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Abstract

In this report, a three-dimensional model for the rolling contact problem in a capstan

drive in a video recorder is presented. The model is based on two elements, that

have been implemented in the finite element package SEPRAN. In these elements a

Lagrangian approach has been used for the description of the deformations.

The first element is a brick element with nine nodes. It models the isotropic,

elastic, incompressible neo-Hookean rubber material.

The second element is a quadrilateral boundary element with four nodes. It

models the contact conditions between a rigid shaft and another body. The contact

conditions consist of a geometrical constraint and an adapted constitutive equation

for Coulomb friction.

Both elements have been checked for some problems. Several results are satisfac­

tory. The neo-Hookean element is suitable for moderate deformations as occurring

in for instance rubber rollers and tires. The contact element is suitable to describe

frictionless contact problems. For contact problems with friction the model provides

only satisfactory results when the friction force and the freedom of movement of

the rubber body are limited. As a consequence of these limits the model is not yet

suitable to describe the rolling contact problem between capstan and pinch roller.
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Chapter 1

Introduction

1.1 General introduction

In data systems, magnetic recording is often applied as a carner of information,

thanks to its high density of information, its convenience of use, its low costs and its

reusability. An example of magnetic recording is video recording.

video cassette

-
Figure 1.1: Tape transport mechanism in a standard Philips VHS video recorder

The fidelity of video recording depends among others on the mechanics of the

system. That is why at the Philips Research Laboratory Eindhoven a research project

has been started on the behaviour of the mechanics in a video recorder. In the group

"Continuum Mechanics, Systems & Control and Tribology", the behaviour of the

capstan drive is examined. This research is carried out in co-operation with the
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Eindhoven University of Technology.

In almost every video recorder the tape is driven by a combination of a metal

shaft, the so-called capstan, and a metal cylinder with a rubber coating, the so-called

pinch roller (see figure 1.1 and figure 1.2). The capstan is driven by a DC-motor. The

pinch roller is pressed against the capstan by an elastic spring. The tape between

both rollers is transported due to the frictional forces in the contact zones.

Figure 1.2: Capstan drive

Some research has already been carried out on a method for calculating the stresses

.and deformations in the tape and pinch roller coating with a two-dimensional model,

[1] and [2]. However, there is a strong need for a three-dimensional model. The path

of the tape in a recorder is of a three-dimensional nature.

In this report, a three-dimensional model will be presented for the rolling contact

problem between capstan and pinch roller. Because of its complexity, the problem is

reduced to contact between two bodies. The tape has been left out of consideration,

but can be added as a third contacting body later on.

1.2 Problem definition

A model of the capstan drive has been shown in figure 1.2. The capstan is being driven

at a certain angular speed. The purpose of the drive is to transfer this velocity to

the tape as well as possible. In this conveyance of velocity, the deformations of the

pinch roller are of great importance.

As already has been remarked in the previous section, the tape is left out of

consideration. Since the tape is very thin (about 18 J-lm or thinner) in comparison

with the diameter of the pinch roller (about 12.5 mm for a standard Philips VHS

video recorder), it is not of importance for the deformation of the rubber coating.
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The metal capstan and the metal cylinder of the pinch roller are much stiffer than

the rubber pinch roller coating. Therefore, they are supposed to be rigid.

The material of the rubber coating is assumed to behave elastic, isotropic and

incompressible. A simple and suitable constitutive relation for such behaviour is the

neo-Hookean constitutive equation. It contains only one material parameter. The

suitability of the neo-Hookean material model has been shown by experiments on the

rubber material of the coating.

1.3 Strategy

A Lagrangian approach is used to calculate deformations and stresses in the body.

This means, that the reference system and mesh are attached to the body.

Based on the balance of mass, momentum and angular momentum and the neo­

Hookean constitutive equation an algebraic system of equations is obtained for the

material behaviour of the rubber coating, with the position x of a material point

and a pressure-like quantity p in the body as unknowns. The system of equations is

obtained by using the weighted residual method, a linearization and a discretization

of the body. For the discretization a trilinear hexahedral element is used. This is

a three-dimensional brick element with eight nodes for the position at the vertices

of the element and one for the pressure-like quantity at the centre of the element.

The element applies linear interpolation functions for the position and a constant

interpolation function for the pressure-like quantity.

The neo-Hookean element has been implemented in SEPRAN (see [7]). The

computational burden has been reduced considerably by use of the penalty function

method.

A quadrilateral bilinear boundary element has also been implemented in SEPRAN.

This boundary element describes the contact conditions between capstan and pinch

roller coating. The system of equations for this boundary element is based on the

geometrical constraint in the contact region and an adapted constitutive equation for

Coulomb friction. The only unknown in the system of equations is the position x, for

which the boundary element contains four nodal points.

Both elements are checked for some test cases. Contact problems with and without

friction are simulated. The results of these simulations are compared with numerical

results, obtained with the finite element package MARC (see [8]).

Finally, some conclusions are given.
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Chapter 2

Material behaviour

2.1 Introduction

In this chapter mathematical relations to describe the behaviour of a neo-Hookean

rubber material will be derived, based on the laws of conservation and the constitutive

equation for a neo-Hookean rubber materiaL The derived relations form the basis for

a numerical algorithm to compute the quantities of interest.

2.2 System of equations

Primary variables are the position xof the material points, the Cauchy stress tensor

u and the density p. If these variables are known, the configuration of the rubber

body can be described completely.

The state variables must satisfy the balance of mass, momentum and angular

momentum. These laws are given here in a local form (see [3]):

Po

pv
IT

where ,00 is the density at time to,

J is the volume change factor,

q denotes external volume forces,

v is the velocity,

V is the gradient operator,

12
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(.) denotes a material time derivative,

()C denotes a conjugate tensor.

The rubber body is considered to be incompressible and it is assumed that there

are no external volume forces and inertia forces. This simplifies the system of equa-

tions:

J det(F) = 1 (2.4)
.... ....

(2.5)V·uc 0

u u C (2.6)

where F = (Vox)C is the deformation tensor,

Va is the gradient operator with respect to the reference configuration.

The material behaviour is described with a so-called constitutive equation. One

way to model a neo-Hookean rubber material is with the following constitutive rela­

tion (see [9]):

u = -pI+r r = 2c (F . F C
- I) (2.7)

where r is a stress tensor,

I is the unit tensor,

c is a material constant,

p is a pressure-like quantity.

The constitutive equation introduces one extra unknown, the pressure-like quan­

tity p. This pressure-like quantity p depends on the hydrostatic pressure and on the

left Cauchy Green strain tensor (B = F . F C
).

Together with the other unknowns, the position vector (three components) and the

stress tensor (nine components), there are thirteen unknowns in a three-dimensional

problem. Consequently, thirteen equations are needed to obtain a solvable system.

The number of derived equations has to be equal to the number of unknowns. Equa­

tion (2.4) represents one equation. Both equation (2.5) and equation (2.6) offer three

equations. And finally, the constitutive relation (2.7) provides six equations. Totally,

there are thirteen equations. This is exactly the number of equations, needed for a

solvable system. So, a combination of equations (2.4), (2.5), (2.6) and (2.7) results in

a solvable system of equations with the position vector and the pressure-like quantity

as unknowns.
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2.3 Discretization and linearization

A weighted residual method is applied to the system of equations. The equations are

multiplied by a weighting function and integrated over the volume. Application on

equations (2.4) and (2.5) yields

kw· (V . (TC)dn = 0

In r (det(F) -l)dn = 0

v w
V r

(2.8)

(2.9)

Before derivation of the weak form of these equations, the set of trial solutions and

the set of weighting functions have to be defined. The set of trial solutions xis defined

as

The set of weighting functions wis defined likewise by

The set of trial solutions p is defined as

The set of weighting functions r is defined likewise by

n = {rlr E Co, r/rp = O}

where: [ ]n

itlr ."
plrp

ito

Po
and Ck

means that every component must satisfy the condition,

is it on that part of the boundary where it is prescribed,

is p on that part of the boundary where p is prescribed,

is the prescribed position vector,

is the prescribed pressure-like quantity,

is the class of functions that are at least k times differentiable.

For non-linear problems it is difficult to indicate the conditions with respect to con­

tinuity and differentiability.

Vlith these definitions the equations (2.8) and (2.9) can be converted into the next

system:

kC\iw;C : iT dn =1w· iT . ndf

kr (det(F) - l)d!1 = 0

14

V wEW

V r E n

(2.10)

(2.11)



usmg: 1. the symmetry of the stress tensor

u = U
C

2. partial integration according to

V. (0" . w) = w . (V .0") +(Vwy : 0"
3. transformation of a volume integral into a boundary

integral according to the divergence theorem

In V· (0" . w)dn = Ir ii· (u· w)dr

Equation (2.10) is called a weak formulation. The restriction of being continuously

differentiable is imposed on the weighting function winstead of the stress tensor u.

Substitution of the constitutive equation (2.7) in (2.10) yields

in (Vwt : (-pI + T)dn = £w· bdr

in r (det(F) -l)dn = 0

V wEW

V r ER

(2.12)

(2.13)

where bis the boundary force.

The derived system of equations is nonlinear. In order to solve the system with a

finite element method, it has to be linearized. The way, this will be done, is by using

estimations for the unknowns X, p and u, indicated by i, p and iT. The difference

between the exact solution and the estimate is given by flx, l:ip and flu:

p

i+flx

p+flp

iT + flO"

(2.14)

(2.15)

(2.16)

(2.17)V wEW

Supposing the estimations are accurate, then the differences are relatively small com­

pared to the estimates and it is allowed to neglect terms of order fl2 and higher.

Substitution of equations (2.14), (2.15) and (2.16) in (2.12) and (2.13) then yields

(see appendix A)

In Lw : (-pI - flpI +PLL\x)dn +

in L w : (f- + 4cDL\x + T· LL\xC)dn = £w· bdr

1 ~ 1 1r (V . flx)dn = r ( A-I )dn
n n det (F)

V r ER (2.18)
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where

L w = (~uj)c

LLix = (~~X)C
1

D Ax = ~(LAx + LAxC)

With respect to the system of equations (2.17) and (2.18) some remarks have to

be made:

1. In order to derive a symmetrical matrix, in the incompressibility constraint the

original weighting function r has been replaced by a weighting function ~.
detF

The resulting equation (2.18) is consistent. This can be seen by substitution of

the real solution (~x= 0). This substitution gives the original equation.

2. The real configuration of the body is unknown. There is only an estimation

for this configuration. To solve the problem in a decent way, the volume of the

body should be written as the sum of an estimation and a variation. This has

not been done. The integration has been carried out over the estimated volume.

Since the problem will be solved iteratively, this will have no consequence for

the solution, only for the convergence.

Equations (2.17) and (2.18) can be discretized geometrically by a finite element

method. This means that the volume n will be divided into a finite number of pieces,

the so-called elements. In each element, there are a finite number of discrete points,

the so-called nodes, in which the unknown positions and pressures are computed. For

other points of the element the unknowns can be derived by interpolation between

the nodes.

The weighting functions are also computed in the nodes and interpolated between

the nodes. They are chosen according to the Galerkin method, which means that

they are interpolated in the same way as the corresponding unknowns. So, in the

procedure of discretization, the unknown variables and the weighting functions are

approximated by a linear combination of the values in the nodes.

.....( \x X,Y,Zj

p(X,y,Z)

w(x,y,z)

r(x, y, z)

nx

:E Xi 'Pi
i=l
np

1: Pi 'ljJi
i=l
nx

1: Wi 'Pi
i=l
np

1: ri 'ljJi
i=l
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where nx denotes the number of nodes for the position,

np denotes the number of pressure nodes,

<.pi is the shape function for the position belonging to node i,

'l/Ji is the shape function for the pressure belonging to node i,

Wi is tlie value of the weighting function win node i,

ri is the value of the weighting function r in node i.

In this report, a three-dimensional body will be discretized by a trilinear hex­

ahedral element, containing eight nodes for the position and one for the pressure.

This hexahedral element with its interpolation functions will be treated in the next

section.

In appendix B it is shown how discretization of equations (2.17) and (2.18) with

use of the approximations for the position and the pressure results in the following

system of equations and the following contributions for each element to the global

stiffness matrix and right hand side vector:

~T in (-Qt + ATi:)dn

+~T in [-Q tJ.;e + AT('tTt B + 4cD + T)AtJ.~]dn

=w T f Pbdr
"J Jr "J

v W
"J

V r
"J

(2.19)

(2.20)

I,;; e)T
Y:-

1 A -1
det (F)

[.6.x1 .6.Yl .6.z1 .... .6.x8 .6.Y8 .6.z8 ]

[ ~Pl ]

r A 1
l PI J

[WI
X

WI Y Wl
z

•..• W8
x

W8Y W8
Z

]
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(b e)T [ bi
x bIY bIz bs

x bsY bs
z

]
'"
(Tef = [ Txx Txy Tyy Tzz Tyz Txz 0 0 o ]
'"

r1
0 0 0 0 0 0 0

~ 1I 0 0 0 0 0 0
I ~ 2"

0 1 0 0 " " f\ (\ Iu u u v v

0 0 0 1 0 0 0 0 0
Be 0 0 0 0 I 0 0 0 02

0 0 0 0 0 I 0 0 02"
0 0 0 0 0 0 I 0 0-"2

0 0 0 0 0 0 0 I 0-2
0 0 0 0 0 0 0 0 I

-2"

1 0 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0 0"2
0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0
De 0 0 0 0 I 0 0 0 0"2

0 0 0 0 0 I 0 0 02
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Txx k 0 0 0 Txz k 0 Txz
2 -2- 2 --2-

Txx+Tyy k 0 k !E. Tyy-Txx k _!E.
4 2 4 4 4 4 4

Tyy 0 !E. 0 -~ !E. 02 2 2

Tzz !E. k 0 _!E. k
2 2 2 2

Te Tyy+Tzz ~ _ Txz Tzz-Tyy ~
4 4 4 4 4

fxx+Tzz ~ _k Txx-Tzz
4 4 4 4

symm Txx+Tyy _!.u.. _!E.
4 4 4

Tyy+Tzz _k
4 4

Txx+Tzz
4

r
& 0 0

1
&x
& & 0&y &x
" & f\

I
u &y v

I0 0 a

[f
0 0 'Ps 0 0 1&zI

& & I
A e 0 0 " {\ I

&z ay <PI u 'P8

~s J& 0 & 0 'PI 0 0az ax
& & 0ay -ax
0 & &

az - ay
a 0 a

-az ax
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tX(<Pl)
t/<pd
tz (<pd

Qe = [ 1Pl ]lf(~') J
&y (<ps)
tz (<Ps)

<Pl 0 0

0 <Pl 0

0 0 <Pl

[f
0 U0 0 <Ps

pe <Pl 0 0 <PS
0 <Pl 0 0

<PS 0 0

0 <PS 0

0 0 <PS

(2.21 )v w

An assembly process is required to obtain the global matrix and right hand side

vector.

Transferring the estimated terms in equations (2.19) and (2.20) to the right hand

side yields

7£, T in [-QI1;e + AT(tTtB +4cD +T)AI1;£]dO

= w T r(Q p _ ATT )dO +w T r Pb df
t'V in - t'V t'V t'V ir t'V

~T 10 QT11;£ dO =~ T 10 t kdO V ~ (2.22)

The derived system of equations (2.21) and (2.22) must hold for all admissible weight­

ing functions wand r . Therefore, the system can be generalized by the following
t'V t'V

matrix formulation:

r S _L
T 1r 11;£ 1= rL1 (2.23) I

L-L fr J l ~;e J l ~ J
L..-- I
where:

S r AT ('ljJ TPB +4c D +T)A dOin I"V t'V

L kQTdO
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2.4 Trilinear hexahedrai element

The domain of a straight edged hexahedral element is completely defined by the

location of its eight nodal points Xi, i=1, .. ,8. The local node ordering is given in

figure 2.1.

.~ X=(X,y,z)
8

I

7 f'..J 8
~ ~

5 \

1 6 \

I TJ
\ 6
\I )..- \I /

y~--- 3 ~ /4~-V3
//4

~=(~,7J,()/

1 2 / 2
f'..J

1

Figure 2.1: Parent domain and local node ordering

It is impossible to define shape functions for an arbitrary hexahedral element.

That is why a parent domain is used, for which it is relatively simple to define shape

functions. The parent domain is defined in another space, the so-called e-space.
rv

This e-space is an orthonormal space, with ~, fJ and ( as independent coordinates.
rv

The parent domain is a cube with edges of length two in ~ -space, given in figure 2.1.

The centre of the bi-unit-cube is located in the origin of the coordinate system.

The shape functions, belonging to the bi-unit-cube can be used to approximate

the position i e of an arbitrary point in the element, because the domain ne of the

arbitrary hexahedral element is the image of the bi-unit-cube under trilinear mapping

(see appendix C). So, the approximation of the position vector i is given by

(2.24)

where the shape functions for a bi-unit-cube with center in point (e, fJ, () = (0,0,0)
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are given by

(2.25)

where ei is the e-coordinate of node i in £-space,

'TJi is the 'TJ-coordinate of node i in e-space,
I'V

(i is the (-coordinate of node i in £-space.

How these shap7e functions are determined is treated in appendix C.

The shape functions (2.25) are a function of the coordinates in £-space. However,

in the discretized system of equations (2.23) appear the X-, y- and z-derivatives of the

shape functions. How these derivatives can be determined is presented in appendix

C. The result is given here.

(2.26)

where 'Pi,j is the j-derivative of 'Pi,

X,j is the j-derivative of x,

Y,j is the j-derivative of y,

Z,j is the j-derivative of z,

(f denotes the transponed of a matrix.

2.5 Penalty function method

In the previous sections the system of equations, describing the behaviour of a rubber

body, has been linearized and discretized in order to solve it with the computer. The

discretized system of equations is given by equation (2.23):

(2.27)

Because of the null matrix in the lower right part the total system matrix is not

positive definite. Partial pivoting can be necessary to solve the system. Partial

pivoting is the interchanging of rows in the system matrix. Since the implementation

will be performed within the finite element package SEPRAN and SEPRAN does not
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(2.28)

perform partial pivoting, the penalty function method is an efficient alternative. In

stead of the incompressibility constraint (2.18) the penalty formulation is imposed:

k r ~ . ~xdn +kr El ~pdn = kr kdn

or, in discretized form (see appendix B):

(2.29)

where El is the penalty parameter,

M is the pressure mass matrix.

In each element, there is one node for the pressure-like quantity. So, the elemental

mass matrix Me is a scalar.

With use of the penalty formulation the total system of equations looks as follows:

(2.30)

Since the pressure-like quantity is interpolated discontinuously, the number of un­

knowns can be reduced by eliminating the pressure ~p per element. Discontinuous
'"interpolation means that there is no overlap of the elemental matrices in the global

matrix. Elimination of ~p results in
'"

(2.31)

After solving (2.31) for ~x , ~p can be found according to
'" '"

(2.32)

The calculation of the inverse of the pressure mass matrix M is very simple because of

its diagonal structure. This diagonal structure is a consequence of the discontinuous

interpolation of the pressure-like quantity.

The penalty function method has two advantages compared to a direct method.

The first one is that the system matrix is symmetric and positive definite. No partial

pivoting is needed to solve the system. Partial pivoting costs a lot of computation

time and memory space. The second advantage is the possibility to reduce the number

of unknowns, which also reduces the computation times considerably.
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When applying a penalty function method, special attention should be payed to

the choice of the penalty function parameter. In the penalty formulation an extra

term has been added to the incompressibility constraint L t:::..x = -k. In order to
f'V f'V

approximate the solution of the incompressibility constraint the extra term must be

small. Usually, this requirement is satisfied by choosing a small value for the penalty

parameter E1. However, when the penalty parameter has been chosen too small, an

ill conditioned system will induce and the solution will deteriorate because of the ill

conditioning and accumulation of round-off errors.

In the problem here considered, the extra term is the product of the penalty

parameter E1 and the variation of the pressure-like quantity t:::..p. This variation t:::..p

tends to zero in a converging iterative solution proces. Then the extra term also

tends to zero, regardless of the value of the penalty parameter. Consequently, in this

problem the penalty parameter does not influence the final solution, which indeed

has been ascertained. This is a very unusual phenomenon for the penalty parameter

method.

The system of equations (2.31) and (2.32) has been developed for one representative

element. This element has been implemented in the finite element package SEPRAN

[7]. SEPRAN creates the matrices and right hand sides for all elements and assembles

them. This results in one large matrix and one large right hand side column. After

this assembly SEPRAN also solves the resulting matrix equation. The structure of

the program, in which the assembly process and the solving of the system of equations

occurs, is discussed in appendix F.
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Chapter 3

Contact

3.1 Introduction

Due to friction in the contact zones of the capstan drive the tape is driven. In this

chapter, the contact phenomena for the combination of capstan, pinch roller and tape

will be analyzed.

In this research, the problem will be reduced to contact between two bodies, the

capstan and the pinch roller coating. Later on, the tape can be added as a third

contacting body.

In the contact region extra conditions have to be fulfilled. Firstly, a material

point of one body can't occupy the same position as a material point of the other

body. Because of this impenetrability, a geometrical constraint has to be taken into

account.

Secondly, each body is loaded by contact forces in the contact zone. At contact

points the law of action and reaction applies.

In this chapter, the impenetrability constraint and the contact stresses for the

contact between capstan and pinch roller coating will be described mathematically.

3.2 Impenetrability constraint

Before describing the contact conditions, some assumptions have to be made. Firstly,

it is assumed that the capstan is rigid with respect to the pinch roller coating. This

assumption is tenable, because the metal capstan is much stiffer than the rubber

pinch roller coating.

Another important aspect is the interaction between the bodies. Adhesion is
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not allowed. The friction between the two bodies can be described with the aid

of a constitutive equation. For the moment however, only frictionless contact is

considered.

Furthermore, the position and the movement of the capstan are supposed to be

known. Material points of the pinch roller may not penetrate the capstan.

In this section the system of equations for the impenetrability will be determined.

Afterwards, this system of equations will be treated such that it can be solved com­

putationally.

3.2.1 System of equations

First, a few notations have to be defined. The pinch roller coating is a three­

dimensional body that occupies a bounded open domain Op(t) with boundary f pet)
at the current state t. np(t) denotes the closure of Op(t), i.e. np(t) = Op(t) U fp(t).
Similar notations will be used for the domain, the bounded open domain and the

boundary of the capstan. These are indicated by neap(t), Oeap(t) and feap(t) respec­

tively.

The candidate contact area of the pinch roller coating is indicated by f ep(t),
whereas the candidate contact area of the capstan is indicated by feeap(t). The real

contact area fe(t) is a part of fep(t) (fe(t) C fep(t)), but also a part of feeap(t)
(fe(t) C fecap(t)).

Now, at each state t a scalar quantity 9 = g(x, feeap(t)) has to be defined for all

x E fep(t), such that (see [10])

g(x,feeap(t)) < 0

g(x, feeap(t)) = 0

g(x, feeap(t)) > 0

if xf/: neap(t)

if x E feeap(t)

if X E Oeap(t)

It can be seen that no penetration occurs if and only if

g(x, f eeap(t)) :::; 0 (3.1)

In this section such a functional 9 will be formulated for the contact between the

pinch roller coating and the capstan.

The capstan is a cylinder with radius Re • The distance between a material point

on the curved boundary of a cylinder and the axis of the cylinder is equal to the

radius. If the cylinder is rigid and if another body comes in contact with the curved

boundary of the cylinder and no penetration is allowed, the distance from a material
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Figure 3.1: Definition of the normal vector ii

point on the candidate contact boundary of this body to the axis of the cylinder has

to be equal to at least the radius of the cylinder.

So, the distance between a material point on the candidate contact boundary of

the pinch roller coating and the axis of the capstan has to be equal to or greater than

Rc• This can be formulated mathematically by the following equation:

v (3.2)

where Xc is the orthogonal projection of vector X on the axis of the capstan.

If the set of points Xu on the axis of the capstan is described by

(,\ E IR) (3.3)

then vector Xc is given as a function of vector X by the following relation.

with a is the support vector of the axis of the capstan,

i3 is the direction vector of the axis of the capstan.

The derivation of this relation is discussed in detail in appendix E.

Now, a unit vector ii will be defined:

-+ def Xc - X
n = 1-+ -+1Xc -x

(3.4)

(3.5)

This unit vector points from X to Xc on the axis of the capstan. This can also be seen

in figure 3.1.
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With this definition, the inequality constraint (3.2) can be rewritten as

-(x - x ) . ii > Rc _ c

Or:

This is the functional 9 looked for.

v

v (3.6)

Another contact condition is that at current contact points the law of action and

reaction applies, i.e.

on

The normal vectors are opposite at current contact points. So, splitting the contact

forces in a normal and a tangential component yields

(Jnp + (Jncap = 0
(Jtp + (Jtcap = 0

(3.7)

(3.8)

Initially, the contact is supposed to be frictionless. Then the shear stress can be left

out of consideration. Later, the shear stress will be determined with the help of a

constitutive equation.

Since the normal contact stresses are equal, a contact pressure (In is introduced.

(In = (Jnp = (Jncap

Adhesion between the contact bodies is not allowed. This means that the contact

pressure (In is less than or equal to zero.

on

It is allowed to impose this condition for the contact pressure not only on points of

the real contact area, but also on other points of the candidate contact area. In these

points the contact pressure equals to zero. So, the contact pressure has to satisfy the

following constraint.

on
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For convenience, here a summary of all contact conditions is presented.

{Un < 0

9 < 0

( ~+ g_O then (J"n ::; 0) H -v

t if g<O then Un = 0

From equation (3.11) it follows that

ung = 0

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

3.2.2 Penalty function method

The impenetrability constraint 9 ::; 0 is weakened by replacing it by g€ = g+E2 Un ::; 0,

with E2 > O. The penalty parameter E2 is chosen small, such that E20"n is small

compared to 9 in order to guarantee a good approximation of the constraint 9 ::;

O. But the penalty parameter must also be chosen large enough to avoid an ill

conditioned problem. An optimal value for the penalty parameter E2 can be found

by numerical experiments with several values for the parameter.

Replacing functional 9 in the contact conditions by 9 + E20"n yields

{
O"n < 0

g€ < 0

{
if g€ = 0 then O"n::; 0

==? ung€ = 0
if g€ < 0 then O"n = 0

Physically the penalty formulation can be interpreted as a contact problem with

capstan with a somewhat smaller radius.

From the penalty formulation (3.14) it follows that, if O"n < 0, then g€ = 0, which

yields O"n = - €~ g. And it follows that if Un = 0, then 9 ::; 0 is valid. Hence,

1
O"n = -- g+

E2

where g+ = max{O,g}.

With equation (3.15) a relation has been found for the normal component of the

boundary force in the contact region. Relations for boundary forces have to be

substituted in the right hand side of the weak formulation of the balance of momentum

(2.12):

1w· bdf = 1w' (bn + bt ) df
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where bn is the normal boundary force

bt is the tangential boundary force

The boundary r p is splitted in two parts, the candidate contact boundary, rep and

the rest of the boundary rp \rep' Here, attention is only paid to boundary forces in

the candidate contact zone. However, boundary forces on other parts of the boundary

have to be treated in the same way.

On the candidate contact surface, the following forces are prescribed for a fric­

tionless problem.

on rep

on rep

(3.16)

(3.17)

(3.18)

Substitution of the prescribed boundary forces (3.16) and (3.17) and of equation

(3.15) in equation (3.2.2) yields

{ tV . bdr - - { tV . ~ g+ndr
licp licp t2

3.2.3 Linearization and discretization

The impenetrability constraint is a nonlinear equation. In order to be able to solve

it with the finite element method, it has to be linearized in the same way as the

equations for the material behaviour. So, vector x is written as

(3.19)

Using this expression for x, a linearization has been carried out for the contribution

of the boundary force to the system of equations in appendix A. The result is given

here:

viith:

A

9
A
-+n

(Fi - £e) . it + Re
(ie - i)

lie-il

Pf .i + (I - PI). ex
L612 L612
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A....r ii*ii
Iiii

means that the mathematical quantity is only taken

into account if 9 > 0

The vector i: is the estimate for the tangential vector r, which is defined by

.... n*iir = - ....-
1/3\

The contribution for the impenetrability constraint (3.20) will be discretized ge­

ometrically by the finite element method. It is sufficient to discretize the candidate

contact surface.

The element used for the discretization is a bilinear quadrilateral boundary el­

ement with four nodes for the position. This element will be treated in the next

section.

In the discretization process, the unknown variable /:).:1 and the weighting function

ware approximated by a linear combination of their values in the nodes of the

element.
4

/:).X E Xi /:).Xi (3.21 )
i=l
4....
E Xi wi (3.22)W -
;=1

where Xi is the shape function belonging to node i,

Wi is the value of weighting function win node i.

The result of the discretization is given by

f w.bdf=
Jrcp

- f ~ g+ w TxTn df - f ~ w TXT[N+ - g+ R] x.6..x df + 0(6.2) (3.23)
Jrcp t2 f"V - f"V Jrcp t2 f"V Xdij - f"V

with:

w T r Wl
x

WI Y Wl
z .... W4

x
W4Y wl ]

f"V L

!\x T
[ ~Xl t1'U1 t1z1 .... /:).X4 t1Y4 t1z4 ]

f"V
v~

n T [nX nY nZ
]

f"V

[1] 0 0 X4 0

l.JX Xl 0 0 X4

0 Xl 0 0
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AXAy AXAZ]n n n n

nYnY nY nZ

nZ nY nZ nZ

Xdif = J(Xe - X)2 + (Ye - y)2 + (Ze - Z)2

The derivation of this result is given in appendix B.

(3.24)v w

Substitution of the discretized formulation (3.23) in the discretized equation for the

balance of momentum (2.21) results in a new system of equations. Terms with un­

knowns are brought to the left hand side:

~T in [-Qb.,e + AT(tTp,B +4cD + T)Ab.~]dn

1 A+
+w T f -XT[N+ - LR]Xb.x df

f'J Jrcp t2 - Xdif - f'J

=w T f (QiJ -ATf )dO+w T f Pbdf
f'J In -I-v f'J f'J Jrp\rcp f'J

- w T f ~ g+ XT n df
f'J Jrcp C2 - rv

~T in QTb.~ dO = !:vTint kdn V ~ (3.25)

Since this system of equations must hold for all admissible weighting functions wand
rv

T' , the system can be generalized. After application of the penalty function method,
rv

this system is given by

(3.26)

where:

S _ f AT(t T£,B+4cD+T)Adn+ f ~KT[N+- g+ R]x df
in Jrcp C2 Xdif

L rQT dn
in -

L - f (Q P, - ATf )dn + f P b df - f ~g+ XTn dfIn - rv Jrp\rcp f'J Jrcp t2 - f'J

k - f VJ kdO
f'J In rv

Solving this system is analogue to solving the system of equations without contact.
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3.2.4 Bilinear quadrilateral boundary element

A bilinear quadrilateral boundary element has four nodes. The domain of the element

is completely defined by the locations of its four nodes. The domain is the geometrical

area inside the four nodal points. The nodal points are labelled in ascending order

corresponding to the counterclockwise direction (see figure 3.2).

4.--_-+-_-. 3

1 2
L----~2

1

Figure 3.2: Parent domain and local node ordering of the boundary element

In order to define the shape functions for an arbitrary bilinear quadrilateral bound­

ary element a parent domain is used. Such a parent domain has also been used for

the trilinear hexahedral element, that has been applied to discretize the rubber body.

The parent domain is defined in a IR?-plane. In this plane, eand T/ are the indepen­

dent coordinates. The parent domain of the bilinear quadrilateral boundary element

is a bi-unit square, as depicted in figure 3.2.

The coordinates of a point (e, T/) in the bi-unit square are related to the coordinates

of a point (x, y, z) in the real boundary element by the following mapping.

(3.27)

where xi is the position of nodal point i of the element)

Xi is the shape function belonging to node i.

The shape function Xi is a function of the natural coordinates; and 'f} and is given

by the following relation, which has been derived in appendix D.

(3.28)
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3.3 Friction

An essential aspect of the interaction between capstan, tape and pinch roller is the

friction in the contact regions. Due to frictional forces in these contact zones, the

tane is transDorted.- -.J. ~

In this section, a constitutive relation for the friction will be added to the system

of equations.

3.3.1 Coulomb law

In engineering, a commonly used model for dry friction is the Coulomb friction.

According to the Coulomb law, the frictional force is proportional to the normal

contact force, if relative velocity between the contacting bodies occurs. The direction

of the friction force is opposite to the direction of the relative velocity of both bodies

(see figure 3.3). If the relative velocity is equal to zero, then stick occurs and the

frictional force is unknown.

/Lanr--------

V rei

Figure 3.3: Coulomb friction

For slip (Vrel = 0), the Coulomb friction ifcoulomb can be presented mathematically

by the following equation.

(3.29)

where fl is the friction coefficient)

UTel is the relative displacement.

Constitutive equation (3.29) only describes slip. This constitutive relation will be

substituted in the system of equations as a prescribed boundary force, in the next
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section. Later on, the constitutive relation will be adapted, so that stick is also

described.

3.3.2 Coulomb friction (slip)

In case of slip, the shear forces in the candidate contact zone must satisfy the con­

stitutive equation for Coulomb friction.

on (3.30)

where u is the displacement of a contact point Ii of the pinch roller coating,

Uc is the displacement of the contact point of the capstan.

The constitutive relation for the shear forces has to be substituted in equation (3.2.2).

(3.31 )

(3.32)

With respect to frictionless contact problems, there is one extra term unequal to zero:

f w' ht df = - f w· JL O"n I~c - ~I dfJrcp Jrcp U c - u
In this section, this term will be worked out and afterwards it will be added to the

system of equations for a frictionless contact problem.

The movement of the capstan is assumed to be a combination of a translation and a

rotation around its axis. So, the displacement of a contact point of the capstan in a

time step tlt is given by

(3.33)

where s
w
-+r

is the displacement of the capstan,

is the mean rotation velocity of the capstan during the time step,

is the tangential vector.

The rotation direction r is defined as follovls:

(3.34)

This definition implies, that the direction of vector iJ determines the direction of

rotation as well.
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(3.35)

The result is

Substitution of equation (3.15) in (3.32) yields

j ..........b df l J-L +..... Uc - U dfw, t = -g w·
1

..........1
r cp r cp t2 U c- U

Linearization of the friction force has been carried out in appendix A.

given here.

f w.btdf = f f!-g+w.Jdf+ f f!-w.((dii)++g+K.G),~xdf+O(L~.z)(3.36)
Jrcp Jrcp t2 Jrcp t2

where:

J

A.....r

K

lac-al
ii*iJ

liJl
I-d?
lac - al

..........
nr

G = w~t Rc A A - I
Ixc - xl

It is sufficient to discretize only the candidate contact surface. For the discretization

a bilinear quadrilateral boundary element is used. After discretization of equation

(3.36) with this element the following result will be obtained (see appendix B).

f w' bt df f f!- g+ w TXTd df
Jrcp Jrcp t2 I"V - I"V

+ lcp ~ ~TKT((~~T)+ +g+ J{ G)K~~ df + O(~2) (3.37)

where

AT
d

[fX fY fZ]

[Wl
x

WI Y Wl
z

.... W4
x

W4 Y W4
z

]

I-ddT
J{

J(u~ - uX )2 + (u~ - uY)2 + (u~ - uz )2

nr T

w~tRc~-I
Xdij
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(3.38)\;/ w

Substitution of the discretized formulation (3.37) in the discretized equation for the

balance of momentum (2.21) results in a new system of equations. Terms with un­

knowns are brought to the left hand side:

wTJf [-QLlp +AT(1,bTpB+4cD+T)A~x]dn,........; n -,.....,; """ f""V f""V

1 A+
+w T [ -XT[N+ - LR]X~x df

rv Jrcp t2 - Xdij - rv

-~T lr : XT((~~ T)+ + g+ J{ G) X~!- df
cp '-2

= w T [ (Q v - ATf )dn +w T [ Pb df
rv I n -N rv rv Jrp\rcp rv

- W T [ ~ 9+XTn df +w T [ l!.- 9+ XTd df
rv Jrcp t2 - rv rv Jrcp t2 - rv

'!v T in QT~!- dn = '!v Tint kdn \;/ '!v (3.39)

Since this system of equations must hold for all admissible weighting functions wand
rv

r , the system can be generalized. After application of the penalty function method,
rv

this system is given by

(3.40)

where:

L

k

[ ATCtTiB+4cD+T)Adn+ [ ~XT[N+ - g+ R]Xdf
In Jrcp t2 Xdij

- lr : XT((~~ T)+ +g+ J{ G) Xdf
cp 2

in
QTdn

[ (Q p - ATf )dn + [ P b df - [ ~g+ XTn df
In -rv rv Jrp\rcp rv Jrcp t2 - rv

+ [ l!.-g+xTd drJrcp t2 - rv

- Jf 1,b kdn
n rv

Solving this system is analogue to solving the system of equations without friction.

3.3.3 Coulomb friction (regularized)

It turns out that the system of equations, derived in the previous section, will not

converge. The discontinuity of the Coulomb friction curve at the point where the
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(3.41 )

relative displacement equals to zero, causes numerical problems. A regularization

procedure is applied to overcome this problem.

In this procedure, the Coulomb law will be approximated by the following relation

(see also figure 3.4):

~ ,/.,.(..... ) Urel
a coulomb = - J1 an 'P Urel -,.....I

Urel

Two possibilities for function cP are

(3.43)

(3.42)tanh( 'urezl )
€3.6.t

2 ( IUre11- arctan ---;\)
1r €4 ut

The parameters €3 and €4 regulate the amount of smoothing. These parameters can

be interpreted as the relative velocity below which the friction force starts dropping

considerably to zero.

CPr

Urel

Figure 3.4: Regularization of the Coulomb friction

An additional advantage of the type of formulation of equation (3.41) is that

it automatically handles both stick and slip. Logical steps of making distinction

between sticking and sliding are not necessary.

The implementation of this friction model is analogous to the implementation of

the Coulomb friction. Relation (3.41) will be substituted in the right hand side of
," 1 1 t" t ('" .... n\tne Dalance OI momenuum ~.l~j:

(3.44)

Linearization of this equation produces different results for both regularization func­

tions <p. Therefore, they will be treated separately.
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Regularized Coulomb friction 1

If the regularization function </> is given by equation (3.42), then linearization of

equation (3.44) gives the following result (see appendix A).
r -+ r J-l . A "-+
I w.bt dr = I - Q-r $1 W. ddr

Jrep . Jrep €2 ~ .-

+ [ E-w. [~I(dJt)+ + ( g: {1 - tanh2
( lac ~ al )}dJ+ g+~IK) .G] . ~xdr

irep €2 €3ut €3 t

+O(~2) (3.45)

where

1 _ h( lac - al)
'PI - tan A

€3ut

This relation is discretized (see appendix B), yielding

(3.46)

[ w· bt dr = [ E- g+ ~1 w TXTd dr
irep irep €2 "-' - "-'

+ [ E-w TXT [~I(d n T)+ + ( g: {1 - tanh2
( Ud~j )}d dT+ g+~IK) G] X~X drirep €2"-' - "-'''-' €3ut €3ut "-'''-' - "-'

+O(~2) (3.47)

This discretized formulation is substituted in the discretized equation for the balance

of momentum (2.21). Application of the penalty function method yields the system

of equations given by equation (3.40). However, the diffusion matrix S and right

hand side f are now represented by
"-'

S = [AT(7jJ Tft B +4cD +T)Adn + [ !.. XT[N+ - g+ R] xdr
in "-' "-' irep €2 - Xdij-

- [ E- xT [~dd n T)+ + (g: {1 - tanh2
( Ud~j )} ddT + g+ ~1 K) G] xdr

irep €2 - "-' "-' €3ut €3ut "-' "-' -

t. [(Qft -ATf )dn+ [ Pbdr- [ ~g+xTn dr
.- in - "-' "-' irp\rep "-' irep €2 - "-'

+ l E- fJ+ ~1 xT d dr
JI'ep €2 - ""

Regularized Coulomb iriction 2

The Coulomb friction can also be approximated using regularization function </>2, as

given in relation (3.43). Linearization of the friction then yields (see appendix A)

1 -+ 1 JL+A A-+W.bt dr = - 9 </>2W· ddr
rep rep €2
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where

(3.49)

Discretization of this expression gives the following result (see appendix B).

f w. bt df = f .!!:..- g+ J2 w T XT J df
Jrcp Jrcp t2 rv - rv

+ f .!!:..- w TXT [JdJ 11, T)+ + ( (( 21+):4 D-.t 2) ddT +g+ J2 K) G] X D-.x df
Jrcp t2 rv - rvrv 7r t4 t +Udij rvrv - rv

+O(D-.2
) (3.50)

The penalty function formulation of the generalized system of equations is again given

by equation (3.40). However, the diffusion matrix S and the right hand side fare
rv

now represented by

L
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Chapter 4

Results

4.1 Introduction

In this chapter, some results, obtained with the neo-Hookean element and the contact

element, will be presented. Two test problems are examined. Their results are

compared with results obtained with the finite element package MARC [8], which

were already available.

The first test is a frictionless contact problem. In this test case a rubber block is

indented by a rigid shaft.

The second test is a rolling contact problem. A rubber block is indented by a

rolling rigid shaft. In the contact zone, friction is prescribed.

Previous the neo-Hookean element has been checked for some test cases. These

test cases and their results are described and discussed in "A Lagrangian approach

to the three-dimensional finite element modelling of a neo-Hookean rubber material"

[11]. There, it is concluded that the element is suitable to describe the behaviour

of an isotropic, elastic and incompressible material for moderate deformations, as

occurring in rubber rollers and tires.

4.2 Frictionless contact

A rigid shaft is pushed in a rubber block at three different angles. The data and the

results of these tests are presented in appendix G. They are discussed here.

In the first simulation, the shaft is parallel with one of the edges of the rubber

block. This test case is simulated in SEPRAN as well as in MARC. The results are

compared.
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Figure 4.1: Indentation of a rubber block by a rigid shaft

Both simulations give nearly the same deformed geometry. With respect to the

stresses, there are some more differences observable, chiefly quantitative.

The maximum differences for the Von Mises stress, for stress component Cf'yy and

stress component Cf'xz are given in table 4.1. These differences are acceptable. The

largest difference occurs for the Von Mises stress, since the Von Mises stress is deter­

mined from the separate stress components.

SEPRAN MARC maXImum

mm max mm max difference

Von Mises 3.62E-2 2.48E+O 3.62E-2 3.04E+O 15%

Cf'yy -3.40E+O 4.83E-2 -3.61E+O 4.78E-2 6%

Cf'xz -4.03E-1 4.03E-1 -3.67E-1 3.67E-1 9%

Table 4.1: Differences in stresses between SEPRAN and MARC

The maxima and minima for the different stress components appear on the same

locations in both simulations.

The lines of constant stresses, the so-called isobars, have the same form in both

simulations, except for the Von Mises stress. In the Von Mises stress, obtained

by MARC, the isobars have an unexpected form. They are not symmetrical with

regard to plane x = 3.5, whereas the problem is symmetrical with regard to this

plane. It is clear, that this result of MARC is wrong. The fault can be attributed

to the discretization of the shaft, performed by MARC. As a consequence of this

discretization, the contact condition changes. In SEPRAN, the shaft does not have

to be discretized.

The other differences between MARC and SEPRAN can be explained by two

differences. Probably, there arise differences between MARC and SEPRAN during
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postprocessing. Another difference between MARC and SEPRAN is the solution

method. In SEPRAN a penalty function method is applied, whereas in MARC a

direct method is applied. Therefore, a good choice for the penalty parameters C1 for

the neo-Hookean element and t2 for the contact element is very important. For that

purpose, both penalty parameters have been varied. It appears, that for both penalty

parameters a rather large domain is tolerable. The admissible domains are:

IE - 13 < t1 < IE - 1

IE - 14 < t2 < IE - 3

As expected by reason of the fact that the extra term of the penalty formulation

converges to zero undependently of the penalty parameter tl, for penalty parameter

t1 a large value is admissible. But if penalty parameter t2 is chosen larger than

admissible, then the solution of the problem is not correct. If both penalty parameters

are chosen smaller than admissible, the problem is so ill-conditioned, that no solution

is obtained.

Two more test cases are simulated. In both these test cases, the shaft has been

pressed in the rubber block at an angle with the z-axis. These test cases have been

carried out in order to show that it is possible to push the capstan in a rubber block

at any angle.

For the computation time, it does not matter at which angle the capstan indents

the rubber block. However, in MARC the computation time increases a lot when the

capstan is pushed in the rubber at an angle with the z-axis. This is a consequence

of the increment splitting technique. That is why the simulation is not carried out

with MARC. Yet, by comparison with test case 1 it is allowed to conclude that the

simulations are rather good.

It can be concluded, that the boundary contact element describes the contact con­

ditions well and that it has some advantages with regard to MARC. These advantages

are:

• The computation time does not increase when the capstan is pressed in the

rubber at an angle.

• The capstan is not discretized, which prevents an inaccurate handling of the

contact conditions.

It must be noticed that the contact element is restricted to description of contact

problems for rigid shafts.
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Figure 4.2: Rolling contact problem

4.3 Rolling contact

In this test case, a rubber block is indented by a rolling capstan. The rubber block is

exposed to a friction force in the contact zone by this rolling capstan. At the bottom

of the block a frictionless bearing is applied. One side of the block is joined to an

elastic foundation with stiffness k per area (see figure 4.2). The data and results of

the test are presented in appendix H. They are discussed here.

The friction force in the contact region has been modelled by both regularized

Coulomb friction 1 and 2 (see section 3.3.3). It appears that both friction models

give the same solution (test case 1 and 2). The regularization parameters E3 and E4 in

these friction models are varied. They do not influence the results of this simulation

(test case 3). In the field of slip, there is no difference between both friction models

or between friction models with different regularization parameters.

After two time steps the position of equilibrium has been reached. In the following

time step the position of the body does not change. This can lead to convergention

problems in this time step. But since the final configuration has already been found,

it is unnecessary to concern about these convergention problems.

The simulation has also been carried out with the finite element package MARC.

These results are also presented in appendix H. Comparison of the results of both

simulations shows mainly differences in the displacements. In MARC, the displace­

ments are smaller. A possible explanation is that the elastic foundation is modelled

differently in both simulations.

Another difference between both simulations is that in MARC the rubber body

more or less vibrates around its position of equilibrium, without converging to this

position of equilibrium. A possible explanation for this vibration is the discretization

of the shaft. Simulations with a smaller mesh can possibly clearify this vibration.

In test case 4 the stiffness k of the elastic foundation has been reduced. As can be
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seen in appendix H the rigid body displacement of the rubber block is larger. As a

consequence of the reduced stiffness the resistance against displacement of the rubber

block has been diminished. There are no significant changes in the stresses.

Reduction of the stiffness k can lead to numerical problems. Because of the

small resistance against displacement, the friction imposes too large a displa.cement

on the contact points. This displacement is so large, that it exceeds the tangential

displacement of the capstan and contact is lost. As a consequence, the friction force

is zero in the following iteration, and the point is forced back. In this way, points are

alternatively in contact and not in contact. No solution will be found.

This numerical problem can be solved by the choice of the penalty parameter <::2'

However, it has to be taken into account that too large a penalty parameter results

in bad contact conditions. Therefore, the deformed geometry must be checked on the

boundary conditions.

In test case 4, the penalty parameter <::2 had to be increased in order to obtain a

solvable system. Checking the indentation of the rubber block shows that the contact

conditions are not satisfied.

In test case 5, the friction between the capstan and rubber body is increased. The

same problem as in test case 4 occurs. In order to obtain a solvable system penalty

parameter <::2 has to be increased too much. The contact conditions are not satisfied.

From the various test cases the following conclusions can be drawn:

• If the friction force is small and the freedom of movement of the rubber body

is limited, the deformations of and the stresses in the body are computed sat­

isfactorily.

• The model is not suitable for problems with large friction coefficients.
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Chapter 5

Conclusions and recommendations

The neo-Hookean element and the contact element are tested for a frictionless contact

problem. A rubber block has been indented by an rigid shaft. The results of this

test are compared with results obtained with the finite element package MARC. Both

numerical simulations show a good correspondence. The results obtained with use of

the user-written elements are satisfactory.

In both elements, the penalty function method has been applied. In the frictionless

contact problem the influence of the penalty parameters has been examined. It

appears that for both penalty parameters a large domain is admissible. Penalty

parameter £1 does not even influence the solution, because in the system of equations

it has been multiplied with a quantity, that converges to zero.

In a second test a rolling capstan indents a rubber block. In the contact zone,

friction must be prescribed. In general, friction is a very tiresome phenomenon in

numerical models. In this test case, the friction causes numerical problems too. Only

for limited friction forces and limited freedom of movement, the system of equations

has been solved satisfactorily. The solution shows many correspondences with the

results in the finite element package MARC.

For problems with large friction forces or a compliant foundation, the numerical

problems can be overcome by the choice of the penalty parameter. However, this

leads to unsatisfactory results for the contact conditions.

It can be concluded that the penalty function method in its present implemen-

tation is not suitable to describe contact conditions with large friction forces. Since

the friction force and the freedom of movement are both large in the contact problem

between capstan and pinch roller in a video recorder, the model is not yet suitable

to describe this problem.

45



Since the model has specifically been created for contact between a rigid shaft

and another body, it has some advantages with respect to finite element methods

with a general approach of contact problems. These advantages are a substantial

gain in computation time and an undiscretized capstan which prevents an inaccurate

handling of the contact conditions. Of course, the applications of the model a,re

restricted.

For future investigations in this research project it is advisable to pay attention to

the following aspects:

• The description of the contact conditions should be improved. In stead of

application of the penalty function method, another method could be applied,

for instance a Lagrangian multiplier method.

• The influence of the element mesh should be examined.

• Also, the influence of the time step should be investigated.

• More attention should be paid to the appearance of stick or slip and to the

division of these phenomena in the contact zone.

• The neo-Hookean and contact element should be checked for a real model of

the capstan, first with two and later with three contact bodies.
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Appendix A

Linearization

In this appendix all non-linear equations will be linearized. These are the weighted

residual equations for the balance of momentum and for the incompressibility con­

straint, the impenetrability constraint and the friction force. For that purpose the

unknowns will be written as a sum of an estimate and a variation:
->x

p

x+!:lx
p+!:lp

(A.I)

(A.2)

After substitution terms of order !:l2 or higher are neglected.

A.I Balance of momentum and incompressibility

constraint

(A.3)

(AA)

T = 2c (F . F C
- I)

First, the equations for the balance of momentum and for the incompressibility con­

straint will be linearized, given by

in (Vwy : (-p 1+ T) dn 1w' bdf

kr (det(F) - 1) dn 0

Substitution of (A.1) in the deformation tensor yields

F (VoxY
(VoEY + (Vo!:lxY

A

F +!:IF

F (VoE)C
!:IF (Vo!:lx)C
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For the linearization of the inverse of the deformation tensor a Taylor series is used:

F-1 (:F +~Ftl

(I +F-1 . ~F)-l . F-l

- (I - F-l .LlF) . F-1 + O(L~.2)

F-1 - F-1 . ~F. F-l + O(~2)

F-1 + ~F-l

~F-l _F-l . ~F. F-1 +O(~2)

Linearization of the stress tensor r:

T 2c(F· FC- I)
A ""C A AC

2c (F . F + F . ~FC +~F . F +~F . ~FC - I)

f-+~r
~ ~ C

2c(F· F - I)

2c (F . ~FC +~F . F
C+~F . ~FC)

2c [F . ~FC + ~F. F
C
] + O(~2)

2c[(Vo~x)c. F
C+F· (VO~X)]+ o(~2)

2c[(F-
C

. Vo~xy. F· F
C+F· F

C
. (F-

C
. VO~X)] + O(~2)

~

----#- A -c ~

Using V = F . V 0

~r = 2c [(~~xy· F· F
C+F· F

C
. (~~x)] + O(~2)

A .... C A

Using F . F = ~ +1

~T ~ 2c[(~~x)C + (~~x)] + (~~X)C. T +T· (~~x)

Linearization of the determinant of the deformation tensor:

(A.5)

(A.6)

det(F) det(F +~F)

det(F + (Vo~x)C)

det(E'. (I +F-1 . (Vo~x)C))

.r1 ffi-\ .r1 ffy +V-I fn A ;;t\C\
U.e~\.a:) U.e~\.L .a: • \ VOLi..I,,) )

det(F) (1 + tr(F-1
. (Vo~xy) + O(~2)

Using (Vo~x)C = (V~x)C . F

det(F) = det(F) (1 + tr(F-l . (V~xy . F)) + O(~2)
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using tr(A· B) = tr(B· A)

det(F) - det(F) (1 + tr(F. 1'-1 . (V~x)C) +O(~2)

= det(F) (1 +tr(~~xy) + O(~2)
A

= det(F) (1 +V.~x) + 0(.6.2
)

Using the linearizations above, the equations (A.3) and (AA) can be linearized:

(Vun C
: -pI - -p (V. w)

- -(p + ~p) ((F-c
• Vo)' w)

_ -(p + ~p) [[(I - F-c
• ~FC) . F- c

• Vo] . w] + O(~2)
A A

A -C -+ -+ 2- -p [(I - F . ~FC) . \7] . w- ~p [\7 . w] + O(~ )

_ -p(~. w) - ~p(~. w) +p(F-C
.~FC.~). w + O(~2)

(Vwy : T - (F-c
• Vow)C : (f- +~T)

- (Vow)C, F-1 : (f- +~T)

- (Vow)c: [(1 - F-1 . ~F) .F-1 . (f- + ~r)] + O(~2)

- (Vowy: [1'-1. (I - ~F· 1'-1). (f- + ~T)] + O(~2)

- (Vow)C, F-1
: (I - ~F· F-1 ) . (f- + ~T) + O(~2)

- (F-
C

• Vow)C : (I - ~F· 1'-1) . (f- + ~T) + O(~2)

- (~wy: (f- - ~F· 1'-1. f- +~T) + O(~2)

- (~w)C: [f- - ~F· 1'-1. f- +2c((~~x)C + (~~x))

+ (~~X)C. f- + f-. (~~x)]+ O(~2)

det(F) -1 = det(F) (1 +~. ~x) -1 + O(~2)

. We introduce some abbreviations:

L~x = (~~x)C = (F-c
. Vo~x)C = ~F· F-1 = D~x +n~x

D~x = ~(L~x + L~xC) ; D~x = D~xc
,..... 1 IT T C\,...... ,..,. C

U~x = 2~.LJ~x - .LJ~x ) ; U~x = -U~x

So:
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(Vui)C : T

det(F) - 1

Lw : (r + 4cD~x + r· L~xC) + O(~2)

det(F) (1 +~. ~x) - 1 + O(~2)

(A.8)

(A.g)

(A.I0)

Using the relation (ab) : I = tr(ab) = a.b
A A A

-p(V. w) - I\p(V. w) +pLax
c

• V· w+0(1\2)

-p(~w): 1- ~p(~w):1+ pL~xc. (~w):1+ O(~2)

-pLwc : I - ~pLwc : I +pL~xc. Lw
c

: I +O(~2)

Using A : B = A C : B C
, A . B : C = A : B . C and A : B = B : A

(VwY: -pI -pLw : I - ~pLw: I +pL~x : Lw + O(~2)

= Lw : [-pI - ~pl +pL~x] + O(~2)

Substitution of equations (A.8) , (A.9) and (A.I0) in the integrals (A.3) and (A.4)

produces the linearized system:

In Lw : [-pI - L\pI +pL~x]dn +

In Lw : (r +4cD~x +r· L~xC)dn t w· bdr

In i [det(F) (1 +~ .~x) - l]dn = 0

Or, after replacing weighting function i by~ in order to derive a symmetric matrix,
. ddF

and rearrangmg the terms:

(A.13)

In Lw : [-pI - ~pl+pL~x]dn +

In Lw : (r +4cD~x +T· L~xC)dn t w· bdr

A.2 Impenetrability constraint

The contribution of the impenetrability constraint has to be linearized also.

contribution is given by

1 1 -+ +-+dr- -w· 9 n
rep E2

(A.H)

(A.12)

This
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where:

....
Ti

(x - xc) . ii +Re

max(O,g)
(xc - x)
IXe -xl

Pf .x+ (I - il!). a
1,81 2 1,81 2

Using x = i'+Llx, linearization of vector Xc yields

For the linearization of the normal vector ii a Taylor series is used:

A....
n

....n

Llii =

ii +Llii
(i'e - i)
lie - il
(i'e + Llxe - i' - Llx)
lie + Llxe- i' - Llxl

Introduction of the shorter notations:

(ie - i)

lie - il

and of the tangential vector r, which is defined and linearized as
....

.... ii*f3r - ....-
1131

.... f'+Llrr
A ii*il....r - ....-

1131
....

Llr Llii*f3
....

1131

53



yields

Since it ..1 jJ and I = iiii + itit+ (I:

1- ¥ - iiii
flit = y3J2

A .flX+O(fl2
)

lie - xl

A ffr A • flx +O(fl2)

IXe - xl
Linearization of the functional 9 = (x - xc) . it + Re yields

9 9+ flg

(Fe + flx - Fee - flxe) . (ii + flit) +Rc

9 - (Fe - Fee) . ii +Re

flg (Fe - Fee) . flit + (flx -flxe) . ii +O(fl2
)

Substitution of one of the linearized equation for flit gives

54



,6.g =

With the linearization of functional 9 and vector ii, now the contribution of the

impenetrability constraint (A.13) can be linearized.

- [ ~ tV· g+ ii df = - [ ~ w· (§+ ft + ,6.g+ ft +§+ ,6.ii)df + 0(,6.2)
Jrcp <:2 Jrcp <:2

Substitution of the linearization for ,6.g and ,6.ii gives the linearized form of the

impenetrability constraint.

where

A
-+n

(re - £)

I£e - £1
(£ - £e) . ft + Re

max(O,g)
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....r

( )+

PI .£+(1- PI).a
liJI2 liJI2
ii*il
!il!

means that it is only taken into account if 9 > 0

A.3 Coulomb friction (slip)

(A.15)

If slip occurs, the contribution of the Coulomb friction to the system of equations is

given by

1 f1 + -+ ilc - il dr-g w·
rep l:2 lilc - ill

with

9

....r

....
u

(x - xc) . ii + Rc

S+w!:i.t R c r

n*il
Iill

x(t) - x(t - !:i.t) ; x(t - !:i.t) is the solution of the previous time step

Before equation (A.15) can be linearized, all non-linear terms must be linearized

separately. The displacement vector i1 is linearized first.

....
u
A....
u

if + !:i.il

£(t) - x(t - !:i.t)

!:i.x

Linearization of vector r:

Substitution of the expression for !:i.ii, as it has been derived in the previous section,

yields
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~r =

[
1- iiii iJiJ ) ....] iJ (2= A A· ( ---=-- - I . ~X * -:::;- + 0 ~ )
IXe - xl 1,81 2 1;11

Since ii is perpendicular to i1:
~ iJiJ A A -I=:-:-- T -+- nn I ;;

~r= ['loW A - 'A ••••• ~xJ * P.... +O(~2)
IXe - xl 1;11

Since ii, f' and I~I are three orthonormal vectors, which form together a cartesian

reference system, I = iiii + f'f'+Mcan be used. This yields

(
-f'f' ....) iJ 2

A A· ~x * -:::;- +O(~ )
IXe - xl 1;11

-(f'. ~x) ~ iJ t'fl( A 2)
A A r* .... +Vti

IXe - xl 1;11

Using f' *~ = -e-ii:

~r = -r·~:)(-ii)+O(~2)
IX e - xl

A iif'A .~X+o(~2)
IXe -xl

The linearization of r was necessary in order to be able to linearize vector ue :

ire s+W~t Ref'
~Ue W ~t Re~r

The functional 9 has already been linearized in the previous section. For the lin­

earization of the direction of the relative displacement a Taylor series is applied.

J

J A A
1-+ -1-1
IUe - UI

A A

Ue+~Ue - U- ~U
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Linearization of the friction can be carried out with use of the linearizations of 9 and

1:
{ ~ (g + ~g)+ w· (J+ ~d) dr

Jrcp E2. . .
I JL f ~+.7: ;; I A ~+ .7: . ;; I ~+.:t A j\ 11' I //1/ A 2\

J ~ \y UI' U T ~y UI' U T!J w· ~U) UL T L/\L.l. )

rcp E2.
Substitution of the expressions for 1, ~g and ~Jyields. .
J JL.+ -> d·->dr - J JL.+ -> Uc- U dr

~g w· - ~g w,. •
rcp E2 rcp E2 Iuc - '111

{ ~ (~g+ w.1) dr = { ~ [(~x. ii)+ w' ~c - ~] dr + O(~2)
Jrcp E2 Jrcp E2 Iu c - ul

=1 ~ [w. ~c - ~ (ii. ~x)] + dr + O(~2)
rcp E2 luc - ul

= 1 ~w. [~c-~ ii]+ .~Xdr+o(~2)
rcp E2 luc - ul

{ ~g+w.~Jdr
Jrcp E2

= { ~ g+ W. [. I . _ (iI, --: 0(~, - 0] .(w ~tRc~r _ ~x)dr + O(~2)
Jrcp E2 luc - '111 luc - '111 3 )dr + O(~ )

= { ~g+w. [. I . _ (itc-.it)(~c-it)] .(w~tRc. iii .. ~x-~x)dr+o(~2)
Jrcp E2 luc - '111 luc - ul3 Ixc- xl

Uniting the separate terms gives the linearized Coulomb friction

{ ~ 9+ w· ~c - ~ dr + { ~w. [(~c - ~) ii] + . ~xdr
Jrcp E2 luc - ul Jrcp E2 luc - '111

+ { ~ g+ w' [ • I . _ (itc-. it)(~c - it)] . (w~tRc • iii. _ I) . ~xdr + O(~2)
Jrcp E2 luc- ul luc- '111 3 Ixc- xl

Or, in a shorter notation:
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where

I-JJ
lac - al

A A

lite - itl
ii*iJ

liJl
I

K

G

A.4 Regularized Coulomb friction 1

The contribution of the approximated Coulomb friction to the system of equations is

given by

1 f1 + ....
-g <PI W· ddf

rep E2
(A.I7)

where

A.. _ h( lite - itl )
'f'l - tan A

E3ut

In comparison with the unregularized stickless Coulomb friction, this relation contains

one more nonlinear term, the function <Pl. Linearization of this function <PI yields

Using this, and the linearizations of the other quantities, as they have been derived

in the previous section, term (A.I7) can be linearized:
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Substitution of the relations for tlg, tl</> and tld yields

1 f1 A A-. 1 f1 A ~A
- tlg+ <PI w· ddr = - </>1 W . (d ii)+ . tlxdr +O(tl2)

rcp c2 rcp c2

r f1 A+ A A, -. "-; 1nL -=- g. Ll.'f'1 W . a al
Jl cp t2

= f .!!.- g+ [1 - tanh2( lac - al)] (~c - ~) . (w tlt Rctl? - tlx)(w.a) dr + O(tl2 )

Jrcp C2 c3tlt c3tlt luc - ul

= f .!!.- g+ [1 _ tanh2 ( lac - al )]w . a-{~c - ~) . (wtltRc ~ iii ~ - I) . tlxdr + O(tl2 )

Jrcp C2 c3tlt c3tlt luc - ul Ixc - xl

= f .!!.- g+ [1 - tanh2 ( lac - al )]W. n. G· tlxdr +O(tl2 )

Jrcp C2 c3tlt c3tlt

Combination of the separate terms gives the linearized contribution of the friction:

f .!!.- g+ ~1w.Jdr + f .!!.- ~1 W. (Jii)+ . tlxdr
Jrcp C2 Jrcp C2

+ f .!!.- g+ [1 _ tanh2 ( lac - al )]w . at. G . tlxdr
Jrcp C2 c3tlt c3tlt

+ f .!!.- g+ ~1 w· K· G· tlxdr + O(tl2
)Jr cp C2

Or:
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A.5 Regularized Coulomb friction 2

As in the previous section, the contribution of the regularized Coulomb friction to

the system of equations is given by

(A.19)

However, the regularization function <P2 is now given by

<P2 = ~arctan( Iftc ~ ftl)
7r E4 t

Linearization of this function <P2 yields

~2 + 1:1<P2
2 Iftc - ftl
-arctan( 1:1 )
7r E4 t

~ _1_ ~ A ~c - ~ • (l:1itc -l:1it) + 0(1:12)
7r E41:1t 1 + (lite-itl)2 lite - itl

q.6.t

~ E41:1t ftc - ft . (1:1 -+ _ 1:1 -+) 0(1:12)
7r (E4I:1t)2 + Iftc _ ftl2 Iftc _ ftl U

c
U +

Using this, and the linearizations of the other quantities, as has been derived in the

previous section, term (A.19) can be linearized as under.

In the previous section, all terms are linearized, except the term with 1:1<P2. This term

is linearized, here. Substitution of the relation for 1:1<P2 yields

f ~ g+ 1:1<P2 w· Jdr
Jrep E2

A A

= l ~ A+ 2 E41:1~ A ~c - ~ • (w I:1t R 1:1? -l:1x) (w· J) dr + 0(1:12 )
~ r g II '\'\2.1-+ -+12\ 1-+ -+1 C

oI1 ep C2 7r\..\..E4L.l.l) --r IU c - UI ) IUc - UI

( Jl 1\ -L 2 C4 ~t .... 71'.-:: /_ . ~ iir __, -+ __-. ..=J -g' A A w·dd·~w[).tJ(,C A A -l).[).Xdl'+O(L~?)
rep E2 7r((E4I:1t)2 + lite - it12) Ixc - xl

= f ~g+ 2E41:1~ A w. if. G. [).xdr +0(1:12)
Jrep E2 7r((E4I:1t)2 + lite - it12)

The complete linearized contribution of the smoothed Coulomb friction is given by
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.A ..........,..

AppenOIX tl

Discretization

In this appendix the linearized weighted residual equations will be discretized. These

are the balance of momentum, the incompressibility constraint, the impenetrability

constraint and the friction.

B.l Balance of momentum and impressibility con­

straint

(B.l)

(B.2)

Starting-point for the discretization of the equations for the material behaviour is the

following system of equations:

in Lw : [-pI - ~pI +pL~x]dn +

+in L w : (i- +4cD~x +i-. L~/)dn 1w· bdr

in r ~. ~xdn = in r (det~F) -l)dn

Each term in these equations will be worked out separately. A three-dimensional

Cartesian reference system will be used:

-7T r-7
e = l erv X

So:

n -70 -70 -70
V ex ox + eyoy + ezoz

w wXex +wYey +wZez
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The first term can be rewritten:

L w : -pI

A
->

-pV·iD

where

(Vuj)C: -pI

(Vuj) : -pI
A
->

-pY·iD

Discretization of the components of 'Iii and of pressure p yields:

WI
x

WI Y

[:: ] [f
0 0 0

~J
WI

z

cpnx

CPI 0 0 cpnx =cpw
-rv

0 CPI 0 0
wnxx

wnxY

wnxz

'l/JI

A t Tt = (t f t = [ PI .... Pnp]p

'l/Jnp

where nx denotes the number of displacement nodes,

cP is the matrix with interpolation functions for the position,

W is the column with weighting functions for the position at element nodes,
rv

np denotes the number of pressure nodes,

t is the column with interpolation functions for the pressure,

t is the column with estimations for the pressure at element nodes.

The first term can be discretized as follows:

Lw : -p I = -p~ . iD
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with:

L w : -pI

-(tlt ,£T<p~

-(ft l'I/J a T w
~ rvrv rv

_~T~tTt
-wTOfJ

rv ~I-v
(B.3)

aT

The second term can be discretized in the same way:

where!1p is the column with the variations of the pressures at element nodes.
r-...J

(B.4)

Now the third term of (B.l) will be worked out. For that purpose the matrix repre­

sentation of tensor LAx will be determined with respect to the reference system {ex,
ey , ez }:

Using its symmetry, the matrix representation of D Ax with respect to {ex, ey , ez } is

denoted by

l
d AX dAX d

AX
]11 12 13

.... ....T Ax Ax AxD Ax =~ .D Ax . ~ = d 12 d 22 d 23

d Ax dAx d Ax
13 23 33

while the matrix representation of !"lAx with respect to {ex, ey , ez } can be written as

So:

AX]-W31

W Ax
23

o

l
d Ax

11
_ Ax Ax

LAx - d12 - W12

d
Ax + WAx13 31

d Ax +WAx12 12

d AX
22

d Ax Ax
23 - W23

d AX Ax ]13 - W31

d AX +WAx23 23

d Ax
33

65



where

! (8~~i + 8~~j)
2 8xJ 8x~

1 (8~xi 8~xj \
- -----1
2 \ 8xj 8xi )

and ~xi = ~x for i=l

~y for i=2

~z for i=3

Similarly the tensors D W1 S1 w and Lw can be represented in their matrix representa­

tions with respect to the Cartesian reference system:

[ d
1
1

dl~ d~ ]Dw dl~ d2~ d2~

dl~ d2~ d3~

[~~~ wM -~~ ]
f2w 0 W23

W31 -w~ 0

[ d
1
1

dM +Wl~ d~~~1 ]
Lw dl~ - Wl~ d2~ d~+w~

dl~+W3~ d2~ - w~ d~

The next step is the calculation of L w : Lb.x = tr(Lw . Lb.x)·

Lw : Lb.x = dl~dlix + (dl~ + wl~)(dliX - wl~X)

+ (d~ - w~)(di~X + wlrX) + (dM - wl~)(dliX +wliX)

+ d~dl~x + (d~ +w~)(d~X - W2~X)

+ (di§ + w3~)(dl~X - w31X) + (d~ - W~)(d2~X + W2~X)

+ d~d3~x

dl~ddx + 2dl~dl~x + 2dl'f3dl~x + d2~d2~x + 2d2'f3d2~x + d~d3~x

2 w b.x 2 w b.x 2 w b.x- W12W12 - W31W31 - W23W23

Definition:

[dl~ 2dM d2~ d~ 2d2'f3 2d1'f3 2wM 2w~ - 2W3~ ]

[d11x 2d~x d2~x d~x 2d2~x 2ddx 2Wl~x 2W2~x - 2W31x ]

66



With this definition, Lw : L~x can be rewritten as

Lw : L~x = (d w)TB d ~x
'" '"

with:

r 1 0 0 0 0 0 0 0 o1
0 1 0 0 0 0 0 0 02"
0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

B= 0 0 0 0 1 0 0 0 02

0 0 0 0 0 1 0 0 02

0 0 0 0 0 0 _1 0 02

0 0 0 0 0 0 0 1 02

0 0 0 0 0 0 0 0 1
-2"

Now, the arrays d W and d~x will be worked out. Both columns will be worked out
'" '"

similarly.

;x(WX) a 0 0oX
;Y (WX) + ;x (wY) a a 0oy ox

;y(wY) 0 a 0oy
;z(WZ

) 0 0 a

[:: ]oz
d W = ;z(wY) + ;y(wZ

) 0 a a
r-..J oz oy

;)wX) + ;x(wZ
)

a 0 a
oz ox

;y(WX) - ;x(wY) a a 0oy -ox
;z(wY) - ;y(WZ

) 0 a a
oz -oy

;x (WZ
) - ;z (W X

)
a 0 a

-oz ox

With the discretization of w, d W can be discretized:
'"

a
ox
8
oy
o
o
o
8

OZ
8
oy
o

o
a
ox
a
oy
o
a
oz

o

o
a-oy

a
ox
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In the same way can be found for d AX:
'"

d AX = A~x
'" '"

with: ~x column with the position variations at element nodes,
'"

a 0 0ax
a a 0ay ax
0 a 0ay
0 0 a

[f
0 0 'Pnx 0

~J
az

A= 0 a a 'PI 0 0 'Pnxaz ay
a 0 a 0 'PI 0 0az ax
a a 0ay -ax
0 a a

az -ay
a 0 a

-az ax

So, discretization of the third term of (B.1) gives

(dW)TfiB d Ax

'" '"
(d W )T7jJ Tfi Bd AX
~ rv r-..I rv

W TAT7jJ TiJ B A ~x
rv rvN rv

(B.5)

The next term is Lw : T. The matrix representation of Lw is already known. The

matrix representation of the symmetric stress tensor T is given by

Calculation of Lw : i = tr(Lw • i) gives

L w : i = dtiTxx + (dl~ +WI~)Txy + (dl~ +W:n)Txz

+ (dl~ - W~)Txy + dMTyy + (d2~ +W2~)Tyz

with

t T = [Txx Txy
A

Tyy
A

Tzz
A

Tyz Txz o 0 0]
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Lw : T can be discretized as follows:

(B.6)

The last two terms to be discretized are Lw : 4c D ~x and Lw : T . L~xc. These terms

can be reviritten:

Using A : B = 0 when A = A C and B = _Bc the following relation holds:

Lw : [4cD~x +T· L~xC] = tr[4cDw • D~x]

+ tr[(Dw + n w)· T· (D~x+n~xY]

Using the matrix representations for Dw , D~x, nw , n~x and T, the last two terms

of the left hand side can be worked out, resulting in (see [6]):

Lw : [4cD~x +T· L~x] = 4c(d W )TDd~x + (dw)TT d~x
~ rv rv rv

where

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0"2
0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

D 0 0 0 0 1 0 0 0 0"2
0 0 0 0 0 1 0 0 0"2
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

rf..

~ 0 0 0 k ~ 0 _k

1

2 2 2 2
Txx+Tyy ~ 0 Txz ~ Tyy-Txx Txz -~

4 2 ~ 4 4 4 4

Tyy 0 ~ 0 -~ ~ 0
2 2 2

I Tzz ~ Txz 0 -~ Txz
I2 -2-

A 2
A

~
'T' _ I Tyy+Tzz ~ _k 7 zz -7yy !ElL I
o!....-

4 4 4 4 4

Txx+Tzz ~ -~ Txx-Tzz
4 4 4 4

symm
Txx+Tyy _k -~

4 4 4
Tyy+Tzz -~4 4

Txx+Tzz
4
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Discretization of the last two terms of equation (B.1) gives

(d W ?(4cD + T)dD.X
rv rv

W T AT (4cD + T)A.6.x
rv rv

(B.7)

Now, all terms of the left hand side of (B.l) are discretized. The right hand side w.b
has to be discretized also.

The representation of bwith respect to {ex, ey , ez } is

Vector bwill be discretized in the same way as wand .6.£. So:

bI
x

bl
Y

lf] If 0 0 0

~J
bIz

c.pnx

c.p1 0 0 c.pnx = c.p b
-rv

0 c.p1 0 0
bnxx

bnxY

bnx
z

With the use of this discretization, the right hand side can be discretized as follows:

-+ T T Tw·b=w c.p c.pb =W Pb
f'J - -(""...J f'J f'J

with

P = c.pTc.p

Substitution of the discretizations (B.3) to (B.8) in (B.l) yields

W T f (-Q v +ATf )dD
rv I n -N rv

+ ~T k[-Q.6.;e +ATCtTk,B+4cD+T)A.6.,.:s]dD

w T f Pbdf
rv Jr rv

70

(B.8)

I
(B.9) I



Equation (B.2) has to be discretized too. First the left hand side will be discretized.

Discretization of this term is done similarly to the discretization of the first two terms

of equation (B.l):

r

a T~x
f"V f"V

where r is the column with the weighting functions for the pressure at element nodes.
f"V

So:

r~ . ~x = r T'IjJ a T~x = r TQT~x
r-..J r-..J r-..J '"" '"" - '""

Discretization of the right hand side of (B.2) yields

rk = ~Ttk

where
A 1
k = A-I

det(F)

So, the discretized formula for equation (B.2) is given by

(B.lO)

(B.ll)

(B.12) I

In a penalty function formulation, the weighted incompressibility constraint will look

as follows:

krV· ~xdn+krEI ~pdn = kr kdn (B.13)

The second term in the left hand side can be discretized by discretizing r and ~p

according to

r r T'IjJ
f""o.-...I """"-I

~p t T~:e

So:

~ T kEI t t T ~;e dn

r T r EI H ~p dn
f"V in f"V
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where

Substitution of (B.14) in the penalty function formulation (B.13) yields

r T [ QT~x an + r T [ £1 H ~v an = r T [ 'ljJ kan
rv in - rv rv in AJ rv in rv

(B.15)

B.2 Impenetrability constraint

The contribution of the impenetrability constraint, that has to be discretized, is given

by

(B.16)

The vectors w, ii, it, £, £c and ~x with respect to the Cartesian reference system are

given by

...
w

A...
n

A...
x

fX ex + fYey +fZ~

Xex + yey+ zez
xcex+ ycey + zcez

The first term of equation (B.16) can be rewritten as follows.
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Discretization of the components of wyields

r::: 1
rW

X 1 rXl
(\ (\

Xnb f\ f\ 1 WI
u u u

U I I I

l:: j l 0 Xl 0 0 Xnb
X:b j =XW

- r..J

0 0 Xl 0 0
Wnb x

Wnb Y

Wnb z

where nb is the number of nodes in the boundary element,

X is the matrix with interpolation functions for the boundary element,

W is the column with weighting functions.

So:

where

tlx is discretized in the same way as w:
tlXI

tlYI

[;~ ] [11 0 0 0

x~.J
tlzl

Xnb

Xl 0 0 Xnb = X tlx
- r..J

0 Xl 0 0
tlXnb

tlYnb
tlznb

(B.17)

Using the discretization of wand tlx, the second term of the impenetrability con­

straint can be discretized:

1 -+ ~~)+ -+-w· (nn . tlx
E2
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where: N = n nTis the matrix with the components of the normal vector ii.
rv rv

Similarly, the third term can be discretized, which yields

1 ~
~ .... + -+ rr A -+
-g w· .-, ,.. ux -
t2 Ixc - xl

where

1 ~+

- _LwTXT RX~x
t2 Xdij rv - - rv

(B.19)

Xdij J(xc - X)2 + (f)c - f))2 + (zc - 2)2

Substitution of the discretizations (B.17), (B.18) and (B.19) in equation (B.16) gives

the discretized contribution for the impenetrability constraint.

B.3 Coulomb friction (slip)

(B.20)

The weighted residual formulation of the Coulomb friction is given in linearized form

by

with

(B.2I)

K

G

I-a?
lac - ill

The components of vectors w, d~ ii, ?, u, uc, i, Xc and ~x with respect to the

Cartesian reference system are given by
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A...
JX .... + Jy'" + JZ-+d eX ey ez

A.... AX-" + Ay"" + AZ-+n n ex n ey n ez
A
-+ AX...... + Ay -+ + "'Z-+r r ex r ey r ez
A
-+ ,.~xe + ilY~ + ':'Zeu u X vy u Z

A
-+ .... x-+ Ay""" "Z ......
UC ucex +uCey +ucez

X xex + yey + zez
A
-+

xcex + ycey + zcezXc

!::i.x !::i.x ex + !::i.y ey + !::i.z ez

Discretization of the components of wand !::i.x yields

Wl x

Wl Y

[~ ] [1'
0 0 0

x~, ]
Wl z

Xnb

Xl 0 0 Xnb =XW
-rv

0 Xl 0 0
W~b

y
Wnb

W~b

!::i.XI

!::i.Yl

[;: ] [l' 0 0 0

x:, ]
!::i.zl

Xnb

Xl 0 0 Xnb = X!::i.x- rv

0 Xl 0 0
LlXnb

LlYnb
!::i.znb

Now, each term of equation (B.21) will be discretized separately. The first term is

discretized as follows.

r Jx 1
jl A+ ... d: jl A+ [ WX w y WZ ] l~: j = f.l 9+ W TxTJ-g w· =-g
t2 t2 t2 rv - rv
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The matrix representation of tensors K and G with respect to the Cartesian coordi­

nate system is denoted by

K

where

........ I-ddT
.... K .... T .... I-dd .... T - "''''e· 'e =e'A A·e =----
'" '" f'V lit - itl f'V Udij. c .

~~ n 1~ T
.... G .... T .... (- A R nr I) .... T - A R "'f'V Ie· . e = e . wut c ~ ~ - • e = wut c-- - _

f'V f"V f'V Ixc - xl '" Xdij

Using this matrix representation, the second term of the friction can be discretized

as follows.

Combining the discretized terms yields the discretized friction:

where

I-d d T

K

nr T

G w~tRc~-I
Xdij

B.4 Regularized Coulomb friction 1

The first smoothed Coulomb friction is given by

(B.22)
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In the previous sections all vectors and tensors in this relation are represented with

respect to the Cartesian coordinate system. These representations will be applied

again in the following discretization.

I-l A+ A -. A-. I-l A+ A T T A
- 9 cPt w . d = - 9 <PI W X d
E2 E2 rv - rv

So, the discretized friction is given by

r f!- f/ JI wTXTddr +Jrcp E2 rv - rv

r f!-w TXT [JI(d n T)+ + ( g: [1 - tanh2
( Ud~f )]d dT+ g+ JIK) c] X~xdrJrcp E2 rv - rvrv E3ut E3ut rvrv - rv

(B.24)

B.5 Regularized Coulomb friction 2

The relation of this friction model is given by

r f!-g+J2W' Jdr +Jrcp E2

r f!-W.[J2(dfi)++( 2g+E4~t A d-:l+g+J2K)'G]'~Xdr (B.25)
Jrcp E2 1l"((E4~t)2 + lite - it12)

Analogous to all other discretizations, this relation is discretized, which yields
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Appendix C

Trilinear hexahedral element

In this appendix the shape functions of an arbitrary trilinear hexahedral element and

the X-, y- and z-derivatives of these shape functions will be derived. For that purpose

a parent domain in another space, the e-space, will be used. The e-space is an
'" '"

orthonormal space with e, 1] and ( as independent coordinates. The parent domain,

that will be used, is a bi-unit cube (see figure C.l). For this domain it is relatively

simple to define shape functions.

8
x=(x,y,z)

7 r-.J 8
~ 7

5 5~I 6
I 7J

'VI ,1---

I / I 4\ -- 3
~--- 3 ~ ~--

/
~=(~,1],()/

2 / 21 r-.J

1

Figure C.l: T"l , 1 •

rarem aomazn

The domain of an arbitrary trilinear hexahedral element in the {ex, ey , ez}-space

is given by ne
• The domain ne is the image of the parent domain in e-space under

'"
the trilinear mapping:

(C.l)
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1 e 1] (

1 1 -1 -1
2 1 1 -1
.... 1 1 1I v I -.1 I .1 I -.1 I
4 -1 -1 -1

5 1 -1 1

6 1 1 1

7 -1 1 1

8 -1 -1 1

Table C.1: Coordinates of nodal points in £ -space

with corresponding expressions for y(£) and z(£).
Of course, the nodes in both elements must correspond. So, the coefficients (¥o,·····,(¥r

have to be determined by the conditions

x(e i) = x/,.....

Y(£i) = y/

z(e i) = z/,.....

where Xi e is the x-coordinate of node i of the element,

Yi e is the y-coordinate of node i of the element,

Zi e is the z-coordinate of node i of the element.

With the nodal points defined as in table C.l, this gives rise to a system of linear

algebraic equations:

r:
1 -1 -1 -1 1 -1

-: H::1 r:::11 1 -1 1 -1 -1

-1 1 -1 -1 -1 1

I ~
-1 -1 -1 1 1 1

=~ II :: I I X4: I
1 1 1 1 1 1

I1
.1 -.1 .1 -.1 -.1 .1

l~~:I1 1 1 1 1 1

-: Jl :: j-1 1 1 -1 1 -1

-1 -1 1 1 -1 -1
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Solving the matrix equation for the a's and substitution of this solution in equation

(C.1) gives
8

x(e ) = ~ 'Pi(e )Xie (C.2)
I"V i=l ~

where

(C.3)

See [4] for the derivation of the shape functions. For y(£) and z(() similar equations

as equation (C.2) are valid.

The shape functions (C.3) are a function of the coordinates in e-space. They have

to be derivated to x, y and z. These derivatives will be deduced in the rest of this

appendix.

The derivatives of the shape functions 'Pi are given by

'Pi,x 'Pil.(x + 'Pi,1J'fl,x + 'Pi,«(x

'Pi,y 'Pi,e(Y + 'Pi,1J'fl,y + 'Pi,«(y

'Pi,z 'Pi,e(z + 'Pi,1J'fl,z + 'Pi,«(z

or, in matrix formulation:

[

'P~,x ] _ [(x 'fl,x
'P~,y - (y 'fl,y

'Pi,z (z 'fl,z

(CA)

Here some difficulties are encountered: e, 'fl and ( are not known as a function of x,

y and z. But the inverse relations exist:
8

~'Pi(e )x/
i=l I"V

8

E1'Pi (( )Yi
e

and the matrix x t , containing the e-, Ti- and (-derivatives of x, y and z can be
rv,'"rv

determined:

[

X,e

;S{ = Y,e

z,e
::: ::~]
z,1J z,(
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with

Corresponding expressions for the derivatives of y and z are valid.

Now, the matrix £ ,x ,which is called the Jacobian matrix, can be computed by
I'V

inverting matrix ~£:

[

(x (y

£,~ = 'f],x 7],y

(x (y

(C.5)

The array 'P' t in equation (C.4) can be obtained by differentiating the shape func-
t,."

I'V

tions (C.3). This yields:

1
'Pi,f. g~i(1 + 'f]i7] )(1 + (i()

1
'Pi,T] g'f]i(1 +~iO(1 + (i()

1
'Pi,' g(i(1 + ~i~)(1 + 'f]i7])

Substitution of (C.5) in (C.4) yields

(C.6) I
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Append.IX U

Bilinear quadrilateral boundary

element

In this appendix the shape functions of an arbitrary bilinear quadrilateral boundary

element will be obtained. For that purpose, a change of coordinates is sought which

maps the quadrilateral into a bi-unit square in a two-dimensional plane (see figure

D.l). In this plane, there are two independent coordinates eand 'f}. The bi-unit

square is called the parent domain of the bilinear quadrilateral boundary element.

4_---+-- 3

...

4.-- 3

1 2
1-----2

1

........... ,.....,... -"""" "J .-y.. .,., , 1, • J I 1 •

.!:(lgure lJ.1: "'duaarzlateral elemenT; ana ns paren~ aomazn

The coordinates eand 'f} of a point in the bi-unit square are related to the coor­

dinates x, y and z of a point in the quadrilateral boundary element. This mapping

can be formulated by two different equations.
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1 ei "Ii
1 -1 -1

2 1 -1
1 1

Table D.1: Coordinates of nodal points in IR?-space

The first relation is of the form as given in the following equations.

x(e,'TJ)

Y(e, "I)

z(e, "I)

4

b Xi(e,'TJ)X~
1=1
4

b Xi(e,'TJ)yi
i=l
4

~ Xi(e,'TJ)zi
1==1

(D.1)

(D.2)

(D.3)

where Xi is the shape function belonging to node i,

xi is the x-coordinate of node i,

y'f is the y-coordinate of node i,

zf is the z-coordinate of node i.

The other relation between the coordinates x, y and z on the one hand and the

natural coordinates eand "I on the other is given by a bilinear mapping:

x(e,'TJ)

y(e, "I)

z(e, "I)

ao + al e+ a2 "I + a3 e'TJ

,80 + ,81 e+ ,82 "I + ,83 e"I

/0 + /1 e+ /2 "I + /3 e'TJ

(DA)

(D.5)

(D.6)

The parameters a's, ,8's and /'s can be determined by stipulating that equations

(DA), (D.5) and (D.6) must satisfy the conditions

X(ei, "Ii) x~ (D.7)•
y(ei, "Ii) yi (D.8)

Ie \ z~ In (\\
z~ i, "Ii) • \lJ.;J )

With the nodal points in the 1R?-plane defined as in table D.1, condition (D. 7)

gives rise to the following matrix equation for the x-coordinates of the nodal points
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of the bilinear quadrilateral boundary element.

r:;1 r:
-1 -1

-: H::11 -1
(D.10)

1 1
I : I I , 1 , , I I I
L x 4 J l 1 1 1 -1 J L a3 J

The second and third condition lead to corresponding expressions for the y- and

z-coordinates of the nodes. In each case the coefficient matrix is the same.

Solving the matrix equation for the a's and substitution of the solution in equation

(D.4) produces the shape function Xi.

(D.ll) I

85



.... 'I......,
Append.lX ~

Projection of vector x on the axis

of the capstan

The axis of the capstan can be represented by

(.\ E lR) (E.l)

Or, in matrix formulation:

(E.2)

The support vector a and the direction vector jJ are known.

To every vector x of the pinch roller coating belongs one projection vector Xc on

the axis of the capstan. So, Xc can be written as a function of X, which will be done

in this appendix.

The end point of projection Xc is situated in the plane through the end point

of vector Ii and perpendicular to the axis. This plane is defined by the following

equation:

where Xplane is the x-coordinate of a point in the plane}

Yplane is the y-coordinate of a point in the plane}

Zplane is the z-coordinate of a point in the plane.
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Substitution of the x-, y- and z-coordinates of point Xc, given by equation (E.2),

yields

Solving this equation for A yields

A = (31 (x - (1) + (32 (y - (2) + (33 (z - (3)

(31 2+ (3/ + (332

p. (X - (1)

IPl2
(E.3)

Substitution of equation (E.3) in equation (E.1) gives Xc as a function of x:
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Append.IX ]:4"

Program structure

The system of equations that has to be solved, contains terms with estimates for the

position X, the pressure like quantity p and for quantities, dependent on x and p.

The system of equations is solved iteratively. This iteration process is clearly shown

in figures F.l and F.2. Having solved the system, the estimates are updated. And

after substitution of these updated estimates, the system is solved again and if the

solution converges, a better solution is obtained. This is repeated as many times as

necessary to get a solution, which satisfies the required accuracy demand.

Both the system matrix and the right hand side contain estimations. Conse­

quently, both have to be changed every iteration.

If an accurate solution has been obtained, the program continues with the next

time step. The solution of the previous time step will be used as first estimate for

the new time step.

The assembly of the global stiffness matrix and of the global right hand side

is done by the SEPRAN package. SEPRAN creates for every element the element

stiffness matrix and the element right hand side and puts every component of the

element stiffness matrix and the element right hand side on the right place in the

global stiffness matrix and global right hand side. Difference is made between body

elements and boundary elements.
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n number of
time step
number of
iteration step

START

n:=O i:=O

time loop
n:=1

Input boundary
conditions

-::;::n,l ~n-l ...... n,l n-1
X := x p:= p

Solver

NO
n=n ?max

YES

END

Figure F.l: Program structure
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STOP

SOLVER

NO
IMI CC? :>-----------E:;--------lui < .

Figure F.2: Iteration loop
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AppenOlX lj

Test for frictionless contact

In this appendix the data and the results of the test for frictionless contact are given.

G.l Test data

y

8::+-----------;717

5 6
I

.-J-------/' 4

z
a 2

b

c

Geometry:

a 7.0

b 4.0

c 1.75

Figure G.1: Undeformed geometry

Number of elements: 14 x 4 x 6

Prescribed displacements:

(see figure G.2)
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./

~ \ \ \ I I I
),

Figure G.2: Element mesh

Surface(1,2,3,4)

Surface(5,6,7,8)

U X = 0 uY = 0 U
Z

= 0

candidate contact surface

Capstan:

Radius:
Displacement per time step:

Number of time steps:

Material parameter: c = 1

Penalty parameters:

1E - 15 < E1 < 1E - 1

1E - 15 < E2 < 1E - 2

2.0
dy = -0.1

5

Axis of capstan in the different test cases:

l
3.51 lO.o 11. 3.75 + >.. 0.0
0.0 1.0

r 3.5 1\ r 0.2\
2. I 3.75 + >.. I 0.0 I

l 0.5 J ll.O J

l3.51 l 0.0 13. 3.75 + >.. -0.2

4.0 1.0
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G.2 Results

G.2.1 Test case 1

Figure G.3: Deformed geometry calculated by SEPRAN

Figure G.4: Deformed geometry calculated by MARC
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Figure G.5: Von Mises stress calculated by SEPRAN

r
3.86(:-01 L1IIIIIiiii...,e. ~l"'i'_.L£oOO

I..£'JU.S: 1:0.1A: mi.

Figure G.6: Von Mises stress calculated by MARC
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,
•..-2.·ii"ii'.·"'~"I!!!i'!!'!!' ."'~!l"'.'ii·'!'IE-Ell L

L.£VEl.S:b tUr.. , £.&·81
,

-2.88E:-el 2 88E: Ell L
."iii_~""",,,~!l!'!!': DEL fA, ',••'~SE'.~8~,iii.·i .

Figure G.7: Stress component a IJ" and U xz calculated by SEPRAN

,
•...2.·ii"ii'.·"'~"I!!!i'!!'!!' ."'~!l"'.'ii·-i" -al L

L.EoaS: DU.ro'l, ':i.6i-EIl
,

••·ii2·i88<.·i"~~!,!!, 'I''!!!I!'p.'.•88<'" L
~: tUTA, l.diEQlI

Figure G.8: Stress component (TYlI and O'xzcalculated by MARC
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G.2.2 Test case 2

Figure G.9: Deformed geometry

Figure G.ID: Von Mises stress

y

.Lx

2.48

2.13

1. 78

1. 43

1. 88

e.729921

Figure C.ll: Stress component Un
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9.2189:29

-9.291927

-9.&99972

- 1.31

- 1.82

-2.33

- 2.84
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G.2.3

Figure G.12: Stress component q%~

Test case 3

L
Figure G.13: Deformed geometry

8.471589

e. 3481 Je

8.224688

8.1e1230

-e.92222e

-e.145678

-8.269128'1'

8.392578

""'!!'_,.•I6£+OOL'
~I

Figure G.14: Von Mises stress
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Figure G.15: Stress component uJlJI

1. JoI£:-el I.K-61 L'
l.£'<n.S: OCI..lr" 5.£-&2

Figure G.16: Stress component U%~
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Appendix H

Test for rolling contact

In this appendix the data and the results of the test for rolling contact are given.

H.l Test data

y

8::+- ~ """71 7

5 r""--t--------..,,-;:6

z

I
k------

/' 4

a 2
b

c

---:?'----7X
3

Geometry:

a 7.0

b 1.0

c 1.75

Figure H.I: Undeformed geometry

Number of elements: 20 x 2 x 1

Prescribed displacements:

(see figure H.2)
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.c::::

./
T

k::: v ../ 1
./ V

~./ /' ./ 1/ '/ /I

~k:::/./ ./ /1/ /'.:(.dL/~J I II
'--l.-.J ~ 17

Figure H.2: Element mesh

Surface(1,2,3,4)

Surface(5,6,7,8)

Capstan:

Axis:

Radius:

Rotation velocity:

U
X = a uY = a U

Z = a
candidate contact surface

[
3.5 1 [ 0.0 13.575 + A 0.0

0.0 1.0

2.0

12.5 Tad/ s

Material parameter: c = 1

Time:

Number of time steps:

Time step:

H.l.l Test case 1

Prescribed boundary forces:

4

dt = 0.02

Surface(1,4,5,8)

Surface(5,6,7,8)

k=l

regularized Coulomb friction 1

Friction coefficient: f-l = 0.1
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Penalty parameters:

t1 IE - 3

t2 IE - 3

Regularization parameter: t3 = IE - 3

H.1.2 Test case 2

Prescribed boundary forces:

Surface(1,4,5,8)

Surface(5,6,7,8)

fX=k(x-xo) k=l

regularized Coulomb friction 2

Regularization parameter: t4 = IE - 3

Other test data: see test case 1.

H.1.3 Test case 3

Regularization parameter: IE - 15 ~ t3 ~ lEO

Other test data: see test case 1.

H.1.4 Test case 4

Prescribed boundary forces:

Surface(1,4,5,8)

Surface(5,6,7,8)

fX = k (x - xo) k = 0.1

regularized Coulomb friction 1

Penalty parameter: t2 = 3E - 2

Other test data: see test case 1.
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H.1.5 Test case 5

Friction coefficient: J.L = 0.9

Penalty parameter: t2 = 2E - 1

Other test data: see test case 1.

H.2 Results

H.2.1 Test case 1, 2 and 3

Figure H.3: Deformed geomet1'y calculated by SEPRAN

..c: ...----- _..- ..
/

/.~ --
'- --. -- r--- _

Figure H.4: Deformed geometry calculated by MARC
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1.73E:"€Il

,
.--'!'l!.;£-Ell

Figure H.5: Displacement in x-dif'fction calculated by SEPRAN

••• ""-"'!!!!!I!!!!-_.,P'!. .el L""I'.'!·II!',--"I,•.M!J!'¥!l"""-""!'L"It:- -0 I

,
.Lx

1.73[:-(31

Figure H.6: Displacement in x-direction calculated by MARC

x

, ",~,,!.1\'.---..,"!.,!!",~.'.l.\".--"1,"'.""!'!!!!.!l'••""_·.!l'•.'!.....62 -4.42E·W

,
,.

Figure H.7: Displacement in v-direction calculated by SEPRAN
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-v, ,. -92

,
,L

Figure H.B: Displacement in y-dirution calculated by MARC

- -fff tf
~ I'll' II i

- , .1 -61

y

,.xI!'!'!!!',--"'''.§1£1!!!!''!',''''-.......;;;:E=.'-'==:;;1.~
Figure H.9: Von Mises stress calculated by SEPRAN

, .:I"IP--!'.."''\!I'--''l''.~,,£!!'!!', --""".I9Eel 5.;:~1

Figure H.1O: "on Mises .t.... calculated by MARC
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, •.!J£~.!'--"'!'~. ,p.,~,!..~,--"'!'''~'''''!!!'-<>''''''-'''!7~.,P.",.., 4.251-e:2 1.61£--91

,
..

Figure H.ll: Stress component u~ calculated by SEPRAN

"1. I' l"_p.,~,--.,~.!!!!".--,",""!!,!!!",-",!,"'!" e2 .. =!!'!8~j""-,"!!j~."",e'-'82,,"-"'!,~. ,P.IE -~I ..L
Figure H.12: St,'ess component U~Z calculated by MARC

I - ·v. ,.

x

-1. £ I 1.5W!h

,
J. J.<E-tll

Figure H.13: Stress component " .. calculated by SEPRAN
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J. 1. C- 1 I. -92 7. 18(!!'!.!!!,--~,~.!ii1l!!'$"',--")"!I.& til

,
J-x

1.25£-61

Figure H.14: Stress component uq calculated by MARC

H.2.2 Test case 4

y

t- x

Figure H.15: Deformed geometry

e. SH9S8

•• 5591<13

•. 5'133J5

Figure H.16: Displacement in x-direction

e.52752$
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8.993419

-8.818457

-6.849332

- •. 962298

x

x

Figure B.17: Displacement In y·direction

Figure H.IS: Stress component q~

Figure H.19: Von Mises stress
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- •. 984883

- •. 185959

-e.127834y

-e.14971

e. 133128

'.986318

•. 939517

-8.897284

-8.188887

-e.1944

e.692738

8.517449

8.432142

8.34684<1

8.261547

e. 176249

e.999951y

'.88565



H.2.3 Test case 5

y

1---
Figure H.20: Deformed geometry

e.3992 46

•. 37 4521

•. 349862

Figure H.21: Displacement in x_direction

8.399365

•. 275641

8,259928'1'

•. 22621

,.88258'2

_1.819783

_8.823988

_8.937213

.....,.... . 11/'

••III"I~ JII'
-. -- .

' ,.
.8.963843

_e. egO'H

Figure H.22: Displacement in y.direetion
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