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Chapter 1

Introduction

Software engineering plays a prominent role within the field of study of computer science. As the
size of a software project grows software engineering becomes more and more influential. Each
phase of the software engineering process produces a variety of different types of products. The
quality of these products is of crucial importance to the phases that follow and in the end the
likeliness of success of the entire project. These products, yielded by the software engineering
process, are collectively referred to as software artifacts. Examples are requirements specifi-
cations, architecture and design models, source and executable code (programs), configuration
directives, test data, test scripts, process models, project plans, various documentation etc.
According to [Con03], a software artifact is any piece of software (i.e. models/descriptions) de-
veloped and used during software development and maintenance.
As stated before, these software artifacts form a cornerstone of a software system and their qual-
ity is reflected in the quality of the final product. By performing empirical quality analysis on
these artifacts, deficiencies and shortcomings can be discovered at early stages of the software
engineering project. This analysis is not limited to the independent analysis of a sequence of
snap-shots of a software artifact, but can also analyze how it changes over time. By introducing
time as an additional dimension, the effectiveness of a well thought-out analysis increases signif-
icantly. The evolution of a software artifact is a software artifact of its own, hence all software
artifacts can be analyzed in a time-dependent way.
Due to the amount and nature of the data analyzed, the visualization of this information often
leads to a better understanding of it. Information visualization is defined in [CMS99] as “the use
of computer-supported, interactive, visual representations of abstract data to amplify cognition”.
This is in contrast to scientific visualization, which targets the representation of scientific and
often physically based data.
Generally, information visualization amplifies cognition by reducing the load on the human work-
ing memory. This is achieved by ([CMS99]):

• Grouping together information that is used together. This can avoid large amounts of
search in the working memory of humans

• Using location to group information on a single element leads to reduction in the amounts
of search in the working memory

• Visual representation automatically represents a large amount of perceptual inferences that
are extremely easy for humans.

Software visualization ([SBP97]), a subfield of information visualization, is concerned with the
visual representation of information about software systems based on their structure, size, history
or behavior. This thesis presents some software visualization techniques to assist in the analysis
of time-dependent software artifacts. Its goal is to gain insight into the evolution of complex
and large amounts of time-dependent software data, through the analysis of logs. Such logs are
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typically weakly structured datasets consisting of hundreds of thousand of low-level events. The
following research questions summarize the challenges encountered when researching methods
for extracting the higher level structure from these unstructured logs through visualization:

Which visualization methods and techniques can give insight into the evolution
of time-dependent software artifacts? How can these methods be implemented ef-
ficiently and effectively in tools?

For the purpose of this research, existing techniques are combined with several new techniques.
These are then validated by applying them to some real-life datasets from two highly different
types of problems. The first problem addresses the behavior of a memory allocator for a mobile
phone. The second problem addresses a software project’s code-level evolution. These two highly
different fields of application are chosen in order to demonstrate that the techniques developed
are generic enough to handle and provide insight in a diverse set of application areas having
different data models and target questions. By limiting the research to the two application areas
above, the reader is hopefully convinced of its versatility, without straying too much from the
actual subject of the thesis.
The remainder of this thesis is organized as follows. Chapter 2 describes the two types of software
artifacts mentioned above in detail. Firstly, it elaborates on the internal memory organization
addressed by a memory allocator, the log format provided by the application profiler that mon-
itors this allocator and the data model inherent to this log. Secondly, it details the acquisition
methods for source code evolution information of a software project and a suitable data model.
Chapter 3 starts by presenting the basic layout, a 2-dimensional orthogonal visualization, and
some preliminary rendering methods. It subsequently describes a number of both existing and
new techniques for enhancing the visualization. These include cushioning ([vWvdW99]), a hier-
archical agglomerative clustering method and a set of new techniques including several types of
importance-based sub-sampling for displaying elements of subpixel size and interleaved cushion-
ing for improving visual segregating between clusters. In chapter 4 the visualization techniques
are applied to the two software artifacts of sections 2.1 and 2.2. At the same time, it presents
some of the results obtained. A conclusion and suggestions for further research are given in
chapter 5.
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Chapter 2

Time-dependent Software Data

This chapter describes two types of time-dependent software artifacts which will be analyzed
later on in this thesis. These two models are quite different. Yet, both are visualized later using
the same types of techniques, which shows that the same techniques can be utilized to acquire
insight into a variety of software artifacts.
The first model originates from the need for software testing, a field with rising importance within
software engineering. The software artifact in consideration is data on the behavior of a memory
allocator running on a mobile phone. The data describes the allocations and de-allocations and
the times at which they were done.
The second model is about the evolution of source code in a software project. In this model, the
data describes changes made to the source code at points in time, determined by the author of
the changes.

2.1 Dynamic Memory Allocator

Embedded systems play an increasing role of importance in our daily lives. They have evolved
from being limited to single-purpose, stand-alone devices to a broad range of frequently intercon-
nectable devices serving multiple purposes. One device which has evolved immensely over the
past decade is the mobile phone. Not only has it in general become much smaller, it has taken
over some tasks which have mostly nothing to do with making telephone calls. They serve as our
address book, alarm clock, music player and personal scheduler, to name a few examples. The
operating system needs to dedicate a sufficient chunk of the device’s resources, e.g. processor or
internal memory, to each of these application programs for them to be able to coexist harmo-
niously. Furthermore, because of the small dimensions of the device, these resources are usually
highly limited. The application programs serve different purposes and consequently have diverse
resource requirements and somewhat unpredictable patterns for accessing these resources. Espe-
cially the task of allocating fragments of memory to the processes efficiently becomes a difficult
task because of these diverse patterns and the limited memory space.
The dynamic memory allocator is the component of the operating system that deals with keeping
track of which parts of memory are in use and which parts are free. Processes request and free
pieces of memory variable in size and it is the allocator that determines which memory fragment
they get assigned. In doing this it should try to keep memory fragmentation to a minimum to
avoid wasting memory space.
A few popular memory allocator mechanism types include sequential fits, indexed fits, segregated
fits and buddy systems [WJNB95], each having its advantages and disadvantages in different ap-
plication areas. Some allocators, like the one analyzed in section 4.2, attempts to minimize
fragmentation by partitioning the available memory into sections each containing blocks of dif-
ferent sizes. Additionally, a section of memory is reserved for allocation requests larger than
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the largest block in the partition. This section accommodates variable-sized allocation requests.
For the designers of the operating system of a mobile phone this means that they need to make
decisions concerning what specific algorithm to use for their dynamic memory allocator and op-
tionally how to partition the memory space into sections of blocks.
Testing how well the dynamic memory allocator works in practice can be done by instrumenting
the allocator to log its operations and then analyze this log containing information on all allo-
cations and de-allocations made by certain applications. As typically many thousands of these
allocations and de-allocations are made every second, one can imagine that the log produced by
profiling the allocator for a few minutes would already grow quite large. General statistics of
the allocations and de-allocations made are easily extracted from these files, but this approach
leaves global patterns in the behavior of the memory allocator undiscovered.
The designer(s) of the allocator might be interested in having the following questions answered:

• What processes require a lot of memory?

• How much space is wasted by allocating more memory than required?

• How is fragmentation distributed in memory?

• Are there fragmentation patterns which can be ascribed to the allocator?

• Are there other fragmentation patterns which can be ascribed to the monitored application?

• Which are the largest quasi-compact regions allocated?

Even though the first two of these questions can be answered using general statistics, the latter
four are more subtle and require a different approach.
The following sections briefly explain the typical organization of address-space in the mobile
device which was the subject of our study. Then the format used in the log is described.

2.1.1 Memory Allocator Data Model

Before diving into the syntactic structure of the allocator profiler log it is important to globally
discuss the memory organization of the mobile phone in consideration.
We consider here as typical device, a mobile phone running the SymbianOS operating system.
The allocator considered is the one provided by the C runtime library on that platform. It is the
piece of code responsible for implementing the malloc, calloc, realloc and free operations.
A process running on this system issues a request to the allocator. The request contains the size
in bytes needed by the process. The allocator then responds to this request by allocating the
process a piece of memory of size at least the size of the request.
The memory available to the allocator is partitioned into two sections, namely the pool and the
heap. Memory allocated to a process as a response to a request is either allocated in the pool
or in the heap depending on the size of the request and the state of the pool. The details of this
consideration together with a general description of the pool and heap is presented next.

Pool

The pool is a section of memory with a predefined structure. It keeps groups of blocks of equal
size in the same contiguous memory range. These blocks are unable to coalesce into bigger, or
split into smaller blocks. There are several such ranges each having a unique block size and
holding a predefined number of these blocks.
Stated formally, the pool is subdivided into a set of N bins:

Pool = {Bini | i ∈ 1 . . . N }

8



Figure 2.1 Composition of a block

headersize

size

tailsize

lowaddress upaddress + 1

Each bin is a contiguous slice of memory and has a lower- and upper-address. In turn, it consists
of a predefined number of blocks:

Bini = {BLi,j | j ∈ 1 . . . |Bini|}

Each block has a lower-address and a size. Here, size indicates the effective size of the block.
As each block also contains a header and a tail holding meta-values for the pool data structure,
size is not equal to the amount of memory the block occupies (See figure 2.1).
The block’s upper-address follows implicitly from the lower-address, size and the header- and
tail-size, which are the same for all blocks in the pool:

upaddress = lowaddress + headersize + size + tailsize− 1

Since both the size, lower- and upper-address of a block will be needed in subsequent chapters
this slightly redundant definition of the set of blocks will be assumed.

BLi,j = 〈lowaddress, size, upaddress〉

In general, bins with larger blocks will have fewer blocks. Figure 2.2 shows an example of a
pool configuration.

Figure 2.2 An example of a pool configuration. The hatched area indicates the effective section
of a block of 36 bytes after a request for 25 bytes.

An allocation1 of a block in the pool can be described by a 5-tuple containing the start- and
end-time of the allocation, the id’s of the processes that made the allocation and de-allocation,

1Note that here an allocation is defined as the occupation of a fraction of memory for a period of time, as
opposed to the event where memory is allocated.
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and finally the size (in bytes) needed by the process.

BAi,j = 〈begintime, endtime, alloc proc, dealloc proc, size〉

In the following, the bins in {Bini} will be considered separately, hence the index is dropped for
the sake of brevity.
Individual blocks in the pool are fully allocated or not allocated at all. It is not possible to
allocate only part of a block in the pool. Consequently, the amount of memory granted by the
memory allocator might differ from the amount requested by the process, leading to a certain
amount of what will be referred to as memory waste or internal memory fragmentation ([Ran69]).
Figure 2.2 depicts the allocation of a block of 36 bytes as a response to a request for 25 bytes.
The hatched area represents the part of the block actually used by the process. Conversely, the
non-hatched area of the same block represents its wasted memory.
The reason the allocator maintains this pool structure is to limit the impact of external mem-
ory fragmentation ([Ran69]). External memory fragmentation occurs when allocating and de-
allocating blocks of different sizes. In dynamic structures, a de-allocation creates a hole in the
contiguous memory space. When subsequent allocations do not require the exact amount of
memory supplied by this hole, it is only partially reused. As the remaining unused space in such
a hole becomes small, it becomes unusable. This phenomenon occurs repeatedly and the small
unusable holes accumulate into large amounts of un-allocatable memory. Naturally, processes
with large lifetimes suffer more from external memory fragmentation than short-lived processes
do.
By defining a predefined structure, the pool limits the impact of external memory fragmentation
as no unused block will ever become (close to being) un-allocatable. External fragmentation of
the pool can however lead to decreased speed of some allocators. Furthermore, as mentioned
before, this predefined structure introduces internal memory fragmentation. Another disadvan-
tage of the pool is that it can only allocate up to moderately-sized blocks. Requests for bigger
chunks of memory require a different allocation approach.

Heap

In contrast to the pool, the heap does not have a predefined structure.
The necessity for the heap arises from the fact that the pool can only deal with allocations up to
a certain size. On the downside, it generally suffers from external fragmentation as allocations of
variable sizes are made in its dynamic structure. By checking whether an allocation can be made
in the pool before considering the heap, the variation in allocation size in the heap is decreased.
Consequently, the level of external heap-fragmentation is decreased.
The heap has a lower- and upper address, a total size |Heap| and a header- and tail-size, equal
for all allocations made therein. Allocations in the heap can have an arbitrary size as long as
there is still sufficient unallocated memory left. Therefore, internal fragmentation is absent in
the heap structure.
An allocation in the heap is a 6-tuple containing the start- and end-time of the allocation, the
lower-address the id’s of the allocating and de-allocating process and the size (in bytes) of the
allocation:

HA = 〈begintime, endtime, address, alloc proc, dealloc proc, size〉

The upper-address of an allocation in the heap follows implicitly from the lower-address, size,
header- and tail-size of the heap:

upaddress = address + headersize + size + tailsize− 1

2.1.2 Log Format

The data generated by the mobile device is supplied through a (textual) log containing infor-
mation about memory allocation and de-allocation in a specified format. A separate header file
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contains the information about the memory layout. On behalf of the heap, it includes the size,
header- and tail-size and upper- and lower-address. On behalf of the pool it includes the header-
and tail-size and the bin-block layout.
The log file is divided into lines, each containing exactly one allocation or de-allocation event2

into the pool or heap. A few sample log lines are:

<0001h 26m 32s 059 316> MCU OS Task: 2 @ 0x013a69e6,0x013a6ce2 Block alloc

ptr 0x000ae494 size 34 set 3

<0001h 26m 32s 059 391> MCU OS Task: 2 @ 0x013a7578,0x013a7608 Block dealloc

ptr 0x000ae494 set 3

<0001h 26m 32s 555 304> MCU OS Task: 30 @ 0x013a1cba,0x01537e36 Heap dealloc

ptr 0x030c2b8c

<0001h 26m 32s 554 810> MCU OS Task: 30 @ 0x013a1532,0x01537a22 Heap alloc

ptr 0x030c2b8c size 912

Each line also describes some information related to the allocation or de-allocation event. These
are:

• The time of the allocation or de-allocation, given by a number of hours, minutes, seconds,
milliseconds and microseconds

• The id of the process that made the allocation or de-allocation

• Information on the function that called the allocation or de-allocation

• Whether it concerns an allocation or de-allocation into the heap, or one of the bins

• Whether it concerns an allocation or de-allocation

• The memory-address of the allocation or de-allocation

• The size in bytes needed by the process (this only occurs on allocation lines and is not
always equal to the size of memory granted by the pool)

• The bin the allocation occurs in (this only appears when the allocation is made in the
pool)

Information such as ”MCU OS” and ”no wait” are operating system specific tokens and can be
ignored for the purpose of this thesis.
The de-allocation of a piece of allocated memory is not always present in the log. The profiler
could for example have been preempted before all de-allocations were made, or the log could
have been shortened by discarding a trailing section. This is a shortcoming of the log and it
could lead to a potentially misleading analysis as part of the behavior of the allocator is ignored.
Another possibility however, is that these allocation events were actually not de-allocated by the
allocator and that this behavior points to memory leaks.

2.2 Software Configuration Management Systems

This section presents the second example of time-dependent dynamic software artifacts. The
data model presented is based on the infrastructure for data mining of different kinds of software
repositories presented in [VT].
Software Configuration Management (SCM) is defined in [Pre01] as a “set of activities designed

2Note that the log specifies allocations through separate allocation and de-allocation events.
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to control change by identifying the work products that are likely to change, establishing re-
lationships among them, defining mechanisms for managing different versions of these work
products, controlling the changes imposed, and auditing and reporting on the changes made”.
Large software projects often utilize a system for supporting the SCM methodology. CVS (Con-
current Versions System3) and Subversion4 are examples of such systems. They keep track of
all work and changes in the set of files related to the software project, hereby facilitating col-
laboration between several developers. These management systems are mainly used to store
source code, which is widely recognized as the “main asset of the software engineering econ-
omy” ([Str00]). This makes these systems an excellent up-to-date source of information for the
analysis of projects following a corrective approach ([VT]). SCM systems hence facilitate the
analysis of the evolution and productivity of potentially large software projects.
Typical questions facing software project managers, targeted by the methods in this thesis in-
clude:

• How is project-wide activity distributed?

• Which files are heavily modified and by whom?

• Which groups of files are developed together?

• How are these related files distributed over the folder structure?

• At what moments did a mayor release of the project occur?

2.2.1 Evolution Data Model

This section describes the data model for the software evolution data. It globally follows the
model presented in [VT], with some modifications. The evolution data is made available through
the CVSgrab tool ([VT06a]). This tool generates a log by performing a depth-first traversal of
the SCM system’s repository root. This yields a log which consists of a listing of file entries in
alphabetical order. Each file entry is followed by an enumeration of the branches it belongs to
and finally a list of commit entries. These commit entries determine the version of a file in a
specific branch. For the purpose of this thesis, code branching is ignored, i.e. only the ”main”
branch, or trunk, of the repository is assessed. Other branches could be analyzed separately.
However, these branches are often short-lived and only span a handful of files.
The following presents a model for the evolution data extracted from these logs. The central
element of an SCM system is a repository R which stores the evolution of a set of NF files:

R = {Fi | i ∈ 1 . . . NF }

In a repository, each file Fi is stored as a set of NVi versions:

Fi = {Vi,j | j ∈ 1 . . . NVi }

Each version is a tuple with several attributes. The most typical ones are: The name of the
author who committed it, the commit time, a log message, the number of lines added and the
number of lines removed with respect to the previous version:

Vi,j = 〈author, committime, comment,#linesadded,#linesremoved〉

The author and comment attributes are unstructured categorical attributes. committime, while
strictly seen a discrete attribute, is considered as a continuous one. Naturally, the two modifica-
tion attributes, #linesadded and #linesremoved are of integer type. They are acquired through
a diff -like tool.

3http://www.nongnu.org/cvs/
4http://subversion.tigris.org/
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2.3 Generic Data Model

This thesis focuses on the analysis of time-dependent software artifacts in general. The two data
models described in sections 2.1.1 and 2.2.1 are too detailed to fit this purpose. This section
introduces the notion of an element as the generic basis for discussing the proposed visualization
methods for time-dependent software artifacts. It also discusses a restriction on the type of
dataset that can be subdivided into elements and consequently the type of dataset that can be
visualized using those methods.
Time-dependent software artifacts consist of a set of attributed elements E = {ei}, for i =
1 . . . |E|. An element ei is the Cartesian product of a time-interval in the range [Tmin . . . Tmax]
and an interval in range [Lmin . . . Lmax] of an ordered set L, the main parameter of analysis.
Hence, it consists of a start- and an end-time and a start- and an end-offset in L:

ei =
〈

si
T , ei

T , si
L, ei

L

〉

(2.1)

The following property enforces a restriction on the set L. All pairs of elements with intersecting
time intervals have disjoint intervals in set L, or stated formally:

(

∀ei : ei ∈ E :
(

∀ej : ej ∈ E ∧ ei 6= ej : OverlapT (ei, ej)⇒ ¬OverlapL(ei, ej)
))

(2.2)

where OverlapT : E × E → Bool and OverlapL : E × E → Bool indicate whether two elements’
time intervals and offset intervals overlap respectively, i.e.:

OverlapT (ei, ej) =
(

si
T < ej

T

)

∧
(

sj
T < ei

T

)

(2.3)

OverlapL(ei, ej) =
(

si
L < ej

L

)

∧
(

sj
L < ei

L

)

(2.4)

The visualization methods proposed in chapter 3, specifically the layout model used, will ex-
plicitly use this non-overlapping property. Additionally, each element has several attributes of
categorical, continuous or integer data.
The notion of an element, described above, establishes a basis for the generic discussion of the
visualization methods in chapter 3. Chapter 4 will show how the data models for the two ap-
plications translate to this generic model. Strictly seen, any data model having main analysis
parameter L that satisfies property 2.2 is adequate for visual analysis using the methods pre-
sented in this thesis. Naturally, not all data models will benefit equally from these methods as
the usefulness of any visualization relies heavily on the underlying semantics of the data. By
tweaking the parameters of the visualization techniques that follow in chapter 3 however, a high
level of correlation between visual entities and their corresponding high-level structures can be
reached for many different types of data models.
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Chapter 3

Visualization Methods

This chapter describes methods for getting insight into the behavior of time-dependent software
processes, such as the memory allocator and the repository management system introduced in
chapter 2.
The main proposal is to produce this insight by means of interactive visualizations of the time-
dependent data. By visualizing abstract data, this data is transformed into a form in which it is
better understood by the human brain, thus reducing the cognitive load of the brain ([Swe86]).
Furthermore techniques that make use of color, lighting and texturing hold a great deal of
potential for enhancing the visualization as they appeal directly to the brain.
This chapter consists of several sections each building on top of its predecessor. Section 3.1 starts
by describing the basic visualization model. The remainder of the chapter refines the model
defined in section 3.1. Section 3.2 explains how applying cushion-like textures to the rectangles
makes them more distinguishable. Section 3.3 elaborates on some methods for mapping the
rectangles to the limited space on the screen without parting with too much information. Section
3.4 presents a metric bar that displays statistical information on the elements active at a specific
point in time. Section 3.5 introduces the notion of “clustering” where several chunks of closely-
related rectangles are grouped together to form a more global view of the data. Additionally,
each section lists the advantages and disadvantages of the technique discussed.

3.1 Visualization Model

In general a visualization model for information visualization is a function from an abstract
dataset to a representation on the screen. A more detailed description of the model for the
dataset at hand is a function

V M : E → (Position, Size, Shape, Color, Texture, Lighting) (3.1)

In visualization practice, this function consists of several algorithmic steps: data importing, data
filtering, data mapping and rendering. These constitute what is called the visualization pipeline
([CMS99]). This thesis concentrates on the latter two elements of the visualization pipeline,
namely data mapping and rendering. Data mapping is concerned with the layout of the data on
the screen. The layout portion assigns geometric position, dimension and shape to a non-visual
element. This layout can be modeled as a function LM :

LM : E → (Position, Size, Shape) (3.2)

which fixes the layout-related portion of the model. Similarly, function

RM : E → (Color, Texture, Lighting) (3.3)
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describes the rendering-related portion of the model. These sub-models are described in sections
3.1.1 and 3.1.2 respectively.
For a visualization function to be effective, it should satisfy a few important properties. A
visualization function should be:

1. Efficiently computable: Naturally an uncomputable or very inefficient visualization function
is of very limited use.

2. Visually invertible: The mapping of attributes of interest to visual elements should be one
to one, for the brain to be able to grasp the meaning of the representation.

3. Easily invertible: Values used for for example color, shading and position should be as
different as possible for the user to be able to extract information from the visualization
easily.

The visualization model presented in this thesis is a mapping from the data model to a 2-
dimensional orthogonal plot with time on the x-axis and offset in parameter L, introduced in
section 2.3, on the y-axis. Several visual attributes such as color, shading and texture can be
manipulated to convey additional information, as will become apparent in the next few sections.

3.1.1 Layout Model

Property 2.2 ensures that no two elements have overlapping intervals for L at any given point
in time. Consequently, plotting time against L and mapping it to a visual counterpart induces
a pairwise-disjoint 2-dimensional subdivision. This planar rectangular subdivision is the general
layout of the visualization.
The rectangular representation of an element ei, projected to the screen is the Cartesian product
of two rational-valued intervals, of which values in viewport [0 . . . Xmax] × [0 . . . Ymax] are ren-
dered. In the following these rectangular on-screen representations of elements, will be referred
to as segments. The layout portion of a segment, corresponding to element ei, is represented by
its upper and lower values for both axes:

si = 〈si
x, ei

x, si
y, ei

y〉

Let S be the set of segments:
S = {si | i = 1 . . . |E|}

The mapping from element ei to si occurs by applying linear functions ΠX : T → R and
ΠY : L→ R to values si

T , ei
T and si

L, ei
L respectively:

ΠX(t) = σX

Xmax

Tmax − Tmin

(t− Tmin) + δX (3.4)

ΠY (l) = σY

Ymax

Lmax − Lmin

(l − Lmin) + δY (3.5)

Here, σX , σY , δX and δY are user-supplied parameters for zooming in to specific areas of the
rectangular representation.
The additional attributes of element ei do not affect the layout.
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Figure 3.1 2-dimensional visualization layout of a segment
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This approach offers several advantages:

• It is compact. A lot of elements, typically hundreds of thousands, can be simultaneously
shown on the screen

• No screen space is wasted. Empty areas convey actual information, for example they
indicate memory fragmentation for the memory allocator data.

• It is simple and efficiently computable. The coordinates of the rectangle representing an
element are merely the result of a linear function applied to attributes of the element.

• It is well-organized. As a consequence of property 2.2 the visualization has no overlapping
segments. Furthermore all segments are perfect rectangles and are aligned with the axes.

• It is intuitive. Segments on the screen represent elements directly. Furthermore, the
horizontal axis is traditionally used to represent time, which is also done here.

• It is effective. As the mapping function is an injective one, the information on the screen can
be translated back to the data-set. The ”visually invertible”-property is hereby satisfied.

2D or 3D

An interesting and ever recurring discussion is on whether to use a 2-dimensional or a 3-
dimensional visualization. Several researchers have promoted 3D software visualizations for
time-dependent data ([TLTC05],[RCM93]). Despite their appeal however, 3D visualizations in-
troduce a number of difficulties compared to 2D ones. These include, but are not limited to
([KG05, CM01, CM02, CM04]):

• Object occlusion. Depending on the viewpoint, one object might be blocking the viewer’s
view of another.

• Awkward navigation. Navigation through the 3D world using tools operating in two dimen-
sions (mice, trackballs) is not easily accomplished in a straightforward way. It is usually
done by holding down a key-, or mouse-button to change the orientation of the navigating
plane, and moving the mouse to navigate within this plane. This makes 3D navigation
harder to get acquainted with, compared to the simple pan and zoom of 2D navigation.
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• Awkward selection. As a result of object occlusion and awkward navigation, the task of
selecting an object becomes a tedious one.

• Obscured relations. Through perspective projection, relations between the sizes of objects
are obscured. As the object is further away from the viewer it is drawn smaller than an
object of the same size located close to the viewer.

• Slow rendering. The extra dimension creates a higher degree of calculations to be per-
formed. Expensive operations like anti-aliasing applied to large data sets may very well
cause the rendering of the visualization to become unacceptably slow.

For the purpose of this thesis, these disadvantages outweigh the benefit of the extra dimension,
hence a 2D visualization is used.

3.1.2 Rendering Model

Rendering describes the process of assigning color-, lighting- and texture attributes to an already
laid out data object. In this case, the laid out data object is a 2-dimensional axis-aligned
rectangle, also called a segment.
Additional element-attributes can for example be encoded into the color of its segment. Mapping
more than one attribute onto a coloring scheme is unintuitive and is not easily invertible. Other
rendering-related parameters, like texture and lighting could be used for representing a second
or even third attribute as is done in [VT06b]. However, as segments become very small (width
or height a few pixels or less), there is not always enough room for these parameters to be
represented effectively. For this reason, at most one attribute is mapped to rendering-related
parameters at a time. Furthermore, all methods presented in the remainder of this thesis require
only coloring and texturing. Consequently, these two suffice as rendering parameters and lighting
is dropped. The rendering portion of a segment si is hence a 2-tuple containing a color and a
texture item:

si = 〈coli, texi〉

The discussion on the rendering model continues with an exploration of the different mappings of
segment attributes to colors. Different attributes can be explored by switching between coloring
schemes. This basic rendering model will exhibit some shortcomings as will become apparent
in the next few sections. Despite its limited effectiveness when applied to small segments,
texturing can be used effectively to limit some of these shortcomings by refining the rendering
model. Sections 3.2 and 3.5.5 will discuss some applications of texturing that fit this purpose.

Color maps: In mapping data attributes to colors, one can distinguish between two types of
attributes:

• Continuous: Continuous data attributes are quantified attributes like time or size where
large values may represent favorable or unfavorable scenarios.

• Categorical : Categorical data attributes are attributes for identifying or grouping an entity.
Comparisons other than equality between different categorical attributes do not make sense.

The purpose of coloring a continuous data attribute of a segment is to give an indication of the
relative value for that segment. Take a general color map CM : [0 . . .D]→ color which maps a
scalar in the given range to a color. For an attribute with range [Smin . . . Smax] adapted color
map function C maps scalar s to a color using color map CM :

C (s) = CM

(

D
s− Smin

Smax − Smin

)

(3.6)

In the following, any reference to a color map will refer to this adapted form of color map.
The most common color map for continuous attributes, the rainbow color map (figure 3.2), is a
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hue-based linear scale from blue, through a rainbow of colors, to red. Here, blue traditionally
represents favorable and red unfavorable values.

Figure 3.2 Adapted color map C based on the rainbow color map

Smin Smax

Perceptually however, this scale is far from linear as is immediately apparent from the figure.
Equal steps in the scale do not correspond to equal steps in color. As a result, this color map
can lead the user to infer structure which is not present in the data and to miss details that
lie completely within a single color region ([BRT95], [RLK92], [RT93]). Some other types of
well-known color maps include black-and-white color maps, blue-white-red color maps and heat
color maps. Furthermore, a number of tools exist for creating custom color maps (ColorBrewer1,
[BRT95]). Despite its pitfalls, the rainbow color map is chosen as the main continuous color map
in this thesis, due to its intuitive mapping to good, neutral and bad values, its familiarity and
its general acceptance amongst the researching community.
For categorical data attributes the purpose of coloring is to distinguish between different discrete
values. Ideally this is done by a discrete color map specifying a different color for each occurring
value. Unfortunately, the human eye can only distinguish between 6 to 10 colors easily. A color
map that cycles through around 10 highly different colors only provides a partial solution to
this problem, as potentially many different values are mapped to the same color. Section 3.5.5
discusses how textures can diminish a specific instance of this problem.
Together with the layout model of section 3.1.1 this basic rendering model maps a set of elements
to a (potentially large) collection of disjoint rectangles on the screen. Figure 3.3 shows an example
application of this preliminary visualization model2. The following sections describe techniques
that enhance this model.

1http://www.colorbrewer.org/
2Some of the figures in this chapter and the next show sections of the visualization of the memory allocator

or SCM system examples. The exact details for these examples will follow in chapter 4.
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Figure 3.3 A 2-dimensional dense visualization of the files in a software project, using rectangles
for different versions, colored by level of change using the rainbow color map (top) and a vertically
zoomed in view of a number of files (bottom)

File
offset

Time
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3.2 Cushioning

The first shortcoming of the preliminary rendering model of section 3.1.2 is revealed when two
adjacent segments have the same color. Figure 3.3 (bottom) shows that for these neighboring
segments of equal color, it is not very apparent where one ends and the other begins. Drawing
borders around the segments clutters the overall image when the density of the segments is high.
A more elegant solution is obtained by applying a parabolic function to the color-intensity of the
segment, creating a 3D cushion-like surface, first introduced in ([vWvdW99]). This approach
is also used in EZEL [VTvW04], a visualization tool from a similar application domain. EZEL
assesses the efficiency of a peer to peer file sharing network and offers a similar layout where
time is mapped against an offset in a file.
Cushioning is however only effective when the segments are at least a few pixels long and wide.

3.2.1 Parabolic cushions

A simple way of creating a cushion is by applying a texture to the segments, using a parabolic
function in x- and y direction, translated into an intensity map. The two components are
combined by multiplication. Let IC (x, y)→ [0 . . . 1] denote the intensity of cushion C = W ×H
for x ∈ [0 . . . W ] and y ∈ [0 . . . H], where W and H represent the width and the height of the
cushion, respectively.

IC (x, y) = α ∗ (1−

(

| 2x−W |

W

)γ

) ∗ (1−

(

| 2y −H |

H

)γ

) (3.7)

where α ∈ [0 . . . 1] and γ ∈ R+ are constants for altering the intensity and the steepness of the
cushion, respectively. Figure 3.4 sketches the profile of this cushion in one dimension for γ = 2
and γ = 4. Notice the difference in steepness at the extremities. The α parameter does not
affect the profile, but rather the intensity with which the cushion is applied.

Figure 3.4 Profile of a parabolic cushion for (a) γ = 2 and (b) γ = 4
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Although cushions are often desired for visual segregation between segments, they can some-
times disturb the greater picture similarly to bordered segments. For this reason the user can
adjust the visual strength of the cushion using the α value. Figures 3.5 (a), (b) and (c) show
collections of these cushions as they are represented on the screen, with α = 0, α = 0.6 and
α = 1 respectively.
The parabolic cushioning approach is very simple and effective. A disadvantage of this type of
cushion is that the texture scales with the surface, leading to large dark areas when visualizing a
group of long segments (See figure 3.6). This side-effect of parabolic cushions implicates a higher
level structure of the underlying data, a visual artifact which is exploited in section 3.5.5, when
the focus lies on amplifying high-level structure. For localized analysis however, these darkened
areas merely blur the visual segregation between long segments, especially when colored using
the same dark color.
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Figure 3.5 Parabolic cushions with γ = 4 and (a) α = 0, α = 0.6 and (c) α = 1
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Figure 3.6 Side effect of parabolic cushions in visualization of memory allocator
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3.2.2 Plateau cushions

A second approach cushions a surface through three different intensity functions for both dimen-
sion sketched in figure 3.7.

Figure 3.7 Profile of a plateau cushion
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This yields eight distinct intensity maps and one constant intensity middle section as shown
in figure 3.8. Parameter δ denotes the width of the slopes at the cushion’s extremities. This

21



Figure 3.9 Plateau cushions with (a) α = 0, α = 0.6 and (c) α = 1
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type of cushion, first introduced in [LNVT05], is referred to as a plateau cushion because of the
constant intensity of the middle section.

Figure 3.8 Subdivision of a plateau cushion
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The basis for the intensity functions of sections 1 through 8 is a single function I, applied to
either dimension:

I(x) = (x/δ − 1)
2

(3.8)

They are given by functions 3.9 to 3.16 respectively. The center of the cushion has maximal
intensity across its surface.

IC1
(x, y) = α ∗max (I(x), I(H − y)) (3.9)

IC2
(x, y) = α ∗max (I(W − x), I(H − y)) (3.10)

IC3
(x, y) = α ∗max (I(W − x), I(H − y)) (3.11)

IC4
(x, y) = α ∗max (I(x), I(y)) (3.12)

IC5
(x, y) = α ∗ I(H − y) (3.13)

IC6
(x, y) = α ∗ I(W − x) (3.14)

IC7
(x, y) = α ∗ I(y) (3.15)

IC8
(x, y) = α ∗ I(x) (3.16)

Figures 3.9 (a), (b) and (c) show collections of these cushions as they are represented on the
screen, with α = 0, α = 0.6 and α = 1 respectively. When these cushions are scaled, only
the non textured area of the cushion is scaled, eliminating the darkened areas seen before. The
disadvantage of this approach is that these cushions, when drawn using hardware accelerated
texture mapping, are less efficient to compute, as eight different textures need to be mapped
to different parts of the segment instead of only one. Furthermore segments that are smaller
than 2δ in either direction still require scaling of the textures in order to make them fit. The
techniques presented in section 3.3 eliminate the former disadvantage.
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Figure 3.10 Segments sp, sp+1 and sp+2 (partly) covering pixel pn,m
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3.3 Sub-sampling

An artifact of the discrete nature of graphical displays is that many small segments, or parts
of a segment could cover one pixel. Naturally one pixel can only exhibit one color. What color
should the pixel be given?
The situation is depicted in figure 3.10. It is not simply a hypothetical situation. It occurs quite
frequently in practice, for example when the number of blocks or number of files exceeds the
number of pixels in the memory allocator, respectively the SCM system application. Say pixel p is
covered by n segments s1, . . . , sn ∈ S, which show categorical or continuous attributes a1, . . . , an

and col(p) indicates the color of pixel p. The color of the background of the visualization is given
by colB. Furthermore, let f i

p denote the fraction of p’s total area covered by a segment si, and

fB
p the remaining uncovered fraction of that pixel. As a corollary to property 2.2 the following

holds:

n
∑

i=1

f i
p ≤ 1 (3.17)

fB
p = 1−

n
∑

i=1

f i
p (3.18)

The base color of a pixel refers to the color supplied by the current color map, ignoring the
contribution of the segments’ textures. The following describes how the base color of a pixel can
be acquired.
Recall from section 3.1.2 that for segment si, coli is either derived from categorical or continuous
attribute ai using a color map CM . Sub-sampling is considered as a method for combining the
attributes a1, . . . , an representatively. It can be applied at two different stages of the rendering
pipeline. In figure 3.11, functions SS1 and SS2 represent the sub-sampling functions to be
specified later in this section.
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Figure 3.11 Portion of the rendering pipeline where sub-sampling is applied to segments
s1, . . . , sn covering pixel p (partially), (a) after and (b) before the color of the segment is deter-
mined
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Figure 3.11 (a) shows sub-sampling applied after the color of a segment is chosen using the
current color map. The colors of the segments covering a pixel p are combined into the color of
the pixel directly by function SS1, using the set of coverage fractions {f i

p}. In the remainder
of this thesis this type of sub-sampling will be referred to as color sub-sampling. In figure (b)
sub-sampling (SS2) is first applied to attributes ai, for i ∈ 1, . . . , n, using the coverage fractions,
and the resulting value is then mapped to the p’s color using the current color map. This type
of sub-sampling will be referred to as scalar sub-sampling and can only be meaningfully applied
to attributes for which addition and multiplication are defined.
The difference between these strategies is subtle, but important to dwell on3. Color sub-sampling,
applied to a continuous attribute using the rainbow color map for example, potentially yields a
color which is not in the color map. Scalar sub-sampling offers a better solution for continuous
attributes. As the scalars s1, . . . , sn are first combined into a single scalar at (p) for pixel p and
only then translated into a color, the result gives an adequate collective representation of the
concerning segments.
Categorical attributes complicate things further. Scalar sub-sampling between two categorical
values a and b yields a scalar in the range [a . . . b], which could translate to a color which is highly
different from colors CM(a) and CM(b). In this case color sub-sampling provides better results
as the user is potentially able to reason on the composition of the displayed color. The resulting
color might however still belong to a different categorical value. This ambiguity is a limitation
of both the scalar and the color sub-sampling approach and in some cases makes visual inversion
of rendered sub-sampled data impossible for categorical attributes. Despite this shortcoming,
sub-sampling remains useful as it does enable the user to identify that something is presented by
some pixel, although it might not always be clear what exactly is presented. Areas of interested
can subsequently be zoomed into for more information on the details of that area. Figure 3.12
illustrates an example of the scenarios sketched above.

3Literature research however, yielded no previous work in which a similar distinction is made.
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Figure 3.12 Scenario of different types of results possible when combining color or scalar sub-
sampling with categorical or continuous attributes. Notice how color sub-sampling of continuous
data leads to a color not in the color map and how scalar sub-sampling of categorical attributes
leads to an unrelated color.
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It seems that in general color sub-sampling works best for categorical attributes, while scalar
sub-sampling does so for continuous attributes. Using this point of view, the sub-sampling
function is now either a function SS1 : colorn → color or SS2 : Rn → R. These functions are
describes in sections 3.3.1 and 3.3.2, respectively.

3.3.1 Color Sub-sampling

Function SS1, applied to the colors of segments s1, . . . , sn together with coverage fractions
f1

p , . . . , fn
p generating col(p), can be described by several types of functions:

• Replace: Pixel p could be given a color picked arbitrarily from s1, . . . , sn. OpenGL’s
glRect*() command colors a pixel with the current color, if that pixel is covered by the
specified rectangle by more than some minimal fraction MF . A sequence of these com-
mands results in a col(p) that equals the color of the last drawn rectangle that covered
it by more than MF . The order of the sequence of segments drawn is more or less arbi-
trary, hence this results in the specified relation. Figure 3.13 (a) shows the results of this
approach. Since OpenGL rendering can be done in hardware, this solution’s advantage is
that it is the fastest of the bunch.

• Maximum: p could be given the color of the segment that covers it the most, so

col(p) = col(sm) (3.19)

with sm ∈
{

s1, . . . , sn
}

and fm
p maximal. In this way, small segments (with width or

height < size of 1 pixel) are likely to not be shown at all due to them being overclouded by
a larger neighboring segment. If small rectangles are of little interest to the user because
of their limited size, this is an acceptable approach.

• Linear: The most fair solution is to combine the colors of a segment according to their
coverage ratio:

col(p) =

n
∑

i=1

f i
p ∗ coli + fB

p ∗ colB (3.20)
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Figure 3.13 Sub-sampling: (a) Replace, (b) linear and (c) exponential (α = 0.05)
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This is shown in figure 3.13 (b). The background component contributes to the color of
the pixel if and only if less than holds in Corollary 3.17.

• Importance-based: A more flexible solution blends the colors of the segments, biased
according to their coverage fraction, using an exponential function. An example of such a
function is:

col(p) =

∑n
i=1(f

i
p)

α ∗ col(si) + fB
p ∗ colB

∑n
i=1(f

i
p)

α + fB
p

(3.21)

where parameter α is a parameter indicating the bias-level 4. The denominator normalizes
the result using the the total exponentiated contributions. For α < 1, segments with a
small area are ”biased” to become more apparent in the final image. The lower the value of
α, the more evenly the segments s1, . . . , sn contribute to the color of alpha. Furthermore,
isolated thin segments become more clearly visible as the background component remains
constant. To improve things further, segments expanding over at least 1 entire pixel can be
left out of the equation as they are already ”clearly” visible. The effect is shown in figure
3.13 (c) for α = 0.05. Conversely, for 1 < α, small segments are filtered out. This is useful,
for example, for uncluttering the image, when thin segments can safely be ignored. By
choosing α = 1 this function describes the exact same relation as the linear function above.
By making α a user-specified parameter, thin segments can be emphasized, or filtered out
based on what the user considers important. This technique is introduced here, and is
suitably called importance-based sub-sampling.

The maximum approach offers a more sensible and predictable solution compared to the replace
approach. The largest segment covering a pixel would namely be the most visible if the discussed
limitation of graphical displays was absent. The replace approach might still favor a smaller
segment for the simple reason that it was drawn after the bigger one. Both approaches draw
at most a single segment per pixel, which amounts to a regular undersampling of the dataset.
More gravely, segments of subpixel width, smaller than MF become invisible with the replace
approach. As mentioned before however, it is much faster as it can be carried out in hardware.
The linear approach in turn gives a more fair result than the maximum one. As discussed above
however, by mixing different colors together, new colors are created which may confuse the user

4Note that the meaning of the symbol α is overloaded and has no relation to the cushion-strength parameter
of section 3.2.
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as these may not always be easily visually invertible. Importance-based sub-sampling is more
flexible as it is capable of favoring larger or smaller segments according to the user’s perception
of what is important. By favoring small elements for example, it could emphasize elements which
would otherwise be almost invisible. However, this approach disturbs the one-to-one mapping
of segments to their positions on the screen which can be misleading to the unaware user.

3.3.2 Scalar Sub-sampling

Function SS2 combines a range of continuous attributes a1, . . . , an relating to segments s1, . . . , sn,
using coverage fractions f i

p, into a combined attribute for pixel a(p). Subsequently, a(p) is
mapped to a color using color map CM and then combined with colB into col(p), similarly to
functions discussed in section 3.3.1. This can be summarized by the following functions:

• Linear: SS2 combines a1, . . . , an into a(p) by:

a(p) =

n
∑

i=1

f i
p ∗ at(si) (3.22)

The background component does not contribute to a(p), as it has no senseful value for this
attribute. Next col(p) is determined by:

col(p) =

(

n
∑

i=1

f i
p

)

CM(a(p)) + fB
p ∗ colB (3.23)

This function blends the background color with the color yielded by color mapped attribute
a(p).

• Importance-based: Similarly to color sub-sampling, an importance-based method can
also be applied for combining attributes a1, . . . , an. An exponential is used in both steps:

a(p) =

∑n
i=1(f

i
p)

α ∗ at(si)
∑n

i=1(f
i
p)

α
(3.24)

col(p) is then determined by:

col(p) =

(
∑n

i=1(f
i
p)

α
)

CM(a(p)) + fB
p ∗ colB

∑n
i=1(f

i
p)

α + fB
p

(3.25)

The benefit of scalar sub-sampling over color sub-sampling, becomes apparent in densely popu-
lated areas containing segments colored by continues attributes. This difference can be seen in
figure 3.14.

3.4 Metric Bar

An adjacent 1-dimensional horizontal bar extends the visualization by visualizing specific metrics
for the visualized period of time. The values for these metrics are normalized to utilize the
complete range of the color map. The metric bar is especially useful for quickly finding moments
in time that are of particular interest. This technique is also applied in [VT]. The cushioning
and sub-sampling techniques described above are also applied to the metric bar. In this manner,
long periods of inactivity can be detected unambiguously. This in contrast to [VT], where no
explicit visual hint about the segregation between separate eventless periods is available.
The choice of which metric to display is task-specific and will be discussed in chapter 4. A similar
approach is possible in vertical direction, displaying metrical information on elements sharing
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Figure 3.14 The main branch of an SCM system repository colored by level of change, using
color sub-sampling (a) and scalar sub-sampling (b). Notice the difference in color, especially
around the high-activity outlined area.

(a) (b)
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the same value for parameter L. An example metric bar, displaying a continuous accumulated
attribute for the visualization above it using the rainbow color map, is given in figure 3.15.

Figure 3.15 Visualization of a bin in memory for the dynamic memory allocator application,
colored by fragmentation. The metric bar shown below the main visualization depicts the cu-
mulative occupancy.

mem

time

3.5 Hierarchical Agglomerative Clustering

In its current form, the visualization is capable of accommodating the user in forming a decent
image of the local evolution of the data set. However, some global or quasi-global questions
remain that the visualization can not yet answer adequately.
Hierarchical agglomerative clustering algorithms provide a multi-level partitioning of data. These
algorithms work bottom-up, and iteratively merge the two closest clusters with respect to some
distance metric, until a certain criterion is satisfied. Applying such an algorithm to the set of
elements E , yields a weighted tree structure, also referred to as a dendrogram, with the elements
as leaves. Each section in this tree represents a partitioning of the elements which can be rendered
to the screen. The user can then move this section up and down the tree interactively, until a
desired level of structure is reached. This dynamic partitioning of the data serves as a visual aid
for supporting the user in detecting the artifact’s high-level structure.
The general steps involved in this process are summarized in the pipeline of figure 3.16. First,
the set of elements are input to the hierarchical agglomerative clustering algorithm, based on a
distance metric, yielding the clustering tree. Next, a user-selected level function and threshold
determine the subset of clusters which are finally rendered to the screen.
Section 3.5.1 presents a number of different distance metrics, while section 3.5.2 describes the
details of the agglomerative clustering algorithm. Section 3.5.3 details the rendered subset
selection process, also referred to as sectioning. In figure 3.16, color is used to indicate the
cluster a segment belongs to. Section 3.5.4 discusses some problems with this approach, while
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section 3.5.5 introduces interleaved cushioning, a new technique that alleviates these problems
through the use of shaded cushions.

Figure 3.16 Global pipeline of the clustering algorithm

3.5.1 Distance Metric

The agglomerative clustering algorithm depends on a distance metric for measuring the level of
similarity between items in the dataset E . A distance metric is a function d : X 2 → R satisfying
the following properties for all x, y, z ∈ X ,

• d(x, y) > 0, if x 6= y

• d(x, y) = 0, if x = y

• d(x, y) = d(y, x)

• d(x, z) ≤ d(x, y) + d(y, z)

The choice of this distance metric for the clustering algorithm highly determines the type of
pattern that will be visible. This section describes a number of different distance metrics over
elements ep, eq ∈ E .

Vertically-adjacent fair distance metric

d1(e
p, eq) =

{

|sp
T − sq

T |+ |e
p
T − eq

T |, if neighbors(ep, eq)

∞, if ¬neighbors(ep, eq)
(3.26)

where neighbors : E2 → Bool is defined as follows:

neighbors(ep, eq) = ((ep
L ≡ sq

L) ∨ (sp
L ≡ eq

L)) ∧ (sp
T ≤ eq

T ) ∧ (sq
T ≤ ep

T ) (3.27)

This metric is depicted in figure 3.17 (a) for 2 y-adjacent elements. It is adequate for finding
compact structures of any size. Of course, structures of greater size will be better visible. Since
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the function does not take the size of the elements into consideration and patterns containing
small elements are generally harder to interpret than bigger ones, the user will likely prefer
smaller elements to be clustered first. A more adequate metric would therefore cluster smaller
elements before the bigger ones. To this end, the size of the elements needs to be added to the
equation.

Vertically-adjacent biased distance metric

Consider the following distance metric, again over ep, eq ∈ E :

d2(e
p, eq) =

A(ep) + A(eq)

2 ∗Amax

∗ d1(e
p, eq) (3.28)

where for ei ∈ E , A(ei) is the area of that element:

A(ei) = (ep
T − sp

T ) ∗ (ep
L − sp

L) (3.29)

Amax is the area of the largest possible area for any element. This can without loss of generality
be taken as (Tmax − Tmin) ∗ (Lmax − Lmin). It is used to normalize the area of the elements
to a value in the range [0, 1]. This metric is depicted in figure 3.17 (b) for two y-adjacent
elements. It is adequate for finding similar structures, determining their compactness and finding
correlations between these structures and attributes. It is however not adequate for finding
vertically segregated structures, since it requires clustered elements to be vertically adjacent.

Vertically-independent fair distance metric

For some datasets, set L is not ordered in a strict way. These datasets are such that all elements
have the same interval size. Consequently, their corresponding segments form a sequence of
fixed height horizontal stripes in the visualization. The vertical ordering of these stripes may
be arbitrary, or quasi-arbitrary. The distance metrics presented above however, impose a very
strict limitation on the type of composition of clusters, through the neighboring requirement.
Only elements adjacent in vertical direction can be clustered. Although desired for datasets with
strict orderings in set L, a more flexible one is needed for the formerly presented type of dataset.
By dropping this strict neighboring requirement clustering also becomes useful for the datasets
not ordered in L. This yields the following cost function over ep, eq ∈ E :

d3(e
p, eq) = (|sp

T − sq
T |+ |e

p
T − eq

T |) (3.30)

Furthermore, this type of distance metric also potentially reveals hidden patterns for datasets
strictly ordered in L. The main drawback of this distance metric, compared to the adjacent dis-
tance metric is that by dropping the vertical restraint the number of possible clusterings increases
significantly. For building the complete clustering tree, generally O(|E|2 log |E|) comparisons need
to be made. Additionally, visual segregation becomes harder as cluster representations may span
several segments not belonging to it.

Vertically-independent biased distance metric

Finally, note that a combination of distance metrics d2 and d3 is also possible. This yields
distance metric d4, which also biases smaller elements:

d4(e
p, eq) =

A(ep) + A(eq)

2 ∗Amax

∗ d3(e
p, eq) (3.31)

This metric is depicted in figure 3.17 (c) for two vertically segregated elements.
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Figure 3.17 Different distance metrics: (a) d1 = ∆sT +∆eT , (b) d2 = A(ep)+A(eq)
2∗Amax

(∆sT + ∆eT )

(c) d4 = A(ep)+A(eq)
2∗Amax

(∆sT + ∆eT ) for 0 ≤ ∆l

L

T
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3.5.2 Clustering Model

This section describes an agglomerative, bottom-up algorithm for the construction of a clustering
tree, using the distance metrics described above, which induces a multi-level partitioning, or
hierarchy among elements. This hierarchy is primarily achieved by grouping several highly
correlated elements together in a recursive manner. These groups, referred to as clusters, are
sets of smaller clusters. Initially, each cluster contains a single element. Each element occurs
as a singleton in exactly one of these initial clusters, also referred to as the base set. Let CL1

be the base set containing the |E| elements. In each iteration of the agglomeration algorithm,
recursive clustering set CLi+1 is constructed from set CLi by picking two clusters cp, cq ∈ CLi

and replacing them by a single cluster (cp ∪ cp), or stated formally:

CLi+1 = (CLi \ {c
p, cq}) ∪ {cp ∪ cq} (3.32)

for i = 1, . . . , n− 1, where CLn is the first set in which all pairs of clusters have infinite distance.
The clustering tree can be constructed intermingled with the sequence of sets {CLi}. The
procedure for the construction of this tree is given in algorithm 1. Actually, for some restrictive

Algorithm 1 Build the clustering tree

Require: Set of initial clusters CL and distance metric d
Ensure: VF and EF contain the nodes, respectively the edges of the clustering tree F
1: VF ← CL;
2: EF ← ∅;
3: while (∃a, b ∈ CL : d(a, b) 6=∞) do
4: Select a, b ∈ CL such that d(a, b) is minimal;
5: c← {a ∪ b};
6: VF ← VF ∪ c;
7: EF ← EF ∪ {c, a} ∪ {c, b};
8: CL ← \{a, b};
9: for all x ∈ CL do

10: Recompute distances between x and c;
11: end for
12: CL ← CL ∪ c;
13: end while

distance metrics, this algorithm creates a clustering forest, instead of a single tree or dendrogram,
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Figure 3.18 Outline of a cluster cij , composed of clusters ci and cj

cij

min(sci

L , scj

L )

max(eci

L , ecj

L )

min(sci

T , scj

T ) max(eci

T , ecj

T )

ci

cj

x

y

as the distance between some pairs of elements is infinite. Furthermore, notice how in each step
|CL| decreases by one, due to the merging of exactly two clusters. Consequently, the while-loop
is executed |CL| − |FR| times, where |FR| is the number of trees in the resulting forest.
Literature proposes two types of linkage, for the aggregation of the two closest clusters, based on
the distance metric defined on the base set. Each have a different scheme for the computation
of distances between clusters.

• Single-linkage aggregation: The distance between two clusters is determined by the two
closest elements in their base sets.

• Complete-linkage aggregation: The distance between two clusters is determined by the two
furthest elements in their base sets.

In this thesis, for reasons which will become apparent in section 3.5.5, the distance between two
clusters is defined in an alternative way. Instead of basing the distance between two clusters
directly on the elements in their base sets, the elements in the base set of the clusters iteratively
determine the outline of the cluster. Similar to elements, a cluster ci has layout attributes sci

T ,

eci

T , sci

L and eci

L . For cluster ci, these are recursively defined as:

sci

T =

{

min(scj

T , sck

T ), if ci = {cj , ck}

sl
T , if ci = {el}

eci

T =

{

max(ecj

T , eck

T ), if ci = {cj , ck}

el
T , if ci = {el}

sci

L =

{

min(scj

L , sck

L ), if ci = {cj , ck}

sl
L, if ci = {el}

eci

L =

{

max(ecj

L , eck

L ), if ci = {cj , ck}

el
y, if ci = {el}

This outline scheme is sketched in figure 3.18. In addition, for each cluster ci, function A
describes its area:

A(ci) =

{

A(cj) + A(ck), if ci = {cj , ck}

A(el), if ci = {el}
(3.33)

Now the alternative definition of distance between two clusters cp and cq can be described by
function dc in terms of the distance metrics, d1, d2, d3 and d4, for elements discussed in section
3.5.1. As clusters have similar layout attributes as elements, the domain of these metric functions
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can be broadened to include clusters. Now dc
i is given by:

dc
i (c

p, cq) =



















max(dc
i (c

j , ck), dc
i (c

l, cm), di(c
p, cq)), if cp = {cj , ck} ∧ cq = {cl, cm}

max(dc
i (c

j , ck), di(c
p, eq)), if cp = {cj , ck} ∧ cq = {eq}

max(dc
i (c

l, cm), di(c
q, ep)), if cp = {ep} ∧ cq = {cl, cm}

di(e
p, eq), if cp = {ep} ∧ cq = {eq}

(3.34)

The maximum is taken over the child node weights to ensure that all nodes on the paths from
the leaves to the root of the clustering tree are ascending in weight. This property ensures that
dc is again a distance metric. These distances can be iteratively computed and stored in the
nodes, during the construction of the tree. Unlike single-linkage or complete-linkage aggregation,
this definition of distance between clusters introduces a limited, but accumulating error level as
clustering advances. The typical weakness of the data model, however, makes this limited error
level acceptable, and structural patterns in the data still discoverable.
For restricted distance metrics d1 and d2, an optimization of algorithm 1 is possible, and highly
fruitful. Steps 9 and 10 of this algorithm recompute the distances between all pairs in recursive
cluster set CL. For distance metrics d1 and d2 however, only a small subset of these distances
are finite. By additionally keeping a neighborhood graph, using a set of weighted edges N
between the clusters in set CL, only finite distances between two clusters are recalculated after
this neighborhood graph has been built. The optimized version of algorithm 1, for restricted
distance metrics, is shown in algorithm 2. Update is given in algorithm 3. Figure 3.19, sketches

Algorithm 2 Build the clustering tree for restrictive distance metrics

Require: Set of initial clusters CL and distance metric di

Ensure: VF and EF contain the nodes, respectively the edges of the clustering tree F
1: VF ← CL;
2: EF ← ∅;
3: N ← {cp, cq} | cp = {ei} ∧ cq = {ej} ∧ di(e

i, ej) 6=∞;
4: while (∃a, b ∈ CL : dc

i (a, b) 6=∞) do
5: Select a, b ∈ CL such that {a, b} ∈ N ∧ dc

i (a, b) is minimal;
6: c← {a ∪ b};
7: VF ← VF ∪ c;
8: EF ← EF ∪ {c, a} ∪ {c, b};
9: CL ← CL \ {a, b};

10: Update(N, a, b);
11: CL ← CL ∪ c;
12: end while

Algorithm 3 Update the neighborhood graph

Require: N is a set of edges containing edge {a, b}
Ensure: Edge {a, b} has been appropriately replaced in N
1: N ← N \ {a, b};
2: for all {v, v′} ∈ N ∧ ((v = a) ∨ (v = b)) do
3: N ← N \ {v, v′};
4: N ← N ∪ {a ∪ b, v′};
5: Recompute distance between {a ∪ b} and v′;
6: end for

the merging of two clusters, as preformed by algorithm 2. Note that each isolated component in
the initial neighborhood graph yields a tree in the clustering forest.
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Figure 3.19 Merging clusters ”P” and ”Q” into composite node ”P-Q”, and the effect on the
neighborhood graph: (a) Before clustering, (b) edge {P,Q} is removed, (c) P and Q are clustered,
(d) the neighborhoods are updated and (e) individual clusters P and Q are removed

P Q P Q

P-Q

PQ

(a) (b) (c)

P-Q P Q P-Q

(d) (e)

Phased Tree Construction

The inherently quadratic nature of the clustering tree produced by the vertically-independent
distance metrics introduces a difficulty with the implementation of the algorithm presented
above. Step 4 of algorithm 1 involves finding the pair of minimum distance and clustering these
into a new node. Depending on |E|, this step is executed a large number of times. Ideally,
a sequential data structure D, containing the pairs of elements is kept sorted on distance, so
D = {p1, . . . , pn}, where d(p1) ≤ d(p2) ≤ · · · ≤ d(pn). Here, pi is a commutative pair of

clusters
(

cp1

i , cp2

i

)

and d(pi) denotes the distance between these two clusters. In each iteration

of the outer loop in algorithm 1, a pair of minimal distance is then extracted from D. For the
vertically-independent distance metrics, D initially contains 1

2 |E|(|E| − 1) pairs, since all pairs
of elements have finite distance. Typically, |E| is in the order of hundreds of thousands. Very
optimistically estimating the amount of memory taken to represent a single pair at 2 bytes, the
creation of the clustering tree for 100000 elements already takes around 10 gigabytes of main
memory. Naturally, even larger datasets, which are not uncommon would take even more. Most
of today’s personal computers cannot cope with such large datasets without the use of a much
slower pagefile. The other extreme is that no edges are kept in memory. In every iteration of the
loop the minimum is recalculated by evaluating all edges and their weights. For the independent
distance metric, this loop is executed |E| − 1 times, as each iteration merges two clusters into
one, until a single root node is reached. The calculations for the minima in these loops takes
roughly

|E|−1
∑

j=2

1

2
j(j − 1)

steps, which for the set of 100000 elements amounts to several days on a contemporary personal
computer.
A number of intricate algorithms have been proposed to find the closest pair of elements in
a multi-dimensional dynamic dataset efficiently, while maintaining low memory consumption,
such as [GRSS98]. Others provide optimizations for contexts where the computations of the
distance metrics are exceptionally expensive ([Nan05]), which is not the case here. A simpler,
more compact solution based on algorithm 1 is as follows. Consider the sequence C = p1, . . . , pm,
with m ≤ n, the heading subsequence of D of length m. Inputting only the edges correspond-
ing to the distances of the pairs in set C to algorithm 1, yields subtrees of the final clustering
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tree. These subtrees are subsequently replaced by a single cluster corresponding to their roots.
This is possible, because of the earlier cluster aggregation choice. As a result, calculations of
distances between clusters can be carried out without any knowledge of their internal composi-
tion. It depends only on the outline of those clusters. This in contrast to the single-linkage and
complete-linkage aggregations.
The roots of the resulting subtrees are subsequently input as a base set to algorithm 1, in the
next phase. The internal structure of each subtree is stored nonetheless, but this takes only
a fraction of the amount of memory required to store all the edges (for m large enough). By
repeating this procedure iteratively, the entire clustering tree is gradually constructed.
Ideally, each iteration of this procedure deals with the approximate number of edges that maxi-
mally fit into a user-specified amount of memory M . Assuming the storage of one pair occupies
µ bytes, the value of m is now M

µ
. The data structure keeping up with the m minimal pairs

can then be constructed by iterating over all pairs storing only those of distance ≤ d(pm). This
can, for example, be achieved using a sorted datastructure with maximum size m. Once a pair
needs to be added when this datastructure has reached full capacity, it is discarded if its weight
is larger than the current pair pi, with d(pi) maximal in the tree. Otherwise, this maximal pair
is discarded and the new pair is added to the sorted datastructure, ideally in O(log m) time.
Intermediate (during the actual construction of the clustering tree) distances, between newly
created clusters and the clusters already in the pairs of C, are inserted analogously. The entire
procedure is given in algorithm 4. The larger the value of M , the less often a pair needs to be

Algorithm 4 Build the clustering tree in phases

Require: Set of initial clusters CL, distance metric di available memory M
Ensure: VF and EF contain the nodes, respectively the edges of the clustering tree F
1: VF ← CL;
2: EF ← ∅;
3: while 0 < |CL| do
4: C ← M

µ
minimal pairs of clusters ∈ CL sorted by increasing distance;

5: dmax ←Max(dc
i (c

j , ck)) for cj , ck ∈ CL;
6: while 0 < |C| do
7: Extract minimal pair (a, b) from sequence C;
8: c← {a ∪ b};
9: VF ← VF ∪ c;

10: EF ← EF ∪ {c, a} ∪ {c, b};
11: CL ← CL \ {a, b};
12: for all (x, x′) ∈ C ∧ ((x = a) ∨ (x = b)) do
13: C ← C \ (x, x′);
14: Recompute dc

i (x
′, c) and add pair (x′, c) to C if dc

i (x
′, c) < dmax;

15: end for
16: CL ← CL ∪ c;
17: end while
18: end while

recalculated. The two extremes sketched at the beginning of this section are reached if M can
be taken large enough to accommodate all edges in one pass, or if M is taken so small that only
a single edge can be considered at a time, respectively. Hence, the trade-off between the speed
of the algorithm and the amount of memory at its disposal remains, but through this procedure
a descent compromise is reached for fairly large datasets 5.

5For the data sets analyzed in this thesis the building of the clustering trees took at most 90 minutes to
compute on a 1.8GHz personal computer using 1500 megabytes of internal memory.
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3.5.3 Sectioning

This section details on how a section in a clustering tree is determined, which will ultimately
contain the set of clusters that are drawn to the screen. The discussion includes several diverse
methods for traversing a clustering tree using this section.
A section is a subset of the nodes in a clustering tree or forest. In the subset of clusters that
are drawn to the screen, each member of the base set must be represented exactly once. By
definition, a section in the clustering tree is extremely adequate for this purpose, considering
that the base set is formed by the leaves of the tree. Figure 3.20 shows a section in a clustering
tree and the partitioning it induces on the elements in the leaves of that tree.

Figure 3.20 Section in a clustering tree, formed by the colored nodes, and the partitioning of
elements it yields

cluster 1 cluster 2 cluster 3cluster 1

elements

Stated formally, a section in a tree T = (VT , ET ), rooted in node r ∈ VT is a set of nodes
S ⊆ VT for which the following two properties hold:

(∀n, n′ : n 6= n′ ∧ n, n′ ∈ S : (n′ /∈ path (n, r))) (3.35)

⋃

ni∈S

leaves (ni) = leaves (r) (3.36)

where for all n ∈ VT and root node r ∈ VT

path (n, r) = the nodes on the path starting in node n and ending in root node r

leaves (n) = the leaves of the subtree of T rooted in node n

A section in a forest is the union of the sections of its trees. A section in the clustering forest
F is determined by thresholding a user-selected function χ : VF → R defined on all nodes of the
forest. This occurs by function Γχ : T ×R→ S, with T = (VT , ET ) a tree and S ⊆ VF :

Γχ(T, ρ) = {n | n ∈ VT ∧ χ(n) ≤ ρ ∧ ρ < χ(p(n))} (3.37)

Here, p(n) represents the parent node of a node n. For root node r, p(r) is defined as a virtual
node with χ(p(r)) = inf. For this function to be well-defined, function χ must have strictly
ascending, or strictly descending values for all nodes on the paths from the leaves of the forest
to their roots:

(∀n : n ∈ VF ∧ n 6= r : χ(n) ≤ χ(p(n)) ∨ (∀n : n ∈ VF ∧ n 6= r : χ(p(n)) ≤ χ(n)) (3.38)
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For function χ, satisfying this property, the section yielded by function Γχ(T, ρ), satisfies prop-
erties 3.35 and 3.36.
Now, say F is a collection of trees T1, . . . , Tn. Initially, the threshold value ρ is at its minimum,
denoted as ⊥ and the section contains all the leaves of the forest, or:

Γχ(F,⊥) =
n
⋃

i=1

leaves (Ti) (3.39)

Function χ(n) for node n ∈ VF , representing cluster ci, can be a number of different functions,
a few of which are discussed next.

• χ1 can be the given by the distance, or error level, between a cluster’s child clusters:

χ1(n) =

{

dc(cj , ck) if ci = {cj , ck}

0, if ci = {el}
(3.40)

The section resulting from Γχ1
(F, ρ) follows the order in which the clustering tree was built.

Consequently, following the construction of definition 3.34, property 3.38 is inherently
satisfied. In most datasets however, the distribution of distances between elements is far
from linear. Small changes in the threshold ρ for function Γχ1

(F, ρ) can lead to the section
making large ”jumps” in the clustering tree, especially for small values of ρ.

• A more gradual way for traversing the clustering tree in this order is to let χ2 represent a
unique ordering on the clusters by increasing child distance. Clusters with the same child
distance are given an arbitrary sequence number. In this case function χ2 is such that the
following hold:

(∀n, n′ : n, n′ ∈ VF ∧ n 6= n′ : χ2(n) 6= χ2(n
′)) (3.41)

(∀n, n′ : n, n′ ∈ VF ∧ χ1(n) < χ1(n
′) : χ2(n) < χ2(n

′)) (3.42)

If the resulting sequence χ2(n1) < χ2(n2) < · · · < χ2(n|VF |), is chosen such that χ2(ni+1) =
χ2(ni) + 1, traversal of the clustering tree using function Γχ2

is done linearly in threshold
parameter ρ.

• χ3 can represent the area of ci:
χ3(n) = A(ci) (3.43)

By definition 3.33 a cluster’s area is always greater than that of its children, so property
3.38 is satisfied. By traversing the clustering tree according to cluster size, clusters of
approximately the same size are drawn together.

• χ4 can represent the cluster ci’s granularity:

χ4(n) = G(ci) (3.44)

where

G(ci) =

{

G(cj) + G(ck), if ci = {cj , ck}

1, if ci = {el}
(3.45)

Property 3.38 is trivially satisfied. In this way, a section contains clusters with similar
numbers of elements.

As a result, through function χ and interactively supplied threshold ρ, the user can explore
different levels of detail of the data. Furthermore, through various functions for χ, different
subsets of the total set of possible partitionings can be explored. In conjunction with the distance
metrics of section 3.5.1, these different sectioning functions offer diverse and flexible ways of
traversing several clustering trees, emphasizing a wide range of high-level structures and patterns.
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3.5.4 Cluster Coloring

As previously stated, each section in the clustering tree induces a partitioning of the set of
elements. The remaining challenge is to represent this partitioning on the screen. Primarily, this
can be achieved through a coloring scheme, in which all segments, representing the elements in
a cluster are colored identically. In order to easily distinguish between neighboring clusters, it is
important that these clusters are assigned a distinct color. Since the human eye can only visually
segregate a handful of colors easily, this must be accomplished using as few colors as possible.
Only the vertically-adjacent distance metrics, defined on clusters, yield planar subdivisions,
which have been proven to be colorable as described above using only four colors. The vertically-
independent distance metrics yield non-compact scattered cluster fragments, which generally
require a lot more colors. This creates a problem, since the number of distinguishable colors is
often much less than the number of colors required to distinguishly color neighboring clusters.
One approach is to color a cluster using a color differing from its neighbor’s color, where possible
and cycle through this small range of colors once they run out. Clusters where this is not
possible are then colored with the same color as one of its neighbors. This best-effort approach
in practice often fails to distinguish between a large number of clusters. Interactive methods,
such as drawing an outline, or displaying the id of a brushed cluster can alleviate this problem,
but require extensive and continuous efforts by the user. Furthermore, it takes away from the
effectiveness of the clustering technique as a user must first suspect the presence of a pattern
or structure. In this situation, the clustering can merely support that intuition. The following
section presents a more effective technique for cluster segregation.

3.5.5 Interleaved Cushioning

Instead of merely relying on color, this section introduces a new method for distinguishing
between neighboring clusters by applying a cushion-like texture, similar to those presented in
section 3.2. The basic idea is simple. Each cluster c consists of several elements, which in turn
are rendered as a set of segments {si}. The bounding box B for these segments corresponds to
the projected rectangle induced by the cluster. For consistency’s sake, B is represented as two
intervals:

B = 〈ΠX(sc
T ),ΠX(ec

T ),ΠY (sc
L),ΠY (ec

L)〉 (3.46)

Next, a 2-dimensional parabolic, or plateau cushion profile h(x, y) is constructed, spanning
rectangle B. Subsequently, segments si are rendered, in which the luminance of a point (x, y) ∈ si

are given by h(x, y). Figure 3.21 sketches the idea schematically for two non-compact clusters
constraining the disjoint segments A1, A2, A3 and B1, B2. This technique emphasizes cluster
boundaries through dark discontinuities (h(x, y) ≈ 0). Bright discontinuities (0 < h(x, y)) are
edges separating intertwined clusters. In conjunction with random cluster coloring and feedback

Figure 3.21 Two interleaved cushions: A1A2A3 and B1B2

h(x, y)

x, yA1 B1 A2 B2 A3

on the outline of the cluster, these cluster textures segregate clusters in a visually appealing and
effective way. The yield is a set of interleaved cushions as shown in figure 3.22. Despite the
non-compactness of the clusters in the middle of this figure, their extent is easy to follow, using
the smooth luminance variation of their parabolic cushions. Note that while plateau cushion’s
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are best to show individual segments (see section 3.2.2), the symmetry and intuitive course of the
parabolic cushions is perceived to be far more effective for these non-compact scattered clusters.

Figure 3.22 Interleaved parabolic cushioning applied to clusters in a zoomed in view of a CVS
repository of a software project

time

files

3.6 User Interaction

This section describes the tool developed that incorporates the techniques described earlier in
this chapter. Section 3.6.1 describes some technical details such as the libraries used and the
minimum system requirements. It also shortly presents the two main windows of the tool. Section
3.6.2 sketches some of the most common user interface tasks a user might perform during a typical
session with the tool. The focus lies on the configuration of the various visual parameters that
are found in this thesis. This section is not meant as an exhaustive user manual, but instead
attempts to give the reader new to the tool, a general idea of its capabilities.

3.6.1 General Tool Description

The visualization tool that implements the techniques presented in this chapter is written in
C++, using the OpenGL API for the graphical portion and FLTK6 and FLU7 (extended FLTK
widgets) for the user interface. With portability in mind, the choices for the graphical API
and user interface libraries are made consciously, as they are operating system independent. In
fact, the tool was built successfully on Windows XP (32-bit version) and Windows Vista (64-bit
version), using the MinGW compiler8 and on both 32-bit and 64-bit versions of Linux using the
GNU C++ compiler9. The minimal system requirements for running the tool differ depending
on the number of elements in the input dataset and the specific task that is performed. The
main constraint is formed by the system’s memory. Two types of tasks are distinguished:

• Importing: Initially the dataset is delivered as a log containing data on the software
artifact at hand. This data needs to be converted to internal datastructures that commonly

6http://www.fltk.org/
7http://www.osc.edu/ jbryan/FLU/
8http://www.mingw.org/
9http://gcc.gnu.org/
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represent a set of events specific to the application. These events are subsequently converted
to generic datastructures that represent elements. The different clustering trees are then
generated from these elements. The generic datastructures are saved to disk. As this
operation is bothered with building the clustering trees, it requires large amounts of internal
memory, mostly due to the quadratic nature of the algorithms in section 3.5.2.

• Loading: Once the raw log data has been imported and saved, it can be loaded and
displayed relatively quickly. Data sets containing around 50.000 elements take up roughly
250 megabytes of internal memory.

In general, for smooth operation on moderately large datasets (≈ 50.000 elements), the tool’s
minimal system requirements are as follows:

• Processor: An Intel R©Pentium R©IV or AMD Athlon R©XP

• RAM: 1024 MB of memory, if importing is required and 512 MB of memory otherwise

• Graphics card: Any card containing at least 32 MB of memory and supporting hardware
accelerated OpenGL 1.1

The tool consists of two separate windows, namely one for adjusting the parameters of the
visualization and one for the visualization itself. Figure 3.23 shows the first window holding the
available controls for the visualization. This window is used for controlling things like the type
of cushions, the sub-sampling bias and the clustering section in the visualization. Figure 3.24
shows the visualization of VTK, a large software project. In these figures, the most important
components of these windows are labeled.

3.6.2 Tasks

Task 1: The user can import a log file into the visualized data structures by choosing ”Import”
from the ”File” menu and browsing to the desired file. The user is then prompted to provide an
indication for the amount of memory available to it. This parameter should be chosen carefully.
As noted before, this is a highly memory intensive procedure and the more memory the tool is
granted, the faster it will complete its task. Granting more memory then available will however
lead to significant slowdown caused by the use of a pagefile. The tool may even crash when this
resource also runs out.
When the importation process has completed successfully, the results are displayed in the main
visualization window. Furthermore the built datastructures are automatically written to a binary
file with extension .ndf for later retrieval (See task 2).

Task 2: Alternatively, the user can open a pre-built visualization in a traditional way by
choosing ”Open” from the ”File” menu and browsing to the desired file. The window selector
(A) now contains the list of visualizations found in the opened file. The first visualization is
automatically selected and displayed in the main visualization window.

Task 3: Suppose the user wants to stretch the visualization in order to view a certain section in
more detail. Stretching the visualization is achieved by dragging using the right mouse-button.
The portion of the visualization currently viewed is shown in the orientation bar (N) to the right
of the visualization. Next, by dragging using the left mouse button, or by clicking inside the
orientation bar, the area of interest is brought into view. Two common zoom-levels have been
pre-programmed into the tool. These two preset zoom-levels are:

1. Fully zoomed out. This is the default zoom level

2. Squeeze-fitted. The visualization is zoomed in maximally with all segments still visible
inside the main window
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Figure 3.23 Overall view of the user controls
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Figure 3.24 Overall view of the visualization window
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Button ”Toggle View” (C) can be used to toggle between the two preset zoom-levels, and the
custom zoom-level specified by the user.

Task 4: Suppose the user wants to see the visualization colored by a different attribute. This
is achieved by selecting the attribute from menu G. Next to coloring by attributes, this menu
contains an entry for coloring by clustering. This initially enables the random coloring of clusters.

Task 5: Suppose the user wants to see segments that are smaller than one pixel in arbitrary
dimension. This is achieved by lowering the value for ”Bias” (D) sub-sampling, increasing
the priority of smaller segments. Conversely, suppose the user wants to filter out these small
segments. By increasing the ”Bias” value their priorities decrease. The value for ”Bias” corre-
sponds to the α term of the exponential sub-sampling function in section 3.3. A ”Bias” level of
1 corresponds to the linear sub-sampling function.

Task 6: Suppose the user wants to cluster the visualization to a certain level. This is achieved
by choosing ”Clustering” as the current colorscheme (G) or enabling it through the ”Clustering”
check button. This automatically switches the cushion type to parabolic. Now, the level of
clustering can be adjusted using input box H. The distance metric is chosen through menu I.
The tool stores the different clustering levels selected for each distance metric. When switching
between these metrics the tool updates the clustering level to the corresponding level.

Task 7: Suppose that after having enabled clustering the user wants to see the clusters using
the plateau cushions. By choosing ”Plateau Cushions” in menu E the desired cushions are chosen
and subsequently drawn. A third option is to not draw any cushions at all by disabling it. This
has the same visual effect as selecting value 0 for the cushion α (D). Effectively however, the
former option gives faster rendering.

Task 8: Suppose the user wants to view more information on a specific segment or cluster.
By brushing the segment or cluster using the mouse, information on this segment or cluster
appears in the bottom half of the visualization screen (J, K). An outline (M) is also drawn on
the currently brushed cluster so the boundaries of that cluster can be verified. Furthermore the
color of the brushed cluster (J) is shown to the left of the information on that cluster so that
the user can in some sense verify that the brushed cluster is indeed the intended cluster. The
cluster information, outline and color verification can be seen in figure 3.24.

Task 9: Suppose the user wants to temporarily suspend a session to continue the analysis at
a later time, without losing the current parameters. By selecting ”Save” from the ”File” menu,
all current parameters can be saved to a specified file, which can later be opened again (See task
2).
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Chapter 4

Applications and Results

This chapter presents the application of the visualization techniques described in chapter 3 to
the two different types of software artifacts described in chapter 2. It attempts to answer the
questions that arose in the latter by performing a visual analysis and making a number of ob-
servations on the underlying dataset. This is done for two real-life datasets, namely one for
the memory allocator application and one for the Software Configuration Management (SCM)
system application. Because extensive efforts exist ([VT], [VTvW04], [VT06a]), which analyze
SCM systems using techniques that are similar to a number of those described in this thesis, the
focus of this analysis will be limited to new techniques introduced, namely importance-based
sub-sampling, 2-dimensional clustering and interleaved cushions.
Section 4.1 starts by detailing the dynamic memory allocator application, specifically how allo-
cations can be mapped to segments and what attributes and metrics are assigned to colors. It
subsequently explains some of the visual patterns that are interesting for the analysis of frag-
mentation. It also details some of the most important design decisions that are specific to this
application. Section 4.2 then aims at answering the questions posed in section 2.1, by describing
various scenarios for the real-life dataset. Similarly, the next two sections describe the SCM sys-
tem application. Section 4.3 starts by describing a mapping from file versions to segments. The
most important design decisions concerning this specific application are presented. A few im-
portant patterns, with focus on those yielded by the clustering technique, are outlined. Finally,
section 4.4 presents an analysis of a real-life industrial size software project.

4.1 Application A: Dynamic Memory Allocator

An allocation is a fragment of memory allocated for a certain time-interval. Intuitively, a 2-
dimensional overview of the behavior of a memory allocator is given by a mapping of memory
space against time. The ordering of the y-axis is implicitly given by the memory address space.
Since no two allocations can occupy the same piece of memory at the same time, this mapping
makes the dataset an adequate candidate, as it satisfies property 2.2. Segments represent allo-
cations of fragments of memory over a period of time.
The mapping from an allocation BAi of block BLi in the pool:

BAi = 〈begintime, endtime, alloc proc, dealloc proc, size〉

BLi = 〈lowaddress, upaddress〉

to element ei, is as follows:

〈si
T = begintime, ei

T = endtime, si
L = lowaddress, ei

L = upaddress + 1〉

Similarly, the mapping from heap allocation HA:

HA = 〈begintime, endtime, address, alloc proc, dealloc proc, size〉
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to element ej is:

〈sj
T = begintime, ej

T = endtime, sj
L = address, ej

L = address + size〉

The color of a segment for both types of allocations will be determined by categorical attributes
alloc proc and dealloc proc and derived continuous attribute internal fragmentation level, which
equals:

size

(upaddress− lowaddress + 1)
(4.1)

for allocations in the pool and normalized size irregularity, colored using the rainbow color map.
Note that visualization of the internal fragmentation level in the heap is useless as the size
allocated is always equal to the size requested. Size irregularity describes a measure for the
”badness” of an allocation’s fit in a bin or the heap, based on the block size of the previous1

bin. Here, a good fitting allocation has size greater than this block size. This is useful for
determining whether the allocator allocates bigger blocks than necessary, only when strictly
needed. Each process is associated with a single color throughout all bins and heap. This is
done for to simplify analysis of inter-bin/heap process correlations. However, as not all processes
are likely to be active in all bins, coloring the processes per bin would likely provide a better
color identification scheme for each individual bin.
The vertical range of the visualization is the memory space occupied by the bin or heap visualized,
to be more precise, Ymin = ΠY (a1) and Ymax = ΠY (a2 + 1), where a1 and a2 are the lower-
and upper addresses of the bin or heap, respectively. Time ranges from the first allocation
made by the allocator in any bin or heap, to the last allocation or deallocation in any bin
or heap, to be more precise, Xmin = Π(t1) and Xmax = Π(t2) where t1 = Min({si

T }) and
t2 = Max({ei

T }). Two different metrics, namely the normalized accumulated occupancy and
the normalized accumulated internal fragmentation, can be presented by the metric bar using the
rainbow color map. Here high occupancy and high levels of internal fragmentation are intuitively
mapped to the red portion of the scale, while low occupancy and fragmentation levels map to
the blue portion.
In section 2.1, a number of questions arose:

• What processes require a lot of memory?

• How much space is wasted by allocating more memory than required?

• How is fragmentation distributed in memory?

• Are there fragmentation patterns which can be ascribed to the allocator?

• Are there other fragmentation patterns which can be ascribed to the monitored application?

• Which are the largest quasi-compact regions allocated?

The analysis that follows in section 4.2 will attempt to answer these questions implicitly for the
specific dataset or formulate pragmatic clues for answering them in general. First a number of
different visual patterns are outlined that implicate specific program or allocator behavior.

4.1.1 Patterns of Interest

In [WJNB95] the importance of the profiling of real programs instead of random simulations is
emphasized. Real programs often exhibit strong regularities, which are not easily imitated by
synthetic sequences. Some interesting patterns exhibited by real programs, having implications
for fragmentation include:

1For the heap, the previous bin is the bin with the largest block size, or specifically bin 12. Bin 0 has no
previous bin, so all allocations therein have a good fit.
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• Ramps: Many programs accumulate datastructures monotonically and gradually over time,
after which they discard them again quickly. This results in a gradual incline in the number
of blocks occupied, followed by a steep drop to a lower occupancy. A backward ramp occurs
when datastructures are quickly built up and are then gradually discarded.

• Peaks: Many programs use memory in bursty patterns. Similarly to ramps, peaks result
from building up large datastructures and subsequently quickly discarding them, but peaks
are of shorter duration. The distinction is however not precise.

• Plateau’s: Many programs build up data structures gradually and then use those datas-
tructures for long periods of time, after which they are discarded, again gradually.

Because of the monotonic and constant behavior of ramps and plateau’s, any fragmentation
caused in these periods is due to short-term fragmentation. This is convenient for the analysis of
fragmentation of the heap. Peaks, indicate a phased behavior of a program, which is the major
cause of fragmentation ([WJNB95]). Many objects are allocated and freed, possibly leaving
scattered survivors that fragment large areas. This behavior may cause problems for later phases
in both the bins and the heap. Consequently, a good general strategy for an allocator is to place
objects that will die at around the same time contiguously in memory. This is often achieved by
exploiting the following heuristics:

• Objects that are allocated around the same time are likely to die together as well, so
allocating consecutive objects contiguously is a simple way to limit fragmentation.

• Objects of different sizes are likely of different types, related to a different activity, so
additionally avoiding the intermingled allocation of objects of different sizes can limit
fragmentation further.

Ramps, plateau’s and peaks can be easily located using the occupancy metric in the metric bar.
Ramps occur at points where a monotonic change from cold colors to warm colors, followed
by a sharp drop-off back to cold colors, is visible. Peaks result in a quick change from cold
to warm colors, quickly followed by a sharp drop-off back to cold colors. Plateau’s are visible
through a gradual change from cold to warm, followed by a relatively long period of constant
color, followed by a gradual change back to cold colors. Alternatively, these patterns can also be
located using the main visualization, although they might be harder to identify because of high
levels of external fragmentation.
Through the use of clustering, the tool can also emphasize a number of high-level structural
patterns. They can provide hints about the activities of the instrumented programs and the
behavior of the allocator. These patterns include:

• Similar groups: Groups of allocations having approximately the same shape and size
could represent a reoccurring activity. It is important that the allocator handles such a
repeating task in a similar way.

• Strips: A group of allocations that start and end around the same time induce a vertical
strip across the visualization. The allocations within these strips are likely to be related to
the same data structure, such as a list. Identifying these strips clarifies the datastructures
in use by the system.

• Compact strips: Allocating similar lifetime allocations, or strips, adjacently in memory,
leads to decreased external fragmentation as they are freed at approximately the same
time. The compactness of these strips is hence a decent measure for the allocator’s ability
to predict an allocation’s lifetime. Placing long-lived objects together specifically is a good
strategy for limiting external fragmentation.
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• Correlations between groups of blocks and attributes: By comparing the level of
correlation between some of the patterns above and attributes such as allocating and de-
allocating process id’s, size and internal fragmentation, conclusions can be drawn about
the behavior of the allocator and the effectiveness of the strategy. If, for example, a lot
of non-compact strips occur, belonging to the same process, it could indicate that the
allocator policy should provide stricter rules with respect to process id’s.

Clustering helps the user in locating these patterns. For example, as the independent metric
locates similarities across blocks independently of their vertical position, it is extremely adequate
for emphasizing strips of blocks and analyzing their compactness. By switching between cluster
coloring and process id, or fragmentation coloring, dependencies between the allocations in these
strips can be verified.

4.2 Memory Allocator Application: Results

This section discusses the results of a short visual analysis of a dynamic memory allocator. No
definitive conclusions about the allocator should be drawn based on this analysis. The dataset
is simply too small and specific, profiling the run of a single program for a short period of time.
Conclusive research for allocators serving a broad purpose, like the one in question, should be
much more exhaustive, considering a wide range of programs, each having their own allocation
patterns. This is beyond the scope of this section and this thesis in general. Instead, this section,
demonstrates some analysis scenarios that utilize the techniques developed in this thesis.
Generally, analysis of allocation traces is performed to detect program patterns, uncover how the
allocator deals with these patterns, especially concerning fragmentation. The real-life dataset
considered originates from a profiled allocator that implements the best-fit mechanism, a se-
quential fits policy. The basic strategy of this policy is to minimize the amount of wasted space
by ensuring that fragments are as small as possible ([WJNB95]). It achieves this by iteratively
searching through all entries in a free list to locate the free continuous fragment or block that
fits it best, hence the name ”best-fit”. This policy generally exhibits good memory usage at
the cost of poor worst-case performance. Another drawback of the best-fit strategy is that it
often finds a very good, but not perfect fit, quickly creating unusable small fragments. With
these considerations, this mechanism may not yield the most interesting results for this type of
analysis. Instead, a side-by-side comparison of traces for this policy and for a different policy
having better performance in general could prove to be useful. The best-fit algorithm allocates
blocks in the bins from low to high addresses, while for the heap, it allocates from high to low
addresses. No further details of this dataset, such as the specific task(s) carried out during the
profiling, are known. The log contains no de-allocation events of unallocated memory fragments,
indicating that profiling started together with the allocator. However, a number of allocations
are never de-allocated, which could point to memory leaks. The large number of occurrences of
this phenomenon however, leads to a strong presentiment that this is not the case and that in
fact, the profiler was interrupted prematurely.
This scenario concerns a monitored period of roughly 4 minutes, during which a total of 54
processes issue requests to the allocator. The pool contains 13 bins, subdivided as described in
table 4.1 along with some other statistics. The last column of this table also shows the number
of allocations made in this particular scenario. In total, the scenario contains 119932 allocations.
Bins 0 through 12 and the heap, using the process id coloring scheme are depicted in figure 4.1.
This figure also emphasizes the minimal amount of free memory available for each bin or heap,
during this scenario. Bins 11 and 12 have periods of full occupancy, while most of the smaller-
sized bins have low levels of maximal occupancy. This could indicate a suboptimal subdivision
of the particular pool. Furthermore, notice from figure 4.1 how the heap is oriented upside down
compared to the bins, which indeed matches the allocator type. The occupancy metric bars for
the bins and the heap are also shown separately in figure 4.2. This figure also exemplifies the
metric patterns discussed in section 4.1 for this scenario.
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Figure 4.1 Squeeze-fitted view of bins 0 through 12 and the heap. The actual occupancy of
the bin or heap can be seen in the bar to the right of visualization. The metric bar shows the
cumulative occupancy in time
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Figure 4.2 Metric bars for bins 0 through 12 and the heap, showing 3 separate phases
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Table 4.1: Statistics of the scenario in consideration

Memory # Blocks Size of block Total size # Active processes # allocations

Bin 0 3349 16 bytes 53584 52 45728
Bin 1 4158 24 bytes 99792 49 18222
Bin 2 1384 32 bytes 44288 35 8045
Bin 3 910 40 bytes 36400 28 9017
Bin 4 656 48 bytes 31488 22 7864
Bin 5 443 60 bytes 26580 26 6335
Bin 6 415 84 bytes 34860 26 2869
Bin 7 281 116 bytes 32596 22 1588
Bin 8 156 168 bytes 47208 22 7774
Bin 9 191 212 bytes 26208 23 4362
Bin 10 47 284 bytes 13348 23 4697
Bin 11 30 536 bytes 16080 19 1576
Bin 12 13 832 bytes 10816 9 98
Heap Variable Variable 711936 15 1757

4.2.1 Phases and Patterns

There is a clear trend directly noticeable from the occupancy metrics in figure 4.2. All bins
start with low occupancy, which slowly builds up and reaches its maximum roughly half of the
way. This occupancy then gradually drops back to low values at the end of the scenario. The
overall trend splits the scenario in three phases, each spanning about a third of the monitored
period. It starts off with a period, referred to as period 1, of low occupancy which persists until
about a third of the monitored period. Despite the low occupancy in this period, there is a lot
of activity, especially in bins 0 through 6 and 10. This fact is clearly seen due to the lack of
cushions in that period for these bins, which indicates a dense sequence of events. For these bins
a lot of short-lived allocations are thus being made, which could lead to high levels of external
fragmentation. This is indeed the case for bins 0 through 3, 5 and 6, as confirmed by the sparsely
occupied areas in figure 4.3. This figure uses sub-sampling with α = 0.05, to emphasize isolated
thin segments. Furthermore, notice from figure 4.3 how the high activity areas in bins 4 and 10
(region A and B, respectively), do not directly lead to a higher level of external fragmentation.
Instead, many of the short-lived processes in the first period are allocated higher in memory than
the long-lived processes. This however, is probably not a conscious decision of the allocator, but
most likely just an artifact of the sequence in which the requests arrived. The heap on the other
hand is rarely occupied nor active during this period, indicating that little allocations of large
size are being made.
After this period, the memory occupancy changes suddenly. This marks the beginning of a pe-
riod, referred to as period 2, of relatively high occupancy, which persists until around two thirds
of the scenario. Figure 4.2 also shows that a number of recursive ramps, peaks and plateaus
occur scattered across the bins. An overall drop in occupancy (A) splits the period 2 of bins 0,
5, 7 and 9 into two plateau’s (B). These patterns however, have little specific implications for
the analysis of bin fragmentation, due to the regular structure of a bin. Regretfully, the heap
does not show this behavior as explicitly. However, there is a single peak at the end of period
2 and two peaks on a plateau spanning period 3 (See (C) in figure 4.2). Zooming in on these
peaks in the main visualization and using brushing, reveals that they are the result of a small
number of large allocations (over 10 kilobytes) made for two allocating processes (process 48 for
the first peak and 59 for the two later peaks), which leave no scattered survivors (See figure 4.4).
Furthermore, note that a number of peaks are filtered out by the bins and consequently, these
peaks do not occur in the heap, indeed leading to a more regular occupancy course of the heap.
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Figure 4.3 Cropped view of sparsely occupied areas in period 1 of bins 0 through 6 and 10
emphasized through importance-based sub-sampling, colored by allocating process id. In bins 4
and 10, these areas have little effect on the level of external fragmentation
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Figure 4.4 Cropped view of three peaks in the heap which leave no scattered survivors
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All bins reach their maximum capacity in period 2. The heap however, has a higher general
occupancy in the last phase, period 3, of the scenario. This is largely due to the three allocated
blocks of over 30 kilobytes in this phase. Also notice the larger cushions in the occupancy metric
bars of almost all bins and the heap in this last phase, indicating a period of relatively low activity.

4.2.2 Structured Program Behavior

Next to the different program phases, the bins and heap in figure 4.1 exhibit some remarkable
similarities in structure. In the following, some of these structures are explored.
To provide insight into the structural decomposition of the program, clustering is applied using
the vertically-independent fair distance metric. Because these structures can be of various sizes,
sectioning is done by cluster distance. Figure 4.5 of bins 3 and 8 show the most typical structures
occurring in all bins and the heap. Clusters A outline some strips of allocations in these bins.
A number of these are already apparent in the non-clustered image, although clustering may
still reveal their elongated extent (Notice how a lot of the strips in these images start at the
bottom of the bin). Others were just not as apparent and are only noticed when clustered. As
noted before, these strips, especially those of short duration, are likely to be related to tempo-
rary list structures. Traditional array or vector structures are strictly allocated contiguously in
memory and are therefore requested as a single contiguous memory fragment by the program.
Consequently the structures outlined by clusters A cannot be related to array allocations. Also
notice from figure 4.5 how the start of period 2 is marked by a large number of these strips.
This seems to be the case for almost all bins, causing the sudden increased occupancy level,
noticed in section 4.2.1. Clusters allocations at the bottom of the bins, which span the entire
scenario. Their lifetime equals that of the whole process, indicating that these likely contain
global or static variables. Clusters C occur as a limited number of similar lifetime blocks across
the scenario. They likely hold local function variables. The green fragments outlined by C in
bin 3 are actually in the same cluster as the course of the texture implies. This cluster spans a
large number of blocks, while only allocating a few of them. This indicates that the allocator
does not always provide good locality of reference.
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Figure 4.5 Different types of structures in bins 3 and 8 emphasized by clustering, using the
vertically-adjacent fair distance metric
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4.2.3 Compactness

For analyzing the compactness of the heap, clustering is used. The goal is to determine how
well the allocator groups similar lifetime allocations. The vertically-adjacent distance metric are
unsuitable for this purpose. Instead, the vertically-independent fair metric is used. Sectioning
is performed in order of clustering, hence using the cluster distance. At a reasonable low error
level, already a number of clusters start to appear, having high lifetime correlations. A good
level of simplification of the heap is shown in figure 4.6. Higher error rates quickly lead to
oversimplification and a misrepresented image for the current goal. Figure 4.6 outlines a number
of the most noticeable clusters, showing various compactness levels:

• Clusters A and B are moderately to highly compact respectively. As noted in section 4.2.2
they probably hold global or static variables. Cluster A contains three objects of different
sizes. Through a glimpse (brushing) at the allocating process id’s of these objects, they
turn out to belong to different processes. Hence, other than their similar allocation times,
the allocator had no clue about the ultimate relation between these three allocations.
Cluster B contains two objects of different sizes allocated by different processes. Yet the
consecutive requests for these fragments was enough for the allocator to rightfully group
them together.

• Cluster C, D and E are less compact, all having a relatively big gap in the middle of
two similar lifetime objects. They likely contain variables for local functions, where C
contains variables for subfunctions of the function corresponding to the local variables in
E. Similarly, such a relation may also exists between clusters D and C.

• Cluster F spans four objects and is interleaved with cluster C. It is furthermore highly
non-compact. This cluster likely contains variables for an important local function, due to
its long lifetime and the stack of large allocations that are made during its lifetime.

Clearly there is a trend in the evolution of compactness for this scenario and possibly for the
best-fit mechanism in general. As external fragmentation aggravates over time, the compactness
of groups of similar lifetime allocated objects deteriorates. This in turn can have a negative
impact on fragmentation again.

4.2.4 External Fragmentation

As noted in section 2.1.1, due to the static structure of the pool, the impact of external fragmen-
tation on the pool is minimal. It could however affect the speed of some allocators, depending
on their mechanisms. The best-fit allocator mechanism however, in combination with the pool
structure, only needs to check the first item in its free list for each bin. If it does not fit this
entry, it will not fit any other entries in that bin. If it does, no other entry in that bin will fit
any better. Hence the block is found in constant time. Updating the free list is also done in
constant time, hence, no real performance gains are possible through the limition of external
fragmentation. The tradeoff is in internal fragmentation, which is discussed in section 4.2.5.
In the following, the external fragmentation of the heap is analyzed. Here, it can form a real
bottleneck, due to the accumulation of small unallocatable fragments. Using clustering, with
the vertically-independent fair distance metric, and through similar area sectioning, a number
area of high activity, short-lived areas are clustered. These areas are of interest, because they
are likely to lead to short-term fragmentation by leaving scattered survivors. Figure 4.7 shows a
zoomed in view of three peaks A, B and C. These individual peaks show high levels of short-term
external fragmentation. Notice how peak A has a number of scattered survivors including part
of the green cluster and the two yellow clusters. The survivors marked by D are placed contigu-
ously in memory, which is generally considered to be good allocator practice. Survivors marked
by E however, are segregated from the others and each other, creating a number of small gaps.
In peak B, the uppermost of those gaps is likely the reason for the segregation of objects marked
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Figure 4.6 Unclustered heap (top) and clustered using the vertically-independent fair metric
at an error level of 25% (bottom)
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Figure 4.7 Vertically stretched view of the heap showing peaks A, B and C and survivors D, E
and F
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by F. These objects are again scattered survivors, indicating a chain reaction of formation of
fragmentation. Peak C exhibits high levels of short-term external fragmentation. It is segregated
by several scattered survivors of A and B, but has none of its own. In conclusion note that in
this particular short scenario, the best-fit allocator mechanism keeps long-term fragmentation
fairly low, as can be seen in the third period of image 4.7. However, as remarked before, this
allocation scheme can cause high levels of fragmentation on the long run, due to allocations of
near-perfect fit. For the analysis of this type of fragmentation a much longer scenario would be
needed.

4.2.5 Internal Fragmentation

For the analysis of internal fragmentation, or waste, the metric bar, displaying the total waste
metric can be used. If waste were distributed evenly over all allocations, the waste metric bar
would display a similar color course as the occupancy metric bar. Hence, by comparing these two
metric bars, periods of increased or decreased waste can easily be spotted. The waste metric bar
should exhibit warmer or colder colors in these periods, relating to a higher or lower general waste
level. Areas of increased waste in the bins can be due to the occurrence of a phase containing
one of the following:

• One or more processes are issuing repeated requests for blocks of an adverse size. Naturally,
if such a strip has a requested size different from the average requested size for that bin, the
accumulation of a lot of consecutive allocations of this size leads to this deviation. If this
occurs frequently for a wide range of programs, it could indicate that the pool structure
should be revised to accommodate this adverse size better.

• The allocator is allocating bigger blocks than strictly necessary, either due to an allocator
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Figure 4.8 The heap colored by size irregularity (top). One object of irregular size is clearly
visible, marked by A. Others are harder to find (B). They are emphasized using sub-sampling
α = 0.05 The occupancy metric bar of bin 12 is also shown (bottom)
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bug or due to a smaller bin reaching full capacity within that period. As noted before,
frequent occurrence of the latter for a wide range of programs, could indicate that the pool
structure should be revised, such that the smaller bin is assigned a larger number of blocks.

The allocator and also the running program seem to exhibit highly uniform behavior in this
respect. The waste metric bar and occupancy metric bar are very similar for all bins. This
is probably because not many bins actually reach full occupancy in this scenario. When this
is the case, bigger blocks than necessary are likely to be allocated in the subsequent bin, or
in the heap, for bin 12, leading to the allocation of smaller objects therein. This is validated
through the size irregularity colorscheme. Bin 11 is fully occupied for a fraction of a second,
while bin 12 for around 20 seconds. Indeed, only bin 12 and the heap show allocations of smaller
size than bin 11 and bin 12’s block size, respectively, in the exact periods that these were fully
occupied. For the heap, it concerns one allocation with a rather long lifetime as can be seen in
figure 4.8. Closer inspection also reveals other short-lived irregular allocations within this period
(B). The occupancy metric bar of bin 12 is also shown in this figure to validate that the object
of irregular size in the heap is allocated within its fully occupied period. Despite the uniform
relation between the occupancy and waste metrics, a few minor deviations occur, of which two
are discussed. In figures 4.9 and 4.10, bin 2, 4 and 12 are displayed, in which a number of
dissimilarities between their occupancy and waste metrics are outlined. For bin 2, this concerns
short peaks, which have a relatively low level of waste (See A and B in the main visualization of
figure 4.9). Bin 4 shows the converse. Relatively high levels of waste are reached in the periods
indicated by C and D in figure 4.9 (bottom). These are due to a number of subsequent allocations
of increased waste. Periods C and D are segregated by a short drop in occupancy. For bin 12 the

57



Figure 4.9 Bins 2 and 4 colored by internal fragmentation, exhibiting some differences in the
occupancy and waste metrics bars shown directly below them
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Figure 4.10 Bin 12 colored by internal fragmentation (top), exhibiting large differences in the
occupancy and waste metrics bars (bottom)
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dissimilarities are more grave in nature. Here, the level of waste is especially large in the second
phase of the scenario. This can be noticed from figure 4.10 through the cooler colors throughout
A and B, and the lack of this difference in the remainder of the scenario (C). Indeed, looking at
the main visualization reveals four large allocations of significantly higher waste in the second
phase (D).
Overall, the level of waste in bins 0, 11 and 12 are significantly higher than the level of waste in
the other bins, occasionally reaching levels of up to 30% per block. This increased waste level
can be explained through the block size ratios of two consecutive bins. The block size ratios
between bins 10 and 11, and 11 and 12 are significantly higher. Consequently, bins 11 and 12
accommodate a larger range of object sizes, which directly leading to higher levels of internal
fragmentation. Bin 0 suffers from a similar problem, since it accommodates objects from as
small as 1 byte to as large as 16 bytes.

4.2.6 Attribute Correlations

Section 4.2.3 already explored some correlations between similar lifetime allocations, emphasized
through clustering, and allocating processes. The tool’s various colorschemes allows numerous
of these attribute correlations to be made. For determining which processes cause high levels
of waste, consider figure 4.11. Here, processes 48 and 54 repeatedly allocate strips of objects,
a few of which are outlined in the figure. It should come as no surprise that the level of waste
is constant within individual strips, as these objects are most likely of the same data structure
and consequently have the same size. What is remarkable however, is that all strips belonging to
process 48 have the same level of waste, indicating that this process is allocating the same data
structure strips numerous times, and hence a correlation between the allocating process and the
type of data structure exists. The same holds for process 54. For other processes, like process
28 in figure 4.11, waste levels vary slightly as emphasized by the red arrow. A more exhaustive
analysis for this type of correlation would also include different bins and the heap to determine
what sizes the processes request in general. This is beyond the scope of this thesis.

4.3 Application B: Software Configuration Management

System

For the Software Configuration Management system application, similarly to [VT] file offset is
mapped against time. Taking file versions as elements, and by limiting the dataset to the main
branch (or trunk) of the repository, thus ignoring sub-branches, this dataset is an adequate one
for the methods presented in this thesis. A file can be in only one version at a time in the main
branch. Files are ordered by order of appearance in the log, which is created by a depth-first
traversal of the repository root. Consequently, files in the same directory get laid out close to
each other.
In the following, the definition of a file version of section 2.2.1, is adjusted slightly to accommo-
date the simultaneous discussion of two such versions:

Vi,j = 〈authori,j , committimei,j , commenti,j ,#linesaddedi,j ,#linesremovedi,j〉 (4.2)

The mapping from a version Vi,j to element ei, is as follows:

〈si
T = committimei,j−1, e

i
T = committimei,j , s

i
L = i, ei

L = i + 1〉 (4.3)

for j = 2 . . . NVi. In this way an element specifies a version of a file as the state of that file
between consecutive commit events. The conscious decision is made to relate a version to the
commit event that ends it, effectively offsetting all versions by −1. In this way, attributes like
author and the number of added or deleted lines actually relate to the time in which the change
is carried out. When j = 0, the mapping is the same, except for the mapping to si

T . This is
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Figure 4.11 Bin 8 colored by allocating process id (top) and waste (bottom). Note how the the
same processes repeatedly allocate roughly the same sizes
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Figure 4.12 Peak change cropping scheme
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the first version of a file and no indication of when the efforts for this initial version started
is available. A rough estimate is provided by a constant ε, which is a fraction of the total
project time. This is not always a very good estimate, as initial versions are often created and
committed within seconds, without containing any code. However, as attributes like author
name and comment may still be of interest, this version is given a reasonable lifetime. Hence,
the mapping for versions Vi,0 is given by:

〈si
T = committimei,0 − ε, ei

T = committimei,j , s
i
L = i, ei

L = i + 1〉 (4.4)

The color of a segment will be determined by categorical attribute author name and derived con-
tinuous attributes local level of change (normalized per file), given by #linesadded+#linesremoved,
and global level of change (normalized for the entire project). Continuous attributes are colored
using the rainbow color map. Since the log lacks the number of lines in each version, there is
no way of determining the level of change for the initial version. When visualizing the level
of change, initial versions will hence always show the color corresponding to the lowest level of
change. While it is generally considered bad practice, sometimes binary files are added to a
repository. Since the diff -tool cannot compare binary files, these files often yield large levels
of change. Consequently, the normalized level of change colorscheme loses effectiveness, when
the level of change in the source-code files is significantly smaller. When such an extremity is
large enough, all segments corresponding to source-code files will exhibit only cold colors in the
rainbow color map, while those corresponding with large binary files have highly warm colors.
To remedy this problem, peak change values, straying more from the average level of change
than the minimal value, are ignore in the normalization (See figure 4.12).
Time ranges from ε time units before the first commit event to the time of the last commit event
in the repository. Files, range from 1 to NF + D on the y-axis, where D equals the number of
subfolders in the repository. These subfolders appear as empty horizontal lines in the visualiza-
tion. This can be exploited by clustering using the vertically-adjacent distance metrics, which
in this case limits clustering to individual folders.
Next, an analysis is performed which implicitely answers the questions stated in section 2.2:

• How is project-wide activity distributed?

• Which files are heavily modified and by whom?

• Which groups of files are developed together?

• How are these related files distributed over the folder structure?

• At what moments did a mayor release of the project occur?
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4.4 Software Configuration Management System Applica-

tion: Results

This section discusses the analysis of a software project. Some of the techniques presented in
this thesis are similar to those discussed in [VT], where these SCM systems are also analyzed.
Consequently, this section focuses on the surplus value of the newly introduced techniques, which
include importance-based sub-sampling, version-specific clustering and interleaved cushions to
visualize these clusters.
The Visualization Toolkit2 (VTK) project is a popular, large and complex C++ class library
containing thousands of files. It is an ongoing project for which coding started early 1994. The
log considered in this analysis originates from the CVS repository of this project, mined by
CVSgrab ([VT06a]) in November 2001. During this period, 41 different authors contributed to
the VTK project that contains 2743 files, the majority of which are source code files. These files
are scattered across 49 different folders and have 43.610 versions in total. The following analysis
will explore the high-level structure and evolution patterns of the VTK project through global
inspection of these versions and files, using a number of different clustering and sub-sampling
techniques.

4.4.1 Directory Structure

As mentioned before, clustering using the vertically-adjacent distance metrics, emphasizes struc-
ture within the individual folders. When fully clustered, the visualization roughly reveals the
directory structure of the project as shown in the top image of figure 4.13. Here, a number of
the most important directories are marked. The clusters marked by A, are actually a single
directory, namely the “graphics” directory, containing numerous source code files. The clusters
marked by B contain “Python” and “CXX examples” directories within the graphics directory.
Similarly, clusters marked by C constitute part of the “imaging” directory and clusters marked
by D contain “Python” and “Tcl examples”. Clusters E contain the “common” subdirectory.

4.4.2 Evolution Patterns

For locating evolution patterns in seemingly unrelated subdirectories, the vertically-independent
distance metric, in conjunction with sectioning by cluster distance can be used. Figure 4.14 shows
how this can emphasize, through the interleaved cushioning technique, a high level of structure
among versions of files that span the entire project (A). They appear to correspond periods
between consecutive releases, due to periods of low activity (stable periods) after a release and
periods of high activity shortly before a next release. Comparing these with the actual release
moments confirms that this is indeed the case. Also notice how this structure becomes clearer as
the project evolves. This indicates that more files are modified in this release phased manner as
the project evolves. Furthermore, notice cluster B, which relates two separated subdirectories of
the “imaging” and the “graphics” directories. This relation is clearly emphasized by the inter-
leaved cushioning technique. Closer inspection reveals that they are the folders containing the
Python examples for the imaging and the graphics directories and that all the files in this cluster
undergo the same, very small change. Also notice how the files in these “example” directories
do not exhibit the same phased behavior emphasized by clusters A. This indicates that these
examples remain unchanged across several releases, which is indeed expected in periods of no
major architectural change.

2http://www.vtk.org/
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Figure 4.13 VTK project fully clustered using the vertically-adjacent distance metric for show-
ing the directory structure
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Figure 4.14 VTK project clustered using the vertically-independent distance, revealing similar
periodic patterns across the project
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Figure 4.15 Versions of files in the VTK project colored by global level of change
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4.4.3 Change Patterns

Typically, during the lifetime of a software project, patterns of major changes occur. The detec-
tion and subsequent analysis of these patterns can provide insight into the circumstances that
led to these changes and the relevance of these changes to the system architecture. Figure 4.15
shows the familiar visualization of the VTK project, colored by global level of change. A number
of interesting patterns are visible. Pattern A shows a small number of files, exhibiting a highly
red color, indicating a large level of change. Through zooming in and brushing, these appear to
be binary files. As discussed earlier, the diff -tool cannot compare binary files. Consequently,
they appear completely changed in each commit event, explaining the highly red color in A. By
identifying this type of pattern, these binary files can subsequently be removed from the reposi-
tory. A more interesting pattern is pattern B. Here, major changes are made in a large number
of files in the “imaging” subdirectory, during a period of roughly a year. This type of pattern
typically indicates an architectural change in a local subsystem. Indeed, for the VTK project,
a new API was released for the imaging subsystem in that period. Furthermore, all the major
changes in these files were conducted by just two authors, identified by “martink” and “lawcc”.
Identifying these critical periods can help architects, unfamiliar to the code of an undocumented
project, in understanding the most important design decisions. Project managers can quickly
determine who were involved in major architectural changes. Finally, pattern C spans across
all source code files, denoting a high level of change made in a short period of time. This type
of pattern is typically related to project-wide cosmetic activities. Closer inspection of the VTK
project reveals that pattern C concerns a change in the copyright notice that is present in every
source code file.
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Chapter 5

Conclusions and Further Research

The goal of this thesis is to develop methods and techniques that give insight into the evolution
of time-dependent software artifacts. Typically the input data-sets represent artifacts from large
complex software systems. Several techniques are presented and implemented in tools. These
techniques are subsequently validated through two examples from different application domains.

As the basis of the visualization, a dense set of 2-dimensional rectangles are laid out orthog-
onally, with time on the x-axis. This traditional layout is easily visually invertible and efficiently
computable. It provides an intuitive in-depth insight into the given dataset. The basic rendering
model applies several colorschemes to the rectangles, for exploring different additional dimen-
sions of the data. This preliminary visualization model is extended by a number of different
rendering techniques, including cushioning and sub-sampling.

Cushioning places a parabolic or plateau-shaped texture on top of colored rectangles. The
major benefit of this technique is that it increases visual segregation of individual, same-color
neighboring segments.

Sub-sampling addresses a problem that is inherent to the large size of the dataset. Limited
screen resolution in combination with highly non-uniform and large datasets, quickly leads to
rectangles of subpixel size. Sub-sampling copes with this problem by collecting the contributions
of all rectangles covering a pixel and combining these appropriately. Furthermore, importance-
based sub-sampling is introduced, which biases small rectangles to become more or less visible,
based on user preference. Sub-sampling can be performed at two different stages of the rendering
pipeline, namely before or after the mapping of an attribute to a color. The former turns out
to provide the best results for continuous attributes, while the latter lends best to categorical
attributes.

The benefit of the sub-sampling technique is great. In general it gives a much clearer and
more detailed picture of dense data. A serious drawback of this technique is performance.
Sub-sampling effectively moves the rendering calculations from hard- to software causing a con-
siderable penalty. Apart from this no other serious drawbacks come to light.

An agglomerative hierarchical clustering process groups elements, exhibiting some user-
specified level of similarity, together. This is done to support and stimulate user speculations on
the higher-level structure of the data. The input to the clustering process is a distance metric
which serves as a measure for similarity. A few different distance metrics are proposed includ-
ing metrics that compare two element’s lifetime, size and vertical separation. The trees yielded
through these distance metrics are traversed using several sectioning functions, for specifying
the level of detail of the visualized data, based on different cluster attributes.

Clusters are primarily emphasized using color, in other words, rectangles belonging to the
same cluster have the same color. Not all distance metrics however, yield compact clusters. For
more than a handful of non-compact clusters, the number of perceptually distinct colors available
for this scheme quickly runs out. As a solution interleaved cushioning is introduced. This is a
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simple, yet highly effective technique, which applies a cushioned texture that spans the outline
of the cluster to all rectangles belonging to that cluster.

The result of the agglomerative clustering technique, rendered through interleaved cushions
is a multi-level, interactive partitioning that, with little user effort, is capable of uncovering a
series of otherwise hard to distinguish curiosities in the underlying data.

For validating these methods and techniques, the behavior of a dynamic memory allocator and
the evolution of a large software project are analyzed. Through these highly different application
domains, the techniques prove to effectively provide insight into the high-level structure concealed
in a wide range of dynamic and large datasets.

5.1 Further Research

The techniques presented appear to be effective for a wide range of application domains. Ex-
ploring more of these domains is an obvious future direction of this research. Furthermore, the
techniques can be extended to provide additional support for visualizing multivariate datasets.
Another direction is to further explore the potential of importance-based sub-sampling method,
especially related to filtering out unclustered segments. This can enhance the interleaved cush-
ioning technique by removing individual subpixel segments that clutter the partitioned image.
Momentarily, the agglomerative clustering methods form the bottleneck on the size of the in-
put dataset of the tool. Through the implementation of more clever and efficient clustering
schemes, possibly in combination with the phased tree construction method, larger datasets can
be processed by the tool.
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