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Abstract

We investigate the recently introduced notion of smooth Rényi entropy, comparing the slightly
different definitions and studying the case of ergodic information sources, thereby generalizing
previous work which concentrated mainly on i.i.d. information sources. We will actually
consider ergodic quantum information sources, of which ergodic classical information sources
are a special case. We prove that the average smooth Rényi entropy rate will approach the
entropy rate of a stationary, ergodic source, which is equal to the Shannon entropy for a
classical source and the von Neumann entropy for a quantum source.
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Chapter 1

Introduction

1.1 Background

Nowadays, much information is exchanged digitally. Often this information needs
to be protected against unauthorized people reading it (encryption) and unautho-
rized changes (authentication).

This requires key material, random bits known to the communicating parties but
not to others. Key exchange is the process of establishing this key material.
Knowing the key material allows normal usage of the system.

Currently, most information protection is “computationally secure”. This means
that it is possible, given enough computer time and a sufficiently clever algorithm,
to find out the encrypted message or change the authenticated message without
knowing the key. The systems are tuned such that, given the current and expected
future state of computer technology and algorithm theory, it is easy to use the
system normally (i.e. knowing the key) but infeasible to break it.

This thesis is related to “information-theoretically secure” systems, sometimes
known as “unconditionally secure” systems. In such systems, the best strategy to
find out the encrypted message or to change the authenticated message is guessing
the key, no matter how much computer time is used. In other words, the encrypted
message does not give an attacker any information at all about the plaintext. More
information about this distinction can be found in [9].

Quantum mechanics has several interesting consequences for cryptography. Firstly,
algorithms for quantum computers exist that can solve the discrete log problem
and prime factorization in polynomial time, so cryptographic systems relying on
their intractibility are no longer secure. Fortunately, quantum computers can cur-
rently only process very small sets of data, and this is unlikely to change in the
near future.

Secondly, the fact that the only means to get information from a quantum system
is measuring it, which changes the system (i.e. eavesdropping can be detected),
enables new information-theoretically secure systems.

3



4 CHAPTER 1. INTRODUCTION

1.2 Information-theoretically secure key agreement

Using quantum mechanics or some other “special” channels between the two par-
ties, a class of information-theoretically secure key exchange protocols can be
constructed. A second requirement is the existence of a classical channel between
the parties, which the attacker can read but not change. An example of such a
special channel is a satellite sending out random bits at very low signal power,
which nobody can receive 100% correctly ([9, section 5.2]).

These protocols consist of three steps: advantage distillation, information recon-
ciliation and privacy amplification.

In advantage distillation, an advantage is obtained over the attacker. After this
step, both parties have a string of bits. The strings of bits of both parties are not
necessarily equal and the attacker may have some information about them, but
the parties have more information about each other’s strings than the attacker
does.

In information reconciliation, the parties agree on a string by exchanging informa-
tion on the classical channel. This also gives some additional information to the
attacker. An interesting question is how much information needs to be exchanged
to agree on a string.

In privacy amplification, the string is replaced by a smaller string which the at-
tacker has negligible information about. This is done by negotiating a compression
function over the classical channel, and applying the function to the string. This
negotiation must not start before the previous steps are done, lest the attacker
collect information in such a way that the compression function does not reduce
it. An interesting question is how long this smaller string, the key, can safely be.

1.3 Rényi entropy and smooth Rényi entropy

Important concepts in answering the above questions are Rényi entropy and
smooth Rényi entropy. They quantify the worst case in information reconcili-
ation (how much information needs to be exchanged) and privacy amplification
(how long can the key safely be), where Shannon entropy (the most basic measure
of information quantity) would quantify the average case.

More information about privacy amplification (also known as entropy smoothing in
a more general context, for example complexity theory) and the difference between
Shannon and Rényi entropy can for example be found in [3], which predates the
concept of smooth Rényi entropy. It defines “smooth entropy” as the highest
number of bits of uniform randomness that can be extracted after redistributing
ε of probability mass in the best possible way (this corresponds to allowing the
operation to fail with probability ε). It does not specify how to calculate this
quantity exactly, only giving bounds.

Smooth Rényi entropy was introduced by Renner and Wolf in [7] and [8], com-
bining Rényi entropy and the redistribution of ε of probability mass. This allows
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calculating smooth entropy and related notions. The resulting quantity has much
better properties than regular Rényi entropy.

1.4 Outline of this thesis

The goal of this thesis is to prove that smooth Rényi entropy is equal to Shannon
or Von Neumann entropy in the limit for the number repetitions goes to infinity
and ε→ 0.

We will describe Rényi entropy and smooth Rényi entropy. These quantities can
be defined for both classical information and quantum information (section 2.5).

We will describe two variations of smooth Rényi entropy, from the two papers,
which differ in the definition of the ball used for smoothing. In either case, the
infinum or supremum is taken over a ball around the value, but one definition
(statistical distance ball) uses all probability distributions which are close enough,
while the other (truncation ball) cuts off some probability mass so that the ele-
ments of the ball are not probability distributions.

As a generalization of independent identically distributed repetitions, we will con-
sider stationary ergodic information sources (section 2.6).

Stationary ergodic information sources have an important property: given enough
repetitions, most probability mass is in the “typical set” where every possibility
has approximately the same probability. As the number of repetitions increases,
the probability mass in the typical set increases and the probabilities get closer
together. This is called the AEP (asymptotic equipartition property). Our proofs
will use the AEP and will not use ergodicity directly.

We will give bounds (for the classical case only) for the difference between the two
variations of smooth Rényi entropy (section 3.1 and 3.2).

We will prove that, given enough repetitions, smooth Rényi entropy (both varia-
tions) is equal to Shannon entropy in the limit. These repetitions do not have to
be independent and identically distributed; it is sufficient if they are stationary
and ergodic (chapter 4).



Chapter 2

Preliminaries

2.1 Probability distributions

Definition 2.1 (Probability distribution) A probability distribution is a func-
tion P from a set Z to R such that ∀z∈ZP(z) ≥ 0 and

∑
z∈Z P(z) = 1.

Except when otherwise noted, the set Z will be finite.

We will define the entropy measures on a generalization of probability distribu-
tions:

Definition 2.2 (Non-normalized probability distribution) A non-normalized
probability distribution is a function P from a set Z to R such that ∀z∈ZP(z) ≥ 0
and 0 <

∑
z∈Z P(z) ≤ 1.

2.2 Linear algebra

This section will review a few concepts of linear algebra.

Definition 2.3 (Projection) A square matrix P is a projection if all eigenvalues
are 0 or 1.

Theorem 2.4 For a projection P , tr(P ) = rank(P ).

Definition 2.5 (Hermitian matrix) A Hermitian matrix is a matrix A such
that A = A†, where A† is the conjugate transpose of A.

Theorem 2.6 A matrix is Hermitian if and only if it is diagonalizable, all eigen-
values are real and the eigenvectors are orthogonal.

Definition 2.7 (Positive matrix) A positive matrix (sometimes known as a
positive semidefinite matrix) is a matrix whose eigenvalues are all nonnegative
real.

6
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We will also use the notation A ≥ 0 to state that a matrix A is positive, and the
notation A ≥ B to state that A−B is positive.

Theorem 2.8 A positive matrix is Hermitian.

For comparison, we will give the following definition; we will not use it.

Definition 2.9 (Strictly positive matrix) A strictly positive matrix (sometimes
known as a positive definite matrix) is a matrix whose eigenvalues are all positive
real.

Theorem 2.10 If P is a projection and A ≥ 0, then PA ≥ 0 and AP ≥ 0.

2.3 Quantum mechanics

Only a terse description will be given here, more detailed information can for
example be found in [5], chapter 2. This description will be completely mathe-
matical; the physics will not be discussed.

A quantum state is a representation of the state of a physical system by a vector
of length 1 in a Hilbert space. If the Hilbert space is C2 the quantum state is
called a qubit. An orthonormal basis is {|0〉, |1〉}, corresponding to 0 and 1 for
classical bits.

The only way to get information out of a quantum system is by performing a
measurement. A measurement is described by a collection {Mm} of matrices over
the state space, where m are the possible measurement outcomes. If the state of
the system before the measurement is |ψ〉, the probability of measurement outcome
m is p(m) = 〈ψ|M †

mMm|ψ〉. After the measurement the state will “collapse” to
Mm|ψ〉
p(m) if the outcome is m.

In what follows one party will often send one of several states with certain prob-
abilities, for example |0〉 with probability 1/2 and |1〉 with probability 1/2. Due
to the fact that the receiver can only distinguish the states by performing a mea-
surement, this can be represented more compactly with a matrix over the state
space, called a density matrix or density operator:

ρ =
∑
i

pi|ψi〉〈ψi|

In the example the density matrix is(
1/2 0
0 1/2

)
.

The sender could also send 1
2

√
2(|0〉+ |1〉) with probability 1/2 and 1

2

√
2(|0〉− |1〉)

with probability 1/2, and the density matrix would be the same.

In the following this characterization will be most useful.
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Definition 2.11 (Density matrix) A density matrix is a positive matrix whose
eigenvalues sum to one.

The following generalization of density matrices will be useful:

Definition 2.12 (Non-normalized density matrix) A non-normalized density
matrix is a positive matrix whose eigenvalues sum to a number t with 0 < t ≤ 1.

2.4 Distance measures

Measures of distance between probability distributions are needed.

Statistical distance is a distance measure for the classical case.

Definition 2.13 (Statistical distance) Given two probability distributions P
and Q over Z, the statistical distance between them is

δ(P,Q) =
1
2

∑
i∈Z

|P(i)−Q(i)|

Trace distance is the quantum analogon of statistical distance.

Definition 2.14 (Trace distance) Given two density matrices ρ and σ, the
trace distance between them is

δ(ρ, σ) =
1
2
tr|ρ− σ|

where |A| =
√
A†A.

If ρ and σ commute and the eigenvalues of ρ and σ are P(i) and Q(i) respectively,
then δ(ρ, σ) = δ(P,Q). This property is useful in some proofs.

2.5 Entropy measures

Entropy measures quantify the amount of uncertainty in a probability distribution.
The most basic entropy measure is Shannon entropy.

Definition 2.15 (Shannon entropy) The Shannon entropy of a non-normalized
probability distribution P over Z is defined as 1

H(P) = −
∑
i∈Z
P(i) logP(i)

Von Neumann entropy is the quantum analogon of Shannon entropy.
1All logarithms in this thesis have base 2.
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Definition 2.16 (Von Neumann entropy) Von Neumann entropy of a non-
normalized density matrix is defined as

S(ρ) = −tr(ρ log ρ)

Let λi denote the eigenvalues of the non-normalized density matrix ρ. Then
S(ρ) = −

∑
i λi log λi.

Rényi entropy is a family of entropy measures. It has a parameter (order) α ∈
[0,∞].

Definition 2.17 (Rényi entropy (classical)) In the classical case, Rényi en-
tropy of order α is defined as

Hα(P) =
1

1− α
log

(∑
z∈Z

P(z)α
)

for a non-normalized probability distribution P and 0 < α < 1 ∨ 1 < α <∞, with
the convention that Hα(P) = limβ→αHβ(P) for α ∈ {0, 1,∞}.
For α = 0, this gives H0(P) = log (#{z ∈ Z|P(z) > 0}). For α = 1, this
gives H1(P) = H(P) (Shannon entropy). For α = ∞, this gives H∞(P) =
− log (max{P(z)|z ∈ Z}).

Note that Rényi entropy of all orders is the same as Shannon entropy for a distri-
bution P with P(i) = 1

n for i = 1, . . . , n:

Hα(P) =
1

1− α
log
(
n

(
1
n

)α)
=

1
1− α

(log n− α log n) = log n.

Rényi entropy of order 0 is log of the number of elements in Z with non-zero
probability. This is important in information reconciliation and privacy amplifi-
cation, describing the amount of information needed to reconstruct a value exactly
without chance of failure.

For example, consider a random variable X with P(X = 1) = 1
2 and P(X =

i) = 1
2(n−1) for i = 2, . . . , n. Then H(P) = 1

2 + 1
2 log 2(n − 1) = 1

2 log 4(n −
1) = log 2

√
n− 1. However H0(P) = log n, reflecting that n bits are needed to

reconstruct X without chance of failure.

Rényi entropy of order 2 is the negative log of the probability that two independent
repetitions of P(z) give the same element of Z.

Rényi entropy of order ∞ is the negative log of the largest probability. This is
important in cryptography, describing the probability of an attacker guessing the
key. In the example, H∞(P) = 1 and an attacker has 50% probability of guessing
X right, much higher than the Shannon entropy suggests.

Note that independent identically distributed repetitions do not remove this gap
between Shannon entropy and Rényi entropy.
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Definition 2.18 (Rényi entropy (quantum)) In the quantum case, Rényi en-
tropy is defined as ([6])

Sα(ρ) =
1

1− α
log(tr(ρα))

for a non-normalized density matrix ρ and 0 < α < 1 ∨ 1 < α < ∞, with the
convention that Sα(ρ) := limβ→α Sβ(ρ) for α ∈ {0, 1,∞}.

Equivalently, if p(z) (z ∈ Z) are the eigenvalues of ρ, Sα(ρ) = Hα(p(z)).

Then S0(ρ) = log(rank(ρ)), S1(ρ) = S(ρ) (Von Neumann entropy) and S∞(ρ) =
− log λmax(ρ) (maximum eigenvalue).

Smooth Rényi entropy takes the infinum (α < 1) or supremum (α > 1) of the
Rényi entropy over all Q which are close to P in some way (parametrized by
ε > 0). For α = 1, smooth Rényi entropy is the same as Shannon entropy.

We will use two different definitions of “close” (represented by two different balls
Bε(P)). The old definition from [7] uses statistical distance:

Bεo(P) := {Q|δ(P,Q) ≤ ε,
∑
z

Q(z) = 1,∀zQ(z) ≥ 0}.

In the new definition from [8] (also mentioned in the full version of [7]) the elements
of the ball are not probability distributions (except P); however, they are non-
normalized probability distributions. We will call this the truncation ball:

Bεn(P) := {Q|
∑
z∈Z

Q(z) ≥ 1− ε,∀zQ(z) ≤ P(z),∀zQ(z) ≥ 0}.

Note that both balls are compact sets, because they are closed bounded subsets
of R#Z .

Putting Bεo (statistical distance ball) or Bεn (truncation ball) for Bε, the rest of the
definition is as follows:

Definition 2.19 (Smooth Rényi entropy (classical))

Hε
α(P) = 1

1−α infQ∈Bε(P) log
(∑

z∈Z Q(z)α
)
, for 0 < α < 1 ∨ 1 < α <∞

where the special cases for 0, 1 and ∞ are the limits as in Rényi entropy:
Hε
α(P) = infQ∈Bε(P) log (#{z ∈ Z|Q(z) > 0}) , for α = 0

Hε
α(P) = H(P), for α = 1

Hε
α(P) = − infQ∈Bε(P) log (max{Q(z)|z ∈ Z}) , for α = ∞

Another formulation of the definition, which can be easier to use:

Hε
α(P) =

{
infQ∈Bε(P)Hα(Q), for α < 1;
supQ∈Bε(P)Hα(Q), for α > 1.
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The following theorem is already given by Renner and Wolf in [8, section 2.1]; we
will give the (simple) proof.

Theorem 2.20 The infinum or supremum in the definition of classical smooth
Rényi entropy is actually a minimum or maximum.

Proof Use the second formulation of the definition.

For α = 0, the function H0 maps R#Z to a subset of {logM |M ∈ N, 1 ≤ M ≤
#Z} which is a finite set, so it has a minimum and a maximum.

For α > 0, Hα is a continuous function from a subset of R#Z to R, so it maps
the compact set Bε(P) to a compact subset of R which has a minimum and a
maximum. �

In the quantum case the equivalent of the ball using statistical distance is a ball
using trace distance:

Bεo(ρ) := {σ|δ(ρ, σ) ≤ ε, σ is a density operator}

The equivalent of the truncation ball is:

Bεn(ρ) := {σ ≥ 0|σ ≤ ρ, tr(σ) ≥ 1− ε}

Similarly to the classical case, the elements of the truncation ball are not density
matrices, but they are non-normalized density matrices.

Both balls are compact sets.

Definition 2.21 (Smooth Rényi entropy (quantum)) In either case the smooth
Rényi entropy is defined as:

Sεα(ρ) :=
1

1− α
inf

σ∈Bε(ρ)
log (tr(ρα))

with the convention that Sεα(ρ) := limβ→α S
ε
β(ρ) for α ∈ {0,∞}

As in the classical case, this can be written as

Sεα(ρ) =
{

infσ∈Bε(ρ) Sα(σ), for α < 1;
supσ∈Bε(ρ) Sα(σ), for α > 1.

Theorem 2.22 The infinum or supremum in the definition of quantum smooth
Rényi entropy is actually a minimum or maximum.

The proof is the same as in the classical case.
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2.6 Ergodicity

Intuitively, an ergodic information source is the most general information source,
such that the strong law of large numbers still holds. An independent identically
distributed (i.i.d.) source is a special case of an ergodic source.

In this section, the set Z in the definition of probability distribution may be
infinite.

2.6.1 Classical case

The following definition is from [4, page 474-475].

Definition 2.23 (Classical information source) Define a classical informa-
tion source by a triple (Ω,B,P), with a space Ω (repetitions of an alphabet), algebra
of subsets B and a probability measure P.

A random variable X is represented by a function from Ω to C.

An example for Ω could be {0, 1}N for a source that sends an infinite sequence of
bits.

Consider transformations T : Ω → Ω. In the following, these will be time shifts.
In the {0, 1}N example, this would remove the first bit from the sequence.

A transformation T is called stationary (for a certain information source) if
P(TA) = P(A) for all A ∈ B. Intuitively this means the process looks the same
at every point in time.

A transformation T is called ergodic (for a certain information source) if for every
set A with TA = A, either P(A) = 0 or P(A) = 1.

If T is stationary and ergodic, the process defined by

Xn(ω) = X(Tnω)

for a random variable X is stationary and ergodic.

We have created some examples of dependent and/or non-identically distributed
sources:

• A source that sends alternating zeroes and ones, starting with 0 with 50%
probability and 1 with 50% probability.

The probability measure is such that P(ω) is 1/2 for ω1 = [0, 1, 0, 1, . . .] and
ω2 = [1, 0, 1, 0, . . .], and 0 otherwise.

T (ω1) = ω2 and T (ω2) = ω1. T is stationary.

All sets A with P(A) > 0 and TA = A have P(A) = 1, as they must contain
ω1 if they contain ω2 and vice versa. So T is ergodic.

The random variable X sends each ω to its first element.

This source is ergodic.



2.6. ERGODICITY 13

• A source with the following probability table per bit:

1/4 send 0 and send only zeroes from this point on
1/4 send 1 and send only ones from this point on
1/4 send 0 and continue following this table
1/4 send 1 and continue following this table

Take ω1 = [0, 1, 1, 1, . . .] and ω2 = [1, 1, 1, 1, . . .] (both continue with ones
forever). Then T (ω1) = ω2. Note that P(ω2) = 1/4+1/4P (ω2) and P(ω1) =
1/4P (ω2). So the transformation T is not stationary for this probability
measure.

The transformation T is not ergodic either, T (ω2) = ω2 but P(ω2) = 1/3.

This source is not ergodic.

• A source that sends all-ones with probability 1/2 and all-zeroes with prob-
ability 1/2.

Take ω1 = [0, 0, 0, 0, . . .] and ω2 = [1, 1, 1, 1, . . .] (both continue with the
same digit forever). So P(ω1) = P(ω2) = 1/2.

Then T (ω1) = ω1 and T (ω2) = ω2, so T is stationary for this probability
measure, but not ergodic.

This source is not ergodic.

2.6.2 Quantum case

A detailed definition of quantum ergodicity is outside the scope of this thesis; we
do not use it directly (instead, we use the AEP). We will just give some background
information.

The definition is from [2, section 2].

Some background on discrete quantum information sources (QIS) is needed. The
definition contains three main components.

The first component is an algebra, corresponding to Ω and B in the classical case.
As building block we will use the algebra A = B(H), the linear operators on the
finite dimensional Hilbert space H. If the QIS emits qubits, H will be C2. One
can also use other choices for A but we do not need this.

For a finite subset Λ ⊂ Z the “local” algebra AΛ is given by AΛ :=
⊗

z∈ΛAz.
Then the quasilocal algebra A∞ is defined as the operator norm closure of the
local ∗-algebra Aloc :=

⋃
Λ⊂ZAΛ.

The second component corresponds to P in the classical case. A state on the
quasilocal algebra is given by a normed positive functional Ψ, i.e. Ψ(1) = 1 and
Ψ(A) ≥ 0 for all A ∈ A∞ with A ≥ 0.

The third component corresponds to T in the classical case. The shift T is defined
on Aloc as follows. For integers z1 ≤ z2 and Λ := {z1, z1 + 1, . . . , z2} (Λ + 1 =
{z1 + 1, . . . , z2 + 1})

T : AΛ → AΛ+1, a ' a⊗ 1 7→ T (a) = 1⊗ a ' a.
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The canonical extension of T onto A∞ is an *-automorphism on A∞.

Definition 2.24 (Quantum information source) The triple (A∞,Ψ, T ) de-
fines a quantum dynamical system. This is the mathematical model for a discrete
QIS.

(A∞,Ψ, T ) is called stationary if for all a ∈ A∞ it holds that Ψ(Ta) = Ψ(a).

We will deal only with stationary QIS, hence we can assume without loss of gen-
erality that all integer intervals are of the form Λ = {1, . . . , n} with n ≥ 1. We
write ρ(n) instead of ρ(Λ) and Ψ(n) instead of Ψ(Λ).

A stationary QIS (A∞,Ψ, T ) is ergodic if

lim
n→∞

Ψ

( 1
n

n−1∑
i=0

T i(a)

)2
 = Ψ(a)2

for all self-adjoint a ∈ A∞.

2.7 Asymptotic equipartition property

The asymptotic equipartition property (AEP) says that given enough repetitions
of a stationary ergodic distribution, most probability mass is in the “typical set”
where every possibility has approximately the same probability. The AEP is also
known as the Shannon-McMillan theorem.

In this section, the set Z in the definition of probability distribution may no longer
be infinite.

2.7.1 Classical case

Let P be a stationary ergodic distribution over Z = {0, 1}.

Definition 2.25 (Entropy rate) Entropy rate is the average per symbol Shan-
non entropy:

h(P) := lim
n→∞

1
n
H(Pn)

Definition 2.26 (Typical sequences, typical set) A sequence zn ∈ {0, 1}n is
called ε-typical if

2−n(h(P)+ε) ≤ P(zn) ≤ 2−n(h(P)−ε)

The typical set Tnε is the set of all ε-typical sequences.

Theorem 2.27 (Classical AEP) Given ε > 0, there is an N ∈ N such that for
all n > N , P(Tnε ) ≥ 1− ε.
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2.7.2 Quantum case

This theorem is from [2, section 5].

Let (A∞,Ψ, T ) be a stationary QIS. Using the one-to-one correspondence between
a stationary Ψ and a family of density operators {ρ(n)|n ∈ N}, an average per-
symbol entropy can be defined:

Definition 2.28 (Entropy rate of a QIS) s(ρ) := limn→∞
1
nS(ρ(n))

We call certain states “typical”.

Definition 2.29 (Typical state, typical subspace) A pure state |e(n)
i 〉, where

|e(n)
i 〉 is an eigenvector of ρ(n), is called ε-typical if the corresponding eigenvalue

λ
(n)
i satisfies

2−n(s(ρ)+ε) ≤ λ
(n)
i ≤ 2−n(s(ρ)−ε).

The typical subspace T (n)
ε is the linear hull of all ε-typical states.

Theorem 2.30 (Quantum AEP) Let ε > 0 and let ρ be a stationary ergodic
QIS with local densities ρ(n). Then there exists an N ∈ N such that for all n ≥ N

1. tr(ρ(n)PT (n)
ε

) ≥ 1− ε, where PT (n)
ε

is the projector onto the subspace T (n)
ε .

2. tr(PT (n)
ε

) ≤ 2n(s(ρ)+ε)



Chapter 3

A closer look at smooth Rényi
entropy

3.1 Comparison of the two definitions, classical case

This section compares the two definitions of smooth Rényi entropy (different balls),
for the classical case.

In the rest of this section, Hε
o,α stands for smooth Rényi entropy using the sta-

tistical distance ball, and Hε
n,α for smooth Rényi entropy using the truncation

ball.

For α = 1 or ε = 0, these are both equal to the Shannon entropy; we will not
allow these cases in the following proofs.

3.1.1 Maps between the balls

Several simple maps between Bεo(P) and Bεn(P) can be defined.

Definition 3.1 Define the map Fcut : Bεo(P) → Bεn(P):

Given a Qo, there is a corresponding Qn:

Qn(z) = min{Qo(z),P(z)}

Lemma 3.2 The map Fcut is well defined.

Proof From the definition of Qo:

1
2

 ∑
{z|Qo(z)<P(z)}

(P(z)−Qo(z)) +
∑

{z|Qo(z)>P(z)}

(Qo(z)−P(z))

 ≤ ε

so from
∑

zQo(z) = 1∑
{z|Qo(z)<P(z)}

(P(z)−Qo(z)) =
∑

{z|Qo(z)>P(z)}

(Qo(z)−P(z)) ≤ ε

16
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and ∑
z

Qn(z) ≥ 1− ε. �

Definition 3.3 Define the map Fnorm : Bεn(P) → Bεo(P):

Given a Qn, there is a corresponding Qo (Qn∗) as follows:

Qn∗(z) =
Qn(z)∑
xQn(x)

Lemma 3.4 The map Fnorm is well defined.

Proof Clearly
∑

zQn∗(z) = 1.

For δ(P,Qn∗):

Set δ := 1−
∑

xQn(x).

Divide Z into two parts Z1 and Z2 such that

Qn(z) < (1− δ)P(z) ⇔ z ∈ Z1

Qn(z) ≥ (1− δ)P(z) ⇔ z ∈ Z2

So z ∈ Z1 ⇔ Qn∗(z) < P(z).

Then∑
z∈Z1

(P(z)−Qn∗(z)) =
∑
z∈Z1

(P(z)−Qn(z)
1− δ

) ≤
∑
z∈Z1

(P(z)−Qn(z)) ≤
∑
z

(P(z)−Qn(z)) = δ ≤ ε.

Since
∑

zQn∗(z) = 1,∑
z∈Z1

(P(z)−Qn∗(z)) =
∑
z∈Z2

(Qn∗(z)−P(z))

and ∑
z

|P(z)−Qn∗(z)|/2 ≤ ε. �

Definition 3.5 Define the map Faddsmall : Bεn(P)×N→ Bεo(P):

Let Z̃ be a set of M elements of Z, such that for all z̃ ∈ Z̃ it holds that P(z̃) = 0
(so also Qn(z̃) = 0). Given a (Qn,M), there is a corresponding Qo (Qn#):

Qn#(z) =

{
Qn(z), z 6∈ Z̃
1−

P
xQn(x)
M , z ∈ Z̃
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3.1.2 Bounds

Using the map Fcut

Using theorem 2.20, suppose the minimum/maximum is reached at Qo, and
Fcut(Qo) = Qn.

Hα(Qo) =
1

1− α
log
∑
z

Qo(z)α

Hα(Qn) =
1

1− α
log
∑
z

Qn(z)α =
1

1− α
log

 ∑
Qo(z)≤P(z)

Qo(z)α +
∑

Qo(z)>P(z)

P(z)α


If α = 0 or 0 < α < 1:
Hα(Qn) ≤ Hα(Qo)
Hε

o,α(P) = Hα(Qo) ≥ Hα(Qn) ≥ Hε
n,α(P).

If 1 < α <∞ or α = ∞:
Hα(Qn) ≥ Hα(Qo)
Hε

o,α(P) = Hα(Qo) ≤ Hα(Qn) ≤ Hε
n,α(P).

In both cases, the latter inequality follows from the infimum in the definition of
smooth Rényi entropy.

Consider the case 0 < α < 1 ∨ 1 < α < ∞. Note that the inequality between
Hα(Qo) and Hα(Qn) is strict, if Hε

o,α(P) 6= Hα(P). Furthermore note that clearly
Hε

n,α(P) 6= Hα(P) (because ε > 0). So it must be that the inequality between
Hε

o,α(P) and Hε
n,α(P) is strict.

A more concrete example of this difference is in section 3.1.3.

Using the map Fnorm

Using theorem 2.20, suppose the minimum/maximum is reached at Qn, and
Fnorm(Qn) = Qn∗ .

Set δ := 1−
∑

xQn(x). Then δ ≤ ε.

Rényi entropy on single points Qn and Qn∗ , for 0 < α <∞:

Hα(Qn∗) =
1

1− α
log
∑
z

Qn∗(z)α =
1

1− α
log
∑
z

Qn(z)α −
α

1− α
log(1− δ)

For α = 0:

H0(Qn∗) = log #{z|Qn∗(z) > 0} = log #{z|Qn(z) > 0} = H0(Qn)

For α = ∞:

H∞(Qn∗) = − log max{z|Qn∗(z)} = − log max{z| 1
1−δQn(z)}

= − log max{z|Qn(z)} − log 1
1−δ = − log max{z|Qn(z)}+ log(1− δ)
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If α = 0 or 0 < α < 1:

Hε
n,α(P)− α

1− α
log(1−ε) ≥ Hε

n,α(P)− α

1− α
log(1−δ) = Hα(Qn∗) ≥ Hε

o,α(P)

If ∞ > α > 1:

Hε
n,α(P)− α

1− α
log(1−ε) ≤ Hε

n,α(P)− α

1− α
log(1−δ) = Hα(Qn∗) ≤ Hε

o,α(P)

If α = ∞:

Hε
n,α(P) + log(1− ε) ≤ Hε

n,α(P) + log(1− δ) = Hα(Qn∗) ≤ Hε
o,α(P)

In all three cases, the latter inequality follows from the infimum in the definition
of smooth Rényi entropy.

Using the map Faddsmall

Using theorem 2.20, suppose the minimum/maximum is reached atQn, letM ∈ N,
and Faddsmall(M,Qn) = Qn#(M).

Set δ := 1−
∑

xQn(x). Then δ ≤ ε.

Rényi entropy on single points Qn and Qn#(M), for 1 < α <∞:

Hα(Qn#(M)) =
1

1− α
log
∑
z

Qn#(M)(z)α =
1

1− α
log

(∑
z

Qn(z)α +M

(
δ

M

)α)

Note that limM→∞M
(
δ
M

)α
= 0.

Then

Hε
n,α(P) = Hα(Qn) = lim

M→∞
Hα(Qn#(M)) ≤ Hε

o,α(P)

The latter inequality follows from the infimum in the definition of smooth Rényi
entropy.

For α = ∞:
LetM be the smallest integer greater than ε

2−H∞(Qn) . Then 1−
P

xQn(x)
M < max{z|Qn(z)}.

So

H∞(Qn#(M)) = − log max{z|Qn#(M)(z)} = − log max{z|Qn(z)}.

Then it follows that

Hε
n,∞(P) = H∞(Qn) = H∞(Qn#(M)) ≤ Hε

o,∞(P)

The latter inequality follows from the infimum in the definition of smooth Rényi
entropy.
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Together

Summarizing, we get the following bounds. Note that different from [7, full ver-
sion, section 3.3], we find that there is a difference between the definitions.

If α = 0:

Hε
n,α(P) = Hε

o,α(P)

If 0 < α < 1:

Hε
n,α(P) < Hε

o,α(P) ≤ Hε
n,α(P)− α

1− α
log(1− ε)

If 1 < α <∞:

Hε
n,α(P) > Hε

o,α(P) ≥ Hε
n,α(P)− α

1− α
log(1− ε)

If α = ∞:

Hε
n,α(P) > Hε

o,α(P) ≥ Hε
n,α(P) + log(1− ε)

The bound for α = ∞ and 1 < α < ∞ can be improved if elements with proba-
bility 0 are added to Z; for α = ∞,

Hε
n,α(P) = Hε

o,α(P)

and for 1 < α <∞,

Hε
n,α(P) > Hε

o,α(P) ≥ Hε
n,α(P)− d

for any d > 0 (the closer d is to 0, the more elements in Z with probability 0 are
needed).

3.1.3 Example of the difference

As an example for the difference between the two definitions, consider Z = {0, 1}
and P(0) = P(1) = 1/2.

For α = 0 and ε < 1/2, it is clear that for all Q in either Bεo(P) or Bεn(P), Q(0)
and Q(1) will both be non-zero. Hence the smooth Rényi entropy is log 2 in both
cases.

For α = 1/2 and ε < 1/2, the best Q for the truncation ball is Q(0) = 1/2 − ε,
Q(1) = 1/2, giving a smooth Rényi entropy of 2 log(

√
1/2− ε +

√
1/2). For the

statistical distance ball, the best Q is Q(0) = 1/2 − ε, Q(1) = 1/2 + ε, giving a
smooth Rényi entropy of 2 log(

√
1/2− ε+

√
1/2 + ε).

For α = ∞ and ε < 1/4, the best result in the truncation ball is lowering both
Q(0) and Q(1) to 1/2− ε/2, giving a smooth Rényi entropy of − log(1/2− ε/2).
However, in the statistical distance ball no improvement is possible, leaving the
smooth Rényi entropy at log 2.
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If we instead use Z = {0, 1, 2} and take P(2) = 0, the difference between the
statistical distance ball and the truncation ball decreases. For α = ∞ and ε small
enough, the extra probability mass can be put in Q(2), giving Q(0) = Q(1) =
1/2− ε/2 and Q(2) = ε and a smooth Rényi entropy of − log(1/2− ε/2).

3.2 Comparison of the two definitions, quantum case

This section will generalise the previous section to quantum information.

3.2.1 Comparison between quantum and classical information

We need some lemmas about the relation between classical probability distribu-
tions and density matrices.

Lemma 3.6 (Weyl’s Monotonicity Theorem) If A, B are n by n Hermitian,
and B is positive, then λi(A) ≤ λi(A+B) for all i = 1, . . . , n, where λi(M) is the
i’th eigenvalue (ordered from largest to smallest) of the Hermitian matrix M .

Proof See for example [1, Corollary III.2.3].

Lemma 3.7 Let ρ be a density operator with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn.

1. Given a matrix σ with eigenvalues µ1 ≥ µ2 ≥ . . . ≥ µn,

σ ∈ Bεn(ρ) ⇒ µ ∈ Bεn(λ)

2. Given real numbers µ1, . . . , µn such that µ ∈ Bεn(λ), there exists a matrix σ
with eigenvalues µ1, . . . , µn such that σ ∈ Bεn(ρ).

Proof Recall that

Bεn(λ) = {µ|∀iµi ≤ λi,
∑
i

µi ≥ 1− ε,∀iµi ≥ 0}

and

Bεn(ρ) = {σ|σ ≤ ρ, tr(σ) ≥ 1− ε, σ ≥ 0}

1. Let σ be a matrix with eigenvalues µ1 ≥ µ2 ≥ . . . ≥ µn and suppose σ ∈
Bεn(ρ).

σ positive gives ∀iµi ≥ 0. ρ− σ is positive so λi ≥ µi for all i (from lemma
3.6). tr(σ) ≥ 1− ε gives

∑
i µi ≥ 1− ε.

So µ is in the classical truncation ball around λ.
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2. Because ρ is Hermitian, it is diagonalisable: there are vi (i = 1, . . . , n) such
that

ρ =
∑
i

λi|vi〉〈vi|.

Let σ be

σ :=
∑
i

µi|vi〉〈vi|.

∀iµi ≥ 0 so σ is positive.

The eigenvalues of ρ − σ =
∑

i(λi − µi)|vi〉〈vi| are λi − µi, which are non-
negative real, so ρ− σ is positive.∑

i µi ≥ 1− ε so tr(σ) ≥ 1− ε.

So σ is in the quantum truncation ball around ρ.

�

Lemma 3.8 If λ1, . . . , λn are the eigenvalues of the density matrix ρ,

Sεn,α(ρ) = Hε
n,α(λ).

Proof

Recall from the definitions that Sα(ρ) = Hα(λ).

Sεα(ρ) = inf
σ∈Bε(ρ)

Sα(σ) = inf
µ∈Bε(λ)

Hα(µ) = Hε
α(λ)

�

Lemma 3.9 Given two density operators ρ and σ with eigenvalues λ1 ≥ λ2 ≥
. . . ≥ λn and µ1 ≥ µ2 ≥ . . . ≥ µn,

δ(ρ, σ) ≥ 1
2

∑
i

|λi − µi|.

Proof

There is a unitary matrix U and a diagonal matrix D such that ρ− σ = UDU †.

There are positive diagonal matrices D+ and D− such that D = D+ −D−.

Then ρ− σ = UDU † = U(D+ −D−)U † = UD+U † −UD−U † =: Q− S. Q and S
are positive matrices with support on orthogonal spaces. So |ρ− σ| = Q+ S.

Define the matrix V := S + ρ = Q+ σ. This is a positive matrix.
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Let ν1 ≥ ν2 ≥ . . . ≥ νn be the eigenvalues of V . It follows from lemma 3.6 that
νi ≥ max{λi, µi} and νi ≥ 1

2λi +
1
2µi +

1
2 |λi − µi|.

Then δ(ρ, σ) = 1
2(tr(Q)+tr(S))/2 = tr(V )−tr(ρ)−tr(σ) =

∑
i

(
νi − 1

2λi −
1
2µi
)
≥

1
2

∑
i |λi − µi|.

�

Lemma 3.10 Let ρ be a density operator with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn.

1. Given a matrix σ with eigenvalues µ1 ≥ µ2 ≥ . . . ≥ µn,

σ ∈ Bεo(ρ) ⇒ µ ∈ Bεo(λ)

2. Given real numbers µ1, . . . , µn such that µ ∈ Bεo(λ), there exists a matrix σ
with eigenvalues µ1, . . . , µn such that σ ∈ Bεo(ρ).

Proof

Recall that

Bεo(λ) = {µ|δ(λ, µ) ≤ ε,
∑
i

µi = 1,∀iµi ≥ 0}

and

Bεo(ρ) = {σ|δ(ρ, σ) ≤ ε, tr(σ) = 1, σ ≥ 0}

1. Let σ ∈ Bεo(ρ). Then δ(ρ, σ) ≤ ε so 1
2

∑
i |λi − µi| ≤ ε (from lemma 3.9).

Also σ is a density operator so ∀iµi ≥ 0 and
∑

i µi = 1. So µ ∈ Bεo(λ).

2. Because ρ is Hermitian, it is diagonalisable: there are vi (i = 1, . . . , n) such
that

ρ =
∑
i

λi|vi〉〈vi|.

Let σ be

σ :=
∑
i

µi|vi〉〈vi|.

∀iµi ≥ 0 so σ is positive.∑
i µi = 1 so tr(σ) = 1.

Because the ρ and σ diagonalise in the same way, the trace distance between
them is equal to the statistical distance between the eigenvalues, so δ(ρ, σ) =
δ(λ, µ) ≤ ε.

So σ is in the quantum “old” ball around ρ.

�
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Lemma 3.11 If λ1, . . . , λn are the eigenvalues of the density matrix ρ,

Sεo,α(ρ) = Hε
o,α(λ).

Proof

This follows immediately from the previous lemma and the alternate characteri-
zation of quantum smooth Rényi entropy (Sα(ρ) = Hα(λ)). �

Then we can construct analogons for Fcut and Fnorm, in such a way that the
eigenvalues are transformed like the probabilities in the classical case. These are
not necessary for the proof of equivalency.

Definition 3.12 Define the map Fcut : Bεo(ρ) → Bεn(ρ),

σo 7→ σn := ρ− Pos(ρ− σ)

with

Pos(ρ− σ) =
∑
i

max{νi, 0}|vi〉〈vi|

if

ρ− σ =
∑
i

νi|vi〉〈vi|.

Note that ρ − σ is diagonalisable because it is the difference of two Hermitian
matrices.

Definition 3.13 Define the map Fnorm : Bεn(ρ) → Bεo(ρ),

σn 7→ σn∗ :=
σn

tr(σn)
.

3.2.2 Bounds

Apply lemmas 3.8 and 3.11 to the result in the classical case, this gives:

If α = 0 or 0 < α < 1:

Sεn,α(ρ)− α

1− α
log(1− ε) ≥ Sεo,α(ρ) ≥ Sεn,α(ρ)

If ∞ > α > 1:

Sεn,α(ρ)− α

1− α
log(1− ε) ≤ Sεo,α(ρ) ≤ Sεn,α(ρ)

If α = ∞:

Sεn,α(ρ) + log(1− ε) ≤ Sεo,α(ρ) ≤ Sεn,α(ρ)

Similarly to the classical case, the latter two bounds can be improved if eigenvec-
tors with eigenvalue 0 are added to ρ. For ∞ > α > 1 this brings the entropies
arbitrarily close; for α = ∞ it makes them equal with one such eigenvalue if ε is
sufficiently small.
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3.3 Relations between smooth Rényi entropy of dif-
ferent orders

In this section we will derive inequalities between smooth Rényi entropy of different
orders. In the next chapter we will do the proof for orders 0 and ∞ only (for order
1, Smooth Rényi entropy is equal to Shannon/Von Neumann entropy).

From [6, section 2.4], for α, β ∈ [0,∞] and ρ a density matrix

α ≤ β ⇔ Sα(ρ) ≥ Sβ(ρ)

Now let σ be a truncated density matrix (trace not necessarily equal to 1). Then

Sα(σ) = Sα

(
σ

tr(σ)tr(σ)
)

= 1
1−α log

(
tr
((

σ
tr(σ)

)α)
(tr(σ))α

)
= Sα

(
σ

tr(σ)

)
+ α

1−α log(tr(σ)).

Combining these two formulas and reordering the terms gives

Sα(σ)− α

1− α
log(tr(σ)) = Sα

(
σ

tr(σ)

)
≥ Sβ

(
σ

tr(σ)

)
= Sβ(σ)− β

1− β
log(tr(σ))

which can be simplified to

Sα(σ)+
1

1− α
log(tr(σ)) = Sα

(
σ

tr(σ)

)
≥ Sβ

(
σ

tr(σ)

)
= Sβ(σ)+

1
1− β

log(tr(σ)).

Note that 1− ε ≤ tr(σ) ≤ 1.

From this and theorem 2.22, results for smooth Rényi entropy with the truncation
ball can be derived:

For α < β < 1:

Sεα(ρ) + 1
1−α log(tr(σ))

= Sα(σ) + 1
1−α log(tr(σ))

≥ Sβ(σ) + 1
1−β log(tr(σ))

≥ Sεβ(ρ) + 1
1−β log(tr(σ))

For 1 < α < β:

Sεβ(ρ) + 1
1−β log(tr(σ))

= Sβ(σ) + 1
1−β log(tr(σ))

≤ Sα(σ) + 1
1−α log(tr(σ))

≤ Sεα(ρ) + 1
1−α log(tr(σ))

Furthermore, we have the following theorem:

Theorem 3.14 1. If α < 1, then

S2ε
0 (ρ) ≤ Sεα(ρ) +

log(1/ε)
1− α
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2. If α > 1, then

S2ε
∞(ρ) ≥ Sεα(ρ)− log(1/ε)

α− 1

Proof Apply lemma 3.11 to [8, lemma 2] and take ε = ε′. �

Together, it follows that proving the limit result for α = 0, α = 1 and α = ∞
implies the limit result for general α.



Chapter 4

Asymptotic results for smooth
Rényi entropy

In this section we will prove that Smooth Rényi entropy goes to Shannon/Von
Neumann entropy in the limit for n→∞ and ε→ 0.

4.1 Definitions (classical case)

Let P be a stationary ergodic probability distribution on Z = {0, 1}N. Define

h(P) = lim
n→∞

− 1
n

∑
zn

P(zn) log(P(zn))

to be the limit of the Shannon entropy for n→∞.

Define hα(P) to be the limit of the smooth Rényi entropy for ε→ 0 and n→∞:

hε0(P) = limn→∞
1
nH

ε,n
0 (P)

hε∞(P) = limn→∞
1
nH

ε,n
∞ (P)

4.2 Classical case, truncation ball

Bε(P) is the truncation ball.

Theorem 4.1 hε0(P) is close to h(P): for all 0 < ε < 1
2 :

1. hε0(P) ≤ h(P) + ε

2. hε0(P) ≥ h(P)− 2ε

Proof Apply theorem 2.27 and let Tnε be the typical set. For all zn ∈ Tnε ,
2−n(h(P)+ε) ≤ P(zn) ≤ 2−n(h(P)−ε), and 2n(h(P)+ε) ≤ Tnε ≤ 2n(h(P)−ε).

27
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1. Define the function

Pε,n(zn) =
{
P(zn) ifzn ∈ Tnε ,
0 ifzn 6∈ Tnε .

From the AEP it follows that Pε,n(Tnε ) ≥ 1− ε for n sufficiently large. Also,
clearly Pε,n(zn) ≤ P(zn) for all zn. So Pε,n(zn) ∈ Bε,n(P).

Hε,n
0 (Pε,n) ≤ log 2n(h(P)+ε) = n(h(P) + ε)

So

hε0(P) = lim
n→∞

1
n

inf
Q
Hn

0 (Q) ≤ lim
n→∞

1
n
n(h(P) + ε) = lim

n→∞
(h(P) + ε) ≤ h(P) + ε.

2. Let Q ∈ Bε,n(P).
From the definition:

∑
zn Q(zn) ≥ 1− ε∑

zn∈Tn
ε

Q(zn) +
∑
zn 6∈Tn

ε

Q(zn) ≥ 1− ε

∑
zn∈Tn

ε

Q(zn) ≥ 1− 2ε.

If n is large enough and ε < 1/2, 1− 2ε ≥ 2−nε.

Then∑
zn∈Tn

ε

Q(zn) ≥ 1− 2ε ≥ 2−nε = 2n(h(P)−2ε)2−n(h(P)−ε) ≥ 2n(h(P)−2ε) max
zn∈Tn

ε

Q(zn)

so

2n(h(P)−2ε) ≤
∑

zn∈Tn
ε
Q(zn)

maxzn∈Tn
ε
Q(zn)

=

∑
zn∈Tn

ε ,Q(zn)>0Q(zn)

maxzn∈Tn
ε ,Q(zn)>0Q(zn)

≤ #{zn ∈ Tnε |Q(zn) > 0}

and

log #{zn ∈ Tnε |Q(zn) > 0} ≥ n(h(P)− 2ε).

So for all Q ∈ Bε,n(P), we have Hn
0 (Q) > n(h(P) − 2ε). Hence Hε,n

0 (P) >
n(h(P)− 2ε) and hε0(P) ≥ h(P)− 2ε.

�

Theorem 4.2 hε∞(P) is close to h(P): for all 0 < ε < 1
2 :

1. hε∞(P) ≥ h(P)− ε

2. hε∞(P) ≤ h(P) + 2ε
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Proof Apply theorem 2.27 and let Tnε be the typical set. For all zn ∈ Tnε ,
2−n(h(P)+ε) ≤ P(zn) ≤ 2−n(h(P)−ε), and 2n(h(P)+ε) ≤ Tnε ≤ 2n(h(P)−ε).

1. Define the function

Pε,n(zn) =
{
P(zn) ifzn ∈ Tnε ,
0 ifzn 6∈ Tnε .

From the AEP it follows that Pε,n(Tnε ) ≥ 1− ε for n sufficiently large. Also,
clearly Pε,n(zn) ≤ P(zn) for all zn. So Pε,n(zn) ∈ Bε,n(P).

Hε,n
∞ (Pε,n) ≥ − log 2−n(h(P)−ε) = n(h(P)− ε)

So

hε∞(P) = lim
n→∞

1
n

inf
Q
Hn
∞(Q) ≥ lim

n→∞

1
n
n(h(P)− ε) = lim

n→∞
(h(P)− ε) ≥ h(P)− ε.

2. Let Q ∈ Bε,n(P).
From the definition:

∑
zn Q(zn) ≥ 1− ε∑

zn∈Tn
ε

Q(zn) +
∑
zn 6∈Tn

ε

Q(zn) ≥ 1− ε

∑
zn∈Tn

ε

Q(zn) ≥ 1− 2ε.

If n is large enough and ε < 1/2, 1− 2ε ≥ 2−nε.

Then∑
zn∈Tn

ε

Q(zn) ≥ 1−2ε ≥ 2−nε = 2−n(h(P)+2ε)2n(h(P)+ε) ≥ 2−n(h(P)+2ε)#Tnε

so

2−n(h(P)+2ε) ≤
∑

zn∈Tn
ε
Q(zn)

#Tnε
≤ max

zn∈Tn
ε

Q(zn) ≤ max
zn
Q(zn)

and

− log max
zn
Q(zn) ≤ n(h(P) + 2ε).

So for all Q ∈ Bε,n(P), we have Hn
∞(Q) ≤ n(h(P) + 2ε). Hence Hε,n

∞ (P) ≤
n(h(P) + 2ε) and hε∞(P) ≤ h(P) + 2ε.

�



30 CHAPTER 4. ASYMPTOTIC RESULTS FOR SMOOTH RÉNYI ENTROPY

4.3 Classical case, statistical distance ball

Theorem 4.3 h̃ε0(P) is close to h(P): for all 0 < ε < 1
2 :

1. h̃ε0(P) ≤ h(P) + ε

2. h̃ε0(P) ≥ h(P)− 2ε

Proof Apply theorem 2.27 and let Tnε be the typical set. For all zn ∈ Tnε ,
2−n(h(P)+ε) ≤ P(zn) ≤ 2−n(h(P)−ε), and 2n(h(P)+ε) ≤ Tnε ≤ 2n(h(P)−ε).

1. Define the distribution

Pε,n(zn) =
{
P(zn)/P(Tnε ) ifzn ∈ Tnε ,
0 ifzn 6∈ Tnε .

From comparison of definitions, Fnorm, Pε,n(zn) ∈ Bε,n(P).

H̃ε,n
0 (Pε,n) ≤ log 2n(h(P)+ε) = n(h(P) + ε)

So

h̃ε0(P) = lim
n→∞

1
n

inf
Q
H̃n

0 (Q) ≤ lim
n→∞

1
n
n(h(P) + ε) = lim

n→∞
(h(P) + ε) ≤ h(P) + ε.

2. Let Q ∈ Bε,n(P).
From the definition:

∑
zn Q(zn) ≥ 1− ε∑

zn∈Tn
ε

Q(zn) +
∑
zn 6∈Tn

ε

Q(zn) ≥ 1− ε

∑
zn∈Tn

ε

Q(zn) ≥ 1− 2ε.

If n is large enough and ε < 1/2, 1− 2ε ≥ 2−nε.

Now change Q: for every zn with Q(zn) > P(zn), replace Q(zn) by P(zn).
This changedQ is in the truncation ball (again see comparison of definitions,
Fcut).

Then the same proof applies:∑
zn∈Tn

ε

Q(zn) ≥ 1− 2ε ≥ 2−nε = 2n(h(P)−2ε)2−n(h(P)−ε) ≥ 2n(h(P)−2ε) max
zn∈Tn

ε

Q(zn)

so

2n(h(P)−2ε) ≤
∑

zn∈Tn
ε
Q(zn)

maxzn∈Tn
ε
Q(zn)

=

∑
zn∈Tn

ε ,Q(zn)>0Q(zn)

maxzn∈Tn
ε ,Q(zn)>0Q(zn)

≤ #{zn ∈ Tnε |Q(zn) > 0}
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and

log #{zn ∈ Tnε |Q(zn) > 0} ≥ n(h(P)− 2ε).

So for all Q ∈ Bε,n(P), we have Hn
0 (Q) > n(h(P) − 2ε). Hence Hε,n

0 (P) >
n(h(P)− 2ε) and h̃ε0(P) ≥ h(P)− 2ε.

�

Theorem 4.4 h̃ε∞(P) is close to h(P): for all 0 < ε < 1
2 :

1. h̃ε∞(P) ≥ h(P)− ε

2. h̃ε∞(P) ≤ h(P) + 2ε

Proof Apply theorem 2.27 and let Tnε be the typical set. For all zn ∈ Tnε ,
2−n(h(P)+ε) ≤ P(zn) ≤ 2−n(h(P)−ε), and 2n(h(P)+ε) ≤ Tnε ≤ 2n(h(P)−ε).

1. Define the distribution

Pε,n(zn) =
{
P(zn)/P(Tnε ) ifzn ∈ Tnε ,
0 ifzn 6∈ Tnε .

From comparison of definitions, Fnorm, Pε,n(zn) ∈ Bε,n(P).

H̃ε,n
∞ (Pε,n) ≥ − log

(
2−n(h(P)−ε)

P(Tnε )

)
= − log 2−n(h(P)−ε)+logP(Tnε ) = n(h(P)−ε)+logP(Tnε )

So

h̃ε∞(P) = lim
n→∞

1
n

inf
Q
H̃n
∞(Q) ≥ lim

n→∞

1
n

(n(h(P)−ε)+logP(Tnε )) = lim
n→∞

(h(P)−ε) ≥ h(P)−ε.

2. Let Q ∈ Bε,n(P).
From the definition:

∑
zn Q(zn) ≥ 1− ε∑

zn∈Tn
ε

Q(zn) +
∑
zn 6∈Tn

ε

Q(zn) ≥ 1− ε

∑
zn∈Tn

ε

Q(zn) ≥ 1− 2ε.

If n is large enough and ε < 1/2, 1− 2ε ≥ 2−nε.

Then∑
zn∈Tn

ε

Q(zn) ≥ 1−2ε ≥ 2−nε = 2−n(h(P)+2ε)2n(h(P)+ε) ≥ 2−n(h(P)+2ε)#Tnε
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so

2−n(h(P)+2ε) ≤
∑

zn∈Tn
ε
Q(zn)

#Tnε
≤ max

zn∈Tn
ε

Q(zn) ≤ max
zn
Q(zn)

and

− log max
zn
Q(zn) ≤ n(h(P) + 2ε).

So for all Q ∈ Bε,n(P), we have Hn
∞(Q) ≤ n(h(P) + 2ε). Hence Hε,n

∞ (P) ≤
n(h(P) + 2ε) and h̃ε∞(P) ≤ h(P) + 2ε.

�

4.4 Quantum case, truncation ball, indirect proof

We prove the quantum case by reduction to the classical case, using the lemmas
from section 3.2.

ρ is the distribution being considered. There are n stationary ergodic repetitions
ρ(n).

Let λi be the eigenvalues of ρ(n).

Define furthermore

s(ρ) = lim
n→∞

1
n
S(ρ(n))

sεα(ρ) = lim
n→∞

1
n
Sεα(ρ(n))

Theorem 4.5 sε0(ρ) is close to s(ρ): for all 0 < ε < 1
2 :

1. sε0(ρ) ≤ s(ρ) + ε

2. sε0(ρ) ≥ s(ρ)− 2ε

Proof

From the definitions S(ρ(n)) = H(λ), so s(ρ) = h(λ).

Firstly, use lemma 3.7 to get

Sε0(ρ
(n)) = inf

σ∈Bε(ρ(n))
S0(σ) = inf

µ∈Bε(λ)
H0(µ) = Hε

0(λ)

Then also

sε0(ρ) = limn→∞ Sε0(ρ
(n))

= limn→∞Hε
0(λ)

= hε0(λ)
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And the classical h(λ)− 2ε ≤ hε0(λ) ≤ h(λ) + ε gives s(ρ)− 2ε ≤ sε0(ρ) ≤ s(ρ) + ε.

�

Theorem 4.6 sε∞(ρ) is close to s(ρ): for all 0 < ε < 1
2 :

1. sε∞(ρ) ≥ s(ρ)− ε

2. sε∞(ρ) ≤ s(ρ) + 2ε

Proof

From the definitions S(ρ(n)) = H(λ), so s(ρ) = h(λ).

Firstly, use lemma 3.7 to get

Sε∞(ρ(n)) = inf
σ∈Bε(ρ(n))

S∞(σ) = inf
µ∈Bε(λ)

H∞(µ) = Hε
∞(λ)

Then also

sε∞(ρ) = limn→∞ Sε∞(ρ(n))
= limn→∞Hε

∞(λ)
= hε∞(λ)

And the classical h(λ)− ε ≤ hε∞(λ) ≤ h(λ)+2ε gives s(ρ)− ε ≤ sε∞(ρ) ≤ s(ρ)+2ε.

�

4.5 Quantum case, trace distance ball, indirect proof

The same proof also applies to the trace distance ball, except that the classical
statistical distance ball must be used instead of the classical truncation ball.

4.6 Quantum case, truncation ball, direct proof

We also prove the quantum case with the truncation ball without using the lemmas
from section 3.2. The proof goes the same way as 4.2.

ρ(n) is the sequence of density matrices being considered; it is stationary and
ergodic.

Define furthermore

s(ρ) = lim
n→∞

1
n
S(ρ(n))

and

sεα(ρ) = lim
n→∞

1
n
Sεα(ρ(n))
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Theorem 4.7 sε0(ρ) is close to s(ρ): for all 0 < ε < 1
2 :

1. sε0(ρ) ≤ s(ρ) + ε

2. sε0(ρ) ≥ s(ρ)− 2ε

Proof Use the quantum AEP (theorem 2.30). Let n be an integer such that the
AEP holds (i.e. n is greater than or equal to the N given by the AEP) and
1− 2ε ≥ 2−nε and let T (n)

ε be the corresponding typical subspace.

1. Define the matrix

ρ(n)
ε := ρ(n)PT (n)

ε
.

Then 0 ≤ ρ
(n)
ε ≤ ρ(n) and tr(ρ(n)

ε ) ≥ 1 − ε, so ρ(n)
ε is in the truncation ball

around ρ(n), and Sε0(ρ
(n)) ≤ S0(ρ

(n)
ε ).

From the definition of Rényi entropy:

S0(ρ(n)
ε ) = log rank(ρ(n)

ε )

Because the rank of a matrix product cannot be more than the rank of a
factor:

log rank(ρ(n)
ε ) ≤ log rank(PT (n)

ε
)

Because PT (n)
ε

is a projection with eigenvalues 0 and 1 only (theorem 2.4):

log rank(PT (n)
ε

) = log tr(PT (n)
ε

)

From the properties of the typical subspace,

log tr(PT (n)
ε

) ≤ log 2n(s(ρ)+ε).

So

Sε0(ρ
(n)) ≤ n(s(ρ) + ε).

and

sε0(ρ) = lim
n→∞

1
n
Sε0(ρ

(n)) ≤ s(ρ) + ε.

2. Let σ(n) ∈ Bεn(ρ(n)).

From the definition: tr(σ(n)) ≥ 1 − ε. Then tr(σ(n)PT (n)) + tr(σ(n)(I −
PT (n))) ≥ 1− ε.

Note that tr(ρ(n)(I − PT (n))) ≤ ε. Use ρ(n) − σ(n) ≥ 0 with the fact that
I − PT (n) is a projection, then (ρ(n) − σ(n))(I − PT (n)) ≥ 0.
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So tr(σ(n)(I − PT (n))) ≤ ε and

tr(σ(n)PT (n)) ≥ 1− 2ε.

If n is large enough and ε < 1/2, 1− 2ε ≥ 2−nε.

Then

tr(σ(n)PT (n)) ≥ 1− 2ε ≥ 2−nε = 2n(s(ρ)−2ε)2−n(s(ρ)−ε)

≥ 2n(s(ρ)−2ε)λmax(ρ(n)PT (n)) ≥ 2n(s(ρ)−2ε)λmax(σ(n)PT (n))

so

2n(s(ρ)−2ε) ≤ tr(σ(n)PT (n) )

λmax(σ(n)PT (n) )

≤ λmax(σ(n)PT (n) )rank(σ(n)PT (n) )

λmax(σ(n)PT (n) )
= rank(σ(n)PT (n)) ≤ rank(σ(n))

and

S0(σ(n)) = log rank(σ(n)) ≥ n(s(ρ)− 2ε).

From the definition of smooth Rényi entropy,

Sε0(ρ
(n)) ≥ n(s(ρ)− 2ε)

and in the limit

sε0(ρ) = lim
n→∞

1
n
Sε0(ρ

(n)) ≥ s(ρ)− 2ε.

�

Theorem 4.8 sε∞(ρ) is close to s(ρ): for all 0 < ε < 1
2 :

1. sε∞(ρ) ≥ s(ρ)− ε

2. sε∞(ρ) ≤ s(ρ) + 2ε

Proof Use the quantum AEP (theorem 2.30). Let n be an integer such that the
AEP holds (i.e. n is greater than or equal to the N given by the AEP) and
1− 2ε ≥ 2−nε and let T (n)

ε be the corresponding typical subspace.

1. Define the matrix

ρ(n)
ε := ρ(n)PT (n)

ε
.

Then 0 ≤ ρ
(n)
ε ≤ ρ(n) and tr(ρ(n)

ε ) ≥ 1 − ε, so ρ(n)
ε is in the truncation ball

around ρ(n), and Sε∞(ρ(n)) ≥ S∞(ρ(n)
ε ).



36 CHAPTER 4. ASYMPTOTIC RESULTS FOR SMOOTH RÉNYI ENTROPY

From the definition of Rényi entropy and the properties of the typical sub-
space,

S∞(ρ(n)
ε ) = − log λmax(ρ(n)

ε ) ≥ − log 2−n(s(ρ)−ε) = n(s(ρ)− ε).

So

Sε∞(ρ(n)) ≥ n(s(ρ)− ε).

and

sε∞(ρ) = lim
n→∞

1
n
Sε∞(ρ(n)) ≥ s(ρ)− ε.

2. Let σ(n) ∈ Bεn(ρ(n)).

From the definition: tr(σ(n)) ≥ 1 − ε. Then tr(σ(n)PT (n)
ε

) + tr(σ(n)(I −
PT (n)

ε
)) ≥ 1− ε.

Note that tr(ρ(n)(I − PT (n)
ε

)) ≤ ε. Use ρ(n) − σ(n) ≥ 0 with the fact that

I − PT (n)
ε

is a projection, then (ρ(n) − σ(n))(I − PT (n)
ε

) ≥ 0.

So tr(σ(n)(I − PT (n)
ε

)) ≤ ε and

tr(σ(n)PT (n)
ε

) ≥ 1− 2ε.

If n is large enough and ε < 1/2, 1− 2ε ≥ 2−nε.

Then

tr(σ(n)PT (n)
ε

) ≥ 1−2ε ≥ 2−nε = 2−n(s(ρ)+2ε)2n(s(ρ)+ε) ≥ 2−n(s(ρ)+2ε)tr(PT (n)
ε

)

so

2−n(s(ρ)+2ε) ≤
tr(σ(n)PT (n)

ε
)

tr(PT (n)
ε

)
≤ λmax(σ(n)PT (n)

ε
) ≤ λmax(σ(n)).

For the second inequality, note that (replacing all eigenvalues with the largest
eigenvalue)

σPT (n)
ε

≤ λmax(σPT (n)
ε

)I

and (multiplying both sides by P and taking the trace)

tr(σP 2

T (n)
ε

) ≤ tr(λmax(σPT (n)
ε

)PT (n)
ε

) = λmax(σPT (n)
ε

)tr(PT (n)
ε

).

For the third inequality, note that PT (n)
ε

is a projection, λmax(σ(n)PT (n)
ε

) ≤
λmax(σ(n)).

Then

S∞(σ(n)) = − log λmax(σ(n)) ≤ −n(s(ρ) + 2ε).
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From the definition of smooth Rényi entropy,

Sε∞(ρ(n)) ≤ n(s(ρ) + 2ε)

and in the limit

sε∞(ρ) = lim
n→∞

1
n
Sε∞(ρ(n)) ≤ s(ρ) + 2ε.

�



Chapter 5

Conclusions

In the limit of the number of repetitions n→∞ and ε→ 0, smooth Rényi entropy
is equal to Shannon entropy, for stationary ergodic sources, both of classical and
quantum information.

This means it is possible to use Shannon entropy for asymptotic security proofs of
cryptographic protocols which naturally call for smooth Rényi entropy, also in the
quantum ergodic case. Examples of such cryptographic protocols are information-
theoretically secure key exchange protocols.

The truncation ball is easier to work with than the statistical distance or trace
distance ball, as it is not necessary to normalize elements. Although there is a
difference between smooth Rényi entropy using the truncation ball and smooth
Rényi entropy using the statistical distance or trace distance ball, this vanishes in
the limit for ε → 0. Hence, they are effectively the same and the truncation ball
is preferable. There may be other balls with even better properties.

The proofs do not use ergodicity directly, only the AEP. This means that the
theorems also hold for more general information sources which are not stationary
ergodic but do have the AEP property.

The constant 2 in hε0(P) ≥ h(P) − 2ε in theorem 4.1 and in hε∞(P) ≤ h(P) + 2ε
in theorem 4.2 can be replaced by any 1 + δ with δ > 0, and also in the other
analogous theorems in chapter 4.

Our theorems do not apply to the conditional case. A good suggestion for further
research would be to extend them to this case. There are complications in the
quantum case; the direct proof for the quantum case (section 4.6) is a good starting
point.

Another suggestion for further research is infinite alphabets (sets Z), which can
bring the definitions based on the two balls closer together and allow more gener-
ality, but cause various complications.
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