
 Eindhoven University of Technology

MASTER

On the Minkowski sum of a terrain and a sphere

Javgal, Prithvi Subramanya

Award date:
2006

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/54090002-2449-4d7b-94ce-c91b24172feb

TECHNISCHE UNIVERSITEIT EINDHOVEN
Department of Mathematics and Computer Science

On the Minkowski Sum of a
Terrain and a Sphere

by

Prithvi Subramanya Javgal

Supervisor:
prof. dr. Mark de Berg (TU/e)

Review Committee:
prof. dr. Mark de Berg
dr. Herman Haverkort

prof. dr. ir. Jack van Wijk

Eindhoven, November 2006

2

God made all the integers, the rest is man's doing.
Leopold Kronecker

3

4

Abstract
In this paper we study the Minkowski sum of a three-dimensional polyhedral terrain and
a sphere in <3. We �rst look into the two-dimensional equivalent of this problem. For
this case we will show that the complexity of the Minkowski sum is linear and arrive at
exact bounds for it. We present an algorithm that computes this Minkowski sum in linear
time. In the three-dimensional case we show several results regarding the geometry of the
Minkowski sum of a terrain and a sphere, and we present an algorithm which computes
this in time O(n2+ε), for any ε > 0. We also study the problem of computing the
Minkowski sum of a piecewise-linear non self-intersecting �nite arc in <2 with a disk.
An algorithm that computes this Minkowski sum in linear time is presented.

5

6

Acknowledgements

I am most grateful to prof. dr. Mark de Berg, my thesis advisor. Studying under his
supervision has been a creative adventure with absolutely no dull moments. Without
his excellent guidance and generous help this thesis would not have progressed far. The
numerous valuable discussions that we had on the subject matter has formed a major
part of this thesis. These discussions provided me with many insights into the skill
of mathematical problem solving. Thanks to his several thorough reviews and reassess-
ments, several mistakes and ambiguities from this document have been cleaned up which
greatly improved the quality of this document. I am very grateful for the help and un-
derstanding that I received from him, given my situation of being a working part-time
student. I feel very lucky to have studied under one of the pioneers in the �eld of
Computational Geometry. The time that I spent on this thesis was academically most
satisfying.

I would like to thank prof. dr. ir. Jan Friso Groote on behalf of all the teaching sta� in
the Computer Science Department and especially him for his help during the admissions
to the degree program. In general all his sta� in the Computer Science Department are
very friendly and very helpful to all students.

I took up this course only after the encouragement of my parents. The support and
encouragement of my parents, my brother and especially my wife Soumya, were the most
invaluable ingredients that kept me going and enabled me to complete this course.

Prithvi S Javgal,
23rd October 2006,

Eindhoven, The Netherlands.

7

8

Contents

1 Introduction 13

2 The Two-Dimensional Case 19
2.1 Terminology and Notation . 19
2.2 Basic Properties . 19
2.3 Complexity of the Minkowski Sum . 24
2.4 Algorithm . 26

3 The Buffer-Zone Problem 29
3.1 Terminology and Notation . 29
3.2 Bounding the Complexity . 31
3.3 A Line Sweep Algorithm . 31
3.4 A Medial-Axis Based Algorithm . 35

3.4.1 Partitioning into Simple Polygons 38
3.4.2 The Algorithm . 38

4 The Three-Dimensional Case 41
4.1 Terminology and Notation . 41
4.2 Preliminaries . 43

4.2.1 A Single Triangle . 44
4.2.2 Properties of Kreplach . 45

4.3 A Lower-Bound Construction . 46
4.4 The Upper-Bound . 47
4.5 Algorithm . 47

4.5.1 Properties of ∂(K<i) ∩ ∂(Ki) . 49
4.5.2 Computing the Union ∂(Kj) ∪ ∂(K<j) 54

5 Conclusion 57

9

List of Figures

1.1 Producing 3D products with a milling machine. 14

2.1 A two-dimensional terrain . 20
2.2 Cigar ci with ∂u(ci), ∂d(ci) and s̄i . 20
2.3 De�nition of Mi . 21
2.4 Intersection of ci and cj such that they violate the pseudodisc property . 23
2.5 Unique circle of 2 or more segments . 24
2.6 Illustration of proof of Lemma 2.3.1 . 25
2.7 Constructions showing boundary values of nr. of vertices 26
2.8 Construction that gives that shows the tight upper-bound. 27
2.9 Illustration of Algorithm Mink2D . 28

3.1 The Amazon and its tributaries [9]. 30
3.2 The de�nition of a sub-river. 30
3.3 A cigar of the bu�er-zone problem. 31
3.4 Types of arc intersections in M≤n. 33
3.5 Removing redundant edges and vertices of adjacent cigars. 33
3.6 Sub-river showing a potential O(n2) intersections in M≤n. 34
3.7 De�ning two simple polygons from R using a bounding box. 35
3.8 A simple polygon and its medial axis. 36
3.9 A segment of R and its Voronoi face. 37
3.10 A sub-river with `hidden' end-vertices. 38

4.1 A polyhedral terrain . 42
4.2 A semi-krepl . 42
4.3 Simply connected sets . 43
4.4 Top view and Side views of the lower bound construction. 48
4.5 Pseudosphere property violation scenario 48
4.6 Illustration of proof of Lemma 4.5.2 . 51
4.7 Projection of the curves s1 and s2 joining a and b 53
4.8 Finding an arbitrary edge of the union ∂(Kj) ∪ ∂(K<j) 54

10

List of Tables

1.1 List of previous results for polygonal and polyhedral objects. 17

11

12

Chapter 1

Introduction

A three-dimensional terrain is a two-dimensional continuous surface in three-dimensional
space with the special property that every vertical line intersects it at a single point if
it intersects it at all. In a polyhedral terrain the two-dimensional surface is piecewise
linear. More formally a three-dimensional polyhedral terrain can be de�ned as a mapping
f : S ⊂ <2 7→ <3, with the special property that it is a piecewise linear and continuous
function. From now on the set S is restricted to be a rectangle in <2. For the sake of
convenience and with a slight rede�nition, we shall assume that the three-dimensional
polyhedral terrain T consists not only of the two-dimensional surface (the graph of the
function f) but also includes everything below that surface. It has the special property
that any intersection of T with a vertical line is a single in�nite line downwards.

Automated manufacturing using a robotic drill in CAD/CAM is a common method of
producing well designed products. This involves creating the design using CAD software
and using a so-called milling machine (also called CNC machine) to mill the actual
prototype from styrofoam, plastic or other materials. The milling end of the robotic
arm which, we call B, is called the mill head, and can be modeled as a ball of some
�xed radius R, which is attached to the end of the robotic arm. Often the robotic
arm itself can be moved only horizontally or vertically. This puts the restriction that
only terrains can be milled by such a machine. From this perspective, once we have the
construction of the terrain-like product �nished using the designing software, the software
controlling the robotic arm has to compute the free con�guration space Cfree(B, T),
which is the set of all points in <3 where the robotic arm can move without damaging
the construction. Computing this free con�guration space when the designed product is
a polyhedral terrain is an interesting problem and forms one of the motivations of this
work.

Secondly the same problem also arises in geographical information systems, 3D game
development, robot motion planning among others. In the robot motion planning prob-
lem, we have a spherical robot and the obstacle is a three-dimensional polyhedral terrain.
Consider such a polyhedral terrain T . The robot is represented by a spherical ball B
of radius R. The free con�guration space has to be found, which is a subset of <3 in
which any placement of the robot B, does not intersect with the obstacle T .

13

Robotic Mill Head

Designed Product

Figure 1.1: Producing 3D products with a milling machine.

Before tackling the three-dimensional problem we shall solve the two-dimensional
equivalent in Section 2. The two-dimensional equivalent of the terrain is T , which is a
piecewise linear and continuous function in <2, which satis�es the terrain property that
any vertical line intersects it in at a single point if it intersects it at all. The circular
robot shall be a disk B which is also of radius R.

In geographical information systems, it is interesting to know the `bu�er zone' of a
river or road network. This is the two strips of land on both sides of the river or road
which are of a constant width and which follow the river or road during its course. The
bu�er-zone of a river is used in ecological research, agricultural research and other areas.
The bu�er zone of a road network is used for urban planning and analysis. Computing
this bu�er-zone for a given river or a stretch of road, and a speci�ed width R of the bu�er
is similar to the problem of computing the free space in case of the two-dimensional
terrain. The only di�erence here being that the river is not monotone with respect to
any line unlike the terrain. Computing this bu�er zone given the river modeled as a
piecewise linear, non self-intersecting curve forms another goal of this work.

To illustrate the idea of free con�guration space and its relation with Minkowski sums,
consider the following example. Let B be a robot in <3. The environment in which the
robot B is allowed to move is called the work space. In the work space there is a set A

of obstacles, which the robot has to avoid. A placement of the robot in the work space is
also called a con�guration of the robot. This placement is represented by a displacement
vector from the origin in the work space. If the robot B is a translating rigid body, as we
assume from now on, then the displacement vector is su�cient to specify a placement.
Otherwise more parameters (eg. describing the orientation) are needed. More precisely
if we �x a reference point inside the robot, then a displacement of the robot can be

14

speci�ed by giving the coordinates of the reference point. If the reference point is set
at (x, y, z) then the robot is assumed to be placed such that, its reference point lies at
(x, y, z). The con�guration space is the set of all possible values of the reference point,
which is the set of all possible displacements of the robot. Since in some placements
the robot has a non-empty intersection with one or more of the obstacles, the set of all
such placements is called the forbidden con�guration space, denoted as Cforb(B,A). The
rest of the con�guration space, that is <3\Cforb(B,A), is called the free con�guration
space Cfree(B,A), wherein the robot does not intersect with any of the obstacles. The
Minkowski sum of any two sets H1 and H2 in <3 is de�ned as

H1 ⊕H2 = {~a + ~b | ~a ∈ H1 and ~b ∈ H2}.

It is an established fact [7], that A ⊕ −B is in-fact the forbidden space Cforb(B,A), that
is, the set of placements of B which intersects with A. The complement of this is the
free space - Cfree(B,A).

In the problems that we study here, in the three-dimensional scenario the robot is
a ball (a �lled sphere) so −B = B, which is also true in the two-dimensional case of
a disk (a �lled circle). So in both cases A ⊕ B directly gives us the free con�guration
space. Consequently, in the sections that follow, we shall discuss the combinatorial
complexities of T ⊕B in both the two and three-dimensional cases, followed by algorithms
for computing the Minkowski sums.

Previous Work

The Minkowski sums of several combinations of geometrical objects have already been
studied in detail as shown in Table 1.1. We shall make use of some of the conclusions
found in the listed works. In two-dimensions it is well known that the complexity of the
union of m pseudodiscs1 is O(m) [15]. This property will be found to be useful in the
two-dimensional case.

It has already been established in [3] that the combinatorial complexity of the Minkowski
sum of a ball and a collection of polyhedral obstacles in <3 with a total of n vertices
is O(n2+ε) for any ε > 0. Since T is a collection of n triangles, the same result on the
upper-bound for the complexity holds for T ⊕ B. In the same paper [3] the proof of the
fact that the intersection of two kreplach2 is a single continuous curve is also provided.
This fact will be useful in the three-dimensional case.

An e�cient algorithm for computing the Minkowski sum of a three-dimensional ter-
rain and a closed convex polyhedron has been provided by Asano et al. in [5]. Once the
polygonal faces of the terrain are triangulated, this work also describes a method de�n-
ing an ordering of the triangular faces, which makes the design of the algorithm more
convenient and more e�cient. We use the same technique of ordering the triangular
faces of the terrain in our algorithm.

1de�ned in Section 2 page 23
2explained in Section 4

15

Our Results

In Chapter 2 it is established that the combinatorial complexity for the two-dimensional
problem of T ⊕ B is O(n) where T is assumed to have n line segments. Although it is
known that the complexity is linear for this problem, here we prove exact bounds for the
complexity. Here the combinatorial complexity is de�ned as the number of half-lines,
straight-line and circular-arcs that make up the Minkowski sum. Since this is always one
more than the number of vertices in the Minkowski sum, the results will be stated as the
number of vertices. An algorithm which constructs this Minkowski sum in O(n) time is
also presented.

In Chapter 3 it is established that the combinatorial complexity of the Minkowski sum
of a disk with a �nite, piecewise linear, non self-intersecting arc is linear. An algorithm
that computes this Minkowski sum in linear time is presented.

In Chapter 4 for the three-dimensional version of the problem, we present many
results on the geometry of T ⊕ B. A conjecture regarding the combinatorial complexity
of T ⊕ B based on its geometrical properties is given. The combinatorial complexity is
taken to be the number of vertices in the Minkowski sum. An algorithm which constructs
T ⊕ B in time O(n2+ε), for any ε > 0 is also described.

16

Table 1.1: List of previous results for polygonal and polyhedral objects.

B: Polygon/Polyhedron of complexity m
A: Polygon/Polyhedron of complexity n

2D B A Combinatorial
Complexity of A⊕B

Time Complexity of
Algorithm

Ref.

Convex Convex O(m + n) O(m + n) [10]
Convex Monotone O(mn) O(mn) [13]
Convex Simple O(mn) O(mn log(mn)) [8]
Disk Simple O(n) O(n) [15,

1]
Star-shaped Star-shaped O(mn(min(m, n))) O(mn log(mn)) [12,

16]
Monotone Simple O(mn2) O((mn + k) log(mn)),

k = O(mn2)
[13]

Simple Simple O(m2n2) O(m log(m) +n log(n)+
s + (s + k) log(s) +
k(m + n) log(m + n)),
k : O(m2n2),
s : O(mn)O(m2n2)

[14]

3D Convex Convex O(mn) O(mn) [11]
Convex k convex poly-

hedra
O(nk log(k)) n: total
complexity of the indi-
vidual sums

randomized algorithm
O(nk log(k) log(n))

[4]

Ball Set of n pair-
wise disjoint
line segments
in R3

O(n5/2+ε) for any ε >
0

randomized algorithm:
O(n5/2+ε) for any
ε > 0

[2]

Ball Pairwise dis-
joint polyhe-
dral obstacles
in R3 with
a total of n
vertices

O(n2+ε) for any ε > 0 randomized algorithm:
O(n2+ε) for any ε > 0

[3]

Convex Polyhedral ter-
rain with a con-
vex projection

O(n2m log(n)) n:
number of faces of T
m: number of faces of
P

O(nm + k + t) k: size of
the output t: is at most
O(n2m log(n))

[5]

17

18

Chapter 2

The Two-Dimensional Case

2.1 Terminology and Notation

A two-dimensional polyhedral terrain is the graph of a piecewise linear continuous func-
tion f : S ⊂ < 7→ <, where S = [0, 1] is the domain of f. We shall assume that the
two-dimensional polyhedral terrain T is composed of n line segments s1, s2, . . . , sn, or-
dered from left to right, excluding the two semi-lines at the boundaries. There are n + 1

vertices in the terrain, which we label as v0, v1, . . . , vn. The line segments make angles
θ1, θ2, . . . , θn respectively with the positive x-axis. The vertices of the segment si are
vi−1 and vi for 1 ≤ i ≤ n. If we draw the two in�nite vertical lines, x = vi−1,x and
x = vi,x, that pass through the end points of segment si as shown in Figure 2.2, then
the area enclosed by these two vertical lines shall be denoted by ∆(si). In other words
∆(si) = [vi−1,x : vi,x] · [−∞ : +∞] = {(x, y1)|(x, y) ∈ si and y1 ∈ (−∞, +∞)} where vj,x

is the x-coordinate of vj. The part of ∆(si) consisting of the line segment si and the
area below it is a semi-in�nite trapezoid which is denoted by s̄i. The two-dimensional
polyhedral terrain T is the union of all the semi-in�nite trapezoids s̄i, so T =

⋃
i s̄i. A

part of the terrain will be denoted by T≤a =
⋃

1≤i≤a s̄i. T>a and T≥a are also used.
B is a disk of radius R centered at the origin. We use ∂(o) to denote the boundary of

the object o. ∂u(o) is the upper part of ∂(o) of the convex object o. ∂d(o) is the lower
part of ∂(o). The Minkowski sum of the segment si with B is ci, that is ci = si ⊕ B.
Similar to the de�nition of ci, Mi is the Minkowski sum of s̄i and B, Mi = s̄i ⊕ B. We
will use the notation of M≤a to denote the union of a collection of individual Mi's. So
M≤a =

⋃
1≤i≤a Mi. M>a and M≥a are also similarly used.

2.2 Basic Properties

Consider the Minkowski sum of a single line segment si with a disk of radius R centered
at the origin. This Minkowski sum is the union of a rectangle whose length is the length
of si and whose height is 2R along with two disks of radius R centered at the end-points
of si. Two sides of the rectangle are perpendicular to the line as shown in Figure 2.2.

19

v0

vi−1

vi

sn

vn

X

s̄i

Figure 2.1: A two-dimensional terrain

si

s̄i

∂u(ci)

∂d(ci)

ci

Figure 2.2: Cigar ci with ∂u(ci), ∂d(ci) and s̄i

We shall call this sum a cigar. The cigar that is formed by the line segment si is ci, so
ci = si ⊕ B. The boundary of ci is denoted as ∂(ci). Any point on ∂(ci) would be the
result of the sum of two vectors ~a and ~b where ~a is a point on the line segment si and
~b ∈ ∂(B).

Observation 2.2.1 From every point of si the shortest distance to ∂(ci) is R.

Given any ci there are exactly two points which lie on its boundary ∂(ci), whose
x-coordinates have the minimum and maximum values for all points in ci. These two
points partition the closed curve ∂(ci) into two parts. We shall call the upper part ∂u(ci)

and the lower part ∂d(ci). Any vertical ray from y = +∞ would intersect ∂u(ci) before
∂d(ci), if it intersects ci at all.

From the de�nition of a polyhedral terrain the following observation can be concluded.

Observation 2.2.2 The interior of the region ∆(si) does not contain any vertex vj

of T .

20

Mi

u
1

i

u
2

i

u
3

i

u
4

i

si

s̄i

Mi

Figure 2.3: De�nition of Mi

Recall that Mi is the Minkowski sum of s̄i and B, Mi = s̄i ⊕ B. Each Mi is a semi-
in�nite cigar that is obtained by Minkowski sum of s̄i and B, therefore we shall call each
Mi a semi-cigar from now on. One such semi-cigar is shown in Figure 2.3.

Lemma 2.2.3 T ⊕ B is a terrain and ∂(T ⊕ B) consists of two half lines, and a
number of line segments and circular arcs.

Proof. We have to show that the intersection of any vertical line with B ⊕ T is a ray
in�nite downwards. Therefore it is su�cient to show that for some point ~p = (x, y) ∈
T ⊕ B all other points ~pd = (x, yd) such that yd ≤ y also belong to T ⊕ B.

Assume that point ~p = (x, y) ∈ T ⊕ B. There must be points ~a = (xa, ya) ∈ T and
~b = (xb, yb) ∈ B such that ~a + ~b = ~p. This implies xa + xb = x and ya + yb = y.
Now assume that there is an arbitrary point ~pd = (x, yd) directly below ~p such that
yd ≤ y. Choose a point ~ad that is directly below ~a. Since all points which are directly
below ~a also belong to T , ~ad must also belong to T because of the terrain property.
Let ~ad = (xa, yd − yb). Since yd ≤ y it must hold that yd − yb ≤ y − yb, we already
know that y − yb = ya so yd − yb ≤ y − yb = ya. This means that the choice of the
y-coordinate of ~ad is right and it is indeed directly below ~a. To continue observe that

~ad ∈ T and ~b ∈ B resulting in ~ad ⊕ ~b = (xa + xb, yd) = ~pd ∈ T ⊕ B.

So we have shown that any arbitrary point ~pd below ~p also belongs to T ⊕B. Therefore
it can be concluded that T ⊕ B is a terrain.

Each boundary of a semi-cigar is composed of two circular arcs, a line segment and two
half lines. Therefore the boundary of the union of several semi-cigars, will be composed
of parts of the circular arcs, line segments and half lines. ¤

21

The boundary of each Mi, denoted as ∂(Mi), is also de�ned by four implicit vertices
I(Mi) = {u1

i , u
2
i , u

3
i , u

4
i }. These are the meeting points of the straight and circular seg-

ments of ∂(Mi). Here u2
i = ~vi−1 + Rn and u3

i = ~vi + Rn, where n is a unit vector which
has the direction of si after rotating it by +90o. The points u1

i and u4
i are de�ned as

u1
i = ~vi−1 − Ri and u4

i = ~vi + Ri. Mi is bounded by two semi-in�nite vertical lines with
one of their ends at u1

i and u4
i respectively. It also has two circular segments u1

i u
2
i and

u3
i u

4
i which could possibly be empty in some cases. Mi always has a straight line edge

u2
i u

3
i which is parallel to si and is of the same length. One such Mi is illustrated in

Figure 2.3. The boundary of Mi, ∂(Mi), is the union of the segments u1
i u

2
i , u2

i u
3
i , u3

i u
4
i

and the two semi-in�nite vertical lines at u1
i and u4

i . The upper part of ∂(Mi) is ∂u(Mi),
which is the union of u1

i u
2
i , u2

i u
3
i and u3

i u
4
i . In fact ∂u(Mi) = ∂u(ci). The union of the

n individual semi-cigars is

M≤n =
⋃

1≤i≤n

Mi = T ⊕ B.

The upper envelope of
⋃

1≤i≤n ∂u(Mi) is the same as the upper envelope of T ⊕ B.
Therefore:

∂u(T ⊕ B) = ∂u(M≤n).

From now on we will deal only with ∂u(M≤n). We are interested in knowing the
combinatorial complexity of ∂u(M≤n) and an algorithm to compute it. The combinatorial
complexity would be number of half-lines, straight-line segments and circular-arcs that
make up ∂u(M≤n). The algorithm is discussed in Section 2.4. To �nd the combinatorial
complexity, the approach will be to count the number of vertices in ∂u(M≤n), by knowing
this it is easy to count the number of segments since each vertex is adjacent to exactly
two segments of ∂u(M≤n). The idea of the implicit vertex has already been introduced.
We de�ne explicit vertices of ∂u(M≤n) as those vertices in ∂u(M≤n) that are not implicit
vertices of some cigar. Clearly the total number of vertices would then be sum of the
number of implicit and explicit vertices. An explicit vertex is formed when two non-
adjacent semi-cigars intersect. They are also formed between adjacent semi-cigars, Mi

and Mi+1 if θi − θi+1 < π.
The implicit vertex u3

i will be present in ∂u(M≤n) if θi − θi+1 ≥ π. Similarly if
θi−1 − θi ≥ π then u2

i will be present in ∂u(M≤n). Since both these conditions can be
true for a particular Mi, it can be concluded that each Mi contributes at most 2 implicit
vertices to ∂u(M≤n). The two implicit vertices of a semi-cigar mentioned here, is not
shared with adjacent semi-cigars. Similarly if θi − θi+1 < π then the implicit vertex u3

i

will not be part of ∂u(M≤n) and if θi−1 − θi < π then the implicit vertex u2
i will not be

part of ∂u(M≤n). To summarize we have the following observation.

Observation 2.2.4 Each semi-cigar Mi, contributes

� A maximum of 2 implicit vertices to ∂u(M≤n).

22

ci

cj

p

s1 = s2

ci

cj

s1

s2

p

Exact construction

Assumption

Figure 2.4: Intersection of ci and cj such that they violate the pseudodisc property

� A minimum of 0 implicit vertices to ∂u(M≤n).

Lemma 2.2.5 For i 6= j, for non-adjacent cigars ci and cj, ∂(ci)∩ ∂(cj) has at most
two intersection points.

Proof. Let ci and cj be two non-adjacent cigars. Notice that any cigar ci is convex
for all i. Assume that ∂(cj) intersects ∂u(ci) at two points and touches ∂d(ci) at a single
point. Let the point of contact of ∂(cj) and ∂d(ci) be point ~p, as shown in Figure 2.4.
Rotate the axes such that ~p has the lowest y-coordinate value of all points in ci and cj.
In this position we can express ~p in two ways as the Minkowski sum of a point ~s1 in ci

or as the Minkowski sum of a point ~s2 in cj, so

~p = ~s1 + ~r1 = ~s2 + ~r2.

Since ~p is a point with the lowest y-coordinate, ~r1 and ~r2 must be uni-directional, pointing
vertically down, thus ~r1 = ~r2. This leads us to the conclusion that ~s1 = ~s2 from the
previous equation. This cannot be possible since we started with two non-adjacent
cigars, so they cannot have common points. As a consequence of this contradiction, it
can be concluded that the third intersection point ~p cannot exist. On the same lines the
case of ∂(cj) intersecting ∂d(ci) at two points and touching ∂u(ci) at one point can be
similarly proved to be impossible. From this the lemma follows. ¤

With the previous lemma it is already possible to make conclusions about the number
of vertices in ∂u(M≤n). The vertices in the output are either implicit or explicit. The
maximum number of implicit vertices that can show up in the output is 2n + 2. The
minimum number of implicit vertices that can show up in the output is 2. These are
illustrated in the constructions described in Figure 2.7 and Figure 2.8. For each cigar
we have n − 2 non-adjacent cigars in the terrain that can possibly intersect with it to
produce an explicit vertex.

A pair of planar objects a1 and a2 are called pseudodiscs if they satisfy the pseudodisc
property that the sets a1\a2 and the set a2\a1 are connected . For m pseudodiscs in the

23

C(u)

u

T

Figure 2.5: Unique circle of 2 or more segments

plane, it is known that the complexity of their union is O(m). In our case it is equivalent
to having n − 2 pseudodiscs since for any cigar there are at most n − 2 non-adjacent
cigars. So we can conclude that the number of explicit vertices in the Minkowski sum is
bounded by O(n). As a consequence the total number of vertices in the Minkowski sum
and hence the combinatorial complexity is bounded by O(n).

Observation 2.2.6 For each vertex u of ∂u(M≤n), there is unique circle of radius
R, denoted C(u), centered at u, which lies completely above T and touches at least
2 segments of T .

This is direct consequence of the de�nition of the Minkowski sum. Notice that the circle
can touch T in more than two points, two being the minimum number of segments. This
is shown in Figure 2.5.

2.3 Complexity of the Minkowski Sum

Lemma 2.3.1 ∂u(M<i) and ∂u(Mi) intersect in at most one explicit intersection
point.

Proof. Let vi1 be the left-most explicit vertex in the intersection of ∂u(M<i) and
∂u(Mi), illustrated in Figure 2.6. We will show that there cannot be any other explicit
intersection point vi2 between ∂u(M<i) and ∂u(Mi). Before continuing with the proof
we need a few de�nitions. The unique circle corresponding to the vertex vi1 is C(vi1),
this circle touches the line segment si at the point p. The line l2 is the vertical line
through p and the line l1 is the vertical line that touches the left-most point of C(vi1).
The region to the left of l1 and l2 and outside C(vi1) is denoted by S. This is indicated
by the shaded region in the diagram.

24

si

vi2

C(vi1)

vi1

C(vi2)

p
θ

∂u(Mi)

l1

l2

S

Figure 2.6: Illustration of proof of Lemma 2.3.1

Notice that T<i =
⋃

1≤j<i sj lies completely to the left of p. In-fact it lies completely
to the left of x(vi−1), because of the terrain property. Also none of the edges of T<i can
intersect the interior of C(vi1). Therefore T<i lies in the shaded region S. If vi2 is a point
to the right of vi1, and if ∂d(C(vi2)) touches si, then T<i cannot touch C(vi2). This implies
that there cannot be an explicit intersection point vi2 between ∂u(M<i) and ∂u(Mi), to
the right of vi1. Therefore we conclude that ∂u(M<i) and ∂u(Mi) intersect in at most
one explicit intersection point. ¤

Corollary 2.3.2 ∂u(M>i) and ∂u(Mi) intersect in at most one explicit intersection
point. Consequently each ∂u(Mi) contributes at most 2 explicit intersection vertices
to ∂u(M≤n).

From Corollary 2.3.2 we know that each ci contributes at most two explicit vertices to
∂u(M≤n). Each explicit vertex is shared among the two cigars. So the maximum number
of explicit vertices is n−1 for the n line segments. A situation that leads to the maximum
number of explicit vertices is shown in Figure 2.7. In this construction, additionally the
�rst and the last segments will add at least 2 implicit vertices each. So the total comes
to n + 3 vertices. However this is not the lower-bound on the combinatorial complexity
of ∂u(M≤n). An example having only 3 vertices in ∂u(M≤n) is shown in Figure 2.7 to
illustrate this.

Observation 2.3.3 The maximum number of explicit vertices in ∂u(M≤n) is n − 1.

Theorem 2.3.4 The combinatorial complexity of ∂u(M≤n) is at most 2n + 2 and
this bound is tight in the worst case.

25

T

s1

s2

sn

T

s1

s2

sn

Figure 2.7: Constructions that give maximum number of explicit vertices and a lower-
bound counter example.

Proof. Notice that each semi-cigar can contribute individually 2 implicit vertices to
∂u(M≤n) giving a total of 2n. The two cigars corresponding to the two half-lines at
the two ends of the terrain can contribute one additional vertex each, corresponding to
v0 − Ri and vn + Ri. This gives a maximum total of 2n + 2. This gives an upper-bound
on the combinatorial complexity. A situation that leads to the upper-bound on the
combinatorial complexity is shown in Figure 2.8. In this construction notice that are
no explicit vertices. Even if a single explicit vertex were to be present, then the terrain
can be suitably deformed to produce two implicit vertices instead of one explicit vertex.
Therefore to arrive at an upper-bound our construction should not have any explicit
vertices. Therefore the bound is tight. Consequently total number of segments(straight,
circular, semi-in�nite) would be 2n + 3 for the upper-bound. ¤

2.4 Algorithm

The curve ∂u(Mi) is bounded by the edges between vertices u1
i and u4

i , which are u1
i u

2
i ,

u2
i u

3
i and u3

i u
4
i . Each Mi also has two semi-in�nite vertical line segments starting at

u1
i and u4

i , which we shall denote as u1
i and u4

i respectively. So the edges of Mi cor-
respond to the set {u1

i , u
1
i u

2
i , u

2
i u

3
i , u

3
i u

4
i , u

4
i }. Using this frame-work we shall look into

Algorithm Mink2D , which �nds the edges in ∂(M≤n). Algorithm Mink2D uses the
incremental construction approach. Clearly,

B ⊕ T =
⋃

1≤i≤n

Mi = (((M1 ∪M2) ∪M3) . . .) ∪Mn.

This suggests computing M1 �rst and incrementally adding M2,M3, . . . ,Mn to the
union. At each iteration of the algorithm we will have a valid terrain. The edges are

26

Ts1

s2

sn

Figure 2.8: Construction that gives that shows the tight upper-bound.

stored in a list M in the correct order from left to right. In the �rst step of the algorithm,
the edges of M1 are added to M. One by one, each Mi for 2 ≤ i ≤ n is computed, the
intersection point of ∂(Mi) with ∂(M<i) is found, followed by construction of ∂(M≤i).
New edges of ∂(Mi) are added to M and existing edges are modi�ed to compute the
union. This procedure is illustrated in Figure 2.9.

Algorithm Mink2D(T , R)
Output: A list M of edges of ∂u(M≤n), ordered from left to right.
1. M ←M1

2. for i ← 2 to n

3. do (∗ Update M by computing M<i ∪Mi ∗)
4. done ← false
5. while done is false
6. do Remove the last curve γ from M
7. if γ is completely below ∂(Mi)

8. then skip
9. else Compute γ ′ ← γ\Mi,
10. (∗ γ ′ is the portion of γ that lies outside Mi ∗)
11. Append γ ′ to M
12. Append the portion of ∂(Mi) that is to the right of γ ′ to M
13. done ← true
14. return M

From Lemma 2.3.1 we know that there is at most one explicit vertex at the intersection
of ∂(M<i) and ∂(Mi), or alternatively if there is an overlap then we will have a single
overlap between them. As a result Algorithm Mink2D makes the correct assumption of
deleting all the edges of ∂(Mi) that are to the left of the intersection-point or overlap

27

M

Mi

γ
′

γ

curves in M

Figure 2.9: Illustration of Algorithm Mink2D

and all the edges that are to the right of the intersection-point or overlap from L. Hence
the algorithm is correct.

Theorem 2.4.1 Algorithm Mink2D computes ∂u(M≤n) in O(n) time.

Proof. The outer for-loop is executed n−1 times for each of M2,M3, . . . , Mn. However
the inner while-loop may execute an arbitrary number of times for each Mi. The total
time needed for the inner while loop is linear in the number of edges that are being
discarded. Since in total at most 5 edges are added to M for each semi-cigar and each
edge is discarded at most once, this means that the overall running time is still O(n).
¤

28

Chapter 3

The Buffer-Zone Problem

3.1 Terminology and Notation

In this section we discuss the bu�er-zone problem. A river or a tributary can usually
be modeled as single curve from its source till the point where it meets a bigger river
or the ocean. This curve is very rarely self-intersecting, in which case the point where
the self-intersection takes place can be used to separate the river into three individual
sub-rivers which are non self-intersecting. As a consequence of this we shall assume that
the river is composed of the union of several sub-rivers which is a piecewise-linear, non
self-intersecting continuous curve in <2.

Figure 3.2, shows a river and its tributaries. The sequence of line segments joining
the vertices (v3, v8, v9, v10, v12, v7, v10, v11) is the main river. The tributaries join this river
at the speci�ed vertices. The main river is self intersecting at the vertex v10. So the main
river is partitioned into two non self-intersecting sub-rivers R1 = (v3, v8, v9, v10, v12) and
R2 = (v12, v7, v10, v11). In this case v12 is an arbitrary point that was suitably chosen.The
tributaries are also similarly divided into sub-rivers. The other sub-rivers in this case
are R3 = (v2, v6, v7), R4 = (v1, v6), R5 = (v4, v8) and R6 = (v5, v9). The entire river R is
the union of these sub-rivers, so R =

⋃
1≤i≤6Ri. Also notice that when this partitioning

is done we can know the set of vertices at which the sub-rivers `break up'. This set of
vertices called the fusion vertices F(R) = {v6, v7, v12, v8, v9}. These will be useful at a
later stage when the sub-rivers have to be fused back, to get the complete river.

Using this approach we shall assume that the entire river is represented by R, this is
individually composed of the sub-rivers so R =

⋃
iRi. From this point on the discussion

will be mainly about one of these sub-rivers Rk, to make things more convenient we shall
drop the sub-script k and just use R, since the discussion is valid for any sub-river. From
the context it will be clear whether we are talking about a sub-river or the complete river.
Without loss of generality let one of the sub-rivers be R and let it be composed of n line
segments s1, s2, . . . , sn, ordered from source to drain. There are n + 1 vertices in this
sub-river, which we label as v0, v1, . . . , vn. The line segments make angles θ1, θ2, . . . , θn

respectively with the positive x-axis. The vertices of the segment si are vi−1 and vi for

29

Figure 3.1: The Amazon and its tributaries [9].

v1
v2

v3
v4

v5

v6

v7

v8

v9
v10

v11

v12

Figure 3.2: The de�nition of a sub-river.

30

si

Mi
u

1
i

u
4
i

u
2
i

u
3
i

Figure 3.3: A cigar of the bu�er-zone problem.

1 ≤ i ≤ n. The sub-river R is the union of all the line segments si, so R =
⋃

i si.
Like in the previous scenario of a two-dimensional terrain, the bu�er-zone of a single

segment si is the Minkowski sum of si with a ball B of radius R. Like before we shall
call this sum a cigar. The cigar that is formed by the line segment si is Mi, that
is Mi = si ⊕ B. The boundary of Mi is denoted as ∂(Mi). Each cigar Mi has four
implicit vertices, I(Mi) = {u1

i , u
2
i , u

3
i , u

4
i } and four edges joining these vertices as shown

in Figure 3.3. Additionally we shall use the now familiar notation of M≤j =
⋃

1≤i≤j Mi,
so that M≤n is the bu�er-zone of the entire sub-river R.

3.2 Bounding the Complexity

Given a single sub-river R with n line segments and a disc of radius R, we are interested
in knowing the complexity of the boundary of the bu�er-zone ∂(M≤n). We already know
that the complexity of the union of n pseudodiscs in <2 is O(n). There are n individual
cigars that are formed by the Minkowski sum of the n segments and the disc of radius
R. These n cigars pairwise satisfy the pseudodisc property because Lemma 2.2.5 still
holds true for this case. This is due to the fact that the single sub-river R is non self-
intersecting. Using the pseudo-disc property it follows that the bound on the complexity
of the boundary of the union of the cigars is O(n).

3.3 A Line Sweep Algorithm

In order to compute the bu�er-zone of the complete river the bu�er-zones of the sub-
rivers are individually computed �rst. The union of these Minkowski sums are then
computed to get the bu�er-zone of the entire river. So the most important problem
is to compute the bu�er-zone of a single sub-river R. The curve ∂(Mi) is bounded
by the edges between vertices u1

i , u
2
i , u

3
i and u4

i , which are u1
i u

2
i , u2

i u
3
i , u3

i u
4
i and u4

i u
1
i .

Using this frame-work we shall look into Algorithm SubRiverBu�erZone , which �nds
the edges in ∂(M≤n). Clearly,

B ⊕R =
⋃

1≤i≤n

Mi = (M1 ∪M2) ∪ (M2 ∪M3) ∪ . . . ∪ (Mn−1 ∪Mn).

31

The �rst major step Algorithm SubRiverBu�erZone is to construct a partial union of
the n cigars. That is the union of each cigar Mi with only its adjacent neighbors. To
illustrate, M1 and M2 are �rst computed followed by the union of M1 and M2. Next M3

is computed followed by the union of M2 and M3. This is continued till all the cigars are
linked with their adjacent neighbors. The only problem that may arise is that the current
cigar Mi that is being added may intersect with a non-adjacent cigar Mj where j < i.
This would mean that the overlapping regions of Mj and Mi would have to be removed.
To achieve this e�ciently, in the second major step of the algorithm, the line segment
intersection algorithm [7] is used. The line segment intersection algorithm reports the
intersection points of n line segments in <2 in general position in O(n log n + k log n)

time, where k is the output size - the actual number of intersection points of the segments.
Here we adapt this algorithm to compute the intersection points of O(n) arcs which are
either straight or semi-circular. Once an intersection point is known the current edges
of the cigars which are involved in the intersection are modi�ed to compute the union.
It is possible to use the line segment intersection algorithm with a few modi�cations in
our case since there are only 6 types of intersections possible between the straight and
circular arcs of M≤n. These 6 types of intersections are shown in Figure 3.4.

The only disadvantage of this approach is that the line segment intersection algorithm
computes all the intersection points in M≤n which are O(n2) in number. This makes
the algorithm highly ine�cient. However notice that we are not interested in computing
the vertices in the interior of ∂(M≤n) but only interested in the arcs and vertices on
it. Therefore an additional step in the algorithm is introduced which removes some of
the arcs and vertices of Mi and Mi+1 which lie in the interior of Mi ∪ Mi+1, which
is the union of adjacent cigars Mi and Mi+1. This step of removing the unwanted
arcs and vertices is done after the partial union of the adjacent cigars is computed and
before using the line segment intersection algorithm. This improves the running time
of the algorithm considerably. An example of the removal of redundant edges is shown
Figure 3.5. Algorithm SubRiverBu�erZone illustrates the algorithm discussed till now.

Algorithm SubRiverBu�erZone(R, R)
Output: M - the DCEL containing the edges and vertices of ∂(M≤n)

1. M ←M1

2. for i ← 2 to n

3. do Compute Mi.
4. Update M with Mi−1 ∪Mi.
5. Remove redundant edges in the union Mi−1 ∪Mi.
6. Use the arc intersection algorithm to compute the intersection points of the arcs in

M. Store all the intersection points in a list L.
7. At each intersection point in L, compute the union of the cigars which are involved

and update M.
8. return M

Next we shall analyze the time complexity of Algorithm SubRiverBu�erZone . The
computation of a single cigar from its line segment takes O(1) time. To compute the n

32

Arc termination symbol

Vertex of the Minkowski sum

Type 1 Type 2 Type 3

Type 4 Type 5 Type 6

Figure 3.4: Types of arc intersections in M≤n.

Figure 3.5: Removing redundant edges and vertices of adjacent cigars.

33

< R

< R

n/2 segments

n/2 segments

Figure 3.6: Sub-river showing a potential O(n2) intersections in M≤n.

cigars it takes O(n) time. Computing the union of two adjacent cigars and removing
the redundant vertices and arcs takes time proportional to the total number of vertices
and arcs that are handled. Since the maximum number of vertices and arcs are �xed
for any two cigars, this operation is also O(1). This operation is done n − 1 times,
resulting in O(n) time complexity. The computation of the arc intersection using the
line sweep algorithm from [7], takes O(n log n + k log n) time where k is the number of
intersections that are found. If we can estimate the value of k then the time complexity
of the algorithm will follow. We know that the complexity of ∂(M≤n) is O(n), so k must
be at least O(n). The number of intersections in the interior of ∂(M≤n) also contribute
to k. Next we shall try to estimate the total number of such intersections.

Algorithm SubRiverBu�erZone only removes the unwanted edges and vertices be-
tween adjacent cigars. It is possible that a cigar intersects a non-adjacent cigar in the
sub-river. The algorithm also �nds all the intersection-vertices of non-adjacent cigars
that lie in the interior of ∂(M≤n). These vertices are not of interest to us since they
lie in the interior of the bu�er-zone. It can also be the case that the number of such
intersection-vertices of non-adjacent cigars is quite large. Consider the sub-river shown
in Figure 3.6. In this sub-river there are roughly n/2 segments forming a vertical pat-
tern and another n/2 segments forming a horizontal pattern as shown in the �gure.
The width of the vertical pattern and the height of the horizontal patterns are both
less that R. Notice that this sub-river has roughly n/6 non-adjacent vertical segments
and roughly n/4 non-adjacent horizontal segments, let us label these segments as be-

34

Smallest Bounding Box

R

R

Rs1

s2

sn

s0

sn+1

R

R

B
′

B

Figure 3.7: De�ning two simple polygons from R using a bounding box.

longing to the sets V and H respectively. Notice that for v ∈ V and for h ∈ H, the
intersection of the cigars of segments v and h results in intersection-vertices in M≤n.
There are O(n2) such intersections between cigars of V and H. All these vertices are
computed by Algorithm SubRiverBu�erZone . Although this a very rare scenario, the-
oretically it is possible and therefore it must be considered while estimating the worst
case running time. Therefore k is O(n2), which means that the time complexity of Al-
gorithm SubRiverBu�erZone is O(n2 log n). This can be considerably improved and a
better algorithm can be designed as we shall see in the next section.

3.4 A Medial-Axis Based Algorithm

For a given sub-river R =
⋃

1≤i≤n si, clearly there is a unique smallest bounding box.
We shall de�ne another bounding box B of R, whose center is at the same point as that
of the smallest bounding box, and whose width and height are increased by 4R compared
to the smallest bounding box, as shown in Figure 3.7. Using this bounding box and R it
is possible to de�ne two simple polygons. From the �rst and last vertices of R, namely v0

and vn, two new segments s0 and sn+1 are added to R such that
⋃

0≤i≤n+1 si partitions B

into two sets as shown in Figure 3.7. Clearly these two sets de�ne a simple polygon each.
In the example shown it is possible to just add two segments s0 and sn+1 and partition
the bounding box B into two simple polygons, it may however not be this simple for all
sub-rivers. Special methods will have to be used for partitioning B into simple polygons
in such cases, these will be discussed later in section 3.4.1.

The Voronoi diagram of a set of sites is a partition of the plane into connected faces,

35

Figure 3.8: A simple polygon and its medial axis.

where a face is a set of points which are closest to the same site. Given a simple polygon,
it is possible to partition it into a set of connected faces one for each vertex and edge,
such that a face F(s) adjacent to the vertex or (open) egde s is the set of all points inside
the simple polygon that are closest to s. This partition of the simple polygon is identical
to its Voronoi diagram where the open edges and vertices of the polygon are taken to be
the sites. The medial axis of a simple polygon P is de�ned as the locus of the centers of
all circles contained in P, such that the circles touch at least two edges of P. Thus the
medial axis is essentially the same as (in fact, a subset of) the Voronoi diagram of the
vertices and edges, as just de�ned. It has been proved by F. Chin et al. in [6], that the
medial axis of a simple polygon can be computed in linear-time.

In the rest of this section we shall show that it is possible to use the medial axis of
the simple polygons inside the bounding box B to �nd ∂(M≤n), with considerable gain
in the e�ciency of the algorithm. Clearly the Minkowski sum ∂(M≤n), lies completely
inside B. Consider another bounding box B ′ which has its center at the same point as the
smallest bounding box and whose width and height are both increased by an additional
2R as shown in Figure 3.7. Clearly ∂(M≤n) lies completely inside B ′, because of the
de�nition of Minkowski sum. Assume that the sub-river R along with its bounding box
B de�ne two simple polygons P1 and P2. Let P∗1 be the partition of P1 induced by its
medial axis. If s is an edge of P1 then let F(s) be the face of P∗1 adjacent to s. Without
loss of generality we will look into the construction of P1 ∩ ∂(M≤n), the construction
of P2 ∩ ∂(M≤n) will be similar. Additionally notice that all those faces of P∗1 that are
adjacent to an edge of B will not intersect with ∂(M≤n). Therefore we have:

Observation 3.4.1 It is su�cient to consider only those faces of P∗1 that are adja-
cent to a segment of R for computing P1 ∩ ∂(M≤n).

The general approach of the algorithm is to consider the intersection of the Minkowski
sum with each of the faces of the partition P∗1. For each segment si ∈ R, the algorithm

36

si

F(si)

F(si) ∩ Mi

Mk

p

Mj
p
′

1

p
′

2

sj
p
′

3

Figure 3.9: A segment of R and its Voronoi face.

computes F(si)∩∂(M≤n). Once all the faces of P∗1 are processed in this manner we obtain
P1∩∂(M≤n). The reasons why the computation of P1∩∂(M≤n) is straightforward, given
the medial axis of P1 is because of the following properties:

� For some si ∈ R if F(si) ∩ ∂(Mi) = ∅, then the face F(si) does not contribute any
edge to the output, which is P1 ∩ ∂(M≤n). This follows directly from the fact that
in this case F(si) lies completely inside Mi, so none of the edges of M≤n inside F(si)

will be part of ∂(M≤n).

� For some si ∈ R if F(si) ∩ ∂(Mi) 6= ∅, then the arc(s) F(si) ∩ ∂(Mi) will form a
part of P1 ∩ ∂(M≤n). To see that this is in fact the case, consider the scenario in
Figure 3.9. There are two cases to consider, depending on whether the boundary
of another cigar intersects the boundary of Mi or not. Both cases are illustrated in
Figure 3.9. A segment si ∈ R is shown along with its face F(si) and intersections
with some arbitrary cigars Mj and Mk. The claim is that only F(si)∩∂(Mi) is part
of P1 ∩ ∂(M≤n) inside F(si) and not F(si) ∩ ∂(Mj) or F(si) ∩ ∂(Mk).

– To see that F(si) ∩ ∂(Mj) is not part of P1 ∩ ∂(M≤n), consider F(si) ∩ ∂(Mj)

in Figure 3.9. If sj is below Mj in the diagram shown, then F(si) ∩ ∂(Mj) lies
completely inside Mi, as a result F(si)∩∂(Mj) will not be part of P1∩∂(M≤n).
If sj is above Mj in the diagram shown, then we select an arbitrary point p ′1 on
F(si)∩∂(Mj) such that an orthogonal line from p ′1 intersects F(si)∩∂(Mi) and
sj at p ′2 and p ′3 respectively. Clearly |p ′1p

′
3| = R and |p ′2p

′
3| < R. This implies

that p ′2 is closer to sj than to si, which violates the medial axis property.
Therefore F(si) ∩ ∂(Mj) cannot lie between F(si) ∩ ∂(Mi) and si.
In Figure 3.9, if F(si)∩∂(Mj) were to lie above F(si)∩∂(Mi) and in the interior
of F(si), then it again easy to see that this is impossible. If we assume this
scenario, then for some point p on F(si) ∩ ∂(Mj), the shortest distance to sj

would be R. This will require that the shortest distance from p to si be less
than R since p lies in the interior of F(si). But the shortest distance from p to

37

R

B

Figure 3.10: A sub-river with `hidden' end-vertices.

si is in fact greater than R as it is above F(si)∩∂(Mi). Therefore F(si)∩∂(Mj)

cannot lie above F(si) ∩ ∂(Mi) and in the interior of F(si).
– To see that F(si) ∩ ∂(Mk) is not part of P1 ∩ ∂(M≤n), assume F(si) ∩ ∂(Mk)

intersects F(si)∩∂(Mi) at a point p in the interior of F(si). From the de�nition
of Minkowski sum, the shortest distance to sk or si from p must be R. From
the de�nition of medial axis of a simple polygon, this point p must be the
center of a circle of radius R touching si and sk, therefore it must lie on the
medial axis. This contradicts our assumption that p lies in the interior of
F(si), therefore p must lie on the boundary of F(si). Therefore F(si) ∩ ∂(Mk)

is not part of P1 ∩ ∂(M≤n).

From these observations we conclude that it is su�cient to just add F(si)∩ ∂(Mi) to
P1 ∩ ∂(M≤n), and the rest of the arcs of F(sj)∩ ∂(M≤n) can be ignored while processing
the face F(si). This observation makes the computation of P1 ∩ ∂(M≤n) highly e�cient.

3.4.1 Partitioning into Simple Polygons

In some cases the partitioning of the sub-river into two simple polygons, with the help of
the bounding box B can be accomplished easily by adding a single edges to the vertices
v0 and vn connecting them to B. This is clearly only possible if it is possible to draw a
straight line from v0 and vn to any of the edges of B. There can be many situations when
this is not possible. Adding a single edge becomes impossible when one the end vertices
of the sub-river is `hidden' from the bounding box B. One such sub-river is shown in
Figure 3.10. In this case where both v0 and vn are hidden, we draw a new sub-river R ′

consisting of two parts R ′
1 and R ′

2, very close to R. R ′
1 joins v0 to B and R ′

2 joins vn

with B as shown in the diagram. With this construction we get two simple polygons.

3.4.2 The Algorithm

Algorithm SubRiverBu�erZoneMedialAxis(R, R)

38

Output: M - the DCEL containing the edges and vertices of ∂(M≤n)

1. Compute the bounding boxes B ′ and B.
2. Partition B and R into two simple polygons P1 and P2.
3. Compute the medial axes of P1 and P2 using algorithm from [6].
4. for i ← 1 to n

5. do Compute Mi.
6. for P1 and P2

7. do for each face f in the partition of Pk

8. do if f is adjacent to a segment si of R
9. then Compute the intersection f ∩ ∂(Mi) and add it to M, i.e.

M ← M ∪ (f ∩ ∂(Mi)).
10. return M.

Theorem 3.4.2 Algorithm SubRiverBu�erZoneMedialAxis computes ∂(M≤n) in lin-
ear time.

Proof. The computation of the bounding boxes takes O(n) time. Finding the two
simple polygons takes O(n) time since there are only O(n) segments in R ∪ B. The
computation of the partition and medial axes based on the algorithm in [6] also takes
O(n) time. Since there are only O(n) faces in P1∪P2, the line 9 in the algorithm executes
at most O(n) times. Also computing the intersection of a face f with the cigar Mi is a
constant time operation. Therefore we conclude that Algorithm SubRiverBu�erZone-
MedialAxis takes O(n) time to �nd ∂(M≤n). ¤

39

40

Chapter 4

The Three-Dimensional Case

4.1 Terminology and Notation

A three-dimensional polyhedral terrain can be de�ned as the graph of piecewise linear
continuous function f : S 7→ <, where S ⊂ <2 is the domain of the terrain. We assume
S to be a convex polygon. Similar to the two-dimensional case we will assume the
terrain to extend to z = −∞. The terrain shall be denoted by T abusing the notation
slightly. The polygonal faces of the polyhedral terrain are assumed to be triangulated
except the vertical walls that bound it. So the upper boundary of the terrain T in
question is composed of n triangles t1, t2, . . . , tn. There are O(n) vertices in the terrain
which we label as vi1, vi2 and vi3 for a given triangle ti for 1 ≤ i ≤ n. We shall denote
the orthogonal projection of a region r ⊂ <3 on the xy-plane by r∗. The orthogonal
projection of the triangle ti on the xy-plane is a triangle t∗i . If we were to join the
vertices of ti to the corresponding vertices of t∗i and extend these separate segments to
in�nity in both directions then the three lines de�ne a unique in�nite triangular prism
∆(ti). More formally ∆(ti) = {(x, y, z1)|(x, y, z2) ∈ ti and z1 ∈ (−∞, +∞)}. The triangle
ti along with the portion of ∆(ti) that lies below ti forms a semi-in�nite prism, which will
be denoted t̄i. So t̄i = {(x, y, z1)|(x, y, z) ∈ ti and z1 ≤ z}. For convenience each t̄i will
be called a semi-prism from now on. The terrain T is the union of all the semi-prisms,
T =

⋃
i t̄i. To denote a subset of the semi-prisms, we shall use the convenient notation

of -
t̄≤a =

⋃

1≤i≤a

t̄i ,

so we have: t̄≤n =
⋃

1≤i≤n

t̄i = T .

B represents a ball of radius R centered at the origin. The Minkowski sum of B with
the triangle ti is denoted by ki, that is ki = ti ⊕ B. The Minkowski sum of B with the
semi-prism t̄i is denoted by Ki, that is Ki = t̄i ⊕ B. Similar to the two-dimensional case
we use ∂(o) to denote the boundary of the object o ⊂ <3. ∂u(o) is the upper part of
∂(o) and ∂d(o) is the lower part of ∂(o).

41

Figure 4.1: A polyhedral terrain

Angulated Front View

Top View

Figure 4.2: A semi-krepl

42

Not Simply ConnectedSimply Connected

Figure 4.3: Simply connected sets

4.2 Preliminaries

Before we explore the properties of the Minkowski sum of the terrain with a ball, some
de�nitions that are useful will be listed here. A (polygonal) chain C = (u1, u2, . . . , un) is
a planar straight line graph with the vertex set {u1, u2, . . . , un} and edge set {(ui, ui+1)|1 ≤
i < n}. The chain C is called a monotone chain with respect to a line l if the intersection
of any line that is perpendicular to l with C is at most one point.

A polygon that is formed by a single closed polygonal chain, which does not intersect
itself is called a simple polygon, that is, it has no holes and has non-intersecting edges.
A simple polygon is said to be monotone if its boundary can be partitioned into two
polygonal chains that are monotone with respect to the same line l. A set is called
simply connected, if it is connected and every loop in the set can be contracted to a
point. In other words the set is connected and does not have any holes. Similar to the
de�nition of a polygonally connected set [5], we shall de�ne a set M to be Ω-connected
in <3, if for any two points a and b in M there is a continuous function f : [0, 1] 7→ M

such that :

� f(0) = a and f(1) = b.

� For distinct points x, y ∈ (0, 1), f(x) 6= f(y).

� The image of [0, 1] under f is the union of a �nite number of line segments and arcs
of constant description complexity.

Central to our analysis of the three-dimensional terrain is the assignment of an order
to the semi-prisms. This is achieved in the same way as it is done by Asano et al, in [5].

Lemma 4.2.1 [5] It is possible to de�ne an ordering of the semi-prisms t̄1, t̄2, . . . , t̄n,
denoted by π, such that the projection on xy-plane of

⋃j
i=1 t̄i, for 1 ≤ j ≤ n, is a

monotone polygon with respect to �xed line l.

This ordering can be found in O(n) time. The notation t̄≤a will now have the de�nition
of -

t̄≤a =
⋃

1≤i≤a

t̄π(i) ,

43

so we have: t̄≤n =
⋃

1≤i≤n

t̄π(i) = T .

Additionally we shall assume that the semi-prisms are renumbered according to one
such permutation π. So the semi-prism t̄π(i) will simply be denoted by t̄i from now on.
Continuing, we consider the Minkowski sum of a single triangle with the sphere and
explore some of its properties.

4.2.1 A Single Triangle

Consider the Minkowski sum of a single triangle with the sphere. It is composed of a
triangular prism whose cross section at the center is the triangle itself and whose height
is 2R where R is the radius of the sphere. There is a semi-cylinder whose axis is an edge
of the triangle for each edge of the triangle. Finally at the three ends of this object there
are parts of a sphere whose center is the vertex of the original triangle. We shall call
the Minkowski sum of the triangle and the sphere a krepl, the plural form of krepl is
kreplach, borrowing terminology from [3]. The krepl that is formed by the triangle ti is
denoted by ki, that is ki = ti ⊕ B. The Minkowski sum of a 3D terrain and a sphere is
the union of several such kreplach, where each krepl is positioned in a special manner
with respect to other kreplach. The surface of any krepl ki denoted as ∂(ki), can be
partitioned into two surfaces, the upper part ∂u(ki) and the lower part ∂d(ki), so that
any vertical ray from y = +∞ intersects ∂u(ki) before ∂d(ki). For each ki, the in�nite
volume that lies vertically below ∂u(ki) will be called a semi-krepl Ki, as depicted in
Figure 4.2. More formally Ki = {(x, y, z1)|(x, y, z) ∈ ∂u(ki) and z1 ≤ z}. The union of all
the semi-kreplach is K =

⋃
i Ki = T ⊕B. We are interested in knowing the combinatorial

complexity of ∂(K) and an algorithm to compute it. The boundary of K is the boundary
of the union of the individual Ki's,

∂(K) = ∂

(⋃

i

Ki

)
.

The combinatorial complexity is de�ned as the number of faces, vertices and edges
that form ∂(K). Euler's formula for a connected planar embedded graph states that
if such a graph has mv vertices, me edges and mf faces, then they are related by the
expression mv−me+mf = 2. Since the projection of ∂(K) on the xy-plane is a connected
planar embedded graph, we can know that the number of faces and edges are linear with
respect to the number of vertices. As a consequence of this, the focus will be on counting
the number of vertices in ∂(K) when the combinatorial complexity or the algorithm
complexity has to be determined.

We already described that it is possible to de�ne an ordering for the semi-prisms.
The corresponding semi-kreplach of the semi-prisms will follow the same ordering. Like
in two-dimensional discussion we will use a similar notation to denote a subset of the n

semi-kreplach. For example,
K≤a =

⋃

1≤i≤a

Ki ,

44

so we have: K≤n =
⋃

1≤i≤n

Ki = T ⊕ B = K.

Pseudosphere Property: Two solids a and b are said to satisfy the pseudosphere
property if the solids a\b and b\a are topologically equivalent to a ball.

4.2.2 Properties of Kreplach

Directly from the de�nition of the Minkowski sum for a single triangle ti and its corre-
sponding krepl ki we have :

Observation 4.2.2 From every point of ti the shortest distance to ki is R.

Since the terrain T is triangulated, for i 6= j, if the two triangles ti and tj are adjacent
in T then their adjacency can be classi�ed into two cases. Edge-edge if the whole of the
edge of ti coincides with the whole of the edge of tj, or vertex-vertex if a vertex of ti

coincides with a vertex of tj. For two triangles ti and tj which are edge-edge adjacent in
T , the union of their corresponding kreplach ∂(ki ∪ kj), will have a common cylindrical
face of radius R and whose axis is the common edge. If the angle between the normals to
the planes of the two triangles is more that π/2 then this common cylindrical face may
form a face of ∂(K) if no other face of ∂(K) is directly above it. Similarly if these two
triangles have a vertex-vertex adjacency, then ∂(ki ∪ kj) will have a common spherical
face of radius R and whose center is the common vertex. Again if the angle between the
normals to the planes of the two triangles is more that π/2 then this common spherical
face may form a face of ∂(K) if no other face of ∂(K) is directly above it.

Observation 4.2.3 For each vertex v in ∂u(K) there is a unique sphere of radius R,
S(v) centered at v such that it touches at least 3 triangles of T .

Any vertex in ∂u(K) is formed by the intersection of the surfaces of at least three
kreplach. Since this vertex lies on the surfaces of the kreplach, it lies at a distance of R

from each of the corresponding triangles. Notice that like in the two-dimensional case
the sphere can be in contact with more than 3 triangles of T . Additionally, from the
de�nition of a three-dimensional terrain we can deduce that :

Observation 4.2.4 The interior of ∆(ti) does not contain any vertex vj of T .

The intersection of two non-adjacent kreplach results in a single closed curve or is
empty. This result has already been proved by Agarwal and Sharir in [3].

Lemma 4.2.5 [3] For i 6= j, if ti and tj are non-adjacent triangles of T , then the
intersection of the surfaces of any two kreplach ki and kj; ∂(ki) ∩ ∂(kj), is either
empty or a single closed curve.

Lemma 4.2.6 B ⊕ T is a terrain

45

Proof. The proof follows the same approach as in the two-dimensional case. It should
be shown that the intersection of any vertical line with B⊕T is a ray in�nite downwards.
Therefore it is su�cient to show that for some point ~p = (x, y, z) ∈ T ⊕B all other points
~pd = (x, y, zd) such that zd ≤ z also belong to T ⊕ B.

Assume that point ~p = (x, y, z) ∈ T ⊕ B. There must be points ~a = (xa, ya, za) ∈ T
and ~b = (xb, yb, zb) ∈ B such that ~a + ~b = ~p. This implies xa + xb = x, ya + yb = y and
za + zb = z. Now assume that there is an arbitrary point ~pd = (x, y, zd) directly below
~p such that zd ≤ z. Choose a point ~ad that is directly below ~a. Since all points which
are directly below ~a also belong to T , ~ad must also belong to T because of the terrain
property. Let ~ad = (xa, ya, zd − zb). Since zd ≤ z it must hold that zd − zb ≤ z − zb,
we already know that z − zb = za so zd − zb ≤ z − zb = za. This means that the choice
of the z-coordinate of ~ad is right and it is indeed directly below ~a. To continue observe
that

~ad ∈ T and ~b ∈ B resulting in ~ad ⊕ ~b = (xa + xb, ya + yb, zd) = ~pd ∈ T ⊕ B.

So we have shown that any arbitrary point ~pd below ~p also belongs to T ⊕B. Therefore
it can be concluded that T ⊕ B is a terrain.

Also notice that the projection of B ⊕ T coincides with the Minkowski sum of the
projections of B and T , that is, it is the Minkowski sum of a convex polygon and a circle,
which is again convex.

The boundary of each semi-krepl is composed of spherical, cylindrical and planar
surfaces. Therefore the boundary of the union of several semi-kreplach, will be composed
of parts of the spherical, cylindrical and planar surfaces. ¤

4.3 A Lower-Bound Construction

The lower-bound construction consists of a central wedge with roughly n/2 faces. The
wedge has its `back' to the xz-plane, with n/2 grooves in the front. There are also n/2

identical needle-like triangular prisms with a constant number of faces. These prisms are
placed very close to the wedge sides as shown in Figure 4.4. The step-wise construction
is described below.

� To construct the central wedge �rst the construction of the projection of the wedge
on the yz-plane is explained. We start with a square on the yz-plane with the
end points (0, 0, 0), (0, 0, R), (0, −R, R) and (0, −R, 0), which forms the base of the
wedge.

� To construct the grooves, a circle of radius equal to R is drawn on the yz-plane at
the point (0, 0, R) so that it is on the upper half plane and tangential to the y-axis.
The upper right 900 segment of this circle from (0, 0, 2R) to (0, −R, R) is divided
into n/2 strips by n/2 equidistant parallel lines as shown in Figure 4.4. In other
words (n/2)−1 equidistant points are marked on the line segment between (0, 0, R)

46

and (0, 0, 2R), and from each of these points a line in the direction of negative y-axis
is drawn till it meets the boundary of the circle. Vertical lines are drawn wherever
the lines meet the boundary of the circle to the ray directly below it. The resulting
construction is shown in the side view of the diagram.

� The boundary of the resulting steps-like polygonal shape along with the square
on the yz-plane forms the cross section of the polyhedral central mountain. This
shape is given considerable thickness in the direction of the positive x-axis.

� The n/2 needle-like triangular prisms are placed very close to the wedge, with a
distance of at least 2R between them. The distances between the needles can also
be determined by using the following method. The �rst needle is placed close to
the wedge. A sphere of radius R is placed so that is touches the bottom-most groove
of the wedge and the �rst needle. The sphere is then slid along this bottom-most
groove till it su�ciently far away from the �rst needle. The second needle is then
placed touching the other side of the sphere at this position. This is continued to
get n/2 needles.

There are Ω(n) faces on the wedge and the triangular prisms. So the input combina-
torial complexity of the terrain is Ω(n). A sphere of radius R corresponding to S(v) can
be placed in one of these grooves so that it also is in contact with one of the prisms. This
contact between three faces gives us a vertex of ∂(K). Since we can also slide the sphere
along the groove so that it touches all the prisms we get an additional Ω(n) contacts per
groove. The same holds true for each grooves of the wedge. Since there are n/2 grooves,
the total number of contacts is Ω(n2). Hence the lower-bound for the Minkowski sum
of T and a sphere is Ω(n2).

4.4 The Upper-Bound

It directly follows from [3], that the combinatorial complexity of T ⊕B is O(n2+ε) for any
ε > 0. It is interesting to note that three arbitrary kreplach need not necessarily satisfy
the pseudosphere property. That is, for distinct i, j, k, if ki, kj, kk are three kreplach of
triangles of T , then the two curves, ∂(ki) ∩ ∂(kj) and ∂(ki) ∩ ∂(kk), may intersect at
more than 2 points. One such scenario is described in Figure 4.5. Notice that we can
make tj and tk as thin as possible, long, and close to ki, so that the corresponding curves
∂(ki) ∩ ∂(kj) and ∂(ki) ∩ ∂(kk), intersect at four points. This is a clear violation of the
pseudosphere property, as a result we cannot conclude that the complexity of the union
of n kreplach is O(n2) as we did in the two-dimensional case.

4.5 Algorithm

The algorithm for computing ∂u(K≤n), will be an incremental construction algorithm like
in the two-dimensional case. The general approach is similar to the algorithm presented

47

x-axis
y-axis

Groove
1

2

3

4

5

6

Needle-like triangular prisms

Top View

Side View
z-axis

y-axis

Figure 4.4: Top view and Side views of the lower bound construction.

Front View

Top View
ti

tk

tj

Kreplach intersections

∂(ki) ∩ ∂(kj) ∂(ki) ∩ ∂(kk)

ki

Figure 4.5: Pseudosphere property violation scenario

48

in [5]. First a permutation π of the subscripts of the n triangles t1, t2, . . . , tn is found,
such that the projection of

⋃
1≤i≤j ti on the xy-plane is a monotone polygon for 1 ≤ j ≤ n.

The triangles are renumbered according to this permutation so that ti refers to tπ(i) for
1 ≤ i ≤ n. The Minkowski sum of a set A and a set H = H1 ∪ H2 ∪ . . . ∪ Hm, can be
expressed as

A⊕H = A⊕
(⋃

1≤i≤m

Hi

)
=

⋃

1≤i≤m

(A⊕Hi) = (A⊕Ha) ∪
(⋃

i6=a

A⊕Hi

)
.

Using the same idea for the terrain we get

B ⊕ T = B ⊕
(⋃

1≤i≤n

t̄i

)
=

⋃

1≤i≤n

(B ⊕ t̄i) = (B ⊕ t̄1) ∪
(⋃

2≤i≤n

B ⊕ t̄i

)
.

This observation suggests computing (B ⊕ t̄1) = K1 �rst. Subsequently K2 is computed
and their union K≤2 = K1 ∪ K2 is found. In this manner the rest of the semi-kreplach
K3, K4, . . . , Kn are added in the order de�ned by π. At any given point in the algorithm
we will have a valid terrain K≤j, which is a subset of K≤n.

Algorithm Mink3D(T , R)
Output: M the DCEL containing the edges, faces and vertices in ∂u(K≤n)

1. Triangulate the polygonal faces of T
2. Determine the ordering π so that the projection of

⋃
1≤i≤j ti on the xy-plane is a

monotone polygon for 1 ≤ j ≤ n

3. M ←K1

4. for i ← 2 to n

5. do (∗ Update M, i.e. compute M ← M ∪ Ki ∗)
6. ComputeUnion(∂(M), ∂(Ki))
7. return L

The details of Algorithm ComputeUnion are explained later. First we shall look
into the properties of the intersection ∂(K<i)∩∂(Ki) and prove that it is an Ω-connected
arc.

4.5.1 Properties of ∂(K<i) ∩ ∂(Ki)

Lemma 4.5.1 (B ⊕ t̄≤j)
∗

= B∗⊕(t̄≤j)
∗, and therefore (B ⊕ t̄≤j)

∗ is a monotone region
without holes.

Proof. First we shall prove the equality of the two sets. Consider any two points p

and q, such that p = (x1, y1, z1) ∈ B and q = (x2, y2, z2) ∈ t̄≤j. The Minkowski sum of
these two points is (x1 + x2, y1 +y2, z1 + z2) ∈ B⊕ t̄≤j. The projection of this point must
lie in the projection of the B ⊕ t̄≤j, so we have r = (x1 + x2, y1 + y2) ∈ (B ⊕ t̄≤j)

∗.

49

Since p ∈ B and q ∈ t̄≤j, we have p∗ = (x1, y1) ∈ B∗ and q∗ = (x2, y2) ∈ (t̄≤j)
∗. So

we have p∗ ⊕ q∗ = (x1 + x2, y1 + y2) = r ∈ B∗ ⊕ (t̄≤j)
∗. This argument is applicable to

all the pairs of points of B and t̄≤j. This means for any two points p ∈ B and q ∈ t̄≤j,
the projection of their Minkowski sum is identical with the Minkowski sum of their
projections. Therefore we can conclude that the two sets (B ⊕ t̄≤j)

∗ and B∗ ⊕ (t̄≤j)
∗ are

indeed equal.
B∗ is a circle of radius R. The Minkowski sum of a circle B∗ and a monotone polygon

(t̄≤j)
∗ is again monotone. Therefore (B ⊕ t̄≤j)

∗ = K∗≤j is monotone region without holes.
¤

Lemma 4.5.2 If H1, H2 ⊂ <2 and H1, H2 and H1 ∪ H2 are simply connected then
H1 ∩H2 is also simply connected.

Proof. First we prove that H1 ∩H2 is connected and in the next step prove that it is
simply connected. To prove connectedness, assume that H1 ∩H2 is composed of at least
two disjoint sets. Let A and B be two of those sets. Let a and b be points in A and B

respectively. Now since a ∈ H1 and b ∈ H1 there must be a curve α ⊂ H1 which joins
both a and b as shown in Figure 4.6. Similarly there must be a curve β ⊂ H2 which
joins a and b. Consider the closed curve obtained by the union of α and β, this closed
curve α ∪ β clearly must be a part of H1 ∪H2, so (α ∪ β) ⊂ H1 ∪H2. We already know
that H1 ∪H2 is simply connected, which implies that all points in the interior of (α∪β)

are also in H1 ∪H2. Let this region, which is bounded by the curves (α ∪ β) be G. Let
H ′

1 be the subset of H1 that lies inside G, that is H ′
1 = {p|p ∈ H1 and p ∈ G}. Let H ′

2 be
the subset of H2 that lies inside G, that is H ′

2 = {p|p ∈ H2 and p ∈ G}. Since all points
inside G belong to H1 ∪H2 we must have H ′

1 ∪H ′
2 = G and H ′

1 ∩H ′
2 6= ∅. If it were true

that H ′
1 ∩H ′

2 = ∅ then there must be some point p which does not belong to H1 or H2,
which will violate the simply connectedness of H1 ∪H2. To summarize:

H ′
1 ∪H ′

2 = G (4.1)
H ′

1 ∩H ′
2 6= ∅ (4.2)

Let A ′ and B ′ be the subsets of A and B respectively which lie inside G, that is A ′ =

{p|p ∈ A and p ∈ G} and B ′ = {p|p ∈ B and p ∈ G}. Clearly A ′ ⊂ H ′
1, A ′ ⊂ H ′

2 and
A ′ ⊂ (H ′

1 ∩H ′
2). Similarly B ′ ⊂ H ′

1, B ′ ⊂ H ′
2 and B ′ ⊂ (H ′

1 ∩H ′
2). Thus we have:

(H ′
1 ∩H ′

2) ∩A ′ = A ′ (4.3)
(H ′

1 ∩H ′
2) ∩ B ′ = B ′ (4.4)

If both ∂(H1) ∩G = ∅ and ∂(H2) ∩G = ∅ then H ′
1 = H ′

2 = G, which means that A ′ and
B ′ are connected by a subset of H1 ∩ H2, so we are done. If either ∂(H1) ∩ G 6= ∅ or
∂(H2) ∩ G 6= ∅ then let δ be that non-empty curve. Without loss of generality assume
δ = ∂(H1)∩G. Now if H ′

1 ∩H ′
2 is connected then it follows that A ′ and B ′ are connected

and we are done.

50

A

B

γ

pa
b

A ∩ B

α

β

δ

δ
′

Figure 4.6: Illustration of proof of Lemma 4.5.2

To prove that H ′
1 ∩H ′

2 is also connected in all other cases we give a proof by contra-
diction. We will assume that H ′

1 ∩H ′
2 is not connected and subsequently show this leads

to a contradiction. Assume that H ′
1 ∩ H ′

2 is not connected, in this case δ ∩ (H ′
1 ∩ H ′

2)

partitions δ into atleast three individual curves where two of the parts border H ′
1 ∩H ′

2.
Atleast one of these parts of δ lies completely outside H ′

1 ∩ H ′
2, let this part be δ ′. On

some arbitrary point of δ ′ draw a very small circle c. All points within this circle must
belong to H1 ∪ H2 since H1 ∪ H2 is simply connected. Therefore all points in c ∩ H ′

1

belong to H ′
1 and the rest of the points in c along with c ∩ δ ′ must belong to H ′

2. This
is true for all points on δ ′. Therefore all such points on δ ′ belong to both H ′

1 and H ′
2.

This means that the curve δ ∈ (H ′
1 ∩H ′

2). This contradicts the assumption that H ′
1 ∩H ′

2

is disconnected. Therefore we conclude that H1 ∩ H2 must be connected, which makes
A ′ and B ′ connected.

To prove that H1 ∩ H2 is simply connected consider a closed curve γ that lies com-
pletely inside H1∩H2, as shown in Figure 4.6. Let p be an arbitrary point inside γ. Since
γ ∈ H1 and H1 is simply connected any point p inside γ must also belong to H1. On
the same lines, since γ ∈ H2 and H2 is simply connected any point p inside γ must also
belong to H2. Therefore all points inside γ are also present in H1 ∩H2. This arguments
holds for any such curve γ ∈ H1 ∩ H2, therefore it can be concluded that H1 ∩ H2 is
simply connected. ¤

Lemma 4.5.3 (Kj ∩ K<j)
∗

= K∗j ∩ K∗<j, as a result (Kj ∩ K<j) is simply connected.

Proof. In the �rst step of the proof it is shown that any point (x, y) ∈ (Kj ∩ K<j)
∗

also belongs to the set K∗j ∩ K∗<j. Assume that a point p = (x, y) ∈ (Kj ∩ K<j)
∗. Since

(Kj∩K<j)
∗ is the projection of the set (Kj∩K<j), there must be a z1 such that (x, y, z1) ∈

(Kj ∩ K<j). From this it follows that (x, y, z1) ∈ Kj and (x, y, z1) ∈ K<j. The projections
of these individual points must belong to the projections of the individual sets, that is
(x, y, z1)

∗ = (x, y) ∈ K∗j and (x, y, z1)
∗ = (x, y) = K∗<j. So the point p lies in both the sets

so we have p = (x, y) ∈ K∗j ∩ K∗<j.
In the second step it is shown that any point (x, y) ∈ K∗j ∩K∗<j, also belongs to the set

(Kj∩K<j)
∗, which will make the two sets equal. Assume that a point p = (x, y) ∈ K∗j ∩K∗<j.

51

This point must belong to both the sets so, (x, y) ∈ K∗j and (x, y) ∈ K∗<j. Since these
sets are projections, there must be a z1 such that (x, y, z1) ∈ K∗j and there must a z2

such that (x, y, z2) ∈ K∗<j. Let z3 = min(z1, z2). Since each Ki is vertically monotone and
extends downward towards −∞, the smallest z-coordinate must be present in both the
sets. So we must have (x, y, z3) ∈ (Kj ∩ K<j). Consequently (x, y) ∈ (Kj ∩ K<j)

∗. This
proves the �rst part of the lemma.

Next we show that Kj ∩ K<j is connected. We know that (Kj ∩ K<j)
∗ = K∗j ∩ K∗<j.

That is, the projection of Kj ∩ K<j on the xy-plane is the intersection of the convex
projection of the semi-krepl Kj and the monotone region K∗<j. To check if this region of
intersection may have holes and therefore may not be a simply connected set, we observe
that K∗j ∪ K∗<j = K∗≤j. It has already been shown that K∗≤j is a monotone region without
holes from Lemma 4.5.1. Plugging in Lemma 4.5.2 we can conclude that K∗j ∩ K∗<j is
simply connected. Since Kj ∩ K<j is also vertically monotone, we conclude that Kj ∩ K<j

is simply connected. ¤
Theorem 4.5.4 ∂(Kj) ∩ ∂(K<j) is an Ω-connected arc.

Proof. There are two steps to this proof. First it shall be shown that Kj ∩ ∂(K<j)

and ∂(Kj) ∩ K<j are Ω-connected surfaces. In the second step it will be shown that
∂(Kj) ∩ ∂(K<j) is an Ω-connected arc. To start, consider the surface Kj ∩ ∂(K<j), which
lies completely inside Kj, assume that this surface is disconnected and is composed of
two sets S1 and S2. Let U1 ⊂ t̄j and U2 ⊂ t̄j be the set of points in t̄j, that give rise
to the sets S1 and S2 after the Minkowski sum of t̄j and B is computed. In other words
U1 = {p |p ∈ t̄j and (p⊕ B) ∩ S1 6= ∅} and U2 = {p |p ∈ t̄j and (p ⊕ B) ∩ S2 6= ∅}. Let u

be a point in U1 and v be a point in U2.
From Lemma 4.5.1, we know that (B⊕ t̄≤j)

∗ is a monotone region without holes, and
from Lemma 4.5.3, we know that Kj∩K<j is connected. Moreover since the projection of
Kj∩K<j is simply connected and both Kj and K<j are terrains themselves, we conclude that
Kj ∩ K<j is simply connected, that is without holes. Since Kj ∩ K<j is simply connected,
it is possible to show that there is a connected set S ⊂ t̄j which contains both u and v,
with the special property that for any point w ∈ S, if we were to place B at w then it
will always intersect (Kj ∩ K<j), so (w⊕ B) ∩ (Kj ∩ K<j) 6= ∅.

To see that this set S exists, imagine translating B to u �rst. Then translate B along
a path inside t̄j, from u to v, so that at all times along this path, B intersects (Kj ∩K<j).
Naturally such a path must exist, since u ⊕ B and v ⊕ B both intersect (Kj ∩ K<j) by
de�nition, and (Kj∩K<j) is connected. This path itself forms the set S. As a consequence
of the existence of this set S, we notice that for any point w ∈ S, w /∈ t̄<j, so w ⊕ B
will never lie completely inside ∂(K<j), w ⊕ B will always intersect ∂(K<j). Since this
happens for every point wi of S, together, all the intersections of wi ⊕ B with ∂(K<j)

de�ne a connected set in Kj ∩ ∂(K<j). This means that there is a `bridge' between S1

and S2 making them connected. This contradicts the assumption that Kj ∩ ∂(K<j) is
disconnected and composed of sets S1 and S2. Therefore Kj ∩ ∂(K<j) must be connected.
Since the surface of each semi-krepl is already an Ω-connected surface, the surface of the
union of several semi-kreplach must also necessarily be an Ω-connected surface.

52

a
∗

b
∗

s
∗

1 ∈ (∂(Kj) ∩ K<j)
∗

s
∗

2 ∈ (Kj ∩ ∂(K<j))
∗

Figure 4.7: Projection of the curves s1 and s2 joining a and b

On similar lines it can be proved that ∂(Kj) ∩ K<j is also an Ω-connected surface.
Moving on to the second step of the proof, consider the intersection of the two surfaces
∂(Kj)∩ ∂(K<j). Let a and b be two points such that a, b ∈ ∂(Kj)∩ ∂(K<j). Each of these
two points lie on the Ω-connected surfaces Kj ∩ ∂(K<j) and ∂(Kj) ∩ K<j. There must be
Ω-connected arcs s1 and s2, lying on the surfaces ∂(Kj)∩K<j and Kj∩∂(K<j) respectively,
each connecting a and b. Consider the region R ⊂ <3 formed by the surfaces ∂(Kj)∩K<j

and Kj ∩ ∂(K<j) limited by s1 and s2. If a and b are not Ω-connected then R is not
Ω-connected, which would mean that Kj ∩K<j is not simply-connected, which is not the
case. To make this more clear, consider an impossible scenario in which ∂(Kj) ∩ ∂(K<j)

is not an Ω-connected arc, this is illustrated Figure 4.7. In this conceptual �gure the
orthogonal projection of the region R along with the projections of s1, s2, a and b are
shown. In the diagram the curves on the surfaces Kj ∩ ∂(K<j) and ∂(Kj) ∩ K<j joining a

and b do not coincide with each other. Any such scenario would mean that Kj ∩ K<j is
not simply-connected.

Secondly, the degree of each vertex of ∂(Kj) ∩ ∂(K<j) must be two, otherwise with a
slight perturbation of T a curve ∂(Kj) ∩ ∂(K<j) which is disconnected is obtained.Thus
we conclude that ∂(Kj) ∩ ∂(K<j) is an Ω-connected arc. ¤

When two triangles ti and tj have a common edge, then the union of the corresponding
semi-kreplach have a common cylindrical face. This may seem contrary to the result of
Theorem 4.5.4. This can be resolved as follows. The common cylindrical face can be
assumed to be belonging to one of the two semi-kreplach and only one of the common
edges is assumed to be the actual intersection. Similar assumption is done for adjacent
semi-kreplach with common spherical faces. This way intersection of adjacent semi-
kreplach with common faces are assumed to result in Ω-connected arcs instead of Ω-
connected faces.

53

Arbitrary edge e

t̄j

t̄j−1

Figure 4.8: Finding an arbitrary edge of the union ∂(Kj) ∪ ∂(K<j)

4.5.2 Computing the Union ∂(Kj) ∪ ∂(K<j)

We will now describe the details of Algorithm Mink3D . The method of �nding the union
∂(Kj) ∪ ∂(K<j) should be e�cient for a good algorithm. The method described here is
similar to the method described in [5]. Let γ denote the Ω-connected arc ∂(Kj)∩∂(K<j).
Let Fj be the set of faces of ∂(Kj) that contribute some face to γ. Similarly let F<j be
the set of faces of ∂(K<j) that contribute some face to γ.

Since there is at least one and at most two overlapping edges, of the triangle tj and
the surface t<j, we can �nd an arbitrary edge e of γ. The edge e is formed by the
intersection of one face in ∂(Kj) and the other face in ∂(K<j). This face can be found in
constant time. The reason for this is that we have already de�ned the ordering π which
will ensure that there are no semi-kreplach on at least one side of Kj, so that we always
have a vertical face of ∂(Kj) that will intersect with a vertical face of ∂(Kj−1). This is
illustrated in Figure 4.8.

Subsequently faces which are adjacent to the current faces and which contribute an
edge to γ, are checked for intersection. The faces determined in this fashion form the
sets Fj and F<j. The entire curve γ is found in this manner. For any face belonging to
Fj or F<j, either the entire face or a part of it will be part of the surface ∂(Kj)∪ ∂(K<j),
only this visible part of the face has to be retained to compute the union and the hidden

54

portions have to be deleted. These portions of each face of Fj and F<j that are to be
retained are computed next. The retained portions of each face of Fj and F<j are then
`attached' to γ to get the structure γ ′. Finally to compute the union, the faces of Fj

and F<j are removed from ∂(Kj) and ∂(K<j) respectively and the remaining portions of
∂(Kj) and ∂(K<j) along with the newly created portion γ ′ are joined together. This is
described in the Algorithm ComputeUnion .

Algorithm ComputeUnion(∂(Kj), ∂(K<j))
Output: DCEL containing the edges, faces and vertices of ∂(K≤i)

1. Find a single arbitrary edge e of γ = ∂(Kj)∩∂(K<j) that is formed by the intersection
of vertical faces of ∂(Kj) and ∂(Kj−1).

2. Let f1 ∈ ∂(K<j) and f2 ∈ ∂(Kj) be the faces whose intersection is the edge e. Initialize
the sets F<j ← {f1}, Fj ← {f2}. Mark f1 and f2 as `unprocessed'.

3. If the face f ∈ F<j is `unprocessed', then check all 'unprocessed' adjacent faces of f

for intersection with ∂(Kj). If an adjacent face is completely inside ∂(Kj) then mark
it for deletion later on, also mark it as `processed'. If an adjacent face intersects
∂(Kj) then add it to F<j and mark it as `unprocessed'. Mark f as being `processed'.
Continue till all faces in F<j are marked as `processed'.

4. If the face f ∈ Fj is `unprocessed', then check all 'unprocessed' adjacent faces of f for
intersection with ∂(K<j). If an adjacent face is completely inside ∂(K<j) then mark
it for deletion later on, also mark it as `processed'. If an adjacent face intersects
∂(K<j) then add it to Fj and mark it as `unprocessed'. Mark f as being `processed'.
Continue till all faces in Fj are marked as `processed'.

5. Starting from the edge e ∈ f1 ∈ ∂(K<j), walk around the edges of the faces of F<j

determining intersection with faces of Fj to compute γ = ∂(Kj)∩∂(K<j) completely.
This walk also helps in computing the visible portions of the faces of F<j and Fj.

6. Compute γ ′ as follows: For each face f ∈ Fj, the visible portions of f that must be
retained are linked with γ. Similarly for each face f ∈ F<j, the visible portions of f

that must be retained are linked with γ. The resultant structure is γ ′.
7. Remove from ∂(Kj) and ∂(K<j): 1) those vertices that are inside ∂(Kj)∪∂(K<j) hence

invisible 2) those edges which are incident on invisible vertices and those intersecting
γ.

8. Remove all the invisible faces of ∂(Kj) and ∂(K<j) that were previously determined,
that is those that lie completely in the interior of ∂(Kj) ∪ ∂(K<j).

9. Remove all the faces of Fj from ∂(Kj) and all the faces of F<j from ∂(K<j).
10. The remaining structure of ∂(Kj), ∂(K<j) and γ ′ are linked together.
11. return ∂(K≤i).

Lemma 4.5.5 If vj is the number of vertices that are deleted from ∂(Kj) and ∂(K<j)

and |γ| is the number of vertices in γ, then Algorithm-ComputeUnion takes O(|γ|+

vj) time.

Proof. Finding the arbitrary edge e in step-1, takes constant time as described previ-
ously. In step-3 the faces present in F<j are found. This takes time proportional to the

55

number of faces in F<j, which is almost |γ|, plus the number of faces in ∂(K<j) which
have to be deleted, which is less than vj. In step-4 the faces present in Fj are found.
This takes time proportional to the number of faces in Fj, which is constant, plus the
number of faces in ∂(Kj) which have to be deleted, which is also a constant value. Step-5
computes γ and also the visible portions of the faces in F<j and Fj, this is the most
time consuming step of the algorithm. Computing γ is clearly proportional to |γ|. Com-
puting the visible portion of a single face is proportional to the number of other faces
that intersect with it. Since in total there are |F<j| + |Fj| faces, the total number of such
face-face intersections that have to be computed is proportional to |γ|. Computing γ ′

takes O(|γ|) time.
Removing the invisible vertices and edges in step-7 takes time proportional to the

total number of faces that have to be deleted which is vj. Step-8 takes O(vi) time. Step-9
takes time proportional to |F<j| + |Fj| which is O(|γ|). Linking the remaining structures
takes O(|γ|) in step-10. Therefore Algorithm ComputeUnion takes O(|γ| + vj) time. ¤

Based on the fact that ∂(Kj) ∩ ∂(K<j) is an Ω-connected arc, it is possible to make
further observations. It is our claim that for distinct i, j, k, the curves ∂(Ki) ∩ ∂(Kj) and
∂(Ki)∩∂(Kk) on the surface ∂(Ki) intersect in at most two points. The conclusive proof of
this fact has been elusive till now. But if the claim were true then it is easy to show that
the complexity of ∂(K≤n) is in fact O(nλ2(n)), where λ2(n) is the Davenport-Schinzel
sequence of order two.

Conjecture 4.5.6 The combinatorial complexity of ∂(K≤n) is O(nλ2(n)).

Theorem 4.5.7 Algorithm Mink3D computes the Minkowski sum in O(n2+ε) for
any ε > 0.

Proof. The computation of a single semi-krepl can be done in constant time. The
computation of all the n semi-krepl takes O(n) time. The ordering of the semi-krepl
can be found in O(n) time as explained before. Computing the union of the over the n

semi-kreplach takes the most time. From Lemma 4.5.5 we know that to compute union
of ∂(Kj)∩∂(K<j) it takes O(|γj|+vj), where γj = ∂(Kj)∩∂(K<j). Therefore the total time
is proportional to

∑
1≤i≤n |γi| + vi, which is the total number of vertices in ∂(K≤n) and

the total number of vertices that are deleted. This is also the combinatorial complexity
of the arrangement of the n semi-kreplach. Each in�nite prism in T can be decomposed
into 7 triangles by giving the prism some �nite, large enough height. This will result in
a total of 7n kreplach in the arrangement. From [3] it is clear that the combinatorial
complexity of the arrangement of 7n kreplach is O(n2+ε) for any ε > 0. Therefore the
time complexity of Algorithm Mink3D is O(n2+ε) for any ε > 0. ¤

56

Chapter 5

Conclusion

In this paper we have studied the problem of computing the Minkowski sum of piecewise
linear functions in two and three-dimensions with a disk and ball respectively. In the
two-dimensional scenario, for the two-dimensional terrain and a disk, we have shown the
combinatorial complexity to be linear and have proved exact bounds for it. An algorithm
that computes this Minkowski sum in linear time has been given. The problem of �nding
the Minkowski sum of a disk and a �nite, piecewise-linear, non self intersecting curve
was determined to have linear combinatorial complexity, an algorithm for computing this
Minkowski sum has been provided that takes linear time.

In the three-dimensional case, detailed results and observations on the geometry
of the Minkowski sum of a three-dimensional polyhedral terrain with a sphere have
been established. An algorithm that computes this Minkowski sum in O(n2+ε), for any
ε > 0 has been shown. Additionally results describing the quadratic lower-bound of
the complexity of the Minkowski sum and a conjecture on the upper-bound claiming
O(nλ2(n)), were also given.

The next step for this study would be to look into the proof of the conjecture on the
upper-bound, in the three-dimensional case.

57

58

Bibliography

[1] Agarwal, P. K., Flato, E., and Halperin, D. Polygon decomposition for
e�cient construction of minkowski sums. In ESA (2000), M. Paterson, Ed., vol. 1879
of Lecture Notes in Computer Science, Springer, pp. 20{31.

[2] Agarwal, P. K., and Sharir, M. Motion planning of a ball amid segments in
three dimensions. In Proceedings of the Tenth Annual ACM-SIAM Symposium
on Discrete Algorithms (1999), pp. 21{30.

[3] Agarwal, P. K., and Sharir, M. Pipes, cigars, and kreplach: the union of
minkowski sums in three dimensions. Discrete & Computational Geometry 24
(2000), 645{657.

[4] Aronov, B., and Sharir, M. On translational motion planning of a convex
polyhedron in 3-space. SIAM Journal on Computing 26 (1997), 1785{1803.

[5] Asano, T., Hern�andez-Barrera, A., and Nandy, S. C. Translating a convex
polyhedron over monotone polyhedra. Comput. Geom 23 (2002), 257{269.

[6] Chin, F. Y. L., Snoeyink, J., and Wang, C. A. Finding the medial axis of a
simple polygon in linear time. Discrete & Computational Geometry 21 (1999),
405{420.

[7] de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O. Com-
putational Geometry Algorithms and Applications. Springer-Verlag, 1997.

[8] Dobkin, D., Hershberger, J., Kirkpatrick, D., and Suri, S. Implicitly
searching convolutions and computing depth of collisiont. In Algorithms: Interna-
tional Symposium (SIGAL '90) (1990), pp. 165{180.

[9] Earthtrends. http://earthtrends.wri.org/.

[10] Guibas, L., Ramshaw, L., and Stolfi, J. A kinetic framework for computational
geometry. In 24th Annual IEEE Symposium on Foundations of Computer Sci-
ence (1983), pp. 100{111.

[11] Guibas, L. J., and Seidel, R. Computing convolutions by reciprocal search.
Discrete & Computational Geometry 2 (1987), 175{193.

59

[12] Har-peled, S., Chan, T. M., Aronov, B., Halperin, D., and Snoeyink, J.
The complexity of a single face of a minkowski sum. In Proc. 7th Canad. Conf.
Comput. Geom (1995), pp. 91{96.

[13] Hernandez-Barrera. Computing the minkowski sum of monotone polygons.
TIEICE: IEICE Transactions on Communications/Electronics/Information
and Systems (1997), 218{222.

[14] Kaul, A., O'Connor, M., and Srinivasan, V. Computing minkowski sums of
regular polygons. In Proc. 3rd Canad. Conf. Comput. Geom (1991), pp. 74{77.

[15] Kedem, K., Livne, R., Pach, J., and Sharir, M. On the union of jordan
regions and collision-free translational motion amidst polygonal obstacles. Discrete
and Computational Geometry 1 (1986), 59{71.

[16] Li, Z., and Milenkovic, V. A compaction algorithm for non-convex polygons
and its application. In Proc. 9th ACM Symposium on Computational Geometry
(1993), pp. 153{162.

60

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1. Introduction
	2. The Two-Dimensional Case
	3. The Buffer-Zone Problem
	4. The Three-Dimensional Case
	5. Conclusion
	Bibliography

