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Abstract

In this paper we study two models of the UMTS wireless network, the single cell model
and the quadruple cell model. For the single cell model we derive a complete probabilistic
analysis. The quadruple cell model is too complicated for a successful probabilistic
analysis. However, we present a novel way to greatly reduce the running time of the
simulation program for this specific model.
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Chapter 1

Introduction

The latest revolution in wireless communication is the implementation of the third gen-
eration (3G) HSDPA wireless network. Although parts of The Netherlands are already
covered by 3G, the construction of the 3G network is far from done. The terminals
of users of the network connect to access points or base stations. With the continuing
increase in data traffic and speed, new basestations must be added to the network to
cope with the increasing demand, this is called densification. Hence, the providers of
the 3G network are in a constant search to handle the increase in demand by adding a
minimal number of basestations to the existing configuration of the network. One way
to find the optimal expansion is is to test different configurations of the network for
several settings of the parameters. One can think of the positions and heights of the
antennas but also the vertical angles of the antennas, for more examples see [42, 45].
This calls for constant evaluation of the network and for methods which are able to
forecast the performance of the 3G network for different settings of the parameters.

Two important measures for the performance of a wireless network are call blocking
and outage/missed traffic. The terminals of the users have a maximal transmit power.
If the user requires on average a transmit power greater than the maximal transmit
power, then the call is blocked. The second measure of performance is missed traffic.
Missed traffic is based on the observation that during transmission, bit errors are bound
to occur. The network has some mechanisms to correct bit errors. However, error-
correcting codes have their limitations and even if a user is not blocked, the terminal
of the user can still, at moments in time, require a transmit power greater than the
maximal transmit power. In this case a user can suffer from “missed” traffic. In this
paper we will focus on estimation of missed traffic.

Models of the wireless network are generally too complex for an analytical study and
thus we need to run simulations to asses the performance of the network under certain
settings for the parameters. There are basically two approaches to simulate wireless
networks, static simulation and dynamic simulation. Static simulation can be regarded
as taking photographs or snapshots of the wireless network at a specific moment in time.
Snapshots give information about the number, the positions and the requirements of the
users. Based on this information it gives an estimation of the performance of the wireless
network. Dynamical simulation builds upon static simulation in such a way that the
simulation starts from an independent snapshot and proceeds for a predefined duration
of time taking dynamic effects into consideration.

Dynamic simulation programs are very powerful tools to accurately assess the per-
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2 Chapter 1. Introduction

formance of a wireless network and to allocate problem regions of the network. However,
dynamic simulation has one major downfall and that is running time. The programs
are very complex and the biggest issue is the modeling of users. The program needs
to model the time users are connected to the network, the speed at which users cross
the network and along which paths users progress. The sheer amount of possibilities for
these dynamic effects cause the program to have high variability so that it requires long
running times before conclusions can be drawn about the performance of the network.

Because static simulation is not concerned with the issue of modeling dynamic effects,
it suffers from less variability and is able to rapidly evaluate the performance of wireless
networks for a large set of possible settings of the parameters. However, omitting the
dynamic effects is also a weakness and static simulation is bound to be less accurate
than dynamic simulation. Note that static and dynamic simulation complement each
other. Static simulation has the ability to select a small subset of all possible settings
for the parameters which show best performance, then dynamic simulation can be used
to accurately measure the performance for this small set of settings.

Dynamic simulation has drawn much attention in the literature [42, 64, 65, 67].
Moreover, there are at least two dynamical simulation programs up and running. TNO
has implemented a dynamical program under the name COUGAR while Radioplan
implemented the dynamical simulation program WiNeS. Despite the obvious benefits
of combining static and dynamic simulation, little attention has been paid to static
simulation programs. Besides a brief study by Laiho, Wacker and Novosad [42] no
studies have, to our knowledge, addressed the problem of static simulation, let alone
methods to further improve the performance of static simulation.

The ultimate goal is to model the 3G HSDPA network. However, due to complexity
of the HSDPA network, we will start by studying the UMTS network. This paper has
two main goals. First, to introduce the concept of static simulation for the UMTS
network. We analyze the behavior of two specific models, the single cell model and the
quadruple cell model. Although not as complicated as dynamic simulation programs,
static simulation can also become involved. Therefore, the second aim of this paper is
to reduce the running time of static simulation programs. This is done by classifying
snapshots into groups in such a way that it enables us to generate snapshots from these
groups. For example if we have a group of snapshots which show poor performance
we adapt the parameters of the model, generate snapshots from this specific group and
observe whether the performance improved. It goes without saying that this reduces
running time.

The outline of this paper is as follows. The BEP plays an important role in the
computation of missed traffic. In Chapter 2 we shall study the communication between
user and basestation to derive an approximation of the BEP. Chapter 3 lays out some
general rules to construct a static model of the wireless network. Chapters 4 and 5
are concerned with the analysis of two specific static models, the single cell model and
the quadruple cell model. In Chapter 6 we introduce classification rules and implement
these rules for the quadruple cell model. Chapter 7 deals with the problem how to
generate snapshots from the groups created by the classification rule. The method to
generate snapshots from prescribed groups crucially depends on the fact that users are
homogeneously distributed over the network. In Chapter 8 we introduce a technique
that allows us to extend the method to snapshots with an inhomogeneous distribution
of the users.



Chapter 2

Code division multiple access

A wireless network consists of a number of acces points to which users, or actually their
terminals, connect. A single access point should be able to communicate with several
users at the same time by using a set of rules also called a protocol. The protocols
which achieve multiple access are called multiplexing protocols. The protocol used in
the UMTS network is a code division multiple access (CDMA) protocol. In this chapter
we shall give a short introduction into this class of protocols and discuss the principles
of CDMA. In Section 2.1 we explain how CDMA protocols achieve the multiple access
property. In Section 2.2 we use our knowledge about CMDA to derive an approximation
for the BEP.

2.1 CDMA protocol

CDMA protocols constitute a class of protocols which achieve the multiple access prop-
erty by means of coding. The protocol of main interest is direct sequence CDMA,
DS-CDMA. For any CDMA protocol, the bandwidth of the information-bearing signal
will be increased before it is transmitted. Hence, the process spreads the bandwidth of
the signal and, therefore, CDMA protocols are also known as spread spectrum multiple
access protocols.

In DS systems, a narrowband signal containing a message with bandwidth B1, is
directly multiplied by a code signal with a much larger bandwidth B2. Essential is
that the code signal and the message signal are independent of one another. Thus, the
transmitted signal will have a bandwidth that is equal to the bandwidth of the code
signal, the signal is spreaded. When the receiver gets the transmitted signal it will
synchronize and decode the signal which causes the signal to be despreaded. A sketch of
the process of spreading and despreading is shown in Figure 2.1. The signal is measured
by the standard measure for the power of a wave, the power spectral density PSD, which
is defined to be the power per unit of frequency.

The information bearing signal consists of bits bj while the code signal consists of
symbols aj . Usually, these symbols aj are called chips. The rate of chips in the code
signal Rc is much greater than the rate of the bits in the information signal Rb. The
process gain, or spreading factor, G is defined to be the ratio of the chip rate to the bit
rate

G =
Rc

Rb
.

3
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Figure 2.1: Principle of CDMA

2.1.1 Coding and decoding

To illustrate the operation of DS-CDMA, consider the information signal of the mth

user bm(t) which is assumed to be a sequence of binary ones (+1) and zeros (-1). The
message bm(t) is a sequence of symbols bmk, each of duration Tb. The data signal is
given by

bm(t) =
∞∑

k=−∞

bmkΨ
(

t− kTb

Tb

)
,

where Ψ is the unit pulse function

Ψ(x) =
{

1 0 ≤ x < 1
0 otherwise.

The signal bm(t) is multiplied by a coding sequence am(t) which is a sequence of chips

am(t) =
∞∑

k=−∞

G−1∑
j=0

amkΨ
(

t− (kG + j)Tc

Tc

)
,

where Tc is the chip period.
We assume that the multiplied signal am(t)bm(t) is then modulated by means of

a binary phase-shift keying and upconverted to a carrier frequency fca. Hence, the
transmitted signal becomes

sm(t) =
√

2P am(t)bm(t) cos(2πfcat),

where P is the power. For technical reasons we ignore oscillator phase noise. For a
complete schematic of a DS-CDMA transmitter see Figure 2.2(a). Before modulating
the sequence am(t)bm(t), the signal passes a baseband band-pass filter which is a device
that passes frequencies within a certain range and rejects, attenuates, frequencies outside
this range. The filter is necessary because the multiplication of the signal am(t)bm(t)
yields, besides the desired signal, also higher harmonics which have to be filtered out.

The receiver filters out the transmitted signals of different users using a wideband
intermediate frequency filter. A part of the power of the signal is used to synchronize
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while the other part is used to decode the desired signal. The synchronizing is a contin-
uous process hence the loop in Figure 2.2(b). For now, we will concentrate on how the
signal is decoded.

Suppose that there are N users which transmit data, the data sent by each user is

sm(t) =
√

2Pm am(t)bm(t) cos(2πfcat), m = 0, 1, . . . , N − 1,

For technical reasons we assume that the signals of the users are synchronized, that is
all users transmit at the same time grid. We refer to Klok [39] for a detailed derivation
for asynchronous systems. The receiver signal r(t) consists of the transmitted signals of
the N users

r(t) =
N−1∑
k=0

sk(t) + n(t), (2.1)

where n(t) is a white noise process, i.e. the derivative of Brownian motion in dis-
tributional sense. The white noise represents the noisy channels of the users and all
interference of other sources that is not yet taken into account and is called additive
white Gaussian noise (AWGN).

To retrieve the data bit bm1, the signal r(t) is multiplied by am(t) cos ωct and then
averaged over [0, Tb]

Zm1 =
1
Tb

∫ Tb

0

r(t)a(t) cos(2πfcat)dt. (2.2)

The receiver decides whether the bit bm1 was -1 or +1 by evaluating the sign of Zm1.
If Zm1 would be zero, the bit is set to -1 or 1 with equal probability. By substituting
(2.1) into (2.2) we have

Zm1 = Im1 +
N−1∑
k=1

k 6=m

Ik1 + η = Im1 + ζ + η, (2.3)

where

Ik1 =
√

2Pk

Tb

∫ Tb

0

bk(t)ak(t)am(t) cos2(2πfcat)dt,

for 0 ≤ k ≤ N − 1 and

η =
1
Tb

∫ Tb

0

am(t) cos(2πfcat)dB(t).

Baseband
BPF

a(t)

s(t)b(t)

Oscillator
f caGenerator

PN Code

(a) Transmitter

Generator
PN Code

Phase Shift Keying
Demodulator

s(t)

Filter
IF Wideband

b(t)

b(t)s (t)0

System
Synchronization

(b) Receiver

Figure 2.2: A direct sequence spread spectrum transmitter and receiver
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The contribution of user m is Im1 while the other users contribute ζ to the interference
of user m. The thermal noise contribution is given by η. In Appendix A.1 we derive
that

Zm1 =

√
Pm

2
bm1 +

1
G

N−1∑
k=0

k 6=m

bk1

G∑
j=1

akjamj

√
Pk

2
+

1
G

G∑
j=1

amj
Nj√
2Tc

,

where (Nj)G
j=1 are independent and identically Gaussian distributed random variables

with zero mean and variance 1.
Ideally, the vectors (am1, . . . , amG) and (ak1, . . . , akG), k 6= m, would be orthogonal

so that
∑G

j=1 akjamj = 0. However, it is more efficient to allow non-orthogonal codes.
In practice, the sequences are generated by a random number generator, so that the
sequences resemble random codes. To model these random sequences, let Akj , 0 ≤ k ≤
N − 1, 1 ≤ j ≤ G, be an array of i.i.d. random variables with distribution

P(Akj = +1) = P(Akj = −1) = 1/2.

Then the decision statistic Zm1 becomes

Zm1 =

√
Pm

2
bm1 +

1
G

N−1∑
k=0

k 6=m

bk1

G∑
j=1

AkjAmj

√
Pk

2
+

1
G

G∑
j=1

Amj
Nj√
2Tc

. (2.4)

2.2 Bit error probability

An important measure for the performance for any multiple access control is the bit
error probability (BEP). In case of CDMA, a bit error occurs when the signs of the
statistic Zm1 and the bit bm1 are opposite. Because of symmetry we can assume without
loss of generality that bm1 = +1. In this case, a bit error occurs if Zm1 < 0. To compute
the BEP we evaluate (2.4).

Note that in the definition of Zm1 we find two sums in which the random variables
Akj play an important role. For ζ we see that, by independence, the expectation for the
products AkjAmj are all zero. The variance of the products is

Var(AkjAmj) = E[A2
kjA

2
mj ]− E[AkjAmj ]2 = 1. (2.5)

For the noise contribution it follows that the expectation of AmjNj is zero because of
the independence of the two variables. The computation of the variance requires some
more work. Due to a well-known result on conditional expectations, see among others
[6], it holds that

Var(AmjNj) = E[Var(AmjNj |Amj)] + Var(E[AmjNj |Amj ]) = E[A2
mj ] = 1. (2.6)

Having computed the expectation and variances we can now estimate the bit error
probability. By the central limit theorem it follows that the two sums in the definition
of Zm1 converge in distribution to a Gaussian distributed random variables. Using (2.5)
and (2.6), it follows that Zm1 converges in distribution to a Gaussian random variable
with mean

µm =

√
Pm

2
,
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and variance

σ2
m =

1
2G

N−1∑
k=0

k 6=m

Pk +
1

2GTc
,

here we used that multiplying Akj by bkj does not alter the distribution of Akj .
Having obtained the asymptotic distribution of Zm1, we can compute the BEP.

BEP = P(Zm1 < 0) =
1√

2πσm

∫ 0

−∞
exp

(
−(x− µm)2

2σ2
m

)
dx

=
1√
2π

∫ −µm/σm

∞
e−x2/2dx (2.7)

Hence, the quantity µm/σm can be used to approximate the BEP. Note that the BEP
is bounded by 1/2, this is a natural bound. If the BEP would be larger than 1/2, then
one would simply exchange the signs of the bits to obtain a BEP below 1/2.

The Gaussian approximation of the BEP is such a common procedure in the electrical
engineering community that (µm/σm)2 has been given its own name: signal to noise ratio
(SNR). This is because

SNR =
GPm∑N−1

k=0
k 6=m

Pk + 1/Tc

,

where Pm is the power of the signal. To cause confusion, the variance of the thermal
noise 1/Tc is simply referred to as the noise power, it is usually denoted with Nf . The
term

∑
Pk in the denominator is called the multiple access interference (MAI).

In practice the (Amk) sequences are not independent. The sequences used by CDMA
are pseudo-random sequences and are also known as Pseudo Noise. However, a central
limit theorem can still be used to validate the Gaussian distribution of the test statistic
Zm1. Therefore, the general approach in the electrical engineering community is to use
the SNR to approximate the BEP where

SNR =
GPm∑N−1

k=0
k 6=m

Pk + Nf

. (2.8)

For more information on the pseudo-random sequences we refer to [45, 53]. Viterbi [63]
describes how the SNR can used to approximate the BEP in case of Pseudo Noise.
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Chapter 3

Modeling a wireless network

As mentioned in the introduction of this paper, an important measure for the perfor-
mance of a wireless network is missed traffic. Models of the wireless network should
give an estimation of missed traffic by generating independent samples of possible traf-
fic constellations. A traffic constellation is a complete description of the positions and
number of users in the wireless network and is usually called a snapshot. Each snapshot,
in combination with the user requirements, yields a certain level of missed traffic. Thus
the model would need to give a description of the snapshots and provide an estimator
of missed traffic based on the snapshots.

In this paper we will only treat models for single traffic networks. These are networks
which provide a single service. Therefore, the model does not properly describe a UMTS
network which supports multiple services such as e-mail, video-telephony, telephony and
streaming. However, the model can be extended to a multiple service network.

The outline of this chapter is as follows. In Section 3.1 we give a description of
the snapshots and show how users are placed into the cells of the wireless network. In
Section 3.2 we provide a way to compute the transmit powers of the users, these powers
are used in Section 3.3 to estimate missed traffic. In the final section of this chapter we
shall comment on the implementation of the model in a simulation tool. The modeling
decisions we make are for a great part similar to those of Laiho, Wacker and Novosad
[42].

3.1 Snapshots

The area covered by the wireless network is divided into cells. Ideally, the division
results in a grid of hexagonally shaped cells which are marked out by their correspond-
ing basestations, see Figure 3.1. The distance of the basestation to the corners of its
corresponding cell is R, while Db is the distance between each pair of neighboring bases-
tations.

To construct a snapshot, it is necessary to place a random number of users at random
positions in the cells. Or to put it differently, it is necessary to model the positions and
number of the users by a random process. The choice is made to use a spatial Poisson
process which realizes countable subsets Π in R2. If the reader is not familiar with the
concept of spatial Poisson processes we suggest to read Appendix B.1 before proceeding.

For each cell, users are modeled by a homogeneous spatial Poisson process Π with
constant intensity λ on a circle C with radius R. Note that, although it is assumed that

9
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the cells in the network are hexagonally shaped, users are generated as if the cells were
circles with radius R. It could occur that users are physically placed in a hexagonal
cell of one basestation but are communicating with a neighboring basestation of that
particular cell. This kind of behavior also occurs in real-life. The ongoing calls of users
must be transferred to another basestation if the user moves out of the cell. The link with
the old basestation is not broken before a link with the new basestation is established.
Thus it happens that a user is connected to the old basestation when the user already
crossed the border between the new and the old cell.

Returning to the snapshot we need to determine the number of users and the positions
of the users in the circle C. The number of users N is Poissonian distributed with mean
λ|C|, see (B.1). Let D represent the distance a user has to the basestation. The
cumulative distribution function, hereafter abbreviated by cdf, of D is

FD(d) = P(D ≤ d) =
d2

R2
. (3.1)

The expression for the cdf was obtained by use of Theorem B.2. Studying the inverse
of FD it follows that

D = R
√

U where U ∼ U(0, 1). (3.2)

Hence, the position for each user can be obtained in polar coordinates. For each user
the angle θi is uniformly distributed on the interval (0, 2π) and the distance to the
basestation is described by either (3.1) or (3.2).

3.2 Determination of transmit powers

After a snapshot is generated and users are appointed to their respective basestations,
we continue by computing the transmit powers for the users for the snapshot. The
transmit power P tx

i for user i depends on its position towards the basestation and the
number and position of the other users in the network. The quantity which determines
the transmit power for the users is the SNR.

Recall that the SNR can be used to approximate the BEP, see (2.7) and (2.8). Hence,
the BEP can be upper bounded by lower bounding the SNR. The upper bound for the
BEP is predetermined such that a certain desired level of service is guaranteed. Let µ

θ = 0

b

Radio Tower 3

Radio Tower 4

D

��
R

Radio Tower 2

Radio Tower 1

Figure 3.1: Wireless network
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represent the lower bound on SNR, the bound µ is used to derive the transmit powers
for the users in the snapshot.

As explained in Chapter 2, the denominator of the SNR consists of two parts, the
MAI and the noise power Nf . The noise power is some given constant that is identical for
each snapshot. However, the MAI needs to be computed for each snapshot separately.
Therefore, we turn our attention to the computation of MAI.

Let K be the number of cells and nj the number of users in cell j. Furthermore, P rec
kji

is the received power at basestation i from the jth user which is connected to the kth

basestation. Consider the jth user which is connected to basestation k. The MAI can
be split up in two parts, same cell interference (SCI) and other cell interference (OCI).
The MAI for this particular user then becomes

MAIkj =
nk∑
i=1
i 6=j

P rec
kik +

K∑
`=1
` 6=k

n∑̀
m=1

P rec
`mk = SCIkj + OCIk. (3.3)

We have indexed OCI by the single index k since, by definition, the OCI will be the
same for all users connected to basestation k. Substituting (3.3) into (2.8) we find a
linear equation for all users in the network

µ =
G · P rec

kjk

SCIkj + OCIk + Nf
,

for k = 1, 2, . . . ,K and j = 1, 2, . . . , nk. We have put an equality sign instead of an
inequality sign because the optimal solution has the transmit powers which are as small
as possible.

The latter set of linear equations can be simplified. Recall that the model represents
a UMTS network. Basestations of UMTS networks will update the powers of the users
approximately 1500 times per minute. Hence, we can assume that the received powers
P rec

kik for i = 1, 2, . . . , nk are identical. This behavior is also incorporated by the set of
linear equations.

Claim 3.1. The received powers at basestation k for all users connected to basestation
k are the same, or

P rec
kjk = P rec

k`k

for all k = 1, . . . ,K and all `, j ∈ {1, 2, . . . , nk}.

Proof. Take some k and j 6= `, then the following two equations must be satisfied

µ =
G · P rec

kjk

SCIkj + OCIk + Nf
,

µ =
G · P rec

k`k

SCIk` + OCIk + Nf
.

The system of equations can be reformulated to

G · P rec
kjk = µ(SCIkj + P rec

kjk − P rec
kjk + OCIk + Nf ) ,

G · P rec
k`k = µ(SCIk` + P rec

k`k − P rec
k`k + OCIk + Nf ) .
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By the definition of same cell interference

SCIkj + P rec
kjk = SCIk` + P rec

k`k ,

thus subtracting the two equations yields

G(P rec
kjk − P rec

k`k) = −µ(P rec
kjk − P rec

k`k),

which forces P rec
kjk to equal P rec

k`k .

By Claim 3.1, the received powers can be determined by solving the set of equations

µ =
G · P rec

kjk

(nk − 1)P rec
kjk +

∑
`=1
` 6=k

∑n`

m=1 P rec
`mk + Nf

, (3.4)

for k = 1, 2, . . . ,K and j = 1, 2, . . . , nk. Naturally, the received power P rec
kji at basesta-

tion i is a function of the transmit power P tx
kj of the jth user connected to basestation k.

The function accounts for the fact that the transmit powers attenuate in transit from
users to basestation. This effect is called path loss.

3.2.1 Path loss

The power of user j in cell k declines due to the fact that it has to be transmitted
over a certain type of terrain for a certain distance. Models describing the total path
loss generally have an empirical and a deterministic part [55]. The deterministic part
of path loss solely depends on the distance between user and basestation and is called
propagation loss. The empirical part of the total path loss models clutter along the
propagation path and is called shadowing or slow fading.

The propagation loss is discounted for by the factor

γi =
Preceived

Ptransmitted
. (3.5)

By the generalized Hata’s equation [33], γi (dB) is

γi = K1 + K2 log10(fca)−K3 log10(hb) + [K4 −K5 log10(hb)] log10(max{d0, di}),

where the Ki’s are constants, fca is the carrier frequency in MHz, hb is the base station
antenna height in meters, di is the distance of user i to the base station in km and d0 is
the cut-off distance in km. It is assumed that the propagation loss is constant when the
distance to the basestation is smaller than d0. For a fixed base station antenna height,
the propagation loss reduces to

γi = uf + uh + vh log10(max{d0, di}), (3.6)

where

uf = K1 + K2 log10(fca)
uh = −K3 log10(hb)
vh = K4 −K5 log10(hb).
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In [55] it is mentioned that Hata’s model for propagation loss is only valid for carrier
frequencies below 1500 MHz. The UMTS network uses a carrier frequency of approx-
imately 2000 MHz which is definitely too high. Although scientists are aware of this
fact, the model is still popular and widely used to model propagation loss for UMTS
networks. Hata alike propagation loss models are so popular because they give good
approximations of propagation loss while computations are relatively easy.

Currently, users at equal distance to the basestation will require similar transmission
powers. However, clutter along the propagation paths causes the path loss to differ for
each path. The deviation from the nominal value is known as slow fading or shadowing
and can be modeled as a lognormally distributed random variable [55]. The slow fading
is usually defined as 10S/10 where S is normally distributed with zero mean and variance
σ2

S , this is denoted by S ∼ N(0, σS).
If users are not far apart from each other, the random variables which model slow

fading correlate. For simplicity we ignore this effect and assume that the slow fading
coefficients Skji are mutually independent.

3.3 Removal of blocked users

As mentioned in the introduction, the main goal of the model is to find an estimator
for missed traffic. This requires removing the users which on average require a transmit
power greater than the maximal transmit power from the network. In this section we
shall explain how blocked users are detected.

Dynamic simulation programs such as WINES or COUGAR have no problem in
detecting blocked users. Users are one by one added to the network and based on the
state of the network it can be easily assessed whether the new user is admitted to the
network and. if it is admitted, whether other users will be blocked by the network.
However, for a static simulation program the distinction is not so clear. A snapshot is
nothing more than the state of the network at a specific moment in time. The snapshots
shows all users, we can not see the order in which users arrived at the network or which
users should have been blocked.

To determine whether a user needs to be removed and, if so, which one has to be
removed, we first leave out the slow fading coefficients. The distribution of the slow
fading factors is symmetric in the sense that f(x) = f(x−1) for all x > 0. Hence, if
we ignore the slow fading factors we get the “average condition” of the network for a
particular snapshot. For the moment assume that we can determine the transmit powers
for all users. If all users require, under these average conditions, a transmit power below
the maximal allowable transmitting power Pmax all users are accepted. Otherwise we
remove the user which requires the largest transmit power from the network. This
changes the conditions of the network and basically yields a new snapshot. We determine
the transmit powers for this new snapshot and again consider the user with the largest
transmit power. Users are iteratively removed from the network until all users require,
under average conditions, a transmit power below Pmax.

The question remains how to compute the transmit powers of the users. Suppose we
are given a snapshot with K basestations and to each basestation nk, 1 ≤ k ≤ K, users
are connected. We are also provided with a lower bound for the BEP so that the lower
bound µ can be computed. By (3.4), the received power of the jth user connected to
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basestation k must satisfy

µ =
GP rec

kjk

(nk − 1)P rec
kjk + OCIk + Nf

,

where the other cell interference satisfies

OCIk =
K∑

`=1
` 6=k

nk∑
i=1

P rec
`ik .

Since we ignore slow fading, the transmit powers only suffer from propagation loss. Let
γ`ik be Hata’s propagation loss factor on the path between the position of the ith user
connected to basestation ` to basestation k. Then by Hata’s equation it follows that

P rec
`ik = P tx

`i 10γ`ik/10,

where P tx
`i is the transmit power of the ith user connected to basestation `. Then the

equation for the SNR becomes

µ =
GP tx

kj 10γkjk/10

(nk − 1)P tx
kj 10γkjk/10 +

∑K
`=1
` 6=k

∑nk

i=1 P tx
`i 10γ`ik/10 + Nf

, (3.7)

for k = 1, 2, . . . ,K and j = 1, 2, . . . , nk. This leaves us with n1 + . . .+nK equalities and
as many unknowns. Hence, the system of linear equations (3.7) can be solved, which
gives us the transmit powers of the users for the average condition of the network.

To summarize, we start by randomly generating a snapshot by use of a homogeneous
spatial Poisson process. This provides us with a set of users placed in K cells. Based
on the snapshot we construct the system of linear equalities (3.7). If this system has
a feasible solution, that is all transmit powers are positive, then the transmit powers
are computed. If the maximal transmit power among all users exceeds Pmax, then the
user which requires maximal transmit power is tagged as blocked and removed from
the network. After the user is removed, we again construct a system of linear equations
based on (3.7) and again the maximal transmit power among all users is determined. We
repeat our previous steps until all the remaining users in the network require a transmit
power below Pmax.

3.3.1 Two different estimators

After we have removed the blocked users we can go on to estimate missed traffic. Let
NU represent the set of users which remain in the network and are not blocked

NU = {{k, j} : jth user connected to basestation k is not blocked}

We can proceed in two ways. The first is the most obvious, for each user in the network
we draw K samples from the normal distribution. These K samples represent the slow
fading factors on each of the K possible paths from the user to one of the K basestations.
Let Skj` represent the slow fading factor on the path between the jth user which is
connected to basestation k and basestation `. Then we can construct the following set
of linear equations

µ =
GP tx

kjk10(γkj+Skjk)/10

(nk − 1)P tx
kj 10(γkjk+Skjk)/10 +

∑K
`=1
` 6=k

∑nk

i=1 P tx
`i 10(γ`ik+S`ik)/10 + Nf

, (3.8)
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for k = 1, 2, . . . ,K and j = 1, 2, . . . , nk. Solving the system of linear equations yields
the transmit powers of the users in the network. We also know that the transmit powers
are bounded Pmax. Hence, the BEP for users which require a larger transmit power
than Pmax is larger than the allowable BEP. These users suffer from missed traffic, thus
missed traffic is computed by

MT1 =
∑

{k,j}∈NU

1{P tx
kj > Pmax}
|NU |

, (3.9)

where the sum runs over all users which were not blocked.
However, there is a second possibility. Suppose that slow fading between users and

the basestation to which they are not connected is not present. In this case the slow
fading factor for the jth user connected to basestation k is Skj . Then the system of
linear equations which has to be solved is

µ =
GP tx

kj 10(γkjk+Skj)/10

(nk − 1)P tx
kj 10(γkjk+Skj)/10 +

∑K
`=1
` 6=k

∑nk

i=1 P tx
`i 10γ`ik/10 + Nf

, (3.10)

for k = 1, 2, . . . ,K and j = 1, 2, . . . , nk. Note that the solution to this system of
equations is simply

P tx
kj = 10−Skj/10P̃ tx

kj ,

where (P̃ tx
kj )k,j is the solution to (3.7), it saves us solving an extra system of linear

equations. However, the real gain of using (3.10) is that we can compute the probability
P(10Skj P̃ tx

kj > Pmax) explicitly. This allows us to simply estimate missed traffic by

MT2 =
∑

{k,j}∈NU

P(10Skj/10P̃ tx
kj > Pmax|P̃ tx

kj )
|NU |

, (3.11)

where Skj is a normally distributed variable with zero mean and variance σ2
S and the

sum runs over all remaining users.
The random variable MT2 is an unbiased estimator of missed traffic (with the as-

sumption that there is only slow fading between users and the basestations to which
they are connected). The expectation of MT2 is given by

E[MT2] = E

 ∑
{k,j}∈NU

E[1{(10Skj/10P̃ tx
kj > Pmax}|P̃ tx

kj ]
|NU |

 . (3.12)

Using the property of expectation that E[E[X|Y ]] = E[X] and rewriting the summation
with help of the indicator function yields

E[MT2] = E[E

∑
{k,j}

E[1{(10Skj/10P̃ tx
kj > Pmax}]

|NU |
· 1{{k, j} ∈ NU} | NU

].

The indicator function and |NU | are both measurable with respect to NU . Hence, it



16 Chapter 3. Modeling a wireless network

follows that the sum and the indicator can be put in front of the conditional expectation.

E[MT2] = E

 ∑
{k,j}∈NU

|NU |−1E
[
E
[
1{(10Skj/10P̃ tx

kj > Pmax} | P̃ tx
kj

]
| NU

]
= E

 ∑
{k,j}∈NU

1{(10Skj/10P̃ tx
kj > Pmax}

|NU |


Question is why one would choose to use (3.11) instead of (3.9), the latter seems to

be more accurate since it models slow fading on all possible paths between users and
basestations. Besides that (3.11) looks like it is easier to work with, there is another
argument. As is discussed in the next section, the two models are too complicated for
an analytical study. Therefore, we have to use simulation to find estimators for missed
traffic. It is likely that the variance of MT1 is larger than the variance of MT2 because we
removed a part of the randomness from the model. The reduction of variance influences
computation time directly since the variance assures a certain level of accuracy for the
estimator of missed traffic. Hence, use of MT2 will allow for a shorter running times.

To illustrate the differences between the two models, we run simulations with m
snapshots for m = 100 to m = 1000. The model of the wireless network consists of 4
cells, for a more detailed description on how the set of linear equations is formulated see
Chapter 5. For each snapshot, users are positioned, the set of equations are formulated
and missed traffic is estimated either by (3.9) or (3.11). The results are shown in Figure
3.2.

Comparison of the means of the estimators in Figures 3.2(a) and 3.2(b) shows that
the mean of MT2 is slightly lower than the mean of MT1. Figures 3.2(c) and 3.2(d)
show that the variance of estimator MT2 is indeed slightly lower than for MT1. The
loss of accuracy of MT2 by dismissing slow fading on certain paths between users and
basestations is not compensated for by a significantly lower variance. Therefore, we
conclude that it is better to use MT1 to estimate missed traffic.

3.4 Implementation into a simulation tool

The network model described in the previous sections is a simplification of a UMTS
network. With the exception for the model with K = 1, see Chapter 4, the model is still
too complex for an analytical study. There are, at least, two major complications which
stand in the way of a successful analytical study of the model. Firstly, there is, to our
knowledge, no closed expression for the solution to either the set of linear equations (3.8)
or (3.10). Secondly, the removal of users from the network affects the spatial Poisson
process, by which the users are modeled, in an unpredictable manner. Therefore, we
have to resort to simulation in order to study the model. In this section we shall explain
the subsequent steps a simulation tool has to make to find estimates of missed traffic.

The simulation is initialized by choosing the number of cells K. The number of cells
is decisive for the computation of MAI. For example if K = 1, there will only be SCI
which raises the question how to model OCI. If K = 4, then cells have different numbers
of neighbors, see Figure 3.1, this discrepancy has to be resolved. A solution to compute
OCI in both cases is shown in Chapter 4 and Chapter 5, respectively. Note that this
requires an additional assumption on the modeling of MAI.
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Figure 3.2: Comparison of estimators (3.9) and (3.11)

The simulation constructs realizations of snapshots. For each realization, a number
of users for each basestation 1, 2, . . . ,K is generated by sampling from the Poissonian
distribution with mean λ|C|, see (B.1). The position of the users are determined by uni-
formly generating an angle θ between zero and 2π, while the distance to the basestation
is generated by a uniform sample in the interval (0, 1), see (3.2). This only gives the
distance for a user to the basestation to which it is connected. The distances of users
to the neighboring basestations can be determined by goniometry.

To compute the distances of users to neighboring cells, we need the distance between
neighboring basestations. By elementary goniometry

Db = 2 cos(π/6)R =
√

3R.

Furthermore, set a point of origin and a positive orientation for the angle θkj . We choose
the point of origin to be the most right corner of the cell and the positive orientation
to be clockwise. Suppose that the jth user of basestation k of the network in Figure 3.1
has distance Dkj and angle θkj . Using trigonometry formulas, Dkj` the distance of user
j to basestation ` is

Dkj` =

 Dkj if ` = k√
D2

b + D2
kj − 2DbDkj cos αkl otherwise

where αk` = αk`(j) is tabulated in Table 3.1.
Based upon the positions of the users in their cells and their distances to neighboring

basestations, the set of linear equations (3.7) can be formulated. Then we iteratively
delete the users which for the average condition of the network would require a transmit
power great than Pmax. The set NU of users remain in the network. We then have
two choices, either we use the already computed powers (P̃ tx

k j){k,j}∈NU
and estimate
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missed traffic by (3.11). The other option is to first draw |NU | samples from the normal
distribution to obtain the slow fading factors and estimate missed traffic by (3.9). For
the remainder of this paper we choose to use (3.11) to estimate missed traffic.

` α1l α2l α3l α4l

2 θkj − 5/6 π θkj + 1/6 π θkj − 1/6 π θkj − 1/2 π
3 θkj + 5/6 π θkj + 1/2 π θkj − 1/2 π θkj − 2/3 π
4 θkj + 1/2 π θkj + 1/3 π θkj + 1/6 π θkj − 4/6 π

Table 3.1: Computation of αkj



Chapter 4

Single cell model

Not surprisingly, the single cell model only has one basestation. Since the model concerns
one basestation, propagation loss, shadowing and transmit powers are all indexed by a
single index that distinguishes users. The number of users in the cell is represented by
N . The single cell model has two advantages. Firstly, it is irrelevant which estimator,
(3.9) or (3.11), is used since all users are connected to one basestation. Secondly, the
transmit powers of the users are mutually independent.

Since there is only one basestation, MAI solely consists of SCI. The MAI of the ith

user is modeled by multiplying the SCI of this user

MAI :=
N − 1

F
10(Si−γi)/10P tx

i ,

where 0 < F ≤ 1. Note that if F = 1, then the user only suffers from SCI. If F
decreases, then the OCI increases.

For each user we determine its transmit power by finding the solution to the equation

µ =
GP tx

i 10(Si−γi)/10

N−1
F P tx

i 10(Si−γi)/10 + Nf

, for i = 1, 2, . . . , N. (4.1)

The solution to the linear equation is given by

P tx
i = 10(γi−Si)/10 F µ Nf

GF − (N − 1)µ

Also by (4.1), the thermal noise Nf can be expressed in the transmit power of the ith

user

Nf = P tx
i 10(Si−γi)/10

(
G

µ
− N − 1

F

)
=

G P tx
i 10(Si−γi)/10

µ
−MAI

Let κ = κ(n, F ) be the noise rise or

κ =
MAI + Nf

Nf
=

G P tx
i 10(Si−γi)/10

G P tx
i 10(Si−γi)/10 − µ N−1

F P tx
i 10(Si−γi)/10

=
GF

GF − (N − 1)µ
(4.2)

The expression for the transmit power can be reduced to

P tx
i = 10(γi−Si)/10 · µ

G
· κ ·Nf . (4.3)

19
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4.1 Analysis without removal of blocked users

In the previous section it was mentioned that before the estimator of missed traffic is
computed, users which in average condition require a transmit power larger than Pmax

are removed from the network. By ignoring this step we can find a closed expression for
the distribution of missed traffic.

The most useful property of the single cell model is that when the number of users
is fixed, the powers P tx

i are mutually independent. The transmit power of the ith

user depends on the random variables Di and Si which are assumed to be mutually
independent of Dj and Sj , j 6= i, respectively.

Firstly, we study the distribution of MT for a fixed number of users in the cell n.
By the independence of the transmit powers, each user, which is at most R km away
from the basestation, has probability p(n, R) to require a transmit power greater than
Pmax. The conditional density function of MT is

P
(

MT =
i

n
| N = n

)
=
(

n

i

)
p(n, R)i(1− p(n, R))n−i.

The conditional mean and variance of MT are

E[MT | N = n] = p(n, R)

Var(MT | N = n) =
1
n

p(n, R)(1− p(n, R)).

It remains to compute the probability p(n, R).
User i has probability p(n, Di, R) to require a too large transmit power. The expres-

sion for this probability is derived in Section 4.1.1 but can be skipped on first reading.
We show there that

p(n, Di, R) = P(P tx
i > Pmax | N = n, Di and Di ≤ R)

=
1
2

(
1 + erf

(
α + κ(n, F ) + vh log10(max{d0, Di})√

2σS

))
,

(4.4)

where

α = uf + uh + µ/G(dB) + Nf (dBm)− P̃max(dBm),

also κ(n, F ) is expressed in dB. The probability p(n, R) can be obtained by integrating
over the density function of Di

p(n, R) = P
(
P tx

i > Pmax | Ni = n and Di ≤ R
)

=
∫ R

0

p(n, x)fD(x)dx,

where fD is the density function of the random variable Di, the derivative of (3.1).
Substituting (4.4) into the above integral yields,

p(n, R) =
1
2

+
d2
0

2R2
erf
(

α + κ(n, F ) + vh log10(d0)√
2σS

)
+
∫ R

d0

x

R2
erfc

(
α + κ(n, F ) + vh log10(x)√

2σ

)
dx,

(4.5)



4.1. Analysis without removal of blocked users 21

where again κ(n, F ) is expressed in dB. The integral has an explicit yet involved solution,
this solution can also be found in Section 4.1.1.

The probability mass function for MT is more complicated but can be retrieved with
the help of the conditional density. The number of users is Poissonian distributed with
mean λ|C|. However, the basestation has finite capacity and can only facilitate a finite
number of users. By (4.2) and (4.3) it is possible to determine the maximum allowable
number of users. The maximal number of users is

Nmax = max{n : n ≥ 0 and GF > (n− 1)µ}.

Furthermore, there must be at least one user to measure performance. The probability
mass function of the number of users in the cell is

P(N = n) =
(λ|C|)n

n!

(
Nmax∑
i=1

(λ|C|)i

i!

)−1

:= c(F )
(λ|C|)n

n!
, for n = 1, . . . , Nmax.

(4.6)

By the law of total probability, the probability mass function for missed traffic becomes

P(MT = x) =
Nmax∑
n=1

P(N = n)P(MT = x|N = n)

=
Nmax∑
n=1

P(N = n)
(

n

nx

)
p(n, R)nx(1− p(n, R))n−nx1{nx ∈ N},

(4.7)

for 0 ≤ x ≤ 1.
The expectation and variance of MT can be computed with the conditional expec-

tation and variance. The expectation of MT equals

E[MT ] =
Nmax∑
n=1

P(N = n)E[MT | N = n] = c(F )
Nmax∑
n=1

(λ|C|)n

n!
p(n, R). (4.8)

The variance of MT can be computed in the same way as was done for (2.6).

Var[MT ] = E[Var(MT |N)] + Var(E[MT |N ])

= E
[
p(N,R)(1− p(N,R))

N

]
+ Var(p(N,R))

When substituting the distribution function of N into the above formula, we arrive at

Var(MT ) = c(F )
Nmax∑
n=1

(λ|C|)n

n!
p(n, R)(1 + (n− 1)p(n, R))

n
−c(F )2

(
Nmax∑
n=1

(λ|C|)n

n!
p(n, R)

)2

.

(4.9)

4.1.1 Derivation of p(n, Di, R) and p(n,R)

We express the power P tx
i in dBm. Let µ̃ = 10 log10(µ/G), κ(n, F ) be expressed in dB

and the thermal noise Nf in dBm. Furthermore, there are a total of n users connected
to the basestation. By (4.3), it holds that

P tx
i = γi − Si + µ̃ + κ + Nf .
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Using Hata’s model for propagation loss (3.6), the propagation loss factor γi equals

γi = uf + uh + vh log10(max{d0, Di}),

where Di is the distance of user i to the basestation and d0 is the cut-off distance. Let

α = uf + uh + µ̃ + Nf − Pmax,

then

P tx
i − Pmax = α + vh log10(max{d0, Di})− Si + κ(n, F )

By the latter equation, the probability that user i suffers from missed traffic equals

p(n, Di, R) = P(P tx
i − Pmax > 0 | N = n, Di)

= P(Si < α + κ(n, F ) + vh log10(max{d0, Di}))

=
1
2

(
1 + erf

(
α + κ(n, F ) + vh log10(max{d0, Di})√

2 σS

))
With the software package Mathematica we can find an explicit expression for (4.5).

p(n, R) =
1
2

+
1
2
erf
(

α + κ(n, F ) + vh log10 R√
2σS

)
+

1
2R2

10
2σ2 log 10−2vh(α+κ(n,F ))

v2
h (A−B),

where

A = erf
(

v2
h log10 d0 + (α + κ(n, F ))vh − 2σ2 log 10

vh

√
2σS

)
B = erf

(
v2

h log10 R + (α + κ(n, F ))vh − 2σ2 log 10
vh

√
2σS

)

4.2 Analysis with removal of blocked users

Recall that before missed traffic is estimated, the users which on average require a
transmit power which exceeds Pmax are removed from the network. Let N represent
the total number of users in the cell before blocked users are removed, while NU (N)
denotes the number of users which are left after removal of the blocked users. By
the independence of the positions of the users, it is still possible to find an analytical
expression for the expectation of MT . However, because of the complexity of the model,
we will build up the model in two steps.

Fix N = n such that there are a total of n users in the network and let MT (n, R) be
the expectation of missed traffic when N = n conditionally on the event that NU > 0.
Recall that the MAI explicitly depends on the number of users present in the cell.
Hence, starting with n users there will be a maximal allowable distance dmax(n). If the
maximal distance exceeds dmax(n), then the user at maximal distance is removed from
the network. In this case the maximal allowable distance will increase since the MAI
decreases. We will work towards the model with a maximal distance which depends on
the number of users in the cell. However, we first consider the case when the maximal
allowable distance dmax(n) ≡ dmax for all n = 1, 2, . . . , N .
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Let D(1), D(2), . . . , D(n) be the distances of the n users rearranged in increasing order.
The minimal and maximal distance of the n users will play an important role and we
derive the distribution functions for D(1) and D(n). The complementary distribution
function of the minimal distance D(1) among n users which are independently and
homogeneously distributed over a circle with radius R is

F c
min(x;n, R) = P

(
min

1≤i≤n
Di ≥ x

)
=

n∏
i=1

P(Di ≥ x) =


1 if x < 0(
1− x2

R2

)n

if 0 ≤ x ≤ R

0 if x > R

.

The distribution function of the maximal distance D(n) among n users which are inde-
pendently and homogeneously distributed over a circle with radius R is

Fmax(x;n, R) = P
(

max
1≤i≤n

Di ≤ x

)
=

n∏
i=1

P(Di ≤ x) =


0 if x < 0
x2n

R2n if 0 ≤ x ≤ R
1 if x > R

. (4.10)

The network is initialized with a total of n users. The probability that the maximal
distance among all n users is bounded by dmax is then simply Fmax(dmax;n, R). In this
case the n users are uniformly distributed over a circle with radius dmax and none of
them are removed. But this means that we satisfy the constraints of Section 4.1 and

E[MT | N = n, D(n) ≤ dmax] = p(n, dmax).

With probability 1 − Fmax(dmax;n, R), the maximal distance among all users ex-
ceeds dmax. In this case we have to remove the user at maximal distance to the bases-
tation. Removal of the user at distance D(n) leaves n − 1 users which have distance
D(1), D(2), . . . , D(n−1) so that D(i) ≤ D(n) for all i < n. Now use the crucial property
that the positions of the users in the network are mutually independent. Therefore, the
n − 1 remaining users are still uniformly distributed over a circle but no longer with
radius R. Instead, the n − 1 users are uniformly distributed over a circle with radius
D(n). Hence, we have generated a snapshot for which the basestation has a smaller
reach and we proceed as before.

The cdf of the maximal distance of n − 1 users is Fmax(x;n − 1, D(n)). Now we
consider D(n−1) and compare it with dmax. The probability that the maximal distance
among the n − 1 users is bounded by dmax is Fmax(dmax;n − 1, D(n)). In this case the
conditional expectation of MT is

E[MT | N = n, D(n) > dmax, D(n−1) ≤ dmax] = p(n− 1, dmax).

With probability 1−Fmax(dmax;n, D(n)), the user at maximal distance has to be removed
from the network. The previous steps can be repeated until no users are left in the
network.

The procedure to compute missed traffic is depicted in Figure 4.1. The top row
consists of the temporary states where it is checked if the maximal distance is bounded
by dmax. If the process is in state sk, 2 ≤ k ≤ n, and the maximal distance is bounded
by dmax, then the process goes to state s′k. Otherwise the process goes to sk−1. If the
process is in state s1 and the distance of the remaining user is not bounded by dmax,
then the process goes to state s′0, otherwise the process goes to state s′1. The same line
of reasoning is possible when dmax is a function of the number of users yet to examine.

To illustrate the process we compute the expectation of missed traffic when the
network is initialized with a single user.
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Figure 4.1: Process of removing users

Example 4.1. Suppose a single user is connected to the basestation and that it is
located at distance D1. Let d1 be dmax(1), then MT (1, R) is

MT (1, R) = E[MT | N = 1,NU > 0] =
P(D1 ≤ d1)p(1, d1 ∨R)

P(NU > 0)
,

where x∨y = min{x, y}. The event {NU > 0} is equivalent to the event {D1 ≤ d1∨R},
thus

MT (1, R) = E[MT | N = n,NU > 0] =
Fmax(d1; 1, R)p(1, d1 ∨R)

1− F c
min(d1; 1, R)

.

The example is not very complex but enables us to compute MT (n, R) for any n ∈ N.
Consider the variables

MT ′(n, R) = (1− F c
min(dmax(1);n, R))MT (n, R).

With help of the following lemma we are able to compute MT ′(n, R) for any n ∈ N.

Lemma 4.1. The variable MT ′(n, R) satisfies the following recursive relation

MT ′(n, R) = P(D(n) ≤ dmax(n))p(n, dmax(n)) +
∫ R∨dmax(n)

dmax(n)

fD(n)(x)MT ′(n− 1, x)dx

= Fmax(dmax(n);n, R)p(n, dmax(n)) +
∫ R∨dmax(n)

dmax(n)

fD(n)(x)MT ′(n− 1, x)dx,

for n ≥ 2 where

fD(n)(x) =
d

dx
Fmax(x;n, R)

Proof. Take n ∈ N and consider MT ′(n, R). We enter the stochastic process pictured
in Figure 4.1 in state s(n). If D(n) ≤ dmax(n), then we have a snapshot in which all
users are uniformly distributed over a circle with radius dmax(n). This yields the first
contribution to MT ′(n, R). If D(n) > dmax(n), then we go to state s(n − 1) where the
users are uniformly distributed over a circle with radius D(n). Observe that in this case
the expectation of missed traffic is MT ′(n − 1, D(n)). This yields the integral in the
expression for MT ′(n, R).
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Now we proceed in exactly the same way as in Section 4.1. Based on the choice of
F , we compute Nmax and can so determine the expectation of missed traffic.

E[MT ] =
Nmax∑
n=1

c(F )
λn

n!
MT (n, R),

where MT (n, R) is determined by use of Lemma 4.1.

4.3 Conclusions and recommendations

The great power of the single cell model is the assumption that MAI can be modeled
by multiplying the SCI with an appropriate factor F−1. This allows for a probabilistic
analysis which is impossible for models which have multiple basestations. These latter
models require solving the set of equations (3.4) for which no closed expression is known.
A weakness of the model is that if there is only a single user connected to the basestation,
then this user does not suffer from MAI.

The single cell model has the property that, conditionally on the number of users in
the cell, the transmit powers are independent of one another. Based on this observation
we are able to give a complete description of the distribution of missed traffic when no
users are removed from the network. We have derived expressions for the distribution
(4.7), the expectation (4.8) and variance (4.9) of missed traffic.

The case when blocked users are removed from the network is more complex. In
Lemma 4.1 a recursive relation is derived which, theoretically, enables us to compute
the expectation of missed traffic. However, the recursive relation for the expectation
of missed traffic is complex and depends on taking multiple integrals and is thus com-
putational intensive. Implementation of Lemma 4.1 shows that the instance when the
network is initialized with 3 users already requires a substantial computational effort.
Numerical integration methods may solve this problem but it will be hard to control
errors since the errors propagate by the requirement to take multiple integrals.

The single cell model leaves us with a few issues which need to be resolved. We have
found an expression for the expectation of missed traffic and analogue to Section 4.1 it
should be possible to find expressions for the distribution and variance of missed traffic.
More research on numerical integration methods is necessary for Lemma 4.1 to have
practical value. Throughout Chapter 4 we have assumed the factor F to be some given
constant. Obviously, this is not a realistic assumption and more research is needed to
model F . In Section 5.3 we attempt to model F by study of the quadruple cell model.
A probability distribution for F is chosen based on simulations of the quadruple cell
model. In this section we also introduce the adapted single cell model which resolves
the issue that a single user does not suffer from MAI.
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Chapter 5

Quadruple cell model

In this chapter we shall introduce and analyze a second model of the wireless network.
The model consists of 4 basestations which are placed and numbered as in Figure 3.1.
The outline of this chapter is as follows. The basic problem for this model is how to
model and compute the MAI, we have to make some additional assumptions which are
explained in Section 5.1. In Section 5.2 we will study the distribution of missed traffic
and in Section 5.3 we attempt to give a reduction from the quadruple cell model to the
single cell model which was studied in Chapter 4.

5.1 Modeling MAI

It is assumed that the only users which contribute to the MAI of the jth of basestation
k are either connected to basestation k or to some basestation which is a direct neighbor
of basestation k. The SCI of a user can be computed by Claim 3.1. However, it
is impossible to compute the OCI for the simple reason that not all basestations are
completely surrounded. To resolve this problem we use wrap around. Wrap around can
be best explained by use of a window. Consider Figure 3.1, we put a window around
the cell of basestation 1 and note the holes on the right side of the cell. These gaps are

Radio Tower 4

Radio Tower 3 Radio Tower 2

Radio Tower 3

Radio Tower 4

Radio Tower 1

Radio Tower 2

COPY

COPY

COPY

Figure 5.1: Wrap around for basestation 1

27
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filled by using copies of the three other basestations (the copies include the users), this
results in Figure 5.1.

Naturally the next step would be to move the window and place it over the cell of
basestation 2, observe the gaps to the left of the cell and fill these up by copies of the
other neighboring basestations. Note that in this case we would place a copy of a copy
of cell 4 to the left of the cell of basestation 2. These steps are repeated until all cells are
completely surrounded by 6 cells. Then it is possible to construct the system of linear
equations (3.7) and, after removal of the blocked users, missed traffic is estimated by
(3.11).

Estimations of missed traffic are purely based upon the transmit powers of the users,
if present, which are connected to basestation 1, the so-called basestation of interest.
Hence, NU is the set of all users connected to basestation 1 which are not blocked. Using
all users in the network to estimate missed traffic would provide a smaller variance of
the estimator than when using only a subset of the users in the network. However, there
is a good reason to appoint a basestation of interest.

As the title of this paper already suggests, the main goal of this paper is first classify
snapshots into groups and to construct a tool which is able to generate snapshots from
any group of desire. It became clear in Chapter 3 that we only directly control the
spatial Poisson processes. Other parameters such as the gain G or the lower bound µ
are imposed by the specifications of the network. If the estimator of missed traffic is
based on all four of the cells, then we would need to classify missed traffic based on four
independent spatial Poisson processes instead of one. These four Poisson processes have
too many possible states, roughly the states for a single Poisson process to the power
four, for a successful classification.

5.2 Missed traffic

In this section we shall study the distribution of missed traffic. Unlike with the single
cell model, it is impossible to analytically analyze missed traffic and we have to turn
to statistical techniques in order to draw conclusions about the distribution of missed
traffic.

The two most used techniques to assess the distribution of some (continuous) ran-
dom variable are probability plots and hypothesis tests. A probability plot [12] is a
graphical technique to assess whether a distribution function is a good fit. The data
is plotted against a theoretical distribution in such a way that the points should form
approximately a straight line. Departures from this straight line indicate departures
from the specified distribution. For conventional distributions such as the normal dis-
tribution, probability plots can be produced with Statgraphics. However, we could
not find a statistical program which produces probability plots for a fully specified trun-
cated normal distribution. Therefore, we implemented a program in Mathematica which
produces probability plots for the truncated normal distribution. The program requires
estimators for the parameters µ, σ, xL and xR of the truncated normal distribution, in
Appendix C.2 it is explained how these parameters are estimated.

The usual approach to find the distribution of a random variable is to first draw some
probability plots such that a small set of possible distribution functions remain. Then
the hypothesis tests are used to see which distribution fits best. The general concept of
hypothesis testing is treated in Appendix B.2.1. A goodness of fit test has hypotheses
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H0: the data follow a specified distribution,
Ha: the data do not follow a specified distribution.

In Appendix B.2.2 we focus on the three goodness of fit tests, the Kolmogorov-Smirnov
(K-S), the Cramér-von-Mises (C-M) and the Anderson-Darling (A-D) test.

Figure 5.2(a) is the normal probability plot for missed traffic. Interpretation of the
probability plot shows that the distribution M̂T 2 is short-tailed, see [51, p. 71]. This
is not surprising since by the removal of users which require a transmit power greater
than Pmax, the estimator of missed traffic is bounded 0 ≤ M̂T 2 ≤ 1/2. Therefore we
have also included a truncated normal probability plot, see Figure 5.2(b). The p-values
for the different goodness of fit tests are tabulated in Table 5.1.

test normal distribution truncated normal distribution
µ̂ = 0.195, σ̂ = 0.097 µ̂ = 0.172, σ̂ = 0.115

x̂L = 0.00, x̂R = 0.49
K-S 0.69 0.14
C-M 0.76 0.50
A-D 0.38 0.04

Table 5.1: p-values for goodness of fit tests of M̂T 2

The probability plot for the truncated normal distribution is better behaved than
for the normal distribution which defects for small values of missed traffic. However,
the p-values of the goodness of fit tests indicate that the normal distribution fits the
distribution of missed traffic better. This behavior can be heuristically explained by
studying the estimators of missed traffic for individual users. The individual estimators
of missed traffic are truncated normally distributed. Conditionally onNU , the estimators
of missed traffic are also mutually independent. There are versions of the central limit
theorem which imply the usual central limit theorem for sums of dependent random
variables. Although missed traffic does not meet the conditions for any of these versions,
the transition from the truncated normal distribution to the normal distribution best
explains the behavior of missed traffic.

5.3 Reduction to single cell model

In Chapter 4 we found a closed expression for missed traffic. As was already mentioned,
the expression for missed traffic is difficult. However, it still is useful to link the quadru-
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(a) Normal probability plot
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(b) Truncated normal probability plot

Figure 5.2: Probability plots of M̂T 2
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ple cell model to the single cell model because of running time. The quadruple cell first
positions users in four different cells and computes the distances from the users to all
neighboring basestations. Then the systems of linear equations (3.7) must be solved
to find the powers and to remove the blocked users from the network. The powers of
the single cell model are directly computed by (4.3). Therefore, the computation time
for the quadruple model is much greater than for the single cell model and a reduction
to the single cell model perfectly fits in the search of methods to speed up the static
simulation program.

Recall that the transmit power for the single cell model is given by (4.3), this yields

F =
(NU − 1)P tx

11µ

GP tx
11 − 10γ111/10Nfµ

,

where NU is the set of users connected to basestation 1 which were not blocked. The
estimate of F is obtained by considering the power of the first user connected to bases-
tation 1. However, the choice of user does not make a difference since, by Claim 3.1,
the received powers 10−γ1j1/10P tx

1j are identical.
The single cell model has the property that when only one user is connected to the

basestation, this user will not suffer from MAI. This property is likely to damage a
possible link between the two models. Therefore we introduce the adapted single cell
model. For this model we define the MAI to be

MAI =
(
1{|NU | = 1}

F1
+
1{|NU | > 1}(n− 1)

F2

)
10(Si−γi)/10P tx

i .

Note that the only change we make is that when there is one user connected to the bases-
tation, then we model MAI interference by (F1)−1P tx

1 . The formula for the transmit
power then becomes

P tx
i =

{
F1µNf

GF1−µ if |NU | = 1,
F2µNf

GF2−(NU−1)µ if |NU | > 1.

In case of the adapted single cell model, the factors F1 and F2 can be computed by

F1 = 1{NU = 1} P tx
11µ

GP tx
11 − 10γ111/10Nfµ

F2 = 1{NU > 1} (n− 1)P tx
11µ

GP tx
11 − 10γ111/10Nfµ

.

Note that F2 is surely greater than zero but not bounded by 1. Indeed, simulations
show that F2 can be as large as 5.

We will first study the factors of the single cell and the adapted single cell model when
there are at least two users connected to the basestation of interest. These snapshots
will reveal information about the distribution of F = F2. We then turn to the case when
there is only one user connected to the basestation of interest. The snapshots with only
one user connected to the basestation of interest will provide information about the
distribution of F1.

Recall from Chapter 4 that a truncated distribution is likely to arise. The variable F
(F2) is bounded between 0 and 1, where F = 1 when there is no OCI and as F → 0 the
OCI increases. The truncated normal probability plot in Figure 5.3 shows to be most the
promising probability plot. The estimators for the parameters of the truncated normal
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distribution are displayed in Table 5.2. The second tool we have at our disposal are
the goodness of fit tests. These tests also support the choice for the truncated normal
distribution. Hence, we expect F = F2 to be truncated normally distributed.
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Figure 5.3: Truncated plot when |NU | > 1

test Truncated normal distribution
µ̂ = 0.624, σ̂ = 0.231
x̂L = 0.15, x̂R = 0.97

K-S 0.519
C-M 0.785
A-D 0.636

Table 5.2: p-values of goodness of fit tests

Now we turn to the case when |NU | = 1. Study of the factor F1 requires the
introduction of another distribution, the exponential distribution. A random variable
X is exponentially distributed with scale parameter λ, or X ∼ Exp(λ), if the density
function of X is

fX(x) = λe−λx, for x ≥ 0.

A random variable X is two-parameter exponentially distributed with scale parameter
λ and location parameter γ, or X ∼ Exp(λ, γ), if the density function is

fX(x) = λe−λ(x−γ), for x ≥ γ.

Note that the two-parameter exponential distribution is simply an exponential distrib-
ution which is truncated from the left at γ.

Trying several distribution functions, the exponential probability plot yields the most
promising picture, see Figure 5.4. However, large values of F1 distort the possibly ex-
ponential distribution of F1. We try goodness of fit test for both the exponential and
two-parameter exponential distribution. The p-values for the exponential distribution
are small, the largest p-value is in the order of 10−11. The p-values for the two-parameter
exponential distribution are displayed in Table 5.3. Based on Table 5.3 and the proba-
bility plot, we sample the factor F2 from the two-parameter exponentially distribution.
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Figure 5.4: Exponential plot

test two-parameter exponential
γ̂ = 0.14, λ̂ = 1.89

K-S 0.021
C-M 0.089
A-D 0.012

Table 5.3: p-values goodness of fit tests

With the knowledge about the factors F , F1 and F2 we can generate samples from
both the single cell model and the adapted single cell model. For the single cell model we
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sample F from the truncated normal distribution. For the adapted single cell model we
sample F1 from the two-parameter exponential distribution while F2 is sampled from
the truncated normal distribution. Comparing these two models with the quadruple
cell model can be done by sampling from both models and compare these samples to
a sample of the quadruple cell model. We use both graphical techniques and the K-S
two-sample goodness of fit test to compare two samples.

The first graphical technique is the quantile-quantile (Q-Q) plot. The Q-Q plot is
a technique similar to the probability plot. A Q-Q plot plots the empirical distribution
function of the first data set against the empirical distribution function of another data
set. A 45-degree reference line is also plotted. If the two sets come from a population
with the same distribution, the points should fall approximately along this reference
line. The greater the departure from this reference line, the greater the evidence for the
conclusion that the two data sets have come from populations with different distribu-
tions. The statistical software package Statgraphics can be used to produce the Q-Q
plots. In Figure 5.3, the Q-Q plots for both single cell models are shown.
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(b) Adapted single cell model

Figure 5.5: Q-Q plots of missed traffic

The Q-Q plot for the single cell model shows that it underestimates missed traffic,
this was already foreseen since a single user will not suffer from MAI. The adapted single
cell model repairs this error and models OCI. However, it seems that the adapted single
cell model overshoots its target. The adapted single cell model seems to overestimate
missed traffic. We also note the different behavior between the single cell and the adapted
single cell model appears to be present for large values of missed traffic. However, the
models only differ in modeling the MAI for a single user. Therefore, one would expect
the differences of the model to be present for smaller values of missed traffic.

A second graphical technique used to determine whether two data sets have a com-
mon distribution function is the density trace [35]. The density trace is an alternative
to a commonly used simple density estimator, the histogram. Weaknesses of the his-
togram such as which choice to make for the width of the intervals or the number of
intervals, caused the proposal of alternative density estimators. Defining the location
density d(x|h) at a point x as the fraction of the data values per unit of measurement
that fall in an interval centered at x gives

d(x|h) =
∑n

i=1 δi

nλ
,

where n is the sample size, h is the interval width and δi is one when the ith sample value
is in the interval [x−h/2, x+h/2] and zero otherwise. In order to plot the density trace,
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first select a value for h and then compute d(x|h) on a dense grid of equally spaced x
values. Connect the d(x|h) by lines. The shape of the density trace is essentially driven
by the interval length. It is very smooth for large values of h and “wiggly” for smaller
values of h.

As the interval width is increased, data points further and further from the center
value are included. In order to decrease the weight of points that are far removed from
the center value each point gets an interval dependent weight wi. The location density
is given by

d(x|h) =
∑n

i=1 wiδi

nλ
.

For a more detailed description about these weighting functions we refer to [12]. The sta-
tistical software package Statgraphics can be used to make density traces. Statgraphics
includes all observations into a single interval and the weights are chosen according to
a Gaussian distribution. The density traces for missed traffic are shown in Figure 5.3.

M T  Q u a d r u p l e
M T  S i n g l e

0 0 , 1 0 , 2 0 , 3 0 , 4 0 , 5
0

1

2

3

4

de
ns

ity

(a) Single cell model

M T  Q u a d r u p l e
M T  S i n g l e

0 0 , 1 0 , 2 0 , 3 0 , 4 0 , 5
0

1

2

3

4
de

ns
ity

(b) Adapted single cell model

Figure 5.6: Density traces of missed traffic

The density trace for the adapted single cell model seems to be a better fit than the
single cell model. The density trace of the single cell model shows a higher density for
smaller values of missed traffic in comparison to the density trace of missed traffic in
the quadruple cell model. This makes sense since a single user is likely to cause smaller
values of missed traffic. When there is only one user present in the model, the single cell
model will give rise to an even lower value of missed traffic since this user does not suffer
from MAI. The density trace of the adapted single cell model shows that this behavior
is corrected. The density of smaller values of missed traffic is only slightly higher than
the density for the quadruple cell model.

The last technique to compare the distributions of missed traffic is the K-S two
sample test, see Appendix B.2.2 for a description of this test. The test is performed
with Statgraphics which returns approximate p-values. The p-value for the single cell
model is 0.225 while the p-value for the adapted single cell model is 0.396.

The Q-Q plots, density traces and p-values for the two-sample K-S test indicate
that the distribution of missed traffic in the quadruple cell model is the same as the
distribution of missed traffic in the adapted single cell model. However, studying the
number of users in the cell of interest we see significant differences. It seems as if the
single cell and adapted single cell model cause a shift of the distribution of NU to the
left.
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Model/|NU | 1 2 3 4 5 6 7 8 9 Total
Single cell 88 195 290 255 115 41 15 1 0 1000
Adapted Single Cell 92 224 260 239 120 43 15 0 0 993
Quadruple cell 92 188 257 195 127 84 27 10 2 982

Table 5.4: The number of users |NU |

5.4 Conclusions and recommendations

The quadruple cell model which is likely to be more accurate than the single cell model
because of the fact that multiple basestations are modeled. These neighboring bases-
tations should give better approximations of OCI than simply multiplying the SCI by
some factor as is done with the single cell model. The accuracy comes at the price
that the computation of the transmit powers is more complex than for the single cell
model. Simulations show that the use of the single cell model instead of the quadruple
cell model roughly reduces running time by a factor five.

In order to compute OCI we use wrap around, see Figure 5.1. This causes the
network to have a strange structure in which identical copies of only four cells form the
entire network. To avoid this specific structure of the network, we propose to generate
seven basestations instead of four. The new model places the basestation of interest
and surrounds it by six basestations. The basestations at the periphery only have three
neighboring basestations. Instead of placing identical copies of these three neighboring
basestations, we assume that the OCI is symmetric. That is, the contribution to the OCI
from users connected to the basestations which are not present in the model is identical
to the contribution of users connected to the three neighboring basestations which are
present in the model. In this way we avoid the peculiar structure of the network.

We observe that the reduction from the quadruple cell model to the both the single
cell and adapted single cell model shows great potential. The results of Q-Q plots,
density traces and the two sample K-S test give no reason to doubt the fact that missed
traffic for both models is similarly distributed. The reduction to the adapted single cell
model shows to be more accurate than the reduction to the single cell model. Study of
the number of users which are not blocked cause us to doubt that the distribution of
|NU | is the same. More research is needed to explain the difference between the number
of users and how it affects missed traffic for the (adapted) single cell model. We also
propose to, analogue to Chapter 4, give a complete probabilistic analysis of the adapted
single cell model because the reduction shows better potential than the single cell model.



Chapter 6

Discriminant analysis

The simulation program to estimate missed traffic in a wireless network should make
it possible to rapidly draw conclusions for the performance of the network for several
settings of the parameters. For example, suppose we have some reference model A,
for which we have chosen a setting of the parameters. If simulation shows that for a
certain subset of the snapshots model A performs poorly, then we would like to test
whether a change of the parameters would improve performance for these snapshots.
Obviously, we do not want to save all the snapshots of model A or keep on generating
random snapshots with the changed parameters until the snapshots of interest arise by
pure chance. Ideally, we would like to divide the snapshots into groups and make it
possible to generate samples from each group separately. In this way we can study the
performance for snapshots belonging to a certain group and rapidly test if a change of
parameters would improve performance for this particular group of snapshots.

In this chapter we shall provide the first part of a solution to this problem, namely
how to classify the snapshots into groups. The second part of the solution is to generate
snapshots from a group of interest, this problem will be resolved in Chapter 7. In Section
6.1 we introduce a general classification rule to divide the snapshots over groups, the
discussion is based on a paper by Friedman [27]. Section 6.2 deals with the case when
the data in the groups is multivariate normally distributed. In Section 6.3 a hypothesis
test is introduced to test data for multivariate normality. In this last section of this
chapter we shall apply two classification rules to the quadruple cell model and analyze
the results.

6.1 General classification rule

The purpose of classification is to assign objects to one of G groups based on a set of
measurements X = (X1, X2, . . . , Xp) obtained from each object of observation. The
variables Xi are the so-called feature variables. We will use classification techniques to
study the separability of labeled groups of observations in the measurement space.

An object is assumed to be a member of a unique class and an error is incurred if it
is assigned to a different one. The cost or loss associated with such an error is defined
to be

L(g, ĝ), 1 ≤ g, ĝ ≤ G, (6.1)

35
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where g is the correct group and ĝ is the assignment that was actually made. Usually
L(g, g) is taken to be zero and L(g, ĝ) ≥ 0. A special but commonly occurring cost
function is

L(g, ĝ) = 1− δ(g, ĝ), (6.2)

which is zero if g = ĝ and 1 otherwise.
The vectors of valued measurements which are assigned to the same group g are

seldom identical but share a common probability density function fg(X). The usual
goal is to minimize the expected misclassification loss (6.1) over the sample to be clas-
sified. If the class conditional densities fg(X) are known, then it is possible to calculate
misclassification risk and derive an assignment or classification rule to minimize it. The
expected loss or risk incurred in classifying an object with measurement vector X as ĝ
is

R(ĝ | X) =
G∑

g=1

P(X ∈ g | X)L(g, ĝ),

The expression for R(ĝ | X) can be written in an alternative manner using the following
lemma:

Lemma 6.1. Let X be a random variable with density function fX and B1, B2, . . . be
events. Suppose that

i. Bi and Bj are disjoint whenever i 6= j,

ii.
⋃

i Bi is the entire sample space,

iii. P(Bi) > 0 for each k.

Then

P(Bi|X) =
fX(x|Bi)P(Bi)∑
j fX(x|Bj)P(Bj)

.

Proof. The proof is by using Bayes Theorem [46] which states that for random variables
Y en Z with strictly positive joint probability density function on R2, we have

fY |Z(y|z) =
fZ|Y (z|y)fY (y)

fZ(z)
.

By the above formula it holds that

P(Bi|X = x) =
fX(x|Bi)P(Bi)

fX(x)
.

The random variables Bj are mutually independent and span the entire sample space.
By the law of total probability it follows that

fX(x) =
∑

j

fX(x|Bj)P(Bj).

This completes the proof.
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Using Lemma 6.1 with Bg the event that X ∈ g we see that the risk or expected loss
incurred in classifying an object with measurement vector X as ĝ is

R(ĝ | X) =
G∑

g=1

fg(X|Bg)P(Bg)∑
j fg(X|Bg)P(Bg)

L(g, ĝ)

=

∑G
g=1 fg(X)πg · L(g, ĝ)∑G

i=g fg(X)πg

, (6.3)

where πg is the unconditional prior probability of observing a group g member.
The classification rule resulting from choosing ĝ to minimize (6.3) is known as the

Bayes rule and it achieves minimal misclassification risk among all possible rules [7,
p. 159]. Therefore, the optimal rule minimizes the numerator of (6.3). When cost
function (6.2) is used, misclassification risk is simply the fraction of assignments that
are incorrect. The optimal rule is to choose ĝ such that

fĝ(X)πĝ = max
1≤g≤G

fg(X)πg. (6.4)

The class conditional densities fg(X) are often unknown. More often, we are able
to obtain a sample of observations from each class that are correctly classified by some
external mechanism. The objective is to use these observations as a training sample to
construct a classification rule by obtaining suitable estimates of the class conditional
densities fg(X). Since these estimates generally deviate from the true population den-
sities, such a rule will not likely achieve minimal risk, except perhaps asymptotically.
Sometimes the unconditional class probabilities are also unknown. If the training data
can be regarded as a random sample from the pooled population, then the prior proba-
bilities can be estimated by the fraction of each class in the pooled sample.

6.2 Linear and quadratic discriminant analysis

The most often applied classification rules are based on the multivariate normal distri-
bution. This is when the group conditional density functions (1 ≤ g ≤ G) are given
by

fg(X) = (2π)−p/2|Σg|−1/2e−1/2(X−µg)T Σ−1
g (X−µg), (6.5)

where µg and Σg are the group g population mean vector and covariance matrix. We
denote X ∼ Np(µ,Σ) if X is a p-dimensional random variable and X obeys the law
of the multivariate normal distribution with mean vector µ and covariance matrix Σ.
When the covariance matrices are identical, i.e.

Σg = Σ, 1 ≤ g ≤ G,

the distribution is called homoscedastic normal, otherwise it is called heteroscedastic
normal.

Assuming the simple loss function (6.2) and substituting (6.5) into (6.4) leads to the
classification rule

dĝ(X) = min
1≤g≤G

dg(X), (6.6)
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with

dg(X) = (X − µg)T Σ−1
g (X − µg) + log |Σg| − 2 log πg. (6.7)

The quantity dg(X) is often called the discriminant score for the gth class, whereas
dg(X) + 2 log πg is referred to as the discriminant function.

Using the classification rules (6.6) and (6.7) is called quadratic discriminant analysis
(QDA) since it separates the disjoint regions of the measurement space corresponding
to each group by quadratic boundaries. An important special case occurs when all of
the class covariance matrices are presumed to be identical (homoscedasticity). Then the
classification rule is called linear discriminant analysis (LDA) because the classification
rule becomes

dĝ(X) = min
1≤g≤G

dg(X),

with discriminant functions

dg(X) = (µg −X)T Σ−1µg − (µg)T Σ−1X − 2 log πg,

resulting in linear decision boundaries.
Quadratic and linear discriminant analysis can be expected to work well if the class

conditional densities are approximately normal and good estimates, for classification
purposes, can be obtained for the population parameters defining the distributions.
In the classification context the ellipsoidal symmetry shape (Gaussian shape) associated
with the normal distribution appears to be the important aspect rather than its detailed
shape, see [37, 41].

In most applications of LDA or QDA the prior probabilities are estimated as

π̂g =
ng

n
,

with

ng =
∑

c(v)=g

1, n =
G∑

g=1

ng. (6.8)

Here v labels the observations in the training sample and c(v) is the class of the vth

observation. The parameters associated with the class densities are estimated by their
sample analogues:

Xg. =
1
ng

∑
c(v)=g

Xv (6.9)

The unbiased estimator of the covariance matrix Σg is

Sg =
1

ng − 1

∑
c(v)=g

(Xv −Xg.)(Xv −Xg.)T . (6.10)

When the covariance matrices are assumed to be identical, the unbiased estimator of Σ
is

S =
G∑

g=1

∑
c(v)=g

ng − 1
n−G

Sg (6.11)



6.3. A test for multivariate normality and homoscedasticity 39

6.3 A test for multivariate normality and homoscedas-
ticity

The question of adequacy of QDA or LDA is one that can be fairly easy assessed. In
principle one might test this in the same manner as one tests for univariate normality
by using goodness of fit tests. However, the goodness of fit tests suffer from both
computational and distributional errors [25]. Recall that the success of QDA and LDA
depends on the fact that the class conditional density functions have a Gaussian shape
rather than the specific shape of the densities. Therefore, we first perform two tests
whether the class conditional density functions are Gaussian shaped. A third test is
performed to test for homoscedasticity.

Skewness [58] can be used to assess the asymmetry of the probability distribution
of a real-valued random variable. Roughly speaking, a distribution has positive skew
(right-skewed) if the right tail is longer or fatter and negative skew (left-skewed) if the
left tail is longer or fatter. Skewness, represented by γ1, is defined as

γ1 =
E[(X − E[X])3]

E[(X − E[X])2]3/2
=

E[(X − E[X])3]
σ3

.

Clearly, for symmetric distributions the skewness parameter is zero and its size can be
viewed as a measure of asymmetry.

Kurtosis [58] can be used to assess whether the distribution is heavy-tailed. Kurtosis,
represented by γ2, is defined as

γ2 =
E[(X − E[X])4]
E[(X − E[X])2]2

− 3 =
E[(X − E[X])4]

σ4
− 3.

Positive kurtosis indicates a “peaked” distribution and negative kurtosis indicates a
“flat” distribution. The normal distribution is known to have zero kurtosis.

Suppose for the moment that we have a single sample X1, X2, . . . , Xn with sample
mean

X. =
1
n

n∑
i=1

Xi,

and covariance matrix

S =
1

n− 1

n∑
i=1

(Xi −X.)(Xi −X.)T .

Then the sample skewness and kurtosis are

b1 =
1
n2

n∑
i=1

n∑
j=1

(
(Xi −X.)T S−1(Xj −X.)

)3
,

and

b2 =
1
n

n∑
i=1

(
(Xi −X.)T S−1(Xi −X.)

)2
,
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Mardia [49] shows that asymptotically, under a normal model,

A =
nb1

6
∼ χ2

ν ,

with

ν = p(p + 1)(p + 2)/6.

A random variable X is chi squared distributed with ν degrees of freedom, or X ∼ χ2
ν ,

if the density function of X is given by

fX(x) =
2−k/2

Γ(k/2)
xk/2−1e−x/2, x ≥ 0.

Note that the skewness is not signed, it can only be tested whether skewness is present
or absent, it can not be further classified in left or right skewed. Mardia [49] also proves
that the sample kurtosis converges in distribution to a normal distribution.

B =
b2 − p(p + 2)√

8p(p + 2)/n
∼ N(0, 1)

Returning to the classified data, the actual situation is slightly more complex since
the sample data contains more than one population. The model is

Xgj ∼ Np(µg,Σg).

Provided that all ng are sufficiently large, b1 and b2 may be computed separately for
the samples from each source, yielding, say, b1g, b2g for 1 ≤ g ≤ G. Fatti, Hawkins and
Raath [25] suggest to perform the skewness and kurtosis test separately for each group.

The standard test for homoscedasticity is Bartlett’s test [3]. It is sensitive to the
assumption of normality and gives excessive Type I errors with heavy-tailed data. This is
not a serious drawback if the skewness and kurtosis test are performed before Bartlett’s
test. Recall definitions (6.8) to (6.11), the test statistic for Bartlett’s test is

M =
G∑

g=1

ng − 1
2

log
|S|
|Sg|

.

Under the null hypothesis, the distribution of M can be approximated very closely
in terms of the chi square distribution

ρ log M ∼ χ2
f ,

with f = 1
2 (G− 1)p(p + 1) and

ρ = 1−

(
G∑

g=1

1
ng
− 1

N − g

)
2p2 + 3p− 1

6(p + 1)(G− 1)
.

Anderson [3] gives a criteria which ensures a good approximation by the chi squared
distribution by introducing

ω2 =
p(p + 1)

48ρ2

(
(p− 1)(p + 2)

(
G∑

g=1

1
n2

g

− 1
(N − g)2

)
− 6(G− 1)(1− ρ)2

)
,
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Anderson then proves the following equality

P(−ρ log M ≤ z) = P(χ2
f ≤ z) + ω2

(
P(χ2

f+4 ≤ z)− P(χ2
f ≤ z)

)
+ O((N −G)−3).

Hence, if ω2 is sufficiently small in comparison with ρ, then the test statistic is well
approximated by the chi square distribution.

6.4 Performance of discriminant analysis

Suppose we have a training set which consists of snapshots S1, S2, . . . , SM . The estimates
of missed traffic for these snapshots are used to divide S1, S2, . . . , SM over G groups.
The performance of the network is measured by missed traffic. Therefore, we partition
the interval [0, 1/2] into G intervals and assign snapshot Si to group g if missed traffic
belongs to the gth interval of the partition. We shall apply both LDA and QDA to see
which method has the highest success rate.

Recall from Section 5.2 that missed traffic seems to fit the normal distribution and a
logical partition would be based on the mean and variance of missed traffic. Let µ̂ and
σ̂ represent the sample mean and deviation for missed traffic of the training set. Then
consider the following partition

{(0, µ̂− c−iσ̂), . . . , (µ̂− c−1σ̂, µ̂), (µ̂, µ̂ + c1σ̂), . . . , (µ̂ + cj σ̂, 1/2)},

for some i and j. This division has the advantage that it is possible to approximate the
number of observations that will be assigned to each group. The groups are numbered
from left to right, thus group 1 contains all observations with the smallest values for
missed traffic while group G contains those with the highest values for missed traffic.
For the remainder of this section, we set i = j = 1 and choose c−1 = c1 = 1. Then the
two smaller groups 1 and 4 will approximately contain 16% of the observations while
the two larger groups 2 and 3 approximately contain 34% of the observations.

We need to select a set of possible feature variables which can be used to assign
snapshots to the correct bin. Obviously, the most discriminative feature variables would
entail information about the transmit powers of the users. However, the data must not
only be classified but it should also be possible to generate snapshots from the groups.
We can not directly control the transmit powers since they are computed by solving the
set of equations (3.4). However, we do control the spatial Poisson process by which the
users are modeled. Hence, we seek feature variables which are related to the Poisson
process and are likely to influence the estimate of missed traffic.

The possible feature variables which we consider are

X1 = N1, the number of users which are connected to basestation 1

X2 =
∑

j Dj/N1, the mean distance,

X3 =
∑

j D2
j /N1, the mean squared distance,

where Dj is the distance of the jth user connected to the basestation of interest. By
Claim 3.1, the number of users which are connected to the basestation of interest directly
affects SCI. The choice for feature variables X2 and X3 is also evident, the combination
of the two can be used to estimate the mean and variance of the sum of all distances in
the cell. A measure for the distance of the users provides information about propagation
loss. We could also have chosen X3 to be the standard deviation of the distances in the
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cell. However, by the central limit theorem it follows that X3 tends in distribution
to a normally distributed variable while this is not true for the standard deviation.
Furthermore, it is important to stress that we consider the total group of users, including
the users which will be removed. This is because we have no direct control over the
process where users are removed from the network.

The variable X1 can be used as feature variable for the discriminant analysis, this
case is treated by Section 6.4.1. However, the variable X1 is discrete and thus likely to
deteriorate the performance of discriminant analysis. Therefore, we also try discrimi-
nant analysis when we condition on X1, that is for each different value of Xi we apply
discriminant analysis. The results of this approach are studied in Section 6.4.2. Based
on the results in these two sections we choose a model which is studied in further detail
in Section 6.4.3.

6.4.1 Discriminant analysis for variable number of users

The set of possible feature variables is small enough so that it allows us to apply LDA
and QDA for every possible combination of feature variables. We have three measures
M1, M2 and M3 to evaluate the performance of a discriminant method. Measure M1

is the percentage of the total observations that is assigned to the correct group. The
second measure depends on the misclassified observations. Misclassified observations
should be likely to be in the border area between the correct group and a neighboring
group. We define M2 to be the percentage of all observations that are not assigned to
the correct group but to a direct neighboring group of the correct group. The measure
M3 simply is the sum of M1 and M2. In Appendix D we have tabulated the results of
LDA and QDA which are omitted in this chapter.

Tables 6.1 and 6.2 tabulate the overall results for every possible set of feature vari-
ables. The first three columns show which feature variables are included in the discrim-
inant analysis. For example the fourth row indicates that the discriminant analysis is
based on feature variables X1 and X2. The last three columns show the values for the
measures M1, M2 and M3.

Model Performance
X1 X2 X3 M1 M2 M3

1 0 0 34.6 13.6 48.2
0 1 0 65.7 33.0 98.7
0 0 1 68.5 30.0 98.5
1 1 0 66.6 31.8 98.4
1 0 1 68.5 29.9 98.4
0 1 1 66.0 32.4 98.4
1 1 1 43.9 41.5 85.4

Table 6.1: Performance of LDA

Model Performance
X1 X2 X3 M1 M2 M3

1 0 0 31.7 20.0 51.7
0 1 0 64.3 34.6 98.9
0 0 1 66.0 32.6 98.6
1 1 0 66.8 32.0 98.8
1 0 1 67.9 30.5 98.4
0 1 1 62.0 35.9 97.9
1 1 1 15.0 32.6 47.6

Table 6.2: Performance of QDA

Note that when either the analysis is solely based on X1 or on all three possible fea-
ture variables, both quadratic and linear discrimination perform badly. The differences
between the other choices of feature variables are not decisive. For LDA the best setting
seems to be to take X3 as the only feature variable while the best results for QDA are
obtained for the set of feature variables X1 and X3. We also observe that LDA performs
better than QDA.
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Based on the overall results we focus on LDA and exclude the models X1 and
(X1, X2, X3). However, the differences between the models are not significant enough
to automatically point out the best model. Since the models show similar overall per-
formance, the performance for individual groups might be conclusive. The groupwise
results for both LDA are tabulated in Tables 6.3-6.6.

Model Performance
X1 X2 X3 M1 M2 M3

1 0 0 18.7 35.5 54.2
0 1 0 54.2 37.0 91.2
0 0 1 62.0 36.8 98.8
1 1 0 56.0 35.6 91.6
1 0 1 62.0 29.0 91.0
0 1 1 54.8 36.8 91.6
1 1 1 54.8 45.2 100.0

Table 6.3: Performance LDA for group 1

Model Performance
X1 X2 X3 M1 M2 M3

1 0 0 28.0 72.0 100.0
0 1 0 64.7 35.5 100.0
0 0 1 70.4 29.6 99.7
1 1 0 66.3 33.7 99.7
1 0 1 70.6 29.4 99.7
0 1 1 67.4 32.6 99.5
1 1 1 93.8 6.2 100.0

Table 6.4: Performance LDA for group 2

Model Performance
X1 X2 X3 M1 M2 M3

1 0 0 66.6 31.5 98.1
0 1 0 74.8 25.2 100.0
0 0 1 72.9 27.1 100.0
1 1 0 74.8 25.2 100.0
1 0 1 71.3 28.7 100.0
0 1 1 72.9 27.1 100.0
1 1 1 0.0 0.0 0.0

Table 6.5: Performance LDA for group 3

Model Performance
X1 X2 X3 M1 M2 M3

1 0 0 0.0 37.4 37.4
0 1 0 61.6 38.4 100.0
0 0 1 61.6 38.4 100.0
1 1 0 61.6 38.4 99.3
1 0 1 64.6 35.4 100.0
0 1 1 60.3 39.7 100.0
1 1 1 0.0 0.0 0.0

Table 6.6: Performance LDA for group 4

Table 6.3 shows that for group 1 the models X3 and (X1, X3) show the best perfor-
mance for M1. However, M3 is significantly lower when using both the variables X1 and
X3, thus we favor the model X3. The results for the second group show that the models
X3 and (X1, X3) perform best but are not significantly different. For group 3 it seems
that all models have more or less the same performance although the models X2 and
(X1, X2) are slightly better. For group 4, the models show similar performance. Hence,
studying the groupwise performance of LDA we see that the models X3 and (X1, X3)
are favorable. The model with a single feature variable is simpler than with two feature
variables. Therefore, we choose X3 to be the only feature variable for linear discriminant
analysis.

We have also tabulated the groupwise results for QDA, these results are displayed
in the Appendix D as Tables D.1 to D.4.

6.4.2 Discriminant analysis for fixed number of users

The overall performance of the discriminant analysis for the model X2 improves when
the feature variable X1 is added to the model while adding X1 hardly affects the perfor-
mance for the feature variable X3. The variable X1 is discrete, thus one would expect
that adding X1 would cause the performance to deteriorate because the normality as-
sumption is certainly not satisfied. The p-values for the skewness test in Table D.9
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support the idea that adding X1 to either X2 or X3 harms the normality assumption.
However, it could be that X1 entails such vital information that it improves the perfor-
mance of discriminant analysis despite harming the normality assumption. Therefore,
it may be that the performance of LDA and QDA improves when we construct separate
discriminant functions for each possible value of X1. That is, for each possible value
of X1 = n, n ≥ 1, we have a set of discriminants functions which are based on the
collection of snapshots for which X1 = n.

We collect from our training set all snapshots which have 4 users connected to the
basestation of interest. We test the performance of LDA and QDA for discriminant
functions based on this subset of snapshots. The results are then compared with the
results obtained when we would have used the discriminant functions based on the
entire set. Since we condition on X1, only the variables X2 and X3 can be used as
feature variables and there are three possible models. The results for both discriminant
functions are displayed in Tables 6.7-6.10.

Model M1 M2 M3

X2 59.1 38.8 97.9
X3 56.3 41.6 97.9

(X2, X3) 57.0 40.9 97.9

Table 6.7: LDA, discriminant functions for
X1 = 4

Model M1 M2 M3

X2 59.1 39.5 98.6
X3 57.0 40.9 97.9

(X2, X3) 57.7 40.2 97.9

Table 6.8: LDA, overall discriminant func-
tions

Model M1 M2 M3

X2 55.6 41.5 97.1
X3 57.0 40.1 97.1

(X2, X3) 50.0 47.1 97.1

Table 6.9: QDA, discriminant functions for
X1 = 4

Model M1 M2 M3

X2 62.0 37.3 99.3
X3 58.5 39.9 98.6

(X2, X3) 54.9 43.0 97.9

Table 6.10: QDA, overall discriminant func-
tions

The overall values for the performance measures of LDA indicate that the discrim-
inant functions which are based on the entire training set have a better performance
than the when they are based on the snapshots for which X1 equals 4. The conclusion
for QDA is opposite, the performance for the overall discriminant function is worse.
Although QDA improves when constructing separate discriminant function for X1 = 4,
the performance of QDA is not significantly better than the performance for the over-
all discriminant functions for LDA. Since constructing separate discriminant functions
requires more work without a gain.

We have also tabulated the performance measure for each group separately, for LDA
see Tables D.5 and D.6. These results show that it is better to use the linear discriminant
functions which are based on the entire training set. The worse performance of the
discriminant functions could partially be explained by the fact that the training set for
which X1 = 4 is too small. However, using a larger training set of 500 measurements
only slightly increases the performance of these discriminant functions and the linear
overall discriminant functions still perform better.
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6.4.3 Final model

In Sections 6.4.1 and 6.4.2 we have tried several sets of feature variables to find out
which one gives the best performance. Based on the fact that LDA seems to perform
better than QDA we have to choose among the models (X1, X3) and the model which
is based on the single feature variable X3. When the discriminant function are solely
based on X3, the performance of LDA is slightly better than (X1, X3). Moreover, it is
also a simpler model than (X1, X3). Therefore, we choose to apply linear discriminant
analysis with feature variable X3. Table 6.11 displays the results of LDA when using
the single feature variable X3.

Actual Group Predicted group
group size 1 2 3 4
1 166 103 49 12 2

(62.0%) (29.5%) (7.2%) (1.2%)
2 371 17 261 92 1

(4.6%) (70.4%) (24.8%) (0.3%)
3 317 0 71 231 15

(0.0%) (22.4%) (72.9%) (4.7%)
4 146 0 0 56 90

(0.0%) (0.0%) (38.4%) (61.6%)
pg 85.8% 68.5% 59.0% 83.3%

Table 6.11: LDA with feature variable X3

Purely looking at the percentages of correctly assigned observations, we see that LDA
performs best for bins 2 and 3. We also note that observation which should have been
assigned to group 2 have high probability to get assigned to group 3 while the probability
to be assigned to bins 1 and 4 is quite small. A similar conclusion can be drawn for
observations which should have been assigned to group 3. For the observations in group
1 we see that the LDA shows the worst behavior, observations are assigned to each bin
and the probability to get assigned to the correct group or to a direct neighboring group
lies around 0.9. For the other bins this probability is close to 1.

The results can also be interpreted in a different way. We estimate the probability
to generate a snapshot from a group g by the relative frequency of observations that
fall into the group g. For example, randomly generating a snapshot we have probability
0.16 to construct a snapshot from group 1. Next consider the relative probability to
sample from group g this group is predicted by LDA. For this we consider the columns
under the predicted groups. For example consider the column under predicted group
1. A total of 120 snapshots were assigned to group 1. Of these 120 snapshots, 103
actually belonged to group 1. Hence, we have a probability of 0.86 for a snapshot which
is assigned to group to actually belong to group 1. Let pg denote the probability for a
snapshot assigned to group g to actually be a member of group g. These probabilities
are tabulated in the last row of Table 6.11. These probabilities indicate that we need a
factor 5 less snapshots for groups 1 and 4 while for groups 2 and 3 we need to generate
only half as many snapshots.

The discriminant functions are displayed in Table 6.12. The second column shows
the discriminant function while the third column displays the intervals where the dis-
criminant functions are minimal. The allocation regions of the groups are as expected.
Observations belonging to group 1 are assigned to the interval with smallest values while



46 Chapter 6. Discriminant analysis

observations of group 2 are assigned to the interval with the second smallest value and
so on.

Group Score function Interval
1 13.08− 65.49X3 (0, 0.32)
2 24.28− 100.25X3 (0.32, 0.50)
3 37.84− 127.39X3 (0.50, 0.69)
4 66.74− 169.16X3 (0.69, 1)

Table 6.12: Score functions and intervals

We are more interested in the performance of LDA for feature variable X3 than
whether X3 satisfies the conditions of LDA. However, the p-values for X3 for the skewness
and kurtosis test in Tables D.9 and D.10 give no reason to doubt the Gaussian shape of
the density function of X3. Table D.11 shows that Bartlett’s test for homoscedasticity
is failed.

In the introduction to this section we emphasized that the choice for feature variable
X3 depends on the fact that we do not control the process in which blocked users are
removed from the network. The performance of LDA improves when we use

X ′
3 =

∑
j

D2
j /|NU |,

where the sum runs over all users which were not blocked. To illustrate the better
performance we have generated a training set of 1000 sample values which is used to
compute the discriminant functions. These discriminant functions are then used on
another set of 1000 sample values to test performance. In this case, M1 = 83.2 while
M2 = 16.8 which gives M3 = 100.

Actual Group Predicted group
group size 1 2 3 4
1 153 121 32 0 0

(79.1%) (20.9%) (0.0%) (0.0%)
2 354 13 297 44 0

(3.7%) (83.9%) (12.4%) (0.0%)
3 329 0 28 289 12

(0.0%) (8.5%) (87.8%) (3.6%)
4 164 0 0 39 125

(0.0%) (0.0%) (23.8%) (76.2%)
pg 90.2% 83.2% 77.6% 91.2%

Table 6.13: LDA with feature variable X ′
3

6.5 Conclusions and recommendations

The results of Section 6.4 show that snapshots can be divided over groups by use of
the feature variable X3, the sum of squares of the distances from all users connected to
the basestation of interest. Note that users which are blocked are included in X3. In
this case 60% of the snapshots are assigned to the correct group. Moreover, the results
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indicate that the running time can be reduced by a factor 2 to 3 when trying to generate
snapshots from on of the G groups.

To measure the performance of the classification rules we used measures M1 and M2.
The measure M1 shows the percentage of observations which were assigned to the correct
group while M2 displays the percentage of observations which were not assigned to the
correct group but to a neighboring group of the correct group. It would be interesting
to have some distance measure which enables us to measure how far observations are
away from the correct group.

We observe that if we were to be able to directly sample from the allocation regions
we have one major problem. This problem can be best explained by considering the
results in Table 6.11 for group 1. Here we see that only 60% of the snapshots which
should have been assigned to group 1 are also assigned to group 1. Hence, when we
would sample from the allocation region of group 1 we only sample from this subset of
60% of all snapshots which belong to group 1. This leaves the question whether sampling
from the sampling regions gives an representative sample of snapshots from group 1.

The results of Section 6.4 also show that the performance of linear discriminant
analysis significantly improves when we leave out the blocked users. That is when data
is classified by use of X ′

3, the sum of squares of the distances of the users which are not
blocked (sum runs overNU ). In this case 83% of the snapshots are assigned to the correct
group. The difficulty of using X ′

3 instead of X3 is that, to generate snapshots from the
groups, one needs to directly control the positions of the users which are not blocked.
Therefore, more knowledge on the process of removing blocked users is required.

The quadruple cell model still allows to generate large sets of sample values of missed
traffic. However, future models will become more complex and the running time of the
simulation program will increase. This calls for methods to determine the minimum sam-
ple size required to distinct the G allocation regions of the sample space. We also used
the standard maximum likelihood estimators for the mean and covariance matrix (the
covariance matrix estimate is scaled by a factor to remove bias). Although seemingly
reasonable, this approach can be justified only on intuitive grounds and enjoys no opti-
mality properties. Information on how to determine minimal sample size and different
estimates of the mean vector and covariance matrix can be found in [27, 36, 50, 66]

Classification rules should not only make it possible to divide snapshots over groups
but should also allow to generate samples from the groups. Therefore, we consider the
allocation regions which arise from the use of discriminant analysis. For a single feature
variable no problems arise because, for any classification rule, the allocation regions will
be simple intervals. The sole use of the feature variable X3 shows best performance for
LDA. This allows for other classification rules which might perform better than LDA.
More examples of classification rules are presented by McLachlan [50].

Future research may give reason to use multiple feature variables. However, use
of multiple feature variables can give problems for classification rules other than LDA.
The allocation regions for LDA are simple linear boundaries, for example for G = 2
the boundary of the allocation region is a simple straight line or hyperplane. Other
classification rules give more complicated allocation regions. For example for G = 2
and with QDA the region of allocation may be the interior of an ellipse or the region
between two hyperbolas. The “simple” allocation regions which arise by use of LDA
should make it likelier to generate snapshots from a group of desire than when using
other classification rules.
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Chapter 7

Generating snapshots with a
certain characteristic

In Chapter 6 we divided the snapshots over four groups based on their value for missed
traffic. We then showed that it is possible to, with high probability, generate snapshots
from these groups by controlling the statistic X3 defined to be

X3 =
N1∑
j=1

D2
j /N.

Here N represents the total number of users connected to basestation 1, blocked users
included, and Dj is the distance of the jth user connected to the basestation of interest.
The clue is that one should be able to generate snapshots for which X3 lies in some
prescribed interval, see Table 6.12.

In this chapter we shall introduce a method to sample from the distribution when
we condition on the sum of squares of the distances of the users. That is, we provide a
solution to the problem how to sample from the distribution described by the following
pdf

fD1,D2,...,Dn(d1, d2, . . . , dn | α ≤
∑

D2
i ≤ β). (7.1)

The outline of this chapter is as follows. We use convex geometry to sample from the
conditional distribution. Therefore, Section 7.1 gives a short introduction into this topic
of mathematics. In Section 7.2 we shall use the theory of convex geometry to study the
sample space of the distribution function (7.1). Moreover, a theoretical solution to the
problem is provided. In Section 7.3 it is explained how the theoretical answer can be
implemented in a simulation tool. The algorithms introduced in Section 7.3 are given in
pseudo-code such that the reader can transcribe it into the language of his/her choice.

7.1 Convex geometry

In this section we shall treat the basic definitions and theorems of convex geometry.
The foundations of convex geometry shall be used to analyze the sample space of the
conditional distribution. For more information on convex geometry we refer to [20, 30,
31, 48]. We will make no distinction in notation for scalars and vectors, from the context
it will be clear whether the variable is meant to be a vector or scalar.

49
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7.1.1 Definitions and theorems

Given two points x, y ∈ Rn, the line segment between x and y is the set of points

[x, y] = {λx + (1− λ)y | λ ∈ [0, 1]}.

A set C ⊆ Rn is convex if and only if for any pair of points x, y ∈ C the closed line
segment [x, y] ⊆ C.

Let x1, x2, . . . , xk, z ∈ Rn, then z is called a convex combination of x1, x2, . . . , xk

when

z =
∑

λixi, for λ1, . . . , λn such that
∑

λi = 1 and λi ≥ 0 ∀i.

The convex hull of the set {x1, x2, . . . , xk} ⊆ Rn is the set of all convex combinations,
or

hull{x1, x2, . . . , xk} =
{∑

λixi |
∑

λi = 1 and λi ≥ 0 ∀i
}

.

Similarly, z is an affine combination of x1, x2, . . . , xk if and only if

z =
∑

λixi,
∑

λi = 1.

The affine hull of the set {x1, x2, . . . , xk} ⊆ Rn is the set of all affine combinations, or

aff(x1, x2, . . . , xk) =
{∑

λixi |
∑

λi = 1 and λi ∈ R ∀i
}

.

Let P ⊆ Rn, then P is a polyhedron if there is a system of finitely many inequalities
Ax ≤ b such that

P = {x ∈ Rn | Ax ≤ b}.

Moreover, P is a polytope if there exists a finite set X ⊆ Rn such that

P = hull{X}.

A face of a polytope is defined with the help of the inequalities Ax ≤ b.

Definition 7.1. Let A be a real m×n matrix, let b ∈ Rn and let P = {x ∈ Rn | Ax ≤
b}. Let a1, a2, . . . , am be the rows of A. Then F is a face of P if and only if

F = {x ∈ P | aixi = bi for all i ∈ J} for some J ⊆ {1, 2, . . . ,m}.

Faces of dimension 0 are called vertices, faces of dimension 1 edges and faces of dimension
d− 1 facets.

Let C ⊆ Rn. A vector x ∈ C is an extreme if there are no y, z ∈ C \ {x} such that
x ∈ [y, z]. The set of all extreme points of C is denoted with Ex(C). An important
theorem concerning the set of extreme points of C is due to Minkowski, see [31].

Theorem 7.1. Let C ⊆ Rn be a compact convex set. Then

C = hull{Ex(C)},

where a set is compact if and only if it is bounded and closed.
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Thus, the extreme set contains all vertices of the polytope P .
As it turns out, the building blocks of polytopes are simplices. Therefore, we will

shortly introduce these special kind of polyhedrons. The n-simplex Sn with vertices
v0, v1, . . . , vn is defined to be the convex hull of the n + 1 affinely independent vectors

Sn = hull{v0, v1, . . . , vn},

The vertices v0, v1, . . . , vn are affinely independent if
∑

i λivi = 0 and
∑

i λi = 0 implies
that λ0 = λ1 = . . . = λn+1 = 0.

The volume of a simplex Sn, denoted by Vol(Sn), can be computed by the following
formula [29, p. 403].

Theorem 7.2. Suppose that Sn is a n-simplex with vertices v0, v1, . . . , vn. Let B = (βik)
denote the (n + 1)× (n + 1) matrix given by βik = ||vi − vk||2. Then

2n(n!)2Vol(Sn)2 = |det(B̂)|, (7.2)

where B̂ is the (n + 2)× (n + 2) matrix obtained from B by bordering B with a top row
(0, 1, . . . , 1) and left column (0, 1, . . . , 1)T .

The basis of the method to sample from the conditional distribution is to decompose
a polytope into simplices. The following deceivingly simple statement guarantees the
existence of such a decomposition. For a proof of the theorem see [31]. Furthermore, let
int(S) denote the interior of the set S.

Theorem 7.3. Any convex polytope P has a simplicial decomposition. That is

P =
⋃

Si and int(Si) ∩ int(Sj) = ∅ for all i 6= j,

where the Si’s are simplices.

In the literature, the division of a convex polytope into simplices is called a triangulation.

7.2 Theoretical solution

In this section we shall give a solution how to sample from the conditional distribution
(7.1). The description only has theoretically value. How the solution can be implemented
is explained in Section 7.3.

The solution to the problem of sampling from (7.1) lies in the properties of the
random variable Di, the distance of user i to the basestation in its cell. Based on the
properties of Di, we firstly show that the problem reduces to uniformly sampling a vector
from some convex hull Pα(n). We then compute the vertices of the polytope Pα(n).
Finally in Section 7.2.3, we combine the previous results and introduce an algorithm to
sample from (7.1).

7.2.1 Analysis of the sample space

The sample space of the pdf (7.1) is defined as follows

Ωα,β(n) = {d1, d2, . . . , dn | α ≤
n∑

i=1

d2
i /n ≤ β and 0 ≤ di ≤ R ∀i = 1, 2, . . . , n}
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for some α and β. By (3.2), the distance Di is equal to R
√

Ui where Ui is uniformly
distributed on (0, 1). Hence, Ωα,β(n) can also be described as

Ωα′,β′(n) = {u1, u2, . . . , un | α′ ≤
n∑

i=1

ui ≤ β′ and 0 ≤ ui ≤ 1 ∀i = 1, 2, . . . , n}, (7.3)

where α′ = n α/R2 and β′ = n β/R2.
We have translated our problem to sampling from the sample space defined by (7.3).

Although the sample space is described by uniformly distributed random variables, the
points are not uniformly distributed in Ωα′,β′(n). This can be seen from the distribution
function of the sum of n uniformly distributed random variables [21, p. 245]. Let
U (n) = U1+U2+ . . .+Un where the Ui are i.i.d. uniformly distributed random variables,
then

fU(n)(x) =
1

2(n− 1)!

n∑
k=0

(
n

k

)
(x− k)n−1sign(x− k), (7.4)

for 0 ≤ x ≤ n and where

sign(z) =

 −1 if z < 0
0 if z = 0
1 if z > 0

We have plotted the density function (7.4) for several choices of n in Figure 7.1, it
rapidly converges to a Gaussian shaped density function.

By the density function (7.4) it follows that not all vectors (u1, u2, . . . , un) have
equal value for the density. The density depends on the sum of the entries of the vector.
Conditioning on the sum of the entries yields a sample space

Pγ(n) = {u1, u2, . . . , un |
n∑

i=1

ui = γ and 0 ≤ ui ≤ 1 ∀i = 1, 2, . . . , n},

where α′ ≤ γ ≤ β′. Now each vector (u1, u2, . . . , un) ∈ Pγ(n) has equal density since
the pdf

fU1,U2,...,Un(u1, u2, . . . , un) =
fU1(u1)fU2(u2) · · · fUn(un)
P((U1, U2, . . . , Un) ∈ Pγ(n))

is constant for all vectors in Pγ(n). Moreover, the sample space Pγ(n) can be described
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Figure 7.1: Density function for sum of n uniformly distributed random variables
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by a finite number of inequalities.

Pγ(n) = {u1, u2, . . . , un |
n∑

i=1

ui ≤ γ, −
n∑

i=1

ui ≤ −γ, (7.5a)

− ui ≤ 0 and ui ≤ 1 ∀i = 1, 2, . . . , n}, (7.5b)

Hence, the sample space is a polyhedron. The polyhedron is also contained in a finite
set, namely the hypercube HCn defined by

HCn = {x ∈ Rn| 0 ≤ xi ≤ 1 for all i = 1, 2, . . . , n}.

Finally, Pγ(n) is convex so that we can conclude that Pγ(n) is a convex polytope.
Therefore, by Theorem 7.3, there exist a simplicial decomposition of Pγ(n).

7.2.2 Vertices of the sample space

The convex polytope Pγ(n) can be seen as the intersection of the hypercube HCn with
a simplex Sn which is spanned by the vertices {γ · e1, γ · e2, . . . , γ · en}. Examples of the
intersection of H3 with S3 for different choices of γ are shown in Figures 7.2(a)-7.2(c).

Usually it is difficult to find the vertices of a polytope. However, due to the fact
that Pγ(n) is the intersection of a hypercube with a simplex, the vertices have specific
structure.

Lemma 7.1. The vertices of Pγ(n) are given by all permutations of the vector

v0 = (1, . . . , 1︸ ︷︷ ︸
bγc

, 0, . . . , 0︸ ︷︷ ︸
n−bγc−1

, γ − bγc)T .

Proof. To prove that all permutations of v0 are vertices it suffices to show that they are
extreme points. Suppose that there are y, z ∈ Pγ(n) \ {v0} such that v0 = λy + (1−λ)z
for some 0 < λ < 1. Obviously,

λyi + (1− λ)zi = 1, for all i = 1, 2, . . . , bγc,

but yi and zi themselves are in the interval [0, 1] and 0 < λ < 1 thus yi = zi = 1.
Similarly, it is possible to show that yi = zi = 0 for all i = bγc + 1, bγc + 2, . . . , n − 1.
Since the vectors y and z are elements of the polytope, it immediately follows that
yn = zn = γ − bγc which is in contradiction to the fact that y, z ∈ Pγ(n) \ {v0}. The
latter line of reasoning can be done for any permutation of v0, thus all permutations of
v0 are extreme points. It remains to show that there are no other extreme points.

Recall Definition 7.1 and the fact that vertices are faces of dimension zero. The
polytope Pγ(n) is described by the constraints (7.5a) and (7.5b). Note that all the
vertices we found sofar satisfy n + 2 − dγ − bγce constraints. This is no coincidence,
Schrijver [56] proves that faces of the same dimension satisfy exactly the same number
of constraints. If there were to be another vertex of Pγ(n) than it would also need to
satisfy n+2−dγ−bγce constraints. However, by construction there are no more points
in the sample space which satisfy that many constraints. Therefore, we conclude that
there are no other vertices.
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(a) 0 < γ ≤ 1 (b) 1 < γ ≤ 2 (c) 2 < γ ≤ 3

Figure 7.2: Examples of Pγ(3)

7.2.3 Sampling algorithm

As was shown in Section 7.2.1, the problem of sampling from the conditional distrib-
ution function (7.1) translates to uniformly sampling from the convex polytope Pγ(n)
described by the inequalities (7.5a) and (7.5b). If the polytope Pγ(n) is a simplex, there
would be no problem. A solution to the problem of uniformly sampling from a simplex
is long known. The method to uniformly sample from a simplex has a natural extension
to the more general case of uniformly sampling from convex polytopes.

By Theorem 7.3, any convex polytope P can be decomposed into simplices. For
each of these simplices Si, the uniform sample has probability pi = Vol(Si)/

∑
j Vol(Sj)

to be in the simplex Si. The sampling algorithm randomly selects a simplex Si with
probability pi from the collection of all simplices in the simplicial decomposition of
P . The algorithm continues by drawing a uniform sample from the simplex Si. The
subsequent steps of the sampling algorithm are displayed as Algorithm 1.

Algorithm 1 Sampling algorithm
1: Draw a sample γ of random variable U (n) with pdf (7.4) such that α ≤ γ ≤ β.
2: Compute the vertices of the polytope Pγ(n) described by (7.5a)-(7.5b).
3: Find a simplicial decomposition of Pγ(n), thus Pγ(n) =

⋃
Sj .

4: Compute the volumes of the simplices and randomly pick a simplex from the collec-
tion of simplices{Sj}j such that the ith simplex has probability Vol(Si)/Vol(Pγ) to
be selected.

5: Uniformly sample from the simplex which was picked in 4.

Careful study of the sampling algorithm shows that it does not necessarily sample
uniformly over the polytope Pγ(n). Suppose that the polytope Pγ(n) is not a simplex
but has a simplicial decomposition {Si}i. Let F be defined as

F = {x ∈ F | F is a facet of at least two simplices}.

When executing the sampling algorithm, the density for x ∈ F is at least 2/Vol(Pγ)
which would contradict the uniform distribution. Fortunately, the event {x ∈ F} is a
zero-probability event which guarantees the correct working of the sampling algorithm.



7.3. Implementation 55

7.3 Implementation

In Section 7.2.3 we introduced the sampling algorithm (Algorithm 1) which returns a
sample from the distribution function (7.1). The description of the algorithm consists of
five steps. Steps 2 and 4 do not require further explanation, they are covered by Theorem
7.2 and Lemma 7.1. However, steps 1, 3, and 5 do require some explanation on how these
can be implemented in a simulation program. To each step we dedicate a subsection
where we show how it can be implemented and provide an algorithm in pseudo-code so
that the implementation can be transcribed into the programming language of choice.

7.3.1 Sample sum of uniform variables

The first step in Algorithm 1 is to find a sample γ from U (n), the sum of i.i.d. uniformly
distributed random variables such that α ≤ γ ≤ β. Or to put it differently, given n ∈ N
and α, β ∈ (0, n) such that α ≤ β, draw a sample of the random variable U (n) =

∑n
i=1 Ui

such that

α ≤
n∑

i=1

Ui ≤ β.

Partition the interval [α, β] in the following way

{I1, I2, . . . , Idβe−bαc} = {[α, bαc+ 1), [bαc+ 1, bαc+ 2), . . . , [bβc, β]}.

The distribution function of the sum of n i.i.d. uniformly distributed random variables
is given by (7.4). For each subinterval Ii of (α, β), compute the probability pi for U (n)

to fall into that specific interval. Also compute the conditional cumulative distribution
function Fi for each subinterval Ii, that is

Fi(u) = P(U (n) ≤ u | U (n) ∈ Ii).

To sample U (n) we firstly draw a sample from a uniformly distributed random vari-
able on (0, 1). Based upon the outcome and the probabilities pi we choose the interval
Ii and thus the conditional distribution function Fi. Sampling from the cdf Fi can be
done by drawing another uniform sample on (0, 1), say U , and computing F−1

i (U) such
that F−1

i (U) ∈ Ii.
The final step, computing F−1

i (U), can only be done analytically for n ≤ 4 because
there is no general formula for the zeros of a polynomial with degree greater than
4. Therefore, we have to resort to numerical rootfinding methods. There are many
rootfinding algorithms to choose from [4, 9]. We choose to use Brent’s method.

The method is too complicated to treat in this paper, but a complete description can
be found in [8]. The input for Brent’s method is an interval [a, b] in which a root must
be found and a number δ such that a certain accuracy is guaranteed. For a function f
and some interval [a, b], the method returns a value x ∈ [a, b] such that |f(x)| ≤ δ.

The choice for Brent’s method is based upon three reasons. The first reason is
that the rootfinding algorithm should only return the unique root in the interval Ii, this
restriction is certainly satisfied by Brent’s method. Secondly, Brent’s method is known to
be safeguarded, it falls back on the bisection method if necessary which, although slowly,
always converges. Thirdly, Brent’s method is standardly delivered with mathematical
software packages such as Mathematica and MatLab.
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7.3.2 Finding a simplicial decomposition

In the previous section, we have discussed step 1 of Algorithm 1 and have obtained
a sample γ from the random variable U (n). Let V (A) be the set of vertices of the
convex hull of A. Step 2 of the algorithm is handled by Lemma 7.1 so we have a set
V (Pγ(n)) which contains the vertices of Pγ(n). The next step of the algorithm is to find
a triangulation of Pγ(n). In this section we shall introduce an algorithm to find such
a triangulation. Recall that a triangulation of Pγ(n) is a simplicial decomposition of
Pγ(n).

Finding simplicial decompositions of convex hulls continues to attract attention in
the literature, for example see [5, 13, 38, 29, 57, 61]. One of the most straightforward
algorithms is due to Seidel [57] and is also known as beneath-and-beyond. The correct
working of beneath-and-beyond is proved in [38]. The algorithm finds a triangulation
of the polytope P defined to be the convex hull of the vertex set V = {v1, v2, . . . , vk},
k ≥ n, where vi ∈ Rn. Beneath-and-beyond requires an ordering of the vertices such
that v1, v2, . . . , vn are affinely independent.

To explain the algorithm, we need two more definitions. A facet F of a polytope P is
visible from v if and only if the affine hyperplane spanned by the vertices of F separates
v from P . A facet F of P bounds P if and only if the affine hyperplane spanned by
the vertices of F does not intersect the polytope P . For example, consider the polytope
P = hull{v1, v2, v3} of Figure 7.3(a). The facets which bound P are F1, F2 and F3. The
affine hull of two different points is the line through them. Therefore, the only facet that
is visible from v4 is F3. The definition of visibility agrees with intuition and drawing
sketches in two or three dimensions, one could suspect that for each vertex there is only
one visible facet. However, this is generally not true for higher dimensions where there
can be multiple visible facets.

Before going into details, we will give an intuitive description of the algorithm.
Let Pγ(n, k) be the convex polytope described by (7.5a) and (7.5b) with vertex set
V = {v1, v2, . . . , vk}, k ≥ n, which is described by Lemma 7.1. Also, Pγ(n, n + i) is the
convex hull of the vertex set {v1, v2, . . . , vn+i}. The algorithm decomposes Pγ(n, k) into
(n − 1)-simplices. The algorithm is initialized by setting Sn to be the (n − 1)-simplex
spanned by the vertices v1, v2, . . . , vn. The triangulation Tn is set to be Tn = {Sn} and
the boundary Bn is the set of all facets of Sn.

Assume that, for some i ≥ 0, a triangulation Tn+i of the polytope Pγ(n, n + i)
is already obtained. Consider the vertex vn+i+1 and locate all facets Fj which are
contained in Bn+i and are visible from vn+i+1. Connect vn+i+1 to each visible facet Fj by
connecting it to all its vertices. For each visible facet Fj this will yield a simplex Sn+i+1,j

and thus the triangulation Tn+i+1 = (
⋃

Sn+i+1,j)
⋃

Tn+i decomposes Pγ(n, n + i + 1)
into simplices. Furthermore, Bn+i+1 is the set of all facets F which bound Pn+i+1.

In Figure 7.3 we pictured a single increment of beneath-and-beyond. We have been
given the simplex hull{v1, v2, v3} with the boundary {F1, F2, F3} and we are at the point
to add v4 to the triangulation. The first step is to determine the visible facets. The
facet F3 is the only visible facet since it separates v4 from v2. Therefore, v4 is connected
to v1 and v3 and the facets F4 and F5 are added to the boundary. Note that the facet
F2 is no longer part of the boundary and the new boundary becomes {F1, F3, F4, F5}.

After the short introduction of the beneath-and-beyond algorithm, we can give a
detailed description of the implementation of the algorithm. The algorithm is also
displayed in pseudo-code as Algorithm 2 on page 61. The program can be split up in
four parts namely Initialization, Determining visible facets, Supplementary boundary
and triangulation and Updating triangulation and boundary. To each part we devote
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a paragraph in which we explain the logic of these steps and, when necessary, give
detailed descriptions of procedures. The numbers in the paragraph titles refer to the
line numbers of Algorithm 2.

v 4

v 1

v 2

v 3

F 1

F 3

F 2

(a)

v 4

v 1

v 2

v 3

F 1

F 4

F 3

F 2

F 5

(b)

Figure 7.3: Increment of beneath-and-beyond

Initialization (1-3)

The algorithm requires an ordering of the vertices {v1, v2, . . . , vk} such that the first n
vectors are affinely independent. The ordering is used by defining Pγ(n, n) to be the
simplex spanned by the vertices v1, v2, . . . , vn. Using Lemma 7.1 we show that we can
do better than affine independence and find a set of n linearly independent points to
initialize the algorithm.

Since γ ∈ N is a zero-probability event, we assume that γ /∈ N. However, random
number generators may cause problems and thus is the procedure Sort stopped when
γ ∈ N. Let m = bγc, the points in the linearly independent set are given by

(0, . . . , 0︸ ︷︷ ︸
i−1

, γ −m, 0, . . . , 0︸ ︷︷ ︸
n−m−i

, 1, . . . , 1︸ ︷︷ ︸
m

)T (7.6)

for i = 1, . . . , n−m, and

(0, . . . , 0︸ ︷︷ ︸
n−m−1

, 1, . . . , 1︸ ︷︷ ︸
i

, γ −m, 1, . . . , 1︸ ︷︷ ︸
m−i

)T (7.7)

for i = 1, 2, . . . ,m.
After the vertices are sorted in proper order, the program continues by setting T =

{Sn} where Sn is the convex hull spanned by the vectors {v1, v2, . . . , vn}. The boundary
Bn is set to be the set of all facets of Sn. Hence, Bn consists of the convex hulls of all
distinct subsets of {v1, v2, . . . , vn} with cardinality n− 1.

Determining visible facets (5-10)

Suppose Pγ(n, n + i) is already triangulated for some i ≥ 0 and we want to add the
vertex vn+i+1. The lines of code from 5 to 10 construct the set F which contains the
visible facets. The set F is obtained from the boundary Bn+i by deleting all facets
which are not visible from vn+i+1. Question is how to determine whether a facet is
visible. In the following discussion we will use shorthand notation and omit the indices.
The procedure Visible, which determines if a facet is visible, can be found at the end
of this paragraph.
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Procedure Sort(V )
if
∑

vi /∈ N then
Construct set of n vectors V ′ = {v1, v2, . . . , vn} as in (7.6) and (7.7)

else
break

end if

Returns: V ′ ∪ (V \ V ′)
end Procedure

Let A be the affine hull of the vertices of some facet F . Then A separates Rn

into two affine halfspaces A+ and A− with A+ ∪ A− = R
n and A+ ∩ A− = A. We

will always assume that P ⊂ A+ and thus F is visible from v if and only if v ∈ A−.
Furthermore, there exists a vector c such that c is perpendicular to the facet F but c is
still parallel to the polytope P . This is a direct consequence of the fact that a facet is a
(n − 2)-dimensional object while the polytope is an (n− 1)-dimensional object. In the
Euclidean space 〈c, y〉 = ||c||2||y||2 cos(θ), where θ is the angle between vectors c and
y. The polytope P is contained in A+ if and only if for all vertices vj of P , the inner
product with c is non-negative (non-positive). Therefore, the affine hull A separates v
from P if and only if the inner product 〈c, v〉 is positive (negative).

By the following lemma we can check whether a facet is visible to a vertex by simply
comparing signs of determinants.

Lemma 7.2. Let x1, x2, . . . , xn−1 ∈ Rn be the vertices of a facet F of the induced
triangulation of P . Furthermore, c is such that c is perpendicular to F while it lies
parallel to P and n is perpendicular to all the points in the polytope P .
Then there exists some δ ∈ R such that for all y ∈ Rn

〈c, y〉 = δ det(x2 − x1, x3 − x1, . . . , xn−1 − x1,n, y),

where det(a1, a2, . . . , ak) denotes the determinant of the k×k-matrix with rows a1, a2, . . . , ak.

Proof. Let x′i = xi+1 − x1. Since the set x1, x2, . . . , xn−1 is a facet of a simplex in the
triangulation of P , the points are affinely independent. The vectors x′1, x

′
2, . . . , x

′
n−2,

c and n are linearly independent and they form a basis of Rn. The basis can be
transformed to an orthogonal basis, for example by the Gram-Schmidt procedure. By
the description of the Gram-Schmidt procedure, this will only require adding multiples
of rows. Let x̃1, x̃2, . . . , x̃n−2, c,n be the orthogonal base of Rn, note that c and n are
not altered since they are already perpendicular to the facet F . The vectors x̃i are
obtained by adding multiples of rows, hence

det(x′1, x
′
2, . . . , x

′
n−2,n, y) = det(x̃1, x̃2, . . . , x̃n−2,n, y).

Let y ∈ Rn, then it can be written as

y =
〈x̃1, y〉
||x̃1||2

x̃1 +
〈x̃2, y〉
||x̃2||2

x̃2 + . . . +
〈x̃n−2, y〉
||x̃n−2||2

x̃n−2 +
〈n, y〉
||n||2

n +
〈c, y〉
||c||2

c.

By adding multiple of the first n− 1 rows to y we get

det(x̃1, x̃2, . . . , x̃n−2,n, y) = det(x̃1, x̃2, . . . , x̃n−2,n,
〈c, y〉
||c||2

c)

= 〈c, y〉 ||c||−2 det(x̃1, x̃2, . . . , x̃n−2,n, c)
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This completes the proof, since the determinant and norm do not depend on y.

The vector n which is perpendicular to all vectors in the polytope P is (1, 1, . . . , 1)T .
This is because the polytope Pγ(n, k) is contained in the (n−1)-dimensional hyperplane
Hγ where

Hγ = {x ∈ Rn | (1, 1, . . . , 1)(x1, . . . , xn)T = γ}.

Consider the (n− 1)-dimensional hyperplane H0

H0 = {x ∈ Rn | (1, 1, . . . , 1)(x1, . . . , xn)T = 0}.

If Hγ were to be parallel to H0 we are done because the all-one vector is perpendicular to
H0 and thus also perpendicular to Hγ . To show that Hγ and H0 are parallel hyperplanes,
we calculate the distance between any x ∈ Hγ and the hyperplane H0. The Euclidean
distance between a point and a hyperplane is defined to be

d(x,H0) = min
y∈H0

(
n∑

i=1

(xi − yi)2
)1/2

.

By use of Cauchy-Schwarz we see that

n∑
i=1

(xi − yi)2 ≥

(
n∑

i=1

(xi − yi)

)2

= γ2.

Therefore, we conclude that H0 and Hγ are parallel to each other and, consequently,
the all-one vector is perpendicular to all vectors in the polytope Pγ(n, k).

Deciding whether to connect v to a facet F of the boundary can be done by computing
determinants. The function sg is defined by

sg(V (F ), y) = sign(det(x2 − x1, x3 − x1, . . . , xn−1 − x1,n, y), (7.8)

for y ∈ Rn and V (F ) = {x1, x2, . . . , xn−1}. Recall that V (A) is the set of vertices for a
convex hull A. We can determine whether the facet Fj of the boundary of the polytope
Pγ(n, n + i) is visible in the following way. If sg(V (Fj), vn+i+1) = 0, then the volume
of hull{V (Fj) ∪ {vn+i+1}} is zero, because of the affine dependency of the vectors, and
we can safely set the facet Fj to be not visible.

If sg(V (Fj), vn+i+1) 6= 0, then we track down the unique simplex S in Tn+i such
that Fj is a facet of S. Hence, the simplex S is hull{x1, x2, . . . , xn}. Then compute
sg(V (Fj), xn) and compare it with sg(V (Fj), vn+i+1), if they are opposite then Fj is
visible from vn+i+1. It is crucial that we use the vector xn to compute sg(V (Fj), xn)
because generally the vertices of the polytope Pγ(n, n + i) are affinely dependent. If
we were to arbitrarily choose a vertex u of Pγ(n, n + i), then this vertex could be
affinely dependent from the vertices of the facet and sg(V (F ), u) = 0 which proved no
information. The previous steps are executed by the procedure Visible which returns
true if Fj is visible from vn+i+1 and false otherwise.

Supplementary boundary and triangulation (11-16)

After the visible facets are determined, simplices Sj are created by connecting vn+i to
each visible facet Fj , that is Sj = hull{V (Fj) ∪ {vn+i}}. For every simplex Sj , the set



60 Chapter 7. Generating snapshots with a certain characteristic

Procedure Visible(V (F ), v, T ) . T triangulation and F (boundary) facet

y ← sg(V (F ), v) . defined by (7.8)
bool←False

if y 6= 0 then
Search S ∈ T such that S = hull{V (F ) ∪ {xn}}.
if sg(V (F ), xn) = −y then

bool←True
end if

end if

Returns: bool
end Procedure

of facets Fj consists of all distinct subsets of n − 1 points of the vertex set of Sj . If a
facet F occurs in at least two distinct sets Fj and Fk, j 6= k, then it has to be removed
because it will certainly not bound Pγ(n, n + i + 1). The set B′ is the subset of Fj of
all facets which have cardinality 1.

Updating triangulation and boundary (17-18)

The final step of the program is to set Tn+i+1 and Bn+i+1. The triangulation of
Pγ(n, n+i+1) consists of the already existing triangulation of Pγ(n, n+i) together with
the simplices which were created by connecting vn+i+1 to the visible facets. The new
boundary Bn+i+1 consists of the union of the previous boundary Bn+i and the collection
of facets B′. However, note that the set of visible facets F is a subset of B′. Therefore,
the final step is to delete these facets to obtain the boundary of Pγ(n, n + i + 1).

7.3.3 Uniformly sampling from a simplex

We have now completed the first three steps of Algorithm 1. The first part of step 4 of
the algorithm is handled by Lemma 7.2 so we continue by randomly picking a simplex
S from the triangulation of Pγ(n) with probabilities proportional to the volumes of the
simplices in the triangulation. The final step of the program is to obtain a uniform
sample from the simplex S.

Given affinely independent points v1, v2, . . . , vn which represent the vertices of the
simplex S, we would like to uniformly sample from S. We claim that Algorithm 3 does
exactly that. The correct working of the algorithm is based on the following theorem.

Theorem 7.4. Let (U(i))n−1
i=1 be i.i.d. uniformly distributed variables in the interval

[0, 1] sorted in increasing order. Furthermore, the random variables Wi, 1 ≤ i ≤ n, are
defined to be

Wi =

 U(1) if i = 1,
U(i) − U(i−1) if i = 2, . . . , n− 1,
1− U(n−1) if i = n.

(7.9)
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Algorithm 2 Beneath-and-beyond in Rn

Input: V = {v1, v2, . . . , vk} . Vertices of polytope Pγ(n, k), k ≥ n

1: V ← Sort(V)
2: T ← {{v1, v2, . . . , vn}}
3: B ← set of all facets of simplex hull{v1, v2, . . . , vn}

4: for i = 1 to k − n do

5: F ← B
6: for Fj ∈ F do
7: if Visible(Fj , vn+i, T )=False then
8: F ← F \ {Fj}
9: end if

10: end for

11: Sj ← hull{V (Fj) ∪ {vi}} for all Fj ∈ F . New simplices
12: T ′ ←

⋃
Sj

13: for Sj ∈ T ′ do
14: F(Sj)← set of all facets of simplex Sj .
15: end for
16: B′ ← {F ∈

⋃
F(Sj) | F ∈ F(Sk) and F /∈ F(Sm) ∀m 6= k}

17: T ← T ∪ T ′

18: B ← (B ∪B′) \ F
19: end for

Returns: T . Triangulation of polytope Pγ(n, k)

Then

Xi =
n∑

i=1

Wi · vi (7.10)

is a uniform point in the simplex spanned by the vertices v1, . . . , vn.

Proof. The proof of this theorem depends on linear transformations between random
variables. The following theorem on transformations [6] tells us how a (linear) transfor-
mation affects the density function.

Theorem 7.5. Suppose that X = (X1, X2, . . . , Xk) is a vector of continuous random
variables with joint pdf fX(x1, x2, . . . , xk) > 0 on A, and Y = (Y1, Y2, . . . , Yk) is defined
by the one-to-one transformation

Yi = ui(X1, X2, . . . , Xk) i = 1, 2 . . . , k.

If the Jacobian is continuous and nonzero over the range of transformation, then the
joint pdf of Y is

fY (y1, y2, . . . , yk) = fX(x1, x2, . . . , xk)|J |,

where x = (x1, x2, . . . , xk) is the solution of y = u(x).
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Firstly, consider (0, U(1), . . . , U(n−1), 1) and let ΩU be the space of all possible par-
titions of the interval (0, 1) into n intervals. We use the proof by Feller [26, p. 74] to
show that (0, U(1), . . . , U(n−1), 1) is uniformly distributed over ΩU .

Let U(1), U(2), . . . , U(n−1) be n−1 random points rearranged in increasing order. The
points U(1), U(2), . . . , U(n−1) divide the interval [0, 1] into n subintervals. The sample
space corresponding to (U1, U2, . . . , Un−1) is the n− 1-dimensional hypercube Γ defined
by 0 < uk < 1 and probabilities equal to the volume. The sample space with the
U(k) as coordinate variables is the subset of ΩU of Γ containing all points such that
0 < u1 ≤ u2 ≤ . . . ≤ un−1 < 1. Since the set ΩU contains the single permutation of
u1, u2, . . . , un−1 such that they are in increasing order, the volume of ΩU is 1/(n− 1)!.

The sample space Γ contains (n−1)! congruent replicas of ΩU , each one corresponds
with a fixed permutation. These congruent spaces overlap if and only if Uj = Uk for
some j 6= k. The latter event is an zero-probability event. It follows that for any subset
A ⊆ ΩU the probability that (U(1), U(2), . . . , U(n−1)) lies in A equals the probability that
(U1, U2, . . . , Un−1) lies in one of the (n−1)! replicas of A, this probability in turn equals
(n − 1)! times the volume of A. Thus P{(U(1), U(2), . . . , U(n−1)) ∈ A} equals the ratio
of the volumes of A and ΩU . Therefore, the tuple (U(1), U(2), . . . , U(n−1)) is distributed
uniformly over the set ΩU of points such that 0 < u1 ≤ u2 ≤ . . . ≤ un−1 < 1.

Let ΩW denote the sample space of the vector (W1, . . . ,Wn) and note that (7.9) de-
scribes a one-to-one linear transformation L from ΩU to ΩW . The linear transformation
L can be described by a matrix A. Note that A is a lower triangular matrix with all
entries on the diagonal equal to 1 except for the entry in the lower right corner which is
equal to -1. Hence, the absolute value of the determinant of the Jacobian of L is equal
to one and we conclude that (W1, . . . ,Wn) is uniformly distributed over ΩW .

The final step is to perform the linear transformation (7.10) to obtain a point Xi in
the simplex S. Every point x in the simplex S has unique coefficients w1, w2, . . . , wn

such that wi ≥ 0,

x =
n∑

i=1

wi · vi and
n∑

i=1

wi = 1,

otherwise it would contradict with the affine independence of the points v1, v2, . . . , vn.
The linear transformation from (W1, . . . ,Wn) to Xi is thus a one-to-one transformation.
Moreover, the Jacobian of this linear transformation is 1. By Theorem 7.5, it follows
that Xi is uniformly distributed over the simplex S because (W1, . . . ,Wn) is uniformly
distributed. This completes the proof.

Algorithm 3 Uniformly Sample Simplex
Input: {v1, . . . , vn} . n affinely independent points

Draw n− 1 uniform samples U1, U2, . . . , Un−1

Sort them in increasing order U(1), U(2), . . . , U(n−1)

Compute differences
W1, . . . ,Wn = U(1), U(2) − U(1), . . . , U(n−1) − U(n−2), 1− U(n−1)

Returns:
∑

i Wi · vi
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7.3.4 Some additional notes

In the previous section we have introduced the beneath-and-beyond algorithm to find
a triangulation of the convex polytope Pγ(n). In this section we shall comment how to
minimize the running time of the beneath-and-beyond algorithm. We will also imple-
ment Algorithm 1 to see how it improves the running time of the simulation program
for the quadruple cell model.

Observe that the method to sample from (7.1) only requires basic operations to draw
a sample from U (n), compute the vertices of the sample space and to draw a uniform
sample from some simplex S. The running time is most affected by the computation
of the volumes of the simplices in the triangulation and the computation of the of
determinants in the beneath-and-beyond algorithm.

The beneath-and-beyond algorithm only requires knowledge about the sign of the
determinant rather than the exact value of the determinant. In the literature much
attention is devoted to the computation of the signs of determinants [10, 22]. These
papers present methods which can be used to reduce the time to determine the sign of a
determinant. However, the most crucial problem is due to Lemma 7.1. In the best case
scenario the running time of the algorithm would be linear in the number of vertices.
By Lemma 7.1, the number of vertices is a exponential function of n. Hence, even in
the best case scenario the algorithm has an exponential running time.

Algorithm 2 can be naively implemented by running it separately for each snapshot.
However, by Lemma 7.1, it is unnecessary to run the algorithm for each value of γ
separately. The description of the vertices of the sample space Pγ(n) only changes when
bγc changes. Hence, for all n ∈ N it is only necessary to run the algorithm for some
sequence (γi)n

i=1 so that i − 1 < γi < i. The triangulations of Pγ(n) for the n distinct
values γi can be saved in a file so that the file can be invoked when necessary.

7.4 Conclusions and recommendations

The algorithm presented in this chapter complements the results obtained in Chapter
6. The algorithm makes it possible to, with high probability, generate snapshots from
any group of desire. Moreover, as we argue in Section 7.3.4, a clever implementation
of the algorithms introduced in Section 7.3 is unlikely to cause a severe increase of the
running time of the simulation program.

The algorithm depends on generating uniform samples from polytopes. We solved
this issue by finding a triangulation of the polytope which reduces the problem to draw
uniform samples from simplices. Drawing uniform samples from simplices is a standard
exercise. The subject of uniformly drawing samples from polytopes has not yet attracted
much attention in the literature. The solution which we present in this paper is, to our
knowledge, not to be found in the literature. However, Dr. Pendavingh made us aware of
the existence of so-called hit-and-run algorithms [23, 24, 47]. These algorithms attempt
to generate an approximately random sample from a convex polytope by executing a
random walk in the polytope. It is not yet clear whether random walks will decrease
the running time to generate samples from the density function (7.1).

Future research would need to focus on methods to reduce the running time of the
algorithm to generate snapshots from specific groups. The algorithm should be compared
to the hit-and-run algorithm to decide which of these methods shows best performance.
We also note that the algorithm crucially depends on the fact that the squared distance
of a user is a uniformly distributed random variable which in turn is a consequence of the
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use of a homogeneous Poisson process. More research is required to investigate whether
the algorithm can be extended to other distributions.

The sampling algorithm, which enables us to draw samples from any group of desire,
has the benefit that it can be used to assess whether a change of the setting of the
parameters will improve the performance of the network for a certain group. Suppose
that a certain setting of the parameters improves the performance for group g. Then one
would like to generate samples from other groups for group g and combine these with
the already generated snapshots to have a representative sample of missed traffic for
the network. This requires estimation of the prior probability to fall into the allocation
regions, we illustrate this by an example.

Consider the allocations regions displayed in Table 6.12. We would need to compute
the probability for X3 to fall into each of the four regions, this leaves us with probabilities
p1, p2, p3 and p4. We would generate a sample from the uniform distribution to appoint
the allocation region from which a sample value has to be taken. Then we uniformly
choose a snapshot which was assigned to this allocation region. We repeat previous
steps until there are no more snapshots left for one of the groups.



Chapter 8

A pixel based snapshot

In the present model, users are modeled by a homogeneous spatial Poisson process Π,
i.e. a spatial Poisson process with constant intensity λ. Consequently, users are homoge-
neously distributed over the network. A more realistic model is to divide the area which
is covered by the network in smal squares called pixels. These pixels represent different
environments, for example a pixel can represent ’street’, ’highway’ or ’meadow’. In this
way the environment can be modeled, see [67]. On each of the pixels a homogeneous
spatial Poisson process is defined. The combination of all these Poisson processes result
in an inhomogeneous Poisson process Π with intensity function λ(x).

The use of the inhomogeneous Poisson process would have a devastating effect on the
tool which is developed Chapter 7. The tool explicitly depends on the fact that users
which are connected to the basestation of interest are uniformly distributed. In this
chapter we show how to extend the tool to generate snapshots with certain characteristics
to a larger class of Poisson processes. The extension is based on a common used tool in
Monte Carlo simulation: importance sampling. In Section 8.3 we give an introduction
to importance sampling. In Section 8.2 we show how importance sampling can be used
to extend the tool of Chapter 7 to a larger class of Poisson processes.

8.1 Importance sampling

Monte Carlo simulation is the use of experiments with random numbers to evaluate
a mathematical expression. The simplest form, to which all instances of Monte Carlo
simulation can be reduced, is the evaluation of an integral

θ =
∫

f(x)dx.

By identifying a random variable X with density p(x) and a function g(x) it is possible
to write θ as the expected value of g(X)

Ep[g(X)] =
∫

g(x)p(x)dx =
∫

f(x)dx = θ.

The problem of evaluating the integral becomes the familiar problem of estimating
a mean. The natural estimate for a mean is the sample mean of a random sample of

65
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size n

θ̂ =
1
n

n∑
i=1

g(xi).

The sample mean is an unbiased estimator since

E[θ̂(p)] =
1
n

n∑
i=1

Ep[g(Xi)] = θ.

The main idea of importance sampling is to increase the design frequency of “impor-
tant” events to make it possible to accurately estimate the frequency or expected values
of those events using fewer Monte Carlo replications. However, originally importance
sampling was used to reduce the variance of the desired quantity of interest. Obviously,
these two objectives are closely related since by reducing the variance of the estimator it
suffices to have fewer replications to obtain a certain level of accuracy for the estimator.

In what follows we will introduce importance sampling, for a mathematically more
complete derivation see [32]. The idea of importance sampling is that multiplying and
dividing by another density function p̃(x) does not change the value of θ since

θ = Ep[g(X)] =
∫

g(x)p(x)dx =
∫

g(x)
p(x)
p̃(x)

p̃(x)dx = Eep[g(X̃)
p(X̃)

p̃(X̃)
], (8.1)

provided that p̃(x) > 0 if p(x) > 0. The random variable X̃ obeys the so-called sampling
distribution p̃(x). Equation (8.1) suggest the following scheme to estimate θ

i. Draw n samples x1, x2, . . . , xn using the density p̃(x).

ii. Compute the weights wi

wi =
p(xi)
p̃(xi)

for i = 1, 2, . . . , n

(iii) Estimate θ by

θ̃ =
1
n

n∑
i=1

g(xi) · wi. (8.2)

The first observation is that θ̃ is an unbiased estimator since,

E[θ̃] =
1
n

n∑
i=1

Eep[g(X̃i) ·
p(X̃i)

p̃(X̃i)
] = θ.

One key question that remains is if there is a choice of p̃(x) which gives better results
than the original density p(x). Consider the variance of the estimator θ̃.

n2V ar(θ̃) =
∫ (

g(x)
p(x)
p̃(x)

− θ

)2

p̃(x)dx =
∫ (

g(x)2p(x)2

p̃(x)
− 2g(x)p(x)θ + θ2p̃(x)

)
dx

=
∫

g(x)2p(x)2

p̃(x)
dx− θ2 = Iep − θ2.
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Next, try to choose p̃ to minimize the above expression

Iep =
∫

g(x)2p(x)2

p̃(x)2
p̃(x)dx = E[

g(X̃)2p(X̃)2

p̃(X̃)2
].

Assuming that g(x) is a non-negative function, the above expression can be lower
bounded by Jensen’s inequality.

Iep ≥

(
E[

g(X̃)p(X̃)

p̃(X̃)
]

)2

= θ2

Jensen’s inequality holds for some random variable Z with equality if and only if Z is
almost surely a constant [43, p. 46]. Hence, the optimal choice for p̃ would be

p̃opt =
g(x)p(x)

θ
.

Note that the variance of θ̂(p̃) is zero for all k. Unfortunately, this is not a very
useful result. In the first place, the optimal density explicitly depends on θ, the unknown
quantity which is to be estimated. In fact, if θ were to be known, then there would be
no need to run the simulation experiments. Secondly, the density p(x) does not need to
be known. It may be the case that it is possible to draw samples from it, but explicit
expressions for it are generally not known. Hence, it is necessary to find other methods
or criteria to choose a proper sampling distribution. More theory on the choice of p̃ and
examples of the use importance sampling to reduce variation of the estimator can be
found in [11, 34].

8.2 Change from pixel based to uniform snapshot

Let C denote the circle of radius R centered around the basestation of interest. Further-
more, let MT (Γ) denote the estimator of missed traffic when using Poisson process Γ,
e.g. (3.9) or (3.11). In this section we first treat the general case when using a different
Poisson process than the pixel based Poisson process. Then we focus on the specific case
when users are modeled by a homogeneous Poisson process.

Suppose that the users in the wireless network model are described by a Poisson
process Π with intensity function λ : C → R. The theory of importance sampling
states that to eliminate the bias caused by the use of a different Poisson process Π̃ with
intensity function λ̃ : C → R, one should multiply the estimator of missed traffic by the
fraction of the density function of Π over the density function of Π̃. Observe that the use
of Π̃ brings two changes. Firstly, the distribution of the number of users in the network
is changed but also the distribution of the positions of the users in the cell differ. Since
the number and positions of points in a Poisson process are independent, one expects
that the causes for bias are eliminated by two different multiplicators say MN and MD.
The multiplicator MN corrects for the changed number of users while MD corrects the
bias caused by the different distribution of the positions of the users.

With N , respectively Ñ , denote the number of users in the cell of interest when
using Poisson process Π, respectively Π̃. Similarly, Xj and X̃j denote the position of
the jth user connected to the basestation of interest for both processes. Finally, Λ(A) =∫

A
λ(x)dx while Λ̃(A) =

∫
A

λ̃(x)dx. The number of users is Poissonian distributed with
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mean Λ(C) for the process Π while the number of users is Poissonian distributed with
mean Λ̃(C) for Π̃. Hence, to eliminate the bias caused by the different distribution of
the number of users, the estimator of missed traffic should be multiplied by

MN = e
eΛ(C)−Λ(C)

(
Λ(C)

Λ̃(C)

) eN
.

The second multiplicator eliminates the bias caused by the different distribution for
the positions of the users in the cell. The density for Xj is, by Theorem B.2, λ(x)/Λ(C).
Hence, the second multiplicator should be

MD =
eN∏

j=1

(
λ(X̃j)

λ̃(X̃j)
· Λ̃(C)
Λ(C)

)
=

(
Λ̃(C)
Λ(C)

) eN eN∏
j=1

λ(X̃j)

λ̃(X̃j)

Therefore, a logical candidate for the multiplication factor M which eliminates the
bias of the estimator of missed traffic would be

M = MN ·MD = e
eΛ(C)−Λ(C) ·

eN∏
j=1

λ(X̃j)

λ̃(X̃j)
. (8.3)

The fact that M eliminates the bias of the estimator of missed traffic is stated in the
following lemma. The proof of this lemma can be found in Appendix A.2.

Lemma 8.1. Let Π be some (non)-homogeneous spatial Poisson process with intensity
function λ(x) as is Π̃ described by intensity function λ̃(x) such that λ̃(x) > 0 whenever
λ(x) > 0 and both intensity functions are Lesbesgue integrable. If M is defined as (8.3),
then the estimator of missed traffic given by

MT (Π̃) ·M

is unbiased in the sense that

E[MT (Π̃) ·M ] = E[MT (Π)].

Now we return to our initial plan to use a homogeneous Poisson process Π̃ with
constant intensity λ̃ instead of the inhomogeneous pixel based Poisson process Π̃. The
inhomogeneous Poisson process splits the cell C into pixels P1, P2, . . . , PL. The estimator
of missed traffic remains to be unbiased by multiplication with an appropriate factor as
is stated in the following corollary. Recall that Ñ is now defined to be the number of
users connected to the basestation of interest when using Poisson process Π̃. Similarly,
X̃j denotes the position of the jth user in C when using Π̃.

Corollary 8.1. When L <∞,

MT ·M = MT · eeλ|C|−
P

` λ`|P`| ·
eN∏

j=1

∑
` λ`1{X̃j ∈ P`}

λ̃

is unbiased in the sense that

E[MT (Π̃) ·M ] = E[MT (Π)],

provided that λ̃ > 0.
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Proof. The proof is by direct application of Lemma 8.1.

We want to stress that, although the notation can be intimidating, the implementa-
tion of Corollary 8.1 into an existing simulation program only requires a small modifi-
cation of the program. The users should be generated by sampling from the pixel based
Poisson process Π with intensity function λ(x) but suppose that the simulation program
uses a process with constant intensity λ̃. Then a snapshot is generated in which a total
of Ñ users are positioned at X̃1, X̃2, . . . , X̃ eN in the cell C of the basestation of interest.
The simulation program takes the same steps as it would have done when using the
process Π and computes an estimator of missed traffic based upon the snapshot. Only
the final step of the program undergoes a minor modification. Instead of returning the
computed estimator of missed traffic it is multiplied by M defined in Corollary 8.1.

8.3 Conclusions and recommendations

Importance sampling can be a powerful tool to extend the algorithm to inhomogeneous
Poisson processes. Suppose users are modeled by an inhomogeneous Poisson process
with intensity function λ : C → R, then Lemma 8.1 states that instead we can use a
homogeneous Poisson process with constant intensity λ̃. The bias caused by the use
of the homogeneous Poisson process is removed by multiplying the estimates of missed
traffic by a factor M .

One must be careful when applying importance sampling. Firstly, consider the values
of missed traffic which are returned by the simulation program. The choice of λ̃ causes
that the individual estimates of missed traffic can no longer be interpreted. For example,
multiplication by M can cause the estimate of missed traffic to exceed 1. A second
problem of importance sampling is that it can cause an increase of the variance of the
estimate so that it makes simulation impracticable. The increase/decrease of variance
is discussed in Section .

The latter observation also implies the importance of the choice for the intensity λ̃
of the homogeneous Poisson process. An intuitive choice would be to take

λ̃ =

∫
C

λ(x)dx∫
C

1dx
. (8.4)

However, this choice enjoys no optimal properties. We distinct two possibilities to choose
λ̃, static importance sampling and dynamic importance sampling, respectively.

With static importance sampling we base the choice of the intensity λ̃ of the homo-
geneous Poisson process on a training set. The training is used to choose λ̃ so that the
variance of the estimator of missed traffic of the training set is minimized. Adaptive
importance sampling is initialized by setting λ̃, for example choose λ̃ as (8.4), and fixing
some m ∈ N. After each batch of m snapshots, the optimal value for λ̃ is determined
so that it minimizes the variance of the estimator.

The benefits and disadvantages of static and dynamic importance sampling are ob-
vious. If the optimal choice for λ̃ does not suffer from strong fluctuations or there is a
wide range of λ̃ for which importance sampling works similarly, then we prefer to use
static importance sampling. Otherwise we would choose to use dynamic importance
sampling. For more information on static and dynamic importance sampling, and for
examples, we refer to [1, 40, 54, 62].
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Chapter 9

Conclusions and
recommendations

In this paper we have laid out the ground rules to construct a static model of the UMTS
network. We studied two specific models in detail, the single cell and the quadruple
cell model. For the single cell model we give a complete probabilistic analysis. For the
quadruple cell model we present two novel means to reduce the running time of the
simulation program. In this chapter we shall review the methods we used to analyze
these models and give recommendations for future research. The conclusions and rec-
ommendations in this chapter are a summary of the conclusions and recommendations
presented at the end of Chapter 4 to 8.

In Chapter 4 we study the single cell model. The advantage of the single cell model
is that, conditionally on the number of users, the transmit power of the users are inde-
pendent. This allows for a complete specification of the distribution, mean and variance
of missed traffic when the blocked users are not removed from the network. If blocked
users are removed from the network, then we use Lemma 4.1 to compute the expectation
of missed traffic.

Future research for the single cell model should focus on finding the distribution of
missed traffic when users are removed from the network. Furthermore, a distribution for
the factor F , by which the MAI of a user is modeled, should be found. A first attempt
to find the distribution of F is described in Section 5.3. Furthermore, more research on
numerical integration methods is necessary for Lemma 4.1 to have practical value.

In Chapter 5 we study the quadruple cell model. The quadruple cell model is bound
to be more accurate than the single cell model because it models more basestations. We
find that the best fit for missed traffic is the normal distribution. In Section 5.3 we also
introduce the adapted single cell model which uses factors F1 and F2 to model MAI.
We then show that we can link the quadruple cell model to the (adapted) single cell
model by fitting (a) distribution(s) to the factor(s) F (F1 and F2). The reduction to the
adapted single cell model shows great potential since simulations do not show reason to
doubt the fact that the distribution of missed traffic is the same as for the quadruple
cell model. Moreover, simulations show that use of the adapted single cell model can
reduce the running time by a factor 5.

For the quadruple cell model more research is needed on the modeling of the network.
We propose to model seven basestations instead of four. This proposal is due to the fact
that the quadruple cell model puts a distinct structure on the network which should
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be avoided. Analogue to the derivations in Chapter 4 we suggest to give a complete
probabilistic analysis of the adapted single cell model. Furthermore, more research is
needed to explain the difference between the number of users which are not blocked in
the quadruple cell model and the single cell model.

In Chapter 6 we introduce the general concept of classifying data into G groups and
study two classification rules, LDA and QDA, in detail when G = 4. Results show that
snapshots can be best assigned to the groups based on LDA with as feature variable
the sum of the squares of the distances of the users. In this case, roughly 60% of
the observations are assigned to the correct group. Moreover, the results indicate that
running time can be reduced by a factor 2 to 5. Further research is needed to find out
whether sampling from the allocation region of group g provides a representative sample
of snapshots belonging to group g. Furthermore, the performance of LDA can be even
further improved when only the users which are not blocked are considered.

We only discussed two classification rules in detail. The fact that data can be
classified by use of a single feature variable allows the use of more complex classification
rules. More research is needed to find whether there exists a classification rule other
than LDA, which has better performance. The results also indicate that more knowledge
on the process of removing users from the network could improve performance of the
classification rule.

In Chapter 7 we provide a sampling algorithm to generate samples from the distribu-
tion described by the density function (7.1). The method depends on uniformly drawing
samples from a convex polytope. We used convex geometry to find a decomposition of
the polytope into simplices and then draw uniform samples from the simplices.

We argue in Section 7.3.4 that it is unlikely that the running time of the simulation
program for wireless network models will severely increase due to the use of the sampling
algorithm. However, more research is needed to study the effect on the running time.
Hit-and-run algorithms can also be used to uniformly sample from convex polytopes,
these algorithms should be compared to the sampling algorithm to see which performs
best. The sampling algorithm is restricted to homogeneous Poisson process, future
research should focus on methods to extend the algorithm to work for other distributions.

In Chapter 8 we attempt to extend the sampling algorithm by use of importance
sampling. Importance sampling allows the use of a inhomogeneous Poisson process to
model users. A homogenous Poisson process with constant intensity λ̃ is used to model
the users connected to the basestation of interest. Then the bias caused by the use of an
homogeneous Poisson process instead of an inhomogeneous Poisson process is removed
by multiplying the estimates of missed traffic by an appropriate factor, see Lemma 8.1.

One should be careful with importance sampling because it can cause an increase in
the variance of the estimator of missed traffic so that it makes simulation impracticable.
More research is needed to find for which type of inhomogeneous Poisson processes
importance sampling works well. Also more research is needed to find a proper setting
for λ̃ which minimizes the variance of the estimator of missed traffic.

The methods introduced in this paper significantly reduce the running time of the
static simulation program. However, the results presented in Chapter 5 and 6 are only
valid for a specific choice of the parameters of the model, see Appendix E. It should
be validated if the findings still hold for different settings of the parameters. Ideally we
would like to link the results of these chapters to the choice of parameters. We further
encourage a study of the set of linear equations (3.4) and the process of removing
blocked users from the network. More knowledge could help to explain the results of
the reduction of the quadruple cell model to the (adapted) single cell model and could
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upgrade the performance of the sampling algorithm in Chapter 7. In this paper we
studied the model of the 3G UMTS network while currently the HSDPA network is
implemented. Therefore, the model needs to be updated so that it represents a HSDPA
network.
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[31] B. Grünbaum. Convex polytopes, Vol. 221 Graduate Texts in Mathematics. Springer-
Verlag, New York, second edition, 2003. Prepared and with a preface by Volker
Kaibel, Victor Klee and Günter M. Ziegler.

[32] J. M. Hammersley and D. C. Handscomb. Monte Carlo methods. Wiley, New York,
1964.

[33] M. Hata. Empirical formula for propagation loss in land mobile radio services.
IEEE Transactions on Vehicular Technology, 29:317–325, (1980).

[34] P. Heidelberger. Fast Simulation of Rare Events in Queueing and Reliability Mod-
els. In Performance Evaluation of Computer and Communication Systems, Joint
Tutorial Papers of Performance ’93 and Sigmetrics ’93, pages 165–202, London,
UK, 1993. Springer-Verlag.

[35] J. L. Hintze and R. D. Nelson. Violin Plots: A Box Plot-Density Trace Synergism.
The American Statistician, pages 181–184, 1998.

[36] D. Hwang, W. A. Schmitt, G. Stephanopoulos, and G. Stephanopoulos. Determina-
tion of minimum sample size and discriminatory expression patterns in microarray
data. Bioinformatics, 18:1184–1193, 2002.

[37] M. James. Classification Algorithms. William Collins Sons & Co., 1985.

[38] M. Joswig. Beneath-and-Beyond Revisited, (2002). Available on
http://arxiv.org/abs/math.MG/0210133.

[39] M. J. Klok. Performance Analysis of Advanced Third Generation Receivers. PhD
thesis, Technische Universiteit Delft, 2002.

[40] H. J. Kushner and J. Yang. Analysis of Adaptive Step-Size SA Algorithms for
Parameter Tracking. IEEE Trans. Automatic Control, 40:1403–1410, 1995.

[41] P. Lachenbruch. Discrimant Analysis. Hafner Press, 1975.

[42] J. Laiho, A. Wacker, and T. Novosad. Radio network planning and optimisation
for UMTS. Wiley, 2002.

[43] E. L. Lehmann and G. C. Casella. Theory of point estimation. Springer, New York,
1998.

[44] P. A. W. Lewis. Distribution of the Anderson-Darling statistic. Ann. Math. Statist.,
32:1118–1124, 1961.

[45] J. C. Liberti Jr. and T. S. Rappaport. Smart Antennas for Wireless Communica-
tions: IS-95 and Third Generation CDMA Applications. Prentice Hall PTR, Upper
Saddle River, 1999.

[46] J. K. Lindsey. Parametric statistical inference. Oxford Science Publications. The
Clarendon Press Oxford University Press, New York, 1996.

[47] L. Lovász. Hit-and-run mixes fast. Math. Program., 86:443–461, 1999.



78 REFERENCES

[48] G. G. Magaril-Il′yaev and V. M. Tikhomirov. Convex analysis: theory and applica-
tions, Vol. 222 Translations of Mathematical Monographs. American Mathematical
Society, Providence, RI, 2003. Translated from the 2000 Russian edition by Dmitry
Chibisov and revised by the authors.

[49] K. Mardia. Applications of some measures of multivariate skewness and kurtosis
in testing normality and robustness studies. Sankhya.

[50] G. J. McLachlan. Discriminant analysis and statistical pattern recognition. Wiley
Series in Probability and Mathematical Statistics: Applied Probability and Statis-
tics. John Wiley & Sons Inc., New York, 1992.

[51] D. C. Montgomery and E. A. Peck. Introduction to linear regression analysis.
Wiley-Interscience, Chichester, 1992.

[52] D. B. Owen. Handbook of statistical tables. Addison-Wesley Publishing Company,
1962.

[53] R. Prasad. CDMA for Wireless Personal Communications. Artech House, London,
1996.

[54] R. S. Randhawa and S. Juneja. Combining importance sampling and temporal
difference control variates to simulate markov chains. ACM Trans. Model. Comput.
Simul., 14:1–30, 2004.

[55] S. R. Saunders. Antennas and Propagation for Wireless Communication Systems.
Wiley, New York, 1999.

[56] A. Schrijver. Theory of linear and integer programming. Wiley-Interscience Series
in Discrete Mathematics. John Wiley & Sons Ltd., 1986.

[57] R. Seidel. Small-dimensional linear programming and convex hulls made easy. Dis-
crete Comput. Geom., 6:423–434, (1991).

[58] D. J. Sheskin. Handbook of parametric and nonparametric statistical procedures.
Boca Raton, 3rd edition, 2004.

[59] J. M. Steele. Stochastic calculus and financial applications, Vol. 45 Applications of
Mathematics (New York). Springer-Verlag, 2001.

[60] M. Stephens. Use of the Kolmogorov-Smirnov, Cramer-Von Mises and Related
Statistics Without Extensive Tables. J. Royal Stat. Soc., 32:115–122, (1970).

[61] H. Tverberg. How to cut a convex polytope into simplices. Geometriae Dedicata,
3:239–240, (1974).

[62] F. J. Vazquez-Abad and I. Baltcheva. Intelligent Simulation for the Estimation of
the Uplink Outage Probabilities in CDMA networks. Technical report, Les Cahiers
du GERAD, December 2002.

[63] A. J. Viterbi. CDMA: principles of spread spectrum communication. Addison-
Wesley Wireless Communication Series. Addison-Wesley Publishing Company,
1995.



REFERENCES 79

[64] J. Voigt. A novel approach to processing speed enhancement for dynamic CDMA
network simulations. In Vehicular Technology Conference, 2004. VTC2004-Fall].
2004 IEEE 60th, YEAR = 2004, volume = 6, pages = 4301–4305,.

[65] J. Voigt, J. Deissner, J. Hubner, D. Hunold, and S. Mobius. Optimizing HSDPA
performance in the UMTS network planning process. In Vehicular Technology
Conference, 2005. VTC 2005-Spring. 2005 IEEE 61st, Vol. 4, pages 2384–2388,
2005.

[66] P. W. Wahl and R. A. Kronmal. Discriminant Functions when Covariances are
Unequal and Sample Sizes are Moderate. Biometrics, 33:479–484, 1977.

[67] T. Winter, U. Türke, E. Lamers, R. Perera, A. Serrador, and L. Correia. Ad-
vanced simulation approach for integrated static and short-term dynamic UMTS
performance evaluation. Technical Report D2.7, IST-2000-28088 MOMENTUM,
2003.



80 REFERENCES



Appendix A

Mathematical derivations

In this chapter we shall provide the mathematical derivations which were omitted in the
previous chapters.

A.1 Expression for decoded bit

In this section we derive that the statistic Zm1 defined by (2.3) equals

Zm1 =

√
Pm

2
bm1 +

1
G

N−1∑
k=0

k 6=m

bk1

G∑
j=1

akjamj

√
Pk

2
+

1
G

G∑
j=1

amj
Nj√
2Tc

,

where (Nj)G
j=1 are independent and identically Gaussian distributed random variables

with zero mean and variance 1.
The contribution of user m to Zm1 is given by

Im1 =
√

2Pm

Tb
bm1

∫ Tb

0

am(t)2 cos2(2πfcat)dt =
√

2Pm

Tb
bm1

∫ Tb

0

cos2(2πfcat)dt

=
√

2Pm

Tb
bm1

(
Tb

2
+

sin(2πfcaTb)
8πfca

)
,

and provided that the carrier frequency fca is relatively much larger than the reciprocal
of the bit period

Im1 =

√
Pm

2
bm1. (A.1)

In a similar way ζ is computed.

ζ =
N−1∑
k=0

k 6=m

√
2P0

Tb

∫ Tb

0

bk(t)ak(t)am(t) cos2(2πfcat)dt

Recall that in the time to transmit a single bit we can transmit G chips.

ζ =
1
G

N−1∑
k=0

k 6=m

bk1

G∑
j=1

akjamj

√
2Pk

Tc

∫ jTc

(j−1)Tc

cos2(2πfcat)dt.
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Provided that the carrier frequency fca is relatively much larger than the reciprocal of
the chip period, it follows that

ζ =
1
G

N−1∑
k=0

k 6=m

bk1

G∑
j=1

akjamj

√
Pk

2
. (A.2)

The last term to compute is the noise contribution

η =
1
Tb

∫ Tb

0

am(t) cos(2πfcat)dB(t) =
1
G

G∑
j=1

amj

Tc

∫ jTc

(j−1)Tc

cos(2πfcat)dB(t).

It is a standard exercise in stochastic integration that the above integrals are mean zero
Gaussian distributed with variance∫ (i+1)Tc

iTc

cos2(2πfcat)dt,

for example see [59, p. 101]. By the familiar assumption that the carrier frequency fca is
relatively much larger than the reciprocal of the chip period, it follows that the variance
equals Tc/2. Therefore, the noise contribution becomes

η =
1
G

G∑
j=1

amj
Nj√
2Tc

, (A.3)

where (Nj)G
j=1 are independent and identically Gaussian distributed random variables

with zero mean and variance 1. Putting together (A.1) to (A.3) completes the proof.

A.2 Proof of Lemma 8.1

To prove Lemma 8.1, it suffices to show that the factor M corrects the errors which are
made due to the use of Π̃ instead of Π. Hence, it suffices to show that

E[M1{Ñ(A) = 0}] = e−Λ(A), (A.4)

for all bounded A. since by Theorem B.1 the process is then characterized by a Poisson
process with intensity function λ(x).

Consider the Poisson process Π and let Ac = C \A. By Rényi’s theorem if follows

e−Λ(A) = E[1{N(A) = 0}] = E[1{N(A) = 0}]
∞∑

n=0

E[1{N(Ac) = n}].

We can also include the positions of the N(Ac) users

e−Λ(A) = E[1{N(A) = 0}]·
∞∑

n=0

(
E[1{N(Ac) = n}] ·

∫
Ac

· · ·
∫

Ac

E[1{X1 = x1, X2 = x2, . . . , Xn = xn}]dx1 · · · dxn

)
.
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The random variables Xj are mutually independent, thus

e−Λ(A) = E[1{N(A) = 0}]·
∞∑

n=0

(
E[1{N(Ac) = n}] ·

∫
Ac

· · ·
∫

Ac

n∏
i=1

E[1{Xi = xi}]dx1 · · · dxn

)
.

The theory of importance sampling can be used to switch from the random variables
belonging to Π to those of Π̃. Carefully study each term in the following expression and
recall that N(A) ∼ Poi(Λ(A)) while the density function of Xi restricted to a subset A
is λ(x)/Λ(A) as consequence of Theorem B.2.

e−Λ(A) = E[1{Ñ(A) = 0}] e
eΛ(A)−Λ(A)·

∞∑
n=0

(
E[1{Ñ(Ac) = n}] e

eΛ(Ac)−Λ(Ac)

(
Λ(Ac)

Λ̃(Ac)

)n

·(
Λ̃(Ac)
Λ(Ac)

)n ∫
Ac

· · ·
∫

Ac

n∏
i=1

E[1{X̃i = xi}
λ(X̃i)

λ̃(X̃i)
] dx1 · · · dxn

)

Terms cancel or complete each other and all that remains is

e−Λ(A) = e
eΛ(C)−Λ(C)E[1{Ñ(A) = 0}]·
∞∑

n=0

(
E[1{Ñ(Ac) = n}] ·

∫
Ac

· · ·
∫

Ac

n∏
i=1

E[1{X̃i = xi}]
λ(xi)

λ̃(xi)
dx1 · · · dxn

)
.

In the first steps of the proof we used the formulas for expectation and obtained an
expression with sums and integrals, now follow the reverse path.

e−Λ(A) = e
eΛ(C)−Λ(C)E[1{Ñ(A) = 0}]·
∞∑

n=0

E[1{Ñ(Ac) = n}] E[
eN(Ac)∏
i=1

λ(X̃i)

λ̃(X̃i)
| Ñ(Ac) = n]

= e
eΛ(C)−Λ(C)E[1{Ñ(A) = 0}] · E[

eN(Ac)∏
i=1

λ(X̃i)

λ̃(X̃i)
]

Since Π̃ is a Poisson process it follows that the random variables Ñ(A), Ñ(Ac) and
X̃i, i = 1, 2, . . . , Ñ(Ac) are mutually independent. Hence,

e−Λ(A) = e
eΛ(C)−Λ(C)E[1{Ñ(A) = 0} ·

eN(Ac)∏
i=1

λ(X̃i)

λ̃(X̃i)
],

this completes the proof since the last equation precisely is (A.4).
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Appendix B

Mathematical Theory

B.1 Spatial Poisson processes in Rd

In this section we shall give a short introduction on spatial Poisson processes which are
used to model the users in the network. This overview of Poisson processes is a recap
of the discussion in [28].

A spatial Poisson process Π in Rd is described by a spatial dependent intensity
function λ : Rd → R. The process Π is called homogeneous for A ⊂ Rd if λ(x) = λ for
all x ∈ Rd and λ(x) = 0 for all x ∈ Rd \A. In all other cases Π is called inhomogeneous.
A random variable N is Poissonian distributed with mean λ if

P(N = n) = e−λ λn

n!
, (B.1)

which is denoted by X ∼ Poi(λ). The intensity of a bounded set A ⊂ Rd is defined to
be

Λ(A) =
∫

A

λ(x)dx.

Definition B.1. Let d ≥ 1 and let λ : Rn → R be a non-negative measurable function
such that Λ(A) <∞ for all bounded A. The random countable subset Π of Rd is called
Poisson process with intensity function λ if, for all A ∈ Bd, the Borel σ-field of Rd, the
random variables N(A) = |Π ∩A| satisfy

i. N(A) has the Poisson distribution with parameter Λ(A), and

ii. if A1, A2, . . . , An are disjoint sets in Bd, then N(A1), N(A2), . . . , N(An) are inde-
pendent random variables.

Rényi found another useful characterization of a spatial Poisson process.

Theorem B.1 (Rényi’s theorem). Let Π be a random countable subset of Rd, and let
λ : Rd → R be a non-negative Lebesgue integrable function satisfying Λ(A) <∞ for all
bounded A. If

P(Π ∩A = ∅) = e−Λ(A)

for any finite union A of boxes, then Π is a Poisson process with intensity function λ.
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An important and useful property of spatial Poisson processes is the conditional
property.

Theorem B.2 (Conditional property). Let Π be a (non-)homogeneous Poisson process
on Rd with intensity function λ, λ : Rd → R. Let A be a subset of Rd such that
0 < Λ(A) < ∞. Conditional on the event that |Π ∩ A| = n, the n points of the process
lying in A have the same distribution as n points chosen independently at random in A
according to the common probability measure

Q(B) =
Λ(B)
Λ(A)

, for all B ⊆ A.

Note that the conditional property implies that if λ(x) is constant on some subset A
of Rd, the points of the process Π are uniformly distributed over the set A. Furthermore,
the relevant density function for a point x in A is λx/Λ(A).

B.2 Test of hypotheses

The term hypothesis testing refers to the process of trying to decide the truth or falsity
of hypotheses on the basis of experimental evidence. A hypothesis test consists of two
hypotheses, the null hypothesis H0 and the alternative hypothesis Ha. Based on a test
statistic, a test is conducted whether we should reject H0 in favor of Ha or that we
should not reject Ha.

In this section we will first give a short introduction into the theory of hypothesis
testing. After the introduction we shall present some goodness of fit tests. There are
two types of goodness of fit tests, the first type is the one sample goodness of fit test.
The one sample tests are used to test whether experimental data comes from some fully
prescribed distribution function. The second type is the two sample goodness of fit test,
these tests can be used to test whether two samples obey the same unknown distribution
function.

B.2.1 Theory of hypothesis testing

In this section we will shortly discuss hypothesis testing. The material presented in this
section is an overview of an extensive treatment of the subject to be found in [6].

In general, experimental measurements are subject to random errors, and thus any
decision about the truth or falsity of the hypothesis, based on experimental evidence,
is also subject to error. It is impossible to avoid an occasional decision error, but it is
possible to construct tests that such errors occur infrequently and at some prescribed
rate.

Definition B.2. If X ∼ f(x; θ), then a statistical hypothesis is a statement about the
distribution of X. If the hypothesis completely specifies f(x; θ), then it is referred to as
a simple hypothesis; otherwise it is called composite.

Quite often the distribution in question has a known parametric form with a single
unknown parameter θ, and the hypothesis consists of a statement about θ. For example,
if X ∼ N (µ, σ) with σ known, hypothesis testing can be used to test whether µ is greater
than µ0. The null hypothesis H0 is set to be µ < µ0 and the alternative hypothesis is set
to be µ > µ0 or vice versa.
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We must decide on the basis of the sample data whether we have sufficient statistical
evidence to reject H0 in favor of Ha, or whether we do not have sufficient evidence. The
philosophy will be to divide the sample space into two regions, the critical or rejection
region C, and the nonrejection region S \ C. If the observed sample data falls into the
critical region C we reject H0 in favor of Ha otherwise we do not reject H0.

There are two possible errors in the procedure of hypothesis testing. These errors
are

i. Type I error: reject a true H0,

ii. Type II error: fail to reject a false H0.

We hope to choose a test statistic and a critical region so that we would have a small
probability of making these two errors. These errors are usually denoted as

i. P(Type I error) = α,

ii. P(Type II error) = β.

The probability of rejecting a true H0 is referred to as the significance level of the test.
The standard approach for testing is to specify or select some acceptable level of

error such as α = 0.05 or α = 0.01 for the significance level of the test, and then to
determine a critical region that will achieve this α. Among all critical regions of size α
select the one that has the smallest type II error.

If the hypothesis is set up as described above, it is important to stress the difference
between rejecting H0 and not rejecting H0. If H0 is rejected and Ha is adopted, then
the error rate α of being wrong is controlled. However, if H0 is not rejected, the H0

may be true or a type II error is made which has an uncontrolled error rate β. Most
experiments have some goal or research hypothesis that one hopes to support with
statistical evidence, it is clear that, if possible, this hypothesis should be taken as the
alternative hypothesis.

There is not always general agreement about how small α should be for rejection of
H0 to constitute strong evidence in support of Ha. While one experimenter considers
α = 0.05 to be sufficient small, another experimenter may insist on using α = 0.01.
Hence, it would be possible for both experimenters to draw different conclusions based
on the same data. If both experimenters agree to use the same test statistic, then this
problem may be overcome by reporting the results of the tests in terms of the p-value of
the test. The p-value is defined to be the smallest α at which H0 can be rejected, based
on the observed value of the test statistic. Therefore, H0 is reject for α ≥ p while it is
not rejected for α < p.

B.2.2 Goodness of fit tests

Suppose that x1 ≤ x2 ≤ . . . ≤ xn is an ordered sample of n independent observations
from a distribution with the distribution function F (x). When studying the proposed
test statistics, bear in mind that it is assumed that sample values are ordered. One
sample goodness of fit tests are used to test whether the experimental data obeys some
prescribed distribution function F0(x). The hypotheses for a goodness of fit test are

H0 : F (x) = F0(x)
Ha : F (x) 6= F0(x).
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We will treat three distinct goodness of fit tests, the Kolmogorov-Smirnov test, the
Cramér-von-Mises test and the Anderson-Darling test.

The test statistics for all three the test are based on comparing the empirical dis-
tribution function Fn(x) to the distribution function F0(x). The empirical distribution
function Fn(x) is defined as

Fn(x) =
1
n

n∑
k=1

1{xi ≤ x}.

It should be clear that if the sample x1, x2, . . . , xn is a sample from the distribution
function F0(x), then the empirical distribution function should be close to F0. Each of
the tests has a different way to measure whether Fn(x) is “close enough” to F0(x).

In [60], approximation formulae are given which can be used to compute p-values for
each of the three tests. These approximation formulae are useful to generate p-values
for data sets which are large enough such that the error is negligible small. Stephens
[60] also suggests that the approximation formulae are already useful for data sets with
as few as 8 sample values.

Kolmogorov-Smirnov test The Kolmogorov-Smirnov test, often called the K-S test,
is based on the test statistic

Dn = sup
−∞≤x≤∞

|Fn(x)− F0(x)| = max
1≤i≤n

(
F0(xi)−

i− 1
n

,
i

n
− F0(xi)

)
.

This particular test is known as the two-sided test since it tests both the hypotheses
Fn(x) ≥ F0(x) and Fn(x) ≤ F0(x). The test is called on-sided if only one of these
hypotheses is tested.

The null hypothesis is rejected in favor of the alternative hypothesis if Dn is greater
than the critical value. Critical values for different values of α and for 1 ≤ n ≤ 100 are
tabulated in [52]. For data sets which contain more than 100 sample values we use the
approximation formula

P(D∗ > z) = 2e−2z2
,

where D∗, the modified version of Dn, is

D∗ = Dn(
√

n + 0.12 + 0.11/
√

n).

Cramér-von-Mises test Another test which can be used to test goodness of fit is
the Cramér-von-Mises test or the C-M test. The test statistic is

W 2 = n

∫ ∞

−∞
(F0(x)− Fn(x))2 dF0(x).

If F0(x) is differentiable, then the test statistic becomes

W 2 =
n∑

i=1

(
F (xi)−

2i− 1
2n

)2

+
1

12n
.

If the the data set is large enough we use the approximation formula

P(W ∗ > z) = 0.05 e2.79−6z,

where W ∗, the modified version of W 2, is

W ∗ = (W 2
n − 0.4/n + 0.6/n2)(1.0 + 1.0/n).
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Anderson-Darling test The A-D test, due to Anderson and Darling [2], uses the
test statistic

A2
n = n

∫ ∞

−∞

(Fn(x)− F0(x))2

F0(x)(1− F0(x))
dF0(x) = −n−

n∑
i=1

2i− 1
n

(log F0(xi)+log(1−F0(xn+1−i)).

The Anderson-Darling test makes use of the specific distribution in calculating criti-
cal values. This has the advantage of allowing a more sensitive test and the disadvantage
that critical values must be calculated for each distribution. However, the test statistic
A2 converges so rapidly that no modification is required for any n ≥ 5. Anderson and
Darling [2] found the following expression for the cdf of the test statistic A2

P(A2 ≤ z) =
∞∑

j=0

(−1)je−
(4j+1)2π2

8z (4j + 1)Γ
(
j + 1

2

)
j!

∫ ∞

0

e
z

8(y2+1)
− (4j+1)2π2y2

8z dy. (B.2)

By Monte-Carlo studies Lewis [44] showed that the first two terms of the sum on the
right-hand side of (B.2) obtain estimates with a precision of five significant numbers.
The integral in (B.2) can only be evaluated numerically. However, by using a numerical
integration formula with error control the estimate will still remain to be precise with
five significant numbers.

Two-sample Kolmogorov-Smirnov test The two sample Kolmogorov-Smirnov test
tries to determine if two samples differ significantly. The techniques used are similar to
the one sample Kolmogorov-Smirnov test. The two sample Kolmogorov-Smirnov test
compares the empirical distribution functions for both samples. The test statistic is
the maximal distance between the two empirical distribution functions. This test is
more complicated than the one sample goodness of fit tests but is standardly delivered
with most statistical software packages. For example Statgraphics can be used to find
asymptotic p-values for the test.
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Appendix C

Maximum Likelihood
Estimators

In this section we first give a short introduction into maximum likelihood estimators.
We then compute the maximum likelihood estimators for exponential alike distributions
and for the truncated normal distribution.

The method of maximum likelihood is based on the idea to use a parameter value in
the parameter space that corresponds to the largest “likelihood” for the observed data
as an estimate of an unknown parameter. Let X1, . . . , Xn represent a random sample
from f(x; θ), then

L(θ) =
n∏

i=1

f(Xi; θ),

is referred to as the likelihood function. The maximum likelihood estimator (MLE) θ̂ of
θ satisfies

L(θ̂) = max
θ∈Ω

L(θ),

where Ω is the set of all allowable values for θ.
If Ω is an open interval, and if L(θ) is differentiable and assumes a maximum on Ω,

then the MLE will be a solution of the maximum likelihood equation

d

dθ
L(θ) = 0.

For computational convenience the alternate form of the maximum likelihood equation

d

dθ
log L(θ) = 0

often will be used.
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C.1 Exponential alike distributions

First consider the case when the (Xi)n
i=1 are i.i.d. exponential distributed with scale

parameter λ. The likelihood function is

log

(
λn

n∏
i=1

e−λXi

)
= n log λ− λ

n∑
i=1

Xi.

Taking the derivative with respect to λ gives

n

λ
−

n∑
i=1

Xi = 0.

The MLE of λ is

λ̂ = n

(
n∑

i=1

Xi

)−1

.

Let (Xi)n
i=1 are i.i.d. two-parameter exponential distributed with scale parameter λ

and location parameter γ. We need to maximize

log

(
λn

n∏
i=1

e−λ(Xi−γ)

)
= n log λ− λ

n∑
i=1

(Xi − γ).

Note that the likelihood function is monotone increasing in γ. In order to maximize
the likelihood we take γ as large as possible under the constraint that γ ≤ Xi for all
i = 1, . . . , n. Therefore, we choose γ̂ = X(1), the minimum of X1, . . . , Xn. We then
proceed in the same way as for the exponential distribution and derive that

λ̂ = n

(
n∑

i=1

(Xi − γ̂)

)−1

.

C.2 Truncated normal distribution

In this section we describe the maximum likelihood estimators of the parameters for the
truncated normal distribution. We distinct a few possibilities, namely a normal random
variable can be left truncated, right truncated and double truncated.

Recall that the density function of a normally distributed random variable is

ϕ(x;µ, σ) =
1√
2πσ

exp
[
−(x− µ)2

2σ2

]
,

while the cumulative distribution function is

Φ(x;µ, σ) =
1√
2πσ

∫ x

−∞
exp

[
−(x− µ)2

2σ2

]
.

A random X variable is double truncated normally distributed if its density function is

fX(x;µ, σ, xL, xR) =

 0 if x < xL

(Φ(xR;µ, σ)− Φ(xL;µ, σ))−1ϕ(x;µ, σ) if xL ≤ x ≤ xR

0 if x > xR
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The left and right truncated normal density functions are defined similarly by replacing
the denominator by Φ(xL;µ, σ), 1− Φ(xL;µ, σ) respectively.

The maximum likelihood estimators of the truncation points xL and xR are quite sim-
ple. Let X1, X2, . . . , Xn denote a sample from the double truncated normal distribution
and X(1), X(2), . . . , X(n) the sample rearranged in increasing order. In order to maximize
the likelihood function we need to minimize the denominator Φ(xR;µ, σ) − Φ(xL;µ, σ)
subjected to the condition that xL ≤ Xi ≤ xR. Since Φ is strictly increasing between xL

and xR, it follows that the likelihood function is maximized by setting x̂L = X(1) and
x̂R = X(n). For the left (right) truncated normal distribution the maximum likelihood
estimator for xL (xR) is X(1) (X(n)).

If the truncation points are known, or estimated when necessary, the parameters µ
and σ can be estimated. Cohen devoted a series of papers [14, 15, 16, 17, 18, 19] to
the subject of the maximum likelihood estimators for the parameters µ and σ. In these
papers the following notation is introduced. Let ZL = ZL(uL, uR) and ZR = ZR(uL, uR)
be defined as

ZL = ϕ(uL; 0, 1)/(Φ(uR; 0, 1)− Φ(uL; 0, 1))
ZR = ϕ(uR; 0, 1)/(Φ(uR; 0, 1)− Φ(uL; 0, 1))

Furthermore, let X and S represent the sample mean and standard deviation.
In case of a double truncated normal distribution, Cohen [16] derived the following

system of equations for uL and uR

ZR − ZL + uR

uR − uL
=

xR −X

xR − xL
,

1− ZRuR + ZLuL − (ZR − ZL)2

(uR − uL)2
=

S2

(xR − xL)2
.

The Newton-Raphson method might be used to find a solution to the latter equations.
The likelihood estimators are then

µ̂ = xR −
uR(xR − xL)

uR − uL
,

σ̂ =
uR(xR − xL)

uR − uL
.

Because of the symmetry of the normal distribution a right truncated normal random
variable does not have to be considered separately and we focus on the left truncated
normal distribution. Cohen [17] introduces the functions Z = Z(ξ) and ϕ = ϕ(ξ)

Z(ξ) =
ϕ(ξ; 0, 1)

1− Φ(ξ; 0, 1)
,

θ(ξ) =
Z(ξ)

Z(ξ)− ξ
.

The equation of ξ which must be solved in order to estimate µ and σ is

1− Z(Z − ξ)
(Z − ξ)2

=
S2

(X − xL)2
.
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A root-finding algorithm needs to be used to find the solution ξ̂ and the desired maximum
likelihood estimators become

σ̂2 = S2 + θ(ξ̂)(X − xL)2,

µ̂ = X − θ(ξ̂)(X − xL).



Appendix D

Results discriminant analysis

In this chapter we tabulate the results of linear and quadratic discriminant analysis.
Recall that the following feature variables are used

X1 = N1, the number of users which are connected to basestation 1

X2 =
∑

j Dj/N1, the mean distance,

X3 =
∑

j D2
j /N1, the mean squared distance.

Furthermore, M1 is defined to the percentage of observations that were assigned to the
correct group. The measure M2 represents the percentage of the observations that were
not assigned to the correct group but to a direct neighbor of the correct group. The
third measure M3 is defined to be the sum of M1 and M2.
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Tables D.1 to D.4 show the groupwise results of quadratic discriminant analysis for
every possible set of feature variables.

Model Performance
X1 X2 X3 M1 M2 M3

1 0 0 0.0 0.0 0.0
0 1 0 67.5 27.7 95.2
0 0 1 69.9 28.9 98.8
1 1 0 58.4 35.6 94
1 0 1 62.7 28.9 91.6
0 1 1 80.1 13.3 93.4
1 1 1 2.4 5.3 7.8

Table D.1: Performance QDA for group 1

Model Performance
X1 X2 X3 M1 M2 M3

1 0 0 0.0 0.0 0.0
0 1 0 61.5 38.2 99.7
0 0 1 63.1 36.1 99.2
1 1 0 67.7 42.3 100.0
1 0 1 70.6 28.9 99.5
0 1 1 57.4 42.3 99.7
1 1 1 0.0 0.0 0.0

Table D.2: Performance QDA for group 2

Model Performance
X1 X2 X3 M1 M2 M3

1 0 0 100.0 0.0 100.0
0 1 0 64.7 35.3 100.0
0 0 1 64.7 35.3 100.0
1 1 0 72.9 27.1 100.0
1 0 1 67.8 32.2 100.0
0 1 1 60.6 37.1 97.8
1 1 1 0.0 0.0 0.0

Table D.3: Performance QDA for group 3

Model Performance
X1 X2 X3 M1 M2 M3

1 0 0 0.0 0.0 0.0
0 1 0 67.1 31.5 98.6
0 0 1 71.9 28.1 100.0
1 1 0 61.0 37.6 98.6
1 0 1 67.1 32.9 100.0
0 1 1 57.5 41.1 98.6
1 1 1 100.0 0.0 100.0

Table D.4: Performance QDA for group 4
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Tables D.5 and D.6 show the groupwise results for LDA, the first table shows the
performance when we use the discriminant functions based on the subset of all snapshots
for which X1 = 4. The second table shows the performance when the discriminant
functions are based on the entire training set.

Group 1
Model M1(1) M2(1)

X2 47.4 15.8
X3 47.4 15.8

(X2, X3) 52.6 15.8

Group 2
Model M1(2) M2(2)

X2 60.0 0.0
X3 56.4 0.0

(X2, X3) 58.2 0.0

Group 3
Model M1(3) M2(3)

X2 80.9 0.0
X3 74.5 0.0

(X2, X3) 70.2 0.0

Group 4
Model M1(4) M2(4)

X2 19.0 0.0
X3 23.8 0.0

(X2, X3) 28.6 0

Table D.5: LDA when X1 = 4, discriminant functions based on snapshots with X1 = 4

Group 1
Model M1(1) M2(1)

X2 57.9 10.5
X3 52.6 15.8

(X2, X3) 57.9 15.8

Group 2
Model M1(1) M2(1)

X2 61.8 0.0
X3 61.8 0.0

(X2, X3) 58.2 0.0

Group 3
Model M1(1) M2(1)

X2 72.3 0.0
X3 68.1 0.0

(X2, X3) 68.1 0.0

Group 4
Model M1(1) M2(1)

X2 23.8 0.0
X3 23.8 0.0

(X2, X3) 33.3 0.0

Table D.6: LDA when X1 = 4, discriminant functions based on entire training set
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Tables D.7 and D.8 show the groupwise results for QDA, the first table shows the
performance when we use the discriminant functions based on the subset of all snapshots
for which X1 = 4. The second table shows the performance when the discriminant
functions are based on the entire training set.

Group 1
Model M1(1) M2(1)

X2 36.8 15.8
X3 42.1 15.8

(X2, X3) 31.6 15.8

Group 2
Model M1(2) M2(2)

X2 65.5 0.0
X3 58.2 0.0

(X2, X3) 61.8 0.0

Group 3
Model M1(3) M2(3)

X2 74.5 0.0
X3 78.7 0.0

(X2, X3) 63.8 0.0

Group 4
Model M1(4) M2(4)

X2 4.8 0.0
X3 19.0 0.0

(X2, X3) 4.8 0.0

Table D.7: QDA when X1 = 4, discriminant functions based on snapshots with X1 = 4

Group 1
Model M1(1) M2(1)

X2 63.2 5.3
X3 63.2 10.5

(X2, X3) 73.7 10.5

Group 2
Model M1(1) M2(1)

X2 65.5 0.0
X3 61.8 0.0

(X2, X3) 65.5 0.0

Group 3
Model M1(1) M2(1)

X2 68.1 0.0
X3 59.6 0.0

(X2, X3) 48.9 2.1

Group 4
Model M1(1) M2(1)

X2 38.1 0.0
X3 42.9 0.0

(X2, X3) 23.8 0.0

Table D.8: QDA when X1 = 4, discriminant functions based on entire training set
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The observations in the training set are tested for skewness, kurtosis and homoscedas-
ticity, see Tables D.9-D.11. The value for ρ = 0.998 while ω2 = −2.89 × 10−6 which
allows for the use of the approximative distribution.

Group/Model X1 X2 X3 (X1, X2) (X1, X3) (X2, X3) (X1, X2, X3)
1 x 0.04 0.07 x x x x
2 x 0.15 x x x x x
3 x 0.03 0.11 x x x x
4 x 0.40 0.57 0.14 0.06 x x

Table D.9: p-values for skewness test, an x means smaller than 10−2

Group/Model X1 X2 X3 (X1, X2) (X1, X3) (X2, X3) (X1, X2, X3)
1 0.68 0.39 0.81 0.67 0.54 x x
2 0.27 0.17 0.19 0.25 0.23 x x
3 0.12 x 0.13 0.01 0.24 x x
4 0.96 0.76 0.70 0.95 0.93 x x

Table D.10: p-values for kurtosis test, an x means smaller than 10−2

Model X1 X2 X3 (X1, X2) (X1, X3) (X2, X3) (X1, X2, X3)
M 2.99 58.21 38.56 126.37 100.03 171.73 260.78

p-value 0.39 x x x x x x

Table D.11: p-values for homoscedasticity, an x means smaller than 10−2
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The observations in training set such that X1 = 4 are tested for skewness, kurtosis
and homoscedasticity, see Tables D.12-D.14. The value for ρ = 0.99 while ω2 = −15 ×
10−5 which allows for the use of the approximative distribution.

Group/Model X2 X3 (X2, X3)
1 0.47 0.74 x
2 0.42 0.18 x
3 0.64 0.21 x
4 0.89 0.56 x

Table D.12: p-values for skewness test, an x means smaller than 10−2

Group/Model X2 X3 (X2, X3)
1 0.18 0.26 0.67
2 0.18 0.67 x
3 0.17 0.19 x
4 0.62 0.69 x

Table D.13: p-values for kurtosis test, an x means smaller than 10−2

Model X2 X3 (X2, X3)
M 2.62 0.59 7.21

p-value 0.45 0.90 0.62

Table D.14: p-values for homoscedasticity, an x means smaller than 10−2



Appendix E

Parameter settings

In this paper we study models of the UMTS network. The specific choice we made for
the parameters of the wireless network are displayed in Table E.1 and Table E.2.

Parameter Value
σS 6
fca (Mhz) 2000
hb (m) 20
d0 (km) 0.05
K1 69.55
K2 26.16
K3 13.82
K4 44.9
K5 6.55

Table E.1: Path Loss

Parameter Value
µ 100.60

G 60
Nf (mW) 10−10.41

Pmax (mW) 102.3

λ 4
Rmax (km) 1

Table E.2: Other parameters
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