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SUMMARY 

Mechanical manipulators are controlled in order to make their end-effector track a desired 
trajectory. For this purpose a controller is designed on account of the available information 
of the system. This information is put into a model, which does not exactly correspond to 
the actual system. There are always phenomena like measurement noise, unmodelled 
dynamics and unknown parameters. The level of robustness depends on the influence of 
these model errors on the control behaviour. A controller is robust, when model errors have 
I I U Y A Y  l i++lp  A A ~ Y . . . . I I I  infliimw nn -- the rnntrol -_--. behaviour. 

In literature many robust controllers are proposed, but only a few are actually applied. 
Therefore research into practical application of existing controllers is just as important as 
research into new controllers. The adaptive controller of Slotine and Li (1987) enjoys, 
according to them, essentially the same level of robustness to unmodelled dynamics as the 
PD controller, but achieves much better tracking accuracy. This adaptive controller 
estimates model parameters on-line, so it is attractive to use in the presence of large 
parameter uncertainties. 

The presented research into the adaptive controller consists of three parts: 

o Simulation of a rigid system: The RT-robot 

o Simulation of a fiexible system: The XY-table 

o Implementation in the XY-table 

Attention is paid to the comparison between the PD and adaptive controller in the 
presence of modelling errors. Unmodelled dynamics are added to the simulated RT-robot, 
which are not taken into account for the controller design. Research is done into the 
modelling errors of the actual XY-table. It is shown that the adaptive controller d 
have to have essentially the same level of robustness to unmodelled dynami 
controller. But the implemented adaptive controller achieves much better tracking 
accuracy in the presence of unmodelled dynamics than the PD controller. The estimated 
parameters converge to the same values, no matter what the starting parameter values are. 
Indeed, the adaptive controller of Slotine and Li can be recommended for complex 
Indrast rial tasks. 
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NOTATION 

A, a 

l a l  
a 

scalar number 
absolute value 
column (small italic characters) 
i-th term 

term OR row i, column j 
transpose 
inverse 
estimate 
desired a 

a-@ (tracking error) 
first order time derivative 
second order time derivative 
diagonal matrix [ 0 b ] 

mairix (capit&! it&z characters) 
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CHAPTER 1: INTRODUCTION 

Industrial robots are controlled in order to make its end-effector track a desired 
trajectory. A controller design is based on a model of the system. When this model would 
completely correspond to the system, a controller using only full dynamics feedforward 
would cause the desired trajectory to be tracked without tracking errors. In practice the 
model will never correspond exactly to the system. There will always be some modelling 
errors: 

O 

O 

O 

O 

The dynamic structure may not be known exactly. For exampie a mechanicai 
manipulator is often considered stiff, while there could be some significant 
flexibility in the manipulator. Sometimes significant non-linearities are known to 
be present, but cannot be taken into account in the controller implementation 
because of the computational effort. 

The dynamic behaviour of a robot also depends on parameter values. Parameters 
are physical properties like inertia, mass, friction, gravitation and geometrical 
properties like angles and lengths. The parameter values are not always known 
exactly. 

The controller design is often based on a continuous time model. On-line control 
takes processing time, which causes time delay. 

Measurin instruments have some inaccuracy. A computer executes the 
control af gorithm. Only discrete numbers can be processed. This is not a 
modelling error, but is mentioned, because it causes tracking exxors. 

The influence 
with only full 
with respect to model errors. 

In literature many robust controllers are proposed, but only a few are actually applied. 
Therefore research into practical application of existing controllers is just as important as 
research into new controllers. Research is necessary to investigate their feasibility and to 
compare their performances. One of the proposed controllers in literature is the adaptive 
controller of Slotine and Li (1987). The main topic of this report is to compare the 
performance of the PD and adaptive controller. 

In chapter 2 the principles of the adaptive controller are explained. 

se modelling errors on the dynamic behaviour of a system 
cs feedforward wodd be very large. Such a controller is 

In chapter 3 simulations of the RT-robot, a rigid manipulator, are presented. A 
description of the RT-robot is given. Simulations with friction and unmodelled dynamics 
are presented. 

In chapter 4 simulations of the XY-table, a flexible manipulator, are presented. A 
description of the XY-table is given. The infiuences of motor and end-effector feedback are 
discussed. Further the PD and adaptive controller are compared. Finally some 
discretization effects are discussed. 

In chapter 5 the PD and adaptive controller are applied to the actual XY-table. A 
Kalman observer is designed to reconstruct position and speed one sample ahead. Then 
there is no infiuence of time delays due to processing time. All sorts of modelling errors are 
discussed. The flexibility of the XY-table can be reduced by turning on some screws. In 
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this way, experiments can be done with a rigid and a flexible system. In both situations the 
PD and adaptive controller are compared. 

In chapter 6 conclusions are drawn based on the results obtained. Recommendations are 
given for further experiments with and improvements of the XY-table. 
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CHAPTER 2: ADAPTIVE CONTROLLER 

The main topic of this report is to compare the PD and adaptive controller. The adaptive 
controller consists of a PD feedback and a full dynamics feedforward. The unknown 
parameters are estimated 
law are such that the 
smaller or equal to zero. Global asymptotic stability is guaranteed through the use of 
implicit sliding surfaces. To be able to read this report it is not necessary to understand the 
adaptive controller completely. The most important things to know are that the PD 
feedback is defined with matrices rC, and K d  and that the adaptation spee6 Gepen& among 
others on the matrix I'-1. Larger elements of r-1 lead to quicker adaptation of the estimated 
parameters. In this report the elements of r-1 will be called the aduptutzon values. The 
choices of the matrices Kp, Kd and r-1 are limited by measurement noise and unmodelled 
dynamics. 

on-line. The choice of the control law and adaptation 
the manipulator's total energy (Lyapunov function) is 

Without any proof see Slotine and Li, 1987) the control law and the adaptation law are 

be written as: 
given. In absence of I iction and disturbances, the dynamics of an n-link manipulator can 

with 

4: the n-dimensional column of joint displacements 

r: the n-dimensional column of applied joint torques 

q q ) :  the nxn symmetric positive definite manipulator inertia matrix 

Gr(q,@)$: the n-dimensional column of centripetal and Coriolis torques 

g(q): the n-dimensional column of gravitational torques. 

with 
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k, C and 9: estimates of H, C and 9 

Qr: virtual reference trajectory with Qr = Qd - AQ, $r = qd - AQ 

qd(t), Qd(t), Qd(t): desired trajectory 

A: symmetric positive definite matrix. 

Kd: positive definite matrix 

s: measure of tracking accuracy s = Q + A4 
KdS: PD feedback -&s = - Kdîj  - &hij = - KdJ - Kp4 
Kp: symmetric positive definite matrix 

Because H, Cand g are linear in the parameters, (2.2) can be rewritten as: 

with 

Y =  qq,@,Qr,&-): nxm matrix 

Û the m-dimensional column of the manipulator parameters 

The adaptation law is defined as: 

with 

I’: symmetric positive definite mxm matrix 

(2.2a) 
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CHAPTER 3: SIMULATION OF RT-ROBOT 

3.1 Introduction 

The adaptive controller will be applied to a rigid manipulator, a RT-robot. First, the 
RT-robot will be described. Then the gain matrices of the PB feedback will be determined 
based on the eigenfiequency and damping factor. The infiuence of larger adaptation values 
on the tracking errors will be examined, when there are no unmodelled dynamics. This will 
be done with and without iriction. Finally the PD a d  adaptiye eûntrûller will be 
compared, when there are unmodelled dynamks in the actual system. In that case the 
adaptation values have to be chosen small enough so that the unmodelled dynamics do not 
cause instability. 

3.2 DescriDtion of RT-robot 

h 

Figure 3.1: R T-robot 

In order to compare the PD and adaptive controller, the motion of a simple RT-robot, 
illustrated in figure 3.1, was simulated.The capitals RT stand for rotation and translation. 
The RT-robot consists of a disk with moment of inertia I and a rigid bar with length 1 and 
homogeneously distributed mass m. If there is no friction, the bar can be pushed up and 
down inside the disk by force F(t) without any resistance. The load at the end of the bar is 
a concentrated mass ml. The disk with bar can be rotated by torque M(t). The system can 
be described with two degrees of freedom, a rotation cp(t) and a translation r(t). The 
equations of motion, derived with the method of Lagrange, are: 
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PI = m+ml= 15 [kg] 

P2 = @ = 5 [kgm] 

P3 = I+iml2 = $4 [kgm21 

The PD and adaptive controller make use of a PD feedback as in equation (2.2a). The gain 
matrices Kp and K d  influence the eigenfrequencies and damping factors. Larger values of 
the gain matrices will lead to a quicker response to tracking errors. In practice there will 
always be measurement noise and unmodelled high-frequency dynamics. Too large values 
of the gain matrices will lead to less robustness to these effects and could cause instability. 
At first, simulations will be done without unmodelled high-frequency dynamics. But for 
the choice of the gain matrices, unniodelled high-frequency dynamics with an 
eigenfrequency of 25 [rad/s] will already be taken into account. A practical criterion to 
avoid instability due to these unmodelled dynamics is that the eigenfrequency of the 
controlled system must be much smaller than the eigenfiequency of the unmodelled 
dynamics. This is only a practical criterion. Even if the eigenfrequenues are the same, the 
controlled system could stay stable. Here the eigenfrequency and damping factor are chosen 
to be: 

wo = 10 [rad/s] 

8 =  1 [-I 

With this information the gain matrices can be determined. Linearization of equations 
(3.1) in a stationary working point (r,,cpo) results in: 

Substitution of equations (3.4) in (3.3) makes: 
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which can be written as: 

Then the gain matrices are: 

The most unfavourable working point is where the gain matrices axe the smallest. Then 11, 
which only depends on ïo  as shown in equations (3.31, is the smallest. This point, which is 
the mass centre of the bar with load, because in that point a torque causes the largest 
acceleration, is : 

Equations (3.2), (3.7) and (3.8) result in: 

K,=diag( 1500,666) 

&=diag(300,i33) (3-9) 

- 3.3 - 



3.4 Simulation results 

The first simulations were done without friction or high-frequency unmodelled dynamics. 
The desired trajectory in figure 3.2 was: 

o I t I 1.0 [SI : 

1 
(pd = t - sin(27r-t) [rad] 

1.0 5 t 5 1.4 [SI : 

11 

0.8 

0.6r / 

i/ -- 1 

Li /' 

0.4- ' 

0.2 ' 
O 0.2 0.4 0.6 

i; 

0.8 1 

(3.10) 
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3 
E 
b 
u 

I 21 

1.5 t- 
I 

1- / 1 

1 /' 0.5 ; 
I 

'0' d 4  0:6 0:8 i 

- 
E 
Y 

x 

Figure 3.2 Desired trajectory 

The design of the adaptive controller is given in appendix A. The initi 
estimates of the adaptive Controller were zero. Then the adaptive co 
adaptation off corresponds to the PD contr . The purpose of the experiments without 
unmodelled dynamics is not to compare the and adaptive controller. For a comparison 
the bandwidth of the controlled system must be about the same in both cases. Here the 
adaptation V ~ U S  were increased &hout looking to the influence on the bandwidth. Later 
on the adaptation values will be chosen so that the bandwidth does not become larger. Now 
the only purpose is to watch the tracking errors, when the adaptation values become very 
large. To do this the maximum absolute tracking errors are compared with different 
adaptation values. It is clear from figure 3 . 3  that larger adaptation values lead to smaller 
tracking errors. In practice there will always be unmodelled dynamics, which will limit the 
adaptation values. The conclusion is that, when the controller is based on a model with 
exactly the same structure as the actual system without high-frequency unmodelled 
dynamics or measurement noise, larger adaptation values lead to smaIler tracking errors. 
When the initial values of the estimated parameters are not zero, but equal to the physical 
parameters, there will be no tracking errors. When there are no tracking errors, the 
derivative of the estimated parameters stay zero because of equation (2.4). Then the 
adaptation values have no influence at all. In figure 3 .3  the adaptation value on x-axis 
means for example: 

- 3.4 - 



102 O O 
adaptation value = 102 3 r-1= O 102 O [ o o I021  

0.059 - 
Max 

/$radl 

O ioz lo3 

0.14 

Adaptation - value 

3.5 Friction 

In the previous simulations the bar with load could be pushed up and down by force F(t) 
without any resistance. In practice there will always be friction. In the following 
simulations with the RT-robot, friction was introduced: 

o Coulomb friction: P4 = 20 [NI 

o viscous friction: P5 = 5 [Ns/m] 

The PD controller can be extended with Coulomb friction compensation. Because the exact 
value of the friction is usually unknown, only fifty percent was com ensated. In the 
adaptive control algorithm it is possible to adapt the friction parameters P see appendix A). 
The initial values of the parameter estimates were chosen to be zero, except of course the 
Coulomb friction parameter. The starting value of this parameter was fifty percent of the 
actual Coulomb friction, just like the compensation term in the PD controller. Again the 
PD controller corresponds to the adaptive controller with adaptation off. Still there cannot 
be drawn any conclusion from the comparison between the PD controller and the adaptive 
controller, for the created bandwidth of the system with adaptive control could be too large 
with the chosen adaptation values: 

I'-1 = diag(102,102,102,5.102,5.102) (3.11) 
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The maximum tracking errors in figure 3.4 with adaptation on are the same as the 
maximum tracking errors in figure 3.3 with adaptation values: 

O L  

0.048 

Adaoratim 

Figure 3.4: MazZmum tracking errors 

3.6 Unmodelled dynamics 

So far the adaptation values could be chosen as large as possible, because the adaptive 
controller was based on a model with the same structure as the actud system. Now 
mode l l ed  dynamics will be added. Dynamics of amplifiers and motors are often neglected 
in the model. The motor, which applies torque M to the disk of the RT-robot, could for 
example have its own dynamics. The controller calculates a torque that has to be applied 
to the disk to track the desired path. The applied torque will not have exactly the same 
value as the calculated torque. When the calculated torque varies slowly with respect to 
time, the motor will not have any trouble with applying this torque. But when the 
calculated torque varies more quickly, the amplitude ratio will decrease and the phase lag 
will increase. This motor behaviour can be described with a second order system: 

B = 4 6 [-I (3.12) 
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u : calculated torque as input [Nm] 
y : applied torque as output Nm] 
p : damping factor of motor 1-1 
wo : eigenfrequency of motor [rad/s] 

The gain matrices of the PD feedback were chosen such that the eigenfrequencies of the 
IiP-robot ~ t l h o ~ t  motor dynamics were 10 Irad/sl. When the eigenfrequency of the motor 
~ y - i i ~ c s  i a  25 ‘rad/& the systerrr will zet K&o&e~imstable. However, if the eigenfrequency 
of the motor 4 ynamics is 10 [rad/s], the system will probably become unstable. The 
adaptation values of the adaptive controller cannot be chosen as large as possible anymore. 
Too large adaptation values will cause instability. In appendix B adaptation values are 
determined, which will not cause instability, when the eigenfrequency of the motor 
dynamics is 25 [rad/s]. The result is: 

3 0 0 0  o 
O 3 0 0  o 
O 0 3 0  o 
o o o 500 o 
O O O O 500 

(3.13) 

The simulations, which were done with friction and unmodelled dynamics with wo = 10 
[rad/s], showed instability with PD and adaptive controller. The next simulations were 
done with friction and unmodelled dynamics with wo = 25 [rad/s]. The following situations 
were simulated: 

1: PD controller: 

fifty percent Coulomb friction compensation 

2: adaptive controller: 

initial value of Coulomb friction fifty percent, 
initial value of other parameters zero percent 

3: adaptive controller: 

initial value of Coulomb friction fifty percent, 
initial value of other parameters seventy percent 

The tracking errors are shown in figure 3.5. The adaptive controller achieves a better 
tracking accuracy than the PD controller. The parameter estimates of the adaptive 
controller did not go to their exact values, because the adaptation time was too short and 
because there were unmodelled dynamics. If the same trajectory had been tracked twice, 
there would have been more time to adapt the parameter estimates. The adaptation values 
were chosen small enough not to increase the bandwidth of the controlled system. But for 
smooth convergence it would be better to chose these values such that the extra poles due 
to the adaptation and the infiuence on the existing poles are small. Then, for example, it 
would not be possible to estimate a part of the mass as a time dependent friction. 
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0.15 - 0.06 

, -0.06 I 

Figure 3.5: Tracking errors 

3.7 Condnsioni 

The adaptive controller achieves better tracking accuracy than the PD conitroller in case of 
the simple RT-robot. When there are no unmodelled dynamics, larger adaptati 
result in smaller tracking errors. Adding friction is no problem. When there are 
dynamics, the parameters will not converge to their exact values. Another reason, why the 
parameters did not converge to their exact values, was that the adaptation time was too 
short. The simulation results of the rigid RT-robot show that it could be useful to apply 
the adaptive controller to the flexible XY-table. 
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CHABTER 4: SIMULATION OF XY-TABLE 

4.1 Introduction 

The PD and adaptive controller will be applied to the XY-table, which is not rigid like 
the RT-robot. A description of the XY-table and the equations of motion will be given. 
The gain matrices will be determined based on the eigenfrequencies and damping factors. 
Fedhack of the end-effector position will give other results than only motor feedback. The 
id l xe~ce  vf YiffPrent weighing factors for motor and end-effector feedback on the tracking 
errors will be studied. Next, the simulation results of PD and adaptive controller will be 
shown. Finally, some discretization effects are discussed. 

4.2 DescriDtion of XY-table 

A top view and a schematic representation of the XY-table are depicted in f i  ure 4.1. The 

Y-direction between figure 4.1 and figure 4.2. The end-effector is a slide with mass me 
that can move in a horizontal plane by means ob thee slideways. The couples Ti and T3 
are applied b two servomotors. There are three degrees of freedom, the rotations cpl(t), 
(p2 t and (p3 t). The rotations cpi(t and cpz(t) differ because of the torsion spring with 

friction is represented by the torques Wi, W2 and W3. The equations of motion and the 
exact values of the parameters of the simulated system are given in appendix B. A simple 
model of this system will be used for designing the PD and adaptive controller. In this 
model the torsion spring is neglected. Because the rotations qpi(t) and cpz(t) of the 
simplified model are equal, the model has only two degrees of freedom. The equations of 
motion of this model, derived in appendix C, are: 

system, used for the simulations, is shown in figure 4.2. Notice the difference o f the positive 

sti-fnesa i )  ka Coulomb T friction is mo d eiled for movements along the three slideways. This 

Pi ;Pi = Ti - P3 sign((p1) 

p2 ?3 = T3 - P4 sign((p3) 

with parameter values: 

Pi = 2,34.10-3 [kgm21 

Pz = 2,80.10-4 [kgm21 

P3 = 0,40 [Nm] 

P4 = O,O2 [Nm] 
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1 

Y- 
A Y-motor 1) cpindlr O Y-rlide 
x X-motor E ! idt  !! X s ! i d e  
C transmiwon t. slldcaay i belt wheel 
J TORSION SPRING 

k siidt? hhWf c k k w h d  5 rnctcrs 
U slide I)  belt f : SPRIWG 

Figure 4.1: XY-table 

Figure 4.2 Simulated system 
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4.3 Gain matrices 

Equations (4.1) without friction, representing the reduced model, will be used to 
determine the gain matrices of the PD feedback. The gain matrices can be written as a 
function of the eigenfrequencies and damping factors. 

Model without friction: 

p1 $91 = Ti 

p2 $93 = T3 
.. 

PD feedback of motor rotations: 

Substitution of equations (4.4) in (4.3) results in: 

This can be written as: 

(4.3) 

(4.4) 

For simplicit 
equations (4.5T. This yields: 

the eigenfrequencies and damping factors are chosen equal for both 
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The choice of the eigenfrequency depends on the unmodelled torsion spring, which could 
cause instability. To find out how large the eigenfrequency could be chosen, some 
simulations were done. These simulations were carried out for the system with three 
degrees of freedom with only motor feedback and no end-effector feedback. The desired 
trajectory of the endeffector in figure 4.3 was: 

f - .- 
x,. = t -&in(z.lrtj 

&/I - - 
yg = t - e in (2nt )  1 

O < t < l [ s ]  

- 
u E ;  

k '  
0.5 

/ 

/ 

I 
I I 
1 '0 cz/ 0:4 0.6 0.8 

Figure 4.5: Desired trajectory 

of the end-effector of simulations with eigenfrequency 10, 50 anc 
factor 1 are shown in figure 4.4. There is not much difference between 
, because the motor rotations are following the desired path very well. 

250 

The largest part of the tracking errors are caused by the deformation of the torsion spring. 
Because torque TI will stay about the same magdude at Egher eigenfrequencies, the 
deformation will stay the same. The unmodelled torsion spring causes large tracking errors 
of the end-effector in X-direction, but will never lead to instability. Because simulations 
with lower eigenfrequencies take less time, the eigenfrequency and damping factor are 
chosen as follows: 

wo = 10 [rad/s] 

P = 1 [-I (4.9) 
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-0.1 
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/ /- 
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1D 
tld 

Fagure 4.4: Traclnng errors of end-effector 

4.4 Feedback of motor and end-effector 

o< = rnoiar , 
e = end- eEfcctoï 

Figure 4.5: Motor and end-effector coördinates 

So far, only the rotations and angular speeds of the servomotors have been measured. It is 
also possible to measure the displacement and speed of the endeffector. The displacement 
of the end-effector can be written as a rotation by dividing the displacement by the radius 
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of the belt wheels. This is illustrated in figure 4.5. Weighing factors W, and We can be 
attached to motor and end-effector. The weighed rotations are now: 

(4.10) 

If it is desired, more flexibility can be achieved by designing separate end-effector and 
motor feedback controllers and applying a weighed sum of their respective outputs. 
The weighing of the angular speeds goes exactly the same way as in equations (4.10): 

cplw = 

cp3w = (4.11) 

The XY-table witho~f friction was controlled in order tu make its end-effector track the 
desired path of equations (4.8). The controller was a PD feedback with gain matrices in 
form of equations (4.7) with ei enfrequency and damping factor as in equations (4.9). 

X-direction is the most sensitive to the weighing factors. The smallest maximum tracking 
error in X-direction occurs, when the feedback consists of forty percent motor feedback 
and sixty percent end-effector feedback. When not the maximum of the tracking errors, 
but the sum of the tracking errors was considered, the optimum could have been a little bit 
different. But that is not the point here. The conclusion is that only end-effector feedback 
causes instability, which can be avoided by adding some motor feedback. It would be 
possible to find the optimum combination of gain matrices and weighing factors by doing a 
lot of simulations, but it is not the purpose to tune the system. The purpose i s  to make an 
honest comparison between PD and adaptive controller. 

Results of simulations with di ff erent weighing factors are shown in figure 4.6. The 
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Figure 4.6: Simulation results for different weighing factors 
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4.5 Simulation results 

The XY-table with friction was simulated with PD and adaptive control. The PD 
feedback for both controllers was as in equations (4.7) and (4.9). There was forty percent 
motor feedback and sixty percent end-effector feedback. The desired trajectory was not 
chosen as in equations (4.8), but was chosen to be a circle: 

(4.12) 

Because the trajectory, which was used to determine the optimal weighing factors, was not 
this circle, the weighing does not have to be optimal. This does not matter, because it is 
not the intention to tune this system. The intention is to make a comparison between the 
PD and adaptive controller. The adaptive controller design is @ven in appendix D. The 
adaptation values were chosen as (see appendix D): 

In figure 4.7 the tracking errors are plotted for three different situations: 

OD3 

Y iml 

O 

-0.08 

O 

1: PD controller 

2: adaptive controller starting from zero estimates 

3: adaptive controller with hundred percent parameters 

t!d 
1 a 

x:w 

O 

(4.13) 

- 0 1  < 
O 

tW 
1.0 

Figure 4.T Tracking errors of end-effector 
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In the beginning the tracking errors of PI4 controller and adaptive controller starting with 
zero estimates are very close. This was expected, because the adaptive controller with zero 
parameters and the PD controller are exactly the same. But the parameter estimates in 
figure 4.8 are quickly driven by the tracking errors. At the end the parameter estimates are 
so good, that the tracking errors of the adaptive controller starting with zero estimates are 
very close to the tracking errors of the adaptive controller with hundred percent 
parameters. The tracking errors of the adaptive controller with hundred percent 
parameters are not zero, because of the infiuence of the unmodelled torsion spring and the 
initial condition in Y-direction. The initial speed in Y-direction was chosen to be zero. 

adaptive controller with zero and hundred percent parameters. 
In paragraph 4.2 it was shown that higher eigedrequencies did not cause instability. When 

the adaptation values are chosen too large, no instabilities will follow. Therefore it could be 
possible that the adaptation values are too large without noticing. This does not mean that 
the results are not useful for comparison between PD and adaptive controller. When the 
adaptation values were chosen smaller, the parameter estimates would have gone more 
slowly to their final values. In practice it could be possible to make the endeffector track 
the same circle more than once. After a while, even with much lower adaptation vdues, the 
tracking errors of the adaptive controller starting with zero estimates would come very 
close to the tracking errors of the adaptive controller with hundred percent parameters. 
The adaptive controller achieves much better tracking accuracy than the BD controkr, 

even when the model used for the control design is not the same as the actual model. In 
this case due to the flexibility of the torsion spring. 

n- ~ u t ,  I :- Lu eq~atiûns (4.12) the desired iaitid speed is m t  zera In practice there will always be 
some knowledge of pör;am&er ---I--,.- VCt l l lCD.  vi.,.- IUGU +LA b U G  P secLulvl.c. m n ' h l n  r o o i i l +  & U U I Y "  U n ? I  ..*u lica -Y heturwn <I..-"&- "-., 

O 

O 1.0 

tisi 

3 

S r k g d  

O 
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Figure 4.8: Parameter estimates 
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4.6 Discretization effects 

In the above simulations the controllers were continuous with respect to time. In practice 
a computer executes the on-line control algorithm. This takes processing time and only 
discrete numbers can be processed. A common practical criterion for a ood controller 
performance, as far as the time delay is concerned: the controller sampling equency must 
be at least ten times larger than the maximum response frequency. Undesirable effects of 
the time delay can be canceled by estimating position and speed one sample ahead. This 
can De done by mems 01 me w w  ÁEO~;; K h z m  &oer.rer. Ass!?ming that this Kalman 
filter will be used in the practicai impiemëniaiiûn, t k  time ddzy does mt h8-w tv be 
reckoned with. Then the sampling frequency must be at least a factor 2 to 4 larger than the 
maximum response frequency to enable detection of this maximum response frequency. In 
appendix D can be seen, that the largest eigenfrequency of the linearized system with PD 
and adaptive controller is about 3.4 [Hz]. This means that the sampling frequency must be 
at least 7 to 14 [EZ]. Simulations were done with the adaptive controller starting with zero 
parameters, assuming that measurin the output and calculating and applying the input 

estimated parameters kept the same value during one sampling period. The tracking errors 
are shown in figure 4.9. The tracking errors at a sampling frequency of 100 [Hz] do not 
differ much from the continuous controller. At 20 [Hz the tracking errors are different, but 

frequency should be chosen as far as possible above the largest eigenfrequency of the 
controlied system. 

---- -f AI. ----I1 1 

did not take any time. The only e 8 ect of sampling was that the computed input and 

not worse. At 10 [Hz the system is unstable. From t L ' s  can be concluded, tbat for a, good 
performance, even w h en there is no time delay and no measurement noise, the sampling 
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O 
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Figure 4.9 Tracking errors at diflerent sampling fiequencies 
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4.7 Condusion 

Instability due to the unmodelled torsion spring can be avoided by adding motor feedback 
instead of only end-effector feedback. It is possible to tune the XY-table by finding the 
optimum combination of gain matrices and weighing factors, but this is not the purpose of 
this report. The purpose is to compare the PD and adaptive controller in the presence of 
unmodelled dynamics. The adaptive controller achieves much bet ter tracking accuracy 
than the PD controller. The parameters, especially the mass parameters, are estimated 
wel!. The revdts  s e  prirnising for implementation of the adaptive controller. 
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CHAPTER 5: IMPLEMENTATION IN XY-TABLE 

5.1 Introduction 

The results of chapter 3 and 4 show that it could be very usefa to apply the adaptive 
controller to the actual XY-table. First, a description is given of the XY-table. A Kalman 
observer will be designed to avoid time delays and discretization effects. Next, all kinds of 
modelling errors will be discussed. Which of them causes instability and at which 
eigenfrequenicy, Experiments will be done with and without the &.xGiie torsion spring. 

5.2 DescriDtion of XY-table 

The XY-table has already been described in chapter 4. The controller hardware is 
described in Beeren (1989). With the existing hardware and software it was not possible to 
work with different sampling frequencies. For this purpose a programmable interval timer 
of type 8253 (Intel) has been added. The software has been adjusted such that the interval 
timer is programmed automatically by stating the desired sampling frequency. Normally it 
is possible to measure the servomotor rotations and the end-effector position. 
UnfortunateIy, the optical measurement system, which measures the end-effector position, 
was broken during th is  study. In contrast with chapter 4 the tracking errors in this chapter 
relate to the motor rotations and not to the end-effector. There is only motor feedback. 
The positive Y-direction is different too. This is not so important, but is ody mentiöned 
for the sake of completeness and to avoid confusion. Again a simple model is 
the PD and adaptive controller. The equations of motion, not with torques 
(4.1) but with forces, are: 

with parameter values: 

Pi = 46.5 [kg] 

Pz = 4.3 [kg] 

P3 = 50.0 [NI 

P4 = 15.0 [NI 
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These parameter values are, apart from the transmission between torques and forces, 
different from equations (4.2), because there was no good information about the parameter 
values during the simulations of chapter 4. The parameter values of equations (5.2) will 
also not correspond to the exact parameter values, but this was the best information 
available during this study. 

5.3 Kalman observer 

The servomotor rotations are measured with incremental encoders. One possibility to 
determine the angular speeds is simple numerical differentiation of the servomotor 
rotations. Differentiation leads to two kinds of errors. First, measurement errors of the 
rotations cause errors at the size of the differentiation step divided by the time interval. A 
lar er time interval will produce smaller errors due to measuring errors. Secondly, 
di f! erentiation gives an estimate of the angular speed at the point of time in the middle of 
the interval, not at the end of the interval. This causes a time delay in the determined 
angular speed at the size of half a time interval. A larger time interval will produce larger 
errors due to time delay. These two kinds of errors show that there must be an optimum 
differentiation interval. 
Further, when the motor rotations are measured and the angular speeds %se determined by 

ntiation, the computer has to calculate the inputs to make the end-effector track 
red path. This causes a time delay with respect to the inputs. 
e effects can be reetueed by 8 Kdmau obsenw. The Kahsn obser~er determines 

the speed not only with the measured rotations like the difference method, 
the knowledge of the dynamics. Therefore the measurement errors have less i 
Kalman observer estimates position and speed one sample ahead, using the last estimates, 
the last measured position, the last calculated forces and the knowledge about the 
dynamics of the XY-table. The computer calculates the input with the estimated position 
and speed. The calculated input is applied at the point of time, at which position and speed 
have been estimated. In this way the time delay can be neglected. The design of the 
Kalman observer is shown in appendix E. This design is based OR a discrete time model, at 
which a variable sampling frequency has been reckoned with. 

5.4 Stabilitv analvsis of rinid svstem 

It is possible to change tire Íiexible bar into a, rigid bar simply by turning on some SCEWS. 
Then the simple model, that will be used for the controller design, should structurally be 
the same as the system. But there are modelling errors (some of them can be detected by 
looking at the XY-table and pushing the end-effector up and down), which influence the 
control behaviour: 

Moving the end-effector in X -  and Y-direction very slowlp does not constantly needs the 
same effort. There are some bad bearings. This causes an harmonic fiction t e m  an X -  and 
Y- direction. 

There is backlash an one of the bearings an X-direction. When the motor shaft starts moving 
in an other direction, only one of the two X-slides moves. Then the effective mass 8s 
smaller. 
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The transmissions between motors and slides consist of belts and little sp./.ngs. These belts 
can be considered stifj The little springs can be pushed in very easily. This causes eztra 
flexi bilit y 

The belts often touch the sides of the belt wheels, through which the fnction changes. This 
happens in X -  and Y-direction. 

The XY-table is supported by a concrete block, which could cause vibrations. 

_Motnm and amplifier *. have been modelled as constant gains, while they have dynamics of 
+hnn.m. MLGkI uwII.  nnr,m 

current are not the same. But this only influences the parameter estimates. It does not 
injluence the performance. 

Measurement noise. The measured motor rotations are only known in discrete numbers. 

The yapc f ~ c f m  clnoo ?zot seem to Re correct; for the calculated and measured 

Sampling frequency. 

Due to this kind of unmodelled dynamics, the PD feedback cannot be chosen too large. To 
find out which gain matrices cause instability and why, they are written as function of 
eigenfiequencies and damping factors. The motor rotations are converted into x- md 
y-coördinates. The PD feedback is then: 

Substitution of equations (5.3) in (5.1) results in: 

This can be written as: 

This yields: 
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The first experiments were done in X-direction with a sampling frequency of 133 [Hz] and 
with desired trajectory: 

= M - R COS(2lrft), yd = 800 
2 M = 800 [mm], R = 150 [mm], f = [Hz] 

o <_ t <_ 3.75 [SI 

The applied forces in X-direction of experiments with: 

wOx = 5 . 2 ~  [rad/s] A 5 [Hz], pX = í 

wOx = 10.2~ [rad/s] 10 [EZ] pX = 1 

are shown in figure 5.1. 

5 HZ 

r 
-2000 1 2 3 4 

10 HZ 

(5.7) 

(5.8) 

F i g u r e  5.1: Applied forces to  total system 
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At 5 [HZ little high fieqiiency vibrations arise in the speed errors and the input force. At 
but the XY-table shows a chattering 
been built in into the software for 
vibrations at about 5 [Hz], which 

are caused by dynamics of the XY-table itself, like the concrete block or the springs 
between belts and slides, experiments were done with only the motor. For this purpose a 
belt was detached from the motor shaft. Then the controlled system only consists of the 
motor. The applied forces of experiments with: 

10 [Hz] t i, e tracking errors are smaller than at 5 

leads to  undesirable chattering at higher k equencies. To find out whether these vibrations 

response. (The maximum force of about 180 
safety.) Apparently something causes hi h 

wox = 1 0 x 2 ~  [rad/s] 10 [Hz], Px = i 

wox = 1 5 x 2 ~  [rad/s] 2 15 [Hz], px = 1 

10 HZ 

(5.9) 

15 HZ 

Figure 5.2 Applied forces to motor 

are shown in figure 5.2. The same kind of vibrations occur. At 15 [EZ] the input force shows 
the same chattering as the experiment with the total system at 10 [Hz]. Apparently the 
chattering is influenced by the dynamics of the XY-table, for the chattering starts at 
different eigenfrequencies and with an other amplitude. But because chattering was also 
shown in the experiments with the detached belt, the main cause can only be one or more 
of the following model errors: 

o Dynamics of motor and/or amplifier 

o Estimation errors of Kalman observer 

o Sampling frequency 

The estimation errors of the Kalman observer can be determined after the experiment. The 
estimation errors of the position can be neglected. The actual speed is determined using a 
central difference method: 

- 5.5 - 



Ts : Sampling time (5.10) 

Now the estimation errors are written as: 

v(t) = x(t) - 2(t) 

?(t) : Estimated speed (5.11) 

A part of the calculated input force is the result of these estimation errors. The standard 
deviation ob the estimation errors in the experiment with the total system at 5 [Hz] is: 

9, = 4 [m/s ]  (5.12) 

The standard deviation of the part of the calculated input force due to estimation errors is 
then: 

Sf = Kd Sv = 2PWoxP1 S, 

Sf = 2 ~ 1 ~ 5 ~ 2 ~ ~ 4 6 . 5 ~ 4  [mN] A 12 [NI (5.13) 

This explains the little vibrations of the Input force at 5 [Hz] in &pre 5.1. At 10 [Hz] the 
part of the force due to estimation errors would be expected to be twice as large because of 
a twice as large wox. But the deviation of the estimation errors has become larger too: 

Sv = 12 [mm/s] (5.14) 

This causes a standard deviation in the input force at 10 [Hz]: 

Sf = 2xlxlOx2ax46.5x12 [mN] 70 [NI (5.15) 
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This explains the chattering response of the XY-table at 10 [Hz]. But why does the 
standard deviation of the estimation errors become larger at higher eigenfrequencies. 
Because the same effects occur, when only the motor is controlled, the only possible reasons 
can be: 

o Dynamics of motor and/or amplifier 

(-j Sumpfi.og fieqnenqr 

Experiments with the XY-table were done to took at the influence of the sampling 
frequency on the estimation errors. The desired trajectory was: 

= M - R COS(2dt), Yd = 800 
1 M = 800 [mm], R = 150 [mm], f = [Hz] 

o < t < 2 [SI (5.16) 

The sampling frequencies were chosen to be 125 [Hz] and 250 [EZ]. The sampling frequency 
of 250 [Hz] had been made possible by letting the computer only calculate the PD feedback 
in X-direction. 

ling frequency of 125 [Hz] the chattering response begins above an 
of 5 [Hz . The standard deviation of the estimation errors at 10 [Hz] is 

With a sampling fre uency of 250 [Ha] the chatterin response begins above an 

the same as with a sampling frequency of 125 [Hz]. But now even at 20 [Hz] the standard 
deviation has not changed appreciably. To prove that the sampling frequency is the cause 
of the increased standard deviation of (5.14), the estimation errors of the Kalman filters 
with 125 [Hz] mol 250 Hz] should be compared, when the same input signal is applied. 

sampling frequency are not shown to be qualitatively equal to the total effects. However 
there was no time left to do these experiments during this study. 

The chattering response is caused by the estimation errors of the Kalman observer. 
Probably the sampling frequency of 125 [EZ] makes the speed estimation worse above an 
eigenfrequency of 5 [Hz], but to prove this some experiments should be done. Because the 
implementation of the adaptive controller in X- and Y-direction needs a sampling time of 
about 8 [ms], the sampling frequency cannot be larger than 125 [Hz . This means that in 

by: 

almost ten times larger t h an at 5 [Hz]. 

eigenfrequency of 20 [Ha. At 5 [Hz] the standard deviation o B the estimation errors is about 

Dynamics of motor an d /or amplifier can still cause chattering, when the effects of the 

X-direction a chattering response is caused at an eigenfrequency of a b out 5 [Hz], probably 

o Estimation errors of Kalman observer 

o Influence sampling frequency on Kalman observer 
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In Y-direction a chattering response is caused by the same reasons at about the same 
eig enfrequency . 

5.5 Ripid svstem emeriments 

Experiments with the rigid system (rigid bar were done to compare the PD and adaptive 

were chosen according to equations (5.6) with: 
conmllei with 2 smpfiii;g keqUeEcj. Gf 135 LIIz]. The gUn mutrices nf the PD mntr&r 

wox = woy = 4 x 2 ~  [rad/s] 

& = Dy = 0.7 (5.17) 

This was the largest possible eigenfrequency without appreciable influence of the estimation 
errors of the Kdman observer on the calculated input force. Now undesirable chattering 
response was totally avoided. To determine the largest possible gain matrices of the 
adaptive controller, which did not cause chattering at all, the parameters were chosen as 
hundred percent paiameteis -with adsplation GB. T ~ s  resdted in the s m e  gain matrices as 
for the PD controller. The desired path was: 

Xd = Yd = M - R coS(2dt) 
1 M = 800 [mm], R = 150 [mm], f = 

First control cycle O < t < 4 [SI 
Second control cycle 4 I: t I: 8 [s] 

Third control cycle 8 5 t I: 12 [SI 

[Hz] 

(5.18) 

Of course the results of the PD controller stay the same for each control cycle (except the 
effects of initial conditions , because the desired path stays the same. But the results of the 

values of the previous control cycle. In appendix F the design of the adaptive controller is 
given. The adaptation values are determined such that the adaptation process is slower 
than the control bandwidth. Then the adaptive controller with adaptation on will not cause 
chattering, when the adaptive controller with adaptation off does not cause chattering. The 
experiments were: 

adaptive controller are di B erent, because each control cycle starts with the last parameter 
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i: PD controller without friction compensation 

2: adaptive controller starting from zero estimates: 
results of first control cycle 

3: adaptive controller starting from zero estimates: 

4 PD controller with 75 % friction compensation: 

results of third control cycle 

- 1 - - L 2 - - -  ---A- 11,- -L--L:-- $,,- 7 K  w- no+;-n+nn. 5: äaaprive ~ o r r u ~ i r t x  a w i ~ l l i g  UWLIL to /U G i u b l ~ ~ l i c c ; u .  

6: adaptive controller starting from 75 % estimates: 

results of first control cycle 

results of third control cycle 

1 2 5  4 5 6  

t X P € R I M € H T  

Figure 5.3: Mean absolute trachg errors of motor posito'oa 

The mean absolute tracking errors of all experiments are shown in figure 5.3. The 
performance of the adaptive controller is much better than of the PD controller. At the 
third controi cycle the results of the adaptive controller starting with O !% and ?5 % 
parameter estimates are the same. For the third control cycle it does not matter, what the 
initial parameter values were. The adaptive controller is able to estimate the same 
parameters after two control cycles, no matter what the initial values were. In figure 5.4 
the parameter estimates of the adaptive controller starting from zero estimates are shown 
during the first and third control cycle. During the third control cycle the parameters do 
not really change, but fiuctuate around a mean value. The parameters can be expressed 
with a mean value plus minus a percentage, which represents the standard deviation of the 
fluctuations: 
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Estimates: 
P1 = 47.4 [kg] 0.9 % 
P2 = 4.10 [kg] * 9.0 % 
$ 3  = 42.2 [NI * 1.1 % 
p 4  = 17.7 [NI * 1.5 % 

I 
I 

- 

Model: 
Pi  = 46.5 [kg] 
P2 = 4.30 [kg] 
P3 = 50.0 [NI 
P4 = 15.0 [NI 

t Is1 t [SI 

Figure 5.4: Parameter estimates 

(5.19) 

The estimated parameters correspond better to the actual system parameters than the 
model parameters, which were used for the design of controllers and Kalman observer. The 
model parameters were only rough indications used, because there was no better 
information available. The fluctuations of the second parameter (the mass in Y-direetion) 
are larger than the other fluctuations. The plots of the tracking errors of experiment 1 
(PD) and 3 (adaptive) are shown in figure 5.5. 

Figure 5.5 Trackhg errors of motor position 
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In X-direction the tracking errors of the adaptive controller are much smaller in 
comparison with the PD controller. The remaining tracking errors can mainly be attributed 
to unmodelled dynamics: 

o The little springs between belts and slides 

o Backlash in one of the bearings 

o Contact between belts and sides of belt wheels 

o Dynamics of motor and amplifier 

o Harmonic friction term 

Especially the influence of the harmonic friction is shown very clearly. Each revolution of a 
bearing shaft corresponds to one 'vibration' in the plot of the tracking errors. 

In Y-direction the trackin errors of the adaptive Controller are smaller compared with the 

errors cm imaidy be attributed to: 
PD controller, but the di f! erence is not as big as in X-direction. The remaining tracking 

o The little springs between belt and slide 

o Contact between belt and sides of belt wheels 

o Dynamics of motor and amplifier 

o Harmonic friction term 

Again the harmonic friction term is shown very clearly in figure 5.5. The influence of the 
harmonic friction has much more influence on the tracking errors than in X-direction. The 
harmonic friction term in Y-direction is much larger with regard to the input force than in 
X-direction. B use of this the modelling error due to the harmonic friction is relatively 
larger in Y-direction than in X-direction. Therefore the adaptive controller has the best 
results in X-direction, although the results of the adaptive controller in Y-direction are 
~ S S  much better than the the results of the PD controller. The relatively larger model 
errors are probably the reason that the mass parameter In 'Y-direction shows large 
fluctuations. 

The adaptive controller achieves much better results than the PD controller. The 
parameter estimates conver e very well to constant values within some fluctuations. The 

How large the influence of the different modelling errors is on the tracking errors, could be 
determined with simple experiments. For example the infiuence of the little springs could 
be investigated by doing the same experiments with a stiff construction between belts and 
slides. 

remaining tracking errors o f the adaptive controller are caused by unmodelled dynamics. 
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The infiuence of the harmonic friction due to bad bearings could be examined by replacing 
these bearings. Or, what would even be more interesting, by expanding the model used for 
the adaptive controller design with harmonic friction. 

5.6 Flexible svs t em exueriment s 

The previous experiments were done with a rigid bar. The rigid bar was replaced by a 
flexii21e one to add some extra unmodelled dynamics. Nothing else was changed. The 
szqding fieqneacy, the desired trajectory! the Kalman observer and the mödel used fûï 
Controller design stayed the same. Now the eigenfrequency of 4 [Hz] in X-direction causes 
undesirable chattering. To avoid this chattering the maximum possible eigenfrequencies in 
X-direction are: 

PD controller: 

woX = 3 . 5 ~ 2 ~  [rad/s] 

px  = 0.7 

Adaptive controller: 

wOx = 2 . 5 ~ 2 ~  [radls] 

p x  = 0.7 

(5.20) 

(5.21) 

Again the chattering at higher eigenfrequencies will probably have something to do with 
the Kalman observer and the sampling frequency. But the direct cause must be the flexible 
bar, for this is the only thing that has been changed. A remarkable fact is that the 
eigenfrequency and thus the gain matrices of the adaptive controller must be smaller than 
the PD controller. The adaptive controller is less robust to the unmoddid dynamics than 
the PD controller. The adaptive controller does not have to have essentially the same level 
of robustness to unmodelled dynamics as was suggested by Slotine and Li (1987). 

The adaptation values in the experiments with a rigid bar, which were determined in 
X-direction for an eigenfrequency of 4 [Hz], were still used in the experiments with a 
fiexible bar with eigenfrequency of 2.5 [EZ] in X-direction. The adaptation values were 
chosen so small that the adaptation process was much slower than the control bandwidth. 
Then, with the same adaptation values, the adaptation process will still be smaller than the 
control bandwidth at 2.5 [ñz]. 
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The experiments were again: 

1: PD controller without friction compensation 

2: adaptive controller starting from zero estimates: 

3: adaptive controller starting from zero estimates: 

4: PD controller with 75 % friction compensation: 

5: adaptive controller starting from 75 % estimates: 

6: adaptive controller startin from 75 % estimates: 

results of first control cycle 

resuiis oi third couirôi cyde 

results of first control cycle 

results of third contro f cycle 

7cm 6fi6 

1 :  

Fagure 5.6: Mean absolute tracking errors of motor position 

The mean absolute tracking errors are shown in figure 5.6. The adaptive controller is less 
robust to unmodelled dynamics, through which the gain matrices must be smaller, but 
achieves much better tracking accuracy than the PD controller. The estimated parameters 
plus minus a standard deviation during the third control cycle starting from zero estimates 
are: 

Estimat es: 
Pi = 48.0 [kg] f 2.2 % 
6 2  = 4.23 [kg] * 8.3 % 
$ 3  = 43.7 [NI 2.5 % 
6 4  = 19.1 [NI 1.8 % 

Model: 
P i  = 46.5 [kg] 
P2 = 4.30 [kg] 
P3 = 50.0 [NI 
P4 = 15.0 [NI (5.22) 
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The plots of the tracking errors of experiment 1 (PD) and 3 (adaptive) are shown in figure 
5.7. The remaining tracking errors of the adaptive controller can be attributed to the same 
sources as with the rigid bar. The only added source is the error due to the fiexible bar. Of 
course the fiexible bar especially influences the tracking errors in X-direction. 

The adaptive controller shows very good results. In paragraph 5.4 the influence of the 
Kalman observer was discussed. The Kalman observer was designed with the model 
parameters of equations (5.2). The Kalman observer could be improved by using the 
estimated parameters of equations (5.22), by expanding the Kalman observer model with 
harmonic friction, and by using a stiff construction between belts and slides instead of the 
.flexible springs. This would decrease the process noise. 

-10; 1 2 3 4 -200- 1 2 3 4 

t [SI t [SI 

Figure 5.7: Tracking errors of motor position 

5.7 Conclusions 

Experiments with the flexible XY-table show that the adaptive controller is less robust to 
unmodelled dynamics, but achieves much better tracking accuracy than the PD controller. 
The parameter estimates converge to constant values plus minus some small fluctuations. 
These values are the same no matter what the initial estimates are. The fluctuations are 
caused by unmodelled dynamics and measurement noise. 

When the parameter estimates have reached their "constant" values, the remaining 
tracking errors are caused by unmodelled dynamics and measurement noise. A structural 
better model results in smaller tracking errors. The adaptive Controller is able to estimate 
the parameters well. Especially when manipulators have to handle large unknown loads, or 
parameters are unknown for other reasons, the adaptive controller is recommended. For, 
despite all non parametric error sources of the flexible XY-table, the adaptive controller 
achieves much better tracking accuracy than the PD controller. 

Chattering response of the XY-table is caused by the errors in the speed estimation of the 
Kalman observer and probably by the idluence of the sampling frequency on the Kalman 
observer. The Kalman observer could be improved by using the estimated parameter values 
of the adaptive controller, by expanding the Kalman observer model with harmonic 
friction, and by using a stiff construction between belts and slides. The sampling frequency 
could be increased by using faster computers. 

A large part of the tracking errors is caused by the harmonic friction due to bad bearings. 
It would be interesting to expand the model, used for the adaptive controller design, with 
the harmonic friction. 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

In this chapter the most important conclusions are summarized and recommendations are 
given for further experiments and research: 

O 

O 

O 

O 

O 

The parameter estimates do not converge to their exact physical values because 
of unmodelled dynamics and measurement noise. Due to these unmodelled 
dynamics and measurement noise the parameter estimates do not converge to 
constant vaiues, bui stay fluctuating a little. F a  smwth p s r a ~ e t e r  estimates the 
adaptation process i s  chosen siower than the contiui baii&iUtU. Whez the 
adaptation process i s  chosen as fast as the control bandwidth, the adaptive 
controller could for example estimate a constant mass with a time dependent 
friction. Then the friction parameter is not estimated smoothly. And the 
fluctuations due to unmodelled dynamics will be larger. An extra remark: When 
there are no unmodelled dynamics or measurement noise, convergence of the 
trajectory tracking is guaranteed. ut to guarantee exact parameter convergence, 
the desired trajectory must be sufficiently rich so that only the true set of 
parameters can yield exact tracking (Slotine and Li, 1987). 

The adaptive controller, applied to the flexible XY-table, is less robust with 
to unmodelled dynamics and/or measurement noise than the PD 
. But because the parameters are estimated very well, the adaptive 

r tracking accuracy than the PD controller. The adaptive 
ed, especially when gzrmeterrs we W ~ Q W ~ .  F Q ~  
manipulators have to handle large unknown loads. 

When the gain matrices of the PD feedback are chosen too large, a chattering 
response of the XY-table will arise. This chattering response is caused by the 
errors of the speed estimation. This speed is estimated by a Kalman 
The sampling frequency has great influence on the estimation errors. Th 
observer could easily be improved by using the estimated parameters from the 
adaptive controller, by expanding the Kalman observer with harmonic friction, 
by using a stiff construction between belts and slides, and by increasing the 
sampling frequency. The sampling frequency can be increased by replacing the 
PC by a faster compatible model. 

The estimated parameters "converge" always to the same vdues within some 

are not entirely constant because of Ettie fluctuations due to iinmodelled 
dynamics. These unmodelled dynamics are the reason that the tracking errors are 
not zero, when the parameters have converged. Besides the unmodelied torsion 
spring there are other sources of the remaining tracking errors: flexible springs 
between belts and slides, backlash in one of the bearings, harmonic friction due to 
bad bearings, dynamics of motors and amplifier, contact between belts and the 
sides of belt wheels. 

It would be useful to investigate the influence of the different model errors on the 
remaining tracking errors of the adaptive controller. The flexible springs between 
belts and slides could be replaced by a stiff construction. The difference between 
the remaining trackin errors with and without these springs is the influence of 

could be investigated by replacing the bad bearings. Or even more interesting 
would be to add harmonic friction to the adaptive controller model and, doing so, 
compensate this friction. 

fluctuations), no matter what the initial values are. The converge a parameters 

these springs. The i J uence of the harmonic friction, which is clearly present, 
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The optical measurement system, which measures the end-effector position, 
could not be used during this study. Only motor rotations were measured. When 
the end-effector position is available, it would be possible to tune the XY-table 
by finding the optimal weighing factors between motor and end-effector 
feedback. In the simulations it has been shown that only end-effector feedback 
could cause instability problems. Again the results of PD and adaptive controller 
could be compared. 

The software, which controls the XY-table, is in Turbo Pascal. After each 
wryerriment it is possihle to watch dots  of the results inside the Turbo Pascal 

not possible to  compare plots of two experiments inside the Turbo Pascal 
program. The program is expanded with an option to save results in a 
Matlab-file. But then it is only possible to compare different experiments outside 
the Turbo Pascal program. It would be much easier, if the program was written 
in Matlab. Only the real time part, the control algorithm, should be in a 
compiled language. Then several experiments could be compared, which could 
save a lot of time. 

Further research should be done into robust controllers, which are proposed in 
literature, by implementation at the XY-table. The performance ob these 
controllers can be compared with the PD auad the adaptive controller of Slotine 
and Li. 

--- p ~ ~ g r ó l i i .  E U ~  a neg eaperkmt UP&~ the data of the qrevious experiment. It is 
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APPENDIX A: ADAPTIVE CONTROLLER DESIGN FOR RT-ROBOT 

In this appendix the adaptive controller is designed according to chapter 2 for the 
RT-robot of chapter 3. 

System: 

Control law: 
+ 4f!$)@ + g(q) = r 

T=H(q)qr+  Qq,Q)Qr+ ;(4)-KdS 
7 = Y(q,Q,$r,&)û- Kds 

Adaptation law: 

This yields for RT-robot with dynamic equations (3.1): 

T û = -r -1Y ( 47, Q, Q ~ , & ) s  

g =  [ o ]  

or with friction: 

Except for the choices of Kd,  Kp (= &A) and r-1 the adaptive controller is totally defined. 
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APPENDIX B: ADAPTATION VALUES FOR RT-ROBOT 

In this appendix the adaptation values are determined for the RT-robot with friction and 
unmodelled dynamics. The adaptation values have to be chosen small enough so that the 
bandwidth of the controlled system stays smaller than the bandwidth of the unmodelled 
dynamics. The unmodelled dynamics (see equations 3.12 have an eigenfrequency of 25 

system at different points of time (different points on the desired trajectory). A 
[rad/s]. The poles of the controlled system are determined b y linearization of the controlled 

ïepresentstlTe p i n t  of time is: 

t = 0.27 [s]. 

In paragraph 3.3 the PD controller is designed to create eigenfrequencies and damping 
factors (in r- and cp-direction): 

wo = 10 rad/s] 
p=  1 [- f 

With this eigenfr 
bandwidth of the 
= 0.27 [s] are: 

the bandwidth of the controlled system is smaller than the 
Yed dycamics. The poles of the controlled Eneaxized system at t 

r -direction 

@rection 
poles with PD controller [:i] ] 

The adaptive controller with hundred percent parameters and adaptation off results in the 
following poles of the controlled system: 

[ zo] 1 r-direction 
poles with adaptation off I 

1 J J J cp-direction 

These poles are equivalent with: 

wo = 10 [rad/s] 
p=  1.25 [-] 

The eigenfrequency has stayed exactly the same as in (3.2). The hundred percent 
parameters only cause larger damping, by which two poles have become smaller and two 
poles have become larger. Although two poles have become 20 [radls], they will not cause 
instability. The amplitude response starts decreasing at frequencies above 5 [rad/s]. So the 
amplitude of input signals with frequency 20 [rad/s] will decrease a lot. When the 
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eigenfrequency stays the same and the damping factor increases, the controlled system 
becomes slower. The adaptive controller with hundred percent parameters and adaptation 
off will not cause instabilities. 

Now the adaptation values have to be chosen small enough to avoid instabilities. When 

the poles of the linearized controlled system are: 

poles with adaptation on 

.-16.4 
-14.1 
-3.7 
-5.5+0.6j 
- 5 . 5 4 . 6 j  
-5.0 

0.0  
0 . 0  

, 0.0 

The extra poles are from the adaptation law. The sequence of the above poles is arbitrary. 
poles will not have increased significantly in proport 
off. With the chosen I'-1 no instabilities will occur. 

he adaptation on the poles is not small. For smooth 
estimates, the adaptation process should be much slower than the control bandwidth. Now 
it is possible that, for example, a constant mass parameter is partly estimated as a time 
dependent friction. In that case the friction parameter will not converge smoothly. 
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APPENDIX C: DERIVATION OF XY-'TABLE MODEL 

In this appendix the eq 
chapter 4 are given with 
figure 4.2 is shown again. 

uations of motion of the simulated system from figure 4.2 in 
the values used for all parameters. For the sake of convenience 

I 
I 

Figure 4.2 Simulated system 

The used symbols of figure 4.2 are: 

(o1 

(P2 

x2 

Y 
b 
1 
IX 

rY 
ml 
m2 

me 

my 
J1 

J2  

angular displacement of belt wheel 1 
angular displacement of belt wheel 2 
angular displacement of belt wheel 3 
position of x-slide 1 on slideway 1 
position of x-slide 2 on slideway 2 
position ob the end-ebfector OB the y-slideway 
distance between slideway 1 and 2 
length of the y-slideway 
radius of the belt wheels 1 and 2 
radius of belt wheel 3 
mass of x-slide 1 
mass of x-slide 2 
mass of the end-effector 
mass of the y-slideway including the y-motor 
moment of inertia associated with cp1 

J2 (moment of inertia associated with ( ~ 2 )  is assumed to be zero 
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moment of inertia associated with (p3 

friction torque associated with <PI 

friction torque associated with (p2 

friction torque associated with (p3 
motor torque on belt wheel 1 
motor torque on belt wheel 3 

k spring constant 
x1= Cpirx 
x2 = (p2rx 
Y = 93ry 
cy = arctan(-6) X r X 2  

The values used in the simulations are: 

b = 1 [m] 

ml = 3.8 {kgj 
me = 2.3 [kg] 
J1 = 5x10-4 [kgmz] 
W1= 0.2 [Nm] 
Wt = 0.02 [Nm] 

rx = 0.01 [m] 
1 = i [ml 
ry = 0.01 [m] 
m2 = 3.8 [kg] 
my = 8.5 [kg] 
J3 = 5.10’5 [kgmz] 
W2 = 0.2 [Nm] 
k = 0.2 [Nm/rad] 

Remark These parameters do not correspond to the parameters of the actual 
XY-t able 

All masses are considered point masses. The angle (Y is assumed to be small: 

xl - x2 a ~ b ;  c o s a ~  1 ; sina= cy 

The equations of motion of the simulated system, derived with the help of the method of 
Lagrange and the software package MAPLE, are 

with 
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Equations (CA) are used for the simulated system. The model used for controller design is 
simplified by assuming that there is no torsion spring. Then the angles cp1 and cp2 are 
exactly the same. If the torsion spring is unmodelled, equations (C.1) can be replaced by: 

with 

The values of the parameters are: 
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PI = Mil = 2.34.10-3 [kgm21 
P2 = M22 = 2.80.10-4 [kgma] 
P3 = WI + W2 = 0.40 [Nm] 
P4 = W3 = 0.02 [Nm] 
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APPENDIX D: ADAPTIVE CONTROLLER DESIGN FOR XY-TABLE 

In this appendix the adaptive controller is designed according to chapter 2 for the 
simulated XY-table of chapter 4. 

System: 

Control law: 

M n l n  f I , /  - 'I 
9 Y / Y  - 7 

7 = h(q)& + ul(4) - Kas 
7 =  Y(q,b,Gr,&)û-&S 

Adaptation law: 
T a = -r-iy (q,~,q, ,"q,)S 

This yields for XY-table with dynamic equations (4.1): 

Now the adaptation values are determined for the XY-table. For a good comparison the 
bandwidth of the system with adaptive controller is not allowed to be larger than the 
bandwidth of the system with PD controller. The poles of the controlled system are 
determined by linearization of the controlled system at different points of time (different 
points of desired trajectory). The poles are determined of the system with torsion spring. A 
representative point of time is: 

t = 0.125 [SI. 

In paragraph 4.3 the PD controller is designed to create eigenfrequencies of 10 [rad/s] for 
the simplified model of equations (4.3). The poles of the controlled linearized system with 
torsion spring at t = 0.125 [s] are: 
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poles with PD controller 

-3.3 f 21.23 
-3.3 -21.2j 
-13.5 
-9.0 
-10. o 
-10. o 

The simplified model, a second order system with de rees of freedom cp1 and p3, would have 

system with degrees d freedom plj 9 2  and p.1, are influenced by the torsion sprin 

be derived with: 

shown four poles with value -10. But the poles o f the simulated system, a third order 
1 A fl J:----L:-.. :A.. n$$arita d i p p p q p a  paragrapn 4.0 ~ ~ a L A t . I i 1 d l " ~  GuCICIUU 8,- -y UYYVY. The mentioned frequency of 3.4 

Maximum response frequency 4- 3.32 + 21.12 = 3.4 [Hz] 

The adaptive controller with hundred percent parameters and adaptation off results in the 
following poles of the controlled system: 

-2.8 + 20.7j 
-2.8 - 20.7j 

poles with adaptation off 

-20. o 
The hundred percent parameters cause larger damping, through which two poles have 
become much smaller and two oles have become much larger. Although two poles have 
become 20 [rad/s] and 25.6 [ rad 7 SI,  they will not cause instability. The ude response 
starts decreasing at frequ above 5 [rad/s]. So the amplitude of signals with 
frequency 20 [rad/s] will ase a lot. The adaptive controller with hundred percent 
parameters and adaptation off will not cause instabilities. 

Now the adaptation values have to be chosen small enough. When 

2.5~10-7 O O 0 
2.5.10-8 o 0 

O 1.0.10-1 o 
O O 1 . o x  10 -2 

r-i = 

the poles of the linearized controlled system are: 

poles with adaptation on 

- 4 . 4  +20.4 j  
-3.4 -20.4j 
-17.1 
-14.7 
-7.0 
-620 
-4.9 + 0 . 3 j  
4 . 9  -0 .3 j  

0,o 
. 020 
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The extra poles are from the adaptation law. The sequence of the above poles is arbitrary. 
The bandwidth with these poles will not have increased in proportion to the bandwidth 
with adaptation off. But it is clear that the influence of the adaptation on the poles is not 
small. For smooth parameter estimates the adaptation process should be much slower than 
the control bandwidth. This fact will be reckoned with in the practical experiments with 
the XY-t able. 
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APPENDIX E: DESIGN OF KALMAN QBSERVER 

A Kalman observer is designed to estimate the position and speed one sample ahead. Then 
there are no time delays. The simplified model of the actual XY-table is: 

First the Kalman observer will be designed in x-direction. The design will be based on a 
discrete time model to make no discretization errors. Because the Kalman observer must be 
able to work with different sampling frequencies, the discrete time model is derived as 
function of the sampling time. The second order differential equation in x-direction can be 
represented as a set of two first order differential equations. First a state vector, the 
control input and the output are defined: 

Input: n(t) = F1 
Output: y(t) = x(t) 

Because the model is a simplification of the actual system, there will be process noise w(t). 
This process noise is modelled as noise on input u(t). Whether this is correct, will be 
verified later on. Then the first order differential equations are: 

51(t) = x(t) = z4t) 
1 i 4 t )  = x(t) = -p;-[u(t) + w(t) - P2sign(X(t))] 

With sampling time Ts and measurement noise v(t) the discrete time modd an be written 
as: 

To estimate one sampling step ahead the observation update will be according to equation 
(6.54) of Kok (1985): 
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with the optimum gain matrix KO according to equation (6.69) of Kok (1985): 

Tkr pniint.inn is ody mentioned to see the difference with MATLAB, without explaining 
&ïiv;ttiûïì and symb~ls .  TEs optimd u z i ~  matrix is calculated with function dlqe of the 
software package MATLAB. Because op another updating method, this function calculates 
an other solution: 

-?----- 

which results in: 

with: 

Q = covariance(w) 
R = covariance(v) 

The next step is to determine the covariances Q and R. The measurement noise is 
determined by the measurement inaccuracy due to incremental encoders. To be safe this 
inaccuracy is multiplied with factor two. The process noise is determined by experiment. 
After the experiment the real speed can be determined using a central difference scheme. 
When the applied input force is used as input for the discrete time model with friction, the 
position and speed of this model are different from the measured position and speed. An 
input force is calculated such that the discrete time model with friction follows the 
measured speed exactly. This is simply done by calculating the acceleration needed to 
follow the change of speed between two successive samples. Therefore it is always possible 
to consider the process noise as a disturbance o€ the input force. Then the difference 
between this calculated input force and the actually applied input force is the process noise. 
The covariances of process and measurement noise are: 

Q = 3.0~10* [Nz] 

R = 3.5~10-6 [mm21 

With MATLAB is calculated: 
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with the estimation error covariances of: 

position: 3.4~10-6 [mm21 

speed: 8.0 [mm2/s2] 

Q = 1.3.107 [N2] 

R = 8.4~10-5 [mm21 

With MATLAB is calculated: 

with the estimation error covariances of: 

position: 1.3.10-3 [mmal 

speed: 46.0 [mm2/s2] 

But simulations afterwards showed better results with: 
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APPENDIX F: ADAPTIVE CONTROLLER DESIGN FOR XY-TABLE 

In this appendix the adaptive controller is designed according to chapter 2 for the actual 
XY-table of chapter 5. 

In paragraph 5.5 the PD controller is desi ned to create eigenfrequenues of 4 x 2 ~  [rad/s] 
and damping factor 0.70 as in e uations 6.17).  The poles are determined by using the 
simplified model of equations (5.1 o . The controlled system is linearized around a point at 
the desired trajectory of equations (5.18) at t = 0.01 [s]. At this point of time the desired 
speed is not zero anymore to examine the maximum influence of adaptation of friction 
parameters, but the desired acceleration is still almost maximum to examine the maximum 
influence of adaptation of mass parameters. This point of time shows the maximum 
infiuences of the adaptation. Because of the simplified model the x- and y-direction can be 
examined separately. Only PD feedback results in poles: 
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This could be expected because: 

wo = 4 x 2 ~  rad/s] 
p= 0.70 [- I 
-&,, f w,,d,@ - 1 = -17.59 f 17.953 

(5.17) 

The adaptive controller with hundred percent parameters but no adaptation results in: 

control poles 

adaptation poles 
X: Adaptation off 

control poles 

adaptation poles 
Y Adaptation off 

The extra zero poles are from the adaptation of mass and friction, which is still off. The 
two non zero poles are equivalent with: 

wo = 4 x 2 ~  [rad/s] 
p= 1.06 

which means that the eigenfrequency has stayed exactly the same as in equations (5.17), 
but the damping factor has become larger. A larger damping factor means a slower system. 
The bandwidth of the adaptive controller with adaptation off will not be larger than the 
bandwidth of the PD controller. Until now the adaptation values were always determined 
small enough not to increase the bandwidth. But to achieve smoothly converging 
parameters it is much more sensible to choose the adaptation values such that the extra 
poles due to adaptation and the influence on the existing poles are small. The adaptation 
values of the matrix r-1 (chosen diagonal) are: 

rll-1: adaptation value of mass parameter in x-direction PI 
r 2 2 - 1 :  adaptation value of mass parameter in y-direction Pz 
r33-1: adaptation value of friction parameter in x-direction P3 
r 4 4 - 1 :  adaptation value of friction parameter in y-direction 0, 

The adaptation values in x-direction will be increased in steps of factor ten until the 
adaptation poles and the iduence on the control poles become too large. 
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-17sg5 control poles -33.79 
X: r d =  1 -liss] 1 adaptation poles 

r -17.95 
-17.59 + 12.70j 

, -17.59 - 12.7oj x: rll-l = 10-2 I control poles 

adaptation poles 

It is clear that adaptation value 10-2 results in a too large adaptation pole and in too large 
influence on one of the the control poles. Adaptation value 10-3 results in a relatively small 
adaptation pole. The same is done for the other adaptation values: 

control poles -34.56 
adaptation poles 

The c~mbined inflilence in x-direction is: 

control poles 

adaptation poles 
x: rll-l = 10-3 , r33-1 = 103 

In y-direction: 

control poles -33.67 
adaptation poles 

-I7mg5 control poles y r44-1= 102 [ -34.51 4b67] 
adaptation poles 

The combined influence in y-direction: 

r -17.95 
-32.93 I -2.25 Y r22-1 = 10-4 r44-1 = i o 2  

l o  

control poles 

adaptation poles 
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Because the controlled system with non-linear adaptation law is linearized, the 
differential equations are dependent. There is always one pole with value zero. But  global 
asymptotic stability of the non linearized system is assured by the adaptive controller 
itself, which is based on a derivative of the manipulator’s total energy smaller or equal to 
zero. This of course is only valid as long as unmodelled dynamics are not excited. The 
adaptation values: 

r 10-3 o o o -i 

jF.2 j 

result in very good parameter estimates as can be seen in chapter 5. The conclusion is that 
the adaptation values can be determined with a simplified model. The poles have to be 
determined via linearization of this controlled model. The adaptation d u e s  are found 
quickly by increasing these values with large steps (factor ten . The suitable adaptation 

are small. 
values are the values at which the adaptation poles and the i I J  uence on the control poles 
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