initially periadie RVE, each lamina is also periadie and thus the constraint (3. 7) can, 
for example, be satisfied by requiring the periodicity of the microfluctuation field on the 
transverse boundaries 

V( E [-H/2, H/2] (3.8) 

where .e is alocal coordinate along the edge. Note, however, that the resulting deformation 
of the RVE, in general, will not be periadie due to the macroscopie higher-order deforma­
tion modes (e.g. bending). It can be shown that the in-plane tractions resulting from these 
constraints are anti-periodic, e.g. j;R = -f;L. 

Since there are no constrains in the ë3-direction, rigid rotations of the RVE around the 
ë1- and ë2-axis are not explicitly constrained. For example, a compression of the shell along 
the first direction is imposed on the RVE by the constraints (3.8) by decreasing the in-plane 
distance between the left and the right boundary. This constrain c~n also be satisfied by a 

rigid rotation of the RVE around the ë2-axis. In other words, if 1Q = Ö is not used to prescribe 
boundary conditions on the RVE, the shell is not enforces to remain tangent to the (ë1, ë2)­
plane. Because, it is undesirable to introduce traction in the transverse direction, to stay 
consistent with the assumptions of the Kirchhoff-Love shell theory, only in-plane constraints 
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are used. The two additional constraints selected to prescribe the average in-plane position 
of the transverse boundaries are 

(3.9) 

The resulting traction related to these constraints is constant and has only a component in 
the e1- and e2-direction on the left and back boundary, respectively. Because, the tractions 
resulting from the constraints (3.8) are anti-periodic, it directly follows from the balance of 
farces on the RVE, that the traction from (3.9) are equal to zero. 

The periodicity constraints (3.8) and zero averaged fluctuations along the left and back 
facesof the RVE (3.9) are now rewritten in termsof the total microstructural displacements. 
First, relations equivalent to the periodicity conditions are derived. Applying (3.4) to the left 
and right ( and similarly to the back and front) boundaries of the RVE and subtracting the 
results, with account for the periodicity conditions (3.8), eliminates the unknown fc and L).Jj 
leads to kinematic constraints between opposite boundaries according to 

fp = fs + (Î + eo + (1Co). DNp (3.10) 

Next, applying (3.4) to position veetors on the left and back faces at the RVE and integrat­
ing the results over the area of the respective face, allows to rewrite the constraints (3.9), 
prescrihing zero averaged fluctuations along the left and back boundary, as 

(3.11) 

3.2.2 Stress and coupie-stress resultants 

The obtained micro-scale stress state is homogenized towards a 3D macroscopie shell structure 
basedon the Hill-Mandel macrohomogeneity condition [11]. In general, this condition requires 
the microscopie volume average of the variation of work performed on an RVE to be equal 
the local variation of the work on the macroscale. In shell theories all macroscopie stress 
quantities are resultants obtained by a through-thickness integration. Therefore, the Hill­
Mandel condition is modified and now requires the variation of the overall microscopie work 
óWom performed on an RVE per unit area of midsurface to be equal to the variation of work 
óWoM on the macroscale per unit of area midsurface. 

Equation (2.26) defined the virtual work óWM per unit area of midsurface in the current 
configuration. The virtual work per unit area of midplane in the reference configuration for 
the KL shell is given by 

óWoM = JóWM =No: óe() + Mo: óiC() (3.12) 

The cubic RVE depicted in Figure 3.2b represents an in-plane area of Ao = WD, therefore, 
the averaged microscopie virtual work per unit midsurface can be written as 

óWom = ~ { Pm: (Vomób.x)dVo 
o ivo 
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Thus, the modified Hili-Mandel condition for a shell-type continuurn reads 

No: 6&0 + Mo: 8J<:0 = Al { Pm: (V'om8.6.x)dVo, 
o ivo (3.14) 

This Hill-Mandel condition can be used to obtain the averaging micro-macro relations for the 
stress and couple stress resultants. 

Using the divergence theorem, with incorporation of equilibrium in the microstructure 
(3.1), the microstructural work 8Wom (per unit of area of the reference plane in the undeformed 
state Ao) can be written as 

8Wom =Al { Pm: (V'om8.6.x)dVo =Al { p· 8.6.xdfo 
o ivo o lro 

(3.15) 

where p = N · P~ represents the first Piola-Kirchhoff stress vector and fo is the whole unde­
formed surface of the RVE. The out-of-plane component [i of the traction on the transverse 
boundaries is zero. (There are no constrains on these boundaries in the out-of-plane direc­
tion). Also, the top and bottorn facesof the shell, and consequently of the RVE, are traction 
free. Taking into account that these (partially) traction free RVE faces do not contribute to 
the averaged microscopie variation of work and substituting the variation of relation (3.4) 
leads to 

lfr·~· llr .~. lfr• •• 8WoM = -A , pX dfo : 8&0 + -A , (pX dfo : 81C0 + -A , p · 8.6.wdf0 
o r 0 o . r 0 o ro 

(3.16) 

where Î'0 is the combined area of the transverse boundaries in the undeformed configuration. 
It is straightforward to show that there is no contri bution of the microfl.uctuation field to the 
averaged microscopie work, so the last term in (3.16) vanishes. After substitution of (3.16) 
into the Hill-Mandel condition (3.14) the micro-macro transition relation for the stress and 
coupie-stress resultants follow as 

No ~ fr fridro (3.17) 
o ro 

Mo = ~ fr (fg dÎ' 0 (3.18) 
o r 0 

The boundary integrals allow the computation of the macroscopie stress resultants based on 
microstructural variables defined on the RVE transverse boundaries only. Taking into account 
that the out-of-plane components of the microscopie first Piola-Kirchhoff stress tensor are 
zero, the relations (3.17) and (3.18) can also be transformed into volume integrals 

No = Al { f>mdVo = { (~ { f>mdA€) dH (3.19) 
o ivo JH Ao JA€ 

Mo = Al { (f>mdVo = { (~ { (:f>mdA€) dH (3.20) 
o ivo JH Ao JA€ 

where for clarity the volume integrals are divided into an averaging integrale over each lamina 
and an integration over the initial height of the RVE. Camparing definitions (2.27) and (2.28) 
of the classica! resultant tensor to the volume integrals in (3.19) and (3.20), it shows that in 
addition to the through thickness integration, there is an in-plane averaging. The calculated 
in-plane surface averages are, in fact, the desired in-plane homogenization. 
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3.3 Homogenization towards a Mindlin-Reissner shell-type 

3.3.1 Micro-Macro kinematics 

The top and bottorn surfaces of a Mindlin-Reissner typeRVE arealso required to be traction 
free (3.3). The derivation of the kinematica! boundary conditions for the microstructural 
RVE for the macroscopie shell of MR-type again starts from the in-plane position vector (2. 7) 
with addition of a microfluctuation field 

(3.21) 

The requirement (3.6) that the average of the in-plane laminair strain equals the laminair 
strain defined by the macroscopie deformation tensors Eo and JCo again leads to the periodicity 
conditions on the in-plane microfluctuation field (3.8) for the initially rectangular RVE, as 
described in Section 3.2.1. 

In addition to the laminair strain, transverse shears -?o should be prescribed fora MR-type 
shell. The shell theories on one hand assume the fibers to remain straight but on the other 
hand, the absence of a global shear traction in the micro-scale problem inhibit the directars 
from remairring straight, see Figure 3.3. 

~ ' 
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Figure 3.3: Macro-micro inconsistency fortransverse shear 

Therefore, in the macro-micro scale transition the fibers are no langer assumed to be rigid. 
The philosophy for the scale transition of the transverse shear is the requirement that the 
average "displacement moment" of a fiber is preserved. The displacement moment is defined 
as the product of the in-plane displacement ft and the initial distance of a point to midsurface, 
(. Hence 

i ÇftdH =i (((-):0 )dH (3.22) 

A A 

Substitution of (3.21) in (3.22) and evaluating ~he integral along the considered fiber ('X = Ö) 
and by taking into account that Eo, JCo and "/o are constant for each point along the fiber 
gives 

i Çf11ÊdH = ff (3.23) 

In other words, the "displacement moment" produced by the microfluctuationfield along a fier 
should be zero for the postulated scale transition. Since the RVE represents a finite vicinity 
of a fiber, and since we want to formulate all macro-micro relations in terms of boundary 
relations, this relation will be prescribed to each of the transverse boundaries of the RVE 
separately, but according to the periodicity conditions only two are needed. 

(3.24) 
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The constraints of equation (3.24) introduces the difference in moment on two opposing 
boundaries necessary for transverse shear. Wh en the in-plane dimensions of the RVE are small 
compared with its thickness (W, D < H), the resulting deformation of the RVE approaches 
the deformation of a single fiber described above. For larger in-plane dimensions the RVE is 
more flexible in bending compared to transverse shear (see Section 5.1.1). The dependenee 
of the transverse shear stiffness on the RVE size originates from applying relations valid for 
a fiber on an RVE of the finite vicinity around the fiber. 

The moment on the RVE that results from (3.24) should be counterbalanced by transverse 
shear traction on the transverse boundaries. Based on (2.9), the transverse position vector of 
finite material vector !:::..X in the current configuration is 

(3.25) 

Note, that fó is not a generalized strain, it represents the in-plane gradient of the transverse 
displacements. Since, t~e lamina are assumed to remain tangent to the (ë1,ë2)-plane, fó is 

an in-plane zero vector Ö. Again, the modified scale transition relation is used that requires 
the local macroscopie in-plane deformation gradient tensor to be equal to the surface average 
of the microstructural in-plane deformation gradient tensor CVo!:::..f)c for each lamina. Here, 
the surface average of the in-plane gradient of the transverse deformation is considered. The 
macr:_oscopic ,gradient transverse-deformation tensor is fóë3, when taken into account that 

fvo X dVo = Ö. The scale transition relation now reads 

A
l.c f CVo!:::..-fr(())cdA§ = -?oë3 + ~ f (Vo!:::..1ÎJ((WdA§ V( E [-H/2, H/2] (3.26) 
o JA~ A0 JA~ 

This macro-micro scale transition requires that the contribution of the microfluctuation 
field to this surface average is zero. Again, the choice is made to satisfy this relation by 
constraining the transverse microfluctuation field by the periodicity conditions 

(3.27) 

Constraint (3.27) causes the tangent of each lamina to remain parallel to the (ë1, ë2)-plane, 
whereas the overall thickness change of the RVE is not confined. 

Finally, the kinematica! boundary condition derived for the MR-shell are also written in 
terms of total microstructural position vector. The periodicity conditions (3.10) derived for 
the KL shell-type also apply for the MR shell-type. The boundary integrals prescrihing zero 
averaged "fluctuation moment" (3.24) along the left and back boundary are rewritten as 

{ (!:::..i'Ldro (Î + &o) · { (.iLdro + 1Co · { ( 2 .fLdro + -?o { ( 2dro 
JroL JroL JroL JroL 

{ (!:::..i'Bdro (Î + &o) · { (.iBdro + 1Co · { ( 2 .fBdro + -?o { ( 2dro (3.28) 
Jroa Jroa Jroa Jroa 

Finally, applying (3.25) to the leftand right (and similarly to the back and front) boundaries 
of the RVE an subtracting the results, with account for the periodicity conditions (3.27), elim­
inates the unknown ie and t::..Ji leads to kinematic constraints between opposing boundaries 
according to 

..., A- 1 ~~ ~~ 
uR = iiL + ë31ó · W NR - 2e31Co : (XRXR- XLXL) 

.- A- 1 ~~ ~~ 
up = uB + ë31Q · TNp- 2e31Co: (XFXF- XBXB)· (3.29) 
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3.3.2 Stress and coupie-stress resultants 

The Hili-Mandel condition wili again be used to homogenize the micro-scale stress state 
towards the desired macroscopie stress resultants. The stress resultants defined in the Hili­
Mandel condition of a MR shell-type are the theA macroscopie stress No, couple-stress Mo 

resultant tensors and the shear stress resultant Qo. Therefore, for the MR-shell the Hili­
mandel condition has the form. 

A
l { Pm: (Y'om8~x)dVo =No: 8E0 + Mo: 8/C() + QÖ · 8-):o + Q6 · 8fá 
o ivo (3.30) 

The divergence theorem is again used to rewrite the left-hand side of equation (3.30) as 
a boundary integral (3.15) to represent the microstructural work 8Wom per unit area of 
midplane. The top and bottorn surfaces are traction free, and therefore do not contribute to 
the virtual work. The variables defined in the transverse boundary integrals are divided into 
in-plane and transverse components and the displacement relations of equations (3.21) and 
(3.25) are substituted. 

8Wom = Al ( fr· { (8Eo + (8/Co) · j(r + (8-):o + 8~Ji} dÎ'o 
0 lro 

+ ~0 fro fr · { ë38fó · j(- ~ë381Co : j(j( + 8~Jj} dÎ'o (3.31) 

The virtual work performed by the mierofiuactuation field again can be shown to be zero, 
and thus may be canceled out of equation (3.31). Oomparing (3.31) and the right-hand side 
of (3.30), the relations for the macroscopie stress resultant No and the resultant couple stress 
Mo tensors are obtained as 

(3.32) 

(3.33) 

The recovered definition of the macroscopie stress resultant is the same for the KL and the 
MR shell-type. The definition of the macroscopie couple-stress resultant of the MR shell-type 
obtained an extra term compared to the KL-definition. This term arises from the traction in 
the transverse di:ection, _:vhich also may contribute to the bending moment. The obtained 

shear resultants QÖ and QÖ are 

1 fr A A -A , (pdfo 
o r 0 

~2 l~r- ~A Q0 = -A , p· ë3Xdfo 
O ro 

(3.34) 

(3.35) 

The transverse shear stress resultant of equation (3.34) represents the in-plane gradient of 
moment applied to the RVE. The transverse shear stress resultant of equation (3.35) represents 
the transverse shear necessary to counterbalance this gradient. The macroscopie transverse 
shear component is defined as 

(3.36) 
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Chapter 4 

Numerical im plementation 

In this research the microstructural boundary value problem outlined in the previous chapter 
is solved by the finite element method. The boundary conditions of the microstructural RVE 
are elaborated in more detail in Section 4.1. The methad used to prescribe the boundary 
conditions provides an efficient way to calculate the generalized stress resultants and the 
macroscopie stiffness matrices. This will be described in Section 4.2. 

4.1 Salution of the mieraseale problem 

The microstructural boundary value problem outlined inSection 3.1 is a standard non-linear 
quasi-static boundary value problem for a classica! three-dimensionall continuum. As it was 
the case in the previous section, here the attention remains focused on the three-dimensional 
rectangular RVE, schematically depicted in Figure 3.2b. Using a standard finite element 
procedure, the weak farm of the equilibrium for the microlevel RVE (after discretization) 
leads to a system of non-linear algebrak equations in the nodal displacements Y:. 

[int (Y:.) = L ext ( 4.1) 

expressing the balance of internal and external nodal farces. This system has to be comple­
mented by boundary conditions. Hence, the application of the earlier introduced boundary 
conditions of the Kirchhoff-Love-type RVE, (3.10) and (3.11) and the Mindlin-Reissner-type 
RVE, (3.10), (3.28), and (3.29), have to be elaborated in more detail. 

4.1.1 Boundary value problem for Kirchhoff-Love-type RVE 

The kinematics derived in the previous chapter are with respect to the unknown position 
of the center of the RVE in the deformed state Xe· This rigid body translation is easily 
suppressed by spatial fixation of the displacement of one node, say corner node i = 1. Taking 
into account that Xe= 0. When is assumed that the ~w1 = 0, the in-plane part of the center 
in the current contiguration ie can abtairred from (3.4) 

' A ' 

ie = X1 - (Î + Eo + (1/Co) · X1 (4.2) 

By making use of the generalized in-plane periodicity eaustraint (3.10), the in-plane po­
sitions of the corner nodes on the bottorn surface of the RVE can be written as (see Figure 
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3.2b for the numbering of nocles used) 

i= 1,2,4 (4.3) 

Similarly the relative displacement of the corner points of the top face of the RVE can be 
expressed in terms of generalized strains. 

it56 = i16- i15 =· (eo + (5Ko) · (X6- X5), 

Ü58 = ils- i15 = (êo + (5Ko) · (Xs- X5) 

(4.4) 

The relative in-plane displacement of two opposing points (3.10) only linearly depends on 
their initia! distance to the reference plane (. These constraints (3.10) can be reeast in terms 
of in-plane displacements as 

(4.5) 

with 1J = îf the local coordinate of the conesponding points on the right- left (R-L), front 
- back (F- B) boundaries and on the right,front - left,back (RF- LB) edges. The in-plane 
veetors ,fr(i)' i= 1,2,4,56,58 are prescribed according to (4.3), and (4.4). For an RVE that 
has an equal distribution of nocles on two opposing transverse boundaries in the undeformed 
state, relations (4.5) leadtoa set of homogeneaus constraints (tyings). 

Boundary constraints (3.11) prescrihing the zero-averaged microstructural fluctuations 
normal the undeformed boundary, may be rewritten in terms of corresponding displacement 
components of the nocles on the boundary 

(4.6) 
i=l 

where nL and ns are the numbers of nocles on the left and back boundary, respectively; ai 

and (3i are coefficients following from the discretized form of the left-hand sicles of (3.11); ut. 
and u~. are scalars form the right-hand side of (3.11). Eliminating ie according to (4.2) gives 
for ut. and u~. 

(4.7) 

Consequently, the scalars ut. and u~. are known for any given êo and Ko and the RVE 
geometry. Contrary to the constraints (4.5), which gave rise to homogeneaus tying relation, 
the constraints ( 4.6) result in a set of non-homogeneaus constraints. 
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4.1.2 Boundary value problem for Mindlin-Reissner-type RVE 

The salution of the microstructural boundary value problem for the Mindlin-Reissner-type 
RVE is also abtairred by discretization of the boundary constraints.The corner node i = 1 is 
again spatially fixated and the in-plane position of the RVE's center :Êc and the transverse 
position fc are determined according to (3.21) and (3.25), respectively 

(4.8) 

(4.9) 

The generalized periadie in-plane constraint (3.10), again can be rewritten toa homogeneaus 
linear set of equations (4.5) related to the in-plane positions ofthe corner nocles on the bottorn 
surface of the RVE 

i= 1,2,4 (4.10) 

The boundary integrals prescrihing zero averaged "fluctuation moment" (3.28) , that enforce 
the in-plane transverse shear are rewritten in terms of displacement veetors of the nocles on 
the left L and back B boundaries 

nL na 

I:o/(iftl = 1ÎL··(êo,1Co,)b), L,Biçiftk = 1ÎB··(êo,1Co,1o) (4.11) 
i=1 i=1 

where 1Îv· and aB·· are in-plane veetors from the right-hand sicles of (3.28). The in-plane 
position of the center of the RVE :Êc is eliminated by making use of ( 4.8) 

ftL** =êo · fçL(iL- il)dro +/Co· ~(LiL- (1i1)dro + 1o {(L((L- (l)dro 
}~OL J;OL }~OL 

1ÎB••=êo· {(B(iB-i1)dro+ICo· {((BiB-(1i1)dro+1o {(B((B-(1)dro(4.12) 
lroa J~oa lroa 

In addition to the in-plane generalized periadie displacement also transverse generalized 
periadie displacements (3.29) are imposed on the MR-RVE. By making use of the trans­
verse fixation of the displacement of node 1 and the transverse periodicity constraints, the 
displacement of the corner nocles j = 1, 2, 3, 4 can be written as 

j = 1,2,3,4 (4.13) 

The generalized periodicity constraints in the transverse direction (3.29) also reflect a linear 
relation between the displacement of two points on opposing boundaries. In contrast to the in­
plane periodicity constraints ( 4.5),which are linear in ry, the transverse periodicity constraints 
are linear in ç1 = ~ and çz = '#p-. The constraints (3.29) are reeast in terms of transverse 
displacements as 

-1 -- 1 --ih + 2(1- çz)(üz- ü1) + 2(1 + çz)(ü3- Ü4) 
-1 -- 1 --
üB + 2(1- ç1)(ü4- ü1) + 2(1 + ç1)(ü3- Üz) 

ftLB + 2-fr3 - -frz - ,fr4 (4.14) 
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4.2 Micro to macro scale transition 

After the analysis of a mierostructural RVE is completed, the RVE averaged stress resultants 
are extracted and transported to the macroscopie level as the macroscopie stress resultants 
in the integration point. Of course, the stress resultants can be calculated by numerically 
evaluating the volume or surface integrals given inSection 3.2.2 and 3.3.2 for, respectively ,the 
Kirchhoff-Love and Mindlin-Reissner shell-types. However, for the particular implementation 
proposed here, computationally more efficient formulas may be obtained. The calculation of 
the stress resultant of the Kirchhoff-Love and Mindlin-Reissner shell-types are presented in 
the Sections 4.2.1 and 4.2.2, respectively. 

For the finite element solution of the macroscopie problem a stiffness matrix at every 
macroscopie integration point is required. In computational homogenization schemes there 
is no explicit form of the macroscopie constitutive behaviour assumed a priori. Therefore 
the tangent operator has to be determined numerieally. The higher-order computational 
homogenization scheme [5, 7] employs the direct condensation of the constrained degrees of 
freedom. The latter procedure can be used to derive the constitutive tangents for the shell­
type continua. The calculation of the macroscopie stiffness matrices of the Kirchhoff-Love 
and Mindlin-Reissner shell-types are presented in the Sections 4.2.1 and 4.2.2, respectively. 

4.2.1 Scale transition for a Kirchhoff-Love shell-type 

The stress resultants (KL) 

It may be verified that all forces involved in the homogeneaus kinematic constraints ( 4.5) 
cancel out from the surface integrals in (3.17) and (3.18), while the forces involved in the non­
homogeneaus constraints (4.4) and (4.6), and the reaction forces at the prescribed corner nocles 
(4.3) have to be properly accounted for. From a balance offorces on the RVE, it can be shown 
the forces at the corner node 1 in the transverse direction is zero. After somewhat lengthy 
but straightforward mathematica! manipulations the surface integrals (3.17) and (3.18) can 
be transformed into 

No 

Mo 

with 

1 ""' ~ ~* A L..J(i)x(i)' 
0 i 

1 A A 

A Lf(i)Y(:l' 
0 i 

A A 

i= 1,2,4,56,58,L*,B* 

i= 1,2,4,56,58,L*,B* 

~(i)- ~(1), for i= 1, 2, 4 

x(k)---:: x(5)•A for i= W(k = 6), 58(k = 8) 

Ir (XL- x(l))dfo, for i= L* 
OL , , 

froa (Xs - x(l))dfo, for i= B* 

((l)(~(i)- ~(1)), for i= 1, 2,4 

((s)(X(k),- X(s)),, for i= W(k = 6), 58(k = 8) 

froL ((L~L- ((l)~(l))dfo, for i= L* 

froa ((sXs - ((l)X(l))dfo, for i= B* 
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In (4.15) and (4.16) f(il' i=,1,2,4 are ,the in-plane reaction farces in the three prescribed 

corner nodes and f~6 , !~8 , !~·, and f~· are the resultant farces necessary to enforce :he 

non-homogeneaus constraints (4.4) and (4.6). In a finite element program the farces /(i)' 
i = 1, 2, 4, 56, 58, L *, B* are readily available for the converged solution, from which the 
macroscopie stress resultants tensor No and the coupie-stress resultant tensor Mo can be 
efficiently calculated using the formulas (4.15) and (4.16). Note that the RVE problem is a 
three-dimensional continuurn problem and therefore in a standard implementation only the 
displacement degrees of freedom are unknown, this is contrast to a shell implementation, 
where typically also the rotations are unknown. 

Macroscopie constitutive tangents (KL) 

Procedures for imposing the homogeneaus and non-homogeneaus tyings, include the direct 
elimination of the dependent degrees of freedom from the system of equations, or the use of 
Lagrange multipliers of penalty functions. In this research, the constraints are enforced by 
elimination of the degrees of freedom for which a procedure is described in [7]. The prescribed 
degrees of freedom ( among which are the prescribed displacements of the corner nodes and 
the non-homogeneaus terros of constraints (4.4) and (4.6)) can be further eliminated from 
the system, leaving the displacements of the independent nodes as the only unknowns in the 
system. 

The microscopie system of equation from which the dependent degrees of freedom have 
been eliminated is written as KOJJ; = o[* and rearranged to the form 

(4.19) 

where the subscriptprefers to "prescribed" degrees of freedom (degrees of freedom through 
which the macroscopie generalized strain tensors are imposed on the RVE). The subscript 
f refers to all remairring "free" nodes. System (4.19) is taken at the converged end of a 
microscopie increment, thus the residual farces in the free nodes can be neglected 0 [J ~ Q. 
Elimination of O'J!J form the system (4.19) leads tothereduces stiffness matrix K* that relates 
the variations of the prescribed degrees of freedom to the variations of the associated farces 

with (4.20) 

N ext, relation ( 4.20) needs to be transformed to obtain an expression relating varia ti ons of the 
macroscopie stress resultant tensors to variations of the associated kinematica! quantities. The 
linearized constitutive relations whieh are consistent with the macroscopie framework used 
for the Kirchhoff-Love shell description can be written as 

O'No 

oMo 

'XJ(l) : oe0 + 'XJ(2) : oJC0 
'XJ(4> : oe0 + 'XJ(5> : oJC0 

(4.21) 

(4.22) 

where the fourth-order tensors 'XJ(l), 4C(2), 4C(3), and 4C(5) are the (yet unknown) macroscopie 
constitutive tangents. In order to obtain these constitutive tangents departing from the 
reduced matrix K*, relation (4.20) is first rewritten in an in-plane vector/tensor format (note 

27 



that all the prescribed displacements leading to a non-zero reaction farces are the in-plane 
displacements and that all non-zero reaction farces have only in-plane components) 

I: :K(in) . ûicn) = o~i) (4.23) 
n 

with i, n = 1, 2, 4, 56, Ss, L *, B*, where the components of tensor K(in) are simply found in 
the tangent matrix K* at the rows and columns of the degrees of freedom conesponding to i 
and n. Next, the expression for the variation of farces ( 4.23) is substituted into the relations 
for the variation of the macroscopie stress and coupled stress abtairred by varying ( 4.15) and 
(4.16), which lead to 

1 ~ ' ~ 
oNo = A LL(K(in) ·OÜ(n))X(i) 

0 i n 

(4.24) 

oMo = ~ L L(K(in) 0 oft(n))fc7) 
0 i n 

(4.25) 

The vector oft(n) are now obtained farm (4.3), (eq:disph568), and (4.7) as 

' ' 

oft(n) = X(n) 0 oE() + Y(~) 0 oJC() (4.26) 

Substitution of (4.26) into (4.24) and (4.25) gives 

oNo = ~0 ~~ { (f(i)K(in)gCn))Lc: oE0 + (i(i)K(in)f(~))Lc: o1C0} ( 4.27) 

oMo = ~o ~L { (fc7)K(in)gCn))Lc: oE()+ (~7)K(in)~~))Lc: o1C0} 
~ n 

(4.28) 

where the superscript LC indicates left conjugation, i.e. Tj~ = Tjikl· Camparing (4.27) and 
(4.28) with (4.21) and (4.22), the consistent tangents are finally identified as 

4c;(l) 1 ( ' • • ) LC -+* A* -* (4.29) = ALL x(i)K(in)x(n) 
0 i n 

4c;(2) 1 ( ' • • ) LC _...* "'* -* (4.30) = ALL x(i)K(in)y(n) 
0 i n 

4c;(4) 1 c · · )LC ALL Y(7)K(in)X(n) (4.31) 
0 i n 

4c;(5) 1 (' • • ) LC = ALL Y(7)K(in) Y(~) (4.32) 
0 i n 

Thus, the constitutive tangents of the macroscopie shell-type continuurn are directly ob­
tained through static condensation of the global microscopie (RVE) stiffness matrix. Notice 
that consistency is preserved through this micro-macro transition (provided that the con­
sistent tangent operator is used at the microscale). In a geometrically non-linear case the 
obtained macroscopie tangents automatically include bath geometrical and material contri­
butions, evidently assuming that these parts have been properly dealt with on the microlevel 
[7]. 
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4.2.2 Scale transition for a Mindlin-Reissner shell-type 

The stress resultants (MR) 

The sameprocedure used for the calculation of the stress resultants for the Kirchhoff-Love type 
shell are now used for the Mindlin-Reissner shell-type. Again, all the homogeneous constraint 
relations (4.5) and (4.14) satisfy the condition of zero virtual work and all the forces involved 
cancel out in the surface integrals (3.32), (3.33), (3.36). The stress resultants can be calculated 
from quantities related to the non-homogeneous termsin the constraints (4.4) and (4.11) and 
the prescribed corner nodes (4.10), and (4.13). The boundary integrals (3.32), (3.33), (3.36), 
which define the stress resultant of a Mindlin-Reissner shell, are transformed into 

1 A A 

No A "L.J(i)x~> (4.33) 
0 . 

t 

1 A A 1 - A 

Mo A L:t(i)i(:)- 2A I:e3 · J(i)Y(j), (4.34) 
0 i 0 j 

1 A 1 - A 

Qo = 2A L(~)fCi) + 2A I:e3 · Jêi>Z(i) (4.35) 
0 i 0 j 

here and in the remainder of this section, quantities related to in-plane prescribed degrees 
of freedom are denoted by the indices i, n = 1, 2, 4, 56, 58, L **, B** and quantities related to 
out-of-plane prescribed degrees of freedom are denoted by j, m = 1, 2, 3, 4. The "generalized" 
coordinates of these terms are 

A A 

~(i)- ~(1)• 

X?< x(k) - ~(5)• A 

t Ir L (L(XL - x(1))dfo, 
0 A A 

fr
0
B(s(Xs- Xcl))dfo, 

((1)(~(i)- ~(1)), 

Y* ((5)(x(k)--:. x(5)), A 

t 
froL (L((L~L- ((1)x:(1))dfo, 

froB(s((sXs- ((1)X(1))dfo, 

l 
((i)- ((1)• 

(i ((k) - ((5)• 
froL (L((L- (cl))dfo, 
froB(s((s- ((1))dfo, 

-v~ 
J { g(j)g(j) - 2(1)2(1)• 

z; = { g(j) - 2(1)' 

Macroscopie constitutive tangents (MR) 

for 

for 

for 

for 

for 

for 

for 

for 

for 
for 
for 
for 

for 

for 

i= 1,2,4 

i = 56(k = 6), 58(k = 8) 

i= L** 

i= B** 

i=1,2,4 

i = 56(k = 6), 58(k = 8) 

i= L** 

i= B** 

i=1,2,4 
i = 56(k = 6), 58(k = 8) 
i= L** 
i= B** 

j = 1,2,3,4 

j = 1,2,3,4 

(4.36) 

( 4.37) 

(4.38) 

(4.39) 

(4.40) 

Similar as for the Kirchhoff-Love shell-type continuum, here the consistent tangents are ob­
tained by condensation of the microstructural RVE stiffness matrix in the converged configu-
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ration. The linearized macroscopie constitutive equations of the Mindlin-Reissner shell-type 
are written in a general farm as 

8N0 4c(l) : 8E3 + 4c(2) : 8JC3 + Jc(3) · 8-)b 
8M0 = 4c(4) : 8E3 + 4c(5) : 8JC3 + Jc(6) · 8-):o 

8Qo = Jc(T) : 8E3 + Jc(B) : 8JC3 + 2c(9) · 8-):o 

( 4.41) 

( 4.42) 

( 4.43) 

The reduced matrix K* of equation (4.20) is written in a vector/tensor formatand sp~itted 

into the parts related to the in-plane and out-of-plane prescribed degrees of freedom K(in), 
A - -

K(im), K(jn), and K(jm) 

(4.44) 
n m 

(4.45) 
n m 

Next, the expressions for the variations of farces ( 4.44) and ( 4.45) are substituted into the 
relations for the variations of the stress resultants obtained by varying (4.33), (4.34), and 
(4.35). The veetors Ût(n) and 8.fr(m) are then replaced by the expressions obtained by variation 
ofthe in-plane degrees offreedom (4.10), (4.4), (4.12) and the out-of-plane degrees offreedom 
(4.13) 

Ûl(n) = gCn) · 8E3 + }(~) · 8JC3 + ((n)8-):o 

8ii(m) t(m) · 81Që3 - ~ Y(m) : 81Coë3 

( 4.46) 

(4.47) 

The reeavered definitions of macroscopie constitutive stiffness tensors can be found in Ap­
pendix A. 
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Chapter 5 

Comparative analyses 

In the previous chapters the computational homogenization schemes for a Kirchhoff-Love 
and a Mindlin-Reissner shell-type continuurn have been elaborated. In this chapter some 
illustrative examples are presented obtained using the two schemes. In the first section the 
homogenized response of a homogeneaus and a structured mieraseale RVE under different 
prescribed macroscale deformation modes are discussed. The homogenized generalized stress­
strain relation of homogeneaus shells is compared to the stress-strain response of classical 
shells with a closed-form constitutive model. In Section 5.2 two examples of multi-scale 
analyses are given, one for a transversely loaded sheet, and one for a sheet subjected to a 
twisting loading. 

5.1 Microstructural analyses 

5 .1.1 Homogeneous shell 

First, the initial macroscopie stiffness tensors obtained from an RVE with homogeneaus mate­
rial properties are compared to the linear elastie stiffness tensors from classieal shell theories. 
The macroscopie stiffness tensors relating generalized stress resultants and generalized strain 
tensors crosswise (4c(2), 3(;(3), 4c(5), 3(;(6), 3(;(7), and 3(;(8)), as defined in Chapter 4 by rela­
tions (4.21), (4.22), (4.41)-(4.43), are initially zero. The obtained initial macroscopie stiffness 
tensors 4c(l) and 4c(5) condensed from the stiffness matrix of the RVE are similar for the 
homogenized Kirchhoff-Love and Mindlin-Reissner shell-type. Naturally, 4c(l) and t<5) are 
equal to the linear elastic stiffness tensors of the classieal shell theories, here written in a 
matrix notation 

c<l) = EH 
- 1- v2 [ 

1 1/ 

1/ 1 
0 0 

0 l 0 ' 
(1-v)/2 

(5.1) 

According to the Mindlin-Reissner shell theory, the elastic transverse shear stiffness tensor 
2C(9) (see (4.43)) of a homogeneaus shell, for which the transverse shear is assumed to be 

quadratic through its thickness, equals to ~cl, where G is the shear modulus. Figure 5.1 
shows the initial transverse shear stiffness obtained from homogeneaus RVEs with different 
ratiosof RVE width W (depth of the RVE W = D) and thiekness H. The stiffness depieted 
is relative to the stiffness resulting from true parabalie transverse shear. The transverse shear 
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stiffness decreases with increasing Wl H-ratio. In 5.1(a)-(c) the deformed RVEs corresponding 
to the W I H-rat i os of points (a)- ( c) in graph of Figure 5.1 are shown. It shows that for larger 
in-plane size of the RVE, the RVE will respond to the imposed transverse shear by a s-shaped 
curvature. This result is not surprising, since as has been discussed in Section 3.3.1, the 
macro-micro transition for the transverse shear along a fiber (3.23) has been applied to the 
RVE transverse boundaries vice (3.24) therefore, the wider the RVE, the larger the difference 
between the transverse shear response of the finite size RVE and the fiber. 

1 a) - - - - - - - - - - - - - - - - - - - - - - - - - - - -
I 

~ 0.8 

~ 0.6 

"' 
~ 0.4 

~ 
~ 0.2 

(b) 

§.G (c (a) 
Po'-:-_,-~--~1"-c0°-~-------J101 

W/H [-] 

(b) (c) 

Figure 5.1: The relative transverse shear stiffness as a function of the W I H-ratio of the 
RVE, (a)-(c) show deformed RVEs of different Wl H-ratio to which pure transverse shear was 
prescribed 

In the next test, a three-dimensional initially square homogeneaus RVE was used with 
dimensions W = T = H = 1mm. The mesh consists of 6 x 6 x 6 solid 20-node elements. 
A standard elasto-plastic Von Mises model is used for the material behaviour, with Young's 
modulus E = 210kPa, a Poisson's ratio v = 0.3, a yield stress ay = l.OkPa and a linear 
hardening with modulus h = 52.5kPa. The non-zero generalized stress resultants obtained 
through the homogenization of the RVE are visualized in Figure 5.2 for the different prescribed 
macroscopie deformation modes. The solid lines in Figure 5.2 represent the responses from the 
homogenized RVE fora Mindlin-Reissner type-RVEs. The homogenized responses obtained 
from a Kirchhoff-Love type-RVE are comparable to Figure 5.2(a)-(d). The dots represent 
the generalized stress resultants from classieal Mindlin-Reissner shell theory. The thiekness 
of the classieal shell is assumed to be constant, whereas the thiekness of the RVE is free to 
decrease for large in-plane strains. This causes a small difference between the response of the 
homogenized RVE and the response of the classieal shell, this difference is just slightly visible 
in Figure 5.2.a. The transition of theelastie to the elasto-plastic regime for the bending (Fig. 
5.2.c) and twisting (Fig. 5.2.d) modes also differs from the classieal shell response with respect 
to the homogenized response. In Figure 5.2e the response to a prescribed transverse shear 
is depieted. The solid line represents the initially square RVE which corresponds to point 
(b) in Figure 5.1. The dots represent the response of a classieal Mindlin-Reissner shell, for 

which a constant through-thickness transverse shear is assumed, i.e. :?(j(9) = GÎ. The dotted 
gray line represent the response of a linear elastic shell with parabalie transverse shear, i.e. 

:?cC9) = iGI. 
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Figure 5.2: Macroscopie response for different RVE deformation modes of a homogeneaus 
elasto-plastic Mindlin-Reissner RVE 

5.1.2 Substructured shell 

A periodic structure is considered to be represented by cubic 3D RVEs with a complex 
through-thickness substructure, see Figure 5.3, composed of elastic and elasto-plastic von 
Mises ( with linear hardening) materials. The material parameters of different materials com­
prising the structure are also given in Figure 5.3. 

Material E (kPa) 1/ ay (kPa) h (kPa) 
1,2 2.0 0.42 - -

3 210 0.3 0.51 0.2 
4,5 30 0.4 0.6 5 
6 10 0.15 - -

Figure 5.3: Through-thickness 3D RVE, substructured with 6 materials 

Figure 5.4 shows the deformed RVEs, with the contour plots of the equivalent von Mises 
stress, obtained by applying different macroscopie deformation modes. Note the pronounced 
heterogeneaus stress field distribution throughout the different layers for the different loading 
cases, which cannot be captured in a closed-form homogenization of the RVE response nor 
by the layer-wise homogenization. In Figure 5.5 the homogenized non-zero generalized stress 
resultants conesponding to the different RVE deformation modes shown in Figure 5.4 are 
given. 
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(a) Membrane stretching (c) Bending ( e) Transverse shearing 

(b) Membrane shearing ( d) Twisting 

Figure 5.4: RVE deformation modes and the distribution of the equivalent von Mises stress 
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Figure 5.5: Macroscopie homogenized response of the heterogeneaus Mindlin-Reissner RVE 
for difference RVE deformation modes ( only components of the stress resultants significantly 
different from zero are shown for each loading case) 
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5.2 Multi-scale analyses 

5.2.1 Transversely loaded sheet 

~ 
L 

Figure 5.6: Schematic representation of a shell with a typical plane strain loading, which is 
clamped on one end and has a symmetry plane on the other 

In the first multi-scale analysis example a shell with thickness H = lmm is considered that 
is clamped on the two ends and in the center a vertical displacement w is prescribed. Because 
of the symmetry, only the left-hand side of the shell is modelled, see Figure 5.6. The length 
Lof half the shell is 50mm and the other in-plane dirneusion is very large compared to that. 
Therefore, only a narrow strip of the shell needs to be modelled and the plane strain conditions 
(ps) are prescribed tothestrip edges. The multi-scale problem is solved with 5 Kirchhoff-Love 
or Mindlin-Reissner shell elements only, see Figure 5.6. The Kirchhoff-Love shell element has 
4-nodes with global displacements and rotations as degrees of freedom. Bilinear interpolation 
is used for the coordinates, displacements and rotations. The membrane strains are obtained 
from the displacement field; t he curvatures from the rotation field . The description of Mindlin­
Reissner elements is similar and the transverse shear strains are calculated at the middle of 
the edges and interpolated to the integration points points. In t his way, this element behaves 
correctly in the limiting case of thin shells [9]. 

Three different microstructures are attributed to the shell, type (i) is homogeneaus elastic 
with Young's modulus E = 210kPa and Poisson's ratio v = 0.3, type (ii) is homogeneaus 
elasto-plastic with the same elastic properties and a yield stress of ay = l.OkPa and linear 
harderring modulus h = 52.5kPa, and type (iii) a substructured shell for which the microstruc­
ture is defined in Figure 5.3. 

Figure 5.7b shows the force per unit length in the out-of-plane direction F3 as a function 
of the prescribed displacement w for shell of type (i). The red line is the reference salution 
obtained from a full-scale 3D continuurn rnadelling of the shell. The blue and green line 
represent the multi-scale solutions obtained from Kirchhoff-Love and Mindlin-Reissner shell­
type element, respectively. The camparisou of the global response of the Mindlin-Reissner 
element and the reference salution is very good. The response of the multi-scale Kirchhoff­
Love salution is somewhat stiffer then the reference solution. In Figure 5. 7a the deformed 
profiles of the Kirchhoff-Love (blue) and the Mindlin-Reissner (green) multi-scale shell are 
depicted. The deformed RVEs with contour plots of the equivalent V on Mises stress are shown 
for three places. 
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Figure 5.7: Multi-scale analysis of a transversely loaded homogeneaus elastic shell; (a) the 
macroscopie deformed profiles and the associated RVEs with equivalent Von Mises contour 
plots; (b) the global response of a Kirchhoff-Love shell , a Mindlin-Reissner shell and a reference 
3D full scale continuurn model 

To investigate the origin of the stiffer response of the homogenized Kirchhoff-Love shell, 
the values of the abtairred generalized strains have to be compared. The membrane strain 
is constant throughout both the Kirchhoff-Love EJA = 3.1 . w-3 and the Mindlin-Reissner 
t:l]R = 3.3 · 10-3 shells. The out-of-plane displacement of the Kirchhoff-Love shell is fully 
developed by bending with curvature K}h = ±0.014mm-1 , while for the Mindlin-Reissner 
shell this is a combined contribution of bending K}.h = ±9.7 · w- 3mm-1 and a rather 
noticeable transverse shear strain "YÁf R = 0.65 · 10- 3 . lt shows the importants of transverse 
shear in areas with a large gradient of curvature. 
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Figure 5.8b shows the global response of a homogeneaus elasto-plastic shell (type (ii)). 
The counter plots of the deformed RVEs in Figure 5.8a show the plastic strain energy density. 
Notice that the profile of the deformed KL-shell clearly differs from the deformed profile of 
the Mindlin-Reissner shell. Because of the the plastic deformation at the ends and at the 
symmetry plane of the shell, the membrane strain is no longer constant throughout the shell. 
Due to the plastic yielding, the deformation is more concentrated around the clamped end 
and the symmetry plane of the shell. The points YKL and YMR mark the points where the 
local plastic deformation within RVEs (at the end and at center of the shell) initiates for 
the Kirchhoff-Love and the Mindlin-Reissner shells, respectively. The lack of transverse shear 
strains becomes more prevalent in the global response of the Kirchhoff-Love shell after yielding 
in at these positions, see Figure 5.8b. 
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Figure 5.8: Multi-scale analysis of a transversely loaded homogeneaus elastic-plastic shell; (a) 
the deformed macroscopie profiles and the associated RVEs with plasticstrain energy density 
contour plots; (b) the global response of a Kirchhoff-Love shell, a Mindlin-Reissner shell and 
a reference 3D full scale continuurn 

37 



Finally, the macroscopie shell depicted in Figure 5.6 in combination with the microstruc­
ture shown in Figure 5.3 is used (case(iii)) . Figure 5.9 shows the macroscopie response of 
the shell for both the Kirchhoff-Love (blue) and Mindlin-Reissner (green) shell. No reference 
response is shown because the rnadelling of one row of 50 microstructural RVE to repre­
sent half of the shell, results in a prohibitively large mesh. The macroscopie response of the 
Mindlin-Reissner shell is relatively smooth, as expected. The response of the response of the 
Kirchhoff-Love shell shows jumps for t he larger displacements. Probably, this is the result of 
a too large increment step size in the regions where macroscopie Gauss points go from the 
elastic to elasto-plastic regime. In Figure 5.10 the deformed profiles are shown accompanied 
by the deformed RVEs with equivalent von Mises contour plots for 3 different positions. 

10.---------------, 
- Multi-scale KL 
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'"' ~0~~~--~-~-~ 
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Figure 5.9: The global response of a Kirchhoff-Love shell and a Mindlin-Reissner shell obtained 
for a multi-scale analysis of a transversely loaded heterogeneaus shell 

Kirchhoff-Love 
0.55 

0.44 

0. 32 

0. 20 

0.08 

0.0 

Mindlin-Reissner 
[kPa] 

Figure 5.10: The macroscopie deformed profiles and associated RVEs with equivalent Von 
Mises contour plots obtained fora multi-scale analysis of a transversely loaded heterogeneaus 
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5.2 .2 Sheet with a twisting type of loading 

(a) 

2.5 x l02 
KL shell response 

- Multi-scale response 
2 

~1.5 

z 
-1 
~ 

0.5 

2 4 
w[mm] 
(b) 

6 

Figure 5.11: Multi-scale analysis of a homogeneaus elasto-plastic shell with a twisting loading; 
(a) the deformed macroscopiemeshand associated RVEs of the Kirchhoff-Love shell; (b) the 
global response of a Kirchhoff-Love shell obtained by direct and multi-scale modeHing 

To demonstrate the capability of the proposed computational homogenization framework 
to perfarm a fully three-dimensional loading analysis, an initially fiat square sheet with outer 
dimensions L = 50mm is clamped at on edge. To one corner a vertical displacement of w is 
prescribed and to the other corner the same displacement is prescribed in the opposite direc­
tion producing a twisting deformation at the plate, see Figure 5.1la. The sheet is modelled by 
9 Kirchhoff-Love shell-elements and it has the homogeneaus elasto-plastic proporties of case 
(ii). In Figure 5.1lb the macroscopie response of the classica! Kirchhoff-Love (dots) and the 
Kirchhoff-Love multi-scale (solid line) analyses are shown. The absolute reaction forces IF3I 
at the prescribed nocles is plotted again the prescribed displacement w. Again, there is a small 
region where the incremental step size apparently was too large to give a smooth response. 
The overall response of the multi-scale response differs slightly from the response of a direct 
analysis of the shell by a Kirchhoff-Love element, this was also shown in Figures 5.2c and 
5.2d. In Figure 5.11a, the deformed sheet is shown accompanied by deformed microstructural 
RVE with Von Mises contour plots at some typically positions. 
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Chapter 6 

Conclusions and recommendations 

Shell-type continua with functional periodic microstructure may be found in various engineer­
ing applications. The development of these structures often calls for an analysis of the com­
plex micro-macro structure-properties relations. The objective of this research is to develop 
a two-scale computational homogenization approach for structured thin sheets. Homogeniza­
tion approaches avoid extensive experimental measuring and compared to direct modeling 
of the whole heterogeneaus structure there is a large reduction in the number of degrees of 
freedom. 

The computational homogenization technique is essentially based on the solution of two 
nested boundary value problems, one for each scale. No closed-form constitutive model needs 
to be chosen for the macrolevel, which makes the technique suitable to deal with complex 
loading and an evolving microstructure. Additionally, as has been demonstrated in this work, 
macroscopie constitutive tangent operators, necessary for the solution of the macroscopie 
problem within, for example, a finite element framework, can be obtained easily from the mi­
croscopie overall stiffness matrix by static condensation. lmportantly, consistency is preserved 
through this scale transition. 

In this work, the three dimensional macroscopie structure is modelled by a shell-type 
boundary value problem derived from a classica! shell theory. The theories used in this 
research are the Kirchhoff-Love and the kinematically more rich Mindlin-Reissner theories, 
which were summarized in Chapter 2. Evidently, the choice of a shell theory has an influence 
on the precise scale transition relations, even though the application of the framework toother 
shell formulations (e.g. solid-like shell) can be readily obtained in a similar manner. Departing 
from assumptions of a shell theory an appropriate shell transition can be established to arrive 
at a consistent multi-scale computational homogenization framework. The shell formulation 
is used that assumes the curvatures and the transverse shear to be small relative to the shell 
thickness, while the large macroscopie displacements, rotations and membrane strains are 
possible. 

The developed computational homogenization for structured thin sheets fits entirely in 
a standard shell mechanics framework. The computational homogenization scheme was pre­
sented in Chapter 3. Generalized strains descrihing the local membrane strains, curvatures 
and for Mindlin-Reissner shells transverse shears are calculated for every material point of the 
macrostructure (e.g. an integration point on the surface macromesh within a fini te element 
environment). These generalized strains are used to formulated essential and natural bound­
ary conditions to be imposed on the microstructural representative volume element that is 
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assigned to the macroscopie point. In the present framework, the three-dimensional RVE 
represents the full thickness and a periodic in-plane cell of the macroscopie structure. 

Upon the solution of the microstructural boundary value problem, the macroscopie gen­
eralized stress resultants are obtained by averaging the resulting RVE stress field over the 
in-plane area of the microstructural cell. Hence, the stress integration through the thickness 
of the shell is combined with an in-plane homogenization. The generalized stress resultants 
represent forces and moments working on a line-element in the reference surface of the shell. 
From a macroscopie point of view, a (numerical) generalized stress-strain relationship at ev­
ery macroscopie point is readily obtained. With a modified version of the Hili-Mandel energy 
condition it was shown that the generalized stress resultants defined in the computational 
homogenization scheme are consistent with the definitions used in shell theories. 

In this research the emphasis has been on an initially three dimensional rectangular RVE 
that represents the underlying microstructure of an initially fiat shell. The computational ho­
mogenization scheme for such a sheet has been implemented, for which details were discussed 
in Chapter 4. Finally, the homogenized response of a homogeneous RVE has been compared 
to the macrostructural response of the classica! shell theories with closed-form elasto-plastic 
constitutive behaviour. Also, the homogenized response of a heterogeneaus microstructure for 
different macroscopie deformation modes has been calculated. Two examples of multi-scale 
analyses are given, in one the macroscopie shell is meanly transversely loaded, while in the 
other the shell is subjected to a twisting loading. 

The analysis of realistic applications requires a considerable computational effect, since 
both scales are numerically solved concurrently. The calculations times required can be 
reduced by the use of parallel computations. One of the possible parallel implementations 
schemes has been presented in [5]. Also, a different type (lower order) of solidelement to model 
the microstructure could be used. Despite the required computational effort, the presented 
multi-scale computational homogenization procedure a very useful and powerful tool for the 
analysis of structured thin sheets with any, possible very complex, periodic microstructure. 

42 



Appendix A 

Constitutive tensors (MR) 

The constitutive macroscopie stiffness tensors for a homogenized Mindlin-Reissner shell de­
fined by (4.33), (4.34), and (4.35) calculated directly from the reduced stiffness matrix that 
relates the variation of the prescribed degrees of freedom to the variations of the associated 
forces. Quantities related to in-plane prescribed degrees of freedom are denoted by the in­
dices i, n = 1, 2, 4, 56, 58, L **, B** and quantities related to out-of-plane prescribed degrees of 
freedom are denoted by j, m = 1, 2, 3, 4. 

't(1) 
1 """"""""""(i* K* i* )LC (A.1) A L..,; L..,; (i) (in) (n) 
0 i n 

't(
2

) ~o {~L (i(i)K(in)~~))Lc-! ~L (i(ï/\:fim) · ë3Y(m))Lc} (A.2) 
t n t m 

~(3) 2~ {~L (i(i)K(in)((n))Lc + ~L (i(i)K(im) · ë3t(m))Lc} (A.3) 
0 t n t m 

tC4
) ~o {~L (~1)K(in)i(n))Lc- ~L (.Ytjl3 ·K(jn)i(n))} (A.4) 

t n J n 

't(S) ~O { ~ L ( ~1)KCin) f(~)) LC - ! ~ L ( Y(j)ë3 · K(jn) ~~)) - · · · 
t n J n 

! ~L (f(1)KCim) · ë3Y(m))LC + ;Î ~L (Y(j)ë3 · K(jm) · ë3Y(m)) L.5) 
t m J m r 

~(6) = 2~o {~L (~1)K(in)((n))LC- LL (Y(jl3 · K(jn)(Cn)) + · · · 
t n J n 

~ L ( ~1)KCim) · ë3t(m)) LC - ~ L ( Y(jl3 · K(jm) · e3tCm))} (A.6) 
t m 3 m 
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Jc(7
) = 2~0 { ~ L ( ((i/qin)i(n)) + ~ L ( ful3 · K(in)i(n))} (A. 7) 

t n J n 

Jc(S) = 2~0 {~I: ( ç(i)K.(in)~~)) +I: I: ( itj)ë3 · K.(in)~~))- ... 
t n J n 

~~I: ( ç(i/qim) · e3 .Y(m)) - ~~I: ( itjl3 · :K(im) · e3 v*)} (A.s) 
t m J m 

2c(9
) = 4~ {LL(((i)K(in)Ç(n))+I:I:(f(jl3·K(in)Ç(n))+ ... 

0 i n j n 

~ L ( Ç(i)K(im) · ë3f(m)) + ~ L ( f(jl3 · K(im) · e3f*)} (A.9) 
t m J m 
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