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Abstract

In this report, a three-dimensional model for the rolling contact problem in a capstan
drive in a video recorder is presented. The model is based on two elements, that
have been implemented in the finite element package SEPRAN. In these elements a
Lagrangian approach has been used for the description of the deformations.

The first element is a brick element with nine nodes. It models the isotropic,
elastic, incompressible neo-Hookean rubber material.

The second element is a quadrilateral boundary element with four nodes. It
models the contact conditions between a rigid shaft and another body. The contact
conditions consist of a geometrical constraint and an adapted constitutive equation
for Coulomb friction.

Both elements have been checked for some problems. Several results are satisfac-
tory. The neo-Hookean element is suitable for moderate deformations as occurring
in for instance rubber rollers and tires. The contact element is suitable to describe
frictionless contact problems. For contact problems with friction the model provides
only satisfactory results when the friction force and the freedom of movement of
the rubber body are limited. As a consequence of these limits the model is not yet

suitable to describe the rolling contact problem between capstan and pinch roller.




Preface

This report treats the research, I have done for my graduation. This research has been
carried out at the Philips Research Laboratory in Eindhoven in the group Sastra.

Here, I would like to thank all members of the group for their support. Thanks
to the good atmosphere in the group, the time I have passed at the Natlab has been
great. Never in my life I ate so many pieces of cake as during my work at the Natlab.
Fortunately, I have no natural tendency for growing fat. Whatever future will bring
for me, I will never forget this period of my live.

Particularly, I would like to thank my coaches Frank Baaijens and Peter van
Hoogstraten for their supervision. Often, I troubled them with my questions, but
they were always willing to answer them in spite of pressure of their own work.

Finally, I would like to thank my parents. They made it possible for me to study.
They never lost faith in my capabilities. I know, they take pride in their daughter,

now that she almost has finished her studies.

Ans van Doormaal




Contents

Abstract
Preface
Contents

List of symbols

1 Introduction

1.1 General introduction . . . . ... . .. . ... ... ...
1.2 Problem definition . . . . .. ... ... ... . oo
1.3 Strategy . . . . . o o e e e e e e e e e
2 Material behaviour
2.1 Introduction . . . . . . . . . . . ..
22 Systemofequations. . .. ... ... ... ... . ... ...,
2.3 Discretization and linearization . . ... ... ... ..........
2.4 Trilinear hexahedralelement . . . . . . .. ... ... ... ......
2.5 Penalty function method . . . . . . .. .. .. ... ... ...
3 Contact
3.1 Introduction . . . ... .. ... ... .. ...
3.2 Impenetrability constraint . .. .. .. ... ... .. ... ... ...
3.2.1 Systemofequations. . . .. ... ... ... ..........
3.2.2 Penalty function method . . . . . . .. ... oL,
3.2.3 Linearization and discretization . . .. ... ... ... .. ..
3.2.4 Bilinear quadrilateral boundary element . . .. ... ... ..
3.3 Friction . ... .
331 Coulomblaw . .. ... ... ... ... .. . .. .. .. ...

10
11

12
12
12
14
20
21




4

5

3.3.2  Coulomb friction (slip) . . . .. .. .. ... .. ... ...
3.3.3 Coulomb friction (regularized) . . . . . .. ... .. ... ...

Results
4.1 Iptroduction . . . . . . . e e e e e e e e
4.2 Frictionless contact . . . . . . . .. . ... .

43 Rolling contact . . . ... ... ... o oL

Conclusions and recommendations

Bibliography

A

=7 I < B w B

P

Linearization

A.1 Balance of momentum and incompressibility constraint . . . . . . ..
A.2 Impenetrability constraint . . ... .. .. ... ... .........
A3 Coulomb friction (slip) . . . .. .. .. ... ... o oL
A4 Regularized Coulomb friction 1 . . . . .. . ... ... ... .. ...
A.5 Regularized Coulomb friction 2 . . .. ... ... ... .. ......

Discretization

B.1 Balance of momentum and impressibility constraint . . . . . . . . ..
B.2 Impenetrability constraint . . ... .. .. .. ... ... .......
B.3 Coulomb friction (slip) . . . . ... .. .. ... ... ... ...
B4 Regularized Coulomb friction 1 . . .. .. ... ... ... ......
B.5 Regularized Coulomb friction 2 . . .. .. .. .. ... .. ......

Trilinear hexahedral element

Bilinear quadrilateral boundary element
Projection of vector Z on the axis of the capstan
Program structure

Test for frictionless contact

G.1 Testdata . .. .. . . . . . ...

G.2 Results . . . . . . . .. e
G.21 Testcasel. . . .. . .. . . . ... . .
G222 Testcase 2. . . . . . . i i i i e

40

n
(v

40
43

45

47

49
49
52
56
59
61

63
63
72
74
76
7

79

83



G.2.3 Testcased. . . . . . . . o e, 97

H Test for rolling contact 99
H1 Testdata . .. ... ... . ... .. .. . . . .. 99
HI11 Testcasel. . . . . .. . . . . i it 100
H12 Testcase2. ... . . . .. . .. i .. 101
H13 Testcase3d. .. ... ... . . . ... ... 101
H14 Testcased. .. .. .. . . . . i i . 101
H15 Testcased. . . . . .. . it i it i 102

H2 Results . . . .. ... . . 102
H21 Testcasel,2and 3. ... ... .. ... ... . ... ..... 102
H22 Testcased. ... ... . . . . i 106
H23 Testcase5. . . . . ... .. . .. . 108




List of symbols

column with derivatives of the displacement shape functions

matrix with gradients of the displacement shape functions

o 22

a tangent matrix
boundary force

column with boundary forces in the element nodes

boundary force on the capstan roller

Q
"3

S SIS oYy

S

boundary force on the pinch roller coating
tangential boundary force

material constant

direction of the relative displacement

column with z-, y- and z-component of vector d

deformation rate tensor for the displacement

>
8

deformation rate tensor for shape function w

g

matrix representation of the deformation rate tensor Da,

|@[|>@ O Oi& 8 0
8

g

matrix representation of tensor D,,

material tangent matrix

deformation tensor

matrix representation of the deformation tensor
right hand side containing non-linear terms and boundary forces
impenetrability constraint

shorter notation for a complex tensor

matrix representation of tensor G

matrix with pressure shape functions

unit tensor

matrix representation of the unit tensor
volume change factor

non-linear right hand side factor

right hand side containing a non-linear term

shorter notation for a complex tensor

R S H Qe A

matrix representation of tensor K

=
>
8

displacement gradient tensor

-
g

shape function gradient tensor

[~
>
8

matrix representation of the displacement gradient tensor




SR T

s
.

3

[ = |y

[y}

N B TR R R

matrix representation of tensor L,
continuity matrix
pressure mass matrix

unit outward vector, perpendicular to the contact zone

S

column with the z-, y- and 2-component of

matrix composed of the components of 7

number of nodes for the boundary element

number of nodes for the pressure

number of nodes for the position

pressure like quantity

column with estimations for the pressure at element nodes
estimation for the pressure like quantity after n time steps and i iterations
matrix with displacement shape functions

external volume forces

matrix with derivatives of the displacement shape functions and
with the pressure shape functions

weighting function for the pressure

column with weighting functions for the pressure

radius of the capstan

tangential direction

column with the z, y- and z-component of 7

matrix composed of components of #
~t

displacement of the capstan

diffusion matrix

time

initial stress matrix

displacement vector of a contact point of the pinch roller coating
displacement vector of a contact point of the capstan
length of vector zﬁic — i

relative displacement

velocity

relative velocity

weighting function for the position

column with weighting functions for the position at element nodes

position of a material point




Anyt

estimation for the position after n time steps and i iterations

z, projection of Z on the axis of the capstan

Tdif length of vector :%’c —

a support vector of the axis of the capstan

B direction vector of the axis of the capstan

r boundary

I, contact boundary

Leap boundary of the capstan

Lecap candidate contact boundary of the capstan

| candidate contact boundary of the pinch roller coating

r, boundary of the pinch roller coating

Ap column with variations of the pressure at element nodes

At time step

Aﬁ column with variations of the position at element nodes

€1 penalty parameter for the incompressibility constraint

€2 penalty parameter for the impenetrability constraint

€3 regularization parameter for the Coulomb friction

€4 regularization parameter for the Coulomb friction
parameter for the points on the axis of the capstan

I friction coefficient

p density

Po density at time tg

o Cauchy stress tensor

O coulomb coulomb friction

On contact pressure

Tncap normal boundary force on the capstan

Tnp normal boundary force on the pinch roller

Frcap tangential boundary force on the capstan

Tip tangential boundary force on the pinch roller

T stress tensor

7 matrix representation of stress tensor 7

T column with stress components

©; shape function for the position belonging to node i

@ matrix with interpolation functions for the position



x -

< =

>
—

Az

D H D

w

QA:E

=)

follye)
S

folle
o o
8 8
3 3

<

regularization function for the friction

shape function of the boundary element belonging to node i

matrix with shape functions ¥;

to node i

s

shape function for the pressure belongin
column with interpolation functions for the pressure
mean rotation velocity of the capstan

volume

spin tensor for the displacement

spin tensor for shape function @

matrix representation of the spin tensor 2,
matrix representation of the spin tensor £2,,
bounded open domain of the pinch roller coating
domain of the pinch roller coating

bounded open domain of the capstan

domain of the capstan

column with gradients

gradient operator

gradient operator with respect to the reference configuration

material time derivative

conjugate tensor

inverse tensor

transponed of a matrix

j-derivative

value of a quantity or vector in node i
variation of a quantity, vector or tensor
estimation of a quantity, vector or tensor
determinant of a tensor

trade of a tensor

z-component of a vector

y-component of a vector

z-component of a vector

a quantity or vector with respect to the element



Chapter 1

Introduction

1.1 General introduction

In data systems, magnetic recording is often applied as a carrier of information,
thanks to its high density of information, its convenience of use, its low costs and its

reusability. An example of magnetic recording is video recording.

scanner

writiag/reading

dats ca tape capstan
tape

: pinch roller with rubber coating
jt 7 =7 Q
Q
\ .
video cassetta
J g, <

Figure 1.1: Tape transport mechanism in ¢ standard Philips VHS video recorder

The fidelity of video recording depends among others on the mechanics of the
system. That is why at the Philips Research Laboratory Eindhoven a research project
has been started on the behaviour of the mechanics in a video recorder. In the group
”Continuum Mechanics, Systems & Control and Tribology”, the behaviour of the

capstan drive is examined. This research is carried out in co-operation with the



Eindhoven University of Technology.

In almost every video recorder the tape is driven by a combination of a metal
shaft, the so-called capstan, and a metal cylinder with a rubber coating, the so-called
pinch roller (see figure 1.1 and figure 1.2). The capstan is driven by a DC-motor. The
pinch roller is pressed against the capstan by an elastic spring. The tape between

both rollers is transported due to the frictional forces in the contact zones.

i rigid cylinder

Figure 1.2: Capstan drive

Some research has already been carried out on a method for calculating the stresses
and deformations in the tape and pinch roller coating with a two-dimensional model,
[1] and [2]. However, there is a strong need for a three-dimensional model. The path
of the tape in a recorder is of a three-dimensional nature.

In this report, a three-dimensional model will be presented for the rolling contact
problem between capstan and pinch roller. Because of its complexity, the problem is
reduced to contact between two bodies. The tape has been left out of consideration,

but can be added as a third contacting body later on.

1.2 Problem definition

A model of the capstan drive has been shown in figure 1.2. The capstan is being driven
at a certain angular speed. The purpose of the drive is to transfer this velocity to
the tape as well as possible. In this conveyance of velocity, the deformations of the
pinch roller are of great importance.

As already has been remarked in the previous section, the tape is left out of
consideration. Since the tape is very thin (about 18 gm or thinner) in comparison
with the diameter of the pinch roller (about 12.5 mm for a standard Philips VHS

video recorder), it is not of importance for the deformation of the rubber coating.

10



The metal capstan and the metal cylinder of the pinch roller are much stiffer than
the rubber pinch roller coating. Therefore, they are supposed to be rigid.

The material of the rubber coating is assumed to behave elastic, isotropic and
incompressible. A simple and suitable constitutive relation for such behaviour is the
neo-Hookean constitutive equation. It contains only one material parameter. The
suitability of the neo-Hookean material model has been shown by experiments on the

rubber material of the coating,.

1.3 Strategy

A Lagrangian approach is used to calculate deformations and stresses in the body.
This means, that the reference system and mesh are attached to the body.

Based on the balance of mass, momentum and angular momentum and the neo-
Hookean constitutive equation an algebraic system of equations is obtained for the
material behaviour of the rubber coating, with the position & of a material point
and a pressure-like quantity p in the body as unknowns. The system of equations is
obtained by using the weighted residual method, a linearization and a discretization
of the body. For the discretization a trilinear hexahedral element is used. This is
a three-dimensional brick element with eight nodes for the position at the vertices
of the element and one for the pressure-like quantity at the centre of the element.
The element applies linear interpolation functions for the position and a constant
interpolation function for the pressure-like quantity.

The neo-Hookean element has been implemented in SEPRAN (see [7]). The
computational burden has been reduced considerably by use of the penalty function
method.

A quadrilateral bilinear boundary element has also been implemented in SEPRAN.
This boundary element describes the contact conditions between capstan and pinch
roller coating. The system of equations for this boundary element is based on the
geometrical constraint in the contact region and an adapted constitutive equation for
Coulomb friction. The only unknown in the system of equations is the position Z, for
which the boundary element contains four nodal points.

Both elements are checked for some test cases. Contact problems with and without
friction are simulated. The results of these simulations are compared with numerical
results, obtained with the finite element package MARC (see [8]).

Finally, some conclusions are given.

11



Chapter 2

Material behaviour

2.1 Introduction

In this chapter mathematical relations to describe the behaviour of a neo-Hookean
rubber material will be derived, based on the laws of conservation and the constitutive
equation for a neo-Hookean rubber material. The derived relations form the basis for

a numerical algorithm to compute the quantities of interest.

2.2 System of equations

Primary variables are the position & of the material points, the Cauchy stress tensor
o and the density p. If these variables are known, the configuration of the rubber

body can be described completely.
The state variables must satisfy the balance of mass, momentum and angular

momentum. These laws are given here in a local form (see [3]):

V.o +pi = v (2.2)
o = o° (2.3)

where pg is the density at time tg,
J is the volume change factor,
¢ denotes external volume forces,
¥ is the velocity,

V is the gradient operator,

12



(") denotes a material time derivative,

()°denotes a conjugate tensor.

The rubber body is considered to be incompressible and it is assumed that there

a
are no external volume forces and inertia forces. This sim

plifies the system of equa-
tions:
J = det(F)= (2.4)
V.ot = 0 (2.5)
o = of (2.6)

where F = (VoZ)° is the deformation tensor,

Vo is the gradient operator with respect to the reference configuration.

The material behaviour is described with a so-called constitutive equation. One
way to model a neo-Hookean rubber material is with the following constitutive rela-

tion (see [9]):
o=-pl+r ; 7=2(F-F° -1 (2.7

where 7 is a stress tensor,
I is the unit tensor,
¢ is a material constant,

p 18 a pressure-like quantity.

The constitutive equation introduces one extra unknown, the pressure-like quan-
tity p. This pressure-like quantity p depends on the hydrostatic pressure and on the
left Cauchy Green strain tensor (B = F - F°).

Together with the other unknowns, the position vector (three components) and the
stress tensor (nine components), there are thirteen unknowns in a three-dimensional
problem. Consequently, thirteen equations are needed to obtain a solvable system.
The number of derived equations has to be equal to the number of unknowns. Equa-
tion (2.4) represents one equation. Both equation (2.5) and equation (2.6) offer three
equations. And finally, the constitutive relation (2.7) provides six equations. Totally,
there are thirteen equations. This is exactly the number of equations, needed for a
solvable system. So, a combination of equations (2.4), (2.5), (2.6) and (2.7) results in
a solvable system of equations with the position vector and the pressure-like quantity

as unknowns.

13



2.3 Discretization and linearization

A weighted residual method is applied to the system of equations. The equations are
multiplied by a weighting function and integrated over the volume. Application on

equations (2.4) and (2.5) yields
/Q 3 (V- 0)d0 = 0 V @ (2.8)
/Q r (det(F) — 1)dQ = 0 v or (2.9)

Before derivation of the weak form of these equations, the set of trial solutions and
the set of weighting functions have to be defined. The set of trial solutions & is defined

as
X = {#|Z € [C"]", tlr, = tio}

The set of weighting functions w0 is defined likewise by
W = {&|@ € [C']*, @), = 0}

The set of trial solutions p is defined as
P = {plp € C° plr, = po}

The set of weighting functions r is defined likewise by
R ={rlr € C%r|r, = 0}

where: [ |* means that every component must satisfy the condition,
tlr, is @ on that part of the boundary where @ is prescribed,
lr, is p on that part of the boundary where p is prescribed,
o is the prescribed position vector,
Po is the prescribed pressure-like quantity,
and C* is the class of functions that are at least k times differentiable.

For non-linear problems it is difficult to indicate the conditions with respect to con-
tinuity and differentiability.
With these definitions the equations (2.8) and (2.9) can be converted into the next

systemn:
/Q(W) :crdﬂz/rw-a-ndf V dewW (2.10)

/Q r (det(F) — 1)d2 = 0 V reRr (2.11)

14



using: 1. the symmetry of the stress tensor
o=0°
2. partial integration according to
9(a8) = 5-(9-0) + (Vi)

of a volume integral ntoaboundarv

mation

o

integral according to the dlvergence theorem

o V(o w)dﬂ = fp - (o W)dl

Equation (2.10) is called a weak formulation. The restriction of being continuously

differentiable is imposed on the weighting function & instead of the stress tensor o.
Substitution of the constitutive equation (2.7) in (2.10) yields
/Q(ﬁzv)c (—pI47)d = /F @ - §dl V dew (2.12)

/Q r (det(F) — 1)dQ = 0 V reRr (2.13)
where b is the boundary force.

The derived system of equations is nonlinear. In order to solve the system with a
finite element method, it has to be linearized. The way, this will be done, is by using
estimations for the unknowns Z, p and &, indicated by a:c', p and &. The difference

between the exact solution and the estimate is given by AZ, Ap and Ao

= F4+AF (2.14)
» = H+Ap (2.15)
o = 6+ Ac (2.16)

Supposing the estimations are accurate, then the differences are relatively small com-
pared to the estimates and it is allowed to neglect terms of order A% and higher.
Substitution of equations (2.14), (2.15) and (2.16) in (2.12) and (2.13) then yields

(see appendix A)
/Q Lo : (—=p1— ApI+ pLa,)dQ +

/QLw:(++4cDAx++-LA;)dQ=/Fzz;-é'dr V deWw (217

/Qr(%-A:z)dQ=

—1)dQ VreR  (218)

15



where

With respect to the system of equations (2.17) and (2.18) some remarks have to
be made:

1. In order to derive a symmetrical matrix, in the incompressibility constraint the

original weighting function r has been replaced by a weighting function — .

det
The resulting equation (2.18) is consistent. This can be seen by substitution of

the real solution (AZ = 0). This substitution gives the original equation.

2. The real configuration of the body is unknown. There is only an estimation
for this configuration. To solve the problem in a decent way, the volume of the
body should be written as the sum of an estimation and a variation. This has
not been done. The integration has been carried out over the estimated volume.
Since the problem will be solved iteratively, this will have no consequence for

the solution, only for the convergence.

Equations (2.17) and (2.18) can be discretized geometrically by a finite element
method. This means that the volume Q will be divided into a finite number of pieces,
the so-called elements. In each element, there are a finite number of discrete points,
the so-called nodes, in which the unknown positions and pressures are computed. For
other points of the element the unknowns can be derived by interpolation between
the nodes.

The weighting functions are also computed in the nodes and interpolated between
the nodes. They are chosen according to the Galerkin method, which means that
they are interpolated in the same way as the corresponding unknowns. So, in the

procedure of discretization, the unknown variables and the weighting functions are

vais L 110

approximated by a linear combination of the values in the nodes.
Z(z,y,2) = X Ty
p(mayaz) = _21 Di 'sz
W(z,y, Z) = X W
r(x,y,z) = 2 T; '(;bz

16



where nx denotes the number of nodes for the position,

np denotes the number of pressure nodes,

21 is the
WY; is the
'“uT/r,' is the

r; is the

ann f')l'f)f'*’lﬂ

shape function for the position belonging to node 1,

=3

Civy JwieL oo

value of the weighting function r in node i.

o .
(I

shape function for the pressure belonging to node i,
Jote of the weiaghts

vaue Gf wic weigni

In this report, a three-dimensional body will be discretized by a trilinear hex-

ahedral element, containing eight nodes for the position and one for the pressure.

This hexahedral element with its interpolation functions will be treated in the next

section.

In appendix B it is shown how discretization of equations (2.17) and (2.18) with

use of the approximations for the position and the pressure results in the following

system of equations and the following contributions for each element to the global

stiffness matrix and right hand side vector:

T (—Qp +AT+)dQ
w” [ (~Qp +4"%)

[-QAp + AT(y Tp B+4cD + T)AAz]dQ

=%T/F££d1‘ w (2.19)
T [ Q"Ax dQ~LT/Q ¥ kdo r (2.20)
e _ 1 _
det (F)
(A2 = [An Ay Az Avs Ays Az |
(Ap*)" = | Ap |
7 = [ ]
(ge)T - wi® w¥ w? ws®  ws? ,wsz]
(ze)T I ]
@9 = |[w|
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An assembly process is required to obtain the global matrix and right hand side

vector.
Transferring the estimated terms in equations (2.19) and (2.20) to the right hand
side yields

w” [ [~QAp + AT(p B+ 4c D+ D)AAT O

o

=wT/ Qp — AT# )dﬂ+wT/F£de‘ V ow (2.21)
~ Q —_— ~ ~y ~Y ~

T T — T )
[ QTazde =1 /ngdfz vV or (2.22)

The derived system of equations (2.21) and (2.22) must hold for all admissible weight-
ing functions w and r. Therefore, the system can be generalized by the following

matrix formulation:

s =L ||Az | | [
5]zl
where:
S = [ A"(pTpB+4eD+D)A0
L = /QQ_TdQ

19



_ 5 ATs
= [(Qp —A"7)d+ [ Pbdr
= — | ¢kd

SR A
)

2.4 Trilinear hexahedral element

The domain of a straight edged hexahedral element is completely defined by the
location of its eight nodal points 7%, i=1,..,8. The local node ordering is given in

79
figure 2.1.

b |
| X=\X,V,Z
e
|
)
76
} | n
: /)~————————————-—>
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//4

&5 5 £=EnQ)

Figure 2.1: Parent domain and local node ordering

It is impossible to define shape functions for an arbitrary hexahedral element.
That is why a parent domain is used, for which it is relatively simple to define shape
functions. The parent domain is defined in another space, the so-called ¢ -space.
This ¢ -space is an orthonormal space, with £, n and ¢ as independent coordinates.
The parent domain is a cube with edges of length two in { -space, given in figure 2.1.
The centre of the bi-unit-cube is located in the origin of the coordinate system.

The shape functions, belonging to the bi-unit-cube can be used to approximate
the position #¢ of an arbitrary point in the element, because the domain §2° of the
arbitrary hexahedral element is the image of the bi-unit-cube under trilinear mapping
(see appendix C). So, the approximation of the position vector & is given by

#e) =3 ¢il)3 (2.24)

~

where the shape functions for a bi-unit-cube with center in point (¢,7,¢) = (0,0,0)
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are given by
oi(6m,0) = (1L H O w1 +6:0) (225)

where {; is the {-coordinate of node i in ¢ -space,
7; is the n-coordinate of node i in € -space,
~

(; is the (-coordinate of node 1 in é‘-space.

How these shapTe functions are determined is treated in appendix C.

The shape functions (2.25) are a function of the coordinates in £ -space. However,
in the discretized system of equations (2.23) appear the z-, y- and z-derivatives of the
shape functions. How these derivatives can be determined is presented in appendix

C. The result is given here.

-T
Pix Te Ty T Pi
Pig | = Ye¢ Yn Yg Yin (2.26)
Pi,z %E Rnm 2 Wi

where ; ; is the j-derivative of ¢;,
z; is the j-derivative of z,
y; 1s the j-derivative of y,
z; 1is the j-derivative of z,

()T denotes the transponed of a matriz.

2.5 Penalty function method

In the previous sections the system of equations, describing the behaviour of a rubber
body, has been linearized and discretized in order to solve it with the computer. The

discretized system of equations is given by equation (2.23):

)1

[ I ~l= Y (2.27)
L-L  0fise] Lk

Because of the null matrix in the lower right part the total system matrix is not

positive definite. Partial pivoting can be necessary to solve the system. Partial

pivoting is the interchanging of rows in the system matrix. Since the implementation
will be performed within the finite element package SEPRAN and SEPRAN does not
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perform partial pivoting, the penalty function method is an efficient alternative. In

stead of the incompressibility constraint (2.18) the penalty formulation is imposed:

rv-AZdY+ [ reApd= [ rkdD (2.28)
A A A

LAz +e MAp =k (2.29)

where € is the penalty parameter,

M is the pressure mass matriz.

M= [ gae=[ ¢y’

In each element, there is one node for the pressure-like quantity. So, the elemental
mass matrix M is a scalar.

With use of the penalty formulation the total system of equations looks as follows:

{ﬁ LR =[L} (2.30)

—'L —ﬁl_M A{g k

~

Since the pressure-like quantity is interpolated discontinuously, the number of un-
knowns can be reduced by eliminating the pressure A£ per element. Discontinuous
interpolation means that there is no overlap of the elemental matrices in the global

matrix. Elimination of Ap results in

(S+EITM LAz = f — LT Mk (2.31)
€1 ~
After solving (2.31) for Az, Ap can be found according to

R
Ap = —ZM "(LAz + k) (2.32)

The calculation of the inverse of the pressure mass matrix M is very simple because of
its diagonal structure. This diagonal structure is a consequence of the discontinuous
interpolation of the pressure-like quantity.

The penalty function method has two advantages compared to a direct method.
The first one is that the system matrix is symmetric and positive definite. No partial
pivoting is needed to solve the system. Partial pivoting costs a lot of computation
time and memory space. The second advantage is the possibility to reduce the number

of unknowns, which also reduces the computation times considerably.
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When applying a penalty function method, special attention should be payed to
the choice of the penalty function parameter. In the penalty formulation an extra
term has been added to the incompressibility constraint LAz = —,]f, . In order to
approximate the solution of the incompressibility constraint the extra term must be
uirement is satisfied by choosing a small value for the penalty

small. Usually, this re

111 VR

S
:
2

parameter €;. However, when the penalty parameter has been chosen too small, an
ill conditioned system will induce and the solution will deteriorate becausé of the ill
conditioning and accumulation of round-off errors.

In the problem here considered, the extra term is the product of the penalty
parameter €; and the variation of the pressure-like quantity Ap. This variation Ap
tends to zero in a converging iterative solution proces. Then the extra term also
tends to zero, regardless of the value of the penalty parameter. Consequently, in this
problem the penalty parameter does not influence the final solution, which indeed
has been ascertained. This is a very unusual phenomenon for the penalty parameter
method.

The system of equations (2.31) and (2.32) has been developed for one representative
element. This element has been implemented in the finite element package SEPRAN
[7). SEPRAN creates the matrices and right hand sides for all elements and assembles
them. This results in one large matrix and one large right hand side column. After
this assembly SEPRAN also solves the resulting matrix equation. The structure of
the program, in which the assembly process and the solving of the system of equations

occurs, is discussed in appendix F.
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Chapter 3

Contact

3.1 Introduction

Due to friction in the contact zones of the capstan drive the tape is driven. In this
chapter, the contact phenomena for the combination of capstan, pinch roller and tape

will be analyzed.
In this research, the problem will be reduced to contact between two bodies, the

capstan and the pinch roller coating. Later on, the tape can be added as a third
contacting body.

In the contact region extra conditions have to be fulfilled. Firstly, a material
point of one body can’t occupy the same position as a material point of the other
body. Because of this impenetrability, a geometrical constraint has to be taken into
account.

Secondly, each body is loaded by contact forces in the contact zone. At contact
points the law of action and reaction applies.

In this chapter, the impenetrability constraint and the contact stresses for the

contact between capstan and pinch roller coating will be described mathematically.

3.2 Impenetrability constraint

Before describing the contact conditions, some assumptions have to be made. Firstly,
it is assumed that the capstan is rigid with respect to the pinch roller coating. This
assumption is tenable, because the metal capstan is much stiffer than the rubber
pinch roller coating.

Another important aspect is the interaction between the bodies. Adhesion is

24



not allowed. The friction between the two bodies can be described with the aid
of a constitutive equation. For the moment however, only frictionless contact is
considered.

Furthermore, the position and the movement of the capstan are supposed to be
known. Material points of the pinch roller may not penetrate the capstan.

In this section the system of equations for the impenetrability will be determined.
Afterwards, this system of equations will be treated such that it can be solved com-

putationally.

3.2.1 System of equations

First, a few notations have to be defined. The pinch roller coating is a three-
dimensional body that occupies a bounded open domain ,(t) with boundary T',(¢)
at the current state t. {,(¢) denotes the closure of Q,(t), i.e. 2,(t) = Q,(¢) U T, (2).
Similar notations will be used for the domain, the bounded open domain and the
boundary of the capstan. These are indicated by Qcap(t), Qeap(t) and Teap(t) respec-
tively.

The candidate contact area of the pinch roller coating is indicated by Iy, (?),
whereas the candidate contact area of the capstan is indicated by T'cep(2). The real
contact area I';(t) is a part of T'p,(t) (Te(t) C T'ep(t)), but also a part of T'eeop(t)
(Te(t) C Tecap(t))-

Now, at each state t a scalar quantity g = ¢(Z, I'ccap(t)) has to be defined for all
Z € T'p(t), such that (see [10])

(&, Toeap(t)) < 0 if 7 ¢ Qup(t)
9(Z,Teeap(t)) = 0 if &€ Doeaplt)
9(Z, Teeap(t)) > 0 if Z€ Qeap(t)

It can be seen that no penetration occurs if and only if
9(&, Lecap(t)) < 0 V ZFeT,t) (3.1)

In this section such a functional g will be formulated for the contact between the
pinch roller coating and the capstan.

The capstan is a cylinder with radius R.. The distance between a material point
on the curved boundary of a cylinder and the axis of the cylinder is equal to the
radius. If the cylinder is rigid and if another body comes in contact with the curved

boundary of the cylinder and no penetration is allowed, the distance from a material

25



"

O

Figure 3.1: Definition of the normal vector i

point on the candidate contact boundary of this body to the axis of the cylinder has
to be equal to at least the radius of the cylinder.

So, the distance between a material point on the candidate contact boundary of
the pinch roller coating and the axis of the capstan has to be equal to or greater than

R.. This can be formulated mathematically by the following equation:
|Z -2 > R, V  ZeT,() (3.2)

where Z. is the orthogonal projection of vector ¥ on the azis of the capstan.

If the set of points Z, on the axis of the capstan is described by
Z.=d+ A3 (A € IR) (3.3)
then vector , is given as a function of vector Z by the following relation.

c=——-+(I——=—)- 3.4
kR L 34

with & is the support vector of the azis of the capstan,

ﬁ is the direction vector of the axis of the capstan.
The derivation of this relation is discussed in detail in appendix E.

Now, a unit vector 7 will be defined:

7 o ';f:”fi (3.5)
[+

This unit vector points from Z to &, on the axis of the capstan. This can also be seen

in figure 3.1.
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With this definition, the inequality constraint (3.2) can be rewritten as
—(Z—-%.) 712> R, V ZeTq,()
Or:
(Z—-2,) 1+ R. <0 V  Zel,{) (3.6)
This is the functional g looked for.

Another contact condition is that at current contact points the law of action and

reaction applies, i.e.
gp + gcap =0 on L.(t)

The normal vectors are opposite at current contact points. So, splitting the contact

forces in a normal and a tangential component yields

on T'.(t) (3.7)
on T'.(t) (3.8)

— -
Onp + Oncap =

oL Oy

— —
Otp + Otcap =

Initially, the contact is supposed to be frictionless. Then the shear stress can be left
out of consideration. Later, the shear stress will be determined with the help of a
constitutive equation.

Since the normal contact stresses are equal, a contact pressure o, is introduced.
On = Onp = Oncap

Adhesion between the contact bodies is not allowed. This means that the contact

pressure o, is less than or equal to zero.
on <0 on T'.(t)

It is allowed to impose this condition for the contact pressure not only on points of
the real contact area, but also on other points of the candidate contact area. In these
points the contact pressure equals to zero. So, the contact pressure has to satisfy the

following constraint.

o, <0 on  Te(t) (3.9)
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For convenience, here a summary of all contact conditions is presented.

{‘7" s 0 (3.10)

g =0
(# =0 then o <0
) i g 321244 n >V (3‘11)
l if ¢g<0 then o,=0
From equation (3.11) it follows that
0,9 =0 on T,(t) (3.12)

3.2.2 Penalty function method

The impenetrability constraint ¢ < 0 is weakened by replacing it by g. = g+€; 0, <0,
with e > 0. The penalty parameter €; is chosen small, such that €0, is small
compared to g in order to guarantee a good approximation of the constraint ¢ <
0. But the penalty parameter must also be chosen large enough to avoid an ill
conditioned problem. An optimal value for the penalty parameter ¢, can be found
by numerical experiments with several values for the parameter.

Replacing functional g in the contact conditions by g + €3 o, yields

n <0
{ on = (3.13)
g < 0
if go=0 th n <0
v =T =0 (3.14)
if go<0 then o,=0
Physically the penalty formulation can be interpreted as a contact problem with
capstan with a somewhat smaller radius.
From the penalty formulation (3.14) it follows that, if o, < 0, then g, = 0, which
yields o, = —;1; g. And it follows that if o, = 0, then g < 0 is valid. Hence,
1
op=——g% (3.15)
€2

where gt = maz{0,g}.
With equation (3.15) a relation has been found for the normal component of the

boundary force in the contact region. Relations for boundary forces have to be

substituted in the right hand side of the weak formulation of the balance of momentum
(2.12):

/11’)’-ng=/ B - (b, + b,) dT
r r
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where b,  is the normal boundary force
b, is the tangential boundary force

The boundary T, is splitted in two parts, the candidate contact boundary, I'y, and
the rest of the boundary I',)\I';,. Here, attention is only paid to boundary forces in
the candidate contact zone. However, boundary forces on other parts of the boundary
have to be treated in the same way.

On the candidate contact surface, the following forces are prescribed for a fric-

tionless problem.

b: =0 on [, (3.16)
by = 0 71 on T (3.17)
Substitution of the prescribed boundary forces (3.16) and (3.17) and of equation
(3.15) in equation (3.2.2) yields

. 1
/' @-bdl =— [ @-=g*idl (3.18)
Tep Cep €2

3.2.3 Linearization and discretization

The impenetrability constraint is a nonlinear equation. In order to be able to solve
it with the finite element method, it has to be linearized in the same way as the

equations for the material behaviour. So, vector ¥ is written as
F=7+AZ (3.19)

Using this expression for Z, a linearization has been carried out for the contribution
of the boundary force to the system of equations in appendix A. The result is given

here:

A A
——

A‘w$ﬂ=—é iw(fﬁ+@%ﬂAﬁﬂﬁ—ﬂ%$Aﬂﬂ+O@ﬂ@%)

o €2 |Z, — &
with:
§ = (@-2)-7+R,
o G
la_fc"fl
s g B
T, = —_,—54-(1——:—)&
812 |81
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5 7 * 5_'
F = —
|51
()t means that the mathematical quantity is only taken

into account if g > 0

The vector 7 is the estimate for the tangential vector 7, which is defined by

-t

7n*f3
|51
The contribution for the impenetrability constraint (3.20) will be discretized ge-
ometrically by the finite element method. It is sufficient to discretize the candidate

-
r =

contact surface.

The element used for the discretization is a bilinear quadrilateral boundary el-
ement with four nodes for the position. This element will be treated in the next
section.

In the discretization process, the unknown variable A# and the weighting function

W are approximated by a linear combination of their values in the nodes of the

element.
AF = 5 x:AF (3.21)
G = %y (3.22)

where x; is the shape function belonging to node i,
W; is the value of weighting function & in node i.

The result of the discretization is given by

/ @ - Ddl =
Cep

1 ~t
_/F — gt xR dT _/ Lo Ty TIvt — J_R]xAz dT + O(A?) (3.23)

ep €2 - 1-‘cp €2 ~ wdif
with:
w? = w® WY wy® w,* Y Z }
w | U 1 1 47 Wyeo Wy
AgT = [ Az, Ay, Az Azy Ay, Az ]
ﬁNT = [a® av @ ]
(x1 0 0 Xxa 0 0
X = 0 x1 O 0 x4 O
000y 0 0 x




ATAT HERY ATH

N = nYAZ np¥nY n¥a

A*n® nFnY nEn

1

Fepe popy foge )

PURT U FUR

[
1l

| pepe pEpy g
Taiy = \/(ic =22+ (G — 9)? + (2. — 2)?

The derivation of this result is given in appendix B.

Substitution of the discretized formulation (3.23) in the discretized equation for the
balance of momentum (2.21) results in a new system of equations. Terms with un-

knowns are brought to the left hand side:
T T Ta
—QA A B +4cD+ T)AAz |dQ)
w /Q[ QAp + AT(% Tp B +4cD + T)AAc]

T 1 T + §+
+ul [ ~X"IN - 2Rl Ag dr
~ Lep €27 Tdif ~

5 2 )d0
/(QR A’z )a0+w” [ Phdr
1
—w® | ~g*x"h dT V w (3.24)
~ Fcp 62 ~
nf [ QTAzda =1 /Q%icdn Vo7 (3.25)

Since this system of equations must hold for all admissible weighting functions w and
r , the system can be generalized. After application of the penalty function method,

this system is given by

_7T Az
> L oL (3.26)
-L —aM Ap k
where:
1 it
S = [ ATTpB+4cD+ DA+ [ =TV~ T R]xdr
JQ ~oA Tep €27 Taif
L = [ QT
Q@
f o= /(QQ—ATi-)dQ—}- Pbdl — ig+xTﬁ dT’
~ Q - — A~ Pp\r‘cp A Fcp 62 = A
E o= — EdQ
I )

Solving this system is analogue to solving the system of equations without contact.
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3.2.4 Bilinear quadrilateral boundary element

A bilinear quadrilateral boundary element has four nodes. The domain of the element
is completely defined by the locations of its four nodes. The domain is the geometrical
area inside the four nodal points. The nodal points are labelled in ascending order
corresponding to the counterclockwise direction (see figure 3.2).

771\

§=(&.7m)
4 3 e 4 =

G

1 > 1 2

Figure 3.2: Parent domain and local node ordering of the boundary element

In order to define the shape functions for an arbitrary bilinear quadrilateral bound-
ary element a parent domain is used. Such a parent domain has also been used for
the trilinear hexahedral element, that has been applied to discretize the rubber body.
The parent domain is defined in a IR*-plane. In this plane, ¢ and 7 are the indepen-
dent coordinates. The parent domain of the bilinear quadrilateral boundary element
is a bi-unit square, as depicted in figure 3.2.

The coordinates of a point (¢, 7) in the bi-unit square are related to the coordinates

of a point (z,y, z) in the real boundary element by the following mapping.
4
2(&m) =X xi(&m)e; (3.27)

where Z% is the position of nodal point i of the element,

X: is the shape function belonging to node i.

shape function y; is a function of the natural coordinates £ and 5 and is given

by the following relation, which has been derived in appendix D.

xi(6m) = 70+ &1 + i) (3.25)
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3.3 Friction

An essential aspect of the interaction between capstan, tape and pinch roller is the
friction in the contact regions. Due to frictional forces in these contact zones, the
tape is transported.

In this section, a constitutive relation for the friction will be added to the system

of equations.

3.3.1 Coulomb law

In engineering, a commonly used model for dry friction is the Coulomb friction.
According to the Coulomb law, the frictional force is proportional to the normal
contact force, if relative velocity between the contacting bodies occurs. The direction
of the friction force is opposite to the direction of the relative velocity of both bodies
(see figure 3.3). If the relative velocity is equal to zero, then stick occurs and the

frictional force is unknown.

KO,

Vrel

—,(,L Un

Figure 3.3: Coulomb friction

For slip (&, = 0), the Coulomb friction &couioms can be presented mathematically

by the following equation.

- Erel ﬁrel/At ﬁrel
fo - 3 = - = — 40 —_— T — — (3,29\
coutomo ;‘l/ Tn Ivrell (a4 On |ﬁrel|/At lu On ﬁrell \ ’

where p  is the friction coefficient,

Urer 1 the relative displacement.

Constitutive equation (3.29) only describes slip. This constitutive relation will be

substituted in the system of equations as a prescribed boundary force, in the next
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section. Later on, the constitutive relation will be adapted, so that stick is also

described.

3.3.2 Coulomb friction (slip)

In case of slip, the shear forces in the candidate contact zone must satisfy the con-

stitutive equation for Coulomb friction.

by = —poy, Le T on Lep (3.30)

—

|d. — @

where 4 is the displacement of a contact point & of the pinch roller coating,

. is the displacement of the contact point of the capstan.

The constitutive relation for the shear forces has to be substituted in equation (3.2.2).

/w.i;dr=/ w-(3n+3t)dr+/ @ bdr (3.31)
r Tep Tp\lep
With respect to frictionless contact problems, there is one extra term unequal to zero:
/ @ 5dl=— [ @ po,——%ar (3.32)
Tep Cep Ue — l

In this section, this term will be worked out and afterwards it will be added to the

system of equations for a frictionless contact problem.

The movement of the capstan is assumed to be a combination of a translation and a
rotation around its axis. So, the displacement of a contact point of the capstan in a

time step At is given by

U, =8+ wAtR. 7 (3.33)
where § is the displacement of the capstan,

w is the mean rotation velocity of the capstan during the time step,

T is the tangential vector.

. . . .
The rotation direction 7 is defined as follows:

po (3.34)

This definition implies, that the direction of vector § determines the direction of

rotation as well.
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Substitution of equation (3.15) in (3.32) yields

/ G- hdar= [ Egta. =2 ar (3.35)
Tep Tep €2 |t — 4
Linearization of the friction force has been carried out in appendix A. The result is
given here.
/ @b, dl = / Eotg.ddr+ [ L@ () +4TK-G)-AZdT +O(A?)(3.36)
Tep Tep €2 Tep €2
where
7o Lot
Iﬁc - ﬁ|
2, 7 * g
F = -
5]
I—dd
K = = dA
|'Ec - ﬁl

A A
— =

G = GAR —o -1

T, — &
It is sufficient to discretize only the candidate contact surface. For the discretization
a bilinear quadrilateral boundary element is used. After discretization of equation

(3.36) with this element the following result will be obtained (see appendix B).

/ @-hdl = [ EgtwTy7ddr
Tep Tep €2 ~
[ LTy (@) +9T KG)x Az dD +0(a%) (337
cp ZN -
where
iT = [F @ d)
iT — [,f;a; ,;:z]
I- 8(2
K — e~
Udif
ugy = iz — @) + (@ — @) + (i - 00
nr T
G = OAtR > T
XTdif

8
&
<
I

V(@ — 82+ (G — 9)2 + (5. — 2)?
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Substitution of the discretized formulation (3.37) in the discretized equation for the
balance of momentum (2.21) results in a new system of equations. Terms with un-

knowns are brought to the left hand side:
w [ [-QAp + AT(7p B+4e D+ T)AAz |40
Q _—~ ~ ~ ~J

T L riar+ gt
+w —x [N* — =—R] xAz dT

Fcp € mCl‘Lf

—w [ BT3¢ + 5t KG) x Az dT

~ Fcp €9

=w?l — AT#)dQ T Pb dT'
w /Q(sz, AT )dd+w b

Pp\lep ™
1
—wT [ =gt TadT+w? [ EgtyTdar v w (3.38)
~  JTep € ~ JTep 62 ~
T [ QTazda =" [ ykan vV or (3.39)
Since this system of equations must hold for all admissible weighting functions w and

r , the:system can be generalized. After application of the penalty function method,

this system is given by

S LT || Az [
- - ~l= ‘ (3.40)
-L —aM A£ !EL
where:
~+
S = /AT 37 +4cD-|—T)AdQ+/ TIN* — L Rlydr
Q Lep 62 Taif
- [ EX"(dAT) +4* KG) xdr
Fcp 62 ~
L = [QTan
Q
1
;o= /(Qﬁ — AT#)dO + Pbdl / 5t xTh dT
~ ~ Fp\Fep ~ Fep €2 -
+ / Bty Td dr
Fcp €2 -
ko= — [ ¢kdD
Solving this system is analogue to solving the system of equations without friction.

3.3.3 Coulomb friction (regularized)

It turns out that the system of equations, derived in the previous section, will not

converge. The discontinuity of the Coulomb friction curve at the point where the
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relative displacement equals to zero, causes numerical problems. A regularization
procedure is applied to overcome this problem.
In this procedure, the Coulomb law will be approximated by the following relation

(see also figure 3.4):

N - {Tre
Ocoulomb — —H On ¢(urel) —;'_l (341)
urell
Two possibilities for function ¢ are
- Iﬁrell
rel) = tanh 3.42
bii) = tanb(Zy (3.42)
2 Ure
bo(dre)) = ;a,rctan(le?—A%) (3.43)

The parameters €3 and ¢, regulate the amount of smoothing. These parameters can
be interpreted as the relative velocity below which the friction force starts dropping

considerably to zero.

HOn| HOn

ez <

Upel Upel

—HOn t . J —HOp

Figure 3.4: Regularization of the Coulomb friction

An additional advantage of the type of formulation of equation (3.41) is that
it automatically handles both stick and slip. Logical steps of making distinction
between sticking and sliding are not necessary.

The implementation of this friction model is analogous to the implementation of
the Coulomb friction. Relation (3.41) will be substituted in the right hand side of
the balance of momentum (2.12):

/ u?-?;}dl“:—/ pon bt L gr (3.44)
Cep Tep | !

c—

Linearization of this equation produces different results for both regularization func-

tions ¢. Therefore, they will be treated separately.
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Regularized Coulomb friction 1

If the regularization function ¢ is given by equation (3.42), then linearization of

equation (3. 44) gives the following result (see appendix A).
[ @-bdr=[ Lg*guw.dir

JI"cp Jl"cp €9
+/ . <731(£i;3‘)+ + —g—{1 h2(| _’I)}dd+ iThK -AZdT
Tep 2 €3At
+(’)(A2) (3.45)
where
¢ = tanh(luc — ]) (3.46)
3At

This relation is discretized (see appendix B), yielding

/w-z’tdI‘:/ ﬂgﬁq‘sl T\ T4 dr
Tep Tep s~

.t
b L [bda e + (ﬁ{l—t (LN 7 +5*BK) G xdar
3

Tep € ~
+0(A?) (3.47)
This discretized formulation is substituted in the discretized equation for the balance
of momentum (2.21). Application of the penalty function method yields the system
of equations given by equation (3.40). However, the diffusion matrix S and right

hand side f are now represented by

gt
R] xdTl'

Tdif -

/AT(¢TpB+4cD+TAdQ+/ L xFINt -

[ EyT {éﬁl(ivg'f) +(eg {1 —tan ("’f)}dd +§ é K) }XdI‘

LCep €2
1

Pbdl — [ —g* xTh dr

Tep €2

Regularized Coulomb friction 2

The Coulomb friction can also be approximated using regularization function ¢;, as

given in relation (3.43). Linearization of the friction then yields (see appendix A)

/ w’-éﬁr:/ B Gt by ddr
Lep Tep €2
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TR BN 297 €4 At b ) } N
+/ L5 |y (dn ( = +ith:K) - G| - AZdT
I, € [¢2 ( ) 7r((e4At)2 n Iﬁc _ u|2) " b2
+O(A?) (3.48)
where
.2 |iZ, — ]
$o = p arctan(6—4A—i—) (3-49)

Discretization of this expression gives the following result (see appendix B).

/ @ - b, dl = £ 5+ dywTyTd dr
FCP Fcp €9 ~ = ~
Bor 1|5 5 a Tyt 25T es At Sar g
& d K d
+ Tep 62% X |ﬁb2(~2 ) +(7I‘((64At)2+udif2)’c‘l”c\l’ +37 0 K| G XAES T
+O(A) (3.50)

The penalty function formulation of the generalized system of equations is again given
by equation (3.40). However, the diffusion matrix S and the right hand side f are
now represented by

At

1 g
_ Ti Ta LT+
§ = [ AT B+ 4eD+ AN+ [ —xINY ~ T Exdr

— Booraoqa Ty 29" e At 73T 4ot d
/ X {qﬂz(gg ) +<W((64At)2+udif2)i'\' +9" ¢ K| G| xdl

AT7)dQ + Phdl - lg+XTﬁ dr
Cp\lep ™ Fep €2 — 7

&
i
S~
S
T3>
!

n
Zﬂ
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Chapter 4

Results

4.1 Introduction

In this chapter, some results, obtained with the neo-Hookean element and the contact
element, will be presented. Two test problems are examined. Their results are
compared with results obtained with the finite element package MARC [8], which
were already available.

The first test is a frictionless contact problem. In this test case a rubber block is
indented by a rigid shaft.

The second test is a rolling contact problem. A rubber block is indented by a
rolling rigid shaft. In the contact zone, friction is prescribed.

Previous the neo-Hookean element has been checked for some test cases. These
test cases and their results are described and discussed in A Lagrangian approach
to the three-dimensional finite element modelling of a neo-Hookean rubber material”
[11]. There, it is concluded that the element is suitable to describe the behaviour
of an isotropic, elastic and incompressible material for moderate deformations, as

occurring in rubber rollers and tires.

4.2 Frictionless contact

A rigid shaft is pushed in a rubber block at three different angles. The data and the
results of these tests are presented in appendix G. They are discussed here.

In the first simulation, the shaft is parallel with one of the edges of the rubber
block. This test case is simulated in SEPRAN as well as in MARC. The results are

compared.

40



Figure 4.1: Indentation of a rubber block by a rigid shaft

Both simulations give nearly the same deformed geometry. With respect to the
stresses, there are some more differences observable, chiefly quantitative.

The maximum differences for the Von Mises stress, for stress component o,, and
stress component o, are given in table 4.1. These differences are acceptable. The
largest difference occurs for the Von Mises stress, since the Von Mises stress is deter-

mined from the separate stress components.

SEPRAN MARC maximum

min max min max | difference
Von Mises | 3.62E-2 | 2.48E+0 | 3.62E-2 | 3.04E+40 15%
Tyy -340E+0 | 4.83E-2 | -3.61E4+0 | 4.78E-2 6%
Crs -4.03E-1 | 4.03E-1 | -3.67E-1| 3.67E-1 9%

Table 4.1: Differences in stresses between SEPRAN and MARC

The maxima and minima for the different stress components appear on the same
locations in both simulations.

The lines of constant stresses, the so-called isobars, have the same form in both
simulations, except for the Von Mises stress. In the Von Mises stress, obtained
by MARC, the isobars have an unexpected form. They are not symmetrical with
regard to plane x = 3.5, whereas the problem is symmetrical with regard to this
plane. It is clear, that this result of MARC is wrong. The fault can be attributed
to the discretization of the shaft, performed by MARC. As a consequence of this
discretization, the contact condition changes. In SEPRAN, the shaft does not have
to be discretized.

The other differences between MARC and SEPRAN can be explained by two
differences. Probably, there arise differences between MARC and SEPRAN during
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postprocessing. Another difference between MARC and SEPRAN is the solution
method. In SEPRAN a penalty function method is applied, whereas in MARC a
direct method is applied. Therefore, a good choice for the penalty parameters ¢; for

the neo-Hookean element and €, for the contact element is very important. For that

i PR atara L.\

purpose, UUbu PEilaity paraineiers b ried. It appears, that for }‘Oth

con T
€Cii Varicd. iv a;yl}\,uu.o’ (IS T VAN S0 4 Sup V4

1)

parameters a rather large domain is tolerable. The admissible domains are:

IE-13< g <1E-1
IE-14< ¢ <1E-3

As expected by reason of the fact that the extra term of the penalty formulation
converges to zero undependently of the penalty parameter ¢;, for penalty parameter
€1 a large value is admissible. But if penalty parameter e; is chosen larger than
admissible, then the solution of the problem is not correct. If both penalty parameters
are chosen smaller than admissible, the problem is so ill-conditioned, that no solution
is obtained.

Two more test cases are simulated. In both these test cases, the shaft has been
pressed in the rubber block at an angle with the z-axis. These test cases have been
carried out in order to show that it is possible to push the capstan in a rubber block
at any angle.

For the computation time, it does not matter at which angle the capstan indents
the rubber block. However, in MARC the computation time increases a lot when the
capstan is pushed in the rubber at an angle with the z-axis. This is a consequence
of the increment splitting technique. That is why the simulation is not carried out
with MARC. Yet, by comparison with test case 1 it is allowed to conclude that the
simulations are rather good.

It can be concluded, that the boundary contact element describes the contact con-
ditions well and that it has some advantages with regard to MARC. These advantages

are:

e The computation time does not increase when the capstan is pressed in the

rubber at an angle.

o The capstan is not discretized, which prevents an inaccurate handling of the

contact conditions.

It must be noticed that the contact element is restricted to description of comtact

problems for rigid shafts.
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Figure 4.2: Rolling contact problem

4.3 Rolling contact

In this test case, a rubber block is indented by a rolling capstan. The rubber block is
exposed to a friction force in the contact zone by this rolling capstan. At the bottom
of the block a frictionless bearing is applied. One side of the block is joined to an
elastic foundation with stiffness & per area (see figure 4.2). The data and results of
the test are presented in appendix H. They are discussed here.

The friction force in the contact region has been modelled by both regularized
Coulomb friction 1 and 2 (see section 3.3.3). It appears that both friction models
give the same solution (test case 1 and 2). The regularization parameters e; and €4 in
these friction models are varied. They do not influence the results of this simulation
(test case 3). In the field of slip, there is no difference between both friction models
or between friction models with different regularization parameters.

After two time steps the position of equilibrium has been reached. In the following
time step the position of the body does not change. This can lead to convergention
problems in this time step. But since the final configuration has already been found,
it is unnecessary to concern about these convergention problems.

The simulation has also been carried out with the finite element package MARC.
These results are also presented in appendix H. Comparison of the results of both
simulations shows mainly differences in the displacements. In MARC, the displace-
ments are smaller. A possible explanation is that the elastic foundation is modelled
differently in both simulations.

Another difference between both simulations is that in MARC the rubber body
more or less vibrates around its position of equilibrium, without converging to this
position of equilibrium. A possible explanation for this vibration is the discretization
of the shaft. Simulations with a smaller mesh can possibly clearify this vibration.

In test case 4 the stiffness &k of the elastic foundation has been reduced. As can be
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seen in appendix H the rigid body displacement of the rubber block is larger. As a
consequence of the reduced stiffness the resistance against displacement of the rubber
block has been diminished. There are no significant changes in the stresses.

Reduction of the stiffness k¥ can lead to numerical problems. Because of the
ance against displacement, the friction imposes too large a displacement
on the contact points. This displacement is so large, that it exceeds the tangential
displacement of the capstan and contact is lost. As a consequence, the friction force
is zero in the following iteration, and the point is forced back. In this way, points are
alternatively in contact and not in contact. No solution will be found.

This numerical problem can be solved by the choice of the penalty parameter e;.
However, it has to be taken into account that too large a penalty parameter results
in bad contact conditions. Therefore, the deformed geometry must be checked on the
boundary conditions.

In test case 4, the penalty parameter ¢, had to be increased in order to obtain a
solvable system. Checking the indentation of the rubber block shows that the contact
conditions are not satisfied.

In test case 5, the friction between the capstan and rubber body is increased. The
same problem as in test case 4 occurs. In order to obtain a solvable system penalty
parameter €, has to be increased too much. The contact conditions are not satisfied.

From the various test cases the following conclusions can be drawn:

e If the friction force is small and the freedom of movement of the rubber body
is limited, the deformations of and the stresses in the body are computed sat-

isfactorily.

o The model is not suitable for problems with large friction coeflicients.
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Chapter 5

Conclusions and recommendations

The neo-Hookean element and the contact element are tested for a frictionless contact
problem. A rubber block has been indented by an rigid shaft. The results of this
test are compared with results obtained with the finite element package MARC. Both
numerical simulations show a good correspondence. The results obtained with use of
the user-written elements are satisfactory.

In both elements, the penalty function method has been applied. In the frictionless
contact problem the influence of the penalty parameters has been examined. It
appears that for both penalty parameters a large domain is admissible. Penalty
parameter ¢; does not even influence the solution, because in the system of equations
it has been multiplied with a quantity, that converges to zero.

In a second test a rolling capstan indents a rubber block. In the contact zone,
friction must be prescribed. In general, friction is a very tiresome phenomenon in
numerical models. In this test case, the friction causes numerical problems too. Only
for limited friction forces and limited freedom of movement, the system of equations
has been solved satisfactorily. The solution shows many correspondences with the
results in the finite element package MARC.

For problems with large friction forces or a compliant foundation, the numerical
problems can be overcome by the choice of the penalty parameter. However, this
leads to unsatisfactory results for the contact conditions.

It can be concluded that the penalty function method in its present implemen-
tation is not suitable to describe contact conditions with large friction forces. Since
the friction force and the freedom of movement are both large in the contact problem
between capstan and pinch roller in a video recorder, the model is not yet suitable

to describe this problem.
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Since the model has specifically been created for contact between a rigid shaft
and another body, it has some advantages with respect to finite element methods
with a general approach of contact problems. These advantages are a substantial
gain in computation time and an undiscretized capstan which prevents an inaccurate
handling of the contact conditions. Of course, the applications of the model are

restricted.

For future investigations in this research project it is advisable to pay attention to

the following aspects:

e The description of the contact conditions should be improved. In stead of
application of the penalty function method, another method could be applied,

for instance a Lagrangian multiplier method.
e The influence of the element mesh should be examined.
o Also, the influence of the time step should be investigated.

e More attention should be paid to the appearance of stick or slip and to the

division of these phenomena in the contact zone.

e The neo-Hookean and contact element should be checked for a real model of

the capstan, first with two and later with three contact bodies.
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Appendix A
Linearization

In this appendix all non-linear equations will be linearized. These are the weighted
residual equations for the balance of momentum and for the incompressibility con-
straint, the impenetrability constraint and the friction force. For that purpose the

unknowns will be written as a sum of an estimate and a variation:

Z = T+AZT (A.1)
p = p+Ap (A.2)

After substitution terms of order A? or higher are neglected.

A.1 Balance of momentum and incompressibility

constraint

First, the equations for the balance of momentum and for the incompressibility con-

straint will be linearized, given by

/Q(ﬁw)%(—pnr)dn = /Fa;-z?dr . T =2(F-F° —1) (A.3)
/Q r(det(F) — 1)d2 = 0 (A.4)
Substitution of (A.1) in the deformation tensor yields
F = (VoF)°
= (VoZ)° + (VoAZ)"
= F+AF

F = (60.’%\)6
AF = (VoAZD)

49




For the linearization of the inverse of the deformation tensor a Taylor series is used:

F—l

AF™!
Linearization

T =

-}>
fl

Using V=F"

= (F+AF)?
I+ F-1.AF)T. F-1
= (I-F1.AF) - F 14+ 0O(AY)
= F1_F-1.AF-F-1 4+ O(A?)
P14 AF?
= —F1.AF-F 14+ 0O(A?)
of the stress tensor 7:
2¢(F - F° — 1)
2c(F-F 4+ F-AF°+ AF - F° + AF - AF° — 1)
T+ AT
2c(F-F —1)
2¢(F - AF° + AF - F
2¢[F - AF + AF - F
zc[(ﬁom) B (VoAT)] + (’)(A2)
2c[(F - VoAZ)S - F-F 4+ F. B (F°. V,AD)] + O(A?)

Vo

At =2c[(VAZ)-F-F 4 P.F°. (VAZ)] + O(A?)

Using | 0

AT
Linearization

det(F)

Using (VoAZ)® =

det(F) =

§+I

2 [(VAT) + (VAD)] + (VAZS - 7 + 7 - (VAF)

of the determinant of the deformation tensor:
= det(F + AF)

= det(F + (VoAZ)°)

= det(F- (14 1. (VoAZ)))

) det(T+ F-1. (VoAZD)°)

) (14 tr(B-1 - (VoAZ)®) + O(A?)

det(F) (1 + tr(F~1 - (VAZ) - F)) + O(A?)
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using tr(A - B) =tr(B - A)
det(F) = det(F) (1 + te(F -1 (VAD)) + O(A?)
= det(F) (1 + te(VAZ)) + O(A?)
= det(F) (14 V - AZ) + O(A?)
Using the linearizations above, the equations (A.3) and (A.4) can be linearized:
(V) : —pI = —p(V )
= —(p+Ap) (F°- Vo) - @)
= —(p+Ap)[[(I-F " AF)-F - Vo] - &] + O(A?)
= PII-F " AF%). V] & - Ap[V - @] + O(A?)
= —p(V- @)~ Ap(V @)+ p(E - AF-V) - T+ O(A?)
(VB):7 = (F°- Vo) : (+ + AT)
= (Vo) -F~':(# + A1)
= (Void)*: [I=F~1-AF) . F-1.(+ + Ar)] + O(A2)
= (Vo) :[F~1-(I—AF-F-1).(+ + AT)] + O(A?)
= (Vo) - F~': (I— AF-F-1). (+ 4+ A7) + O(A?)
= (F°-Vod)°*: (I— AF - F~1) . (# + A1) + O(A?)
— (V&)°: (F — AF-F-1- 4 + A7) + O(A?)
= (V@) : [F - AF - F1- 4 4 2(VAZ)S + (VAZ))
1 (VAZ) - # 4 4 (VAF)] + O(A?)
det(F) =1 = det(F)(1+V-AZ) -1+ O(A?)

-C

. We introduce some abbreviations:

LA.’L‘ = (6A§)C = (ﬁ‘-c . 60A-’Z")c = AF : F_l = DAa: + QA(L‘

1
DA(L‘ = _(LAIL‘ + LA:L'C) 3 DAz = DAxc

2

1
0 (T T [ANEEPeY _ P c
WAy = §\hAx — LAz ) YAy = VA
b o Va :i —9\c
Loy, = (V )

So:

1>

<

g

(V@)*: —pI = p(V-B) — Ap(V-B) +p(La, - V) - & + O(A?)




(ﬁzﬁ)c T =
det(F)—1 =
Using the relation (@b) :

—i_’c.
(Vw)®: —pI

Using A: B= A°: B,
(V@) : —pT =

L, : ( +4cDas + 7 - Las%) + O(A?) (A.8)
det(F) (1 + V- AZ) — 1 + O(A?) (A.9)
I=te(@h)=a-b

(V) — Ap(V - 5) + pLas - V - 6 + O(A?)

_H(V@) : I— Ap(VeD) : I+ pLa,® - (VD) : T+ O(A?)

—pL, I —ApL,°: I+ pLa, - L,° : I+ O(A?)
A-B:C=A:B-CandA:B=B:A

—pLy :IT—ApLy : T4 pLa, : Ly, + O(A?)

L, : [-pI— ApI+ pLas] + O(A?) (A.10)

Substitution of equations (A.8) , (A.9) and (A.10) in the integrals (A.3) and (A.4)

produces the linearized system:

/Lw:[—pl—
Q

ApI+ pLad +

/QLw;(++4cDM++-LA;)dQ - /Fw-Zdr

/Qr[det(]?‘)(l—i—%~A:E’)——l]dQ =0

Or, after replacing weighting function r by — in order to derive a symmetric matrix
g weighting y )

det

and rearranging the terms:

/Q Ly : [-pI— ApI+pLa,ldQ +

/Lw:(++4cDM++-LA;)dQ - /w-i;dr (A.11)
Q r
[r¥-azd0 = [ r( - 1)d0 (A.12)
Q o “det(F)

A.2 TImpenet

o
n
ot
=
V)
umi @
b

e
o

¢y
rability cons

The contribution of the impenetrability constraint has to be linearized also. This

contribution is given by
1

—| =@ gtRdl (A.13)

Tep €2
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where:

g = (F-%.)-A+R.
9" = maz(0,g)

. (@-3)
T = o251
|Ze — ]
N A
|5] |51
Using & = z+ AZ, linearization of vector 7, yields
2. = .4 AZ,
i%c - —:é-'.%’-f-(:[——ﬂ:—)'&
|12 |82
AZ, = bb - AT

182

For the linearization of the normal vector 7 a Taylor series is used:

o= n+AR
7% — (%c—%’)
|57’6‘—’l
Aq o EetDF T AF) (E-F)
|Z. + AZ, —Z— AZ| |Z, — 7]

Introduction of the shorter notations:

~
2,
ce— &

S S
8y

A

>
S
|
>
8y

and of the tangential vector r, which is defined and linearized as

_’—»
. n* f3
r o= =
5]
P o= P+ A7
2, ﬁ*ﬁ
r = —
1B
INEY]
A7 =
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Sinceﬁ'J_B’andI:;_iﬁ—{—r%—l—g@:

~ (h+ AR) _k
JG+aFy- G+ k) 1
5 5 r 551
Ao h |1 RR| . -
= 5 -5+ |3 — 3| (AR)+0(A?)
L N R
S o
= | = — 22| (AR +0(4Y)
[R] [RPP
-I_i.i.- . .
- ﬁ-f; (AZ, — AZ) + O(AY)
- F“”q .L%i-I-A5+chﬂ
Lo~ T

Linearization of the functional g = (& — Z..) - © + R, yields

9

Ag =

Ag

= g+Ag

8>

=

+ AZ — Z, — AZ,) - (7 + AR) + R,

oo (2 _mvm ]
5 (% — T)(&. — T)
R IR P
| |1Ze — & |z, — 7| ]

(3; w:) |Z, L|(9:;c z) (AZ —
Ixc*xl Le— I3
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Substitution of the equations for 7, #, and AZ, yields
—t = ﬁ — ﬁ:_ 1._ N
ng = —(P8 . ngongy ST I ETTE o
e — &
1812 |2 — Z|
— — _ _ﬁ:ﬁ:_ ~ —
812 |z, — &

P - = + ~ ~
Ar 18 1B 17 -3
ﬂﬂ (a ) 2

+ O(A
g E e o)

= AZF- (CI:C—_’)._FO(AZ)

|$c - _‘I

= AZ-7+0O(AY

i
P
L

With the linearization of functional g and vector 7, now the contribution of the

impenetrability constraint (A.13) can be linearized.
1 ]_ A
[ Z@.gtRdl = —/ N i Agt it + 5T AR)AT + O(A?)
Cep €9 Fcp

Substitution of the linearization for Ag and A7 gives the linearized form of the

impenetrability constraint.

A A
iy

[ Zwgtidr= - [ (gt R ag-gt T - ADITHO() (ALY

Tep €2 |7, — &

where
T:L’ _ (ﬁc - f’)
|$c - I
g = (£-2.)-7+ R,
gt = maz(0, g)
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Z = ﬂT-:}%’+( _ BBy g
1B1* |61
5 7:“5*3
1A
( F means that it is only taken into account if § > 0

A.3 Coulomb friction (slip)

If slip occurs, the contribution of the Coulomb friction to the system of equations is

given by
/ Eorg. L% ar (A.15)
Lep €2 Iuc - I

with

i, = §4+0AtR. 7
. Axf
F o= —
|51
4 = #(t)—-Z({t—At) ; Z(t— At)is the solution of the previous time step

Before equation (A.15) can be linearized, all non-linear terms must be linearized

separately. The displacement vector « is linearized first.

i = @+AG
i = () -t — At
Ad = AF
Linearization of vector 7
F o= r+A7
2, ﬁ*/g
r o= =
5]
A7+ G
ar = AP
18]

Substitution of the expression for A7, as it has been derived in the previous section,

yields

AP = ﬂ-(MC—Af) *I%JFO(A?)
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—

- ﬁ 2
- -AZ| * =+ O(A

Since 7, 7 and I—gl are three orthonormal vectors, which form together a cartesian

reference system, I = 71 + 7+ L2 can be used. This yields

181
|Z, — Z| 18|
_ _E’T'Af A, *ﬂ:-l-o( 2)
Iwc"’ l I I
Using;"*%:—fi
—(7-AD)
ar = S8 Ly o)
|$C“w|
= L AZ+O(AY)

The linearization of ¥ was necessary in order to be able to linearize vector ,:
7. = i, +Ad,

&, = S+®ALR,7

Ad, = wAtRATF

The functional g has already been linearized in the previous section. For the lin-

earization of the direction of the relative displacement a Taylor series is applied.

R 7. — i
d = ==
lﬁc—ﬁl
Y T
d = ,:.c =~
|t —
I VOSSR
[de + Ad, — 4 — Ad] U, — 4]
I L nn
S S Ot Cul ) BTN R ST
- =
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Linearization of the friction can be carried out with use of the linearizations of ¢ and

—y

d:
M +_' 7 —_ /’t A +—¢ e -
/ Eotg.ddar = / P G+ Ag)t @ - (d+ Ad)dT
r Tep €2

cp €2
= /lrc,, 5—2(§+£;5+Ag+@-’-5+§+£-AJ)dF—i—(’)(Aﬂ
Substitution of the expressions for d, Ag and Ad yields
- A—’ A — ac u
/ Potg.dar= [ Lgrg. 2=t ar
Fcp €2 Fcp €2 |uc - 'U,I
/ ﬁ(Af@-J)dF:/ £ 1Az Ry o 2| dT + O(A?)
Lep €2 Lep €2 |, — |
5 a + '
U -
=[ Elo == (i-a8)| ar+oa?)
Ty €2 |4, — ]

9 =

A
@ - [’:‘C“f_f ﬁ’} - AZdT + O(A?)

ep €2
I . Shns S . 20 ]
_ [ P | SO DR A AR 4 O(A?
Tep € |G, — ] i@, — dp dr + O(A
[ 1 . N A,
=/ Lo | — (% ;“)(UC %) (@ AtR - AT — AZ)dT + O(A2)
Tep €2 |t — ul |4, — dl® |Z, — Z|

Uniting the separate terms gives the linearized Coulomb friction

2 2, 2, 2, +
/p Eotag. "% ar+ ﬁw[(“—_@ﬁJ . AZdT

~
-

o €2 |ii, — ] Tep € |2, —
I 2.;0 _ ol i,c _ jat 5%
b Epra | @ OB np T 1y Azdr 4 0(a2)
Fep €2 luc — ’LLI IUC - 'II|3 Iflfc — .‘f
Or, in a shorter notation:
LR Clud)
Tep €2 Iuc - |
Eatg. dar+ [ L. (@) +4TK- Q) AZdT + O(A?) (A.16)
Fcp €2 Fcp €2
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where

§ = (—2.)-7+R.
A @, — i
d = PN o
|uc_u|
A -
2, 7 * 3
r o= —
5]
I (@, — @) (e — %) I1—dd
K = = 5 5 N =15 5
lﬁc_ l luc—'ulg Iuc— l
i
G = OAtR. ——= -1
T, — T

A.4 Regularized Coulomb friction 1

The contribution of the approximated Coulomb friction to the system of equations is

given by

/rc,, £g+¢1zﬁ-JdF (A.17)
where

¢y = tanh( '“c — ﬁl)

In comparison with the unregularized stickless Coulomb friction, this relation contains

one more nonlinear term, the function ¢;. Linearization of this function ¢, yields

¢ = 4 +Ad
7 lﬁc _ "Il
= tanh
¢1 ( €3At )
1 ity — ] . e — ti
A, = 1 — tanh?(—= (AT, — AR) + O(A
Using this, and the linearizations of the other quantities, as they have been derived
in the previous section, term (A.17) can be linearized
Egroim-dar= [ £ )+(¢1+A¢1)w (d+ Ad)dT
FCP €9 e €2
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Substitution of the relations for Ag, A¢ and Ad yields

/ ﬁAgwElw-[i’dr:/ £ 3 5. (dR)* - AZdT + O(A?)
Lep €2 TFep €2

l>

™
i

d

gﬂ

[ Lot aga.

JTep €2

At -
B I gann(l% “')](lfj Y (@At R AT — AF) (i - d) dT + O(A?)
U

- Fep €2 63At €3At ﬁl
At W a2,
kg 2 ]uc l L AU —u) nr — 2
= — — tanh W d-—= — - (WAtR,——— —I) - AZdI’ + O(A

At 2, .
pogr zluc—UI L e o 2

_[ £ 1 — tanh?(e "Nz . dd- G - AZd
G ah [ ( AL )] AZdT + O(A?)

!‘:

§th@-AddD = | E gt 0 K-G-AZdT + O(A?)

/ -
Tep €2 Cep €2

Combination of the separate terms gives the linearized contribution of the friction:

A

Hﬁ qu_i’ ddl + —¢1w (dn)+ Az dl
Lep €2 Tep €2
A+ :‘ .
M g _ 2 Iuc-— | o __,_,' . .
Tep 62 63At [1 — tanh’( N - dd - G- Az dT
T A+¢1 w-K-G-AZdl + O(A?)
Tep €2
Or:
/ Bt gi-dar = [ Ly gy dar
Tep €2 Tep €2
A+ _'
T4 _ o e | at .
+/rc,, ” [¢1(dn) ( At[l tanh?(— 3A )]dd+ ¢ K) ] Az dT
+O(A2) (A.18)
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A.5 Regularized Coulomb friction 2

As in the previous section, the contribution of the regularized Coulomb friction to

the system of equations is given by

[ Egtg,@.ddr (A.19)
JFcp 62

However, the regularization function ¢, is now given by

2 I&c - :*I
= Zarct
b2 —arc an( Yy )
Linearization of this function ¢, yields
¢ = b2+ A
" | — 4
P = ﬂ_arctan( Yy )
2 1 1 d, —
Ady = = —— e (Ail, — Ail) + O(A?)
Q 64At 2 |uc - ul
+( E4At )
y G &
_ 2 bl U U g _ A+ O(A2)
T (eaAt)? + |u, — df? ]uc — [

Using this, and the linearizations of the other quantities, as has been derived in the

previous section, term (A.19) can be linearized as under.
[ Lot hadar=[ L+ag* G+ as)a (@ +adar
cp ©2 Cep €2

= [ LG40 d+ Ag* $aB-d+ 5 Ay T - d+ gy - Ad)dT + O(A?)

Tep €2

In the previous section, all terms are linearized, except the term with A¢@,. This term

is linearized, here. Substitution of the relation for A¢, yields

/F K 5+ Agyi5 - ddr

cp €2

/ ,U At 264At ﬁc—ﬁ
e oY AL & z
Tep €2 w((€A1)? + U, — U U

(@ At R, A7 — AZ) (@ - d) dT + O(A?)

s
S—
_.g..
o

!

' At 2 At - A?’A?’ ; R l:"l&. =, [P, N
_/ g @ dd- (0AtR e —T) - AZdT + O(A?)
Tep €27 7((€4AL)? + |, — u?) |Z. — Z|
2€4 At o
= ﬂg+ 4 W-dd-G-AZdT + O(A?)

Tep €2 7((€2AL)? + |4, — U]?)

The complete linearized contribution of the smoothed Coulomb friction is given by
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J

w [ A gy +
JTep €2 | \7

cp €2

+0O(A?)

B o+ gy - ddT

Iep €2
26 el At 2, R .
g “ut i+ g+¢2K) .G] . AZdT
(st + [, — 27) )

(A.20)
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Appendix B
Discretization

In this appendix the linearized weighted residual equations will be discretized. These
are the balance of momentum, the incompressibility constraint, the impenetrability

constraint and the friction.

B.1 Balance of momentum and impressibility con-
straint

Starting-point for the discretization of the equations for the material behaviour is the

following system of equations:

/Q Lo : [<pI— ApT+ pLaoJd +

+/Q Lo : (F 4+ 4cDay 4+ 7 - Lag9)dQ = /Fw-de‘ (B.1)
[rV-azan = [ L 1) (B.2)
Q o det(F)

Each term in these equations will be worked out separately. A three-dimensional

Cartesian reference system will be used:

~J
fal
So:
> .8 28 , o0
V = e$$+ey5§+ezz§z
U = w'e+ wle, + w'e,

AZ = Aze,+Aye, + Azée,
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The first term can be rewritten:

L,:—pI = (V&) : —pI
= (V@) : —pI
= —pV-
X w* w®
Vi = 5[ g g ]| e | =aYT | v
w? w®
where
T _ 2 o d
vi=[Z & %]

le”” -
wly
U)lz
w® v 0 0 ... Pne 0 0
wY = 0 ¢ O 0 Onz 0 =puw
w? 0 0 ¢ 0 0 Pz -
wn:l:
wn:z:y
1
A Ta _ sanT, 1 & "
po=v"p =) =] - Pup |

Q/)np
where nx denotes the number of displacement nodes,

@ is the matriz with interpolation functions for the position,

w is the column with weighting functions for the position at element nodes,

np denotes the number of pressure nodes,

Y is the column with interpolation functions for the pressure,

~/

p is the column with estimations for the pressure at element nodes.

The first term can be discretized as follows:
Ly:—pIl = —pV @
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= —w'ap’p
L,:—pI = —w'Qp (B.3)
with:
ng — zT£
Q= a3’
The second term can be discretized in the same way:
L,:—-Apl= ——'%TQA’R (B.4)

where Ap is the column with the variations of the pressures at element nodes.

Now the third term of (B.1) will be worked out. For that purpose the matrix repre-

sentation of tensor La, will be determined with respect to the reference system {é;,
€ys €2}
.L.Ax = :QAm + QA.’L‘

Using its symmetry, the matrix representation of D, with respect to {€;, €, €} is
denoted by
dit® dfy" dfy”
Dps =€ -Das-€7 = | dfy* dff® dfy"

dy® df™ df°

while the matrix representation of 4, with respect to {€;, €, €,} can be written as

0 wf%”’ —wg,Al”’
Qr. =6 - Q-7 = | —wa® Az
UAz =€ Az & wiz?® 0 wa3
w;ﬁx —w2A3$ 0
So:
A
dii”® di" + wh® df3° — wh®
— A A Az Ax Az
Lp, = | diz® —wi?” d ds3* 4+ ws3
A" + wi® df" — wf” ds®
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1 (0AZ  OA?
Az
W= 3 ( 9z T o7 )
1 [0Az' OAZ
Az _
Wi 2 ( ox? ozt )

and Az* = Az for i=1
Ay for i=2
Az for i=3

Similarly the tensors D,,, €2, and L,, can be represented in their matrix representa-

tions with respect to the Cartesian reference system:

w
dff dig dif
D, = | di$ d3f d3
di§ di d3
0 w14 —w3y
Q‘w = —wi3 0 w33
| w3f —wgg 0
dii di$ +wip di§ —wd
L, = | dif —wi} d3 d + w3

| d + w3l d3g— wi ds3§

The next step is the calculation of L, : Lx, = tr(L, - Lay)-

L,:La, = ddi®+ (d% + wi)(dh” — wiz®)
+ (df§ — wzﬂ)(dlA:’,z + w:ﬁx) + (df§ — w{‘%)(dﬁ”’ + wl%z)
+ dds" + (d3 + wiB)(dB” — wBT)
+ (di% + wﬁ‘l’)(dlA:ix - w3A1z) + (d3 — w«}fﬁ,)(dﬁx + w2%$)
+ d$5d$”
= dYdA” + 2di%d5" + 2d3dA" + dds” + 2d3dRT + d33d3”

w, Az w, Az w, Az
— 2wiwia® — 2wiiws” — 2wBwsz

Definition:
@) = [df 248 d3 d% 248 24 2w 2wf —2wH |
@A) = [dA® 248" df® dfT 20F° 247 2wfT 2whT —2wh” |
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With this definition, L,, : La, can be rewritten as

Lw:LAa: — (iw)TBiAz

with:

I

Now, the arrays d “and d A% will be worked out

similarly.

O O O O O O o O

0000 0
10000
01000
00100
00010
0000}
000 0 0
00000
00000

2 (w®)
2 (w®) + 2 (w’)
o (w?)
Z(w)
Z(w¥) 4 £ (w?)
Z(w) + Z(w”)
2 (w") — 2(w?)

7 (w¥) — 2 (w*)

O OoOwnE O O O o o o

5 (W) — Z(w?) |

O O O O O O O O

o Pl o o o QP

o]

L T3z

v O O O O o0 o o O

o Yo ol ©

® glo

o3
n

o

o PPl © © @

With the discretization of @, d* can be discretized:

25

1

J

2 0 0
5 a0
0%9
o o Z
638—25%
= 0 %
5 —o O
o £ -2
-% 0 £ |

o o6

—

,_.
o6 o
-
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Il

AS
LE



In the same way can be found for d Az,
f\lJA:z: — AAE’:

with: Az : column with the position variations at element nodes,

3

% g 0

8

3% @ U

0o 2 0

o o £ e1 0 0 ... Gnz 0 0
A= 0o £ £ 0 ¢ 0 0 ¢nz O

z 0 Z (L0 0 ¢ 0 0 e

L _8

Sy oz

3 %)

0 Z -5

d 2]

-5 0 &%

So, discretization of the third term of (B.1) gives
Lw :ﬁLAJ,' — (iw)TﬁﬁiAw
— (iw)T",/\)_,TﬁﬁiAx
= wTATYT) BAAS (8.5)

The next term is L,, : ¥. The matrix representation of L, is already known. The

matrix representation of the symmetric stress tensor 7 is given by

Tezx Toy Tzz

=
i

Tey Tyy Tyz

7}::1:2 Tyz 7,;22
Calculation of L,, : & = tr(L,, - 7) gives

3
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L, : 7 can be discretized as follows:

L,:+=(d")t =wTA"? (B.6)

~ ~s

The last two terms to be discretized are L,, : 4cDa, and Ly, : 7+ La,°. These terms

L, :[4cDa, +7-LasY] = (Dy+Qy): (4cDag + 7+ (Daz + 242)°%)
= D,:4cDa; + 8, : 4cDa,
+ (Dw + Qw) : (';- : (DAa: + QAJ:)C)

Using A : B = 0 when A = A° and B = —B° the following relation holds:

L,: [4CDA1- + - LAIC] = tI‘[4CDw . DAQ;]
+ tr[(Dw + Qw) T (DAa: + QA(L‘)C]

Using the matrix representations for Dy, Daz, Qu, £a- and 7, the last two terms

of the left hand side can be worked out, resulting in (see [6]):
Ly : [4cDag + 7 - Lag| = 4c (iw)T-Q,{l.,Az + (iw)TIiAm

where
1 0 0 0 6 0 0 0 07
00000000
0 01 06 0 0 0O0CTGOC
00010 0O0O0CGTO
D= 10000130000
00000 TZ 000
0006 00O 0O OO0OO
0 0060 OO0OOUO0OO
| 6 0 0 0 0 0 0 0 0]
(he 0 0 0 B Tmoo T
TootTyy Toy Toz Tyz  Tyy=Tor  Tou _ Ty
4 2 4 4 Z 4 4
Tyy 0 1-2u 0 _921 Zzﬂ 0
. 7 Fos Tyz T
T2z —ZL"‘ = 0 4 g
T — T}{ﬂ+ 22 T_xl _i"ﬁz_ TZZ’_TE’U T_xl
= 4 4 4 4 4
ToatTes Tyz _Tay Tox—"Taz
4 L4 A4 4
symm N e O &
TyytTee  _Toy
4 R 4
Teet+Tzz
i 4 -
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Discretization of the last two terms of equation (B.1) gives

L. : [4cDas + 7 - Lag)

T 11 fa1 1 e L L N
INow, all terms OI the leit nand side ot (D

has to be discretized also.

(iw)T(llc—D--l_I-)iAx
w'AT(4c D +T)AAz

/T P SR B |

The representation of b with respect to {&;, &, &} is

Vector b will be discretized in the same way as W and AZ. So:

b* ©1 0 0 ...
bY = 0 P1 0
b 0 0 @1

r b,
%
b 4
¢ne 0 0 !
0 Pnz O
0 0 nw '
4 b
b'l’bl‘
L b'ﬂl‘

-
.1) are discretized.

z

Y

z

|

)
o

-
S
he right hand side -6

With the use of this discretization, the right hand side can be discretized as follows:

3-b=wTepb =w'Ph (B5)
with
P=¢'¢
Substitution of the discretizations (B.3) to (B.8) in (B.1) yields
w” [ (~Qp + 477 )0
+ w” [ [~QAp +AT(y 7 B+4cD + T)AAg]dQ
- %T/fggdr (B.9)

70




Equation (B.2) has to be discretized too. First the left hand side will be discretized.
Discretization of this term is done similarly to the discretization of the first two terms
of equation (B.1):

r =T T«ﬁ'

V- -AZ = aTAz

where r is the column with the weighting functions for the pressure at element nodes.

So: ~

V-AF=rTya Az =r TQTAc (B.10)
Discretization of the right hand side of (B.2) yields

rk=rTy k (B.11)
where

k= detl(f‘) B

r T [ OTAz dQ:rT/ b kd0 (B.12)
~ Q ~

In a penalty function formulation, the weighted incompressibility constraint will look

as follows:
/QrV-AwdQ-l—/QrelAde:/Qrde (B.13)

The second term in the left hand side can be discretized by discretizing r and Ap

according to

r=r"¢
Ap = A
So:
/QrelAde = ”r\'JT/Qel'(f/L@réTAl)/dQ
- LT/QelﬂAg 0 (B.14)



where

Substitution of (B.14) in the penalty function formulation (B.13) yields

T T T — T 7
r /QQ Az dQ+1 /QelﬂAng—N /Qz,’!:’kdﬂ (B.15)

B.2 Impenetrability constraint

The contribution of the impenetrability constraint, that has to be discretized, is given

by
1
__./ - (§+n+
Lep €2

iy

The vectors @, 71, 7, ¥, . and AZ with respect to the Cartesian reference system are

rr

(7))t — §F — ] .A:z) dr (B.16)

>

A
= —

|Z, — %

given by
W = we, +wYe, + we,
7= 1" €, + nYe, + N°€E,
7 7€ + Ve, +1°€E,
Z 2é, +9¢ +2¢,
T, = £efpt D8, + 58,

AT = Aze,+ Ayé, + Azé,
The first term of equation (B.16) can be rewritten as follows.

1

€

7’,"/:17
ﬁ:—g+[wx w? wz] Y

L 7 ]

n
N
L]
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Discretization of the components of @ yields

(] a0 0
wY = 0 X1 0
w? 0 0 x1

Xnb 0 0
0 Xnb 0
0 0 Xnb

L

=
L8

'w'n.ba7

wnby

z

Wy

where nb is the number of nodes in the boundary element,

X
w is the column with weighting functions.
~J
So:
I, s 1. .
—@d-gtai==TwIxTh
where
no=[a0 v oA |
~/

Az x1 0 0
Az 0 0 X1

Xnb 0 0
0 Xnb 0
0 0 Xnb

e

is the matriz with interpolation functions for the boundary element,

(B.17)

[><

Using the discretization of @ and AZ, the second term of the impenetrability con-

straint can be discretized:

1 an 1
S (RR)T AT = —
€2 €2
1

= —uw

€q

TXTM+ _XA:B
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[wa: wY wz] I{

S D
<

&>

1 \For Az ]
[ 7 Ay 22 ] Ay
Az
(B.18)



where: N =17 7 T is the matriz with the components of the normal vector 7.

Similarly, the third term can be discretized, which yields

i + ] el
| T - 1 [ T T g an ]
—§T0 AT = —— | v w? wzllrylllrx R A N VAV
€2 |Z. — 7| €2 Tdif ! l_“zJ . [A J

7 z
1 g%
= -3 wT\TRxAz (B.19)
€2 Tdif ™~ T -~
where
R =77
~ NI

vas = \f(Be—2) + (o — ) + (5 — 2)?
Substitution of the discretizations (B.17), (B.18) and (B.19) in equation (B.16) gives

the discretized contribution for the impenetrability constraint.

1 1 i
- /F — gt wTyThdl - [ —w X [N* - L= R]xAzdr (B.20)
cp ~oT o T - - o~

e €2 7 Tdif

B.3 Coulomb friction (slip)

The weighted residual formulation of the Coulomb friction is given in linearized form

[ Lgta-dar+ [ La-(d@)+5TK-G)-aZdr (B.21)
Fcp 62 FCP 62
with
K = 1=9
7.~ 1l
G = @ALR e — 1
[Tec — T|

5 A A a A A A
The components of vectors @, d, &, 7, U, 4., T, ¥, and AZ with respect to the
Cartesian reference system are given by

W = wé, + wYey, + w'e,
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d = d°¢ +d¥e, +d°e,

7= A%E 4+ AYE, +A%E,
?o= P8 +1YE, + 778,
i = 4°8 + e, + e,

q4, = 458, + e, + U8,
T = && +18, + 3¢,

Bo = Be8pt §efy + 28

AZ = Azé, +Ay8, + Azé,

Discretization of the components of & and AZ yields

wq
wy¥
w” x1 0 0 ... xw O 0 e
w [ = | 0 x1 O 0 xm 0 =XW
w? 0 0 xi 0 0 Xxub z
Wiy
Wrp
wry ]
[ Az, |
Ay,
Az x1 0 0 ... xup O 0 Az
Ay | = 0 x1 O 0 xm O =xAz
Az 0 0 x1 0 0 xm .Axnb
Ay
| Aznp |

Now, each term of equation (B.21) will be discretized separately. The first term is

discretized as follows.

) oo ]
Bgrg d=Lgr [w w w] VyJ S N
€2 €2 5y €9 ~ =
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The matrix representation of tensors K and G with respect to the Cartesian coordi-

nate system is denoted by

K

G

where

Ug; 7

Taif =
i;T

~

_qr I-ddT
¢ K-gT=g. 0 g7 o~
~ ~N d—ul Y Ugsf
an A aT
T_I:T_” nr
¢ -G-éT=¢.(wAtR.———+ -1)- 8T =0At R,
~ ~o |Z. — Z| ~ Ta;f

Vg =) + (= @) + (a — )2

V(Ee— 32 + (g — )2 + (3. — 2)2

|7 ]

-1

Using this matrix representation, the second term of the friction can be discretized

as follows.

€2

€2

Combining the discretized terms yields the discretized friction:

Eg ((dR)* +9"K-G)-AF = Lw YT (d a T)* + 5" KG) xAz

L

/I‘cp €2

§+wTXTC?

~Y

Tep €2

el

w X ((d A7)+ KG)x Ag dT

(B.22)

where

K

G

B.4

Regularized Coulomb friction 1

The first smoothed Coulomb friction is given by

/ B ot 3@ ddr +
Tep €2

/ [
-—w.
Tep €2

[qzl(:i%)*- + (63At

ﬁ’c_ﬁ’ LTSRN
hZ(l esAt ‘)]dd+g+¢1K) -G

. AZdT' (B.23)




In the previous sections all vectors and tensors in this relation are represented with

respect to the Cartesian coordinate system. These representations will be applied

again in the following discretization.

£§+$113'J= ﬁfflhqzlexTJ
€9 € ~ =~
_li - —+\+ - ___ _li T TA ~ T +
AW - (dr)" - AT hw (x dn x) Az
62 "~y —_— NN — ~y

Cy €3At
At
=P T T I 1~ 2 LT dT 4 5+ K
A [€3At[1 tanh(63At)]gg +§ ¢1L] GxAz

So, the discretized friction is given by

A+ e 3 A ~
I_[1 — tanh?(—2Ly)d 47 + g+¢11g> Q] XAz dT
(B.24)

B.5 Regularized Coulomb friction 2

The relation of this friction model is given by

/]F E o+ doi - ddT +

cp €2

A

N P n
2@ - |go(dit)* + ————dd+§*$K |- G| - AZdl' (B.25
./r [‘éz( ) (w((e4At)2+|ﬂc—“]2) e Zal (B.%)

cp €2
Analogous to all other discretizations, this relation is discretized, which yields
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( 2 g+C4At

\T((esA)? + (uaiy
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Appendix C
Trilinear hexahedral element

In this appendix the shape functions of an arbitrary trilinear hexahedral element and
the z-, y- and z-derivatives of these shape functions will be derived. For that purpose
a parent domain in another space, the ,év -space, will be used. The ’é; -space is an
orthonormal space with £, n and ( as independent coordinates. The parent domain,
that will be used, is a bi-unit cube (see figure C.1). For this domain it is relatively

simple to define shape functions.

f x=(x,y,2)
8 l? ~J
AT /’_\
s |

| | 6

b 7

} e s e

é)/l-/—--—_._._.—— b3 \_/
4

1 -~ 5 « 52(5,77,?)

1
Figure C.1: Parent domain

The domain of an arbitrary trilinear hexahedral element in the {€,, €,, €, }-space
is given by 2°. The domain Q¢ is the image of the parent domain in ¢ -space under

the trilinear mapping;:

m(;;) = ap + ard + agn + as( + asdn + asnC + ael{ + aréng (C.1)
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0 =1 O U B DN e
]
—
1
—
]
"

1
1
-1 111
1

Table C.1: Coordinates of nodal points in § -space

with corresponding expressions for y({ ) and z(€ )
Of course, the nodes in both elements must correspond. So, the coefficients ay,.....,a7

have to be determined by the conditions

z(§ ;) = z°
y(§ i) =
2(§ i) = z°

where 2;° is the z-coordinate of node i of the element,
y;® is the y-coordinate of node i of the element,

z;¢ is the z-coordinate of node i of the element.

With the nodal points defined as in table C.1, this gives rise to a system of linear

algebraic equations:

1 1 -1 =1 -1 1 -1 1][a ] [z°]
1 1 1 -1 1 =1 -1 =1}}|e To°
1 -1 1 -1 -1 -1 1 1]|]| T4°
1 -1 -1 -1 1 1 1 -1 az | | =
1 1 -1 1 -1 -1 1 =1{|as] |z
1 1 1 1 1 1 1|]|as T6°
1 -1 1 -1 1 -1 -1 g T7°

1 -1 -1 1 1 -1 -1 1]jor] |as°]
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Solving the matrix equation for the a’s and substitution of this solution in equation
(C.1) gives

2(¢) = S i€ )it (C2)

where

e, €) = L1+ &L+ m)(1 +GO) (€3

See [4] for the derivation of the shape functions. For y(¢ ) and z({ ) similar equations

as equation (C.2) are valid.

The shape functions (C.3) are a function of the coordinates in ¢-space. They have
to be derivated to x, y and z. These derivatives will be deduced in the rest of this

appendix.

The derivatives of the shape functions ¢; are given by
Pig = Piglo+ Pinle + Picle
Piy = Pitly +Pinty T Picly
Pie = PiglstPinlz+ 0icle

or, in matrix formulation:

iz s Nz (o Pig
Yig | = &y My Cu Pimn (C.4)
Piz £z ez Co dLwig

Here some difficulties are encountered: ¢, n and ( are not known as a function of z,

y and z. But the inverse relations exist:

2(£) = St o
£) = Seule v
£)

8
po— s . ve
= Y€ )z
i=1 ~
and the matrix z £ containing the &-, p- and (-derivatives of x, y and z can be
[a S a)
~J
determined:
Tg Ty T
E,é/ = Ye Yn Y

Zg Zn 2
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with

8
€
Te = X @i
1=
8 €
Ty = YT
i=1
& e
Te = Lt
1=

Corresponding expressions for the derivatives of y and z are valid.

Now, the matrix é/q; ,which is called the Jacobian matrix, can be computed by

é/:

inverting matrix =
~

é,l’ é,y 6,2
é,i = | Mz Ny Mz | = (;’E,,é' )7 (C.5)
Co Cu G ”

The array ¢, ¢ in equation (C.4) can be obtained by differentiating the shape func-
tions (C.3). This yields:

ig = %&'(“rﬂm)(“r(z()
vin = gml+EE1+G0)

it = é@(l + &E)(1 + min)

Substitution of (C.5) in (C.4) yields

piz =(2,¢)7 g (C.6)

~/
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Appendix D

Bilinear quadrilateral boundary

element

In this appendix the shape functions of an arbitrary bilinear quadrilateral boundary
element will be obtained. For that purpose, a change of coordinates is sought which
maps the quadrilateral into a bi-unit square in a two-dimensional plane (see figure
D.1). In this plane, there are two independent coordinates £ and 7. The bi-unit

square is called the parent domain of the bilinear quadrilateral boundary element.

§=(£.7)

mY

1 2 1
Figure D.1: Quadrilateral element and its parent domain

The coordinates ¢ and 7 of a point in the bi-unit square are related to the coor-
dinates z, y and z of a point in the quadrilateral boundary element. This mapping

can be formulated by two different equations.
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i) &
11-11-1
21 11-1
31 17 1
41-11] 1

Table D.1: Coordinates of nodal points in IR*-space

The first relation is of the form as given in the following equations.

2(6m) = 3 xilEn)as (D.1)
y&n) = Sy (D-2)
A6m) = Sl (D.3)

where Y; is the shape function belonging to node i,
x¢ is the z-coordinate of node i,
y$ is the y-coordinate of node i,

z{ 1s the z-coordinate of node .

The other relation between the coordinates z, y and z on the one hand and the

natural coordinates ¢ and 7 on the other is given by a bilinear mapping:

z(&n) = @t ftazn+azéy (D.4)
y(&n) = Bo+Bié+Bn+Psén (D.5)
z2(6m) = v+mnétrnt+rén (D.6)

The parameters a’s, 8’s and 74’s can be determined by stipulating that equations
(D.4), (D.5) and (D.6) must satisfy the conditions

z(&,mi) = (D.7)
y(&,m) = yf (D.8)
Z(fiﬂ]i) = z (D-g)

With the nodal points in the IR?-plane defined as in table D.1, condition (D.7)

gives rise to the following matrix equation for the z-coordinates of the nodal points
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of the bilinear quadrilateral boundary element.

x5 1 -1 -1 1 Qg
5| _ |1 1 -1 -1||e (D.10)
5 1 1 1 1] e '

T [ 1 l

tzg ]l L1 1 1 —=1]las]

The second and third condition lead to corresponding expressions for the y- and
z-coordinates of the nodes. In each case the coefficient matrix is the same.
Solving the matrix equation for the a’s and substitution of the solution in equation

(D.4) produces the shape function x;.

Xi(Em) = 7L+ & +min) (.11)
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Appendix E

Projection of vector # on the axis

of the capstan

The axis of the capstan can be represented by
Z,=a+Af8 (A e R) (E.1)

Or, in matrix formulation:

Tq a1 ﬂl
Ya = Qg + /\ 52 (E2)
Zaq Q3 ﬂ3

The support vector & and the direction vector 3 are known.

To every vector & of the pinch roller coating belongs one projection vector 7, on
the axis of the capstan. So, . can be written as a function of Z, which will be done
in this appendix.

The end point of projection Z. is situated in the plane through the end point
of vector & and perpendicular to the axis. This plane is defined by the following

equation:

ﬂl Tplane + 162 yplane + ﬂB Zplane = :61 -+ 132 Yy + ﬂ3 4

where T4 is the z-coordinate of a point in the plane,
Ypiane 18 the y-coordinate of a point in the plane,

Zplane 18 the z-coordinate of a point in the plane.
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Substitution of the z-, y- and z-coordinates of point &, given by equation (E.2),

yields

Solving this equation for X yields
v = Bi(z—a1)+ Ba(y— ag) + f3(2 — az)
B + B + B5°
_ B-(E=4d) (E.3)
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Appendix F
Program structure

The system of equations that has to be solved, contains terms with estimates for the
position &, the pressure like quantity p and for quantities, dependent on ¥ and p.
The system of equations is solved iteratively. This iteration process is clearly shown
in figures F.1 and F.2. Having solved the system, the estimates are updated. And
after substitution of these updated estimates, the system is solved again and if the
solution converges, a better solution is obtained. This is repeated as many times as
necessary to get a solution, which satisfies the required accuracy demand.

Both the system matrix and the right hand side contain estimations. Conse-
quently, both have to be changed every iteration.

If an accurate solution has been obtained, the program continues with the next
time step. The solution of the previous time step will be used as first estimate for
the new time step.

The assembly of the global stiffness matrix and of the global right hand side
is done by the SEPRAN package. SEPRAN creates for every element the element
stiffness matrix and the element right hand side and puts every component of the
element stiffness matrix and the element right hand side on the right place in the
global stiffness matrix and global right hand side. Difference is made between body

elements and boundary elements.

88



( START )

¥

n:=0 ; :=0

number of

fime step -
input material
number of properties

iteration step

Input boundary
conditions
A
=n,1 =3(>n-1 : ﬁn,I:___ pn-1
n:=n+1 Solver

Output for =i,

NO

A

Figure F.1: Program structure
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iteratio

SOLVER

Assemble global
stiffness matrix

Assembl
hand

e right
side

Solve the system

Caiculate Apn’i

Update estimations

Calculate &™'

NO

fr=i+1

Figure F.2: Iteration loop
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Appendix G
Test for frictionless contact

In this appendix the data and the results of the test for frictionless contact are given.

G.1 Test data

Figure G.1: Undeformed geometry

Geometry:
a = 7.0
b = 4.0
¢c = 1.75

Number of elements : 14 x 4 x 6 (see figure G.2)

Prescribed displacements:
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Figure G.2: Element mesh

Surface(1,2,3,4) u =0

Surface(5,6,7,8)

Capstan:
Radius:

Displacement per time step:

Number of time steps:

Material parameter: ¢ = 1

Penalty parameters:
<1E -1
<1E =2

1E —-15<
1E—-15<

€1

€2

u? =0

candidate contact surface

u® =0

2.0
dy =—0.1

Axis of capstan in the different test cases:

3.5 0.0
1. 375 + A 00

r35 ro.2
37%\+A,00

5 | | 1.0}
375}+A{—02

[ T—— | l_‘.__——----——I
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G.2 Results

G.2.1 Test case 1

Figure G.3: Deformed geometry calculated by SEPRAN

Figure G.4: Deformed geometry calculated by MARC
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Figure G.5: Von Mises stress calculated by SEPRAN

Figure G.6: Von Mises stress calculated by MARC
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Tyy Ozz

2, 91E+00 4, 49E-01 -2, 88€-01 2. B8E -0
—-_— e — = X -
LEVELS:6 DELTA: 4,.93E-01 LEVELS:6 DELTA: 1,15E-01 .

Figure G.7: Stress component o, and 0., calculated by SEPRAN
o
vy
0.1'2
! Y
2. 91E+00 4.44E-01 3 -2. 88601 2. 88E-01

Figure G.8: Stress component o, and o,,calculated by MARC
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G.2.2 Test case 2

Figure G.9: Deformed geometry

as

as

—

|
!

8.72992

A

0.0288249

Figure G.10: Von Mises stress

218920

291027

800972

31

a2

Figure G.11: Stress component o,
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Figure G.12: Stress component o,

G.2.3 Test case 3

Figure G.13: Deformed geomelry

-r.a'-.'i’¢’

3.TEE-D1 2. 16E +x) J

LEVELS:6 DELTAR: 3.59¢-01 y:

Figure G.14: Von Mises stress
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Figure G.15: Stress component oy,

1.39e-91

1.349e-01
m—
LEVELS:6 DELTA: S. 36F-002

Figure G.16: Stress component o,
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Appendix H
Test for rolling contact

In this appendix the data and the results of the test for rolling contact are given.

H.1 Test data

Figure H.1: Uhdeformed geometry

Geometry:
a = 7.0
b = 1.0
¢c = 1.75

Number of elements : 20 x 2 x 1 (see figure H.2)

Prescribed displacements:
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Figure H.2: Element mesh

Surface(1,2,3,4) wWw=0 uw=0 uv'=0

Surface(5,6,7,8) candidate contact surface
Capstan:
3.5 0.0
Axis: 3.575 | +A | 0.0
0.0 1.0
Radius: 2.0

Rotation velocity: 12.5 rad/s

Material parameter: ¢ =1

Time:
Number of time steps: 4
Time step: dt =0.02

H.1.1 Test case 1

Prescribed boundary forces:

Surface(1,4,5,8) ff=k(z—20) ; k=1
Surface(5,6,7,8) regularized Coulomb friction 1

Friction coeflicient: u = 0.1
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Penalty parameters:

€1 = 1K -3
€y = 1K -3

Regularization parameter: e3 = 15 —3

H.1.2 Test case 2

Prescribed boundary forces:
Surface(1,4,5,8) ff=k(z—2) ; k=1
Surface(5,6,7,8) regularized Coulomb friction 2
Regularization parameter: ¢, = 15 —3

Other test data: see test case 1.

H.1.3 Test case 3

Regularization parameter: 1E — 15 < e3 <1FE0

Other test data: see test case 1.

H.1.4 Test case 4

Prescribed boundary forces:

Surface(1,4,5,8) ff=k(z—xz9) ; k=01
Surface(5,6,7,8) regularized Coulomb friction 1

Penalty parameter: e; = 3E — 2

Other test data: see test case 1.
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H.1.5 Test case 5

Friction coefficient: p = 0.9
Penalty parameter: €2 = 28 — 1

Other test data: see test case 1.

H.2 Results

H.2.1 Test case 1, 2 and 3

Figure H.4: Deformed geometry calculated by MARC
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1. AE -6, 5,6 (E (02 8, 4E-02 1. 6026-01 1, 20661 1. S7E-O1 1.55€-01 1.7 3E-61

Figure H.5: Displacement in z-direction calculated by SEPRAN

A R 11 . T T £—
1 1. 20€-01 1. 37e-1 L. 5501 1.73E-0]
T
1.71E-81 -1.45e-01 1. 20€-01 -9, 48 -2 6. IS9E-62 4, 42E -02 1. 89E -6 b

Figure H.T: Displacement in y-direction calculated by SEPRAN
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Foet

Figure H.9: Von Mises stress calculated by SEPRAN

0l - 1eE-81]

Figure H.10: Von Mises stress calculated by MARC
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FE-91 1.91E-61 1.33-01 7.42-a2 1. 586 -02 4. 256 -62 1.61E a1 -

Figure H.11: Stress component o, calculated by SEPRAN

X
1.949e-92 .29 1.7%-01 2. 45E-01 3. 32X 491

1.91E-61

Figure H.13: Stress component o, calculated by SEPRAN
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Figure H.14: Stress component o, calculated by MARC

H.2.2 Test case 4

Figure H.15: Deformed geometry
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B.543335

8.46430

Figure H.16: Displacement in z-direction
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Figure H.17: Displacement in y-direction

Figure H.18: Stress component o,

L]

Figure H.19: Von Mises stress =

107

. 018457

.040332 N
|
i

. 062208

.086318 ||
039517 I8

. 007284

003419

.084083

. 195959

. 127834y

. 14971

133120

. 054086
. 100887
. 147689y

- 194498

.517448 I
.432142 §

. 346844
- 261547
. 176249

. 090951y

085653



e

H.2.3 Test case 9

Figure H.20: Deformed geometry

Figure H.21: Displacement in z-direction

Figure H.22: Displacement in y-direction
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