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From an engineering perspective, there are two ways
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and take over their territory, etc.) But there’s
another way to make things bigger, and that’s to make
things smaller. Because the real size of a system is not
how big it actually is, the real size is the ratio between
the biggest part of a system and the smallest part of a

system. Or really the smallest part of a system that you can
actually put to use in doing things.
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A B S T R A C T

The increasing complexity of systems-on-chip enabled by technology
scaling drives the increase in design effort. Changes are required in
system-on-chip development to drive improvements in effectiveness to
reduce (non-recurring engineering) cost and improve time-to-market.

To deal with these requirements a platform-based approach is advo-
cated. Intellectual Property blocks are reused to reduce design effort.
Furthermore complete platforms are reused to evolve product empha-
sis once performance requirements have been satisfied in a certain
application domain.

However, scaling a design causes a shift in performance bottleneck
from computation toward communication. Arbitration to shared re-
sources (i.e. remote memory) can cause serious latency issues as it is
a non-scalable bottleneck in the architecture. Furthermore, resource
sharing also causes inter-dependencies between jobs that are mapped
on the architecture. Integration or evolvement of resources changes all
temporal behavior, where complete system verification is required to
validate end-to-end behavior.

This thesis contributes to these issues by introducing a hardware
platform, based on the Æthereal network-on-chip, that is optimized
for streaming applications. Virtualization of the platform enables a
compositional mapping of jobs on the architecture such that all inter-
dependencies between these jobs are completely removed. By removing
all inter-dependances the strictest form of compositionality is obtained.
All additional costs for the strictest form of compositionality are ac-
cepted for this thesis. The resulting system allows for individual verifi-
cation of jobs instead of extensive simulation of all possible mappings
on the architecture.
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"Cost (of design) is the greatest threat to continuation,
of the semiconductor roadmap"

— ITRS [10]

1I N T R O D U C T I O N

To meet the computational requirements of modern day applications
in domains as multimedia and automotive, the processing power of
systems-on-chips (SoC) has to increase. Single general-purpose proces-
sors are typically not efficient enough to suffice these high computa-
tional demands, and would lead to unacceptable power dissipation.
In these cases the use of scalable and power efficient multiprocessor
system-on-chip (MPSoC) platforms is advocated.

This is supported by the so-called design productivity gap, which states
that the expected scaling towards smaller dimensions, as predicted by
Moore’s law, will continue for the foreseeable future but our ability of de-
signing embedded systems cannot keep up with this technology scaling.
In other words, deep sub-micron (DSM) technology enables designers
to build more complex systems1, but the design effort is not a linear
function of the size of the design. Platform-based SoC design promises
to boost productivity by minimizing the effort to add components to a
given design.

Figure 1. System-on-Chip

The importance in this is the fact that the manufacturing non-recurring
engineering (NRE) cost of designing these complex systems rapidly be-
comes the greatest threat to continuation of the semiconductor roadmap,
as stated by the International Technology Roadmap for Semiconductors
(ITRS) [10]. The designer is faced with extreme challenges that arise
with the additional complexity of SoC design caused by the consumers
demand for increased functionality and lower cost. These challenges
diverse from DSM problems (i.e. timing, power consumption and yield)

1 Referring to the exponentially increasing transistor counts enabled by smaller feature
sizes making it possible to integrate complete systems with many hardware resources
including not only storage and processing functions but also peripherals and interfaces
on a single chip

1
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via architectural problems and application software all the way to
verification.

Rapid technology change shortens product life cycles and makes
time-to-market a critical issue for semiconductor customers [10], while
NRE costs are in the order of millions of dollars (table 1). To avoid
an explosion of the design costs reuse is advocated. The abstraction
level is raised from standard cells to complete Intellectual Property (IP)
blocks i.e. CPU, DSP, memory and interconnect. Platform-based design
shortens the SoC design process by making use of reusable groups of
cores to form a complete hardware platform. This enables integration of
reusable and configurable IP blocks unspecific for a certain application
domain.

IP reuse is only one of the challenges accompanied with the at-
tempted closure of the design productivity gap. The ITRS lists several
more of these challenges, they include [10]:

• Reuse — support for hierarchical design, heterogeneous SoC in-
tegration (modeling, simulation, verification, test of component
blocks) especially for analog/mixed-signal

• Verification and test — specification capture, design for verifiability,
verification reuse for heterogeneous SoC, system-level and soft-
ware verification, verification of analog/mixed-signal and novel
devices, self-test, intelligent noise/delay fault testing, tester timing
limits, test reuse

• Cost-driven design optimization — manufacturing cost modeling
and analysis, quality metrics, co-optimization at die-package-
system levels, optimization with respect to multiple system objec-
tives such as fault tolerance, testability, etc.

• Embedded software design — predictable platform-based electronic
system design methodologies, codesign with hardware and for
networked system environments, software verification/analysis

• Reliable implementation platforms — predictable chip implementa-
tion onto multiple circuit fabrics, higher-level handoff to imple-
mentation and

• Design process management — design team size and geographic
distribution, data management, collaborative design support, "de-
sign through system" supply chain management, metrics and
continuous process improvement

Most products fit in a larger family of products. The members of such
a product domain share a lot of functionality and features. It is attractive
to share implementations, designs et cetera between those members
to increase the efficiency of the entire company. Once performance
requirements have been satisfied in a particular application domain,
in order to remain viable and competitive, the product emphasis must
evolve. An example is the mobile phone, were bluetooth, a digital
camera and MP3 encoder are integrated in the more advance products
within the family, while the basic functionality is the same. Next to IP
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reuse complete hardware platforms are reused and migrated across a
family of products.

In practice many difficulties pop-up when product developments
become coupled. Integration of IP blocks to enhance or extend function-
ality creates new dependencies as shared resources such as interconnect
and memory often do not scale with product evolvement. Interference
at these resources results in major latency issues when scaling the
design. In combination with the increasing cost of wires due to the
silicon process evolution the bottleneck in system performance shifts
from computation to communication. Consequently, the contention at
shared resources puts high demands on arbitration to ensure system
performance requirements. When a certain requirement is established
in a application domain, integration or evolvement of resources change
data traffic patterns and hence it must be re-ensured that performance
requirements are met.

Many applications, such as for audio and video compression, have
hard real-time timing requirements (i.e. latency and throughput) to
guarantee a certain quality. If these requirements are not met the quality
of the audio or video may not suffice to consumer standards. Arbitration
can cause timing requirements of one job to be met at the cost of missing
the requirements of other jobs. Consumers expect a predictable quality-
of-service (QoS) of systems. Therefore, timing requirements must be
verified before a product is made available on the market.

Table 1. Design cost

Meeting design constraints can require many design iterations (design
closure). This becomes even more true with the increasing flexibility
of MPSoCs, where the enormous amount of possible combinations of
applications and there non-deterministic behavior make it very difficult
to valide the timing requirements. To come back at the example of the
mobile phone, an MPSoC-based mobile phone may execute an MP3

decoder to produce music, while the user also writes a text message
concurrently to downloading a new ring tone in the background. The
user should not experience significant quality drops or delays when
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activating or de-activating applications.
Interference between integrated IP blocks causes unpredictable be-

havior, which makes it difficult if not impossible to verify that timing
requirements are met at design-time. Simulation can only be used
to demonstrate that timing requirements are met for a particular set
of input stimuli and therefore does not guarantee correct behavior.
Moreover, simulation is time-consuming. Predictable platform-based
system design is advocated to reduce design cost and time-to-market
by enabling system analysis at design-time to ensure QoS.

Note that predictability is not only endangered by interference at
shared resources, but by all uncertainties introduced in the design
process (i.e. unpredictable IP behavior). The essence of QoS is there-
fore the offering of a predictable system behavior to the consumer. In
order to predict the behavior of a complete system the behavior of all
resources must be predictable and hence every resource must provide
QoS.

1.1 problem description

Increased functionality and heterogeneity of MPSoC enables efficient
parallel processing of jobs on a system. This increases computational
power and minimizes power dissipation but on the other hand evokes a
new set of problems. Dynamic market behavior results in short product
life cycles and consequently high NRE design costs. These NRE design
costs largely result from verification effort (see table 1). Uncertainties
in resource behavior make it difficult to guarantee that a certain QoS
is met. This motivates the emphasis on the analysis and prediction
of the behavior of an application instead of the need for extensive
simulation. Therefore, it is essential to enable a predictable mapping of
the application onto the architecture.

Predictability (3.1.1) is a valuable asset that deals with uncertainties
that are introduced by resources. This can be obtained by either remov-
ing or bounding these uncertainties. Predictability is a non-trivial issue
and motivation of many research groups. In order to close the design
productivity gap the emphases should be on predictable platform-based
system design methodologies [10].

One of the causes of unpredictable behavior is due to interference
at the shared resources (computation, communication and storage).
Interference between resources make system behavior unpredictable.
Jobs become dependant on each others temporal behavior as they share
resources, and put high demand on the arbitration of contention points.
A more relaxed but valid requirement that can be established is that
once the temporal behavior of a job mapped on a system is predicted or
simulated, that behavior is still valid for any composition of other jobs
in the system. This deals with the compositionality of an architecture.

Compositionality (3.2.1) makes a design more reliable as it guar-
antees a certain amount of shared resources to be available for each
job. Compositionality relates to the uncertainties in the availability of
shared resource and thus is a necessary prerequisite for predictability,
as is shown in section 3.2.2. This allows the designer to do individual
analysis or simulation of jobs instead of exhaustive simulation of all
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possible mappings of the system.

1.2 contribution

This report tries to contribute to the closure of the design productivity
gap by introducing the first steps towards predictable platform-based
design. This report presents a compositional platform-based design
methodology. First latency issues are addressed to minimize the ef-
fect of performance bottlenecks caused by resource sharing. Resource
sharing creates dependances between jobs as they content for the same
resource. Resource contention points put high demands on arbitration
to guarantee performance requirements, which requires many design
iterations. Therefore secondly compositionality is introduced, which
decreases verification effort by enabling independent subsystem verifi-
cation. The aim for this thesis is to prove the concept of compositionality
in its strictest form, which is that the behavior of a job is not effected by
other jobs on a cycle-true level. For this thesis all the costs for obtaining
the strictest form of compositionality are excepted.

Compositionality is achieved by means of virtualization (3.3.1). This
essentially means that resources are virtually divided in such a way that
the temporal behavior of one job does not effect the temporal behavior
of another job. This gives a job the illusion that it is running on its own
virtual platform. This report thus introduces resource virtualization for
mapping multiple applications on the same MPSoC based platform.

1.3 organization

The rest of the thesis is organized as follows. Chapter 2 looks into the
trends in SoC design and addresses latency issues caused by the scaling
of designs enabled by DSM technologies. Based on these findings it
introduces an architecture that is optimized for streaming applications.
In Chapter 3 predictability and compositionality are defined and vir-
tualization is introduced as a new design methodology. In chapter 4

the concept of virtualization is applied on the proposed architecture.
Chapter 5 specifies the IP blocks that form the actual hardware plat-
form. Chapter 6 discusses the implementation detail needed to obtain
the hardware platform. Experimental results and analysis of the results
are shown in chapter 7. Chapter 8 summarizes the conclusions of this
thesis and chapter 9 ends with directions for future work.



It has become appallingly obvious that our
technology has exceeded our humanity

— Albert Einstein

2F U T U R E T R E N D S T O WA R D S C O M P L E X S Y S T E M S

As predicted in 1965 by Gordon E. Moore , co-founder of Intel, the
complexity of integrated circuits roughly doubles every 2 years. The
original statement is the following:

The complexity for minimum component costs has increased
at a rate of roughly a factor of two per year ... Certainly over
the short term this rate can be expected to continue, if not
to increase. Over the longer term, the rate of increase is a
bit more uncertain, although there is no reason to believe
it will not remain nearly constant for at least 10 years. That
means by 1975, the number of components per integrated
circuit for minimum cost will be 65,000. I believe that such
a large circuit can be built on a single wafer.

Gordon E. Moore - "Cramming more components onto integrated
circuits", Electronics Magazine 19 April 1965

In the foreseeable future this trend is expected to continue (figure 2).
This enables the design of complex SoCs, though as stated in the intro-
duction the downside is that the design effort for such complex systems
rapidly becomes the bottleneck for continuation of the semiconductor
roadmap.

Figure 2. Design productivity gap [18]

Challenges have to be met to overcome these issues resulting in the
increase of complexity. This leads to requirements for new methods

6
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and techniques to enhance productivity, controllability and quality
of hardware components. To get a better insight in these issues this
chapter focuses on the root causes for the increasing complexity of SoC
design. This means approaching the problem from a deep sub-micron
(DSM) perspective. Furthermore, the trends in resolving these issues
are discussed.

2.1 deep sub-micron problems

This section is about issues related to deep sub-micron problems. Deep
sub-micron technology relates to the decrease in feature sizes towards
only fractions of a micron, allowing for billions of transistors on a single
die, possibly running at gigahertz frequencies. Improved microproces-
sor performance results largely from this technology scaling, which
lets designers increase the level of integration at higher clock frequen-
cies [26]. Though deep sub-micron technologies enhance possibilities
in semiconductor integration, its complexity hampers the verification
and test process and face the designer with several major technology
challenges. These consequences become even greater when scaling the
design towards higher dimensions.

In this report the DSM problems are divided into three groups,
namely timing, power and yield. The following sections show how these
DSM problems propagate through several architectural levels all the
way to the software applications that are ran on such a systems. It
introduces a new design methodology that raises the abstraction level
from these DSM problems to complete hardware blocks. Furthermore,
latency issues are addressed to minimize the effect of shared resource
bottlenecks.

2.1.1 Timing

In the early days of SoC design the main challenge was to optimize
a design for speed. This issue was mainly addressed by advantages
in IP performance. However, with the increase of the number of IP
blocks on a chip the length of the wires connecting them (interconnect)
also has increased. With the silicon process evolution the RC-delay of
wires becomes much larger than the gate delay and thus the dominant
factor in chip performance. Consequently, timing has become one of the
most important DSM challenges and the main driver for performance
limitation.

In [33] there are listed several consequences of this change in the
main driver for performance limitation. First the placement and routing
of the wires becomes important and hence many layout iterations are
needed. This is the problem of timing closure. Secondly, RC delays in
supply lines leads to voltage loss or so-called IR-drop associated with
current peaks. Third, similar effects happen in clock lines, which causes
skew problems. The arising wire delays to connect IPs now become
a dominant factor. To minimize this effect, global wires should be
decoupled from the local wires of an IP, i.e. clock lines become too long
and consequently too slow for a SoC to be synchronized with only one
clock. The future trend is now towards globally asynchronous and locally
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synchronous (GALS) [25].
As the bottleneck changes from computation to communication,

communication becomes a central concern. This causes a shift from
a computation to a communication-centric approach [5, 7]. Reuse of
communication structures is advocated which supports the use of
Network-On-Chip (NoC)[5, 6, 18, 33], since on-chip networks are scalable,
flexible and reusable communication structures that decouple local and
global wires so that it allows for GALS.

2.1.2 Power

The second group of problems are power related. Power dissipation
is a major concern especially for mobile and wireless (nomadic) ap-
plications, where dissipation constrains can be as low as 1 Watt. This
has formed the main reason to drop the supply voltage. However, for
CMOS technology the drop in supply voltage typically has a negative
effect on the performance. This effect on performance can be limited
somewhat by scaling the threshold voltage but this again results in
increased static power dissipation.

Figure 3. Trends for power efficient SoC [11]

In [11] several trends for power efficient SoC drivers are given. They
are partly based on the model created by the Japan Semiconductor
Technology Roadmap Design Working Group and are shown in figure
3. The application domain is "Mobile Consumer Platforms". This is a
domain that is rapidly evolving and the application domain specific to
this thesis. The ITRS lists several aspect of the model including [11]:
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• Its typical application area is electronic equipment categorized as
"Mobile Consumer Platforms" because this application area will
make rapid progress in the foreseeable future across semiconduc-
tor technology generations.

• From the typical requirements of this type of SoC ("Mobile Con-
sumer Platforms") an explosive increase of processing power is
required under some upper bound for battery life.

• As a result, the requirement for processing power will be 1000x
in the next ten years, while the requirement for dynamic power
consumption will not change noticeably.

• The life cycle of "Mobile Consumer Platform" products is short,
and will stay short in the future. Therefore, the design effort
cannot be increased - it needs to stay at the current level for the
foreseeable future.

Note that the different requirements coincide. As shown in the figure
there is a need for an explosive increase in processing power while
power consumption and design effort stay near constant. With the
already mentioned design productivity gap (see figure 2) and timing
closure this seems as an impossible task. Solving this asks for a com-
pletely new design methodology. The future trend is now towards
platform-based MPSoC design. Multiprocessors offer a cost-efficient
high-performance platform to meet the throughput and latency re-
quirements of this application domain by virtue of parallel processing.
Platform based design simplifies the SoC design process by making
use of reusable groups of cores to form a complete hardware platform.

2.1.3 Yield

Finally there is the problem of yield. Currently inspection systems
are expected to detect defects of sizes scaling down in the same way
or even faster as feature sizes required by technology generations.
Noise and variability have negative impact on yield and the problem
of finding yield relevant defects becomes a major issue. In [12] it is
stated that the signal-to-noise ratio for defect inspection tools was
identified by the community as the most important challenge for yield
enhancement. Noise can come from sources as the supply, the substrate,
from inductive effects, capacitive coupling between neighboring wires
(crosstalk), from alpha particles and other forms of radiation that injects
charges [33]. Variability [27] is a major concern for predictability. It
relates to the fact that identical transistors can show different electrical
behavior. This causes the need for reliable systems to be designed using
unreliable components. Abstraction to a higher granularity is one of
the methods for solving this issue, making the design error tolerant.
Though the importance of this subject, it is not within the scope of the
thesis and is therefore not discussed in the continuation of this report.
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2.2 memory

With the evolvement of MPSoC and hence the increase in processing
performance one of the pressing obstacles is the disparity between
memory and processor speed. This gap is referred to as the memory gap.
On-chip memory blocks are reasonably fast but with the increase in
capacity this advantage is quickly disappearing, where also the amount
of chip area it occupies is increasing significantly. Off-chip memory can
have virtually no capacity limitations, but is slow and needs a high
amount of interface pins and therefore is often limited to one. Although
a remote (shared) memory provides a large amount of available memory
to a processor, communication latency is often an issue. This can mostly
be hidden by caches, but still the combination of multiple processors
and a scarcity of - relative slow - memory blocks leads to resource
sharing and hence high demands on communication and memory
resource arbitration. Shared memory becomes a non-scalable bottleneck
in the architecture.

To give an example, if there is a 3% cache miss rate and every cache
miss resolves into an extra 20 clock cycles penalty then 60% of the time
the processor would stall. When fetching instructions and data from
shared memory this poses several questions:

• Is it possible to reduce1 the number of low-latency requests to Relax vs. remove
external SDRAM?

• Does the problem come from the architecture or is it a fundamen- Architecture vs.
applicationtal requirement from the application domain?

The designer of a specific architecture should be aware of this prob-
lem and the posed questions. Interference at shared resources such
as memory should be minimized to decrease the number of stall cy-
cles due to arbitration. Trends are towards Non-Uniform Memory Access
(NuMa) architectures [9] where embedded local memories are intro-
duced that are kept close the the processor units. Distributing memory
decreases the amount of sharing and furthermore the memory access
time to on-chip local memory is smaller than the access time to a remote
off-chip memory, thus decreasing latency and the number of accesses
to the remote memory.

The memory issue appears throughout many of the application do-
mains and is considered an architectural problem. In the following
sections the requirements of the application domain are investigated to
identify whether the latency requirements can be relaxed. The conse-
quences of the architecture are discussed and an architectural template
is introduced to address this issue.

2.3 application domain

In this chapter the application domain "Mobile Consumer Platforms" is
introduced. This application domain is rapidly evolving and dominant
in many technology offices [11]. The reason not to choose for a general
purpose approach is that this statement may be too strong. By narrow-
ing the scope to a more select application domain the architecture can

1 Relax the timing requirements of low-latency requests or remove low-latency requests
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be optimized for this, as is shown later on. However, making the scope
too small would again lead to high - NRE - design and mask costs.

Applications in this domain often have high requirements on power
consumption. As the application domain is focussed on nomadic ap-
plications, the system is often battery driven. To increase battery life-
time, power consumption should be as low as possible. Furthermore
consumer demands raise computational requirements to enable appli-
cations with high demands on processing power.

Figure 4. Application graph

To execute these applications they are mapped onto an architecture.
In order to more accurately specify applications, the description of
applications may require a somewhat more extended view. This de-
scription is used throughout the report. An application that is ran on a
system can consist of several jobs. These jobs, in turn, can consist of sev-
eral tasks possibly executed in parallel (see figure 4), which are mapped
onto a certain Processing Element (PE). It is up to the designer to make
the most optimal mapping of the application onto the architecture.

The support of a complete product family such as for "Mobile Con-
sumer Platforms" requires flexible SoCs, which advocates the use of
programmable multiprocessor systems. The advantage of the flexibility
introduced by MPSoC is that multiple applications can be mapped on
the same platform. Single general-purpose processors are typically not
power efficient enough to suffice the high computational demand in this
application domain and would lead to unacceptable power dissipation.

Often different tasks can have different requirements (i.e. computa-
tional and memory requirements). This advocates the use of different
PEs, and thus a heterogenous MPSoC. However, the designer has to
make the tradeoff between the amount of flexibility and performance
of such a SoC. The use of dedicated hardware increases performance
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but decreases the flexibility of the SoC. As explained this tradeoff is
also dependent on the power dissipation limit, which for the "Mobile
Consumer Platforms" is one of the driving constraints.

2.3.1 Streaming applications

So far the only assumption that is made is that the application domain
is "Mobile Consumer Platforms". As briefly discussed efficiency can
be gained when a system has a specific behavior characteristic for the
application domain. Note that optimization of a system for a specific be-
havior does not imply that the system does not work anymore for other
applications. When analyzing system behavior two sorts of data streams
are identified, namely low-latency and latency-tolerant data streams.

Low-latency data streams are data streams for which late arrival of
the data will result in many processor stall cycles. Data/ instruction
misses have typically low-latency requirements because access latency
of remote memory reads causes processor stall cycles, thereby making
latency to SDRAM critical. As mentioned in section 2.2 latency can
be somewhat hidden by caches, but when a next instruction is not
available in the cache (read miss) the data still has to be fetched from
a higher level memory (i.e. remote memory) where access times may
exceed tolerable timing requirements.

Latency-tolerant data streams are less dependant on latency, e.g. the
processor does not stall if the latency is somewhat bigger. Sometimes
techniques can be applied where low-latency data streams can be made
latency-tolerant. Examples are write streams where latency is hidden
by using buffers; as long as the consumer of data has enough data left
in a buffer the producer can be slowed down.

A characteristic behavior of systems within the application domain
"Mobile Consumer Platforms" is the use of data streams. Applications
in this domain are often referred to as streaming applications. In [33] a
more specific description of streaming applications is given.

The main characteristic is a repetition of the same function
over and over again on new input data. The function can
show data dependent behavior. Streaming applications are
conveniently represented as graphs, e.g. dataflow graphs.
An important characteristic is an explicit separation of vari-
ables in internal variables, which are local to the compu-
tation in the node and external variables, which are com-
municated over the edges. Data abstraction in the form of
tokens is possible. For example for video applications to-
kens can be pixels, blocks, lines, stripes, frames, etc... Tokens
are produced and consumed in fifo order. Random access
is still possible within a token and also to the local state.
Dynamic applications and bursty behavior can be modeled
using dynamic dataflow (DDF). As a result many dynamic
applications can be modeled, e.g. coding, motion compensa-
tion, graphics, etc... It is not streaming anymore if random
access is needed to a dataset, which is too large to fit in local
memory and thus must be stored in SDRAM. An example
is H264 where motion vectors must be detected in 5 frames.
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Streaming data allows for optimization due to the explicit separa-
tion of variables in internal variables. Streaming data can thereby be
produced independent of the consumption of the data, where data
can be buffered if the production rate is higher than the consumption
rate. The producer thereby does not stall if the consumer is not able
to process the data immediately. If the buffers are kept close to the
consuming processor, i.e. in a local on-chip memory instead of a off-
chip shared memory, the consumer has low-latency access to that data.
In this case latency is hidden by the buffers, making the data stream
latency-tolerant.

2.4 architecture

In the previous sections several trends and challenges are discussed,
summarized they include: deep sub-micron effects, computation versus
communication, heterogenous multiprocessor SoC, global asynchrony,
design productivity gap and the memory gap. These trends and chal-
lenges ask for a completely new design methodology.

The design of complex systems requires a lot of effort and specific
knowledge. This not only implies complying to functional requirements
but also means that the non-functional requirements, i.e. timing, power
and area, have to be met. In order to minimize effort for designing these
complex systems one needs to abstract from the DSM problems and
emphasize on a higher level of abstraction were complete IP blocks are
reused. Hence, the level of abstraction should change from standard
cells to complete IP blocks such as CPUs, DSPs and memories. Reusabil-
ity has been recognized as a basic principle for enhancing productivity
and quality of engineering products [10].

With the evolvement of the application domain "Mobile Consumer
Platforms" next to timing also power dissipation becomes an important
non-functional requirement. We have seen that the lowering of the
supply voltage does not suffice to solve this problem. As discussed
in the previous section MPSoCs become an interesting alternative to
single general-purpose processors.

As the introduction of MPSoC is accompanied with the shift towards
a communication-centric design approach, the reuse of standardized
communication structures is advocated. Reuse not only addresses com-
plete hardware blocks, but also integration and verification of composed
systems. Standardized communication structures and interfaces support
reuse, since IPs with standardized interfaces can be easily integrated
and exchanged and also the communication structure itself is reused.
NoC is a promising solution offering interfaces to integrate IPs and is
suitable for GALS to minimize the effect of long wires.

In [15] a MPSoC template is proposed, which is adopted for this
report. The template is shown in figure 5. The architecture corresponds
to the technology trends mentioned in this report. The platform-based
design abstracts from most of the DSM problems which minimizes
design effort, where the on-chip network enables decoupling of compu-
tation and communication and allows for heterogeneous multiprocessor
and GALS. This is further explained in chapter 4.

The architecture has a large remote - shared - memory space capable
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Figure 5. Multiprocessor design template

of storing all data, like instructions and local state. To minimize latency
due to interference caused by multiple processors accessing the shared
memory caches are introduced. In [16] a consistency model is proposed,
which ensures this system to be software cache coherent and memory
consistent in order to solve inter-task interference in the cache.

Furthermore, the architecture is a NuMa architecture where on-chip
local memory is available, which enables remote memory access op-
timization and provides shorter access times by bypassing the global
interconnect. This is explained in the previous section and is applied in
this design. The local memory can be used for buffers, buffer admin-
istration and possible some data and state variables but might be too
small to store all this information.

2.4.1 Low-latency

In section 2.2 two questions are stated, namely whether it is possible
to reduce the number of low-latency requests to external SDRAM and
if the number of accesses to shared memory is a problem that comes
from the architecture or whether it is a fundamental requirement from
the application domain. In section 2.3 we have seen that by choosing a
more specific application domain hardware optimizations can be made
to reduce latency. In this section these optimizations are discussed.

As a first optimization, efficiency of the system is improved by allow-
ing latency-tolerant data streams to bypass the cache. This is especially
useful for streaming applications, where the written data is not used
anymore by the producer. In this way the cache is used more optimally
because the extra available cache lines can now be used for low-latency
data.

To reduce the number of low-latency request to off-chip shared



2.4 architecture 15

Figure 6. Peer-to-peer streaming

memory, [15] introduces buffers in on-chip local memory to enable
peer-to-peer streaming. In this way a processor that produces data
can directly write this data in the local memory of the consuming
processor (see figure 6). This is not possible when only caches are
used because caches do not allow a write from the network [15]. The
advantages of this so-called push architecture are discussed in the next
section. To enable peer-to-peer streaming point-to-point connections
must be provided by the network and the platform must contain local
memories for consuming PEs.

The proposed architecture template suits perfectly for the application
domain "Mobile Consumer Platforms", as tokens can be produced by a
streaming application on one PE and consumed by another PE. This
allows for peer-to-peer communication, as produced streaming data
is often not reused by the producer and therefore can be buffered in
the local memory of the consuming party. Data is thus pushed to the
consumer which has positive effects on efficiency.

2.4.2 Push architecture

The advantage of pushing (writing) data instead of pulling (reading) it
from the producer is that pushing data does not have to be effected by
the latency of the network. When pulling data, first a request is done to
the producer. Then data is send from the producer to the consumer. In
this way the network is traversed twice, doubling the latency. Request
can be pipelined for optimization, but this is not always possible (i.e.
due to incorrect branch prediction).

For pushing data the network only is traversed once, where latency
can be hidden by buffers. No request is done but the producer con-
stantly tries to push data to the consumer. Note the requirement for
a buffer in the local memory of the receiving party in order to store



2.4 architecture 16

the data that cannot be processed immediately and flow control to
ensure that data is not send if the buffer is full [2]. The consumer
then has low-latency access to the data, as the data buffer is stored in
the local on-chip memory and not in remote off-chip memory. Hence,
latency-tolerant write streams are send to the on-chip local memories
of consuming PEs and low-latency read requests access local on-chip
memory.

For protocols such as AXI, where also for write commands response
messages are generated, writes have to be posted. Normally, the write
response is generated by the slave party. This makes the behavior of a
write identical to that of a read, where for a read the response message
is simply the read data coming back. For posted writes, the response
data is generated by the network, thereby removing the latency needed
to send the request over the network and the response back.



Prediction is very difficult, especially about the future

— Niels Bohr

3A C O M P O S I T I O N A L D E S I G N A P P R O A C H

The previous chapters show that closing the design productivity gap
involves tackling some challenges. Platform-based design is advocated,
which benefits the design of more complex systems. However, when
scaling the design new problems appear. Bottlenecks shift from compu-
tation to communication as latency becomes an important performance
limiter. The previous chapter introduced an architecture designed to
minimize latency.

Contention at shared resources not only results in latency, also the
behavior of a system becomes difficult to predict due to the uncertain
load of the contention point. This makes the effect of other jobs on the
behavior of a certain job uncertain. A predictable system allows for
analysis instead of simulation, which result in decreased verification
time and actual proof of system behavior. System analysis requires
predicable arbitration and QoS of all resources. Trends in future SoC
design envision predictability as a valuable asset to the architecture
[10].

The goal of this thesis is to introduce a compositional platform-
based design methodology and give proof of concept, as stated in
section 1.1. Compositionality is part of any predictable design (3.2.2)
and allows for individual subsystem simulation instead of complete
system simulation. This chapter gives an overview of the definitions
related to compositionality.

3.1 predictability

To be able to reason about the timing behavior of a system, i.e. to prove
that throughput and latency requirements are met, the system should
provide a predictable QoS. Predictability enables the designer to do
analytical reasoning about the end-to-end behavior of a system and
thus derive the minimum hardware to meet these timing requirements,
which decreases the number of design iterations caused by intensive
simulation and verification.

Unpredictability obviously is not a desired property. A simple ex-
ample is that when a certain job gets more resources assigned one
would predict the system to perform better. Unfortunately with current
systems this is not always the case. Predicability enables the designer
to make a tradeoff between the percentage of resources assigned to
a certain job and the quality (i.e. the execution time or the number
of missed deadlines) of the design. An increase in the percentage of
available resources for a subsystem could result in a higher quality but
decreases the available resources and thus quality of other subsystems.

In this report predictability is defined as follows:

17
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Definition 3.1.1 (Predictability) A system is defined as predictable if bounds
on the temporal behavior of one job can be derived at design time

This definition should be clarified. If one could reason about the be-
havior of a system, and guarantee that a system will end up in a certain
state within a certain moment in time, the system is predictable. This
statement is a bit vague, for instance the meaning of the word "certain".
This can be made more specific by defining "certain" as "bounded".
Bounding uncertainties enables predictability. If the temporal behavior
of a system can be guaranteed to be within fixed bounds, the system
is predictable. The key is in the size of the bounds which should be
as small as possible, i.e. nobody is interested in the prediction that a
system finishes within an infinite amount of years or with a 100% miss
rate of deadlines.

Deriving these bounds can be done by modeling the application
with data flow graphs [1]. Predictability of the system allows for a
predictable mapping of an application on the architecture, which en-
ables the derivation of best-case as well as worst-case performance and
derivation of the minimum hardware requirements in order to meet
these requirements.

Predictability deals with uncertainties of resources which should
either be removed or at least bounded in order to provide predictable
QoS. The uncertainties that endanger predictability are introduced by
the hardware (i.e. cache line replacement policy and resource arbi-
tration), the software application (i.e. conditional branches) and the
environment (i.e. user input). These uncertainties make it difficult to
reason about the temporal behavior of a job. In [24] uncertainty in the
resource supply is distinguished from the uncertainty in the resource
demand. The uncertainty in the resource supply is due to resource arbi-
tration in the hardware of the multiprocessor system. The uncertainty
in the resource demand is due to the data value dependent processing
in the application and external events from the environment. In [24]
also a solution is provided to bound these uncertainties. They are listed
in the following two paragraphs.

The uncertainty in resource supply is bounded by making use of
predictable hardware arbitration schemes. An arbitration scheme is
predictable in the case it is known how long it maximally takes before
a resource becomes available. The minimal time that the resource stays
available must also be known. An example of a predictable arbitration
scheme for resource access is Time-Division Multiple Access (TDMA). In
this scheme, it is guaranteed that the resource can be obtained after
a fixed amount of time and that during a fixed amount of time the
resource stays available. The specifics of this scheme are discussed later.

The uncertainty in the resource demand is bounded by making use of
admission control and hardware resource budget enforcement. Admis-
sion control takes care that sufficient hardware resources are available
when a job is started. If there are insufficient resources available in
the system then the user is notified that the job is rejected. Resource
budgeting guarantees that a task of a job gets a certain amount of
memory, bandwidth and processor cycles. By enforcing budgets it be-
comes impossible for a job to claim more resources than its budget. This
scheduling technique is referred to as non-work-conserving scheduling.
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Due to these enforced budgets the interference of tasks of different jobs
is bounded. With enforced resource budgets, it looks for a job as if
it runs on its own private hardware. In other words, resource budget
enforcement creates for each job its own virtual platform with private
hardware resources.

Optimizations can be achieved by allowing for work-conserving schedul-
ing. This essentially means that if part of a budget is not used, it can be
used by any other job. Hence, budgets are only enforced when multiple
jobs claim the same budget. In this way budget utilization is optimal:
resources are only idle when there is no traffic send. Note that it is
still possible to derive worst-case behavior, but the average behavior is
expected to be better [34].

A predictable system can only be achieved when all resources provide
QoS. If one resource in a chain of predictable resources does not provide
QoS, this removes the predictability and thus the QoS of the complete
system.

3.2 compositionality

Compositionality is a subset of predictability and deals with uncer-
tainties introduced by sharing resources. Sharing resources introduces
dependencies (contention) between jobs, which make jobs influence
each others behavior making the composed system unpredictable.

In [20] a system is defined as compositional with respect to a specific
property if the system integration will not invalidate this property once
the property has been established at the subsystem level. This statement
is too general as in this thesis we focus on the temporal behavior of
jobs.

Therefore, the compositional property specific for this thesis is tem-
poral behavior. Hence, the mapping of a job on an architecture is
compositional if its temporal behavior is not effected by the temporal
behavior of other jobs. More formally compositionality can be defined
as followed:

Definition 3.2.1 (Compositionality) A system is defined as compositional
if the temporal behavior of one job is completely independent of other jobs [20]

Compositionality does not require the behavior of a job to be pre-
dictable, hence uncertainties in i.e. conditional branches in the software
and user input from the environment do not endanger compositionality
(a job may harm itself as long as it does not harm other jobs in the sys-
tem). Although compositionality does not make a system predictable, it
does give several important properties to the system, i.e. if the behavior
of one job can be verified, its behavior is identical (at a cycle-true level)
if composed with any number of other jobs that are concurrently run
on that system.

With the parallelism introduced by MPSoC many of these jobs can be
active at the same time. When designing such a job the resource usage
of the other jobs is often a unknown factor. Furthermore, the flexibility
of MPSoCs causes the possibility of the number of sets of jobs that can
be active at the same time, referred to as a use-cases, to be enormous.
For example, when a certain application contains 10 jobs that can be
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ran in parallel, the total amount of use-cases corresponds to an order
of 210. Obviously it becomes impossible to verify the correct behavior
of all these use cases. Not even mentioned here are the transactions
between use-cases, which for this example could possibly explode to
2109

. It is desired only to verify the behavior of the 10 individual jobs
and so cover all the use-cases. Again this confirms with the design
productivity gap, which states that the design effort should be linear to
the size of the design.

Compositionality is a necessary condition for predictability, the proof
of this is given below.

Proof 3.2.2 (Compositionality ⊂ predictability) Assume: Task A can ef-
fect the temporal behavior of task B and task A is not known at design time
Proof: Task B depends upon the the behavior of task A but the behavior of task
A cannot be predicted and thus the temporal behavior of task B cannot be
predicted

Temporal compositionality is endangered by uncertainties due to in-
terference at shared resources like processing elements, shared memory
and the interconnect. The uncertainties can be bounded by making it
mandatory for a job to reserve these resources at startup. Reservation
then bounds the time it takes for a resource to become available (re-
source supply) and the time is stays available for that job (resource
demand), without effecting the resource utilization of other jobs. As
the aim for this thesis is to prove compositionality in its strictest form,
there is not any variance in these bounds. Bounding these uncertainties
makes the behavior of a shared resource predictable, and hence provide
QoS. Therefore a compositional system can only be achieved when all
shared resources provide QoS.

3.3 virtualization

Reservation bounds interference of shared resources and gives each job
the illusion as if it is acting on its own virtual platform, thus introduc-
ing compositionality. This implicitly assumes that the uncertainties in
resource supply and demand are bounded, which can be achieved in
several ways using different concepts and techniques. One of these con-
cepts is to virtually present a resource as several separate independent
resources [32]. This method to implement compositionality is referred
to as virtualization and is defined as;

Definition 3.3.1 (Virtualization) Virtualization is the process of presenting
the complete set of resources in such a way that the temporal behavior of one
job does not effect the temporal behavior of another job. Each job thus obtains
its own virtual platform.

Virtualization requires the arbitration of resource contention points
to provide predictability and thus bound resource demand. The arbiter
has to ensure that the shared resource is accessed in such a way that jobs
only use assigned budgets (or unused budgets for work-conservative
scheduling), where assumptions have to be made or techniques have
to be implemented to ensure that budgets are enforced. For this thesis
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report we opt for the strictest form of compositionality, where there
is not any variance in bounds. Jobs only use assigned budgets and
unused budgets are not exploited. In this way jobs do not influence
each other on a cycle-true level. This is not true for work-conserving
scheduling, for which more refined techniques are needed to show that
the property of compositionality is obtained [24].

Shared resources have to deal with inter-dependencies of different
jobs, as they are not allowed to influence each others behavior. There-
fore, every shared resource has to guarantee that when the resources is
reserved by a certain job, the resource provides a guaranteed service (GS)
to that job, disregarding the behavior of other jobs. This GS bounds the
uncertainties in resource supply. The combination of resource reserva-
tion and GS enables predictability and hence ensures QoS of the shared
resources.

With the decision to virtualize the system the designer has to accept
that there are consequences with respect to probable cost constraints,
i.e. timing and power consumption. This due to the fact that guaranteed
service require resource reservation for worst-case scenarios, which can
be expensive. For example, guaranteeing throughput for a stream of
data implies reserving bandwidth for its peak throughput, even when
its average is much lower. As a consequence, when using guarantees,
resources are often underutilised. As the arbitration is decided to be
non-work-conserving unused budgets are not assigned to pending
requests of other jobs. One has to consider whether the increases in
speed and energy consumption even out the increase in scalability and
analysability. For this thesis all extra cost is excepted for obtaining the
strictest form of compositionality.

In chapter 6 the implementation details of virtualization of the hard-
ware platform are explained. In the following chapter the conceptual
details of the compositional hardware platform are discussed.



A system is computational just in case adopting
the computational stance to that system offers

useful generalizations and predictions about the
operation of the system, over and above those

generated by not adopting such a stance.

— Istvan Berkeley, Re: Searle’s challenge,
The Monist Interactive Issue

4C O M P O S I T I O N A L P L AT F O R M - B A S E D
S Y S T E M - O N - C H I P D E S I G N

In chapter 2 several problems are listed that contribute to the increased
complexity for the design of a hardware platform. They concerned
DSM problems as they propagate through the design phases. This has
set the context of a new design methodology. A MPSoC platform is
introduced that complies with the new technology trends. In chapter 3

virtualization is introduced as a method to enable compositionality. In
this chapter virtualization is adopted to the proposed MPSoC platform
to obtain a compositional platform design.

4.1 design decisions and constraints

Several design decisions and constraints are made based on the obser-
vations in chapter 2 and 3 that influence the platform. These decisions
include:

• Resource virtualization requires resource reservation at every re-
source contention point. Therefore, every shared resource must be
scheduled with a predictable hardware arbiter and has to provide
guaranteed services (hence a shared resource must provide QoS).
Shared resources are scheduled based on a non-work-conserving
scheduling technique

• The architecture can provide a small amount of local memory to
a PE. However, the size is too small to store all instruction, state
variables and data. Instructions are therefore stored in remote
memory

• The architecture allows for streaming optimization, because it is a
characteristic for many of the applications within the "Mobile Con-
sumer Platforms" application domain. Therefore the interconnect
has to support point-to-point connections

The latter two items are based on the support of streaming appli-
cations to address latency issues. The first item is key in obtaining
a compositional platform. This requires the arbitration to shared re-
sources to be predictable and all shared resources to provide GS. For
now it is assumed that the memory is chosen such that it provides QoS
and the PEs are not shared by jobs. Note that as PEs are not shared

22
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they do not have to provide QoS. What remains is the interconnect that
must arbitrate contention points with a predictable hardware scheduler
and provide GS to the connected IPs.

It is not realistic to make the assumption for the interconnect. As
the platform design is communication-centric the interconnect plays an
important role in the design process. Based on the mentioned decisions
and constraints there are several requirements for the interconnect.
These are further analyzed in the following sections.

4.2 interconnect

As discussed in chapter 2 wires rapidly become the bottleneck in SoC
design. The communication architecture becomes a key element in the
design flow. Currently, bus based interconnects are most frequently
used. Advantages of a bus based interconnect is that it is a simple
architecture, has low area cost and is easily extendable [6, 21, 18, 4].
However, despite bus evolvement in order to address drawbacks of bus
based SoC design (i.e. ARM AMBA AXI protocol and multilayered bus
design), bus based interconnects still have some disadvantages.

One of these disadvantages is scalability. With the increasing complex-
ity of SoC design more IPs have to be connected resulting in increasing
wire lengths. Intrinsic parasitic capacitance and resistance can become
quite high, where the increased propagation delay may exceed a speci-
fied clock domain. As discussed in the section 2.1.1 SoC design concerns
the deep sub-micron aspect, in particular the local and global physical
wires on a chip. Local wires of an IP and the global wires connecting
it to other IPs are often not distinguished in current day SoC design.
As a result, the timing correctness of different IPs is inter-dependent:
correcting a timing violation in one IP may invalidate the timing of
another. Hence, the process of verifying the timing of the SoC as a
whole (global timing closure), does not necessarily converge to a solution,
and is specific for each design.

Communication should be decoupled from computation in order to
solve this. The use of NoC is advocated [3, 4, 5, 6, 13, 18, 19, 21, 31, 33] as
NoC can provide decoupling between computation and communication
and furthermore the reusable communication structure scales very well
for large designs.

An issue related to the use of on-chip networks which should be
noticed is that current bus-like interconnects often use communication
protocols such as AHB, AXI and PMAN. These protocols assume the
use of respectively one master and one-to-many slaves and one slave
and one-to-many masters, as can be seen in figure 7. This is not optimal
for NoC design, since NoC provides the resources to establish commu-
nication between one-to-many masters and one-to-many slaves. Thus
for future improvement this report envisions the importance that any
interconnect, but especially NoC, provides flexibility with respect to
communication protocols.
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Figure 7. Busses are limited by the number of masters that can be active
simultaneously and concentrators like PMAN by a limited number of
slaves. Network on Chip allow the combination [33]

4.2.1 Network-on-Chip

In the previous sections we identified that the NoC could help in
improving scalability, integration and reusability of a SoC. The reason
for this can be deducted from the properties of a NoC, namely that
NoCs [13, page 2]:

a .) Structure and manage wires in deep sub-micron tech-
nologies,

b .) Use wires efficiently through sharing,

c .) Scale better than busses,

d.) Are programmable for multiple and new task graphs,
and

e .) Decouple computation from communication through
well-defined interfaces, enabling IP blocks and intercon-
nect to be designed in isolation, and to be integrated
more easily.

As mentioned in item "E" the communication goes through well-
defined interfaces. This ensures that the implementation details of the
interconnect are hidden and computation and communication can be
decoupled (figure 8a). The reason for this is that NoCs are traditionally
designed using layered protocol stacks, where each layer provides
a well-defined interface which decouples service usage from service
implementation. This is shown in figure 8b.

The goal of this thesis is to introduce a compositional architecture.
This effects the interconnect as it has to provide compositionality to the
connecting IPs. As mentioned in chapter 3 this requires a guaranteed
service from the interconnect.
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Figure 8. Network services: a.) Hide the interconnect details and allow the
construction of diverse applications on top of them b.) Are built using
a layered approach c.) Are driven by the application requirements d.)
Their efficiency relies on technology and network organisation [8]

Most of the current interconnects, as well as NoCs have been built to
offer best-effort (BE)1 communication services [28]. BE communication
infrastructures are not analyzable because the behavior of IPs and inter-
connect may be inter-dependent2 as it does not take the communication
of other tasks in account. Therefore, they require simulations to verify
if the specified requirements are fulfilled. Because for complex chips
the interconnect is a central component in the system, complete system
simulations are required for system verification.

As mentioned in the previous chapter, covering worst-cases for all
configurations is not possible through simulations, because they are
based on sample (demanding) stimuli, which are never guaranteed to
cover worst-case and corner cases. If any change, the system has to be
resimulated again. In [28] three main problems with such systems are
indicated: 1) long simulation times at each change, 2) numerous changes
because of inter-dependencies which lead to change side effects, and 3)
worst-case behavior is not necessarily covered.

To solve these problems, the use of throughput and latency guaran-
tees is advocated [8]. The guarantees can be seen as requirements from
the application (figure 8c). These guaranteed services make sure each IP
module (i.e. computation and memories modules) can be designed in
isolation, because the interconnect requirements are made explicit. As
the communication has a guaranteed behavior, the composed system
will function according to the specifications provided all IP modules
meet their specifications. If IP modules have predictable behavior, the
system behavior can be formally verified, without the need of sim-
ulations. If IP modules do not have predictable behavior, providing
guarantees in the interconnect is still useful. This is because of the

1 As the name suggest BE performs a communication action as soon as this is possible,
thus if the connection is not used for another communication actions

2 To avoid congestion in the lay out, the number of global wires should be minimized. This
means that wires must be shared and hence bandwidth becomes a shared resource
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system compositionality resulted from offering guarantees: the system
does not need to be simulated as a whole, but simulating only IP mod-
ules is enough. Moreover, there are no inter-dependencies and therefore
modifying parts of the system does not affect other parts of the system.
Hence, by definition guaranteed services result in virtualization of the
on-chip network.

However, as is explained in the previous chapters resource virtual-
ization, e.g. network virtualization, has consequences with respect to
probable cost constraints (figure 8d), which have to be considered by
the designer.

4.3 degrees of compositionality

The platform is now adopted such that all shared resources provide
predictable QoS, thereby achieving compositionality by means of virtu-
alization. To show that the platform is compositional, an application is
mapped on the hardware platform.

In section 2.3 a more detailed view on applications is given, where
applications are divided into jobs that can consist of multiple tasks.
The designer must map the tasks to PEs in such a way that an optimal
system is obtained. Figure 9 shows an example task mapping of an
application onto the proposed architecture template.

Figure 9. Task mapping

The application consists of three independent jobs, where job 1 is
composed out of tasks T1 and T2 and jobs 2 and 3 are composed out
of respectively T3 and T4. To prove compositionality of this system
the behavior of each job must be shown to be independent of the
behavior of other jobs. In this report three degrees of compositionality
are identified. They are listed in table 2.
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Degree Description Status

First degree Tasks are independent, supported
at most one task per PE

Second degree Tasks may be inter-dependent, supported,
at most one task per PE not optimized

Third degree Tasks may be inter-dependent, not supported
multiple tasks per PE possible

Table 2. The three degrees of compositionality

The first degree of compositionality can be obtained if in figure 9

the dependency between tasks T1 and T2 is removed and T4 is left
unmapped. Thus, three independent tasks, T1, T2 and T3, are mapped
to respectively PE1, PE2 and PE3. Proof of first degree compositionality
can then be given by showing that the behavior of the three tasks is
independent on a cycle-true bases.

The figure shows that jobs may contain tasks that are mapped on
different PEs (T1 and T2). This places dependencies on the behavior
of the involved PEs, i.e. one task T1 may produce data for task T2 on
a different PE. Proof of second degree compositionality is then given
be showing that the behavior of the dependant PEs is not influenced
by the behavior of the rest of the PEs. Thus, the behavior of T3 (T4 is
not allowed since shared PE is not supported) is independent of the
behavior of tasks T1 and T2. Optimizations are addressed in section
2.4.1, i.e. by writing data directly from producer to consumer, off-
chip memory is not used for communication. The hardware for this
optimization is available, only the buffers that are needed in the local
memories are not [2].

The figure also shows that T3 and T4 share a PE. From section 3.3
can be concluded that sharing the PE endangers compositionality. In
order to obtain third degree compositionality the PEs must provide QoS
(i.e. predictable scheduling) to the mapped tasks, which is assumed
not to be the case. Furthermore, task switching is complicated and
requires i.e. caches to be either split or flushed before the next task is
executed. These inter-task dependencies are addressed in [16]. For this
architecture sharing of the PEs makes all resources shared resources. For
reasons of complexity PEs are not shared in this design. The mapping
of task T4 is therefore not allowed.

The goal of this report will be to proof first degree compositionality.
Therefore, the architectural template is implemented. This is explained
in the upcoming chapters.



The chessboard is the world, the pieces are the phenomena
of the universe, the rules of the game are what we call the

laws of nature.

— T.H. Huxley, A Liberal Education, 1868

5P L AT F O R M S P E C I F I C AT I O N

In the previous chapter an architecture template is proposed that en-
ables compositionality. In order to give proof of concept this template is
implemented by creating the corresponding hardware platform. There-
fore, the building blocks of the platform are specified. This chapter
introduces the compositional MPSoC hardware platform.

5.1 hardware platform

To minimize the design effort IP blocks are reused as much as possible.
This results in a hardware platform where only two blocks have to
be implemented, namely an AXI shell (adapter) for Æthereal and an
arbiter providing compositionality (discussed in chapter 6). In figure
10 the hardware platform is shown. The figure contains the following
blocks;

• ARM11, Model of the ARM1176JZ-s. The ARM11 has separate
caches for instruction and data. The ARM11 has four ports, an
instruction port, data port, DMA port and peripheral port (not
visible in the figure).

• Æthereal, fully connected instance of Æthereal (point-to-point
connections instantiated at startup), where the NIs provide an
AXI compliant communication interface by means of AXI shells

• ip_1036, AXI Bus-based interconnect that multiplexes the data
on the ports depending on the address. Each ip_1036 has a arbi-
tration block inside. Except for the arbitration in the ip_1036 at
the remote memory side, where the arbiter is changed to provide
compositionality, the arbitration block is standard round-robin as
deployed from the reuse database. Arbitration is performed per
(mirrored) slave port.

• ip_2114, AXI memory controller used to access embedded SRAM

• Mem, Model of embedded SRAM

Each of the master ports of the ARMs are connected to a mirrored
master port of an ip_1036. A static address decoder ensures that data is
multiplexed to the correct mirrored slave port. These slave ports can
either be connected to the local memory, the remote memory or one of
the local memories of the other ARMs.

Except for the port to the local memory, the mirrored slave ports of
the ip_1036 are connected to the slave ports of Æthereal. In Æthereal

28
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Figure 10. Hardware platform
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these ports are dynamically connected to one of the master ports. Point-
to-point connections are setup at runtime by a configuration master
(discussed in section 6.5.2). These master ports are connected to one of
the ip_1036s of the other tiles.

The ip_1036 at the remote memory multiplexes data from the cor-
responding master ports of Æthereal and arbitrates them with a pre-
dictable scheduling mechanism. There are several advantages and dis-
advantages of this platform, which are listed below:

• Reuse, a lot of hardware components can be reused, which de-
creases implementation effort

• The platform is uniform. As few different components as possible
are used in the design.

• The cost of a uniform hardware platform is that possible hardware
optimizations are not addressed. Therefore the platform has more
cost overhead

• For streaming data the address is not necessarily required as the
memory controller can determine itself where to load and store
data. However, for this implementation the address is used to
determine the location of the data in the memory. This is a more
simple solution at the cost of extra bandwidth to send the address

In the following sections the IP blocks are discussed in more detail.

5.2 æthereal network-on-chip

A NoC satisfying the requirement of having QoS communication is
the Æthereal NoC. Æthereal is a combined BE and GS infrastructure,
meaning that it supports both guaranteed service communication (un-
corrupted, lossless and ordered data transfer, and both latency and
throughput over a finite time interval [8]) and best effort communica-
tion. As explained in the previous chapter, for now, there is no interest
in the later, because the requirement for compositionality. In this section
implementation details of Æthereal relevant for this thesis are explained.
Further details can be found in [3, 8, 19]. This section summarizes these
papers.

5.2.1 Contention resolution

Compositionality is endangered by interferences at shared resources.
When a router attempts to send multiple data items over the same
link at the same time contention is said to occur. As only one data
item can be sent over a link at any point in time, a selection among the
contending data must be made; this process is called contention resolution.
As discussed before arbitration of data must be made predictable
in order to enable compositionality. In circuit switching, contention
resolution takes place at setup at the granularity of connections, so
that data sent over different connections do not conflict. Thus, there
is no contention during data transport, and time-related guarantees
can be given. In packet switching contention resolution takes place at
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the granularity of individual packets. Because packet arrival cannot be
predicted contention cannot be avoided. It is resolved dynamically by
scheduling which data items are sent in turn. This requires data storage
in the router/ NI and delays the data in an unpredictable manner which
complicates the provision of guarantees [8].

To implement guarantees, Æthereal uses contention-free routing,
which is based on a time-division multiplexed circuit-switching (TDMC)1

approach, where one or more circuits are setup for a connection. Circuits
are created by reserving consecutive slots in consecutive routers/ NIs.
This is, the circuits are pipelined, in the sense that if a circuit is set from
router R to router R ′, and slot s is reserved at router R, then slot s + 1

must be reserved at router R ′. In a slot s at most one block of data can
be read/ written per input/ output port. In the next slot, (s + 1)%S,
the read blocks are written to their appropriate output ports. Blocks
thus propagate in a store-and-forward fashion. The latency a block
incurs per router is equal to the duration of a slot, and bandwidth is
guaranteed in multiples of block size per S slots. On these circuits, data
received in one slot will be forwarded to the next router/ NI in the next
slot. By setting up circuits, it is ensured that data is transported without
contention. In this way throughput and flit latency are guaranteed [17].
Slots are therefore not only used for avoiding contention on a link,
but also to divide up bandwidth per link between connections and to
switch data to the correct output.

Example 5.2.1 (Contention free routing) The entries of the slot table map
outputs to inputs for every slot T(s, o) = i, meaning that blocks from input i

(if present) are passed to output o at times s + kS, k ∈ N. An entry is empty
when there is no reservation for that output in that slot.

Figure 11. Contention-free routing [19]

No contention can arise in table T because there is at most one input per
output for each slot. Sending a single input to multiple outputs (multicast)
is possible. Figure 11 illustrates the operation of contention-free routing. It
shows a snapshot of a router network with three routers R1, R2 and R3 at slot

1 TDMA principle applied to circuit switching
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s = 2, indicated by the arrows pointing to the third slot in the table (recall that
slots are numbered from 0). The size of the slot tables is S = 4 and only the
relevant columns are depicted. Three connections, a, b and c, are shown with
the gray arrows. The black circles represents packets on the connection with
the corresponding letter. Packets a and c were switched from the input of the
network to their output links in slot 1. In slot 2, shown in Figure 11, packet b

is switched from input i1 to output o2 in router R1, as indicated by the slot
table T1(2, o2) = i1. Packets a and c are switched similarly by the network.
The slots reserved for a block along its path from source to destination increase
by one (modulo S). If slot s is reserved in a router, slot (s + 1)%S must be
reserved in the next router on the path as mentioned earlier. The assignment of
slots to connections in the network is an optimization problem. [8, 19]

5.2.2 Network Interface

To enable reuse of existing IPs, there has to be a smooth transition
from busses to NoCs. Æthereal can provide this property, since it uses
a shared memory abstraction (e.g. read and write) to the IP module
[3]. Communication is performed using a transaction-based protocol,
where master IP modules issue request messages (e.g. read and write
commands at an address, possibly carrying data) that are executed
by the addressed slave modules, which may respond with a respond
message (i.e. status of the command execution and possibly data). A
transaction is thus defined as a request message possibly followed by a
corresponding response message.

In the Æthereal NoC, all signals are sequentialized in request and
response messages, which are supplied to the NoC. There they are
transported by means of packets. Sequentialization is performed to
reduce the number of wires, increasing their utilization and to simplify
arbitration. Packetization is performed by the NI and is thus transparent
to the IP modules.

In this way the internal Æthereal protocol can provide backwards
compatibility to existing on-chip communication protocols like AXI,
OCP and DTL but also allows future protocols better suited to NoCs.

The Æthereal NI provides network services at the transport layer or
above in the ISO-OSI preference model. This model describes 7 layers,
e.g. the physical, data link, network, transport, session, presentation and
application layer. Since the transport layer is the first layer where offered
services are independent of the network implementation this is the key
ingredient in decoupling between computation and communication,
which advantages were described in previous sections. Hence, it also
provides these services to the application layer which helps us with
reasoning about end-to-end behavior of software application to software
application.

The Æthereal NoC offers its services on connections, which can be
point-to-point (one master, one slave), multicast (one master, multiple
slaves, all slaves executing each request) and narrowcast (one master,
multiple slaves, a request is executed by only one slave). Connections
are composed of unidirectional point-to-point channels (between a
single master and a single slave), where at both sides of the channel a
source and destination queue is located. To each channel, properties
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Figure 12. NI architecture [3]

are attached, such as guaranteed message delivery or not, in order or
un-ordered message delivery and with or without timing guarantees.

Real-time communication is achieved by the use of TDMC. This
ensures that guaranteed services as throughput, latency and jitter can
be provided. Throughput guarantees are given by the number of slots
reserved for a connection. Slots correspond to a given bandwidth: Bi,
and, therefore, reserving N slots for a connection results in a total
bandwidth of N ∗Bi. The latency bound is given by the waiting time
until the reserved slot arrives and the number of routers data passes to
reach its destination. Jitter - on the flit level - is given by the maximum
distance between two slot reservations.

In the architectural view of the Æthereal NoC the design of the net-
work interface is split in two parts: a) the NI kernel, which implements
the channels, packetizes messages and schedules them to the routers,
implements the end-to-end flow control, and the clock domain crossing,
and b) the NI shells, which implement the connections (e.g., narrowcast,
multicast), transaction ordering for connections, and other higher-level
issues specific to the protocol offered to the IP (see figure 12).

NI kernel

The NI kernel (see Figure 13) receives and provides messages, which
contain the data provided by the IP modules via their protocol after
sequentialization. The message structure may vary depending on the
protocol used by the IP module. However, the message structure is
irrelevant for the NI kernel, as it just sees messages as pieces of data to
be transported over the NoC.

The NI kernel communicates with the NI shells via ports. At each
port, point-to-point connections can be configured, their maximum
number being selected at NI instantiation time. A port can have multiple
connections to allow differentiated traffic classes, in which case there
are also connid signals to select on which connection a message is



5.2 æthereal network-on-chip 34

Figure 13. NI kernel [3]

supplied or consumed. In the NI kernel, there are two message queues
for each point-to-point connection (one source queue, for messages
going to the NoC, and one destination queue, for messages coming
from the NoC). Their size is also selected at the NI instantiation time.

Counters credits and space are used for end-to end flow control.
From the source queues, data is packetized (Pck) and sent to the NoC
via a single link. A packet header consists of the routing information
(NI address for destination routing, and path for source routing), re-
mote queue id (i.e., the queue of the remote NI in which the data
will be stored), and piggybacked credits. There are multiple channels
which may require data transmission, the scheduler is used to arbitrate
between them.

NI Shell

With the NI kernel described in the previous section, point-to point
connections (i.e., between one master and one slave) can be supported
directly. These type of connections are useful in systems involving
chains of modules communicating point-to-point with one another (e.g.,
video pixel processing). For the future it is envisioned that also more
complex types of connections, such as narrowcast or multicast and to
provide conversions to other protocols, are supported by the shells. As
an example, in figure 12, a NI is shown with two DTL and two AXI
ports. All ports provide point-to point connections. In addition to this,
the two DTL ports provide narrowcast connections, and one DTL and
one AXI port provide multicast connections. Note that these shells add
specific functionality, and can be plugged in or left out at design time
according to the requirements. NoC instantiation is simple, as an XML
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description can be used to automatically generate the VHDL code for
the NIs as well as for the NoC topology.

Figure 14. NI shell examples [3]: a.) Narrowcast shell b.) Multi-connection shell
c.) Target shell d.) Initiator shell

Examples of shells are shown in figure 14. Figure 14a shows the nar-
rowcast shell. The narrowcast connection is implemented as a collection
of point-to-point connections, one for each master-slave pair. Within
a narrowcast connection, the slave for which the request is destined
is selected based on the address (Conn block). The address range as-
signed to a slave is configurable in the narrowcast module. To provide
in-order response delivery, the narrowcast must also keep a history
of connection identifiers of the transactions including responses (e.g.,
reads, and acknowledged writes), and the length of these responses.
In-order delivery per slave of request messages is already provided by
the point-to-point connections.

When a slave using a connectionless protocol (e.g., DTL) is con-
nected to a NI port supporting multiple connections, a multiconnection
shell must be included to arbitrate between the connections. A multi-
connection shell (see Figure 14b) includes a scheduler to select connec-
tions from which messages are consumed, based e.g., on their filling.
As for the narrowcast, the multi-connection shell has a connection id
history for scheduling the responses.

In Figures 14c and 14d, a target and initiator shell are shown that im-
plements a simplified version of a protocol such as AXI. The basic func-
tionality of such a shell is to sequentialize commands and their flags,
addresses, and write data in request messages, and to de-sequentialize
messages into read data, and write responses.
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5.3 processing elements

As the network interface of Æthereal provides moderate protocol con-
version shells, a PE can in essence be any DSP, VLIW or RISC. In order
to prove that the concept of compositionality holds for an actual design,
any selection of (possibly the same) PEs is possible. For this report the
PE used is a model of the ARM1176JZ-s. The ARM1176JZ-s processor
incorporates an integer core that implements the ARM11 ARM architec-
ture v6 [23]. The ARM11 has an AXI interface, used to connect to the
four different ports, namely; the instruction fetch port, the data read/
write port and the DMA port all using a 64 bit AXI interface and the
peripheral port using a 32 bit AXI interface.

The ARM11 has separate caches for instruction and data, which
optimize the performance.

The data traffic behavior generated by the ARM is assumed to be
unpredictable, and thus does not provide QoS. The ARM can stall at
any moment in time, which should not effect the property of composi-
tionality. However, the ARM complies with AXI and the AXI ordering
model as stated in [22].

5.4 memory

The memory controller used for this use-case is the ip_2114, which is
an AXI embedded SRAM/ROM controller that provides an interface to
embedded SRAM/ROM memory instances through an AXI compliant
communication network in an AXI subsystem. Various AXI masters in
the network can communicate with the embedded SRAM/ROM memo-
ries through this controller. The basic functionality that is incorporated
in the controller is to derive memory commands (e.g. read and write)
from AXI commands and to transfer the data from AXI to memory or
vice versa based on the type of command [30].

Because AXI allows for parallel read and write requests and the
memory is single-ported the memory slave port is arbitrated. Arbitra-
tion of the memory controller is round-robin and is on an AXI burst
granularity. The write data interleaving depth of the controller is one,
which means that the memory controller can not accept interleaved
write data from different requestors. Hence, an AXI write transaction
has to be completed before a next request is accepted (single-threaded).
More information about the memory controller can be found in [30].

Request Latency (cycles) Throughput (words/cycle)

Read request 0 1

Write request 1 1

Table 3. Memory controller, throughput and latency

The advantage of using this memory and memory controller is that
its behavior can be predicted and thus provides QoS. The cycle latency
from AXI to memory command and throughput are fixed (see table
3), thereby making it possible to make assumptions on the QoS the
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memory controller provides. This is necessary in order to determine
budgets in such a way that they can be implicitly enforced. This is
explained in the next chapter.

Since, unlike PEs, memory is a shared resource it has to provide QoS
in order to ensure that budgets are not exceeded. From a performance
perspective, this quality should be as high as possible. For this project
all memories are embedded SRAM and are connected by a SRAM/
ROM memory controller with AXI interface. The author recognizes that
the use of embedded SRAM for remote memory is not realistic, but it
suffices for a first proof.

5.5 arbiter

From the architectural template can be concluded that the arbiter does
more than just arbitration of contention points at slave ports, it also
acts as a multiplexer. Based on the provided address the arbiter has
to determine which target port to access. The following possibilities
are implemented in order to comply with the architectural template
proposed in [15]:

Figure 15. Multiplexing

• CPU must be able to read/ write the local memory of CPU
(mM1 ⇒ mS1)

• CPU must be able to write the local memory of CPU’
(mM1 ⇒ mS3 ∧ mM1 ⇒ mS4)

• CPU may be able to read the local memory of CPU’
(mM1 ⇒ mS3 ∧ mM1 ⇒ mS4)

• CPU’ must be able to write the local memory of CPU
(mM2 ⇒ mS1 ∧ mM3 ⇒ mS1)

• CPU’ may be able to read the local memory of CPU
(mM2 ⇒ mS1 ∧ mM3 ⇒ mS1)

• CPU must be able to read/ write the remote memory
(mM1 ⇒ mS2)
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For a first implementation the local memory of each PE is not used.
Therefore arbitration to the local memories can be round robin (does
not endanger compositionality since the memory is not shared any-
more). Arbitration is performed per slave port. The other slave ports of
the multiplexer at the processor are not shared as they have a dedicated
master and therefore do not have to be arbitrated (can be parallel con-
nections in case of a multilayer bus). Arbitration to the remote (shared)
memory however is arbitrated in such a way it provides composition-
ality to the connecting IPs. By making assumptions on the worst-case
latency of memory transactions, budgets can be derived. The arbitrator
in the memory controller does not effect compositionality anymore,
since arbitration is already done in the IP block above. Since the PE has
an AXI interface, the interfaces of the arbiter should be AXI compliant.

In order to minimize design effort, also for the thesis assignment,
IP blocks are reused as much as possible. The arbiter is decided to be
implemented using a standard bus-based AXI interconnect (ip_1036),
where for the instance at the remote memory the arbitration is changed
from the standard implemented round-robin arbiter to a arbiter that
provides compositionality. The ip_1036 AXI interconnect is a simple
multi-layer AXI switch matrix, optimized for low area and low latency. It
does not contain packet buffers to store intermediate data words. It does
not perform re-packetization or data reordering, other than optional
write data interleaving from different masters. All data buffering is
expected at AXI masters, AXI slaves or data adaptor units [29].

This simple architecture imposes a few constraints to external AXI
masters and system performance behavior. The following constraints
must be considered :

1. The ip_1036 does not support masters with a write interleave
depth greater than 1, since such a master can supply interleaved
write data. When such a master would address a slave that is not
capable of handling this interleaved write data, the interconnect
is responsible for the packet storage and data reordering. This is
presumed to be a too complex task for the ip_1036.

2. An AXI master can have a pending read or write request to a
single slave only. When a master issues a read or write command
request to second slave, it will not be granted by the interconnect.
When the interconnect would allow masters to perform read or
write request to multiple slaves, of which at least one is capable
in read data or write response reordering, a deadlock situation
can occur.

When the interconnect would allow masters to perform read or
write request to multiple slaves, of which at least one is capable in
read data or write response reordering, a deadlock situation can
occur as is shown in figure 16. The read data (or write response)
reorder deadlock problem can be explained as follows :

• Master 1 sends read address to slave A (with ID=0)

• Master 1 sends read address to slave B (with ID=0)

• Master 2 sends read address to slave B (with ID=0)

• Master 2 sends read address to slave A (with ID=0)
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Figure 16. Re-ordering deadlock [29]

• Master 1 is waiting for read data from slave A first (read
data must come in order)

• Master 2 is waiting for read data from slave B first (read data
must come in order)

• Slave A has re-ordered its read data and is trying to send it
to Master 2

• Slave B is trying to send its read data back to Master 1

3. An AXI master can perform consecutive (non-pipelined) write
bursts only. This constraint is caused by the AXI ordering rule as
defined in section 8.5 of [23], "The order in which a slave receives
the first data item of each transaction must be the same as the
order in which it receives the addresses for the transactions."
When a slave would accept a second write command from a
master the write data interleaving process would be blocked as is
shown in Figure 17.

This ordering rule requires that the write data for the second
transfer of master 1 must be presented to slave A before the write
data of masters 3 and 4. But this write data cannot be presented
since master 1 can only generate in order write data (see the
first item). The write data for masters 3 and 4 can therefore not
be interleaved to slave A, although the slave port was capable
of doing so. The ip_1036 AXI interconnect will de-pipeline the
pipelined write commands as supplied by the AXI master.

4. The ip_1036 can contain combinatorial paths between inputs and
outputs on the master interfaces of the address write, address
read and write channels of the interconnect. In principle this
is a violation of the AXI protocol, that does not allow these
combinatorial paths. However for a zero latency interconnect
these combinatorial paths are inevitable. The ip_1036 provides
possibilities to ensure that there will be no combinatorial paths
on the master interfaces of the interconnect.
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Figure 17. Write-interleave blocking [29]

5.6 implementation constraints

In the previous sections some assumptions and constrains were made
to the platform. They are recapitulated in the following list;

• PEs are not assumed to provide predictable scheduling. This con-
straints the possibilities for compositionality, as this predictability
is used for deriving worst-case budgets. Therefore PEs are not
shared by jobs, a job only runs on one PE.

• All instances of the memory controller are assumed to be single-
threaded and memory is assumed to be single-ported

• Off-chip SDRAM is simulated as an on-chip SRAM. The size of
such a SRAM is not considered feasible for actual implementation
but suffice for a first proof of concept

• Latency and throughput requirements from AXI to memory com-
mand are assumed to be fixed. This guarantees the service rate of
the memory required to derive worst-case budgets

• The word size of Æthereal is assumed to be 32 bit

• Data size of AXI is assumed to be 64 bit

• Each tile is connected to only one NI. This means that physical
links in the NoC are shared by multiple connections.



Strive for perfection in everything you do.
Take the best that exists and make it better.

When it does not exist, design it

— Sir Henry Royce

6I M P L E M E N TAT I O N

In the previous chapters the conceptual details of a compositional de-
sign platform are explained. The basic blocks for building the platform
are specified. This chapter focusses on the implementation details in
order to give proof of concept.

6.1 virtualization of the hardware platform

As discussed in section 3.3 shared resources must be reserved in order
to prevent contention and provide compositionality, which can be
achieved by a predictable arbitrator based on budgets. This requires
bounding shared resource supply and demand. Bounds on resource
supply can be achieved by time-sharing using techniques such as time-
division-multiplexing. In the previous chapter it is explained how
the NoC ensures the property of compositionality. In this chapter it
is explained how the rest of the platform is adapted to remain this
property. Shared memory must be reserved for each task in a job. For
this implementation a TDMA arbiter ensures that time is divided in
slots (budgets) and each time-slot is assigned to one and only one
task. Hence, the platform is non-work-conserving. Tasks that require
more resources can be assigned to more, not necessarily consecutive,
slots. This gives the job the illusion that it does not share the resource,
since every task of the job has a fixed percentage of access-time to the
resource which is not effected by other tasks.

Note that excepted AXI transactions cannot be interrupted and con-
tinued at another moment in time, unless stalling the rest of the trans-
actions [22]. The reason for this is explained later. By reserving slots it
is assumed that the assigned slot-time can be used effectively, i.e. re-
serving slots that cannot be used because a previous task from another
job is still pending is not useful. Therefore, uncertainties in resource
demand must be bound. Implementation can be achieved by obligating
the resource to provide guaranteed service. This allows for techniques
that ensure that a task will not exceed assigned slot boundaries, since
QoS enables worst-case execution times to be derived at startup. Slots
are thus sized for the biggest non-preemptive transaction in the system.
In this way uncertainties in resource demand can be bounded by using
admission control, where budgets are implicitly enforced because ad-
mission control ensures that no tasks are admitted which worst-case
execution time could exceed the slot boundary.

The size and assignment of these slots highly effects the performance
of the system. In this thesis slots are allocated statically, which means
that slot reservation is done at startup and during execution of the

41
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system this does not change. Although applications might be unknown
at design time, the maximum number of concurrent tasks running on a
system is known. To give each subsystem the virtue of having its own
hardware platform each task must have at least one slot of the TDMA
time wheel. Depending on the resource usage of the task multiple slots
can be reserved, resulting in a better quality (not necessarily a better
overall quality). It is up to the designer to make the best tradeoff in the
reservation of slots.

Virtualization with static slot allocation requires all available re-
sources to be distributed over the maximum amount of concurrent
tasks, thus the available resources are divided over the maximum
amount of concurrent tasks in the system. The obtained system can
now be very inefficient for several reasons. First, when fewer jobs are
active than predicted the extra available resources cannot be exploited
and are wasted. Secondly, slots might not be completely used effectively
because they are sized based on worst-case execution times and hence
they will be grossly over-dimensioned [34].

Time-slots are thus sized for worst-case scenarios. In practise however,
there may be only few (or even no) occasions where this worst-case
scenario occurs, thus wasting a lot of slot-time. For performance reasons
this must be optimized. For this thesis this is achieved by not only
allowing transactions to be processed at the beginning of each time slot,
but also at any other moment of time within that slot. Note that this
is not free of risk, as a large write request can now be granted at the
end of a slot, thus exceeding slot bounds (AXI transactions cannot be
explicitly enforced by pre-emption). Therefore, the arbiter only grants
access to the resource when the next transaction can be completed
within that same time-slot. This is shown in figure 18.

Figure 18. Guaranteed services require worst-case (rWC) resource reservations
that can be significantly higher than the average (rAVG). a.) Without
admission control transaction can be served when possible and thus
exceed slot-times (rWC) and use unassigned slots. b.) Admitting
transaction at the beginning of each assigned slot prevents this at the
cost of high amounts of unused slot-time. c.) This can be optimized
by admitting transactions when enough slot-time is left to process
them.

Note that there is still room for improvement. Dynamic slot allocation
would take task switches (change in use-case) and resource utilization
into account resulting in better performance (work-conserving ver-
sus non-work-conserving). The behavior of an application should be
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predicted in advance and resources should be allocated accordingly.
This however requires a complex and dynamic resource manager,

since with every change in use-case the resource demand changes and
hence should also the resource supply. This re-configuration must be
unnoticeable for the user and also this event itself should be predictable.
Furthermore, work-conserving scheduling makes it difficult to prove
that compositionality is obtained because not all dependencies between
jobs are removed but they are bounded. The design of a more complex
resource manager is beyond the scope of this thesis as for this thesis it
is sufficient to prove the concept of compositionality.

Also TDMA may not be the best technique to virtualize the platform,
as the main communication protocol is AXI. In AXI data can be trans-
ferred in burst, where only one command and address word are needed
to send multiple data words. This hampers the pre-emption (pre-empt a
transaction and start with another transaction before continuing it) of
data transactions, since somebody has to keep track of the data and the
corresponding command and address. Slots can be sized for average-
case behavior, but then a worst-case transaction does not fit in one slot
anymore. In that case, these transactions are distributed over multiple
slots and consequently hard real-time deadlines can be missed. There-
fore, either smaller transactions must be presented to the resource or
the resource is multi-threaded to enable pre-emption of transactions. As
AXI transactions are not split for this thesis and the memory controller
specified in section 5.4 does not provide multi-threading, transactions
must be processed in one assigned slot in order not to stall other jobs.
This involves some more problems that are resolved in the following
sections.

6.2 transaction-based valid signalling

Due to uncertainties in the behavior of the ARM and the scheduling
of Æthereal transaction data is scattered over time. Hence, the arrival
curve of data is unpredictable. This endangers compositionality as the
memory controller is single-threaded, hence it is not possible to pre-
empt transactions. In AXI every transaction must have the number of
transfers specified in the command. No component can terminate a
burst early to reduce the number of data transfers [22]. When data
scattering results in exceeding slot boundaries compositionality with
hard real-time deadlines is lost, as following slots cannot be used
due to the pending transactions. Budget enforcement is implemented
implicitly and is not forced, which requires bounding data scattering to
be able to provide a predicable service curve.

Currently, there is no implementation available of a multi-threaded
memory controller. This is due to the complexity of the implementa-
tion and since TDMA arbitration is not used nowadays in memory
controllers.

Bounding data scattering to prevent data interleaving is implemented
by buffering data transactions (see figure 19). Data transactions are
not allowed to pass a contention point when it is uncertain that the
complete transaction can pass that contention point before the end of
the assigned time-slot. If this would be allowed the situation described
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Figure 19. Read transaction scheduling: transactions are only scheduled by the
TDMA arbiter when the complete request message is available in
the buffer and there is enough space left in the buffer to receive the
response message. In this way bounds can be determined on the
temporal behavior of a transaction.

in the previous section could occur, where transactions are crossing slot
boundaries influencing the behavior of other tasks.

Note that transactions have to be buffered in both directions, as AXI
read and write transactions also include response data coming back. If
the NoC is not able to process response data i.e. because the network
is flooded the same situation could occur, where now the memory
controller is waiting until it can send the response data to the network.
If this waiting time exceeds slot boundaries other transactions can be
influenced.

Figure 19 shows an example of a read transaction. If a complete AXI
request is available in the buffer and there is enough space left in the
buffer to receive the complete response data, a transaction-valid signal
is send out to the arbiter. This signal indicates that the transaction
is ready to be scheduled. The predictable arbiter then waits until the
assigned time-slot of the corresponding task is active before granting the
request, thus providing a predictable service curve. The size of the slots
must ensure that that memory controller has finished the transaction,
implicitly bypassing the arbitration in the memory controller. This is
because it cannot be the case that the memory controller is busy at
the end of a slot (formally, predictable arbitration implies memory
controller arbitration). Slot sizes are chosen such that if the correct slot
is active, the transaction can be completed within the same slot-time.

Restrictions on AXI itself prevent the buffers and slot-sizes of becom-
ing unfeasible large, as a data burst can maximally contain 16 data
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elements (see figure 19) [22]. Buffers are made large enough to con-
tain the 16 data elements and slot-sizes are big enough to process the
complete transaction. The latter can be done because the fixed latency
of memory transactions between memory controller and memory (see
table 3). The length of an AXI burst can be determined by snooping the
correct signals of the read/ write address channel.

Buffers typically have a negative effect on performance and area cost
and therefore have to be limited. An optimization could be to disallow
data burst, each data element should be preceded by a command and
address (Memory-Mapped Input/ Output (MMIO)). This minimizes the
buffer size, but has negative effect on performance and puts concessions
on AXI and is not considered for now. However, some optimization
is achieved by reusing the source and destination queues of Æthereal
(figure 20).

Figure 20. Transaction signalling: the NI kernel contains queues which are
used to store transactions. A counter indicates the current filling of
the queues. A separate module in the shell is capable of polling the
counter signals to allow for transaction-based valid signalling

The buffer shown in figure 19 is thus split into a source and desti-
nation queue as shown in figure 20, where the depth of the queue at
the slave party is chosen sufficiently large to contain a complete write
message in the source queue and a complete read message in the desti-
nation queue. Note that a complete transaction is only buffered here. A
counter is implemented per queue to indicate the current filling of the
queue. As shown in the figure current implementation of the counter is
crossing clock boundaries, which makes it not possible for the current
implementation to operate in differen clock domains. In order to create
a clean cut between protocols the shell at the slave party implements
this transaction-valid signalling. This is explained in section 6.3.3.

Note that as the source and destination queue are in the NoC, the
protocol is not AXI but a native Æthereal protocol. In section 5.2 it is
explained how AXI signals are converted into message packets which
are send over the network and converted back to AXI when exiting
the network. Implementation details of the shells bridging between
protocols is explained in the following section.
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6.3 amba axi shell

In section 5.2.2 the Æthereal NI shells are introduced. As the protocol
used by the IPs is AXI, the NoC must be deployed with AXI shells to
enable communication between connected IPs.

Unfortunately, such AXI shell was not available and has to be imple-
mented. This means that an AXI target shell is implemented to bridge
AXI to native Æthereal and an AXI initiator shell to bridge between
native Æthereal and AXI.

Figure 21. Combined AXI shells

Figure 21 shows a cascading of the AXI target and initiator shell.
The outside wires show the five AXI channels at each shell. In [22]
an overview is given of the signals in each channel. Every channel
has a valid and accept signal used for the handshake protocol. Native
Æthereal also has handshake signals and a data bus for both directions
(read and write data). The target shell is connected to the master IP and
the initiator shell to the slave IP.

As the Æthereal NoC is based on message passing, all AXI signals are
sequentialized in request and response messages, which are supplied
to the NoC. There they are transported by means of packets. Sequen-
tializing AXI signals into messages is one of the main tasks of a shell.
How the signals are sequentialized is described in the message format
that is shown in figure 22. In the next section the message format for
AXI is introduced.

6.3.1 Message format

In this message format the read and write signal group are fit in the
command word. It is assumed that the data width of Æthereal is 32 bits,
which requires the 64 data bits of AXI to be split over two words. Also,
the word size of Æthereal makes it not possible to fit the write strobes
needed by AXI (eight bits per 64 bit of data) in the same word as the
data. Therefore next to the two data words another word is added for
the write strobes.

Note that this extra word for the write strobes could be avoided by
increasing the word size of Æthereal to 36 bits (four bits per 32 bits of
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Figure 22. Example of an AXI message format

the AXI data). This however, would make Æthereal more dependant on
AXI and is not considered as a clean cut between protocols.

6.3.2 AMBA AXI target shell

When a master IP issues a read or write request via the network, first the
signals are bridged to a native Æthereal protocol. This protocol is based
on message passing. It is based on a read and write data bus combined
with a valid and accept signal per bus used for the handshake protocol.
It also contains a write flush signal, which for this implementation is
short-circuited and is not mentioned anymore in the continuing of the
report. Furthermore the AXI target shell:

• Sequentialize AXI commands and their flags, addresses and write
data in request messages

• Down-scaling 64 bit AXI data to 32 bit Æthereal data for write
requests

• Up-scaling 32 bit Æthereal data to 64 bit AXI data for read re-
sponse

• Include transaction-based round-robin arbitration for contention
between read and write requests

• Post normal access write requests

• Pipeline read requests

• De-sequentialize response messages into read data
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Request

As the word-size of Æthereal is 32 bit, AXI request data is sequentialized
in 32 bit words. The request message format shown in figure 22 is used
for this implementation. All AXI command signals are packet in the first
Æthereal word. This command contains information about i.e. whether
it is a read/ write request, the length of the receiving/ sending data
transaction and an identification of the message.

The next word contains the AXI address. As AXI uses a 32 bit address
this fits in the second word. For a read request this is sufficient data.
The shell now waits for a response message to be returned. This is
explained later.

If the request is for a write transaction, write data is send along the
command and address. In this implementation the width of AXI data
is 64 bit and hence does not fit in a single word. Therefore, AXI data is
down-scaled to a 32 bit Æthereal word. Note that this effects latency
as Æthereal processes one word per cycle and AXI data thus takes two
cycles.

Furthermore, a write strobe is send with every 64 bits of data. Write
strobes enable sparse data transfer on the write data bus. Each write
strobe signal corresponds to one byte of the write data bus. When
asserted, a write strobe indicates that the corresponding byte lane of the
data bus contains valid information to be updated in memory. There
is one write strobe for each eight bits of the write data bus [22]. As
this thus requires eight bits for the 64 data bits, it does not fit in the
command word. Therefore, a separate word is added to transport the
write strobes. As mentioned in section 5.2.2 there are other solutions
possible, but in order to keep Æthereal independent of AXI this solution
is preferred.

As AXI is capable of sending data bursts-based transaction where
only the start address is issued, there can be multiple of these data
elements per transaction. The number of data elements is derived from
the AXI write data channel. Again note that down-scaling takes an
extra cycle and also per 64 bits of data an extra cycle is needed for
sending the write strobes.

As AXI supports read and write request to be performed in parallel
and Æthereal does not allow for this, read and write transactions
are arbitrated in a round-robin fashion. Note that this is only done
when a read and write request are performed in the same cycle and
does not harm compositionality as this only effect the behavior of the
transactions of the corresponding task. Arbitration is then performed
on a AXI transaction granularity.

Optimizations

As the hardware platform supports optimizations for streaming data,
writes are made posted. This means that the write response is not
provided by the slave party, i.e. the memory controller, but by the
network itself. This is taken care of in the target shell. If this would not
be implemented, latency of the network is still an issue, because as the
ip_1036 does not support write interleaving a next write request would
stall until the write response is returned from the memory controller
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thus adding twice the latency of the network1.
AXI supports four types of response signalling all causing different

response types, namely normal access, exclusive access, slave error
and decode error. The shell only supports the first. With a correct
implementation errors do not occur and are used for debugging only.
Exclusive access is not supported yet as the shell standard returns a
normal write access okay response.

The ip_1036 supports pipelining a maximum of eight read transac-
tions. This is also supported by the target shell and is implemented by
using a different Finite State Machine (FSM) for request and response
messages. Identification of the different messages ensures that different
messages are not interchanged.

Response

The slave party generates a response message depending on the re-
ceived request. For both read and write requests a command word is
send (see figure 22), indicating i.e. the length and the identification of
the read/ write request. The target shell de-sequentializes this message
and asserts the correct write response channel signals.

A read response also contains the read data. As the AXI data width
is 64 bit, two words are send for the data. AXI supports data burst, thus
multiple data elements can be send in one transaction. The amount of
AXI data elements is indicated by the AXI read address channel. The
target shell up-scales two data elements to one 64 bits AXI data element
and asserts the correct signals on the AXI read data channel.

6.3.3 AMBA AXI initiator shell

The initiator shell de-sequentialized the messages generated by the
target shell and asserts the correct channel signals at the slave party.
Furthermore, it implements the following features:

• De-sequentialize request messages into commands and their flags,
addresses and write data

• Down-scaling 64 bit AXI data to 32 bit Æthereal data for read
response

• Up-scaling 32 bit Æthereal data to 64 bit AXI data for write
request

• Sequentialize read and write responses in response message

• Word-based valid signalling or transaction-based valid signalling

• De-pipeline read requests

1 A normal write request, like a read request, depends upon a request and a response
through the network. Posted writes only depend upon a request
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Request

As explained in the previous section the target shell sequentializes
the AXI channel signals according to a given message format (figure
22). The initiator shell mirrors this operation and ensures that the AXI
channels are asserted with the correct signals. This includes up-scaling
data to 64 bits for write requests.

Response

Response requests of the slave party are sequentialized in messages as
shown in figure 22. However, in contrary to the target shell, read data
is not allowed to be pipelined. The reason for this is explained in the
following paragraph.

QoS Support

To derive the worst-case time for a request fetched from the source
queue until the response is stored in the destination queue the inter-
vening communication path must provide QoS. This means that it has
to guarantee that a transaction is served within a bounded amount of
time. As the latency from the source queue to the memory, as well as
the latency from the memory to the destination queue is fixed (section
5.4) and thus provides a predictable service curve, the only insurance
that has to be provided is that both the queues are able to store that
complete transaction when the transaction is started.

The source queue has to be able to store one request message, since
the write interleave depth is one and hence a command and address are
followed either by the corresponding data (maximally 16 data elements)
for a write request, or the command and address of a new request
otherwise. The minimum depth of the source queue is thus 50 words
(command, address and for a maximum burst of 16, 48 data and write
strobe words). Hereby it is ensured that if the filling of the source
queue is equal to 2 + 3 ∗φ, where φ is the number of data elements
indicated in the command word, the complete transaction is available
in the source queue. For a read request only two words need to be
available, the command and the address.

Also, it must be ensured that the destination queue is able to store
the complete response message. Note that the minimum depth of this
queue is equal to the minimum depth of the source queue, which is 50

words (maximum size of a read response).
If read transactions are allowed to be pipelined this endangers com-

positionality, since memory arbitration is then no longer implied by the
predictable arbiter (it is no longer guaranteed that a read transaction
is finished before another transaction is started), giving control to the
arbiter in the memory controller and hence making the system unpre-
dictable. Thus to ensure that time-slot boundaries are not exceeded and
compositionality is maintained, read requests are de-pipelined.

Note that this does not influence the advantage of pipelining read
requests in the target shell, since these requests can be stored in the
source queue to prevent the the ARMs from stalling.

Furthermore, at the moment a complete read request (command and
address) is available in the source queue and there is enough space in
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the destination queue for receiving the response data and the request
is granted, another request may be pending filling the queue after
the counter, indicating the filling depth of the destination queue, is
polled. This may result in a case where a request is granted but another
pending request has filled the destination queue such that the response
data does not fit in the destination queue anymore, thus endangering
compositionality. This could however be solved by implementing a
separate counter that takes the required storage space in the destination
buffer into account.

QoS support is implemented by a separate module (see figure 20) in
the initiator shell that polls both the counter signals (both source and
destination queue have a counter) provided by the kernel. If the shell
is set to provide transaction-based signalling, a valid signal from the
source queue indicating that the queue contains a valid data element
(command) is not accepted immediately when the TDMA arbiter grants
access. First that command word is snooped from the data bus, without
accepting it. In this way it is possible to derive the amount of data
elements that are going to be transmitted in case of a write or need to
be received in case of a read request, since this information is stored in
the command word.

The module then waits until the counter of the source queue indicates
that the derived number of data elements are available in the queue. If
that is the case, the counter of the destination queue is polled to check
whether sufficient room is available in the destination queue to accept
the response message. If this is also the case, a transaction valid signal
is asserted to indicate that the transaction can safely be processed.

The module then sends a valid signal to the TDMA arbiter. If the
TDMA arbiter grants access to the memory (the corresponding time-slot
is active and there is enough time left in the time-slot to process the
transaction) the transaction is processed.

6.4 slot-time derivation

Note that as the maximum size of a transaction can be determined (an
AXI burst contains maximally 16 data elements), minimum slot-times
are derived accordingly. The minimum queue depth is equal to the
maximum size of a transaction and is 50 words (where a word is 32

bits). Every clock cycle one word is processed by the initiator shell. The
current configuration of the memory controller is such that for write
request the latency from AXI to memory command is 1 cycle and for
read requests there is no latency (table 3). The throughput is 1 cycle per
element. This results in a minimum slot size of 51 cycles.

6.5 configuration

In order to execute an application on the hardware platform some
configurations need to be performed. Each ip_1036 needs to multiplex
its data to correct output ports, which requires an address map. Further-
more, the connections of the network need to be configures to enable
the transfer of data.
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6.5.1 Address map

The ip_1036 can provide a specific feature to support multiprocessor
systems. Every processor can have its lower address section, starting
from address zero, re-mapped to a different memory area. This is
required, because multiple ARM processors can be configured to boot
from the same address, while this may not be wished. Also most ARM
processors have their respective exception vectors located at address
zero, this too will require a re-mapping from ROM to RAM of address
zero after booting.

Figure 23. Address map

To avoid breaking the unified memory space, a specific section of the
unified memory map is assigned as a shadow memory section (see figure
23). This memory section is located from address 0 up to 2shadow_sz −
12 and is virtual, i.e. no actual memory is present at the shadow address.
It can be seen as a copy of a section of unified memory, specific to each
master. The size of the shadow memory is the same for all masters, the
actual re-mapped locations differ [29].

Based on the address the ip_1036 statically maps data to an output
port. In Æthereal the input ports are dynamically mapped to a output
port. This is done by reconfiguring connections between ports (see the
next section). For this implementation every input port is connected to a
fixed output port, and this connection is not changed during execution.
Hence, network configuration is only done at startup and the network

2 Where shadowsz represents the highest address bit of the shadow space + 1
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is fully connected.

6.5.2 Network configuration

The Æthereal NoC is used to program itself. This is performed through
configuration ports using DTL-MMIO transactions. The NoC can be
configured in a distributed fashion (i.e., via multiple configuration
ports), or centralized (i.e., via a single port). The designers of the
Æthereal opt, when having a small NoC (6 10 routers) like for this
design, for centralized configuration, because it is able to satisfy the
needs and has a simpler design and lower cost.

Figure 24. Configuration: NIs are point-to-point connected to the router (not
physical wires). Point-to-point connections are set-up by the configu-
ration master.

At the configuration module NI, a configuration shell is introduced,
which based on the address configures the local NI or sends configu-
ration messages via the NoC to other NIs. An example of centralized
configuration is shown in figure 24, where the left block represents the
configuration master.

NIs are configured via a configuration port, which offers a memory-
mapped view on all control registers in the NIs. This means that the
registers in the NI are readable and writable by any master using normal
read and write transactions. Configuration is performed using the NoC
itself (i.e., there is no separate control interconnect needed for NoC
configuration). Consequently, the configuration ports are connected to
the NoC like any other slave. For this implementation the configuration
master is performed by a centralized exerciser that runs a tcl script.
Hence, it is not possible to synthesize the current design.



Nothing is more practical than a good theory

— Ludwig Boltzmann

7R E S U LT S A N D R E C O M M E N D AT I O N S

In order to verify that the discussed methods and techniques provide
compositionality to the system, an application is mapped onto the
implemented architecture. The application contains three independent
jobs each mapped on one of the ARMs. For this implementation all
instructions and data of the application are stored in the remote memory.
Compositionality of first degree (see table 2) is confirmed by showing
that change in the behavior of one of these jobs does not affect the
behavior of the other two jobs. This is comparing trace files, which for
the two unchanged jobs are verified to be identical for every cycle.

7.1 use-case

For the test use-case each ARM is connected to a different interrupt
controller. The interrupt controller is standard deployed from an IP
database with verification software to confirm correct behavior. The
correct behavior of the entire system is thereby implicitly verified. If all
verification tests pass, this implies that the master, the interconnect and
the slave are functionally correct. The application is thus the verification
of the three interrupt controllers.

The software code of each of the three verification jobs is stored at the
corresponding address ranges within the address map (see figure 23).
This ensures that the three ARMs all have there own address spaces in
the shared memory that is not effected by the other ARMs. The shared
memory is not used for communication purposes.

7.2 results

In order to prove compositionality two different setups are simulated.
For the first setup three different jobs are mapped on the three proces-
sors. For the second setup one of the jobs is changed, thereby changing
the temporal behavior of that job. The other two jobs are the same as
for the first setup. There are no inter-dependencies between jobs, since
the goal is to prove first degree compositionality.

Figure 25 is vertically divided into three blocks, one for each CPU.
Each block contains four waveform, divided in two sections of two
waveforms. The top section of each block represents read requests and
the bottom section represents write requests. The top waveform of each
section belongs to the first setup, and the bottom to the second setup.
For CPU 2 and CPU 3 the application is the same for both setups. CPU
1 has a different job mapped on it for both setups.

The two waveforms are compared to identify whether there is a
change in behavior between the two setups. If there is a cycle that

54
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Figure 25. The waveform shows that the change of the application on CPU
1 does not effect the the temporal behavior of CPUs 2 and 3. Red
indicates the cycles that differ

differs between the two setups this is indicated by a bar on top of the
section. For this use-case this bar shows that the waveforms behave
differently for CPU 1 between both setups. This is orthogonal as the
trace is observed for two different applications.

However, the waveforms show that the temporal behavior of CPU 2

and CPU 3 are not effected by the change in the job (temporal behavior)
of CPU 1. Hence, for this example it is shown that the platform is
compositional. Even more, since not a single cycle is different the
strictest form of compositionality is confirmed for this use-case.

The use-case shows that virtualization of the hardware platform
results in first degree strictest form compositionality (see figure 25).
Therefore, it is possible for this system to simulate the behavior of each
of the jobs and ensure that changes in one of the jobs does not influence
the behavior of the other jobs.

ip_1036 (ns) Æthereal (ns)

No cache 5,530,550 30,446,430

Instruction cache 1,848,110 14,500,910

Instruction & data cache 888,760 1,946,480

Table 4. Influences of cache on the execution-time. First column shows the
effects on the reference design, where the second column shows the
effects on the compositional design

Next to the compositional system a comparable non-compositional
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reference system is implemented and simulated to investigate the in-
crease in run-time due to virtualization. For a fair comparison Æthereal
is replaced by a 32 bit AXI interconnect. For this use-case the strictest
form compositionality results in an increase of the execution time by
five times compared to the reference system (see table 4). The latter uses
round-robin arbitration and hence is work-conserving. The efficient use
of the memory decreases from 70 procent for the reference system to
only 10 procent for the compositional system. Investigation of the trace
file shows that the slot utilization of the memory controller for write
data is much better than the slot utilization for read data. It appears
that latency is not drastically effecting performance if the throughput
can be kept high, as for posted write data.

However, if read requests cannot be pipelined (i.e. events) the through-
put is effected by the round trip delay of the network. Slot-time at the
memory cannot be used by other transactions as arbitration is non-work-
conserving and the memory controller is single-threaded, decreasing
memory efficiency. This causes a serious performance bottleneck. Intro-
ducing instruction and data cache decreases the amount of low-latency
request, thereby having a significant impact on execution time (see table
4). To pin-point the precise cause for the overhead in performance cost,
analysis is done on the behavior of these low-latency read transactions.
Note that for this analysis it is assumed that the clock frequency of all
IPs including the network is the same.

7.3 cost analysis

If we look at IP blocks in general they often have a particular commu-
nication granularity for which the behavior of the IP is optimal. For
example the granularity of SDRAM depends on the access size of the
memory (taking banking into account), the granularity if CPU commu-
nications may relate to the size of cache lines and accelerators may have
a much coarser granularity. Typically for NoCs, the granularity is as
fine (fluid) as possible.

Figure 26. The granularity only effects average and best-case scenarios nega-
tively: a.) Worst-case a small and large granularity perform equally
b.) Average-case a large granularity performs better c.) Best-case a
large granularity performs even better than average-case

For this use-case the granularity of Æthereal is on flits, whereas
the granularity of the ARMs and the memory controller is on AXI
transactions. A flit contains three words of 32 bits. A maximum AXI
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transaction contains 16 data elements of each 64 bits. Communication
granularity only effects average and best-case run-time (see figure 26),
worst-case run-time is the same for every granularity. A larger granular-
ity results in better average-case and best-case run-time compared to a
small granularity. Therefore, it is advocated to size slots for the largest
non-preemptable transaction in the system. However, for NoCs a large
granularity is not practical as it requires large buffers and is therefore
kept as small as possible. For the memory controller larger granularity
improves performance. Due to the difference in granularity between
Æthereal and the memory controller latency is effected negatively by
the network for average and best-case situations. Latency is crucial for
requests where pipelining is not possible, i.e. events.

In order to transfer one AXI request for 16 data elements, the network
sequentializes the request in many smaller flits. The latency of the
NoC is then effected by the number of revolutions of the slot wheel
(depending on the number of connections supported by the NI) to
transfer all these flits over the network. The worst-case latency effect
is discussed in the upcoming paragraphs. Note that it is assumed that
all requests contain 16 data elements (fixed AXI burst size). This is an
assumption and certainly not always true, as investigation of the trace
file shows (burst lengths vary from one to around six data elements).
However, the variability in AXI bursts is another issue and is discussed
later on in this report. Also for the first implementation each CPU is
connected by one NI, thus requiring five slots in Æthereal (explained
later).

In Æthereal every flit that is passed over the network is divided into
three words per slot. The first word of the flit is used for the packet
header information. The two other words can be used for payload of
the message. For packets that can be send in consecutive slots only
the first flit contains the header information, the rest of the flits can be
completely used for payload. For this first implementation each ARM
is connected to one NI. Consequently, the connection to the router is
shared by the four ports for streaming data and one port for data to
remote memory (see figure 10). This corresponds to the result of the
design flow of Æthereal, which has calculated for this use-case that at
least five slots are needed to give every connection a time-slot [14]. The
granularity of a slot is the size of a flit, hence a complete revolution of
the TDMA wheel takes 15 cycles (equation 7.2).

5 slots ∗ 3
words

slot
∗ 1

words

cycle
= 15 cycles (7.1)

Because latency-tolerant request (i.e. posted write requests) do not
form the bottleneck in this system, the attention is focussed on requests
with low-latency requirements. In this case this are the AXI read re-
quests that cannot be pipelined. This section analyses the worst-case
latency for an AXI read request for 16 data elements.

A read request (command and address) has to be available before the
beginning of the slot in Æthereal. This means that the request is sequen-
tialized by the NI shell into a command and address. Sequentializing
the AXI signals for a read takes two cycles. The request is then send to
the FIFO in the NI kernel. It takes one cycle to transfer the first word to
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the FIFO. The flit is then scheduled to be send over the network. The
flit waits worst-case for all other slots when missing the assigned slot.
For the worst-case scenario the request misses the slot with one cycle
and has to wait for a complete revolution of the TDMA time wheel,
thus adding 14 cycles latency. For this use-case the maximum latency
that is added in the NI for one flit (enough to send a packet header,
the command and the address that are needed for a read request) is
2 + 1 + 14 = 17 cycles.

To transport the flit (packet header, command and address) from one
NI to another takes two hops (connections between NI and router). The
latency added by the router is therefore:

3 words ∗ 1
word

cycle
∗ 2 hops = 6 cycles (7.2)

As a read request takes only one flit, the complete transaction is
then available in the source queue of the NI kernel at the memory
side. In the shell the command and address of the incoming flit are
desequentialized again. This takes two cycles. Thus worst-case a flit
arrives in 25 cycles at the output channels of the NI. The AXI request is
then scheduled to be send to the memory. The memory is arbitrated
with TDMA divided into three slots, each taking 51 cycles. A complete
transaction is processed in one such a slot, thus for the worst-case when
missing a time-slot the transaction requires 102 cycles to arrive in a
corresponding slot again before it can start the transaction. This is when
no time is wasted in the missed slot itself. When a request arrives one
cycle late, the rest of the slot-time is also unused. Hence, this adds 34

cycles latency for this read request (a read request does not contain
the 16 extra write strobe words that are needed by a write request).
Furthermore, the memory requires 16 cycles to transfer the 16 data
elements. In total it thus takes worst-case 34 + 102 + 16 = 152 cycles for
a read transaction of the memory.

To send the 16 data elements back to the CPU the network requires
33 words (one command word and 32 data words). The network is
reserved for one slot per revolution, where each revolution transfers one
flit containing two words payload. Hence, in total 17 flits are required.
The AXI signals from the memory are sequentialized in the shell. The
shell sequentializes the first two words of the read response, namely
a command and a data word and transfers these over the network. In
worst-case this flit waits for 14 cycles before it is transferred additional
to the one cycle that is required by the kernel to store the first word
in the FIFO. The rest of the data words are also sequentialized in flits,
where between each flit a complete TDMA revolution is performed
before a next flit can be send. Before the last flit has arrived at the CPU,
the router again adds six cycles latency and desequentializing takes
another two cycles.

If we sum up these cycles to total worst-case latency is 457 cycles.
Note that 152 latency cycles are caused by the memory and its arbitra-
tion. The other 305 cycles are caused by the latency of Æthereal and
the arbitration of the different connections in Æthereal. From this is
concluded that the large difference in slot granularity of an AXI transac-
tion and a flit forms a big latency issue when pipelining is not possible
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(low-latency requests). This effect can be controlled by reducing the
number of slots in Æthereal.

7.3.1 Parallel connections

This design does not contain parallel connections from each of the CPUs
to the memory. Each ARM has one NI via which instructions as well as
streaming data are transported over the same physical connection. As
the NI contains five ports to the router the minimum number of slots
needed is five. One of the advantages of NoCs is that they can allow for
parallel connections. This is also possible for busses (e.g. multi-layered
bus) but in fact this is a combination of n busses and as we have seen
this does not scale well for larger designs. If a separate NI connects i.e.
the instruction port to the router, this connection is only dedicated for
instruction data. Latency is now lower as it the instructions do not have
to wait for other slots in Æthereal.

By reducing the number of slots the latency effect of the network
decreases towards zero (the latency effect is not completely removed
as additional latency is still required for de/ sequentializing data and
the transfer of the data between NIs in the NoC). Next to the reduced
number of slots, reservation of consecutive slots also decreases the
number of packet headers thus improving slot efficiency. The latency
caused by the memory thereby becomes the bottleneck in performance
as the memory is still shared. In figure 28 a breakdown is shown of the
transaction latency for a read request of 16 data elements into network
and memory latency.

Figure 27. NoC and memory contribution to worst-case read request latency
for 16 data elements of 64 bits

To investigate the effect on latency by Æthereal if all CPUs have a
dedicated connection to memory, a new test-case is setup where all
slots in the network are assigned to only one CPU. Note that the other
two CPU’s are thereby not able to retrieve data from shared memory
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and hence are stalled. Arbitration to shared memory is still divided in
three slots, as this is still a contention point. The performance of this
test-case increased by 30 procent. Note that this is still almost 4 times
slower than the reference system. The reason for this relative low effect
is explained in the following section.

7.3.2 Dynamism

Until now the assumption is made that an AXI burst is always for 16

data elements. However, investigation of the trace file shows that this is
far but true for this use-case. Burst lengths vary from one data element
to around six data elements. The dynamic behavior of AXI burst cause
a new set of problems. A small request of only few data elements may
not fill the time-slot for the memory transaction. The rest of the time can
then be used for a new request. As for posted writes throughput can
be kept high and the CPU is not stalled, a new request at the memory
is done almost instantly (the throughput for the network is around one
flit every three cycles).

However, read requests that cannot be pipelined stall the CPU. A
new request is therefore only done when data of a previous request has
arrived at the CPU. The time in between these requests the memory is
unused, thereby decreasing efficiency. Hence, the round trip delay of
the network effects the efficiency of the memory. Consequently, for the
best-case scenario where no latency is added by arbitration (dedicated
parallel connections) maximally two non-pipelined read requests can
be served in the same slot. This is because if a read request for one
data element has arrived at the memory, the memory adds minimally
one cycle latency and the two flits of the response require 14 cycles
to return. In total this is 15 cycles. A new request then arrives after
minimally 26 cycles as a new request takes 11 cycles to arrive at the
memory again. Not included are the number of cycles needed by the
processor to process the received data. Hence there are maximally 25

cycles left to return the response and send a new request, which does
not fit in the time slot of the memory arbiter. Therefore, the next request
has to wait for the next assigned time slot.

The 30 procent increase in efficiency between the system with five
slots in Æthereal and the system with dedicated connections can be
concluded from the fact the for the first setup the best-case situation
(two low-latency read requests in one slot) does not always occur,
where it does for the system with dedicated connections. However, the
efficiency of the memory is still low because of the limited amount of
requests in a slot.

The low load of the memory does not advocate the use of non-work-
conserving arbitration. For the non-work-conserving arbitration used
in the implementation the average-case and the worst-case behavior
are not depending on the work load of the system. This is because the
bounds on the uncertainties in resource behavior are removed, resulting
in the strictest form of compositionality. Therefore, average-case latency
can be derived without information about the application, since the
percentage of time a job has access to a resource is known at design
time.
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Figure 28. By assigning all slots in Æthereal to one CPU, no scheduling waiting
time is added in the network. The figure shows the time-slots for
scheduling the memory. Note that for this test case the other two
CPUs are stalled, thus do not use there slots. In total six read request
are completed in three slots. The unassigned time is mainly due
to the round-trip latency of the network. This confirms the low
utilization of the memory

Note that this implicitly assumes that the complete time-slot can
be used to access the resource, which is not completely true for this
implementation. I.e. the difference in length of read and write request
causes the slot size of the memory arbitration to be sized for the longer
write requests. The variability in AXI bursts may optimize average-case
behavior in normal systems, but does not suit well for compositionality.
It may not be possible to fill a complete time-slot with consecutive
AXI request as these request cannot be distributed over multiple slots.
Therefore slot-time is not used efficiency.

7.4 recommendations

The results show that the solution for compositionality provided in this
thesis is not optimal for all situations. For instance applications with
low-latency requirements do not suit well because of i.e. the latency
added due to TDMA arbitration at the memory controller. To improve
performance costs there are several recommendations.

As the low-latency requests result in a low memory load, perfor-
mance results are expected to be better in combination with work-
conserving arbitration. For maximum load both arbitration techniques
behave similar. For work-conserving arbitration average and worst-case
behavior diverge for low memory load. This is because the probability
that there is unused slot-time available in a low load system is bigger
than for high load systems. The unused slot-time between a low-latency
request and a new request can then be used by other jobs. The variance
in the bounds on the temporal behavior is not completely removed
anymore as it now is also possible to use time-slots unutilized by other
jobs. When a job does not present data at the start of its slot, the access
to shared memory is backlogged for a bounded period of time. This can
maximally be a complete revolution of the TDMA wheel, depending
whether other jobs have data that they presented in the time the slot
was not used. Hereafter a fixed service rate is provided, as the job has
data present at the beginning of the next slot. Thus the strictest form
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of compositionality is not achieved, but one can still derive worst-case
inter-dependencies.

The average-case system behavior is now dependent on the load
of the system. This makes it difficult to derive average-case behavior.
However, since the average behavior is better for systems with lower
load it is expected to give performance benefits for these systems.
The designer has to make the decision whether it is sufficient to have
bounded uncertainties (derive worst-case behavior) at the benefit of
better performance for low load systems. As discussed earlier a related
issue is that is now not longer possible to show compositionality per
cycle. More refined techniques are required to show that the property
of compositionality is obtained. For this reason we opt for strictest form
compositionality.

Slots can also be sized for average-case behavior. For example, if
on average burst lengths contain four data elements, time-slots can be
dimensioned for this situation. A problem occurs when a transaction
exceeds this limit. The transaction then is stalled until the next slot.
Conventional memory controllers do not allow for this as they are
single-threaded. This then stalls all other CPUs until the transaction is
completed. In this case no hard real-time guarantees can be provided
anymore.

There are a couple of solutions for this. First transactions may be
split into multiple smaller transactions before they are presented to the
memory controller. This can be achieved by adding a new command and
address for a subset of data elements. This requires extra bandwidth
for the command and address and is not as efficient as requests for
larger bursts. However, because time-slots itself are then used more
efficient this might result in an increased overal performance. This is
not confirmed in this thesis. Note that the data elements still have to be
presented in-order to the memory. In this way hard real-time guarantees
can still be provided. Another solution can be multi-threaded slaves. If
slaves are able to accept multiple commands and are able to give service
guarantees compositionality can still be achieved and hard real-time
guarantees can be provided.

The discussed issues all relate to the use of the AXI protocol. From
this can be concluded that AXI is not the optimal solution for achiev-
ing compositionality. The variability and the size of the transactions
negatively effect performance results.

What is not considered until now is one of the advantages of NoCs,
which is the potential to run on higher clock frequencies. An increase
in the clock frequency by a factor two results in half the latency of the
network. This is reasonable as the ip_1036 operates around 150 Mega-
hertz where Æthereal could operate at 500 megahertz. Unfortunately,
due to the current implementation of the NI clock domain crossing is
not possible in the network.

7.4.1 Related issues

In chapter 4 it is advocated that the interconnect provides flexibility
with respect to supported protocols. In this report this is addressed by
introducing shells to convert from one protocol (i.e. AXI) to another (i.e.
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native Æthereal). As all components used in the design are based on
the AXI protocol, the network only has to be AXI compliant. However,
this is an optimized situation. In practise AXI components may be
connected to components based on DTL or other protocols.

For n different protocols, which are allowed to be connected to m

other protocols, this requires n x m different shells. This is because
every protocol needs a message format that must be understood by the
shell on the other side of the network.

Optimally one would need only one target and initiator shell that is
compliant to the complete set of protocols. This means that there is one
unique message format that includes the superset of all protocols and
can be used to sequentialize and de-sequentialize all possible protocol
conversions. This issue is addressed in [4]. Note that for every new
protocol that is introduced the message format has to be adopted. Also,
this includes overhead of bandwidth for the protocols that need less
information (command and flags).



The most important discoveries will provide answers
to questions that we do not yet know how to ask and

will concern objects we have not yet imagined

— John N. Bahcall

8C O N C L U S I O N S

In this thesis we focus on the strictest form of compositionality, where
jobs do not effect each others behavior at a cycle-true level. Therefore
hardware virtualization is applied to a platform implemented in RTL.
This thesis shows by simulation that virtualization of the hardware
platform results in the strictest form of compositionality. From the
analysis of the simulation results and the comparison with a non-
compositional reference design several conclusion are formulated.

Current day system level architectures consist of IP blocks (processors,
memories, peripherals, etc.) that communicate via an on-chip network.
IP blocks operate at different levels of communication granularity. For
example, the granularity of SDRAM depends on the access size of the
memory (taking banking into account), the granularity of processor
communication may relate to the size of cache lines and accelerators
(e.g. FFT) may have a much coarser granularity. Typically for NoCs, the
concept of a flit is important and the granularity is as fine (fluid) as
possible.

A critical parameter is the round-trip latency in case of an event
like a cache miss. The latency of a communication path built from a
chain of resources depends on the reservations and transfer time of
each shared resource along this path. The latency is thus coupled to the
scheduling waiting time and transfer time of all the resources in the
chain. Two situations are possible depending on the alignment of the
scheduling of resources. If there is no alignment the latency is affected
by the scheduling waiting time and the transfer time of all preceding
resources in the chain. If there is alignment the latency is only affected
by the transfer time of all preceding resources in the chain. The impact
of the scheduling waiting time is limited to scheduling only the first
shared resource of the complete chain.

An important question is: "What is the impact of a NoC on the round-
trip latency?" At one hand NoCs give more parallelism, less sharing,
less conflicts and consequently reduces the scheduling waiting time.
The benefits of a NoC from a latency point of view are most obvious
for systems with many conflict [4] and multiple scratchpad memories.
Furthermore, by reserving multiple slots for a job on one connection
the latency of the NoC can be reduced and the round-trip bottleneck
shift towards the scheduling waiting time (arbitration) of the memory.
By reserving all slots (dedicated connection) the influence on latency
by the NoC is limited to the cycles required for the data transfer and
memory arbitration is a true bottleneck.

Not only do we have different communication granularities between
resources, protocols may also allow for dynamic burst lengths. The AXI
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burst length is not fixed but varies between one and 16. The dynamism
of AXI transactions has a large impact on performance. In AXI no
component can terminate a burst early to reduce the number of data
transfers [22]. Since transactions cannot be interrupted once they are
accepted by the memory, time-slots are sized for worst-case situations.
For small AXI requests that cannot be pipelined, such as instruction
fetches, this results in low slot utilization. This is worsened by the
additional round-trip latency of the network that is added before a
new request can be done. During this transfer time the time-slot and
thus the processor is unused. For this thesis we accept these costs
for achieving the strictest form of compositionality. Optimizations can
be implemented by relaxing the constraints on compositionality, i.e.
assigning unused slot-time to other jobs. Performance is expected to be
better, but the strictest form of compositionality is then not obtained. In
this case it is no longer possible to look only to cycle counts, but more
refined techniques are needed [24].

These issues show that AXI is not an optimal protocol for obtaining
compositionality. Fixed burst length and identical behavior for read
and write request is advocated to more efficiently use reserved slot-
time. The latency is effected by the size of the biggest non-preemptable
transaction in the system [34]. The granularity of transactions, from a
compositional perspective, has to be sized as small as possible to in-
crease slot utilization and decrease the latency effect caused by memory
arbitration. A solution is needed for transactions that exceed slot-times.
In this report two solutions are provided. First AXI transactions can
be split into multiple smaller transactions before it is accepted by a
component. Second, multi-threaded slaves may be implemented that
do allow for interrupting transactions. Next to memory arbitration also
the arbitration of the NoC is an issue. Parallel and dedicated connec-
tions are possible to minimize the latency effect of the network to only
transfer latency.

To obtain strictest form compositionality, especially in combination
with AXI, the cost for unused slot-time has to be considered. This thesis
shows that latency-tolerant data streams (i.e. produced by streaming
applications) are well suited for the obtained compositional system.
When latency is hidden by buffers and throughput is kept high, e.g. by
writing instead of reading data, then reservations are used efficiently.
However, for low-latency requests the granularity and dynamism of
transactions are an issue. To suit compositionality communication pro-
tocols must not be designed for the behavior of an individual IP, but
for overal compositional system behavior.



We are at the very beginning of time for the human race.
It is not unreasonable that we grapple with problems.
But there are tens of thousands of years in the future.

Our responsibility is to do what we can, learn what we
can, improve the solutions, and pass them on.

— Richard Feynman

9F U T U R E W O R K

In this thesis several issues are observed that influence compositionality
with respect to i.e. its property and the (performance) cost. Most of
these issues are not further addressed and are considered as future
work. These issues are listed in the current chapter.

• Hybrid platform, the idea is to distinguish low-latency off-chip
communication (instructions and load/ store operations) and
latency-tolerant on-chip communication (streaming data) by using
two separate communication paths. Low-latency communication
is thereby transferred over a normal AXI interconnect and latency-
tolerant communication via the network, minimizing the round
trip delay of low-latency communication. Note that arbitration to
remote memory still needs to provide compositionality

• Clock domain crossing, Currently the implementation of Æthereal
does not allow for clock domain crossing. Either this must be
implemented or other techniques have to be applied to allow for
this. The increase of the clock frequency of the network decreases
the latency of the network

• Protocol superset, as discussed the network should provide flexibil-
ity with respect to the compliance of protocols. Heterogeneous-
ness of connected components ask for different protocol types to
be bridged to allow for inter-communication. The current imple-
mentation asks for n2 shells for all possibilities of connecting these
n shells together, which is not preferred. When a new protocol
has to be supported another n + 1 shells have to be implemented.
A solution is to introduce a superset of all protocols, as proposed
in [4]. This means that only two shells need to be implemented to
bridge between all possible protocols as discussed in 7.4.1.
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