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Preface

There will be no silver bullet within ten years.
— Frederick Brooks

Four years ago, when I was still a software engineer in China, I read the fa-
mous book of Frederick Brooks - The Mythical Man-Month. Brooks impressed
me with his insightful observations about software development. Software de-
velopment is a very complicated activity of human beings. Since it is so complex
and affected by social, cultural, and psychological factors, I am pessimistic to
find silver bullets. But I do believe we could find some useful weapons to deal
with the monster of software crisis. Using formal methods is one of the available
weapons right now.

Because of this belief, I chose formal verification for Java programs as my
graduation project topic. At the moment when the project is done, I am happy
to see that the project gave me an interesting view about programming. In the
project, I learned how to reason about programs from the mathematical point
of view. Rigorous mathematical reasoning can guarantee program correctness,
which is very important for safety and security critical applications. Although
the tools used in the project still have many problems, I believe the techniques
could be able to produce some useful results for industry.

In the project, I received many people’s help. First of all, I thank dr. Ruurd
Kuiper and dr. Cornelis Huizing. Without their guidance and encouragement, I
could not have finished the project. I am grateful to dr. Erik Poll who proposed
the topic and helped me a lot in the project. Many ideas in the project were
inspired by Erik’s suggestions. Without his help, the result of the project would
have been totally different. I appreciate prof. Bart Jacobs, dr. Joseph Kiniry, dr.
Kees Hemerik, dr. Francien Dechesne, dr. Arjan Mooij, dr. Carl Pulley, Clément
Hurlin and Julien Charles who are always kind to answer my questions. They
helped me to overcome many difficulties in the project. I thank dr. Erik Luit
who carefully read my thesis and pointed out many mistakes. I am also grateful
to dr. Judi Romijn, who is kind to join my graduation committee.

Finally, I thank my parents and sisters whom I miss so much. Their sup-
porting and understanding is a source of power in my studying and living.

iii



iv



Contents

1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Project Background . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Project Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 6
2.1 Java Modeling Language: JML . . . . . . . . . . . . . . . . . . . 6

2.1.1 A First Example . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Precondition, Postcondition and Invariant . . . . . . . . . 8
2.1.3 Ghost Variable and Model Specifications . . . . . . . . . . 8
2.1.4 Our Experiences . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Extended Static Checker: ESC/Java2 . . . . . . . . . . . . . . . 9
2.2.1 The History of ESC/Java2 . . . . . . . . . . . . . . . . . 10
2.2.2 Software Architecture . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Our Experiences . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Prototype Verification System: PVS . . . . . . . . . . . . . . . . 12
2.3.1 The Specification Language . . . . . . . . . . . . . . . . . 12
2.3.2 The Theorem Prover . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Our Experiences . . . . . . . . . . . . . . . . . . . . . . . 15

3 The VC Generation Procedure 16
3.1 The GC Language . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 The Efficient VC Generation Algorithm . . . . . . . . . . . . . . 18
3.3 The Implementation of the VC generation . . . . . . . . . . . . . 19

3.3.1 Implementation Overview . . . . . . . . . . . . . . . . . . 19
3.3.2 Step 1: Type Checking . . . . . . . . . . . . . . . . . . . . 21
3.3.3 Step 2: Generating Background Predicate . . . . . . . . . 22
3.3.4 Step 3: Translating Methods into Guarded Commands . . 22
3.3.5 Step 4: Converting Guarded Commands into Dynamic

Single Assignment Form . . . . . . . . . . . . . . . . . . . 23
3.3.6 Step 5: Deriving VC from Dynamic Single Assignment

Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

v



4 The VC Translator for PVS 26
4.1 Software Architecture . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 The Translation Procedure . . . . . . . . . . . . . . . . . . . . . 30
4.3 How to Support a New Prover . . . . . . . . . . . . . . . . . . . 31
4.4 Some Important Classes . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 The Format of the VC for PVS . . . . . . . . . . . . . . . . . . . 34
4.6 Our Work on the VC Translator . . . . . . . . . . . . . . . . . . 35

5 Extending the VC Translator 37
5.1 JML Quantifier Expression . . . . . . . . . . . . . . . . . . . . . 37
5.2 Method Call in Specification . . . . . . . . . . . . . . . . . . . . . 40
5.3 Array in Implementation . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.1 The Issues about Type Assignment . . . . . . . . . . . . . 42
5.3.2 The Issues about Modeling New Arrays . . . . . . . . . . 44

6 Supporting Native Specifications 49
6.1 Adding Native Methods to ESC/Java2 . . . . . . . . . . . . . . . 50

6.1.1 The Approach to Support Native Methods . . . . . . . . 50
6.1.2 Test Cases and Result Analysis . . . . . . . . . . . . . . . 51

6.2 Adding Native Types to ESC/Java2 . . . . . . . . . . . . . . . . 53
6.2.1 The Approach to Support Native Types . . . . . . . . . . 53
6.2.2 Test Cases and Result Analysis . . . . . . . . . . . . . . . 54

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7 Verifying the Celebrity Programs 58
7.1 The Celebrity Problem . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2 The First Attempt to the Celebrity Problem . . . . . . . . . . . . 59
7.3 The Second Attempt to the Celebrity Problem . . . . . . . . . . 60
7.4 The Third Attempt to the Celebrity Problem . . . . . . . . . . . 61

7.4.1 A New Approach to Verify the Celebrity Program . . . . 61
7.4.2 Specifying the Celebrity Program with Set Operations . . 62
7.4.3 Checking the Method knows and Array Operations . . . . 64
7.4.4 Some Axioms Used in the Proving Procedure . . . . . . . 66
7.4.5 Proving the Correctness of Data Representations . . . . . 68
7.4.6 Proving the Correctness of the Method findCeleb . . . . . 69

7.5 Problems and Solutions . . . . . . . . . . . . . . . . . . . . . . . 72
7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8 Conclusions 74
8.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.2 Problems and Solutions . . . . . . . . . . . . . . . . . . . . . . . 75
8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A An Example of the VC for Simplify 78

B An Example of the VC for PVS 81

C The Semantic Prelude 83

Bibliography 92

vi



Chapter 1

Introduction

Java, as a widely used Object-Oriented programming language, is increasingly
used in safety and security critical applications, e.g. Smart Card [2] and Inter-
net Voting System [19]. In order to guarantee the correctness of Java programs,
researchers proposed many approaches including formal specification and veri-
fication.

Formal specification and verification techniques can greatly improve software
quality by rigorous mathematical reasoning, however they are believed to be
hard to learn and expensive to use by industry. Furthermore, formal verification
suffers from its limitations, e.g. the state space explosion problem of model
checking and the hardness of automatic theorem proving.

Since the last two decades, the situation has improved somewhat because
of the progress of theoretical research and the development of new verifica-
tion tools. Also, Java is a well-structured language, more amenable to formal
verification than other, older, programming languages. Therefore, we believe
that using the latest formal verification techniques in small scale Java programs
would give nice results, especially using theorem proving techniques (which do
not suffer for the state space explosion problem).

In the thesis project we performed the investigation of formal verification for
Java programs with theorem proving techniques. We investigated possibilities
to combine the strengths of two state-of-the-art tools, ESC/Java2 (Extended
Static Checker for Java, Version 2) and PVS (Prototype Verification System).
In order to integrate the two tools, a software component, VC (Verification
Condition) translator for PVS, was developed in the project.

1.1 Motivations
ESC/Java2, a static checker originally developed by Compaq [9], takes an anno-
tated Java program as input, and outputs warnings for broken specifications and
suspect bugs, e.g. array bound errors, null dereferences, type cast errors, etc.
Internally, the tool translates the Java program and its annotations into an in-
termediate language which is based on Dijkstra’s Guarded Command Language.
From the intermediate language, a logic formula is derived for each method. The
logic formula which is called VC holds iff the method being checked is “correct”,
i.e. free of certain bugs and no broken specifications. In ESC/Java2, the gen-
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Output
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Figure 1.1: The Original and New Proposed Approaches

erated VC is verified by an automatic theorem prover - Simplify. If the VC can
not be proved by Simplify, ESC/Java2 will output warnings to indicate the sus-
pect bugs or broken specifications. In the thesis, the approach is called original
approach, to distinguish it from our new proposed one.

From the above description, it is clear that the proving power of Simplify
affects the result of ESC/Java2. Since Simplify is an automatic theorem prover,
sometimes a correct VC can not be proved just because Simplify can not handle
it. So, if we can replace Simplify with another powerful, interactive, theorem
prover - PVS, we should be able to handle more complicated Java programs al-
though maybe user interaction will be needed in the proving process. Providing
an alternative powerful proof engine for ESC/Java2 is the first motivation of
our project.

Besides the powerful proof engine, PVS has an expressive specification lan-
guage and a large library. The replacement of Simplify by PVS gives us an
opportunity to utilize the expressivity of PVS. For example, we would like to
use the PVS types set, list in ESC/Java2 since these concepts are hard to
express in ESC/Java2 with its annotation language - JML (Java Modeling Lan-
guage). Providing extra expressivity for ESC/Java2 is the second motivation of
the project.

The third motivation of the project is combining the above two points. Uti-
lizing the powerful proof engine and the expressivity of PVS, we should be able
to prove Java programs on the abstract level. For example, we can use the
PVS set to specify a Java program, then reason about the behavior of the Java
program with the abstract set operations in PVS.

1.2 Proposed Approach
The architecture of ESC/Java2 can be thought of as a pipeline of data processing
stages. After the front-end and VC generation procedures, ESC/Java2 internally
presents the generated VC by an AST (Abstract Syntax Tree). The syntax of
the AST is defined according to the logic of Simplify. The basic idea of our
approach is that a newly designed VC translator generates the VC for PVS
from the AST, i.e., it translates the VC for Simplify into the VC for PVS.

In addition to the automatically generated VC for PVS, there is also a hand-
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written PVS file, the so-called semantic prelude. This file defines the basic
building blocks for the Java and JML semantics, and defines all the machinery
needed, in the form of PVS theories and lemmas, to support the actual work of
program verification. From the functional point of view, the semantic prelude
is equal to UBP (Universal Background Predicate) in the original approach of
ESC/Java2.

The generated VC and the semantic prelude compose the final files. In the
thesis, we call the files proof obligations. We input every proof obligation into
PVS, and prove them via the commands of PVS. If all proof obligations are
proved, then we can say the Java program being checked is “correct”. Since
ESC/Java2 is neither sound nor complete, our approach is also unsound and
incomplete. So, the “correct” only means the program has no broken specifica-
tions and is free of the bugs that ESC/Java2 checks.

1.3 Project Background

Before we started the project, several people already had done much work on
this topic. Clément Hurlin and Carl Pulley developed the initial VC translator
for PVS1 [7]. Julien Charles designed the VC translator for Coq. And Joseph
Kiniry wrote the semantic prelude for PVS based on a new sorted logic.

In our initial research proposal, we planned to evaluate the initial VC transla-
tor for PVS and investigate the approach to verify Java programs by integrating
ESC/Java2 and PVS. However, we soon realized that the initial VC translator
for PVS was far from mature. It was not updated to the latest semantic prelude
and can only handle one-line methods. Without other options, we decided to
update and extend the initial VC translator for PVS first.

The framework of the VC translator was well designed by the pioneers. Ac-
tually, the VC translators for different provers are just several classes which
implement the abstract superclasses under the framework. It is very convenient
to support a new prover. However, in order to extend our VC translator for
PVS, it is hard to avoid making some small changes to the framework. After
communicating with Joseph Kiniry and Erik Poll, we knew that they plan to
reimplement ESC/Java2 entirely in the future. So, our current source code will
not be directly included in the future product. Because of this situation, we gave
up the compatibility in our design, i.e., we do not guarantee that the VC trans-
lators for other provers would work after we tuned the framework for our VC
translator for PVS. Because of the experimental nature of our project, we also
did not consider efficiency and optimization in our design and implementation.

A problem we met in the project is that the main designers of ESC/Java2
are in other countries and there are no accurate and complete design documents
for the tool. This situation forced us to follow a test case driven way in our
project, which means: if we want to extend our VC translator with a certain
feature, we first design some simple test programs which need the feature, then
we develop the VC translator until it passes our experiments. The unsystematic
way is convenient for our experiments, but not good for the development of the
tool.

1They call it VC generator for PVS, but we think VC translator for PVS is a more suitable
name since its function is just translating the VC for Simplify into the VC for PVS.
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Another difficulty of the project is that we want to translate the original
VC based on an unsorted logic into the VC based on a new sorted logic. For
historical reasons, ESC/Java2 is built on an unsorted logic which was specially
tuned to Simplify. But most modern theorem provers use sorted logic. The
successors of ESC/Java2 will be developed on a new sorted logic. So, our VC
translator for PVS was required to generate VC based on the new sorted logic
although the current front-end and VC generation procedures are still using the
old unsorted logic. Because of such inconsistencies, we met many engineering
problems in the translation.

1.4 Project Goals
According to the motivations, proposed approach and background information,
we defined our goals in the project as follows:

• updating the initial VC translator to the latest semantic prelude and ex-
tending it to multi-line methods.

• extending the initial VC translator with some advanced features: quanti-
fier operators, method call, array, and native specifications.

• investigating the advantages of the proposed approach, i.e., answering the
question: can we check some programs which can not be handled by the
original approach?

1.5 Thesis Overview
In this chapter we have introduced the thesis project motivation, background,
proposed approach and goals. An outline of the rest of the thesis is:

Chapter 2: Introduction to the background knowledge. A brief introduction
of JML is given since JML is used as the annotation language of ESC/Java2.
We also describe the architecture of ESC/Java2 which is important to under-
stand the VC generation procedure. The specification language and some proof
commands of PVS are summarized in the final part of the chapter.

Chapter 32: Description of the VC generation procedure. First of all, an in-
termediate language of ESC/Java2 is introduced. ESC/Java2 translates Java
programs into this intermediate language, and derives the VC from the interme-
diate language; Then, an efficient VC generation algorithm used by ESC/Java2
is discussed. The VC generation algorithm can greatly reduce the size of the
generated VC compared to traditional algorithms; Finally, we use a simple ex-
ample to illustrate the VC generation procedure step by step.

Chapter 4: Introduction to the implementation of the VC translator. In the
first part of the chapter, we explain the software architecture of the VC trans-
lator from the static point of view. Then in the second part, we describe the

2The content of the chapter is mainly summarized from [18], [22], [23], [24], [25] and [26].
The last section is based on our own experiments.
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translation procedure from the dynamic point of view. In the remaining sections
of the chapter, the way to support a new prover under the current framework
is introduced, a brief introduction to some important classes in the implemen-
tation is given, and the format of the generated VC is explained. Finally, in
order to distinguish our work from other peoples’ work (there was an initial VC
translator before we started our project3), we state our contributions to the VC
translator.

Chapter 5: Explanation of how to extend the VC translator with some ad-
vanced features. The advanced features include: quantifier operators, method
call and array.

Chapter 6: Investigation of supporting native specifications. There are two
parts of the chapter. In the first part, we introduce how to support native meth-
ods in our proposed approach; in the second part, we investigate the application
of native types in JML specifications.

Chapter 7: Investigation of proving Java programs on the abstract level with
native specifications. In this chapter, we perform a case study of the so-called
celebrity problem. The celebrity program is proved on the abstract level with
native specifications.

Chapter 8: Conclusions. We summarize our achievements in the thesis project.
Remaining problems and possible solutions are discussed. Finally, future work
is pointed out.

3[7] describes the initial VC translator.
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Chapter 2

Background

2.1 Java Modeling Language: JML

JML is a behavioral interface specification language that is used to specify the
behavior and interfaces of Java programs. It combines the design by contract
approach of Eiffel and the model-based specification approach of Larch, with
some elements of the refinement calculus.

JML specifications are written in special annotation comments, which start
with an at-sign (@). The syntax of JML is close to Java. This makes JML easy
to learn by Java programmers. JML adds some extensions to Java expressions
as shown in Table 2.1. These extensions include a notation to describe the result
of a method (\result), various kinds of implication (==>, <== and <==>),
and a way of referring to the prestate value of an expression (\old()).

The semantics of JML is partly described in the JML reference manual [16].
In [5], the denotational semantics of JML is provided in pseudo PVS. However,
the complete formal semantics of JML is still lacking.

JML was and is still being developed by Gary T. Leaven and his colleagues
at Iowa State University (USA). Researchers all over the world contributed to
its development. A range of tools were designed to address the various needs
such as reading, writing, and checking JML specifications [27], e.g. the runtime
checker, the static checker, the unit testing tool, the documentation generator,
etc. In [17], lessons and experience of the JML project are discussed, some
initial design considerations are reviewed, and future work is pointed out.

Syntax Meaning
\result result of method call
a ==> b “a” implies “b”
a <== b “a” follows from “b” (i.e. “b” implies “a”)
a <==> b “a” if and only if “b”
\old(E) value of E in prestate

Table 2.1: Some JML’s extensions to Java expressions

6



Chapter 2. Background

2.1.1 A First Example

In order to get an impression of JML, consider the following example1:

1 public abstract class IntHeap {
2
3 //@ public model non_null int[] elements;
4
5 /*@ public normal_behavior
6 @ requires elements.length >= 1;
7 @ assignable \nothing;
8 @ ensures \result == (\max int j;
9 @ 0 <= j && j < elements.length;
10 @ elements[j]);
11 @*/
12 public abstract /*@ pure @*/ int largest();
13
14 //@ ensures \result == elements.length;
15 public abstract /*@ pure @*/ int size();
16 };

As we already mentioned, all JML specifications are written in special an-
notation comments, which have the form “/*@ ... @*/” or “//@ ...”. Besides
the formal specification, an informal description can also be included in JML
specifications, e.g. “//@ requires (* x is positive *)” where “x is positive” is an
informal description.

Line 3 of the above example defines a model field elements. A model field
should be thought of as an abstraction of a set of concrete fields used in the
implementation. “non null” means the value of elements must not be null.

There are two kinds of specification styles in JML: lightweight and heavy-
weight specifications. Line 5 to 11 is an example of heavyweight specifications,
and line 14 is of the lightweight specification style. In heavyweight specifications,
the specification is intended to be complete. It usually includes the keywords:
normal behavior or exceptional behavior. The keyword normal behavior tells us
that when the precondition of this method is met, then the method must return
normally, without throwing an exception. The keyword exceptional behavior
specifies that if the precondition is met, the method will return exceptionally
with certain properties. In lightweight specifications, users only specify what
interests them. For example, nothing else is specified for the method size except
that line 14 tells us the result of the method should be equal to the length of
elements.

Line 6 gives the precondition of the method largest, and line 8 to 10 give the
postcondition. The expression “\max int j; 0 <= j && j < elements.length;
elements[j]” presents the maximum value of elements[j] for all valid j.

The methods largest and size are both specified using the JML modifier
pure. This modifier says that the method has no side effects, and allows the
method to be used in specifications if desired. Actually, the use of pure gives
an implicit frame axiom, i.e. “assignable \nothing”.

1The example is taken from the JML reference manual [16].
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2.1.2 Precondition, Postcondition and Invariant
DBC (Design By Contract) is the key concept in JML. The principal idea behind
DBC is that a class and its clients have a “contract” with each other. The client
must guarantee certain conditions (precondition) before calling a method defined
by the class, and in return the class guarantees certain properties (postcondition)
that will hold after the call. In a word, for each method of a class or interface,
the contract says what it requires from the the client and what it ensures to the
client.

JML uses requires clauses to specify preconditions and ensures clauses to
specify postconditions. Since Java programs may terminate by throwing an
exception, JML distinguishes normal and exceptional behaviors. The following
example is the JML specification for the method get of the class List. Line 1
to 5 specify the normal behavior of get. Line 2 defines the precondition and
line 3 to 5 specify the postconditions for the normal behavior; Line 7 to 9 give
the exceptional behavior of get. The signal only clause tells us if the parameter
index is invalid, the only allowed exception IndexOutOfBoundsException may
be thrown.

1 /*@ public normal_behavior
2 @ requires 0 <= index && index < size();
3 @ ensures (\result == null) ||
4 @ \typeof(\result) <: elementType;
5 @ ensures !containsNull ==> \result != null;
6 @ also
7 @ public exceptional_behavior
8 @ requires !(0 <= index && index < size());
9 @ signals_only IndexOutOfBoundsException;
10 @*/
11 /*@ pure @*/ Object get(int index);

An object invariant specifies what must hold in all so-called visible states,
i.e. the end states of all constructors, and the beginning and end states of all
normal methods. The following example defines two invariants for the field
items. The first one (line 2) says items must not be null in all visible states; the
second one (line 3) specifies the element type of items must be String.

1 private ArrayList items;
2 //@ invariant items != null;
3 //@ invariant items.elementType == \type(String);

2.1.3 Ghost Variable and Model Specifications
Hoare used preconditions and postconditions to describe the semantics of pro-
grams in his famous paper [3]. Later he developed the techniques to prove the
correctness of data representations in [4]. One of the motivations of Hoare’s
work is that the reasoning on ADT (Abstract Data Type) level is much more
easy than on the concrete level. Another advantage of using ADTs in specifica-
tions is that by using ADTs the specification does not have to be changed when
the particular data structure used in the implementation is changed.

JML can support ADTs by introducing ghost variables, model fields, model
methods and model classes. A ghost variable is like a normal field, except that
it can only be used in specification. A special set command can be used to
assign a value to the ghost variable. Model fields are similar to ghost variables,

8



Chapter 2. Background

but should be thought of as the abstract representation of one or more concrete
fields. The value of model fields can not be set, and are only determined by
their concrete fields.

Besides model fields, the modifier model can also be used in the declarations
of methods and classes, which means these methods and classes are only used for
specification. The following example illustrates a model method which judges
the equality of the two objects o and oo.

1 /*@ public normal_behavior
2 @ ensures \result <==>
3 @ (o==oo || (o != null && o.equals(oo)));
4 @ public static model pure boolean nullequals(Object o,
5 @ Object oo);
6 @*/

2.1.4 Our Experiences
We had the following experiences with JML.

• JML is a quite expressive specification language. Since its syntax is similar
to Java, it is easy to learn by Java programmers.

• The expressivity of JML for exceptional behavior is quite strong. We
think using JML to specify and reason about exceptional behavior of Java
programs is useful.

• As many programming languages, JML is becoming increasingly large and
complicated. We hope JML will not lose its elegance in the evolution.

2.2 Extended Static Checker: ESC/Java2
ESC/Java2 is an extended static checker for Java programs. Here, “static” be-
cause the checking is performed without running programs, “extended” because
it can catch more errors than conventional static checkers such as type check-
ers can do. ESC/Java2 is based on the theorem proving technique. It uses
an automatic theorem prover - Simplify to reason about the semantics of Java
programs. The potential program bugs or the violations of specifications are
indicated by warning messages in output.

ESC/Java2 uses JML as its annotation language. The JML specifications can
be written together with Java programs, or provided as separate specification
files. The second style is very useful when the software is a kind of binary library
and its source code is not open. The customers are able to use these separate
specification files to check their programs which are built upon the library.

A distinguished feature of ESC/Java2 is modular checking : that is, ESC/Java2
checks only one method or constructor at the time. Modular checking is be-
lieved to be the essential technique to handle large scale program verification,
but it also brings annotation cost, e.g., annotations are needed for the methods
which are called by the method being checked.

ESC/Java2 is neither sound nor complete. That means ESC/Java2 may miss
some bugs (unsoundness), and may give spurious warnings (incompleteness). In
[25], some sources of unsoundness and incompleteness are listed. For example,
ESC/Java2 does not check all executions of a loop. By default, it only checks
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the first iteration and the condition testing of the second iteration. Suppose the
program being checked contains a fragment of the form

for (int i = 0; i < 1000; i++) {S}

where S never exits abruptly. Then ESC/Java2 will never consider the execu-
tions of S from the iteration 2 to 1000 unless it is run with the -loop option
with an argument not smaller than 1000, which forces ESC/Java2 to check the
all iterations. However this would almost certainly result in impractically large
verification conditions or impractically slow checking.

2.2.1 The History of ESC/Java2
The ancestor of ESC/Java2, ESC/Java, was developed in Compaq System Re-
search Laboratory in the period from 1996 to 2000. Its main designers include
K.Rustan M.Leino, Greg Nelson, and James B.Saxe. Before ESC/Java, they
also developed a similar tool, ESC/Modula-3, which performs static checking
on Modula-3 programs. After the takeover of Compaq by HP, the development
of ESC/Java was abandoned, and the source code was untouched for over two
years.

Later, Joseph Kiniry and David Cok took over the project. They updated
ESC/Java to ESC/Java2 [10]. ESC/Java2 parses all JML (but only a subset of
JML can be used in verification), supports JDK 1.4, and adds processings for
model fields and the represents clause, etc. Joseph Kiniry maintains a website
for the open source project of ESC/Java2 (http://secure.ucd.ie). The latest
version of ESC/Java2 is 2.0a9.

Currently, Joseph Kiniry and his collaborators are working on ESC/Java3.
They plan to redesign ESC/Java2 entirely, which includes replacing all the
source code taken from ESC/Java by their new implementation. They also
consider to support multi-provers in ESC/Java3. Our project was proposed as
a step towards this goal.

2.2.2 Software Architecture
As we already mentioned, the architecture of ESC/Java2 can be thought of as a
pipeline of data processing stages (see Figure 2.1). Its basic components include
Front End, Translator, VC Generator, Theorem Prover and Postprocessor.

Front End: The front end of ESC/Java2 is like a Java compiler but it also
parses and type checks JML specifications. The front end produces an AST (Ab-
stract Syntax Tree). Some logic formulas called BP (Type-specific Background
Predicates) are produced as well. These formulas encode type information of
the program being checked.

Translator2: The component translates the program being checked into an
intermediate language based on Dijkstra’s GC (Guarded Commands). Actually,
the translation is divided into two sub-steps. Firstly, the program being checked
is translated into a sugared GC; Secondly, the sugared GC is desugared into a
primitive GC.

VC Generator: ESC/Java2 generates a VC (Verification Condition) for
each method being checked. A VC is a logic formula which precisely describes

2We also call the component developed by ourselves “translator”. These two translators
are invoked in different phases and have different functions.

10



Chapter 2. Background

Front End

Translator

VC Generator

Theorem Prover

Postprocessor

Type-specific
Background
Predicate (BP)

Universal
Background
Predicate (UBP)

Annotated Java Program
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Guarded Commands (GCs)

Verification Conditions (VCs)

Figure 2.1: The Software Architecture of ESC/Java2

those program states from which no execution can go wrong. The VC generation
procedure is based on Dijkstra’s Weakest Precondition Calculus, but an efficient
algorithm is used instead of the traditional ones (see Chapter 3).

Theorem Prover: The finial proof obligation that combines the generated
VC, BP and UBP (Universal Background Predicate) is input into an automatic
theorem prover - Simplify. The proof obligation looks like:

UBP ∧BP => V C

where UBP encodes some general facts about the semantics of Java3.
Postprocessor: Postprocessor of ESC/Java2 outputs warnings when Sim-

plify can not prove the correctness of a proof obligation. By taking some special
labels in the generated VC, ESC/Java2 can produce detailed warning messages
including the locations of suspected errors.

2.2.3 Our Experiences

Through the thesis project, we had the following experiences with ESC/Java2.

• Java programmers can learn and use ESC/Java2 easily. It is not difficult
to understand most JML specifications. However, some knowledge about
program specification and verification is needed if someone wants to master
the tool.

3In [22], a complete set of UBP for a simple Object-Oriented language is presented.
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• ESC/Java2 is good at finding null dereferences, array bounds errors, and
type cast errors. However, spurious warnings are produced when the pro-
gram being checked is complex or the specification is not complete. This
increases the cost to run the tool.

• ESC/Java2 is not good at handling recursive specifications. Writing down
a recursive specification with JML is easy, but verifying the specification
always fails in ESC/Java2. This is because of limitations of Simplify.
Actually, this is also one of concrete motivations to provide alternative
proof engines for ESC/Java2.

• To reason about the functional requirements of non-trivial Java programs
is quite hard. But using ESC/Java2 to check some simple properties, e.g.
no unexpected exceptions, seems achievable for small scale applications.

2.3 Prototype Verification System: PVS
PVS was and is being developed at SRI International Computer Science Lab-
oratory at Palo Atlo (USA). It integrates an expressive specification language
and a powerful theorem prover to provide an interactive environment for writing
and analyzing formal specifications. Since its first release, PVS has been applied
successfully to large and difficult applications in both academic and industrial
settings.

2.3.1 The Specification Language
The specification language of PVS is quite rich, containing many features. Some
specific points are discussed below.

• Types, Constants and Variables:
PVS specifications are strongly typed, meaning that every expression has
an associated type. The PVS type system is based on structural equiva-
lence instead of name equivalence. So, types in PVS are closely related to
sets, where two types are equal iff they have the same elements.

There are four kinds of Type Declarations in PVS: uninterpreted type dec-
laration, uninterpreted subtype declaration, interpreted type declaration
and enumeration type declaration.

- uninterpreted type declaration

e.g. Reference : TYPE+

- uninterpreted subtype declaration

e.g. ArrayReference : TYPE+ FROM Reference

- interpreted type declaration
predicate subtype:

e.g. nonzero : TYPE = {x: nat | x /= zero}

function type:

e.g. < : [ReferenceType, ReferenceType -> bool]
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tuple type:

e.g. stack : TYPE = [nat, ARRAY[nat -> t]]

record type:

e.g. stack : TYPE = [#size: nat, elems: ARRAY[nat -> t]#]

- enumeration type declaration

e.g. color : TYPE+ = {red, white, blue}

A Variable Declaration introduces a new variable and associates a type
with it.

e.g. elems: VAR ArrayStore.

Variable declarations also appear in binding expressions such as FORALL
and LAMBDA. Such local declarations “shadow” any earlier declarations.

Constant Declarations introduce new constants. There are both uninter-
preted and interpreted constants in PVS. Uninterpreted constants make
no assumptions except that they require that the type be nonempty. Some
examples of constant declarations are:

e.g. NULL : Reference
ZERO : int = 0
refEQ(x, y: Reference) : bool = (x = y)
inc: [int -> int] = (lambda (x: int): x + 1)

• Parameterized theory: Polymorphism is not supported in PVS, but it
can be approximated by Parameterized Theory. To define a polymorphic
function, one can put it in a theory which is parameterized with the type
variables of the function. However, this approach is not always convenient,
because when a function does not use all type parameters of the theory,
the unused types should still be instantiated.

e.g.
map_theory[Map: TYPE+, Index: TYPE+, Value: TYPE+]: THEORY

BEGIN
get: [Map, Index -> Value]
set: [Map, Index, Value -> Map]
...

END map_theory

...
IMPORTING
map_theory[BooleanField, Reference, Boolean],
map_theory[NumberField, Reference, Number],

...

• Recursive Function: Recursive Functions can be given in PVS. Because
all functions in PVS have to be total in their domain, the termination of
a recursive function should be shown by giving a MEASURE function.
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e.g.
fibo(i: IntegralNumber): RECURSIVE IntegralNumber =

IF i = 1 THEN 1
ELSE (IF i = 2 THEN 1

ELSE (IF i >= 3 THEN fibo(i-1) + fibo(i-2)
ELSE 0
ENDIF)

ENDIF)
ENDIF

MEASURE (LAMBDA (i: IntegralNumber): i)

The above example is a function to calculate the Fibonacci numbers. The
MEASURE function shows fibo terminates because i decreases with each
recursive calling.

• Overloading: PVS allows Overloading. This means the different dec-
laration can have the same name as long as they have different types.
Different functions can have the same name and types if they are in differ-
ent theories, and the theory name is used as a prefix to distinguish these
functions.

e.g.
is: [Boolean, JavaType -> bool]
is: [Number, JavaType -> bool]
is: [Reference, JavaTYpe -> bool]

arrayOf(n: IntegralNumber, t: PrimitiveType): ArrayReference
arrayOf(n: IntegralNumber, t: ReferenceType): ArrayReference

2.3.2 The Theorem Prover
The PVS theorem prover employs a sequent calculus. The proof is presented
as a proof tree in the proving procedure. Each node of the proof tree is a proof
goal which consists of a sequence of formulas called antecedents and a sequence
of formulas called consequents. In PVS, such a proof goal is displayed as

antecedents {-1} A1
{-2} A2
[-3] A3

...
|--------

consequents {1} B1
[2] B2
{3} B3

...

The interpretation of the above proof goal is that the conjunction of the
antecedents implies the disjunction of the consequents, i.e., (A1 ∧A2 ∧A3...) →
(B1 ∨ B2 ∨ B3...). The formula numbers in square brackets (e.g. [-3]) indicate
those formulas that are unchanged from its parent proof goal. The numbers in
braces (e.g. {2}) highlight those formulas that are either new or different from
the parent proof goal.

The PVS theorem prover integrates a typechecker. The typechecker gener-
ates some TCCs (Type Checking Conditions) when it checks the specification
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being proved. The specification are well-typed only after all TCCs have been
proven. Usually, PVS can discharge most TCCs automatically.

Users interact with PVS through proof commands (also called tactics). Some
proof commands which were used in our project:4:

• Help and Control Commands

- (help command name): display the command help.
- (quit): quit from current proof.
- (postpone): go to the next proof branch.
- (undo): undo the last step in the proof.
- (hide num): hide the selected formulas from current proof goal.
- (lemma “lemma name”): introduce axiom or lemma instance.

• Basic Proof Commands

- (flatten num): transform the indicated formula into formulas that
contains no disjuncts.

- (split num): split the conjunctive formula into separate formulas.
- (case exp): introduce case splits (e.g. case “x > 0”).
- (skosimp*): repeatedly skolemizes and flattens.
- (inst num “expr”): instantiate existentially quantified variables.
- (induct var): invoke induction.

• High Automatic Commands

- (prop): decision procedure for propositional logic.
- (assert): decision procedure for equational logic.
- (grind): a catch-all strategy that is frequently used to automatically

complete a proof branch or to apply all the obvious simplifications
till they no longer apply.

2.3.3 Our Experiences
We had the following experiences with PVS.

• The specification language of PVS is quite expressive. Its syntax has
a mathematical flavor. So, it is not easy to be embraced by ordinary
programmers although it is elegant and concise.

• PVS has a powerful interactive theorem prover. The prover can handle
recursive specifications better than Simplify.

• The theorem prover of PVS provides a large number of proof commands.
To understand the meaning of these commands and know when we should
use which commands is not easy. It requires knowledge about logic and
quite some proving experience.

• PVS is quite stable on Linux platform and its GUI is user friendly.

4The categories are made according to our understanding. They are intuitive rather than
sharp and accurate.
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The VC Generation Procedure

Roughly speaking, extended static checking in ESC/Java2 can be divided into
two stages. The first stage, VC Generation, translates a program fragment
and its correctness property into a logical formula, i.e. a VC. A VC has the
property that if it is valid then the program fragment satisfies its correctness
property. The second stage, VC Proving, proves the VC by a theorem prover,
e.g. Simplify or PVS. The two stages are tightly coupled in ESC/Java1 since
the logic of ESC/Java is tuned for Simplify.

There are two critical problems in the first stage. First, generating a VC
for a practical programming language like Java is not easy. There are many
engineering challenges in the VC generation. Second, the traditional VC gener-
ation algorithm based on Dijkstra’s weakest precondition calculus yields a VC
the size of which is exponential in the size of the code fragment being checked
in the worst case. Such a large size VC is expensive to create, store and verify.
So, how to generate an efficient VC is the other critical problem.

In ESC/Java, the designers provided solutions for both problems. To the
first problem, ESC/Java introduces an intermediate language. The language
is based on Dijkstra’s GC (Guarded Commands). Actually, the Java program
being checked is translated into a sugared form GC program first (which we call
sugared GC), then transferred to a primitive form GC program (which we call
primitive GC). Finally, the VC is derived from the primitive GC program.

For the second problem, the designers of ESC/Java invented an intelligent
algorithm for the VC generation. The key idea of the algorithm is that the
assignment statements in the program being checked are eliminated. The elim-
ination is done by transforming the assignment statements into assume state-
ments. After that, a dream property which holds for the transformed program
can be used to reduce the size of the VC.

3.1 The GC Language
To derive VCs from Java programs is very complicated. The designers have to
make trade-offs involving the frequency of spurious warnings, the possibility of
missed errors, the efficiency of the tool, and the annotation overhead, etc. In

1Since ESC/Java2 did not change the VC generation procedure of ESC/Java, we talk
ESC/Java in the chapter
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order to manage complexity and achieve flexibility, the designers of ESC/Java
introduced an intermediate language GC (By including the assume statement,
the language does not need the “guards” which gave Dijkstra’s GC its name).

The three-stage procedure (Java → sugared GC → primitive GC → VC) has
many benefits. In the translation from Java to sugared GC, many complexities
of the Java language are eliminated, such as switch statements and expressions
with side effects. This part of the process is bulky and tedious, but also relatively
stable. Separating this part from other parts which are subject to change in
experiments gives great benefits to the tool development. The desugaring from
sugared GC to primitive GC is a process where the designers of ESC/Java made
many kinds of trade-off explorations. Since sugared GC is a relatively simple
language, the explorations are easy to perform.

The basic syntax of primitive GC is as follows2:

statement ::= assert e
| assume e
| x := e
| A ; B
| A [] B
| skip
| raise
| A ! B
| label L: e

where A and B are statements, L is a label,
x is a variable, and e is a predicate expression.

The execution of “assert e” terminates normally if the predicate e evaluates
to true in the current program state, and goes wrong otherwise. The assume
statement is partial: “assume e” terminates normally if e evaluates to true, and
simply can not be executed from a state where e evaluates to false.

The statement “A ; B” denotes the sequential composition of A and B. The
execution of the choice statement “A [] B” executes either A or B, but the choice
between the two is made arbitrarily. Using the choice statement and the assume
statement, the if statement of Java language can be expressed as follows:

Java statement: if (x >= 0) A else B;
Primitive GC: {(assume (x >= 0); A)

[]
(assume boolNot(x >= 0); B)};

The raise statement raises an exception. ESC/Java uses the exception not
only to model the behavior of Java exceptions, but also to model the break and
return statement of Java. In the catch statement “A ! B”, the statement B is
an exception handler for any exception raised in A. If A terminates normally,
then B is not executed.

A labeled expression “label L: e” is semantically equivalent to the expression
e, but supplies the label L to Simplify in order to facilitate the production of
user-sensible warning messages. There are positive and negative labels. The
positive labels with formulas that should be true or the negative labels with
formulas that should be false provide counterexample information to ESC/Java.

The desugaring from sugared GC to primitive GC is quite flexible. As an
example, let us assume a Java statement “v = o.f” exists in line 27 of a Java
program. The sugared GC fragment would be like

2Sugared GC includes some additional statements which are not discussed here.
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check NULL,27,o != null;
v = select(f, o);

Then, we have several choices for the desugaring. If we want to check null
dereferences, the above statement can be transferred into

assert(label NULL@27: o != null);
v = select(f, o);

If we do not check null dereferences, the primitive GC after desugaring would
be like

assume(o != null);
v = select(f, o);

If we want to handle null dereferences with an exception, the primitive GC
would be

{(assume(o != null)
[]
(assume o == null; raise)};
v = select(f, o);

3.2 The Efficient VC Generation Algorithm
Before we introduce the efficient VC generation algorithm which is used by
ESC/Java, two weakest precondition calculi need to be addressed. The Weakest
Conservative Precondition of a statement S with respect to a predicate Q on
the post-state of S, denoted wp(S,Q), is a predicate characterizing all prestates
from which every non-blocking execution of S does not go wrong and terminates
in a state satisfying Q. Similarly, the Weakest Liberal Precondition of S with
respect to Q, denoted wlp(S,Q), characterizes the prestates from which every
non-blocking execution of S either goes wrong or terminates in a state satisfying
Q.

Obviously, wp(S,Q) is our ultimate goal. According to the definitions of wp
and wlp, the following equation holds.

∀Q,wp(S,Q) ≡ wp(S, true) ∧ wlp(S, Q)

So, in order to get wp(S,Q), we first need to compute wlp(S,Q). However,
there is a problem of redundancy. In the computation of wlp(S [] T,Q), which
expands to “wlp(S,Q) ∧ wlp(T,Q)”, we duplicate Q. This results in a VC which
size is exponential in the size of the program being checked in the worst case.
We can calculate wlp(S [] T,Q) as “wlp(S,q) ∧ wlp(T,q)” where q = Q. This
replacement reduces the size of the VC. However, given a formula like “A ∧ B”,
the theorem prover of ESC/Java, Simplify, first attempts to prove A and then
attempts to prove B. By introducing a name, like q for the common subexpres-
sion Q, we do not change the fundamental way in which the theorem prover
will attempt to prove the given formula: the theorem prover would still have to
consider q as many times as it had to consider Q. The simple replacement does
not solve the problem.

Another way to avoid the redundancy is to change the formula into some-
thing for which only one independent Q exists. Consider the following dream
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S wp(S,Q) wlp(S,Q)
x := E Q[x := E] Q[x := E]
assert E E ∧ Q E → Q
assume E E → Q E → Q
S ; T wp(S,wp(T,Q)) wlp(S,wlp(T,Q))
S [] T wp(S,Q) ∧ wp(T,Q) wlp(S,Q) ∧ wlp(T,Q)

Table 3.1: Weakest Precondition Semantics

property :

∀Q, wlp(S, Q) ≡ wlp(S, false) ∨Q

If the dream property holds, we can compute wlp(S [] T,Q) as

(wlp(S, false) ∧ wlp(T, false)) ∨Q

Then the redundancy problem would be solved since only one independent Q
occurs. In [26], the author proves the dream property holds when all statements
of the program being checked are passive commands, i.e. those statements that
terminate without any side effect on the program state.

Since only assignment statements change program states, the key point of
the algorithm is to remove all assignment statements. The elimination is done
by replacing each assignment statement “x := e” with an assumption “assume
x′ = e” where x′ is a fresh variable. The subsequent references to x will refer
to x′ in the source statements.

After transferring all source statements to passive commands, we can com-
pute wp(S,Q) efficiently. In [8], it is reported that the approach allows to check
large and complex methods which can not be handled by the traditional algo-
rithm due to time and space constraints.

3.3 The Implementation of the VC generation

3.3.1 Implementation Overview
The entry class of ESC/Java2 is Main (package: escjava)3. It inherits from the
class SrcTool (package: javafe). The main execution steps of ESC/Java2 are de-
fined in the method frontEndToolProcessing() of the class SrcTool which invokes
the methods preload(), loadAllFiles(), postload(), preprocess(), handleAllCUs()
and postprocess(). Some notes for the procedure are in place.

• All execution options are defined in the class Options (package: escjava).

• In the method preload(), the version of the Java Virtual Machine is checked
(ESC/Java2 does not support JDK 1.5).

• The “CU” in handleCU () means Compilation Unit.

3The following discussion is based on the source code of ESC/Java2 (version 2.09a)
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preload()
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preprocess()
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processTypeDeclElem()

processRoutineDecl()

these methods are defined in
SrcTool.java. Some of them
are overrided in Main.java

these methods are defined in
Main.java

invoke

Figure 3.1: The Rough Execution Steps of of ESC/Java2

• The “TD” in handleTD() means Type Declaration.

• The theorem prover, Simplify, as a standard-alone component of ESC/Java2,
is invoked as a subprocess of ESC/Java2. It communicates with other
parts of ESC/Java2 by strings and output files.

• The actual VC generation is mainly performed in the methods processTD(),
processRoutineDecl() and other methods being called by the two methods.
Our VC translator is invoked in processRoutineDecl().

From the functional point of view, the VC generation of ESC/Java2 can be
divided into 5 steps : Type Checking, Generating BP (Type-specific Background
Predicate), Translating Methods into GC (Guarded Commands), Converting
GC into DSA (Dynamic Single Assignment Form), and finally deriving VC
from DSA. The subsequent sections will explain each step based on the following
example:

1 final class test {
2 //@ ensures \result == a + b;
3 public int add(int a, int b) {
4 return a + b;
5 }
6 }
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3.3.2 Step 1: Type Checking
The first step is performed in the method processTD() of the class Main. It
does Java type checking. If the type checking fails, ESC/Java2 will exit with
errors. Using the option “-pjt”, we can output the source codes with type
checking information. Some additional specifications are added to the source
code automatically. As to our example, the output is:

1 final class test
2 {
3 public final int add(int a, int b)
4 /*@ requires (/*boolean*/ (\lblneg Pre (/*boolean*/

(/*test*/ this) instanceof test))); *@/
5 /*@ ensures (/*boolean*/ (/*boolean*/

\old((/*boolean*/ (/*test*/ this) instanceof test)))
==> (/*boolean*/ (/*int*/ \result) ==
(/*int*/ (/*int*/ a:3.23) + (/*int*/ b:3.30)))); *@/

6 /*@ signals_only (java.lang.Exception) (/*boolean*/
(/*boolean*/ \old((/*boolean*/ (/*test*/ this)
instanceof test))) ==> (/*boolean*/ false)); *@/

7 /*@ diverges (/*boolean*/ (/*boolean*/ \old((/*boolean*/
(/*test*/ this) instanceof test)))
==> (/*boolean*/ false)); *@/

8 /*@ modifies (/*boolean*/ \old((/*boolean*/
(/*test*/ this) instanceof test)))
==> ((/*UNAVAILABLE*/ \everything)); @*/

9 {
10 return (/*int*/ (/*int*/ a:3.23) + (/*int*/ b:3.30));
11 }
12
13 // <default constructor>
14 }

It is interesting to look at line 4. Although we do not provide preconditions
for the method add(), a default precondition is added. The keyword \lblneg
indicates Pre is a negative label which means a warning will be generated if Pre
is false. The remainder of the line tells us that this is an instance of the class
test.

The signals only clause specifies the exception java.lang.Exception may be
thrown if its subsequent predicate is true. Because the precondition protects
the predicate to be false in the example, the method add will never throw the
exception.

The diverges clause provides conditions under which the method may diverge
and never return to the caller. For the method add, it will never diverge since
the condition is equivalent to false.

The modifies clause specifies what fields can be changed in the method
add. If we do not give the modifies or assignable clause in our specification,
ESC/Java2 will assume any field can be changed in the methods being checked.
If we add a specification “\\@ assignable \nothing” for our example, then line
8 will become:

/*@ modifies (/*boolean*/ \old((/*boolean*/
(/*test*/ this) instanceof test))) ==> ((/*void*/ \nothing)); */
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3.3.3 Step 2: Generating Background Predicate
In Step 2, BP (Background Predicate) will be produced. BP is a set of formulas
that encode type information of the class being checked. For example, the
generated BP will include a formula like (∀t : (t <: test) → t == test)4 because
in our example test is a final class. Actually, if we run ESC/Java2 with the
option “-guardedVC .”, a BP file (named 0.1.12.class.sx ) will be generated.

(BG_PUSH (AND
...

(FORALL (t) (PATS (<: t T_test)) (IFF (<: t T_test) (EQ t T_test)))
(FORALL (t) (PATS (<: T_test t)) (IFF (<: T_test t)

(OR (EQ t T_test) (<: |T_java.lang.Object| t) )))
...))

The third line says if t is a subtype of T test, then t must be equal to
T test. It just encodes the above formula. Furthermore, because the class test
is a subclass of Object (all classes inherit from Object in Java), the fourth line
describes that if T test is a subtype of t, then t must equal to T test , or t
equal to T java.lang.Object, or t is the supertype of T java.lang.Object (this is
impossible since Object is the top class in Java).

Besides the above two lines, other type information is also encoded into the
BP file. For example, the following formula specifies the class Throwable is the
subclass of Object. The general type information is included in every generated
BP file.

(<: |T_java.lang.Throwable| |T_java.lang.Object|)

3.3.4 Step 3: Translating Methods into Guarded Commands
Step 3 translates the Java code fragments, i.e. methods, to the intermediate lan-
guage GC. The translation is mainly performed in the method computeBody()
of the class Main. The class Translate (package: escjava.translate) implements
actual translation handlers. The translated GC for the method add() is:

1 ASSUME is(this, \type(test));
2 ASSUME isAllocated(this, alloc);
3 ASSUME refNE(this, null);
4 ASSUME is(a:3.23, \type(int));
5 ASSUME is(b:3.30, \type(int));
6 ASSUME (\lblneg Pre boolAnd(is(this, \type(test)),

refNE(this, null)));
7 ASSUME (\forall anytype brokenObj;

refEQ(java.lang.Throwable#_stackTrace(state, brokenObj),
getStackTrace##state(state, brokenObj)));

8 ASSUME (\forall anytype brokenObj<1>;
refEQ(java.lang.Throwable#_stackTrace(state, brokenObj<1>),
getStackTrace##state(state, brokenObj<1>)));

9 VAR int a@pre:3.23; int b@pre:3.30 IN
10 a@pre:3.23 = a:3.23;
11 b@pre:3.30 = b:3.30;

4In the logic of ESC/Java2, the predicate “p <: q” means p is a subtype of q or p and q
are the same type.
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12 { RES = integralAdd(a:3.23, b:3.30);
13 ASSUME (\lblpos trace.Returnˆ0,4.8 true);
14 EC = ecReturn;
15 RAISE
16 ! SKIP
17 };
18 RESTORE a:3.23 FROM a@pre:3.23;
19 RESTORE b:3.30 FROM b@pre:3.30
20 END;
21 ASSUME (\forall anytype brokenObj;

refEQ(java.lang.Throwable#_stackTrace(state, brokenObj),
getStackTrace##state(state, brokenObj)));

22 ASSUME (\forall anytype brokenObj<1>;
refEQ(java.lang.Throwable#_stackTrace(state, brokenObj<1>),
getStackTrace##state(state, brokenObj<1>)));

23 ASSERT (\lblneg Exception@5.4 anyEQ(EC, ecReturn));
24 ASSERT (\lblneg Post:2.8@5.4 boolImplies(

boolAnd(anyEQ(EC, ecReturn),
is(this, \type(test)), refNE(this, null)),
integralEQ(RES, integralAdd(a:3.23, b:3.30))));

25 ASSERT (\lblneg Post:2.4@5.4 boolImplies(
boolAnd(anyEQ(EC, ecThrow),
typeLE(\typeof(XRES), \type(java.lang.Exception))),
boolNot(boolAnd(is(this, \type(test)),
refNE(this, null)))))

The assume clauses from line 1 to 8 are the preconditions of add(). The
assert clauses from line 23 to 25 define the postconditions. Line 7, 8, 21 and 22
concern the aliasing checking.

The predefined variable alloc represents the current allocation time. The
predicate in line 2 just says this was allocated before current allocation time.

The predicate refNE defines the unequal relation between two reference ob-
jects. The predicate refEQ returns true if the two reference objects are equal.

The special variable EC in line 14 is used to model method return. By
convention, the GC programs generated by the translation always set EC (and
possibly RES or XRES ) before performing a raise. More specifically, before a
raise that corresponds to a Java return, the guarded command sets EC to the
special literal ecReturn and sets RES to the return value, if there is one. Before
a raise that corresponds to a Java throw, the guarded command sets EC to the
special literal ecThrow and sets XRES to the exception thrown.

3.3.5 Step 4: Converting Guarded Commands into Dynamic Single As-
signment Form

As introduced in the section 3.2, ESC/Java2 will convert the ordinary state-
ments to a kind of passive form statements in the efficient VC generation algo-
rithm. The basic idea of the conversion is to replace each assignment statement
“x := e” by an assumption “assume x′ = e”, where x′ is a fresh variable. Since
the example test has no assignment statements, let us consider another example
test1 as follows:

1 class test1 {
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2 //@ ensures \result >= 0;
3 public int abs(int x) {
4 if (x < 0) x = -x;
5 return x;
6 }
7 }

Before the conversion, the GC program for test1 will be:

...
1 VAR int x@pre:3.23 IN
2 x@pre:3.23 = x:3.23;
3 { { ASSUME integralLT(x:3.23, 0);
4 ASSUME (\lblpos trace.Thenˆ0,4.19 true);
5 x:3.23 = integralNeg(x:3.23)
6 []
7 ASSUME boolNot(integralLT(x:3.23, 0));
8 ASSUME (\lblpos trace.Elseˆ1,4.8 true)
9 };
10 RES = x:3.23;
11 ASSUME (\lblpos trace.Returnˆ2,5.8 true);
12 EC = ecReturn;
13 RAISE
14 ! SKIP
15 };
16 RESTORE x:3.23 FROM x@pre:3.23
17 END;

...
24 ASSERT (\lblneg Post:2.8@6.4 boolImplies(

boolAnd(anyEQ(EC, ecReturn), is(this, \type(test1)),
refNE(this, null)), integralGE(RES, 0)));

...

In the GC program, the statement “x = −x” is represented as “x : 3.23 =
integralNeg(x : 3.23)”. After the conversion, part of the DSA for test1 is:

...
1 { { ASSUME integralLT(x:3.23, 0);
2 ASSUME (\lblpos trace.Thenˆ0,4.19 true);
3 ASSUME anyEQ(x:4.19, integralNeg(x:3.23));
4 ASSUME anyEQ(x:3.23<1>, x:4.19)
5 []
6 ASSUME boolNot(integralLT(x:3.23, 0));
7 ASSUME (\lblpos trace.Elseˆ1,4.8 true);
8 ASSUME anyEQ(x:3.23<1>, x:3.23)
9 };
10 ASSUME (\lblpos trace.Returnˆ2,5.8 true);
11 RAISE
12 ! SKIP
13 };

...
18 ASSERT (\lblneg Post:2.8@6.4 boolImplies(

boolAnd(anyEQ(ecReturn, ecReturn), is(this, \type(test1)),
refNE(this, null)), integralGE(x:3.23<1>, 0)));

...

24



Chapter 3. The VC Generation Procedure

Comparing the GC and DSA, we could notice that the assignment statement
of line 5 in the GC is replaced by the assume clauses in line 4 and 8 in the DSA.
A fresh variable “x:3.23<1>” is introduced in the translation. Furthermore, in
the postcondition (line 24 in the GC and line 18 in the DSA), the fresh variable
“x:3.23<1>” is used instead of RES (= “x:3.23”).

3.3.6 Step 5: Deriving VC from Dynamic Single Assignment Form
In Step 5, the VC is derived from the DSA. Using the option “-pvc”, the output
of the VC for the method add() can be obtained5:

1 (EXPLIES
2 (LBLNEG |vc.test.add.2.4|
3 (IMPLIES
4 (AND
5 (EQ |elems@pre| elems)
6 (EQ elems (asElems elems))
7 (< (eClosedTime elems) alloc)
8 (EQ LS (asLockSet LS))
9 (EQ |alloc@pre| alloc)
10 (EQ |state@pre| state)
11 )
12 (NOT
13 (AND
14 (EQ |@true| (is this T_test))
15 (EQ |@true| (isAllocated this alloc))
16 (NEQ this null)
17 (EQ |@true| (is |a:3.23| T_int))
18 (EQ |@true| (is |b:3.30| T_int))

...
31 (EQ RES (+ |a:3.23| |b:3.30|))

...
65 )
66 )
67 )
68 )
69 (AND (DISTINCT |ecReturn| |ecThrow|))
70 )

Line 5 to 10 is the premise of the VC. It concerns some predefined variables.
For example, elems is used to model the state of all arrays, and LS is used in
multi-threaded Java program verification (neither is needed in the example).

Line 69 indicates that the ecReturn and ecThrow are different. This is true
because the ecReturn represents the normal execution path and the ecThrow
represents the exceptional execution path.

The generated VC is stored in an AST (Abstract Syntax Tree). The class
VcToString (package: escjava.translate) prints out the VC for Simplify from
the AST. Actually, our VC translator for PVS is also invoked in this step while
taking the AST as an input. The functions of VcToString and our VC translator
for PVS are the same, except that VcToString is for Simplify, and our VC
translator is for PVS.

5In order to make the VC easier to understand, we have changed its layout in the presen-
tation.
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The VC Translator for PVS

The VC translator for PVS is invoked after the VC is generated in ESC/Java2.
It translates the VC for Simplify into the VC for PVS. More specifically, the
VC translator parses the Abstract Syntax Tree of the generated VC (we call it
the old AST in the following discussion); then it builds a new AST from the old
AST; finally, the VC for PVS is produced from the new AST.

The old and new AST are the central data structures of the VC translator.
The old AST is based on an unsorted logic which means type information is
encoded into separate logic formulas. The new AST is built on a sorted logic
which requires that type information is bound together with variables and con-
stants. For example, assume we have a Java statement: “b = a + 1” where a
and b are both integral numbers. If we translate the statement into unsorted
logic, the result would be like:

(typeof(a) = int) /\ (typeof(b) = int) /\ (b = a + 1)

If we consider sorted logic, the statement would be translated as:

(declare a and b as int variables): b = a + 1

where a and b are declared as integral numbers instead of using separate logic
formulas to describe the type of a and b.

One of the key tasks of our VC translator is to build a typed new AST from
the untyped old AST, i.e. give the right type to every variable and constant
in the old AST. In order to accomplish the type assignment, at the beginning
the VC translator retrieves all type information from the old AST. Whenever a
variable or constant is encountered in building the new AST, the VC translator
looks up the retrieved types and gives the variable or constant the right type.
In the future, if the successor of ESC/Java2 is built on the new sorted logic
from the beginning, the transformation from the old AST to the new AST will
not be needed.

With the options “-vc2dot” and “-pToDot” of ESC/Java2, the VC transla-
tor can output the graphic representations of the old and new AST separately.
The figure 4.1 shows parts of an old AST and a new AST. The old AST part
represents the formula:

26



Chapter 4. The VC Translator for PVS

Figure 4.1: Abstract Syntax Tree

(is1(this, test) ∧ this 6= NULL) → (RES = |a : 3.23|2 + |b : 3.30|)

And the new AST part represents the formula:

(this 6= NULL) → (RES = |a : 3.23|+ |b : 3.30|)
where the subformula “is(this, test)” does not occur since the type of this is
already included in its declaration.

1“is” is a predefined predicate in the unsorted logic of ESC/Java2. It says the type of
“this” is “test”.

2|a : 3.23| is a variable name that “a” comes from the name of the original Java variable,
“3” and “23” indicate the line number and column number of the Java variable declaration.
This is similar for |b : 3.30|.
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VC Translator

Visitor
<<abstract>>

VisitConcreteNodeA(ConcreteNodeA)
VisitConcreteNodeB(ConcreteNodeB)

ConcreteVisitor1 for PVS

VisitConcreteNodeA(ConcreteNodeA)
VisitConcreteNodeB(ConcreteNodeB)

ConcreteVisitor2 for Coq

VisitConcreteNodeA(ConcreteNodeA)
VisitConcreteNodeB(ConcreteNodeB)

Abastract Syntax
Tree (AST)

Node
<<abstract>>

Accept(Visitor)

ConcreteNodeA

Accept(Visitor v)

ConcreteNodeB

Accept(Visitor v)

v.visitConcreteNodeA(this) v.visitConcreteNodeB(this)

Figure 4.2: The Visitor Pattern

4.1 Software Architecture
Besides our VC translator for PVS, VC translators for other provers, e.g. the VC
translator for Coq, have been developed by others. The different VC translators
all share the same framework, i.e., they inherit from the same superclasses and
share common top-level procedures, e.g. the construction of the new AST.
Since supporting new provers is expected in the future, the framework of the
VC translators should be flexible to support this extension.

Because of this consideration, the architecture of our VC translator is based
on the design pattern Visitor (two good references for Design Patterns are [14]
and [29]). Figure 4.2 describes the class diagram of the Visitor pattern as
applied to our VC translator. The basic ideas of the Visitor pattern are the
following:

• Motivation: There are some operations on nodes. New operations could
be added in the future. If we define these operations directly in the class
Node, when a new operation is added we have to recompile all the node
classes. The software would be inflexible and hard to maintain. We need a
solution where the node classes will not be affected when a new operation
is added.

• Solution: We abstract operations into a class Visitor. Every operation
will be defined as a concrete Visitor. The nodes invoke these operations
via a method Accept(Visitor v). At the beginning, every concrete Visitor
is instantiated, and is passed as a parameter to the method Accept.

• Consequence: The Visitor pattern allows us to add new operations eas-
ily. We can define a new operation simply by adding a subclass of Visitor.
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ProverType
{abstract}

TNode
{abstract}

TVisitor
{abstract}

VcGeneratorPvsProver

TPvsVisitor
-------------------------

+ visitTBoolAnd()
+ visitTBoolOr()
+ visitTBoolNot()
+ visitTBoolean()

. . .

TypeInfo VariableInfo

MethodInfo

PrettyPrinter
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+ accept(TVisitor v)
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-----------------------------

+ accept(TVisitor v)

TBoolNot
-----------------------------

+ accept(TVisitor v)

TBoolean
----------------------------

+ accept(TVisitor v)

TProofSimplifier

There are more subclasses.
Here, only subclasses related
with Boolean are listed.

VcGenerator has one field to
indicate the prover type and
two fields to indicate the root
nodes of the old and new AST

TProofSimplifier is used
to simplify the new AST.
It is not implemented in
our project

v.visitTBoolAnd(this) v.visitTBoolOr(this) v.visitTBoolNot(this)

v.visitTBoolean(this)

Figure 4.3: Software Architecture of the VC Translator

In the class, the operation for each node is implemented as a visit method.
The node classes need not be recompiled when a new operation is added.
The Visitor pattern also has its drawbacks. It is inconvenient to add a
new node since each new node gives rise to a new abstract method in
the class Visitor and a corresponding implementation in every subclass of
Visitor.

The figure 4.3 depicts the software architecture of our VC translator for
PVS. VcGenerator is the entry class of the VC translator. TNode and TVisitor
correspond to the class Node and Visitor in the Visitor pattern. Since the node
classes are relatively stable after the release of the VC translator, the drawback
of the Visitor pattern is not a problem in our application context. Under this
architecture, it is easy to support a new prover - just by implementing a con-
crete Visitor and a prover interface for the target prover3.

Some notes on the architecture:

• The class PrettyPrinter is used to format the output of generated VC. The
class TypeInfo stores the type information, and VariableInfo and Method-
Info save variable and method information separately. These classes are
explained in more detail in Section 4.4.

3This is described in detail in section 4.3.
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initialization
get the names of all types,

variables and methods
from the old AST

build the new AST
from the old AST

type the new AST

set the types of all
method parameters

rewrite the names of all
types, variables, methods
and method parameters

simplify the new
AST

print out the VC for
PVS

Figure 4.4: The Translation Procedure

• The actual VC translation procedure is managed by PvsProver. It invokes
TPvsVisitor by calling the method accept(TVisitor v) of the root node
of the new AST. Every node of the new AST is accessed by recursively
calling the method accept.

• The class TProofSimplifier simplifies the new AST by eliminating some
duplicate nodes and unnecessary formulas, e.g., after the introduction of
the sorted logic, some formulas which encode type information would be
useless. In practice, the size of the generated VC increases very fast as the
program being checked becomes larger. However, we did not implement
TproofSimplifier since we do not consider optimization in the project.

• The actual node classes’ hierarchy is much more complicated than is shown
here. There are about 90 node classes in our implementation.

4.2 The Translation Procedure
The translation procedure (from the VC for Simplify to the VC for PVS) is
showed in figure 4.4. The initialization step is performed in the constructor
of the class VcGenerator. The remaining steps are executed in the method
getProof of VcGenerator. Each step is explained below.

• Initialization: In this step, we set the prover type and save the root node
of the old AST. The predefined types, variables and methods are initialized
and saved in the HashMap fields of the classes TypeInfo, VariableInfo and
MethodInfo.

• Get all types, variables and method names from the old AST: In
order to serve the subsequent process, the names of all types are retrieved
from the old AST. The retrieved type names are stored in a HashMap field
of the class TypeInfo. Similar processing is done for the variable names
and method names.

• Build the new AST from the old AST: A new AST is built from the
old AST in the method generateNewAST of the class VcGenerator. Each
node in the old AST is translated to a typed node in the new AST.

• Type the new AST: In this step, we give a type to every node of the
new AST. The type assignment is performed according to the context
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of the node. For example, if the parent of a node is refEQ which is a
predicate on references, then the node type must be reference. Since all
variables, constants and methods are represented as certain nodes in the
new AST, they are all typed after we type the whole new AST. Here,
we have to type the new AST twice. This is because we access the new
AST in a certain order. Sometimes, the type of a node which represents
a variable or method can not be determined in the current place, but can
be determined in other places later. In this situation, we should give the
node the right type according to information coming from other places.
We execute the typing process twice to overcome this problem.

• Set method parameters: Although we retrieved method names in the
previous step, the types of method parameters can only be determined
after we typed the new AST. The types of the method parameters are
stored in the HashMap field of the class MethodInfo together with the
method name.

• Rewrite all types, variables and method names: Not all names
coming from the Simplify logic are legal in PVS setting. Identifers in PVS
are composed of letters, digits, and the characters “ ” or “?”, and they
must begin with a letter. In this step, we rewrite all types, variables and
method names according to the PVS syntax.

• Simplify the new AST: As we explained in section 4.1, this step was
not performed in our project.

• Generate the VC for PVS: After the new AST is well typed and all
required information is retrieved from the old AST, we can generate the
VC for PVS. This step is performed in the method getProof of descendants
of the abstract class ProverType. As to our VC translator for PVS, the
class PvsProver implements ProverType and overrides getProof.

4.3 How to Support a New Prover

Basically, only two classes are needed to support a new prover under the cur-
rent framework: the implementations of the abstract classes ProverType and
TVisitor.

ProverType provides an interface when adding a new prover. The following
methods are defined in ProverType4:

• abstract public void init()
Performs some initialization work, e.g. initializing predefined types, vari-
ables and methods.

• abstract public void getProof(Write out, String name, TNode root)
Generates VC for the target prover. The parameter name is the given
VC name; root indicates the root node of the new AST; out is the output
stream.

4We ignore the exception handling in the discussion
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• abstract public TNode rewrite(TNode n)
Simplifies the new AST. It is not implemented in our project.

• abstract public String getTypeInfo(TypeInfo ti)
Returns a valid type name of ti for the target prover.

• abstract public String getVariableInfo(VariableInfo vi)
Returns a valid variable name of vi for the target prover.

• abstract public String getMethodInfo(MethodInfo mi)
Returns a valid method name of mi for the target prover.

• abstract public Expr addTypeInfo(InitialState s, Expr e)5

Adds some background predicates to the generated VC, e.g. “|state@pre| =
state ∧ eClosedT ime(elems) < alloc”.

• abstract protected TVisitor visitor(Writer out)
Returns a concrete Visitor for the target prover.

• abstract protected void generateDeclarations(Writer out, HashMap vars)
final public void generateDeclarations(Writer out, TNode n)
Generates type, variable and method declarations. They should be called
in the method getProof.

• final public void generateTerm(Writer out, TNode n)
Generates the terms of VC by calling “n.accept(visitor(out))”. It should
be called in getProof as well as generateDeclarations.

• abstract public String labelRename(String label)
Rewrites the given VC name.

There is not too much to say about the class TVisitor. Its function and
application are explained in the Visitor pattern. TVisitor uses the class Pret-
tyPrinter to format its output - the VC for the target prover. Every node of
the new AST has an abstract visit method in TVisitor. For example, the visit
method for the node TBoolean is:

abstract public void visitTBoolean(TBoolean n)

Its implementation in the VC translator for PVS is:

public void visitTBoolean(TBoolean n) {
if (n.value)

lib.appendN("TRUE");
else

lib.appendN("FALSE");
}

where lib is a PrettyPrinter field in TVisitor.

5The method comes from the initial VC translator. We think the method name does not
explain its intention well.
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4.4 Some Important Classes
TypeInfo
Type information is saved in the class TypeInfo. There are two fields in Type-
Info: old and def. old records the original name of the type in the VC for
Simplify. It should be unique. def saves the new name for the target prover.
TypeInfo has a static field of type HashMap: typeMap. The field is used to
contain all types occurring in the old AST. The method getTypeAST of the
class VcGenerator retrieves type information from the old AST, and saves this
in typeMap.

VariableInfo
The function of VariableInfo is similar to TypeInfo, but it saves variable infor-
mation instead of type information. There are also two fields, old and def, to
save the original name and new name of a variable. A field, type, stores the
type for the variable. A static field of type HashMap, variableMap, contains all
variables occurring in the old AST.

MethodInfo
MethodInfo is similar to TypeInfo and VariableInfo. It saves method infor-
mation. The Vector field, argsType, is used to save the parameter types of a
method. The field returnType stores the return type of the method.

TNode
TNode is the superclass of all nodes in the new AST. It has a field, type, to
indicate the type of the node. Another field, parent, records the parent node
of current node. There are two direct subclasses of TNode: TFunction and
TVariable. Only nodes of type TFunction can have children in the new AST.
One important method6 of TNode is typeTree. It types the current node and
the child nodes of the current node. Every node class should provide an imple-
mentation for typeTree.

PrettyPrinter
The class PrettyPrinter is used to format the output of the generated VC.
In the constructor of PrettyPrinter, it initializes the symbols which represent
tab, left bracket, right bracket and “\n”. A field of type StringBuffer records
indentation in the output. In order to get an impression, let us look at one
method of PrettyPrinter.

public Writer append(String s) {
out.write(indentation.toString());
out.write(s);

}

This method first outputs indentation, then outputs the String s. Another
method appendIwNl performs the following processing on the output: increase
indentation by a tab space, output an indentation space, output a left bracket
and the String s. The counter-method of appendIwNl is reduceIwNl which re-
duces indentation by a tab space.

public Writer appendIwNl(String s) {

6Another important method is accept which was already introduced in section 4.1.
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indentation.append(TAB);
out.write(indentation.toString());
out.write(LBR + s);

}

public Writer reduceIwNl() {
out.write(RBR);
indentation = indentation.delete(0, TAB.length());
return out;

}

4.5 The Format of the VC for PVS
The format of the generated VC for PVS is as follows:

theory_name: THEORY
BEGIN

IMPORTING escjava2_logic
%% import the semantic prelude

class_name: TYPE+ FROM JavaType
%% introduce a type for the class being checked

model_method_declarations
%% declare the model methods

theorem_name: THEOREM
Forall(
variable_declarations):
the_body_of_the_VC

END theory_name

where theory name is composed of the class name, the name of the method being
checked, the line and column number of the method. Consider the program in
section 3.3:

1 final class test {
2 //@ ensures \result == a + b;
3 public int add(int a, int b) {
4 return a + b;
5 }
6 }

The generated VC for the method add is about 120 lines. An impression can
be obtained from the following7:

vc_test_add_2_4: THEORY
BEGIN

IMPORTING escjava2_logic

7The complete VC is included in appendix B.
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test: TYPE+ FROM JavaType

vc_test_add_2_4: THEOREM
Forall(
b_3_30: IntegralNumber,
brokenObj: Reference,
RES: IntegralNumber,
a_3_23: IntegralNumber,
brokenObj_1_: Reference):

(
(

(elems_pre = elems)
AND
((eClosedTime(elems)) < alloc)
AND
...

)
IMPLIES
(NOT

(TRUE
AND
...
AND
(

(NOT(ecReturn = ecReturn))
OR
(

(ecReturn = ecReturn)
AND
(
(NOT

(
((ecReturn = ecReturn) AND (this /= NULL))
IMPLIES
(RES = (a_3_23 + b_3_30))

)
)
OR
...

)
)

)
)

)
)

END vc_test_add_2_4

4.6 Our Work on the VC Translator
As introduced in the Chapter 1, before we started the project, Clément Hurlin
and Carl Pulley already had developed an initial VC translator (see [7]). Our
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work and the content of this chapter are greatly affected by their work. Here
we explain what we did concerning their initial work.

• We reimplemented the whole program except for the node classes and the
class PrettyPrinter. From our point of view, although the framework of
the VC translator was well designed in the initial work, its implementation
was not perfect. We found at least five bugs in the implementation. The
VC translation procedure was not very clearly designed in the initial VC
translator. For example, in the initial design, step 2 (get types, variables
and method names) was not separated from step 3 (build the new AST) in
the translation procedure. It builds the new AST as well as retrieves type
and variable information from the old AST. The approach is efficient, but
not very clear from the functional point view and not very convenient for
our experiments.

• The initial design follows the Object-Orient design style. It gives much
flexibility to the software. But we think it abused inheritance and over-
riding somewhat sometimes. For example, in the abstract interface class
ProverType, the methods generateDeclarations and generateTerm are not
interface methods at all since they are just invoked by another method
getProof of ProverType. It is not a good design to define generateDeclara-
tions and generateTerm in the interface class. So, in our implementation,
we try to avoid the effect of these imperfect designs.

• In order to extend our VC translator, we had to change the design of
the initial VC translator somewhat. For example, we added the node
class TSum to support quantifier operators, and we also added the class
MethodInfo to support method call, etc. Details about the extension are
discussed in the next chapter.
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Extending the VC Translator

As introduced in Chapter 1, we followed a test case driven approach in the
project. More specifically, if we want to extend our VC translator to a certain
feature, we follow the approach:

• design a test program.

• investigate the GC for the test program.

• investigate the old AST for the test program.

• develop the VC translator according to the investigations.

• prove the test program by the developed VC translator.

In this chapter, we follow the same road to explain how to extend our VC
translator to some advanced features: quantifier operators, method call, and
array.

5.1 JML Quantifier Expression
In JML, we can use expressions with the quantifiers \forall and \exists. For
example, the expression

(\forall int i, j; 0 <= i && i < j && j < 10; a[i] <= a[j])

says the array a is sorted at indexes between 0 and 9. Although quantifier ex-
pressions are very useful in practice, the initial VC translator does not support
them. So, we decided to extend our VC translator to handle quantifier expres-
sions in the project.

¦ The Test Program

1 class quan {
2 //@ ensures (\forall int i; 0 <= i && i < 6; \result >= i);
3 public int m() {
4 return 5;
5 }
6 }
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Figure 5.1: The Quantifier Expression in the Old AST

¦ The GC for The Quantifier Expression
The generated GC for the quantifier expression in line 2 is as follows:

(\forall int i:2.29; boolImplies(
boolAnd(integralLE(0, i:2.29), integralLT(i:2.29, 6)),
integralGE(RES, i:2.29)))

where the variable “i : 2.29” corresponds to the specification variable i and the
RES corresponds to the JML expression “\result”.

¦ The Quantifier Expression in the Old AST
The figure 5.1 shows the quantifier expression in the old AST. The expression
is represented by three branches. The first branch is the guard of the quantifier
expression, i.e. “0 <= i && i < 6”; the second branch represents the body of
the quantifier expression, i.e. “0 <= i && i < 6 → \result >= i”; the third
branch encodes the type information about the bound variable i.

¦ Develop the VC Translator
In order to support quantifier expression, we add a node class TQuantify and
its subclasses TForall and TExist into our VC translator. An array field pars
with type VariableInfo[ ] is defined in TQuantify. This array is used to contain
bound variables of quantifier expressions.

Before building the new AST, all variables including bound variables of quan-
tifier expressions are retrieved from the old AST by the method getVariableAST.
After that, building the new AST from the old AST for quantifier expressions
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is much easier to implement. The source code which parses the old AST and
builds the new AST for the node TForall is as follows:

1 private TNode generateNewAST(ASTNode n) {
2 TNode currentNode = null;
3
4 switch (n.getTag()) {
5 ...
6 case TagConstants.FORALL: {
7 currentNode = new TForAll();
8 QuantifiedExpr m = (QuantifiedExpr) n;
9 int num = m.vars.size();
10 ((TForAll) currentNode).pars = new VariableInfo[num];
11 for (int i = 0; i < num; i++) {
12 GenericVarDecl v = m.vars.elementAt(i);
13 String name =
14 Atom.printableVersion(UniqName.variable(v));
15 ((TForAll) currentNode).pars[i] =
16 VariableInfo.getVariable(name);
17 }
18 break;
19 ...
20 }
21 ...
22 }

where line 9 to 17 are about saving bound variables in pars. Here, the method
getVariable in line 16 is used because before building the new AST all bound
variables are already parsed and saved in VariableInfo (by the method getVari-
ableAST of the class VcGenerator).

We also need to define the visit methods for the node classes TForall and
TExist. Since the processes for the two nodes are almost the same, a method
quanOp is defined in the class TPvsVisitor, and the visit methods of TForall
and TExist invoke quanOp with different parameters.

¦ Prove the Test Program
For our test program, the generated VC for the quantifier expression is as follows:

(FORALL (i_2_29: IntegralNumber):
(

((0 <= i_2_29) AND (i_2_29 < 6))
IMPLIES
(5 >= i_2_29)

)
)

The VC of the test program was proved in PVS with the tactics grind. As
expected, if we change the number “5” in line 2 to “6”, the proof can not be
established.

¦ Discussion
Supporting quantifier expressions in our VC translator is quite easy and straight
forward since PVS has the keywords “FORALL” and “EXISTS” as well. The
only tricky part is how to handle bound variables and their types. Actually, we
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noticed that the VC translator for Coq did not correctly process bound variables
when we read their source code during the project.

5.2 Method Call in Specification
It is very useful to use method call in specification as well as in implementation.
Firstly, methods are units of reuse in specification. Secondly, methods provide
a means of abstraction. In JML, we call the specification methods model meth-
ods. Model methods should be side effect free which means they should not
interfere with program execution. Methods without side effect are called pure
methods. If pure methods allocate and initialize new objects, they are weak
pure. Otherwise they are considered to be strong pure. In the project, we fo-
cused on the strong pure model methods.

¦ The Test Program

1 class methodcall {
2 //@ ensures \result == i + 1;
3 //@ model pure static int inc(int i);
4
5 //@ ensures \result == inc(c);
6 public int next(int c) {
7 return ++c;
8 }
9 }

¦ The GC for The Model Method
ESC/Java2 does not generate VC for model methods. So, for the test program,
only two VCs are produced: one for the method next ; the other one for the de-
fault constructor. The specifications about the model method inc are translated
into the assume and assert clauses in the preconditions and postconditions of
the method next. The following statements show the GC concerning the model
method inc.

...
ASSUME (\forall int i:3.38;

integralEQ(method.inc.3.26(i:3.38),
integralAdd(i:3.38, 1)));

ASSUME (\forall int i:3.38;
is(method.inc.3.26(i:3.38), \type(int)));

...
ASSERT (\lblneg Post:5.8@8.4

boolImplies(boolAnd(anyEQ(EC, ecReturn),
is(this, \type(methodcall)), refNE(this, null)),
integralEQ(RES, methodcall.inc.3.26(c:6.24))));

...

The first assume clause corresponds to the specification of line 2. The second
assume clause specifies that the return type of inc is int. The assert clause
encodes the postcondition in line 5.

¦ The Model Method in the Old AST
The figure 5.2 represents the first assume clause in the old AST. We could notice
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Figure 5.2: The Method Call in the Old AST

that the parameter “|i : 3.38|” is encoded into a child node of its method node.

¦ Develop the VC translator
In order to support model methods, we define a class MethodInfo to store
method information. A node class TMethodCall is introduced into our VC
translator as well. Two methods getMethodAST and setMethodArgsType are
defined in the class VcGenerator : getMethodAST retrieves the names of model
methods from the old AST; setMethodArgsType sets the types of return value
and parameters of model methods.

In the VC translator, the names of model methods are parsed and saved
in MethodInfo before building the new AST. Then after typing the new AST,
we set the types of return value and parameters for all model methods. When
generating the VC for PVS, the declarations of model methods are produced
before outputting the main VC body.

¦ Prove the Test Program
Part of the generated VC concerning the model method inc is shown below:

...
methodcall_inc_3_26(p0: IntegralNumber): IntegralNumber

vc_methodcall_next_5_4: THEOREM
Forall(
...
i_3_38: IntegralNumber,
c_6_24: IntegralNumber,
c_7_17: IntegralNumber):
(

...
AND
(FORALL (i_3_38: IntegralNumber):

(methodcall_inc_3_26(i_3_38) = (i_3_38 + 1))
)
...
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AND
( ...

(
(ecReturn = ecReturn)
AND TRUE
AND (this /= NULL)

)
IMPLIES
(c_7_17 = methodcall_inc_3_26(c_6_24))

)
)

We proved the VC in PVS with the tactics grind.

¦ Discussion
Supporting strong pure model methods is easy in our VC translator. The only
troubling thing is determining the types of model methods. In the future, if
ESC/Java2 is built on a sorted logic from the frontend, the work concerning
types would be much easier.

An important area that was not covered in our project is weak pure model
methods. In [1], the authors proposed a sound approach to handle weak pure
model methods. It is interesting to investigate the approach and consider how
to implement the approach in our VC translator in the future.

5.3 Array in Implementation

Although almost all non-trivial Java programs need the type array, the initial
VC translator did not support it. So, we investigated ways to support arrays
in the project. From a theoretical point of view, there are no difficulties to
handle arrays in our proposed approach. But there are some problems in the
implementation.

5.3.1 The Issues about Type Assignment

¦ Problem 1:

Consider the following program:

1 class arr1 {
2 private int[] t;
3
4 //@ requires a != null;
5 public void init(int[] a) {
6 t = a;
7 for (int i = 0; i < a.length; i++) {
8 t[i] = 0;
9 }
10 }
11 }

The generated VC includes the following sub-formula φ:
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elems_7_8_0 = (set(elems, tmp0_t_7_8_0_8_12,
(set(get(elems, tmp0_t_7_8_0_8_12)), 0, 0)))

where elems is a predefined variable with the type ArrayStore which models
the state of all arrays. The methods get and set are defined in the theory
map theory in the semantic prelude. They model memory operations - read and
write separately. tmp0 t 7 8 0 8 12 is an intermediate variable generated by
ESC/Java2. Its type must be ArrayReference since another expression

0 < (arrayLength(tmp0_t_7_8_0_8_12))

exists in the generated VC.

However, the only instantiation of map theory for arrays in the semantic
prelude is

map_theory[ArrayStore, ArrayName, ArrayReference]

which introduces

get: [ArrayStore, ArrayName -> ArrayReference]
set: [ArrayStore, ArrayName, ArrayReference -> ArrayStore]

This causes a problem: there is no proper get and set matching the types of
the formula φ since φ requires:

get : [ArrayStore, ArrayReference -> ArrayReference]
set : [ArrayStore, ArrayReference, ArrayReference -> ArrayStore]

In order to solve this problem, we propose that the following instantiation
of map theory should be added to the semantic prelude:

map_theory[ArrayStore, Reference, ArrayReference]

which introduces the proper get and set methods

¦ Problem 2:

However, the solution to problem 1 does not solve all the problems with type
assignment. Consider another program:

1 class arr2 {
2 //@ requires a != null;
3 //@ requires a.length >= 2;
4 public void init(int[] a) {
5 a[0] = 0;
6 a[1] = 1;
7 //@ assert a[0] != a[1];
8 }
9 }

The generated VC for line 7 is:

(get(get(elems_2_, a_4_23)),0) /= (get(get(elems_2_, a_4_23)),1)

where the type of “elems 2 ” is ArrayStore and the type of “a 4 23” is ArrayRef-
erence. This subformula can not pass the type checking of PVS since more than
one instantiation of map theory matches it. For example, the suitable instanti-
ations include:
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1. map_theory[ArrayReference, IntegralNumber, Boolean]
which produces get:[ArrayReference, IntegralNumber -> Boolean]

2. map_theory[ArrayReference, IntegralNumber, Number]
which produces get:[ArrayReference, IntegralNumber -> Number]

3. map_theory[ArrayReference, IntegralNumber, Reference]
which produces get:[ArrayReference, IntegralNumber -> Reference]

In order to avoid ambiguous interpretations, we could provide extra infor-
mation to assist PVS in choosing an unique instantiation of map theory. For
example, we can rewrite the VC as:

(get[ArrayReference, IntegralNumber, Number]
(get(elems_2_, a_4_23)),0) /= (get(get(elems_2_, a_4_23)),1)

However, this modification is hard to implement in our VC translator since the
VC translator does not know what the semantic prelude defines and when it
should generate the extra information.

5.3.2 The Issues about Modeling New Arrays
¦ The predicate arrayFresh in the original unsorted logic

- One-dimensional array

In the original unsorted logic of ESC/Java, there is a predefined predicate
arrayFresh to model the allocation of new arrays. For example, consider a Java
statement:

int[] x = new int[3];

ESC/Java2 generates a GC for the statement which looks like:

ASSUME arrayFresh(x, alloc, alloc’, elems, arrayShapeOne(3),
\type(int[]), 0)

where x is the newly allocated array; alloc and alloc’ are the allocation times just
before and after the allocation of x ; elems is a global variable modeling the state
of all arrays; arrayShapeOne constructs an array shape. Intuitively, a shape is a
nonempty list of integers, representing the dimensions of a rectangular array. For
example, arrayShapeOne(3) represents the shape of an one-dimensional array
of length 3; int [ ] is the type of the array; 0 is the default initial value for the
elements of the array.

The meaning of arrayFresh for an one-dimensional array is precisely defined
by the following axiom:

(ALL a, t1, t2, e, n, T, v::
arrayFresh(a, t1, t2, e, arrayShapeOne(n), T, v) ==

t1 <= vAllocTime(a) && vAllocTime(a) < t2 && a != null &&
typeof(a) == T && arrayLength(a) == n &&
(ALL i:: e[a][i] == v)

- Multi-dimensional array

Similarly, consider a multi-dimensional array
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int[][] y = new int[5][6];

ESC/Java2 generates the following GC:

ASSUME arrayFresh(y, alloc, alloc’, elems,
arrayShapeMore(5, (arrayShapeOne(6)),
\type(int[][]), 0)

where arrayShapeMore is similar to arrayShapeOne, but it constructs a multi-
dimensional array shape.

The meaning of arrayFresh for a multi-dimensional array is defined by the
following axiom:

(ALL a, t1, t2, e, n, T, v::
arrayFresh(a, t1, t2, e, arrayShapeMore(n, s), T, v) ==
t1 <= vAllocTime(a) && vAllocTime(a) < t2 && a != null &&
typeof(a) == T && arrayLength(a) == n &&

(ALL i::
arrayFresh(e[a][i], t1, t2, e, s, elemType(T), v) &&
arrayParent(e[a][i]) == a &&
arrayPosition(e[a][i] == i)

The predicates arrayParent and arrayPosition ensures that the arrays allocated
as part of of the multi-dimensional array are distinct (see [23]).

¦How does ESC/Java2 reason about array operations with arrayFresh

There is no document that completely explains how ESC/Java2 uses ar-
rayFresh to reason about array operations in Java programs (the only docu-
ment we know is [23]). But we do know that array bound checking is one of key
characteristics of ESC/Java. Consider the following program:

1 class arr3 {
2 public void m() {
3 int[] x = new int[3];
4 x[4] = 0;
5
6 int[][] y = new int[5][6];
7 y[7][0] = 0;
8 y[2][8] = 0;
9 //@ assert y[0] != y[1];
10 }
11 }

Obviously, line 4, 7 and 8 cause array bound errors. ESC/Java2 generates the
GC for the program as follows:

...
1 ASSUME arrayFresh(tmp0!new!int[]:3.18, alloc, alloc<1>, elems,

arrayShapeOne(3), \type(int[]), 0);
...

2 x:3.14 = tmp0!new!int[]:3.18;
3 tmp1!x:4.8 = x:3.14;
4 ASSERT (\lblneg Null@4.9 refNE(tmp1!x:4.8, null));
5 ASSERT (\lblneg IndexNegative@4.9 integralLE(0, 4));
6 ASSERT (\lblneg IndexTooBig@4.9
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integralLT(4, arrayLength(tmp1!x:4.8)));
...

7 ASSUME arrayFresh(tmp2!new!int[][]:6.20, alloc, alloc<2>, elems,
arrayShapeMore(5, arrayShapeOne(6)),
\type(int[][]), 0);

...
8 y:6.16 = tmp2!new!int[][]:6.20;
9 ASSERT (\lblneg Null@7.9 refNE(y:6.16, null));
10 ASSERT (\lblneg IndexNegative@7.9 integralLE(0, 7));
11 ASSERT (\lblneg IndexTooBig@7.9

integralLT(7, arrayLength(y:6.16)));
12 tmp3:7.9 = select(select(elems, y:6.16), 7);
13 ASSERT (\lblneg Null@7.12 refNE(tmp3:7.9, null));
14 ASSERT (\lblneg IndexNegative@7.12 integralLE(0, 0));
15 ASSERT (\lblneg IndexTooBig@7.12

integralLT(0, arrayLength(tmp3:7.9)));
...

16 ASSERT (\lblneg Null@8.9 refNE(y:6.16, null));
17 ASSERT (\lblneg IndexNegative@8.9 integralLE(0, 2));
18 ASSERT (\lblneg IndexTooBig@8.9

integralLT(2, arrayLength(y:6.16)));
19 tmp4:8.9 = select(select(elems, y:6.16), 2);
20 ASSERT (\lblneg Null@8.12 refNE(tmp4:8.9, null));
21 ASSERT (\lblneg IndexNegative@8.12 integralLE(0, 8));
22 ASSERT (\lblneg IndexTooBig@8.12

integralLT(8, arrayLength(tmp4:8.9)));
...

Line 1 of the GC corresponds to line 3 of the Java program. According to the
axiom of arrayFresh, line 1 of the GC provides the information

arrayLength(tmp0!new!int[]:3.18)==3

This causes the assertion in line 6 to fail since “integralLT (4, 3)” is false. Then
ESC/Java2 can detect the error. Similarly, arrayFresh in line 7 causes the
assertions in line 11 and 22 to fail.

Besides the length information, the definition of arrayFresh also helps Sim-
plify to reason about the assertion in line 9 of the Java program. The arrayFresh
in line 7 of the GC introduces the following sub-formulas:

arrayPosition(select(select(elems, y), 0))==0 &&
arrayPosition(select(select(elems, y), 1))==1

If the assertion is right, i.e. “select(select(elems, y), 0)==select(select(elems,
y), 1)”, then Simplify can deduce “0==1”. This is obviously wrong.

¦ Interpret arrayFresh in the new sorted logic

Because our VC translator transforms the VC for Simplify into the VC for
PVS, it needs to interpret the predicate arrayFresh in the translation procedure.
The most safe and reasonable way to deal with arrayFresh is to interpret it line
by line in the sorted logic according to its definition in the unsorted logic.
However, Joseph Kiniry changed the semantics for array in the sorted logic (we
are not clear about his intention of the change). For example, the predicates
arrayFresh, arrayShapeOne, arrayShapeMore, arrayParent and arrayPostion are
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not provided in the current semantic prelude. This makes the interpretation not
straight forward.

While deleting some old predicates, the current semantic prelude also pro-
vides some new predicates:

typeOf(r: Reference): ReferenceType
elemtype: [ArrayType -> JavaType]
array_constructor: [JavaType -> ArrayType]
arrayOf(n: IntegralNumber, t: PrimitiveType): ArrayReference
arrayOf(n: IntegralNumber, t: ReferenceType): ArrayReference
arrayLength(r: ArrayReference): IntegralNumber

Consider the two Java statements:

int[] a = new int[n];
int[][] b = new int[n][m];

As to the array a, the VC for Simplify which models its allocation looks like:

arrayFresh(a, t1, t2, elems, arrayShapeOne(n), array(T_int), 0)

We can interpret it in the new sorted logic as follows:

newArray(a, t1, t2, elems, n, array_constructor(T_int))

where newArray is a new predicate we defined in the semantic prelude. Its
definition is:

newArray: [ArrayReference, Time, Time, ArrayStore,
IntegralNumber, ArrayType -> bool]

newArray_axiom: AXIOM
FORALL (arr: ArrayReference, t1: Time, t2: Time,

e: ArrayStore, n: IntegralNumber,
t: ArrayType):

newArray(arr, t1, t2, e, n, t) IFF
t1 <= vAllocTime(arr) AND vAllocTime(arr) < t2 AND
arr != null && typeof(arr) == t AND
arrayLength(arr) == n

As to the array b, the VC for Simplify which models its allocation looks like:

arrayFresh(b, t1, t2, elems, arrayShapeMore(n, arrayShapeOne(m)),
array(array(T_int)), 0)

We can interpret it in the new sorted logic as follows:

newArray(b, t1, t2, elems, n,
array_constructor(array_constructor(T_int))) AND

FORALL (i: IntegralNumber):
0 <= i AND i < n AND
newArray(get(get(elems, b), i), t1, t2, elems, m,

array_constructor(T_int))

There are two obviously missing points in our interpretation. Firstly, since
without the predicate arryPosition and arrayParent, our interpretation does
not distinguish the different parts of a multi-dimension array. This would cause
problems in proving the assertions like “b[0] != b[1]” if b is a multi-dimension
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array; Secondly, we do not provide the specification to default initial values of
the elements of array. Actually, we are not clear about the application of initial
values in the static checking of ESC/Java2.

We tested our interpretation on some small Java programs with arrays. But
the interpretation is done by hand, i.e., we modified the generated VC by hand
according to the above description. We did not implement the interpretation
approach in our VC translator because of the complexity of the interpretation
and the time limitation of the project. According to our experiments, the inter-
pretation is able to detect array bound errors. In the future, more investigations
are needed and the interpretation should be implemented in the VC translator.
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Supporting Native Specifications

When doing program verification with JML, one has to translate Java imple-
mentations and JML specifications into the specification language of the target
prover. In this thesis, we call prover oriented specifications native specifications.
Since native specification languages would provide additional expressibility over
JML, it is very useful to integrate native specifications into JML specifications
directly. For example, consider a set Q:

Q = {i: integer | ∃ k (0 ≤ k < m) & A[k] = i}

where 1 ≤ m ≤ A.length. Obviously, Q represents the set of values of the first
m elements of A. Although this is a common mathematical concept, it is hard
to specify in ESC/Java2 since JML has no built-in set concept1. But we can
specify Q in PVS like:

Q: set = {i: int | EXISTS(k: nat): 0 <= k AND k < m AND A(k) = i}

In [21], a new keyword native is proposed to indicate native specifications in
JML. Using the keyword, the verification tool (Jack in [21]) can perform some
processing on native specifications since the tool can distinguish native speci-
fications from ordinary JML specifications. Although adding the new keyword
can help us express our intention more clearly and give verification tools more
freedom, we can use model classes and model methods to achieve a similar re-
sult as the one in [21]. In our project, we chose the second approach (use model
classes and model methods to define native specifications) since it allows us to
avoid modifying the frontend of ESC/Java2.

As to native specifications, we consider two kinds of applications. Firstly,
we want to introduce native methods into JML specifications. These methods
are defined in semantic preludes or predefined libraries of provers. Secondly,
we also want to use native types in our specifications. These types are build-in
types of provers or user-defined types in semantic preludes. After introducing
native types, we can use them to declare ghost variables or model fields in JML
specifications.

1We can specify it using the JML runtime library class JMLObjectSet, but the runtime
library is not supported by ESC/Java2. Actually, since JML is a large specification language,
most of the existing JML tools only support certain subsets of JML.
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6.1 Adding Native Methods to ESC/Java2
We restrict native methods considered in our project to be pure methods that
do not allocate and initialize new objects. Furthermore, we also assume that
native methods always terminate and do not throw any exceptions.

6.1.1 The Approach to Support Native Methods

The approach to support native methods requires three steps in our experiments:

1. define a function with the PVS specification language in the semantic
prelude;

2. declare a native method as a model method in the JML specification;

3. map the native method to the function in the generated VC.

STEP 12

There are several ways to define a function in PVS. Here, we give some ways
used in our project.

- declare a function type, then use axioms to specify its properties.
example:

fClosedTime: [Field -> Time] % declare a function type
fClosedTime_definition: AXIOM % specify its properties

FORALL (r: Reference, f: Field, t: Time):
(fClosedTime(f) < t AND isAllocated(r, t))
IMPLIES isAllocated(get(f, r), t)

- declare an interpreted constant which defines the desired function.
example:

g(int x): int = x + 1

- give the recursive definition for the desired function.
example:

factorial(x: nat): RECURSIVE nat =
IF x = 0 THEN 1
ELSE x * factorial(x - 1)
ENDIF

MEASURE (LAMBDA (x: nat): x)

STEP 2
Since we did not introduce the new keyword native into ESC/Java2, native
methods are just declared as model methods in JML specifications.
example:

//@ public model pure static int pvs_sum(int i);

2If we map a native method to a predefined function of provers, step 1 is not needed.
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Here, the keyword model means the method is a model method; the keyword
pure says the model method is side effect free. After the declaration, we can use
the method in our specification. ESC/Java2 does not know the model method
actually is a native method. It interprets the method in the generated VC just
as other ordinary model methods.

STEP 3
Mapping the declared native method to the function defined in the semantic
prelude or the predefined function of provers is currently done by hand. How-
ever, this step could be done automatically by ESC/Java2 if we introduce the
new keyword native into ESC/Java2.

As to the example of the step 2, the mapping is done by providing the
following definition at the beginning of the generated VC.

test_pvs_sum_9_3(p0: IntegralNumber): IntegralNumber = sum(p0)

where sum is a function defined in the semantic prelude.

6.1.2 Test Cases and Result Analysis
TEST CASE 1

In the test case, we use a native method sum to specify a Java program
which calculates the sum from 1 to n. Then we use PVS to prove the correct-
ness of the program, i.e., the return value equals the required sum.

step 1: define a function sum in the semantic prelude.

sum(i, j: IntegralNumber): IntegralNumber =
IF i > j THEN 0
ELSE ((i+j) * (j-i+1) / 2)
ENDIF

step 2: declare a native method pvs sum in the Java program.

class test1 {
//@ public model pure static int pvs_sum(int i, int j);

/*@ requires n >= 0;
@ ensures \result == pvs_sum(0, n);
@*/

public int sum(int n) {
int i = 0;
int s = 0;

//@ loop_invariant s == pvs_sum(0, i);
//@ loop_invariant 0 <= i && i <= n;
while (i < n) {

s = s + i + 1;
i++;

}

return s;
}

}
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step 3: map pvs sum to sum in the generated VC3.

test1_pvs_sum_2_33(p0: IntegralNumber, p1: IntegralNumber):
IntegralNumber = sum(p0, p1)

Result: we proved the VC with the tactics grind in PVS.

TEST CASE 2

In the test case, we use a native method to specify and verify a Java program
which calculates Fibonacci numbers.

step 1: define a function fibo in the semantic prelude.

fibo(i: IntegralNumber): RECURSIVE IntegralNumber =
IF i = 1 THEN 1
ELSE (IF i = 2 THEN 1

ELSE (IF i >= 3 THEN fibo(i-1) + fibo(i-2)
ELSE 0
ENDIF)

ENDIF)
ENDIF

MEASURE (LAMBDA (i: IntegralNumber): i)

step 2: declare a native method pvs fibo in the Java program.

class test2 {
//@ public model pure static int pvs_fibo(int i);

/*@ requires n >= 1;
@ ensures \result == pvs_fibo(n);
@*/

public int fibo(int n) {
int a = 0;
int b = 1;
int swap = 0;
int i = 1;

//@ loop_invariant a == pvs_fibo(i-1);
//@ loop_invariant b == pvs_fibo(i);
//@ loop_invariant 1 <= i && i <= n;
//@ decreases n - i - 1;
while (i < n) {

swap = b;
b = a + b;
a = swap;
i++;

}

return b;
}

}

step 3: map pvs fibo to fibo in the generated VC.
3ESC/Java2 adds the class name, the column and line number to the name of the method.
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test2_pvs_fibo_2_33(p0: IntegralNumber):
IntegralNumber = fibo(p0)

Result: We proved the VC with the tactics grind in PVS.

In the past, we tested the same program by giving the recursive specification
of fibo with JML. ESC/Java2 can not prove the program. It shows that we can
handle recursive specification better under the current approach (by integrating
ESC/Java2 and PVS) compared to the old approach (using ESC/Java2 only).

6.2 Adding Native Types to ESC/Java2
There are two kinds of native types. In the first category the types are provided
by provers. For example, PVS and its predefined libraries provide many types
including set, list, graph, etc; the second category consists of user-defined types.
We can define our own types in the semantic prelude. Both kinds of types can be
introduced into JML specifications by model classes in our proposed approach.

6.2.1 The Approach to Support Native Types
The approach to support native types requires three steps in our experiments:

1. define a type with the PVS specification language in the semantic prelude;

2. declare a native type as a model class in the JML specification;

3. map the native type to the type in the semantic prelude in the generated
VC.

STEP 14

PVS provides quite flexible ways to define types. For example, we can define
subtypes, function types, tuple types, and record types. There is also a quite
powerful way to define abstract data types.

STEP 2
Native types are declared as empty model classes in JML specifications.
example:

//@ public model pure class pvs_set {};

After introducing native types, we can use them to declare ghost variables or
model fields.
example:

//@ private ghost pvs_set s;
//@ public model pvs_set m;

STEP 3
Since native types are declared as model classes, our VC translator generates
type declarations for these native types at the beginning of the generated VC.
However, we should modify these declarations by hand because the default type

4If the type is a type provided by provers, step 1 is not needed.
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for model classes is JavaType. For example, for the native type pvs set, we
should change the VC as follows:

pvs set: TYPE+ FROM JavaType =⇒ pvs set: TYPE+ = set

6.2.2 Test Cases and Result Analysis

TEST CASE 1

With an abstract Java class myset, we investigate the approach using native
types to declare ghost variables. We introduce a native type pvs set which cor-
responds to the PVS type set. Some native methods related to the native type
are introduced into myset in order to perform our investigation. These meth-
ods include create, member, add and delete. With the native type and native
methods, we can specify the behaviors of myset.

step 1: define a ghost variable with the native type pvs set in the Java program.

//@ public model pure class pvs_set {}

abstract class myset {

//@ ghost pvs_set s = create();

//@ public model pure static pvs_set create();
//@ public model pure static boolean member(pvs_set q, Object r);
//@ public model pure static pvs_set add(pvs_set q, Object r);
//@ public model pure static pvs_set delete(pvs_set q, Object r);

//@ ensures member(s, o) == true;
public void insert(Object o) {

//@ set s = add(\old(s), o);
}

//@ ensures member(s, o) == false;
public void remove(Object o) {

//@ set s = delete(\old(s), o);
}

}

step 2: map pvs set to set in the generated VC.
As already introduced, the mapping is done by setting the type of pvs set to be
set in the generated VC.

IMPORTING sets[Reference]
...
pvs_set: TYPE+ = set

Result: We proved the VC by the tactics grind in PVS.

There are two problems which forced us to modify the generated VC by hand.
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The first problem concerns the type of the ghost variable s5. ESC/Java2 treats
ghost variables as object fields in the generated VC. So, our VC translator sets
the type of s to be field. This is necessary since a predicate “fClosedTime(s) <
alloc” exists in the VC and the type of s must be field according to the defintion
of fClosedTime. However, the type of s should also be pvs set since it is used
as a parameter of the native methods member, add and delete.

We solved this problem by changing the type of s to pvs set and deleting
the predicate “fClosedTime(s) < alloc” in the generated VC. This modification
should be OK since ghost variables have no effect on program states.

However, this modification gives us another problem. Since ESC/Java2
treats all ghost variables as fields, every read and write of s is modeled by
the get and set predicates. The get and set predicates are defined in the pa-
rameterized theory map theory. There is no proper instantiation for s since
its type is pvs set. Although we can add an instantiation of map theory for s
according to its type, the approach is very inconvenient since we have to define
a proper instantiation in the semantic prelude every time we introduce a new
native type.

We solved the problem by simply changing the VC to read and write s
directly without using get and set. This modification also should be OK since
s is not a real field and its operations have no effect on the program state.

If we introduce the new keyword native into JML, the two problems can be
solved by ESC/Java2 automatically. With the new keyword, ESC/Java2 can dis-
tinguish native specifications from ordinary JML specifications. If ESC/Java2
detects that the type of a ghost variable is native, it generates direct reads and
writes in the generated VC without using get and set.

TEST CASE 2

In the second test case, we investigate the application of a model field with
a native type. We use a model field s with the native type pvs set to specify
the behaviors of arrset. arrset is a set class which is implemented by an array
A[]. A native method toSet is defined as the representation function between s
and the array A[] (see [4]).

step 1: define a model field with the native type pvs set in the Java program.

//@ public model pure class pvs_set {}

class arrset {
//@ public model pvs_set s;

//@ public model pure static pvs_set toSet(int[] a, int n);
//@ public model pure static boolean member(pvs_set q, int r);

private int[] A;
//@ in s;
//@ maps A[*] \into s;
//@ represents s <- toSet(A, A.length);
//@ invariant A != null;

5In the generated VC, s corresponds to s 5 22 where “5” and “22” indicate the line and
column number of s in the Java program.
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//@ invariant A.owner == this;

private int m;
//@ invariant 0 <= m && m <= A.length;

public arrset() {
A = new int [100];
m = 0;
//@ set A.owner = this;

}

//@ ensures member(s, i) == true;
public void insert(int i) {

if (m <= A.length - 1) {
A[m] = i;
m++;

}
}

}

step 2: define the representation function toSet in the semantic prelude.

toSet(A: ArrayReference, n: IntegralNumber): RECURSIVE set =
IF n <= 0 THEN empty?
ELSE add(toSet(A, n-1), get(A, n-1))
ENDIF

MEASURE (LAMBDA (n: IntegralNumber): n)

Result: We failed to prove the VC in PVS.

Although we did not find a way to prove the program, the generated VC
passed the type checking of PVS. This shows that using native types to declare
model fields is feasible.

However, the failure uncovers a shortcoming of our proposed approach. In
the original approach, if Simplify can not prove a VC, ESC/Java2 can indicate
broken specifications or suspect bugs. It is very useful to help users track and
analysis the reason why it failed. In our proposed approach, if we fail to prove
a VC, it is quite difficult to know the reason: it is unclear whether the failure
is caused by the VC itself or by an improper proof; if it is the problem of the
VC, which lines of implementations or specifications cause the failure?

According to our understanding, the reason why ESC/Java2 can indicate
broken specifications or suspect bugs is because ESC/Java2 introduces special
labeled expressions in the VC for Simplify. Simplify can utilize these labeled ex-
pressions to indicate broken specifications or suspect bugs. In our VC translator,
these labeled expressions are ignored since they are useless from the semantic
point of view. How to deal with these labeled expressions in our proposed
approach should be investigated in the future.

6.3 Conclusions
On the basis of our experiments, we conclude that our proposed approach can
support native specifications quite well. We believe that supporting native spec-
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ifications is a big advantage of our proposed approach. This advantage is demon-
strated in the fibonacci program which can not be handled by ESC/Java2 but
can be proved in our proposed approach.

However, in order to make the mapping from native specifications to the
PVS methods and types being done automatically, i.e., without the need to
change the generated VC by hand, we should introduce the new keyword native
into ESC/Java2 as [21] did for Jack.
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Verifying the Celebrity Programs

In the final period of the thesis project, we decided to verify programs for the
so-called celebrity problem using the techniques we developed so far. Since we
already realized that our VC translator is still far from mature, the main goal
of the experiments is to investigate the ability of our approach, especially the
advantages of using native specifications in JML.

In order to achieve the goal, we carefully chose a problem which is quite
simple but still interesting. In the experiments, we propose a new approach to
verify the program for the celebrity problem on the abstract level. The approach
was inspired by the work of Hoare [4]. The novel point of our work is that our
approach is machine-checkable comparing to Hoare’s pen and paper proving.

7.1 The Celebrity Problem

Among a group with n persons, a celebrity is someone who is known by everyone
but does not know anyone. If we are allowed to ask questions of the form “does
person x know person y”, our task is to identify all celebrities in the group.

According to the properties of celebrities, it is easy to find out that there
is no celebrity or just one celebrity in the group. Assume a and b are both
celebrities in the group, then b must know a (everyone knows celebrities) and
a must not know b (celebrities do not know anyone). Then b is not a celebrity
since a does not know him/her. This gives a conflict to our assumption.

In order to make the problem clearer and simpler, we assume that the group
has more than one person and there is a celebrity in the group. Then the
problem can be described as follows:

There is a finite set G which has more than one element. The
binary relation set B on G (B = G -> G) represents the "knows"
relations (->) between elements of G. If there is a celebrity c
in G, request to identify c which has the following properties:

for all x in G, x != c,
(1) x -> c (everyone knows the celebrity);
(2) not(c -> x) (the celebrity does not know anyone);
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7.2 The First Attempt to the Celebrity Problem
At the beginning, we provide a straight forward solution to the celebrity prob-
lem. We use the natural number 0 to n-1 to represent people in the group, and
a two-dimensional array knows to represent the relations between people.

1 class celebrity1 {
2 /*@ requires n >= 2;
3 @*/
4 /*@ requires knows != null && knows.length == n;
5 @*/
6 /*@ requires (\forall int i; 0 <= i && i < n;
7 @ knows[i] != null && knows[i].length == n);
8 @*/
9 /*@ requires (\exists int c; 0 <= c && c < n;
10 @ (\forall int j; 0 <= j && j < n && j != c;
11 @ knows[j][c] == true && knows[c][j] == false));
12 @*/
13 /*@ ensures (\forall int i; 0 <= i && i < n && i != \result;
14 @ knows[i][\result] == true);
15 @*/
16 /*@ ensures (\forall int i; 0 <= i && i < n && i != \result;
17 @ knows[\result][i] == false);
18 @*/
19 public int findCeleb(int n, boolean[][] knows) {
20 int a, b;
21 a = 0;
22 b = n - 1;
23
24 /*@ loop_invariant (\exists int c; a <= c && c <= b;
25 @ (\forall int j; 0 <= j && j < n && j != c;
26 @ knows[j][c] == true && knows[c][j] == false));
27 @*/
28 while (a != b) {
29 if (knows[a][b])
30 a++;
31 else
32 b--;
33 }
34 return a;
35 }
36 }

ESC/Java2 can not prove the above program. It gives a warning that the
loop invariant (line 24 to 27) possibly does not hold. Although we are not clear
about the reason for the failure, the result is reasonable considering the complex-
ity of the specification. We guess there are two difficulties when Simplify tries
to prove the program. Firstly, Simplify has difficulties handling specifications
with two embedded quantifier operators. Secondly, the result of knows[a][b]
includes an implication: if knows[a][b] is true, then a can not be the celebrity;
if knows[a][b] is false, then b can not be the celebrity. We are not sure Simplify
is smart enough to derive and utilize the implication automatically.

We also used our VC translator to generate a VC for PVS. PVS can not
prove the VC with the tactics grind automatically. We did not find a way to
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prove the VC in our experiments, although we almost sure the proof exists. The
reason for the failure is mainly because the generated VC is too large (about
1000 lines). It is hard for us to fully understand the VC and to use low level
tactics to prove the VC interactively.

7.3 The Second Attempt to the Celebrity Problem
Since we guess the failure of the first attempt is because of the specifica-
tions with two embedded quantifier operators and the unexposed implication
of knows[a][b], a natural consideration would be rewriting the program and
specification to overcome the two problems. In order to do this, we introduce
a model method isCelebrity. We assume that isCelebrity returns true if its
parameter indicates the celebrity, otherwise it returns false.

We add two assumptions in the method knows. These assumptions guarantee
the postconditions of knows hold. We can not prove the postconditions without
these assumptions since isCelebrity is not defined explicitly.

1 class celebrity2 {
2 int N;
3 //@ invariant N >= 2;
4
5 boolean[][] B;
6 //@ invariant B != null;
7 //@ invariant B.owner == this;
8 //@ invariant B.length == N;
9 //@ invariant (\forall int i; 0 <= i && i < B.length;

B[i] != null);
10 //@ invariant (\forall int i; 0 <= i && i < B.length;

B[i].length == N);
11
12 int celeb;
13 // the celebrity in the group
14
15 //@ model pure static boolean isCelebrity(int i);
16
17 //@ requires k >= 2;
18 public celebrity2(int k) {
19 N = k;
20 B = new boolean[N][N];
21 //@ set B.owner = this;
22 }
23
24 //@ requires 0 <= p && p < N;
25 //@ requires 0 <= q && q < N;
26 //@ requires p != q;
27 //@ ensures \result == true ==> isCelebrity(p) == false;
28 //@ ensures \result == false ==> isCelebrity(q) == false;
29 public boolean knows(int p, int q) {
30 //@ assume B[p][q] == true ==> isCelebrity(p) == false;
31 //@ assume B[p][q] == false ==> isCelebrity(q) == false;
32 return B[p][q];
33 }
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34
35 //@ requires (\exists int c; 0 <= c && c <= N - 1;

isCelebrity(c));
36 //@ ensures isCelebrity(celeb);
37 public void findCeleb() {
38 int a = 0;
39 int b = N - 1;
40
41 //@ loop_invariant (\exists int i; a <= i && i <= b;

isCelebrity(i));
42 while (a != b) {
43 if (knows(a, b))
44 a++;
45 else
46 b--;
47 }
48
49 celeb = a;
50
51 // @ assert false;
52 }
53 }

The program passed the checking of ESC/Java2. However, PVS can not
prove the generated VC for the method findCeleb with the tactics grind au-
tomatically. This gives us an impression that Simplify is more powerful in
automatic reasoning than PVS. We guess it is because the logic of ESC/Java2
is highly tuned for Simplify. So, Simplify can fully utilize the character of the
logic in its proving, but PVS has no such kind of privilege.

As a workaround, we found a way to prove the method findCeleb. The basic
idea is that we replace line 43 to 46 by an assume clause as follows:

//@ assume (\exists int i; a <= i && i <= b; isCelebrity(i))

Then we can prove the generated VC with the tactics grind. We can also prove
the loop invariant holds for line 43 to 46 with the tactics grind after we put them
in a separate method and transform the loop invariant as the precondition and
postcondition of the method.

7.4 The Third Attempt to the Celebrity Problem

7.4.1 A New Approach to Verify the Celebrity Program
Inspired by the work of Hoare [4], we found a new approach to prove the celebrity
program. The main ideas of the approach are as follows:

• Define a specification variable with the abstract data type set.

• Implement some basic operation units and use the abstract set operations
to specify them.

• Prove the correctness of data representations, i.e., that the concrete im-
plementations of the basic operation units indeed represent the abstract
set operations.
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• Prove the correctness of findCeleb on the abstract level, i.e., reason about
the behavior of findCeleb with the abstract set operations.

Using abstract data to specify and verify programs has two advantages:
firstly, it should be easier to reason about the behavior of programs on the
abstract level than on the concrete implementation level; secondly, we do not
need to rewrite the specification if the concrete implementation is changed later
on.

Since ESC/Java2 does not support the data type set, we have to introduce
a data type pvs set with native specifications. The pvs set is mapped into the
PVS type set in the generated VC. We also need to change the previous celebrity
program to facilitate our experiments. The modified solution for the celebrity
problem is described as follows:

create a set Q which initially includes all persons;

choose and remove two different elements a and b from Q;

while (Q is not empty) {
if (a knows b) {

choose and remove another element c from Q;
a = c;

}
else {

choose and remove another element c from Q;
b = c;

}
}

if (a knows b)
b is the celebrity;

else
a is the celebrity;

7.4.2 Specifying the Celebrity Program with Set Operations
Following the ideas in the last section, we rewrote the celebrity program and
specified the program with the abstract set operations as follows:

1 /*@ public model pure class pvs_set {
2 @ public model pure static boolean member(pvs_set s, int e);
3 @ public model pure static pvs_set remove(pvs_set s, int e);
4 @ public model pure static boolean empty(pvs_set s);
5 @ }
6 @*/
7
8 class celebrity3 {
9 int N;
10 //@ invariant N >= 2;
11
12 boolean[][] B;
13
14 int celeb;
15
16 //@ private ghost int c;
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17
18 int lowerBound;
19 int upperBound;
20
21 //@ private model pvs_set Q;
22 //@ private model pure static pvs_set toSet(int n, int m);
23 //@ represents Q <- toSet(lowerBound+1, upperBound-1);
24
25 //@ requires k >= 2;
26 public celebrity3(int k) {
27 N = k;
28
29 B = new boolean[N][N];
30
31 lowerBound = -1;
32 upperBound = N;
33 }
34
35 //@ ensures (\result == true) ==> (c != p);
36 //@ ensures (\result == false) ==> (c != q);
37 public boolean knows(int p, int q) {
38 return B[p][q];
39 }
40
41 //@ ensures Q == pvs_set.remove(\old(Q), lowerBound);
42 public void chooseLower() {
43 lowerBound++;
44 }
45
46 //@ ensures Q == pvs_set.remove(\old(Q), upperBound);
47 public void chooseUpper() {
48 upperBound--;
49 }
50
51 //@ ensures (\result == true)

==> (pvs_set.empty(Q) == true);
52 //@ ensures (\result == false)

==> (pvs_set.empty(Q) == false);
53 public boolean empty() {
54 return ((upperBound - lowerBound) < 2);
55 }
56
57 //@ requires pvs_set.member(Q, c);
58 //@ ensures celeb == c;
59 public void findCeleb() {
60 chooseLower();
61 chooseUpper();
62 //@ assert c == lowerBound || c == upperBound ||

pvs_set.member(Q, c);
63
64 //@ loop_invariant c == lowerBound ||

c == upperBound || pvs_set.member(Q, c);
65 while (!empty()) {
66 if (knows(lowerBound, upperBound))

63



Chapter 7. Verifying the Celebrity Programs

67 chooseLower();
68 else
69 chooseUpper();
70 }
71
72 //@ assert c == lowerBound || c == upperBound;
73
74 if (knows(lowerBound, upperBound)) {
75 celeb = upperBound;
76 }
77 else {
78 celeb = lowerBound;
79 }
80 }
81 }

The ghost variable c is used to indicate the celebrity in the group. The method
findCeleb finds the celebrity and stores it in the variable celeb. From line 1 to 6,
we introduce a native type pvs set and some related native methods: member,
remove and empty. In the generated VC, we map pvs set and the native methods
into the PVS type set and corresponding set operations as follows:

pvs_set: TYPE+ = set

pvs_set_member_2_6(p0: JavaType, p1: pvs_set, p2: IntegralNumber):
Boolean = member(p2, p1)

pvs_set_remove_3_6(p0: JavaType, p1: pvs_set, p2: IntegralNumber):
pvs_set = remove(p2, p1)

pvs_set_empty_4_6(p0: JavaType, p1: pvs_set):
Boolean = (p1 = emptyset)

where the parameter p0 is generated by ESC/Java2 to indicate the state of the
program. Since our native methods are pure, p0 is not useful anymore.

Line 21 introduces an abstract set Q into the specification of the celebrity
program. Line 22 and 23 defines the representation function toSet to Q. The
function toSet is defined in the semantic prelude as follows:

toSet(n: IntegralNumber, m: IntegeralNumber):
set = {k: IntegralNumber | n <= k AND k <= m}

7.4.3 Checking the Method knows and Array Operations

Unlike in the first and second attempts, we separate our concerns in the third
attempt. Firstly, we check the correctness of the method knows and also absence
of array errors in the implementation, e.g. array null dereferences, array bounds
errors, etc. These things are directly related with the concrete implementation,
and have no direct relations with the abstract set operations. So, we just used
ESC/Java2 to check them.

For the method knows, its postconditions are defined as follows:

//@ ensures (\result == true) ==> (c != p);
//@ ensures (\result == false) ==> (c != q);
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In order to serve the checking, we delete the specifications with set which
are not supported by ESC/Java2, and add necessary preconditions for knows.
These preconditions specify the valid parameters of knows and the properties
of the celebrity c.

1 class celebrity31 {
2 int N;
3 //@ invariant N >= 2;
4
5 boolean[][] B;
6 //@ invariant B != null;
7 //@ invariant B.owner == this;
8 //@ invariant B.length == N;
9 //@ invariant (\forall int i; 0 <= i && i < B.length;

B[i] != null);
10 //@ invariant (\forall int i; 0 <= i && i < B.length;

B[i].length == N);
11
12 int celeb;
13
14 //@ private ghost int c;
15
16 int lowerBound;
17 int upperBound;
18
19 //@ requires k >= 2;
20 public celebrity31(int k) {
21 N = k;
22
23 B = new boolean[N][N];
24 //@ set B.owner = this;
25
26 lowerBound = -1;
27 upperBound = N;
28 }
29
30 //@ requires 0 <= p && p < N;
31 //@ requires 0 <= q && q < N;
32 //@ requires p != q;
33 //@ requires 0 <= c && c < N;
34 //@ requires (\forall int i; 0 <= i && i < N && i != c;

B[i][c] == true);
35 //@ requires (\forall int i; 0 <= i && i < N && i != c;

B[c][i] == false);
36 //@ ensures (\result == true) ==> (c != p);
37 //@ ensures (\result == false) ==> (c != q);
38 public boolean knows(int p, int q) {
39 return B[p][q];
40 }
41
42 //@ ensures lowerBound == \old(lowerBound) + 1;
43 public void chooseLower() {
44 lowerBound++;
45 }
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46
47 //@ ensures upperBound == \old(upperBound) - 1;
48 public void chooseUpper() {
49 upperBound--;
50 }
51
52 public boolean empty() {
53 return ((upperBound - lowerBound) < 2);
54 }
55
56 //@ requires 0 <= c && c < N;
57 //@ requires (\forall int i; 0 <= i && i < N && i != c;

B[i][c] == true);
58 //@ requires (\forall int i; 0 <= i && i < N && i != c;

B[c][i] == false);
59 //@ requires lowerBound == -1;
60 //@ requires upperBound == N;
61 public void findCeleb() {
62 chooseLower();
63 chooseUpper();
64
65 while (!empty()) {
66 if (knows(lowerBound, upperBound))
67 chooseLower();
68 else
69 chooseUpper();
70 }
71
72 if (knows(lowerBound, upperBound)) {
73 celeb = upperBound;
74 }
75 else {
76 celeb = lowerBound;
77 }
78 }
79 }

The above program passed the checking of ESC/Java2. This means that
the postconditions of knows hold and there are no array errors in the scope of
ESC/Java2’s checking. After this checking, we can focus on the correctness of
data representations and the method findCelb which are the main goals in the
experiment.

7.4.4 Some Axioms Used in the Proving Procedure
We defined some axioms in the semantic prelude in order to facilitate our proof.
Defining axioms is dangerous in PVS since it is easy to introduce inconsistency.
In order to avoid inconsistency, we tried to prove these axioms before using
them (by changing axioms to lemmas).

toSet axiom 1

toSet_axiom_1: AXIOM
FORALL(n: IntegralNumber, m: IntegralNumber):
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toSet(n+1, m) = remove(n, toSet(n, m))

PVS can not prove the axiom toSet axiom 1 with the tactics grind. The
essence of the axiom is about the equality of set. Although we think there
should be a way to prove the axiom directly, we did not find the way in our
experiments. As a workaround, we proved the following two lemmas with grind :

toSet_axiom_1_prove_1: THEOREM
FORALL(i: IntegralNumber n: IntegralNumber, m: IntegralNumber):

member(i, toSet(n+1, m)) IMPLIES
member(i, remove(n, toSet(n, m)))

toSet_axiom_1_prove_2: THEOREM
FORALL(i: IntegralNumber n: IntegralNumber, m: IntegralNumber):

member(i, remove(n, toSet(n, m))) IMPLIES
member(i, toSet(n+1, m))

The correctness of the two lemmas should be sufficient to guarantee the cor-
rectness of toSet axiom 1.

toSet axiom 2

Similar to toSet axiom 1, we also defined and proved the axiom toSet axiom 2
as follows:

toSet_axiom_2: AXIOM
FORALL(n: IntegralNumber, m: IntegralNumber):

toSet(n, m-1) = remove(m, toSet(n, m))

toSet axiom 3

toSet_axiom_3: AXIOM
FORALL(n: IntegralNumber, m: IntegralNumber):

(n > m) <=> (toSet(n, m) = emptyset)

According to the definition of emptyset and empty?, the above axiom is
equivalent to the following axiom:

toSet_axiom_3_prove: AXIOM
FORALL(n: IntegralNumber, m: IntegralNumber):

(n > m) <=> (empty?(toSet(n, m)))

We proved toSet axiom 3 prove with the tactics grind.

get and set axiom

get_and_set_axiom: AXIOM
FORALL(f: Field, r: Reference, v: Number):

get(set(f, r, v), r) = v

Actually, the axiom get and set axiom is an instantiation of the existing
axiom get and set definition in the semantic prelude. We provided it in order
to avoid tedious typing work in the proving procedure.
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Figure 7.1: Proof trees for the methods chooseLower
and chooseUpper

7.4.5 Proving the Correctness of Data Representations
Before proving the correctness of the method findCeleb, we need to prove its
basic composition units: chooseLower, chooseUpper, empty. Since we use set to
specify the behavior of these methods, the correctness of these methods means
they indeed implement the abstract set operations.

Prove chooseLower
For the method chooseLower, we need to prove its implementation represents
the following abstract operation:

//@ ensures Q == pvs_set.remove(\old(Q), lowerBound);

The generated VC for chooseLower is about 260 lines. With the axiom
toSet axiom 1, we proved the VC for chooseLower. The left part of figure 7.1
shows the proof tree for chooseLower.

Prove chooseUpper
For the method chooseUpper, we need to prove its implementation represents
the following abstract operation:

//@ ensures Q == pvs_set.remove(\old(Q), lowerUpper);

The generated VC for chooseLower is about 260 lines. With the axiom
toSet axiom 2, we proved the VC for chooseUpper. The right part of figure 7.1
shows the proof tree for chooseUpper.

Prove empty
The postconditions for empty are defined as follows:

68



Chapter 7. Verifying the Celebrity Programs

Figure 7.2: Proof tree for the method empty

//@ ensures (\result == true) ==> (pvs_set.empty(Q) == true);
//@ ensures (\result == false) ==> (pvs_set.empty(Q) == false);

Figure 7.2 shows the proof tree for empty. The axiom toSet axiom 3 is used
in the proof.

7.4.6 Proving the Correctness of the Method findCeleb
After the proof of knows, chooseLower, chooseUpper and empty, the correctness
of findCeleb can be proved on the abstract level since ESC/Java2 performs
modular checking, i.e., only preconditions and postconditions of the methods
chooseLower, chooseUpper, empty and knows will be considered when checking
findCeleb.

However, the generated VC for findCeleb is too large (over 4600 lines). It
is hard to understand and prove such large VC in PVS. As a workaround, we
divided findCeleb into four parts, and proved the four parts separately. Although
we can not guarantee that the correctness of findCeleb is equivalent to the
correctness of the four parts, the proof demonstrates the feasibility of proving
a program on the abstract level which is the main goal of the experiment.

1 //@ requires pvs_set.member(Q, c);
2 //@ ensures celeb == c;
3 public void findCeleb() {
4 chooseLower();
5 chooseUpper();
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6 //@ loop_invariant c == lowerBound ||
c == upperBound || pvs_set.member(Q, c);

7 while (!empty()) {
8 if (knows(lowerBound, upperBound))
9 chooseLower();
10 else
11 chooseUpper();
12 }
13
14 if (knows(lowerBound, upperBound)) {
15 celeb = upperBound;
16 }
17 else {
18 celeb = lowerBound;
19 }
20 }

The first part includes line 4 and 5; The second part includes the loop from line
7 to 12. In the second part, we replace the loop body by an assume clause; The
third part is the loop body from line 8 to 11; Line 14 to 19 are in the fourth part.

Prove the first part of findCeleb
The first part of findCeleb is as follows:

1 //@ requires pvs_set.member(Q, c);
2 //@ ensures c == lowerBound || c == upperBound ||

pvs_set.member(Q, c);
3 public void findCeleb1() {
4 chooseLower();
5 chooseUpper();
6 }

We proved the generated VC with the tactics grind in PVS.

Prove the second part of findCeleb
The second part of fidCeleb is as follows:

1 //@ requires c == lowerBound || c == upperBound ||
pvs_set.member(Q, c);

2 //@ ensures c == lowerBound || c == upperBound
3 public void findCeleb2() {
4 //@ loop_invariant c == lowerBound || c == upperBound ||

pvs_set.member(Q, c);
5 while (!empty()) {
6 //@ assume c == lowerBound || c == upperBound ||

pvs_set.member(Q, c);
7 }
8 }

findCeleb2 comes from the loop statement of findCeleb with the replacement
of the loop body by an assume clause. The actual loop body is proved in the
third part. We do this in order to generate a smaller VC and simplify the proof
procedure.
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Figure 7.3: Proof Tree for the method findceleb2

Figure 7.4: Proof Tree for the method findceleb3

The figure 7.3 shows the proof tree for findCeleb2.

Prove the third part of findCeleb

The third part of findCeleb contains the actual loop body.

1 //@ requires c == lowerBound || c == upperBound ||
pvs_set.member(Q, c);

2 //@ ensures c == lowerBound || c == upperBound ||
pvs_set.member(Q, c);

3 public void findCeleb3() {
4 if (knows(lowerBound, upperBound))
5 chooseLower();
6 else
7 chooseUpper();
8 }

Figure 7.4 shows the proof tree for findCeleb3.

Prove the fourth part of findCeleb
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Figure 7.5: Proof Tree for the method findceleb4

The fourth part of findCeleb is as follows:

1 //@ requires c == lowerBound || c == upperBound;
2 //@ ensures celeb == c;
3 public void findCeleb4() {
4 if (knows(lowerBound, upperBound)) {
5 celeb = upperBound;
6 }
7 else {
8 celeb = lowerBound;
9 }
10 }

Figure 7.5 shows the proof tree for findCeleb4.

7.5 Problems and Solutions
From the theoretical point of view, proving programs on the abstract level with
native specification works. However, there are many problems in the engineering
aspect. The most serious problem is how to scale the approach to handle non-
trivial programs. As mentioned, the generated VC is over 4600 lines for the
method findCeleb in our experiments. It is hard to prove such a large VC in
PVS, even for a PVS expert.

Another serious problem concerns the type assignment in our VC translator.
For example, in the experiments we found the following GC:

1 { ASSUME RES;
2 tmp0!old!a:10.13 = a:7.12;
3 a:7.12 = integralAdd(tmp0!old!a:10.13, 1)
4 []
5 ASSUME booleNot(RES);
6 tmp0!old!a:12.13 = a:7.12;
7 a:7.12 = integralAdd(tmp0!old!a:12.13, 1)
8 };
9 RES = a:7.12;
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The RES in line 1 and 5 is different from the RES in line 9. Actually, they
have different types: the RES in line 1 and 5 has the type Boolean, and the
RES in line 9 must have the type IntegralNumber. This GC does not give any
problem for ESC/Java2 since ESC/Java2 is based on an unsorted logic where
the type information is encoded into separate sub-formulas. However, it is a
problem for our VC translator since our VC translator can not give a proper
type to RES since our VC translator has no way to distinguish the two RES s.

The third problem is about the semantic prelude. In the experiments, we
noticed that it is necessary to add a type IntegralField in the semantic prelude.
The motivation to add IntegralField is that we found the following formula exists
in a generated VC:

(0 < get(f, this)) AND (get(f, this) < 2)

where f is a field of the class being checked. If the type of f is IntegralField,
PVS can judge that the value of f must be 1. If the type of f is NumberField,
PVS has no way to get the result since f can be a real number. Because of this
reason, we added the following definition in the semantic prelude:

IntegralField : TYPE+ FROM NumberField

The fourth problem is caused by the type system in the semantic prelude.
In the proof procedure, we found many unproved TCCs (Type Checking Con-
ditions) in PVS. All unproved TCCs are of two forms:

FORALL (f: IntegralField, brokenObj: Reference):
IntegralNumber_pred(get(f, brokenObj) + 1);

FORALL (s: pvs_set):
Boolean_pred(s = emptyset[IntegralNumber]);

For the first unproved TCC, the type of “get(f, brokenObj)” is Integral-
Number. PVS can not prove that the type of “get(f, brokenObj)+1” is still
IntegralNumber since IntegralNumber is defined as a subtype of int in the se-
mantic prelude.

For the second unproved TCC, the type of “s = emptyset[IntegralNumber]”
is bool. PVS can not prove the TCC since Boolean is defined as a subtype of
bool in the semantic prelude.

If we modify the definition of IntegralNumber and Boolean as follows, all
unproved TCCs disappear after the modification.

old:
IntegralNumber : TYPE+ FROM int
Boolean: TYPE+ FROM bool

new:
IntegralNumber : TYPE+ = int
Boolean: TYPE+ = bool

7.6 Conclusions
The experiments with the celebrity problem demonstrate the feasibility of prov-
ing Java programs on the abstract level with native specifications. The approach
has potential advantages since the specification on the abstract level is usually
clearer and simpler than the specification on the concrete implementation level.
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Chapter 8

Conclusions

The main purpose of the thesis project is to develop an approach to verify Java
programs by integrating ESC/Java2 and PVS. As we state in Chapter 1, there
are three specific goals in the project:

• updating the initial VC translator to the latest semantic prelude and ex-
tending it to multi-line methods.

• extending the initial VC translator to some advanced features: quantifier
operators, method call, array, and native specifications.

• investigating the advantages of the proposed approach, i.e., answering the
question: can we check some programs which can not be handled by the
original approach?

We would like to say we achieved the goals in the thesis project. The VC
translator was updated and extended in the project, and the proposed ap-
proach was demonstrated to prove some programs which can not be handled
by ESC/Java2, e.g. the fibonacci program and the celebrity program.

8.1 Achievements
We summarize our achievements from the educational and research point of
views separately.

Achievements from the educational point of view:

• We improved our understanding about ESC/Java2. For example, we are
more clear about how the VC is generated and processed in ESC/Java2.

• We gained experience in using PVS. Since PVS is a quite complicated
tool, we are still beginners. However the experience in the project already
gave us some ideas about how to use and master PVS. For example, we
are clear about the usage of some tactics like skosimp, induct, etc. We
also noticed that the prelude of PVS provides good material to study its
specification language.
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• We got better understanding of program specification and verification
techniques, e.g. Weakest Precondition Calculus, Guarded Command Lan-
guage, Hoare logic, JML, etc. This understanding is valuable since it is
achieved by studying theory and investigating real software.

Achievements from the research point of view:

• We updated and extended the initial VC translator for PVS to quantifier
operators, strong pure method call and array operations. Although our
VC translator is still far from dealing with real industry applications, it is
already able to handle some small programs.

• We developed a methodology to support native specifications in JML. We
believe supporting native specifications is one of big advantages of the
proposed approach.

• We developed a methodology to reason about Java programs on the ab-
stract level with native specifications. The experiments for the celebrity
problem demonstrate the feasibility and advantages of the methodology.

8.2 Problems and Solutions
Besides our achievements, there are still many problems left in both theoretical
and practical aspects.

• The unsorted logic of ESC/Java2 caused many difficulties and problems
in the VC translator.
Description: The task of the VC translator is translating the original
VC for Simplify into the VC for PVS. The original VC is based on an
unsorted logic while the VC for PVS is based on the sorted logic of PVS.
The discrepancy between the unsorted and sorted logic caused many diffi-
culties and problems in the development of the tool. For example, in order
to give variables with right types, we have to access the abstract syntax
tree to get all type information in advance. The procedure is not very
robust. Furthermore, in the VC translator we have to build a new sorted
abstract syntax tree since the original abstract syntax tree is unsorted.
This increases the complexity of the VC translator.

Solution: The successor of ESC/Java2 should be developed on a sorted
logic. If ESC/Java2 is built on a sorted logic from its front-end, the work
of the VC translator would be much easier. Actually, Joseph Kiniry and
his colleagues in Dublin are working on this topic right now.

• The generated VC of ESC/Java2 is usually too large to be understood by
a human being.
Description: We noticed that the generated VC of ESC/Java2 is quite
large even for a simple program like the celebrity program. If we want to
prove a VC in PVS, we usually need to understand the structure of the
VC. However, it is hard to understand a formula of over a thousand lines
like we got in the experiments with the celebrity problem.
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Solution: There are two possible ways to deal with the problem. Firstly,
maybe we can introduce a postprocessor to analyze the generated VC and
compress it. Secondly, ESC/Java2 generates one VC for each method
being checked. The VC integrates many small proof obligations which
are used to check different properties like aliasing errors, invariants, loop
invariants, etc. Actually, as we know, similar tools to ESC/Java2 like Jack
generate several proof obligations to each method being checked. Since
each proof obligation focuses on only one property, such proof obligations
would be much easier to understand than the VC of ESC/Java2. So, we
wonder whether we can provide an option to ESC/Java2 to split a big VC
into many small proof obligations according to the semantics of programs.

• Using model classes and model methods to support native specifications
is not perfect.
Description: As we state in Chapter 6, using model classes and model
methods to support native specifications is a temporary trick in our project.
Since ESC/Java2 can not distinguish native methods from ordinary model
methods, we have no way to map these native methods into the methods
of PVS automatically. There is a similar problem for native types.

Solution: We suggest to introduce a new keyword native to indicate
native specifications in ESC/Java2 as [21] did in Jack. With the new
keyword, ESC/Java2 can distinguish native methods from other model
methods, and the VC translator can map these native methods into the
methods of PVS automatically.

• The soundness of the semantic prelude is not investigated.
Description: Since ESC/Java2 is not sound, the proposed approach is
unsound as well. Being an important part of the proposed approach, the
soundness of the semantic prelude is very important since a small problem
in the semantic prelude would cause all of our proofs in PVS to be invalid.

Solution: We should seriously investigate the soundness and complete-
ness of the semantic prelude.

• How to identify the broken specifications or suspect bugs in source code.
Description: If ESC/Java2 fails to check a program, Simplify can provide
some information to identify the accurate positions of broken specifications
or suspect bugs in source code. This is very useful for users. But in PVS,
we did not find a way to support such feature. If a VC can not be proved
in PVS, we only know maybe there is an error in the program. We are
not clear about what and where the error is.

Solution: We are still not very clear about how to solve the problem.
The reason why Simplify can identify the broken specifications or suspect
bugs is because Simplify utilizes some special labeled expressions in the
VC for Simplify. In our current VC translator, we ignored these special
labels when generating the VC for PVS. Further investigations are needed
to solve the problem.
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8.3 Future Work
There is plenty of work to do in the future. First of all, we need to consider
how to solve the problems given in the previous section. However, we think it
is better to tackle these problems after the successor of ESC/Java2 is developed
on the sorted logic from its front-end.

Secondly, we need to develop the VC translator to handle allocating new
arrays in programs. In the thesis project, we only proposed a solution. Further
investigation and implementation is needed.

Finally, it is interesting to support weak pure method calls in ESC/Java2.
In the thesis project, we only considered strong pure method calls which require
that the model methods are side effect free and no new objects are allocated in
the methods. In [1], the authors proposed an approach to support weak pure
method calls which allow allocating and initializing new objects in the model
methods. We think the approach could possibly be introduced in ESC/Java2.
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An Example of the VC for Simplify

The following VC is generated by ESC/Java2 for the method add of the program
test in the section 3.3.

(EXPLIES
(LBLNEG |vc.test.add.2.4|

(IMPLIES
(AND

(EQ |elems@pre| elems)
(EQ elems

(asElems elems)
)

(<
(eClosedTime elems)
alloc)

(EQ LS
(asLockSet LS)
)

(EQ |alloc@pre| alloc)
(EQ |state@pre| state)
)

(NOT
(AND

(EQ |@true|
(is this T_test)
)

(EQ |@true|
(isAllocated this alloc)
)

(NEQ this null)
(EQ |@true|
(is |a:3.23| T_int)
)

(EQ |@true|
(is |b:3.30| T_int)
)

(LBLNEG |Pre|
(AND

(EQ |@true|
(is this T_test)
)

(NEQ this null)
)

)
(FORALL
(brokenObj)
(EQ

(|java.lang.Throwable#_stackTrace| state brokenObj)
(|getStackTrace##state| state brokenObj)
)

)
(FORALL
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(|brokenObj<1>|)
(EQ

(|java.lang.Throwable#_stackTrace| state |brokenObj<1>|)
(|getStackTrace##state| state |brokenObj<1>|)
)

)
(EQ RES

(+ |a:3.23| |b:3.30|)
)

(LBLPOS |trace.Returnˆ0,4.8|
(EQ |@true| |@true|)
)

(FORALL
(brokenObj)
(EQ

(|java.lang.Throwable#_stackTrace| state brokenObj)
(|getStackTrace##state| state brokenObj)
)

)
(FORALL

(|brokenObj<1>|)
(EQ

(|java.lang.Throwable#_stackTrace| state |brokenObj<1>|)
(|getStackTrace##state| state |brokenObj<1>|)
)

)
(OR

(NOT
(LBLNEG |Exception@5.4|
(EQ |ecReturn| |ecReturn|)
)

)
(AND

(LBLNEG |Exception@5.4|
(EQ |ecReturn| |ecReturn|)
)

(OR
(NOT

(LBLNEG |Post:2.8@5.4|
(IMPLIES

(AND
(EQ |ecReturn| |ecReturn|)
(EQ |@true|
(is this T_test)
)

(NEQ this null)
)

(EQ RES
(+ |a:3.23| |b:3.30|)
)

)
)

)
(NOT

(LBLNEG |Post:2.4@5.4|
(IMPLIES

(AND
(EQ |ecReturn| |ecThrow|)
(<:
(typeof XRES)
|T_java.lang.Exception|)

)
(NOT

(AND
(EQ |@true|

(is this T_test)
)

(NEQ this null)
)

)
)

)
)

)
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)
)

)
)

)
)

(AND
(DISTINCT |ecReturn| |ecThrow|)
)

)
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An Example of the VC for PVS

The following VC is generated by the VC translator for the method add of the
program test in the section 3.3.

vc_test_add_2_4: THEORY
BEGIN

IMPORTING escjava2_logic
test: TYPE+ FROM JavaType

vc_test_add_2_4: THEOREM
Forall(
b_3_30: IntegralNumber,
brokenObj: Reference,
RES: IntegralNumber,
a_3_23: IntegralNumber,
brokenObj_1_: Reference):
(

(
(elems_pre = elems)
AND True
AND
(

(eClosedTime(elems))
< alloc)

AND True
AND
(alloc_pre = alloc)
AND
(state_pre = state)

)
IMPLIES
(NOT
(TRUE

AND
(isAllocated(this, alloc))
AND
(this /= NULL)
AND TRUE
AND TRUE
AND
(TRUE

AND
(this /= NULL)

)
AND
(FORALL (brokenObj: Reference):

(java_lang_Throwable_stackTrace(state, brokenObj)
= getStackTrace_state(state, brokenObj)

)
)
AND
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(FORALL (brokenObj_1_: Reference):
(java_lang_Throwable_stackTrace(state, brokenObj_1_)

= getStackTrace_state(state, brokenObj_1_)
)

)
AND
(RES =

(a_3_23 + b_3_30)
)
AND TRUE
AND
(FORALL (brokenObj: Reference):

(java_lang_Throwable_stackTrace(state, brokenObj)
= getStackTrace_state(state, brokenObj)

)
)
AND
(FORALL (brokenObj_1_: Reference):

(java_lang_Throwable_stackTrace(state, brokenObj_1_)
= getStackTrace_state(state, brokenObj_1_)

)
)
AND
(

(NOT
(ecReturn = ecReturn)

)
OR
(

(ecReturn = ecReturn)
AND
(
(NOT

(
(

(ecReturn = ecReturn)
AND TRUE
AND
(this /= NULL)

)
IMPLIES

(RES =
(a_3_23 + b_3_30)

)
)

)
OR
(NOT

(
(

(ecReturn = ecThrow)
AND
(

(typeOf(XRES))
<= T_java_lang_Exception

)
)
IMPLIES

(NOT
(TRUE

AND
(this /= NULL)

)
)

)
)

)
)

)
)

)
)

END vc_test_add_2_4
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The Semantic Prelude

The following file (escjava2.pvs) is the semantic prelude used in our project. es-
cjava2 predefined, escjava2 test sum, escjava2 test fibo, escjava2 test set array
and escjava2 test celebrity are theories which are added for our experiments in
the thesis project.
% The ESC/Java2 sorted logic.
%
% This is the sorted logic used by ESC/Java2.
%
% $Id: escjava2.pvs,v 1.1 2005/10/15 11:21:54 jkiniry Exp $
%
% It was written by Joe Kiniry, Cesare Tinelli, Patrice Chalin, and
% Clement Hurlin in 2005.
%
% This is the canonical sorted logic which is to be translated
% automatically into SMT-LIB by either an external script or by a new
% extension to PVS (to be written by folks at UCD).

escjava2_types : THEORY
BEGIN
%S : TYPE+

% Java base types.
Boolean : TYPE+ FROM bool
% Eventually we’ll refine IntegralNumber to bounded, modular ints.
% All of these numeric types inherit from the PVS type "number".
IntegralNumber : TYPE+ FROM int
% The same thing holds true for this bad-boy.
FloatingPointNumber : TYPE+ FROM real
BigIntNumber : TYPE+ FROM int
RealNumber : TYPE+ FROM real
% We would love to define these as supertypes of these component
% types but we cannot because we are relying upon PVS prelude
% types for their semantics. Number is the supertype of all
% Java integral types and JML numeric types.
Number : TYPE+ = number
BasicValue : TYPE+ = [Boolean + Number]
Reference : TYPE+
ArrayReference : TYPE+ FROM Reference
JMLNumber : TYPE+ = [Number + BigIntNumber + RealNumber]

% Sorts representing the various kinds of object fields in Java.
Field : TYPE+
BooleanField, NumberField, ReferenceField : TYPE+ FROM Field

% These two PVS types represent the actual Java types.
JavaType : TYPE+
PrimitiveType, ReferenceType : TYPE+ FROM JavaType
ArrayType : TYPE+ FROM ReferenceType
JavaTypes_are_disjoint : AXIOM

FORALL(p : PrimitiveType, r : ReferenceType): p /= r
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Time : TYPE FROM int
Lock : TYPE+
Path : TYPE+

% @review JoeK, CesareT: It is unclear if we need Object at
% all; reconsider later.
Object : TYPE+

END escjava2_types

map_theory[Map : TYPE+, Index : TYPE+, Value : TYPE+] : THEORY
BEGIN

get : [ Map, Index -> Value ]
set : [ Map, Index, Value -> Map ]

get_and_set_definition : AXIOM
FORALL(m : Map, i : Index, v : Value ) :

get(set(m, i, v), i) = v

set_only_changes_one_index : AXIOM
FORALL(m : Map, i,j : Index, v : Value) :

i /= j IMPLIES get(set(m, i, v), j) = get(m, j)

END map_theory

escjava2_java_typesystem : THEORY
BEGIN

IMPORTING escjava2_types,
orders[JavaType]

t, u : ReferenceType

% <: is <=
% < is <
<,<= : [ ReferenceType, ReferenceType -> bool ]

% === ESCJ 8: Section 1.1

% We will use ’<=’ in PVS for ’<:’ in the Simplify logic. Thus,
% <= is reflexive, transitive, and antisymmetric.

comparison_is_a_strict_order : POSTULATE strict_order?(<)
% Add an axiom to relate these two orders and define subtyping (<=) as a
% partial order.
subtype_definitions: AXIOM
FORALL(t : ReferenceType, u : ReferenceType) :

t <= u IFF t < u OR t = u

% The base type in Java (java.lang.Object).

T_java_lang_Object : ReferenceType

% Primitive types are final.

T_boolean, T_char, T_byte, T_short, T_int, T_long, T_float, T_double : PrimitiveType

% primitive? is no longer necessarily because the existence of
% PrimitiveType.

% extends? is Java’s "extends" and "implements" (direct subtype)
extends? : [ ReferenceType, ReferenceType -> bool ]
extends_is_irreflexive : POSTULATE irreflexive?(extends?)

subtype_includes_extends : AXIOM
FORALL(t : ReferenceType, u : ReferenceType) :

extends?(t, u) IMPLIES t <= u

subtype_is_a_relation_that_contains_extends : AXIOM
FORALL(t : ReferenceType, u : ReferenceType) :

t <= u AND t /= u IMPLIES
EXISTS(v : ReferenceType) : extends?(t, v) AND v <= u

% Note that this is a higher-order axiom that cannot be translated
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% to SMT-LIB.
subtype_is_the_smallest_relation_that_contains_extends : AXIOM

FORALL(r : [ ReferenceType, ReferenceType -> bool ],
t : ReferenceType, u : ReferenceType) :

t <= u AND t /= u IMPLIES r(t, u)

primative_types_are_final : AXIOM
FORALL (t : JavaType, p : PrimitiveType): t <= p IMPLIES t = p

primative_types_have_no_proper_supertypes : AXIOM
FORALL (p : PrimitiveType, t : JavaType): p <= t IMPLIES p = t

java_lang_Object_is_Top : AXIOM
FORALL (t : ReferenceType): t <= T_java_lang_Object

% === ESCJ 8: Section 1.2

typeOf(r : Reference) : ReferenceType
NULL : Reference

isa?(r : Reference, t : ReferenceType) : bool =
((r = NULL) OR typeOf(r) = t)

% === ESCJ 8: Section 1.3

T_java_lang_Cloneable : ReferenceType

elemtype : [ArrayType -> JavaType]
array_constructor : [JavaType -> ArrayType]

arrays_are_cloneable : AXIOM
FORALL (t : JavaType): array_constructor(t) <= T_java_lang_Cloneable

elemtype_definition : AXIOM
FORALL (t : JavaType): elemtype(array_constructor(t)) = t

array_subtyping : AXIOM
FORALL (t0 : ArrayType, t1 : JavaType): t0 <= array_constructor(t1) IFF

elemtype(t0) <= t1

% === ESCJ 8: Section 2.1

% The static type predicate.

% Again, we would prefer to wrap this up in a single is(), but
% because of the PVS type hierarchy (discussed above) we have to
% overload instead.
is : [ Boolean, JavaType -> bool ]
is : [ Number, JavaType -> bool ]
is : [ Reference, JavaType -> bool ]

% cast is dealt with the same way.
cast : [ Boolean, PrimitiveType -> Boolean ]
cast : [ Number, PrimitiveType -> Number ]
cast : [ Reference, ReferenceType -> Reference ]

redundant_cast_removal_boolean : AXIOM
FORALL (x : Boolean, t : JavaType): is(x, t) IMPLIES cast(x, t) = x

redundant_cast_removal_number : AXIOM
FORALL (x : Number, t : JavaType): is(x, t) IMPLIES cast(x, t) = x

redundant_cast_removal_reference : AXIOM
FORALL (x : Reference, t : JavaType): is(x, t) IMPLIES cast(x, t) = x

% === ESCJ 8: Section 2.2

% Not in ESCJ8, but should be

refEQ(x, y : Reference): bool = x = y

refNE(x, y : Reference): bool = x /= y

END escjava2_java_typesystem

escjava2_java_boolean_ops : THEORY
BEGIN
IMPORTING escjava2_java_typesystem
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% === ESCJ 8: Section 5.2

boolAnd (a, b : Boolean): bool = a AND b
boolEq (a, b : Boolean): bool = a IFF b
boolImplies (a, b : Boolean): bool = a IMPLIES b
boolNE (a, b : Boolean): bool = a /= b
boolNot (a : Boolean): bool = NOT a
boolOr (a, b : Boolean): bool = a OR b

% === ESCJ 8: Section 5.3

% Java’s ternary ’conditional’ operator (? :)

termConditional (b : Boolean, x, y : Boolean): Boolean =
IF b THEN x ELSE y ENDIF

termConditional (b : Boolean, x, y : Number): Number =
IF b THEN x ELSE y ENDIF

termConditional (b : Boolean, x, y : Reference): Reference =
IF b THEN x ELSE y ENDIF

END escjava2_java_boolean_ops

escjava2_java_integral_types : THEORY
BEGIN

IMPORTING escjava2_java_typesystem

% === ESCJ 8: Section 2.2.1

% Axioms to express the size of the basic types.
range_of_char : AXIOM
FORALL (x : Number): is(x, T_char) IFF 0 <= x AND x <= 65535

range_of_byte : AXIOM
FORALL (x : Number): is(x, T_byte) IFF -128 <= x AND x <= 127

range_of_short : AXIOM
FORALL (x : Number): is(x, T_short) IFF -32768 <= x AND x <= 32767

range_of_int : AXIOM
FORALL (x : Number): is(x, T_int) IFF -2ˆ31 <= x AND x <= 2ˆ31-1

range_of_long : AXIOM
FORALL (x : Number): is(x, T_long) IFF -2ˆ63 <= x AND x <= 2ˆ63-1

range_of_float : AXIOM
FORALL (x : Number): is(x, T_float) IFF -(2-(2ˆ-23))*(2ˆ127) <= x

AND x <= (2-(2ˆ-23))*(2ˆ127)
range_of_double : AXIOM
FORALL (x : Number): is(x, T_double) IFF -(2-(2ˆ-52))*(2ˆ1023) <= x

AND x <= (2-(2ˆ-52))*(2ˆ1023)

END escjava2_java_integral_types

escjava2_java_integral_ops : THEORY
BEGIN

IMPORTING escjava2_java_typesystem

% === ESCJ 8: Section 5.1

% Define using modulo_arithmetic theory.
integralMod(x, y : IntegralNumber): {v: mod(y) | EXISTS (r: mod(y)): v = x * y + r}
integralDiv(x, y : IntegralNumber): {r: mod(y) | EXISTS (v: mod(y)): v = x * y + r}

integralMod_def : LEMMA
FORALL (a, b : IntegralNumber): b /= 0 IMPLIES a = (a / b) * b + (integralMod(a, b))

integralEQ(x,y : IntegralNumber) : IntegralNumber = (x = y)
integralGE(x,y : IntegralNumber) : IntegralNumber = (x >= y)
integralGT(x,y : IntegralNumber) : IntegralNumber = (x > y)
integralLE(x,y : IntegralNumber) : IntegralNumber = (x <= y)
integralLT(x,y : IntegralNumber) : IntegralNumber = (x < y)
integralNE(x,y : IntegralNumber) : IntegralNumber = (x /= y)

% === Axioms about properties of integral &, |, and /

integralAnd, integralOr, integralXor, intShiftL, longShiftL :
[ IntegralNumber, IntegralNumber -> IntegralNumber ]

integralAnd_definition1 : LEMMA
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FORALL (x, y : IntegralNumber): (0 <= x OR 0 <= y) IMPLIES
0 <= integralAnd(x, y)

integralAnd_definition2 : LEMMA
FORALL (x, y : IntegralNumber): 0 <= x IMPLIES

integralAnd(x, y) <= x
integralAnd_definition3 : LEMMA

FORALL (x, y : IntegralNumber): 0 <= y IMPLIES
integralAnd(x, y) <= y

integralOr_definition : LEMMA
FORALL (x, y : IntegralNumber): (0 <= x AND 0 <= y) IMPLIES

x <= integralOr(x, y) AND y <= integralOr(x, y)
integralDiv_definition : LEMMA

FORALL (x, y : IntegralNumber): (0 <= x AND 0 <= y) IMPLIES
0 <= integralDiv(x, y) AND integralDiv(x, y) <= x

integralXor_definition : LEMMA
FORALL (x, y : IntegralNumber): (0 <= x AND 0 <= y) IMPLIES

0 <= integralXor(x, y)
intShiftL_definition : LEMMA

FORALL (n : IntegralNumber): (0 <= n AND n < 31) IMPLIES
1 <= intShiftL(1, n)

longShiftL_definition : LEMMA
FORALL (n : IntegralNumber): (0 <= n AND n < 63) IMPLIES

1 <= longShiftL(1, n)

END escjava2_java_integral_ops

escjava2_java_floating_point : THEORY
BEGIN
IMPORTING escjava2_java_typesystem

% === A few floating point axioms - DRCok

floatingEQ(x, y : FloatingPointNumber) : FloatingPointNumber = (x = y)
floatingGE(x, y : FloatingPointNumber) : FloatingPointNumber = (x >= y)
floatingGT(x, y : FloatingPointNumber) : FloatingPointNumber = (x > y)
floatingLE(x, y : FloatingPointNumber) : FloatingPointNumber = (x <= y)
floatingLT(x, y : FloatingPointNumber) : FloatingPointNumber = (x < y)
floatingNE(x, y : FloatingPointNumber) : FloatingPointNumber = (x /= y)

floatingADD(x, y : FloatingPointNumber) : FloatingPointNumber = (x + y)
floatingMUL(x, y : FloatingPointNumber) : FloatingPointNumber = (x * y)
floatingNEQ(x : FloatingPointNumber) : FloatingPointNumber = (- x)
floatingMod(x, y : FloatingPointNumber): {v: mod(y) | EXISTS (r: mod(y)): v = x * y + r}

END escjava2_java_floating_point

escjava2_array_store : THEORY
BEGIN

% Mimics the ’elems’ of SRC ESC/Java.
ArrayStore : TYPE+
% This is the syntactic, fully-resolved name of the Java array
% being indexed. In SRC ESC/Java, it is encoded in Translate as a
% standard VariableAccess.
ArrayName : TYPE+

END escjava2_array_store

escjava2_java_field_representation : THEORY
BEGIN
IMPORTING escjava2_java_typesystem,

escjava2_jml_semantics,
escjava2_array_store,
map_theory[BooleanField, Reference, Boolean],
map_theory[NumberField, Reference, Number],
map_theory[ReferenceField, Reference, Reference],
map_theory[ArrayReference, IntegralNumber, Boolean],
map_theory[ArrayReference, IntegralNumber, Number],
map_theory[ArrayReference, IntegralNumber, Reference],
map_theory[ArrayStore, ArrayName, ArrayReference]

elems : var ArrayStore

% === ESCJ 8: Section 3.0
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vAllocTime : [ Reference -> Time ]
isAllocated (r : Reference, t : Time): bool = vAllocTime(r) < t

% === ESCJ 8: Section 3.1

fClosedTime : [ Field -> Time ]
fClosedTime_definition : AXIOM
FORALL (r : Reference, f : Field, t : Time):

(fClosedTime(f) < t AND isAllocated(r, t)) IMPLIES
isAllocated(get(f, r), t)

% === ESCJ 8: Section 3.2
eClosedTime : [ ArrayStore -> Time ]

eClosedTime_definition : AXIOM
FORALL (a : ArrayName, i : IntegralNumber, t : Time):

(eClosedTime(elems) < t AND isAllocated(get(elems, a), t)) IMPLIES
isAllocated(get(get(elems, a), i), t)

END escjava2_java_field_representation

escjava2_java_strings : THEORY
BEGIN

IMPORTING escjava2_java_typesystem,
escjava2_jml_semantics

T_java_lang_String : ReferenceType

stringCat (x, y : Reference) : Reference

stringCat_definition1 : AXIOM
FORALL (x, y : Reference): stringCat(x, y) /= NULL AND

typeOf(stringCat(x, y)) <= T_java_lang_String

END escjava2_java_strings

escjava2_java_semantics : THEORY
BEGIN

IMPORTING escjava2_java_typesystem,
escjava2_java_boolean_ops,
escjava2_java_integral_types,
escjava2_java_integral_ops,
escjava2_java_floating_point,
escjava2_java_field_representation,
escjava2_java_strings

END escjava2_java_semantics

escjava2_lock_semantics : THEORY
BEGIN

IMPORTING escjava2_java_typesystem,
escjava2_jml_semantics,
escjava2_java_field_representation,
map_theory[Lock, Reference, bool]

% % === ESCJ 8: Section 4

LS : Lock
maxLockset : Reference

lockLE (l : Lock, x : Reference, y : Reference): bool
lockLT (l : Lock, x : Reference, y : Reference): bool

max(l : Lock) : Reference =
maxLockset

% null is in lockset (not in ESCJ 8)
null_is_in_lockset : AXIOM
FORALL (l : Lock, r : Reference): get(l, NULL) = true

% all locks in lockset are below max(lockset) (not in ESCJ 8)
all_locks_in_lockset_are_below_max_lockset : AXIOM
FORALL (l : Lock, r : Reference): get( l, r) = true IMPLIES
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lockLE(l, r, max(l))

% null precedes all objects in locking order (not in ESCJ 8)
null_precedes_all_objects : AXIOM

FORALL (l : Lock, x : Reference): typeOf(x) <= T_java_lang_Object IMPLIES
lockLE(l, NULL, x)

END escjava2_lock_semantics

escjava2_arrays : THEORY
BEGIN
IMPORTING escjava2_java_typesystem,

escjava2_java_field_representation,
escjava2_java_integral_types

arrayOf( n : IntegralNumber, t : PrimitiveType) : ArrayReference
arrayOf( n : IntegralNumber, t : ReferenceType) : ArrayReference

% arrayLength(r : ArrayReference) : IntegralNumber
arrayLength(r : Reference) : IntegralNumber

arrayLengthDef1 : AXIOM
FORALL(n : IntegralNumber, t : PrimitiveType, r : Reference) :

arrayLength(r) = n IFF r = arrayOf(n, t)

arrayLengthDef2 : AXIOM
FORALL(n : IntegralNumber, t : ReferenceType, r : Reference) :

arrayLength(r) = n IFF r = arrayOf(n, t)

END escjava2_arrays

escjava2_jml_semantics : THEORY
BEGIN
IMPORTING escjava2_java_typesystem

% === Define typeof for primitive types - DRCok
typeof : [ Boolean -> PrimitiveType ]
typeof : [ IntegralNumber -> PrimitiveType ]
typeof : [ Reference -> ReferenceType ]
% WRONG - not equivalent; need to review

% typeof_definition : AXIOM
% FORALL (x, y : S): primitive?(y) AND is(x, y) IFF typeof(x) = y

typeof_char : AXIOM
FORALL (x : IntegralNumber): is(x, T_char) IFF typeof(x) = T_char

typeof_byte : AXIOM
FORALL (x : IntegralNumber): is(x, T_byte) IFF typeof(x) = T_byte

typeof_short : AXIOM
FORALL (x : IntegralNumber): is(x, T_short) IFF typeof(x) = T_short

typeof_int : AXIOM
FORALL (x : IntegralNumber): is(x, T_int) IFF typeof(x) = T_int

typeof_long : AXIOM
FORALL (x : IntegralNumber): is(x, T_long) IFF typeof(x) = T_long

typeof_float : AXIOM
FORALL (x : IntegralNumber): is(x, T_float) IFF typeof(x) = T_float

typeof_double : AXIOM
FORALL (x : IntegralNumber): is(x, T_double) IFF typeof(x) = T_double

% === ESCJ 8: Section 2.3

typeof_reference_definition : AXIOM
FORALL (r : Reference, t : ReferenceType): t <= T_java_lang_Object IMPLIES

is(r, t) IFF (r = NULL OR typeof(r) <= t)
END escjava2_jml_semantics

escjava2_predefined: THEORY
BEGIN
IMPORTING escjava2_types, escjava2_arrays

% predefined types
T_java_lang_Exception: TYPE+ FROM ReferenceType
T_java_lang_Object: TYPE+ FROM ReferenceType

% predefined variables
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ecReturn: Path
ecThrow: Path
alloc: Time
alloc_pre: Time
elems: ArrayStore
elems_pre: ArrayStore
state: JavaType
state_pre: JavaType
this: Reference
XRES: Reference
T_java_lang_Exception: ReferenceType
T_java_lang_Object: ReferenceType

IntegralField : TYPE+ FROM NumberField

% predefined methods
getStackTrace_state(s: JavaType, o: Reference): Reference
java_lang_Throwable_stackTrace(s: JavaType, o: Reference): Reference

ecReturn_ecThrow_axiom: AXIOM
ecReturn /= ecThrow

this_not_null_axiom: AXIOM
this /= NULL

get_and_set_axiom: AXIOM
FORALL(f: Field, r: Reference, v: Number):
get(set(f, r, v), r) = v

END escjava2_predefined

escjava2_test_sum: THEORY
BEGIN

IMPORTING escjava2_types, escjava2_arrays

sum(i: IntegralNumber, j: IntegralNumber): IntegralNumber =
IF i > j THEN 0
ELSE ((i + j) * (j - i + 1) / 2)
ENDIF

END escjava2_test_sum

escjava2_test_fibo: THEORY
BEGIN

IMPORTING escjava2_types, escjava2_arrays

fibo(i: IntegralNumber): RECURSIVE IntegralNumber =
IF i = 1 THEN 1
ELSE (IF i = 2 THEN 1

ELSE (IF i >= 3 THEN fibo(i-1) + fibo(i-2)
ELSE 0
ENDIF)

ENDIF)
ENDIF
MEASURE (LAMBDA (i: IntegralNumber): i)

END escjava2_test_fibo

escjava2_test_set_array: THEORY
BEGIN

IMPORTING escjava2_types, escjava2_arrays
IMPORTING map_theory[ArrayReference, IntegralNumber, IntegralNumber]
IMPORTING map_theory[ArrayStore, ArrayReference, ArrayReference]
IMPORTING sets[IntegralNumber]

toSet(A: ArrayReference, n: IntegralNumber): RECURSIVE set =
IF n <= 0 THEN empty?
ELSE add(toSet(A, n-1), get(A, n-1))
ENDIF

MEASURE (LAMBDA (n: IntegralNumber): n)

END escjava2_test_set_array

escjava2_test_celebrity: THEORY
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BEGIN
IMPORTING escjava2_types, escjava2_arrays
IMPORTING map_theory[ArrayReference, IntegralNumber, IntegralNumber]
IMPORTING map_theory[ArrayStore, ArrayReference, ArrayReference]
IMPORTING map_theory[IntegralField, Reference, IntegralNumber]
IMPORTING sets[IntegralNumber]

toSet(n: IntegralNumber, m: IntegralNumber):
set = {k: IntegralNumber | n <= k AND k <= m}

toSet_axiom_1: AXIOM
FORALL(n: IntegralNumber, m: IntegralNumber):

toSet(n+1, m) = remove(n, toSet(n, m))

toSet_axiom_2: AXIOM
FORALL(n: IntegralNumber, m: IntegralNumber):

toSet(n, m-1) = remove(m, toSet(n, m))

toSet_axiom_3: AXIOM
FORALL(n: IntegralNumber, m: IntegralNumber):

(n > m) <=> (toSet(n, m) = emptyset)

END escjava2_test_celebrity

escjava2_logic : THEORY
BEGIN
IMPORTING escjava2_java_semantics,

escjava2_jml_semantics,
escjava2_lock_semantics,
escjava2_arrays,
escjava2_predefined

%IMPORTING escjava2_test_sum
%IMPORTING escjava2_test_fibo
%IMPORTING escjava2_test_set_array
%IMPORTING escjava2_test_celebrity

END escjava2_logic

91



Bibliography
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