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SUMMARY

Mechanical manipulators are controlled in order to make their end—effector track a desired

trajectory. For this purpose a controller is designed on account of the available information
of the system. This information is put into a model, which does not exactly correspond to
the actual system. There are always phenomena like measurement noise, unmodelled
dynamics and unknown parameters. The level of robustness depends on the influence of
these model errors on the control behaviour. A controller is robust, when model errors have
little influence on the control behaviour.

T U LAl

In literature many robust controllers are proposed, but only a few are actually applied.
Therefore research into practical application of existing controllers is just as important as
research into new controllers. The adaptive controller of Slotine and Li (1987) enjoys,
according to them, essentially the same level of robustness to unmodelled dynamics as the
PD controller, but achieves much better tracking accuracy. This adaptive controller
estimates model parameters on—line, so it is attractive to use in the presence of large
parameter uncertainties.

The presented research into the adaptive controller consists of three parts:
o Simulation of a rigid system: The RT—robot
o Simulation of a flexible system: The XY—table
o Implementation in the XY—table

Attention is paid to the comparison between the PD and adaptive controller in the
presence of modelling errors. Unmodelled dynamics are added to the simulated RT—robot,
which are not taken into account for the controller design. Research is done into the
modelling errors of the actual XY—table. It is shown that the adaptive controller does not
have to have essentially the same level of robustness to unmodelled dynamics as the PD
controller. But the implemented adaptive controller achieves much better tracking
accuracy in the presence of unmodelled dynamics than the PD controller. The estimated
parameters converge to the same values, no matter what the starting parameter values are.
Indeed, the adaptive conmtroller of Slotine and Li can be recommended for complex

industrial tasks.
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NOTATION

A a
|al
a

scalar number

absolute value

column (small italic characters)
i—~th term
matrix (capital italic charac
term on row i, column j
transpose

inverse

estimate

desired a

a—aq (tracking error)

first order time derivative
second order time derivative

. .. 1a0
diagonal matrix [ 0b ]
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CHAPTER 1: INTRODUCTION

Industrial robots are controlled in order to make its end—effector track a desired
trajectory. A controller design is based on a model of the system. When this model would
completely correspond to the system, a controller using only full dynamics feedforward
would cause the desired trajectory to be tracked without tracking errors. In practice the
model will never correspond exactly to the system. There will always be some modelling

€TTOorS:

o The dynamic structure may not be known exactly. For example a mechanical
manipulator is often considered stiff, while there could be some significant
flexibility in the manipulator. Sometimes significant non—linearities are known to
be present, but cannot be taken into account in the controller implementation
because of the computational effort.

o The dynamic behaviour of a robot also depends on parameter values. Parameters
are physical properties like inertia, mass, friction, gravitation and geometrical
properties like angles and lengths. The parameter values are not always known
exactly.

o The controller design is often based on a continuous time model. On—line control
takes processing time, which causes {ime delay.

0 Measuring instruments have some inaccuracy. A computer executes the on—line
control algorithm. Only discrete numbers can be processed. This is not a real
modelling error, but is mentioned, because it causes tracking errors.

The influence of these modelling errors on the dynamic behaviour of a system controlled
with only full dynamics feedforward would be very large. Such a controller is not robust
with respect to model errors.

In literature many robust controllers are proposed, but only a few are actually applied.
Therefore research into practical application of existing controllers is just as important as
research into new controllers. Research is necessary to investigate their feasibility and to
compare their performances. One of the proposed controllers in literature is the adaptive
controller of Slotine and Li (1987). The main topic of this report is to compare the
performance of the PD and adaptive controller.

In chapter 2 the principles of the adaptive controller are explained.

In chapter 3 simulations of the RT-robot, a rigid manipulator, are presented. A
description of the RT—robot is given. Simulations with friction and unmodelled dynamics

are presented.

In chapter 4 simulations of the XY-—table, a flexible manipulator, are presented. A
description of the XY—table is given. The influences of motor and end—effector feedback are
discussed. Further the PD and adaptive controller are compared. Finally some
discretization effects are discussed.

In chapter 5 the PD and adaptive controller are applied to the actual XY—table. A
Kalman observer is designed to reconstruct position and speed one sample ahead. Then
there is no influence of time delays due to processing time. All sorts of modelling errors are
discussed. The flexibility of the XY—table can be reduced by turning on some screws. In
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this way, experiments can be done with a rigid and a flexible system. In both situations the
PD and adaptive controller are compared.

In chapter 6 conclusions are drawn based on the results obtained. Recommendations are
given for further experiments with and improvements of the XY—table.
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CHAPTER 2: ADAPTIVE CONTROLLER

The main topic of this report is to compare the PD and adaptive controller. The adaptive
controller consists of a PD feedback and a full dynamics feedforward. The unknown
parameters are estimated (adaptedf) on—line. The choice of the control law and adaptation
law are such that the derivative of the manipulator’s total energy (Lyapunov function) is
smaller or equal to zero. Global asymptotic stability is guaranteed through the use of
implicit sliding surfaces. To be able to read this report it is not necessary to understand the
adaptive controller completely. The most important things to know are that the PD
feedback is defined with matrices K, and K4 and that the adaptation speed depends among
others on the matrix I'-1. Larger elements of I'-1 lead to quicker adaptation of the estimated
parameters. In this report the elements of I'-! will be called the adaptation values. The
choices of the matrices Kp, Kq and I'! are limited by measurement noise and unmodelled

dynamics.

Without any proof (see Slotine and Li, 1987) the control law and the adaptation law are
given. In absence of friction and disturbances, the dynamics of an n-link manipulator can

be written as:
Hi+ Xg0)g+ g9 =r (21)
with
¢ the n—dimensional column of joint displacements
7: the n—dimensional column of applied joint torques
H{ g): the nxn symmetric positive definite manipulator inertia matrix

{4,4)¢: the n—dimensional column of centripetal and Coriolis torques

¢(¢q): the n—dimensional column of gravitational torques.
The control law is defined as:
r=HQ)g + Uq.0)a + §(g) — Kas (2:2)

with
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H, Cand §: estimates of H, Cand g

¢:: virtual reference trajectory with gr = ga — AQ, ¢&r = 94 — A7
ga(t), ga(t), ga(t): desired trajectory

A: symmetric positive definite matrix.

Kj: positive definite matrix

s: measure of tracking accuracy s = 7+ AQ

K3s: PD feedback —K3s = — Kq§— KgAq = — Kaq— Kpd

Kp: symmetric positive definite matrix

Because H, C and g are linear in the parameters, (2.2) can be rewritten as:

T= Y(q’ .q1 &r).él‘)& S de

Y= Yq,4,4r,¢r): nxm matrix

a: the m—dimensional column of the manipulator parameters

The adaptation law is defined as:

a=-I1 YT(Q; -q, .ql').ql‘)s

I': symmetric positive definite mxm matrix

-22—
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CHAPTER 3: SIMULATION OF RT-ROBOT

3.1 Introduction

The adaptive controller will be applied to a rigid manipulator, a RT—robot. First, the
RT—robot will be described. Then the gain matrices of the PD feedback will be determined
based on the eigenfrequency and damping factor. The influence of larger adaptation values
on the tracking errors will be examined, when there are no unmodelled dynamics. This will
be done with and without friction. Finally the PD and adaptive controller will be
compared, when there are unmodelled dynamics in the actual system. In that case the
adaptation values have to be chosen small enough so that the unmodelled dynamics do not

cause instability.

3.2 Description of RT—robot

Figure 8.1: RT—robot

In order to compare the PD and adaptive controller, the motion of a simple RT—robot,
illustrated in figure 3.1, was simulated.The capitals RT stand for rotation and translation.
The RT—robot consists of a disk with moment of inertia I and a rigid bar with length | and
homogeneously distributed mass m. If there is no friction, the bar can be pushed up and
down inside the disk by force F(t) without any resistance. The load at the end of the bar is
a concentrated mass m;. The disk with bar can be rotated by torque M(t). The system can
be described with two degrees of freedom, a rotation ¢(t) and a translation r(t). The
equations of motion, derived with the method of Lagrange, are:

P1; = (Pll'—-Pz)(:Oz =F
(P5—2Px+Px2)p + 2(Pr—Py)rp= M (3.1)

with parameter values:
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P; = m+m; = 15 [kg]

Py = jml = 5 [kgm]
P; = I+4ml? = 8 [kgm?]

3.3 Gain matrices

The PD and adaptive controller make use of a PD feedback as in equation (2.2a). The gain

matrices Kp and Ky influence the eigenfrequencies and damping factors. Larger values of
the gain matrices will lead to a quicker response to tracking errors. In practice there will
always be measurement noise and unmodelled high—frequency dynamics. Too large values
of the gain matrices will lead to less robustness to these effects and could cause instability.
At first, simulations will be done without unmodelled high—frequency dynamics. But for
the choice of the gain matrices, unmodelled high—frequency dynamics with an
eigenfrequency of 25 [rad/s] will already be taken into account. A practical criterion to
avoid instability due to these unmodelled dynamics is that the eigenfrequency of the
controlled system must be much smaller than the eigenfrequency of the unmodelled
dynamics. This is only a practical criterion. Even if the eigenfrequencies are the same, the
controlled system could stay stable. Here the eigenfrequency and damping factor are chosen
to be: ‘

we = 10 [rad/s]
B=1[] (3.2)

With this information the gain matrices can be determined. Linearization of equations
(3.1) in a stationary working point (ro,,) results in:

Pr=F
Lip=M (3.3)
with I; = (P3~2Paro+P )
with PD feedback:
F = — Kqi(1—14) — Kpi(r—14)
M = — Kas(¢~pa) — Kpa(p—¢a) (3.4)

Substitution of equations (3.4) in (3.3) makes:
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f+%—‘11—‘i+%-’;—lr=§‘%id+%%lrd
- Kay: , Kpg, _Kaz;, . K
¢+ 7920 + T2 = T4 + T4 (3.5)

which can be written as:

q + 2Bweq + wir = 20werq + wirg (3.6)
Then the gain matrices are:

Kp = diag(Kpl,sz) = diag(wgPl,wé’Il)

Kd = dia.g(Kd1,Kd2) = diag(?ﬁwoP1,2ﬂwoll) (37)

The most unfavourable working point is where the gain matrices are the smallest. Then I;,
which only depends on r, as shown in equations (3.3), is the smallest. This point, which is
the mass centre of the bar with load, because in that point a torque causes the largest
acceleration, is:

Io = 4 [m] (3.8)
Equations (3.2), (3.7) and (3.8) result in:

K,=diag(1500,666)
Ka=diag(300,133) (3.9)
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3.4 Simulation results

The first simulations were done without friction or high—frequency unmodelled dynamics.
The desired trajectory in figure 3.2 was:

0<t<1.0][s]:
rg = 3t — Ssin(2nt) + & [m]
3 on x
0a = Q‘W t— % sin(27t) [rad]
1.0<t<1.4]s]:
13 =0; pg =0 (3.10)
1 N 2 - — o I —
‘ i i ! |
0.8“}— / ‘é 15+ /__'“ f
! / —— | | !
06r / 3 o1 / - E ost -
4 . 7 e
0.4 - 0.5+ ,
L | | ’ |
: . . _f L o g . 5 ; T s
92,702 04 06 08 1 % "0z 04 06 08 1 % o1 0z 03 o4

Figure 8.2: Desired trajectory

The design of the adaptive conmtroller is given in appendix A. The initial parameter
estimates of the adaptive controller were zero. Then the adaptive controller with
adaptation off corresponds to the PD controller. The purpose of the experiments without
unmodelled dynamics is not to compare the PD and adaptive controller. For a comparison
the bandwidth of the controlled system must be about the same in both cases. Here the
adaptation values were increased without looking to the influence on the bandwidth. Later
on the adaptation values will be chosen so that the bandwidth does not become larger. Now
the only purpose is to watch the tracking errors, when the adaptation values become very
large. To do this the maximum absolute tracking errors are compared with different
adaptation values. It is clear from figure 3.3 that larger adaptation values lead to smaller
tracking errors. In practice there will always be unmodelled dynamics, which will limit the
adaptation values. The conclusion is that, when the controller is based on a model with
exactly the same structure as the actual system without high—frequency unmodelled
dynamics or measurement noise, larger adaptation values lead to smaller tracking errors.
When the initial values of the estimated parameters are not zero, but equal to the physical
parameters, there will be no tracking errors. When there are no tracking errors, the
derivative of the estimated parameters stay zero because of equation (2.4). Then the
adaptation values have no influence at all. In figure 3.3 the adaptation value on x—axis
means for example:
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adaptation value = 102 = T'1= [ 0 102 O
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Figure 8.8: Mazimum tracking errors

3.5 Friction

In the previous simulations the bar with load could be pushed up and down by force F(t)
without any resistance. In practice there will always be friction. In the following
simulations with the RT—robot, friction was introduced:

o Coulomb friction: P4 = 20 [N]

o viscous friction: P5 = 5 [Ns/m]

The PD controller can be extended with Coulomb friction compensation. Because the exact
value of the friction is usually unknown, only fifty percent was compensated. In the
adaptive control algorithm it is possible to adapt the friction parameters (see appendix A).
The initial values of the parameter estimates were chosen to be zero, except of course the
Coulomb friction parameter. The starting value of this parameter was fifty percent of the
actual Coulomb friction, just like the compensation term in the PD controller. Again the
PD controller corresponds to the adaptive controller with adaptation off. Still there cannot
be drawn any conclusion from the comparison between the PD controller and the adaptive
controller, for the created bandwidth of the system with adaptive control could be too large
with the chosen adaptation values:

It = diag(102,102,102,5.102,5.102) (3.11)
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The maximum tracking errors in figure 3.4 with adaptation on are the same as the
maximum tracking errors in figure 3.3 with adaptation values:

I'-t = diag(102,102,102)

The added friction does not have significant influence on the maximum tracking errors of
the adaptive controller. The adaptive controller compensates the friction well.

ps v e

006 _ a2
0105
L 0048
MAX MAX
L |@1cadt L
ooe
0009
[ o

OFF a 17 1]

Adaptation

Figure 3.4: Mazimum tracking errors

3.6 Unmodelled dynamics

So far the adaptation values could be chosen as large as possible, because the adaptive
controller was based on a model with the same structure as the actual system. Now
unmodelled dynamics will be added. Dynamics of amplifiers and motors are often neglected
in the model. The motor, which applies torque M to the disk of the RT—robot, could for
example have its own dynamics. The controller calculates a torque that has to be applied
to the disk to track the desired path. The applied torque will not have exactly the same
value as the calculated torque. When the calculated torque varies slowly with respect to
time, the motor will not have any trouble with applying this torque. But when the
calculated torque varies more quickly, the amplitude ratio will decrease and the phase lag
will increase. This motor behaviour can be described with a second order system:

Y+ 20wey + wdy=uwiu
wo = 25 [rad/s]

=412 H (312)
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u : calculated torque as input [Nm]
y : applied torque as output [Nm]
f : damping factor of motor [—]

w, : eigenfrequency of motor [rad/s]

The gain matrices of the PD feedback were chosen such that the eigenfrequencies of the
RT—robot without motor dynamics were 10 [rad/s]. When the eigenfrequency of the motor

iAv 2 WL W

dynamics is 25 {rad/s], the system will not become unstable. However, if the eigenfrequency
of the motor éynamics is 10 [rad/s], the system will probably become unstable. The
adaptation values of the adaptive controller cannot be chosen as large as possible anymore.
Too large adaptation values will cause instability. In appendix B adaptation values are
determined, which will not cause instability, when the eigenfrequency of the motor

dynamics is 25 [rad/s]. The result is:

3000 0
0300 0

rt=|003 0 0 (3.13)
0 0 0 5000
0 0 0 0 500

The simulations, which were done with friction and unmodelled dynamics with w, = 10
[rad/s], showed instability with PD and adaptive controller. The next simulations were
done with friction and unmodelled dynamics with w, = 25 [rad/s]. The following situations
were simulated:

1: PD controller:
fifty percent Coulomb friction compensation
2: adaptive controller:

initial value of Coulomb friction fifty percent,
initial value of other parameters zero percent

3: adaptive controller:

initial value of Coulomb friction fifty percent,
initial value of other parameters seventy percent

The tracking errors are shown in figure 3.5. The adaptive controller achieves a better
tracking accuracy than the PD controller. The parameter estimates of the adaptive
controller did not go to their exact values, because the adaptation time was too short and
because there were unmodelled dynamics. If the same trajectory had been tracked twice,
there would have been more time to adapt the parameter estimates. The adaptation values
were chosen small enough not to increase the bandwidth of the controlled system. But for
smooth convergence it would be better to chose these values such that the extra poles due
to the adaptation and the influence on the existing poles are small. Then, for example, it
would not be possible to estimate a part of the mass as a time dependent friction.
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Figure 8.5: Tracking errors

3.7 Conclusion

The adaptive controller achieves better tracking accuracy than the PD controller in case of
the simple RT—robot. When there are no unmodelled dynamics, larger adaptation values
result in smaller tracking errors. Adding friction is no problem. When there are unmodelled
dynamics, the parameters will not converge to their exact values. Another reason, why the
parameters did not converge to their exact values, was that the adaptation time was too
short. The simulation results of the rigid RT—robot show that it could be useful to apply

the adaptive controller to the flexible XY—table.
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CHAPTER 4: SIMULATION OF XY-TABLE

4.1 Introduction

The PD and adaptive controller will be applied to the XY—table, which is not rigid like
the RT—robot. A description of the XY—table and the equations of motion will be given.
The gain matrices will be determined based on the eigenfrequencies and damping factors.
Feedback of the end—effector position will give other results than only motor feedback. The

influence of different weighing factors for motor and end—effector feedback on the tracking

errors will be studied. Next, the simulation results of PD and adaptive controller will be
shown. Finally, some discretization effects are discussed.

4.2 Description of XY—table

A top view and a schematic representation of the XY—table are depicted in figure 4.1. The
system, used for the simulations, is shown in figure 4.2. Notice the difference of the positive
Y—direction between figure 4.1 and figure 4.2. The end—effector is a slide with mass m,
that can move in a horizontal plane by means of three slideways. The couples Ty and Tj
are applied by two servomotors. There are three degrees of freedom, the rotations ¢(t),
¢2$t) and <p3&). The rotations (pl(fg and @,(t) differ because of the torsion spring with
stiffness k. Coulomb friction is modelled for movements along the three slideways. This
friction is represented by the torques Wy, W, and W;. The equations of motion and the
exact values of the parameters of the simulated system are given in appendix B. A simple
model of this system will be used for designing the PD and adaptive controller. In this
model the torsion spring is neglected. Because the rotations s(t) and ¢y(t) of the
simplified model are equal, the model has only two degrees of freedom. The equations of
motion of this model, derived in appendix C, are:

P1 ;bl = T1 = P3 sign([p;)
P, p3 = T3 — Py sign(ps) (4.1)

with parameter values:
Py =2,34.103 [kgm?]
P, = 2,80.10-4 [kgm?]

P3 = 0,40 [Nm]
P, = 0,02 [Nm] (4.2)
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4.3 Gain matrices

Equations (4.1) without friction, representing the reduced model, will be used to
determine the gain matrices of the PD feedback. The gain matrices can be written as a

function of the eigenfrequencies and damping factors.

Model without friction:

Pio =T

Py 3 = T3
PD feedback of motor rotations:

T; = — Ka1 (pr—91d) — Kp1 (pr—¢14)
T3 = — Kas (¢s5—3d) — Kps (p3—p34)

Substitution of equations (4.4) in (4.3) results in:

‘Pl'*"p"“i1 ‘Pi'*‘p'p—llwl:p-—(il <P1d+P-L11<P1d
- Kgs * K Kgs - K
‘P3+p%—3‘03+P‘§§‘P3=P'2—3'(P3d+P';L3<P3d

This can be written as:

0 + 2Bwop + Wi = 2Bwopa + wWipa

(4.3)

(4.4)

(4.5)

(4.6)

For simplicity the eigenfrequencies and damping factors are chosen equal for both

equations (4.5). This yields:

Kp = diag(Kp1,Kps) = diag(wiP1,wiP2)
Kg = diag(Kq1,Ka3) = diag(26w,eP 1,28woP2)

—4.3—
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The choice of the eigenfrequency depends on the unmodelled torsion spring, which could
cause instability. To find out how large the eigenfrequency could be chosen, some
simulations were done. These simulations were carried out for the system with three
degrees of freedom with only motor feedback and no end—effector feedback. The desired
trajectory of the end—effector in figure 4.3 was:

xg =t —Tésin(%rt)
1.
g = t — o sin(27t)
0<t<1[s] (4.8)

y[m]
=)
n
e

x=y{m]
=3
h
Al
SO N

02 04 06 08 1
t {s] x [m]

[on}
o
N
o
I
&L
[=)%
o
o}
b
[==)

Figure 4.3: Desired trajectory

The tracking errors of the end—effector of simulations with eigenfrequency 10, 50 and 250
[rad/s] and damping factor 1 are shown in figure 4.4. There is not much difference between
50 [Hz] and 250 [Hz], because the motor rotations are following the desired path very well.
The largest part of the tracking errors are caused by the deformation of the torsion spring.
Because torque T; will stay about the same magnitude at higher eigenfrequencies, the
deformation will stay the same. The unmodelled torsion spring causes large tracking errors
of the end—effector in X—direction, but will never lead to instability. Because simulations
with lower eigenfrequencies take less time, the eigenfrequency and damping factor are
chosen as follows:

wo = 10 [rad/s]
=1 (4.9)
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Figure 4.4: Tracking errors of end—effector

4.4 Feedback of motor and end—effector

Ym=G,
v Qe 2 Xe/Tz
g {// Gom 2 4
X, Qe 2 Yo /iy
e n = motor
g & 5l g o = end-effecior

Figure 4.5: Motor and end—effector codrdinates

So far, only the rotations and angular speeds of the servomotors have been measured. It is
also possible to measure the displacement and speed of the end—effector. The displacement
of the end—effector can be written as a rotation by dividing the displacement by the radius
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of the belt wheels. This is illustrated in figure 4.5. Weighing factors Wy and We can be
attached to motor and end—effector. The weighed rotations are now:

O = Wmf 1m _“:‘_' Wefle
m e

V3w = Wnosm i Wepse (4.10)
m e

If it is desired, more flexibility can be achieved by designing separate end—effector and
motor feedback controllers and applying a weighed sum of their respective outputs.
The weighing of the angular speeds goes exactly the same way as in equations (4.10):

y — Wmﬂ- im_+ Weﬂ. ie

(IOIW - z - + -

y —_ Wmﬂ. 3m + Wef. 3e

‘p3w b o + e (4.11)

The XY—table without friction was controlled in order to make its end—effector track the
desired path of equations (4.8). The controller was a PD feedback with gain matrices in
form of equations (4.7) with eigenfrequency and damping factor as in equations (4.9).
Results of simulations with different weighing factors are shown in figure 4.6. The
X—direction is the most sensitive to the weighing factors. The smallest maximum tracking
error in X—direction occurs, when the feedback consists of forty percent motor feedback
and sixty percent end—effector feedback. When not the maximum of the tracking errors,
but the sum of the tracking errors was considered, the optimum could have been a little bit
different. But that is not the point here. The conclusion is that only end—effector feedback
causes instability, which can be avoided by adding some motor feedback. It would be
possible to find the optimum combination of gain matrices and weighing factors by doing a
lot of simulations, but it is not the purpose to tune the system. The purpose is to make an
honest comparison between PD and adaptive controller.
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4.5 Simulation results

The XY—table with friction was simulated with PD and adaptive control. The PD
feedback for both controllers was as in equations (4.7) and (4.9). There was forty percent
motor feedback and sixty percent end-effector feedback. The desired trajectory was not
chosen as in equations (4.8), but was chosen to be a circle:

x4 = 0,5 — 0,25cos(27t)
ya = 0,5 + 0,25sin(27t)

X4,yd in [m] (4.12)

Because the trajectory, which was used to determine the optimal weighing factors, was not
this circle, the weighing does not have to be optimal. This does not matter, because it is
not the intention to tune this system. The intention is to make a comparison between the
PD and adaptive controller. The adaptive controller design is given in appendix D. The
adaptation values were chosen as (see appendix D):

It = diag(2.5-107,2.5-108,1-10",1-102) (4.13)

In figure 4.7 the tracking errors are plotted for three different situations:

1: PD controller
2: adaptive controller starting from zero estimates

3: adaptive controller with hundred percent parameters
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Figure 4.7- Tracking errors of end—effector
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In the beginning the tracking errors of PD controller and adaptive controller starting with
zero estimates are very close. This was expected, because the adaptive controller with zero
parameters and the PD controller are exactly the same. But the parameter estimates in
figure 4.8 are quickly driven by the tracking errors. At the end the parameter estimates are
so good, that the tracking errors of the adaptive controller starting with zero estimates are
very close to the tracking errors of the adaptive controller with hundred percent
parameters. The tracking errors of the adaptive controller with hundred percent
parameters are not zero, because of the influence of the unmodelled torsion spring and the
initial condition in Y—direction. The initial speed in Y—direction was chosen to be zero.
But in equations {4.12) the desired initial speed is not zero. In practice there will always be
some knowledge of the parameter values. Then the feasible result will lie between the
adaptive controller with zero and hundred percent parameters.

In paragraph 4.2 it was shown that higher eigenfrequencies did not cause instability. When
the adaptation values are chosen too large, no instabilities will follow. Therefore it could be
possible that the adaptation values are too large without noticing. This does not mean that
the results are not useful for comparison between PD and adaptive controller. When the
adaptation values were chosen smaller, the parameter estimates would have gone more
slowly to their final values. In practice it could be possible to make the end-effector track
the same circle more than once. After a while, even with much lower adaptation values, the
tracking errors of the adaptive controller starting with zero estimates would come very
close to the tracking errors of the adaptive controller with hundred percent parameters.
The adaptive controller achieves much better tracking accuracy than the PD controller,
even when the model used for the control design is not the same as the actual model. In

this case due to the flexibility of the torsion spring.
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Figure 4.8: Parameter estimates
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4.6 Discretization effects

In the above simulations the controllers were continuous with respect to time. In practice
a computer executes the on—line control algorithm. This takes processing time and only
discrete numbers can be processed. A common practical criterion for a good controller
performance, as far as the time delay is concerned: the controller sampling frequency must
be at least ten times larger than the maximum response frequency. Undesirable effects of
the time delay can be canceled by estimating position and speed one sample ahead. This
can be done by means of the well known Kalman observer. Assuming that this Kalman
filter will be used in the practical implementation, the time delay does not have to be
reckoned with. Then the sampling frequency must be at least a factor 2 to 4 larger than the
maximum response frequency to enable detection of this maximum response frequency. In
appendix D can be seen, that the largest eigenfrequency of the linearized system with PD
and adaptive controller is about 3.4 [Hz]. This means that the sampling frequency must be
at least 7 to 14 [Hz]. Simulations were done with the adaptive controller starting with zero
parameters, assuming that measuring the output and calculating and applying the input
did not take any time. The only effect of sampling was that the computed input and
estimated parameters kept the same value during one sampling period. The tracking errors
are shown in figure 4.9. The tracking errors at a sampling frequency of 100 [Hz] do not
differ much from the continuous controller. At 20 [Hz] the tracking errors are different, but
not worse. At 10 [Hz] the system is unstable. From this can be concluded, that for a good
performance, even when there is no time delay and no measurement noise, the sampling
frequency should be chosen as far as possible above the largest eigenfrequency of the

controlied system.
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Figure 4.9. Tracking errors at different sampling frequencies
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4.7 Conclusion

Instability due to the unmodelled torsion spring can be avoided by adding motor feedback

instead of only end—effector feedback. It is possible to tune the XY—table by finding the
optimum combination of gain matrices and weighing factors, but this is not the purpose of
this report. The purpose is to compare the PD and adaptive controller in the presence of
unmodelled dynamics. The adaptive controller achieves much better tracking accuracy
than the PD controller. The parameters, especially the mass parameters, are estimated
well. The results are promising for implementation of the adaptive controller.
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CHAPTER 5: IMPLEMENTATION IN XY-TABLE

5.1 Introduction

The results of chapter 3 and 4 show that it could be very useful to apply the adaptive
controller to the actual XY—table. First, a description is given of the XY—table. A Kalman
observer will be designed to avoid time delays and discretization effects. Next, all kinds of
modelling errors will be discussed. Which of them causes instability and at which
eigenfrequency. Experiments will be done with and without the flexible torsion spring.

GRS

5.2 Description of XY—table

The XY—table has already been described in chapter 4. The controller hardware is
described in Heeren (1989). With the existing hardware and software it was not possible to
work with different sampling frequencies. For this purpose a programmable interval timer
of type 8253 (Intel) has been added. The software has been adjusted such that the interval
timer is programmed automatically by stating the desired sampling frequency. Normally it
is possible to measure the servomotor rotations and the end-effector position.
Unfortunately, the optical measurement system, which measures the end-effector position,
was broken during this study. In contrast with chapter 4 the tracking errors in this chapter
relate to the motor rotations and not to the end—effector. There is only motor feedback.
The positive Y—direction is different too. Thisis not so important, but is only mentioned
for the sake of completeness and to avoid confusion. Again a simple model is used to design
the PD and adaptive controller. The equations of motion, not with torques as in equations
(4.1) but with forces, are:

P1 x= Fl— P3 81gn(x)
P2 y = F3 - P4 sign(y) (5.1)

with parameter values:

P, = 46.5 [kg]

P, = 4.3 [kg]

P; = 50.0 [N]

P, = 15.0 [N] (5.2)
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These parameter values are, apart from the transmission between torques and forces,
different from equations (4.2), because there was no good information about the parameter
values during the simulations of chapter 4. The parameter values of equations (5.2) will
also not correspond to the exact parameter values, but this was the best information
available during this study.

5.3 Kalman observer

The servomotor rotations are measured with incremental encoders. One possibility to
determine the angular speeds is simple numerical differentiation of the servomotor
rotations. Differentiation leads to two kinds of errors. First, measurement errors of the
rotations cause errors at the size of the differentiation step divided by the time interval. A
larger time interval will produce smaller errors due to measuring errors. Secondly,
differentiation gives an estimate of the angular speed at the point of time in the middle of
the interval, not at the end of the interval. This causes a time delay in the determined
angular speed at the size of half a time interval. A larger time interval will produce larger
errors due to time delay. These two kinds of errors show that there must be an optimum
differentiation interval.

Further, when the motor rotations are measured and the angular speeds are determined by
differentiation, the computer has to calculate the inputs to make the end—effector track
some desired path. This causes a time delay with respect to the inputs.

The above effecis can be reduced by a Kalman observer. The Kalman observer determines
the speed not only with the measured rotations like the difference method, but also with
the knowledge of the dynamics. Therefore the measurement errors have less influence. The
Kalman observer estimates position and speed one sample ahead, using the last estimates,
the last measured position, the last calculated forces and the knowledge about the
dynamics of the XY—table. The computer calculates the input with the estimated position
and speed. The calculated input is applied at the point of time, at which position and speed
have been estimated. In this way the time delay can be neglected. The design of the
Kalman observer is shown in appendix E. This design is based on a discrete time model, at
which a variable sampling frequency has been reckoned with.

5.4 Stability analysis of rigid system

It is possible to change the flexible bar into a rigid bar simply by turning on some screws.
Then the simple model, that will be used for the controller design, should structurally be
the same as the system. But there are modelling errors (some of them can be detected by
looking at the XY—table and pushing the end—effector up and down), which influence the
control behaviour:

Moving the end—effector in X— and Y—direction very slowly does not constantly needs the
same effort. There are some bad bearings. This causes an harmonic friction term in X— and
Y-direction.

There 1s backlash in one of the bearings in X—direction. When the motor shaft starts moving
in an other direction, only one of the two X—slides moves. Then the effective mass is

smaller.
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The transmissions between motors and slides consist of belts and little springs. These belts
can be considered stiff. The little springs can be pushed in very easily. This causes eztra

flezibility

The belts often touch the sides of the belt wheels, through which the friction changes. This
happens in X— and Y—direction.

The XY —table is supported by a concrete block, which could cause vibrations.

Motors and amplifier have been modelled as constant gains, while they have dynamics of
their ow n. The gain factor does not seem to be correct, for the calculated and measured

21197 vw

current are not the same. But this only influences the parameter estimates. It does not
influence the performance.

Measurement noise. The measured motor rotations are only known in discrete numbers.

Sampling frequency.

Due to this kind of unmodelled dynamics, the PD feedback cannot be chosen too large. To
find out which gain matrices cause instability and why, they are written as function of
eigenfrequencies and damping factors. The motor rotations are converted into x— and
y—coordinates. The PD feedback is then:

Fy = — K1 (x—xq) — Kp1 (x—xq)
F3 = — Kas (y-v4) — Kps (y—va) (5.3)

Substitution of equations (5.3) in (5.1) results in:

%+ Bl 4 Fole = Rl 4 Polxy
y+ply+ply=pPya+plve (5.4)

This can be written as:

i + 2ﬁx0)0xi + ngx = 2ﬂxw0x3.(d + ngxd

¥ + 2Bywoyy + wiyy = 2Bywoyya + wiyya (5.5)

This yields:
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Kp = diag(Kpl,Kpa) = djag(WgXPthyPZ)
Ky = diag(Ka1,Kq3) = diag(20xwoxP 1,20y woyP2) (5.6)

The first experiments were done in X—direction with a sampling frequency of 133 [Hz| and
with desired trajectory:

x4 = M — R cos(2#1t), yq = 800
M = 800 [mm], R = 150 [mm], { = z% [Hz]
0<t<3.75 5] (5.7)

The applied forces in X—direction of experiments with:

Wox = 5x27 [rad/s] = 5 [Hz], fx = 1
Wox = 10x27 [rad/s] = 10 [Hz] fx =1 (5.8)

are shown in figure 5.1.
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Figure 5.1: Applied forces to total system
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At 5 [Hz] little high frequency vibrations arise in the speed errors and the input force. At
10 [Hz] the tracking errors are smaller than at 5 [Hz], but the XY—table shows a chattering
response. (The maximum force of about 180 [N] has been built in into the software for
safety.) Apparently something causes high frequency vibrations at about 5 [Hz], which
leads to undesirable chattering at higher %requencies. To find out whether these vibrations
are caused by dynamics of the XY—table itself, like the concrete block or the springs
between belts and slides, experiments were done with only the motor. For this purpose a
belt was detached from the motor shaft. Then the controlled system only consists of the
motor. The applied forces of experiments with:

wox = 10x27 [rad/s] = 10 [Hz], fx =1

wox = 15x27 [rad/s] = 15 [Hz], fx =1 (5.9)
10l 1511
40 T T T 100 v ¥ T
20} — 50 .
&3 ’ N mr
20F V V - 50f 4
40 1 2 3 4 s 1 7 3 4

tfs] tis]
Figure 5.2 Applied forces to motor

are shown in figure 5.2. The same kind of vibrations occur. At 15 [Hz] the input force shows
the same chattering as the experiment with the total system at 10 [Hz]. Apparently the
chattering is influenced by the dynamics of the XY—table, for the chattering starts at
different eigenfrequencies and with an other amplitude. But because chattering was also
shown in the experiments with the detached belt, the main cause can only be one or more

of the following model errors:
o Dynamics of motor and/or amplifier
o Estimation errors of Kalman observer
o Sampling frequency
The estimation errors of the Kalman observer can be determined after the experiment. The

estimation errors of the position can be neglected. The actual speed is determined using a
central difference method:
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(1) = 54Ty —x(T)

Ts : Sampling time (5.10)

Now the estimation errors are written as:

v(t) = x(t) — (t)

:;:(t) : Estimated speed (5.11)

A part of the calculated input force is the result of these estimation errors. The standard
deviation of the estimation errors in the experiment with the total system at 5 [Hz] is:

Sy = 4 [mm/s] (5.12)

The standard deviation of the part of the calculated input force due to estimation errors is
then:

St = Kq Sy = 2fwoxP1 Sv
St = 2x1x5x27=46.5x4 [mN] = 12 [N] (5.13)

This explains the little vibrations of the input force at 5 [Hz] in figure 5.1. At 10 [Hz] the
part of the force due to estimation errors would be expected to be twice as large because of
a twice as large wox. But the deviation of the estimation errors has become larger too:

Sy = 12 [mm/s] (5.14)
This causes a standard deviation in the input force at 10 [Hz]:

Sf = 2x1x10x27x46.5x12 [mN] = 70 [N] (5.15)
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This explains the chattering response of the XY—table at 10 [Hz]. But why does the
standard deviation of the estimation errors become larger at higher eigenfrequencies.
Because the same effects occur, when only the motor is controlled, the only possible reasons

can be:

o Dynamics of motor and/or amplifier

Experiments with the XY—table were done to look at the influence of the sampling
frequency on the estimation errors. The desired trajectory was:

x4 = M — R cos(27ft), ya = 800
M = 800 [mm], R = 150 [mm], { = 5 [Hz]
0¢t<2[s] (5.16)

The sampling frequencies were chosen to be 125 [Hz] and 250 [Hz]. The sampling frequency
of 250 [Hz] had been made possible by letting the computer only calculate the PD feedback

in X—direction.

With a sampling frequency of 125 [Hz] the chattering response begins above an
eigenfrequency of 5 [Hz]. The standard deviation of the estimation errors at 10 [Hz] is
almost ten times larger than at 5 [Hz]. ‘

With a sampling frequency of 250 [Hz] the chattering response begins above an
eigenfrequency of 20 [Hg] At 5 [Hz] the standard deviation of the estimation errors is about
the same as with a sampling frequency of 125 [Hz]. But now even at 20 [Hz] the standard
deviation has not changed appreciably. To prove that the sampling frequency is the cause
of the increased standard deviation of (5.14), the estimation errors of the Kalman filters
with 125 [Hz] and 250 [Hz] should be compared, when the same input signal is applied.
Dynamics of motor and/or amplifier can still cause chattering, when the effects of the
sampling frequency are not shown to be qualitatively equal to the total effects. However
there was no time left to do these experiments during this study.

The chattering response is caused by the estimation errors of the Kalman observer.
Probably the sampling frequency of 125 [Hz] makes the speed estimation worse above an
eigenfrequency of 5 [Hz], but to prove this some experiments should be done. Because the
implementation of the adaptive controller in X— and Y—direction needs a sampling time of
about 8 [ms], the sampling frequency cannot be larger than 125 [Hz]. This means that in
X—direction a chattering response is caused at an eigenfrequency of about 5 [Hz], probably
by:

o Estimation errors of Kalman observer

o Influence sampling frequency on Kalman observer
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In Y—direction a chattering response is caused by the same reasons at about the same
eigenfrequency.

5.5 Rigid system experiments

Experiments with the rigid system (rigid bar) wer
-~ nnmv\ﬁﬁn ;ran oannyy Of 125 HZ]_

controller with a Sampung iregquen
were chosen according to equations

Wox = Woy = 4x27 [rad/s]

Px = By = 0.7 (5.17)

This was the largest possible eigenfrequency without appreciable influence of the estimation
errors of the Kalman observer on the calculated input force. Now undesirable chattering
response was totally avoided. To determine the largest possible gain matrices of the
adaptive controller, which did not cause chattering at all, the parameters were chosen as
hundred percent parameters with adaptation off. This resulted in the same gain matrices as
for the PD controller. The desired path was:

x4 = yd = M — R cos(2ft)

M = 800 [mm], R = 150 [mm], { = 7 [Hz]
First control cycle 0<t < 4 [s]

Second control cycle 4 <t < 8 [s]

Third control cycle 8 <t < 12 [s] (5.18)

Of course the results of the PD controller stay the same for each control cycle (except the
effects of initial conditions), because the desired path stays the same. But the results of the
adaptive controller are different, because each control cycle starts with the last parameter
values of the previous control cycle. In appendix F the design of the adaptive controller is
given. The adaptation values are determined such that the adaptation process is slower
than the control bandwidth. Then the adaptive controller with adaptation on will not cause
chattering, when the adaptive controller with adaptation off does not cause chattering. The
experiments were:
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: PD controller without friction compensation

[y

: adaptive controller starting from zero estimates:
results of first control cycle

N

(2

: adaptive controller starting from zero estimates:
results of third control cycle

4: PD controller with 75 % friction compensation:

5: adaptive controller starting from 75 % estimates
results of first control cycle

: adaptive controller starting from 75 % estimates:
results of third control cycle
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Figure 5.8: Mean absolute tracking errors of motor position

The mean absolute tracking errors of all experiments are shown in figure 5.3. The
performance of the adaptive controller is much better than of the PD controller. At the
third control cycle the results of the adaptive controller starting with 0 % and 75 %
parameter estimates are the same. For the third control cycle it does not matter, what the
initial parameter values were. The adaptive controller is able to estimate the same
parameters after two control cycles, no matter what the initial values were. In figure 5.4
the parameter estimates of the adaptive controller starting from zero estimates are shown
during the first and third control cycle. During the third control cycle the parameters do
not really change, but fluctuate around a mean value. The parameters can be expressed
with a mean value plus minus a percentage, which represents the standard deviation of the

fluctuations:

~5.9—




Model:

Estimates:
P,=47.4[kg 009 % P; = 46.5 [kg]

Py =4.10 [kg] + 9.0 % P, = 4.30 [kg]
Py=422[N]£1.1% P3 = 50.0 [N]
Py=17.7[N]£15% Py =15.0 [N] (5.19)
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Figure 5.4: Parameter estimates

The estimated parameters correspond better to the actual system parameters than the
model parameters, which were used for the design of controllers and Kalman observer. The
model parameters were only rough indications used, because there was no better
information available. The fluctuations of the second parameter (the mass in Y—direction)
are larger than the other fluctuations. The plots of the tracking errors of experiment 1

(PD) and 3 (adaptive) are shown in figure 5.5.

¥ [mm]

t[s] .

Figure 5.5: Tracking errors of motor position
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In X-—direction the tracking errors of the adaptive controller are much smaller in
comparison with the PD controller. The remaining tracking errors can mainly be attributed

to unmodelled dynamics:

o The little springs between belts and slides

o Backlash in one of the bearings

o Contact between belts and sides of belt wheels
o Dynamics of motor and amplifier

o Harmonic friction term

Especially the influence of the harmonic friction is shown very clearly. Each revolution of a
bearing shaft corresponds to one ’vibration’ in the plot of the tracking errors.

In Y—direction the tracking errors of the adaptive controller are smaller compared with the
PD controller, but the difference is not as big as in X—direction. The remaining tracking
errors can mainly be attributed to:

o The little springs between belt and slide
o Contact between belt and sides of belt wheels
o Dynamics of motor and amplifier

o Harmonic friction term

Again the harmonic friction term is shown very clearly in figure 5.5. The influence of the
harmonic friction has much more influence on the tracking errors than in X—direction. The
harmonic friction term in Y—direction is much larger with regard to the input force than in
X—direction. Because of this the modelling error due to the harmonic friction is relatively
larger in Y—direction than in X—direction. Therefore the adaptive controller has the best
results in X—direction, although the results of the adaptive controller in Y—direction are
also much better than the the results of the PD controller. The relatively larger model
errors are probably the reason that the mass parameter in Y-direction shows large

fluctuations.

The adaptive controller achieves much better results than the PD controller. The
parameter estimates conver%e very well to constant values within some fluctuations. The
remaining tracking errors of the adaptive controller are caused by unmodelled dynamics.
How large the influence of the different modelling errors is on the tracking errors, could be
determined with simple experiments. For example the influence of the little springs could
be investigated by doing the same experiments with a stiff construction between belts and
slides.
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The influence of the harmonic friction due to bad bearings could be examined by replacing
these bearings. Or, what would even be more interesting, by expanding the model used for
the adaptive controller design with harmonic friction.

5.6 Flexible system experiments

The previous experiments were done with a rigid bar. The rigid bar was replaced by a
flexible one to add some extra unmodelled dynamics. Nothing else was changed. The
sampling frequency, the desired trajectory, the Kalman observer and the model used for
controller design stayed the same. Now the eigenfrequency of 4 [Hz| in X—direction causes
undesirable chattering. To avoid this chattering the maximum possible eigenfrequencies in

X—direction are:

PD controller:

Wox = 3.5%27 [ra.d/SI
By = 0.7 (5.20)

Adaptive controller:

Wox = 2.5x2 [rad/s]
Bx = 0.7 (5.21)

Again the chattering at higher eigenfrequencies will probably have something to do with
the Kalman observer and the sampling frequency. But the direct cause must be the flexible
bar, for this is the only thing that has been changed. A remarkable fact is that the
eigenfrequency and thus the gain matrices of the adaptive controller must be smaller than
the PD controller. The adaptive controller is less robust to the unmodelied dynamics than
the PD controller. The adaptive controller does not have to have essentially the same level
of robustness to unmodelled dynamics as was suggested by Slotine and Li (1987).

The adaptation values in the experiments with a rigid bar, which were determined in
X—direction for an eigenfrequency of 4 [Hz|, were still used in the experiments with a
flexible bar with eigenfrequency of 2.5 [Hz] in X—direction. The adaptation values were
chosen so small that the adaptation process was much slower than the control bandwidth.
Then, with the same adaptation values, the adaptation process will still be smaller than the
control bandwidth at 2.5 [Hz].
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The experiments were again:

1: PD controller without friction compensation

2: adaptive controller starting from zero estimates:
results of first control cycle

3: adaptive controller starting from zero estimates:
results of third control cycle

4: PD controller with 75 % friction compensation:

5: adaptive controller starting from 75 % estimates:
results of first control cycle

6: adaptive controller starting from 75 % estimates:
results of third control cycle
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Figure 5.6: Mean absolute tracking errors of motor position

The mean absolute tracking errors are shown in figure 5.6. The adaptive controller is less
robust to unmodelled dynamics, through which the gain matrices must be smaller, but
achieves much better tracking accuracy than the PD controller. The estimated parameters
plus minus a standard deviation during the third control cycle starting from zero estimates

are:

Estimates:

P,=480[kg£22%
P,=4.23[kg] 8.3 %
Py =437[N]£25%
P,=19.1[N]£18%

EXPERIHENT

—-5.13 —

Model:

P, = 46.5 [kg]
P, = 4.30 [kg]
P3 = 50.0 [N]
P, = 15.0 [N]

(5.22)



The plots of the tracking errors of experiment 1 (PD) and 3 (adaptive) are shown in figure
5.7. The remaining tracking errors of the adaptive controller can be attributed to the same
sources as with the rigid bar. The only added source is the error due to the flexible bar. Of
course the flexible bar especially influences the tracking errors in X—direction.

The adaptive controller shows very good results. In paragraph 5.4 the influence of the
Kalman observer was discussed. The Kalman observer was designed with the model
parameters of equations (5.2). The Kalman observer could be improved by using the
estimated parameters of equations (5.22), by expanding the Kalman observer model with
harmonic friction, and by using a stiff construction between belts and slides instead of the
flexible springs. This would decrease the process noise.

X [mm]

Figure 5.7 Tracking errors of motor position

5.7 Conclusions

Experiments with the flexible XY—table show that the adaptive controller is less robust to

unmodelled dynamics, but achieves much better tracking accuracy than the PD controller.
The parameter estimates converge to constant values plus minus some small fluctuations.
These values are the same no matter what the initial estimates are. The fluctuations are
caused by unmodelled dynamics and measurement noise.

When the parameter estimates have reached their "constant" values, the remaining
tracking errors are caused by unmodelled dynamics and measurement noise. A structural
better model results in smaller tracking errors. The adaptive controller is able to esiimate
the parameters well. Especially when manipulators have to handle large unknown loads, or
parameters are unknown for other reasons, the adaptive controller is recommended. For,
despite all non parametric error sources of the flexible XY-table, the adaptive controller
achieves much better tracking accuracy than the PD controller.

Chattering response of the XY—table is caused by the errors in the speed estimation of the
Kalman observer and probably by the influence of the sampling frequency on the Kalman
observer. The Kalman observer could be improved by using the estimated parameter values
of the adaptive controller, by expanding the Kalman observer model with harmonic
friction, and by using a stiff construction between belts and slides. The sampling frequency
could be increased by using faster computers.

A large part of the tracking errors is caused by the harmonic friction due to bad bearings.
It would be interesting to expand the model, used for the adaptive controller design, with
the harmonic friction.
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS

In this chapter the most important conclusions are summarized and recommendations are
given for further experiments and research:

o

The parameter estimates do not converge to their exact physical values because
of unmodelled dynamics and measurement noise. Due to these unmodelled
dynamics and measurement noise the parameter estimates do not converge to
constant values, but stay fluctuating a little. For smooth parameter estimates the
adaptation process is chosen slower than the control bandwidth. When the
adaptation process is chosen as fast as the control bandwidth, the adaptive
controller could for example estimate a constant mass with a time dependent
friction. Then the friction parameter is not estimated smoothly. And the
fluctuations due to unmodelled dynamics will be larger. An extra remark: When
there are no unmodelled dynamics or measurement noise, convergence of the
trajectory tracking is guaranteed. But to guarantee exact parameter convergence,
the desired trajectory must be sufficiently rich so that only the true set of
parameters can yield exact tracking (Slotine and Li, 1987).

The adaptive controller, applied to the flexible XY—table, is less robust with
respect to unmodelled dynamics and/or measurement noise than the PD
controller. But because the parameters are estimated very well, the adaptive
controller achieves better tracking accuracy than the PD controller. The adaptive
controller is recommended, especially when parameters are unknown. For
example when mechanical manipulators have to handle large unknown loads.

When the gain matrices of the PD feedback are chosen too large, a chattering
response of the XY—table will arise. This chattering response is caused by the
errors of the speed estimation. This speed is estimated by a Kalman observer.
The sampling frequency has great influence on the estimation errors. The Kalman
observer could easily be improved by using the estimated parameters from the
adaptive controller, by expanding the Kalman observer with harmonic friction,
by using a stiff construction between belts and slides, and by increasing the
sampling frequency. The sampling frequency can be increased by replacing the
PC by a faster compatible model.

The estimated parameters "converge" always to the same values (within some
fluctuations), no matter what the initial values are. The converged parameters
are not entirely constant because of little fluctuations due to unmodelled
dynamics. These unmodelled dynamics are the reason that the tracking errors are
not zero, when the parameters have converged. Besides the unmodelled torsion
spring there are other sources of the remaining tracking errors: flexible springs
between belts and slides, backlash in one of the bearings, harmonic friction due to
bad bearings, dynamics of motors and amplifier, contact between belts and the
sides of belt wheels.

It would be useful to investigate the influence of the different model errors on the
remaining tracking errors of the adaptive controller. The flexible springs between
belts and slides could be replaced by a stiff construction. The difference between
the remaining tracking errors with and without these springs is the influence of
these springs. The influence of the harmonic friction, which is clearly present,
could be investigated by replacing the bad bearings. Or even more interesting
would be to add harmonic friction to the adaptive controller model and, doing so,
compensate this friction.

—~6.1 —



The optical measurement system, which measures the end—effector position,
could not be used during this study. Only motor rotations were measured. When
the end—effector position is available, it would be possible to tune the XY—table
by finding the optimal weighing factors betweem motor and end—effector
feedback. In the simulations it has been shown that only end—effector feedback
could cause instability problems. Again the results of PD and adaptive controller

could be compared.

The software, which controls the XY—table, is in Turbo Pascal. After each
experiment it is possible to watch plots of the results inside the Turbo Pascal

program. But a new experiment deletes the data of the previous experiment. It is
not possible to compare plots of two experiments inside the Turbo Pascal
program. The program is expanded with an option to save results in a
Matlab—file. But then it is only possible to compare different experiments outside
the Turbo Pascal program. It would be much easier, if the program was written
in Matlab. Only the real time part, the control algorithm, should be in a
compiled language. Then several experiments could be compared, which could

save a lot of time.

Further research should be done into robust controllers, which are proposed in
literature, by implementation at the XY—table. The performance of these
controllers can be compared with the PD and the adaptive controller of Slotine

and Li.
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APPENDIX A: ADAPTIVE CONTROLLER DESIGN FOR RT-ROBOT

In this appendix the adaptive controller is designed according to chapter 2 for the
RT—robot of chapter 3.

System:

Hoi+ Aga+gg =1 (2.1)
Control law:

= H(q)te + Na )i + 9(q) — Kas (2.2)

7= ¥(¢,4,8r,4)a — Kas (2.3)
Adaptation law:

o =-T1Y(q,4,r8)s (2.4)

This yields for RT—robot with dynamic equations (3.1):
[ m+m; 0
= | 0 I+4ml>-mir+(m+m)r2

0 =G m+m1)r—%-m1}§0}
| {(m+mi)r—jml}e {(m+m;)rml}r

F T
=[] o= [3] S
[ I r—rgbgb r <P<Pr 0
Y= rpetrpr 411 —2i—pi—tor i (A1)
or with friction:

T=[1\I‘:I] q=[;] (LT=[P1P2P3P4P5]

Y [ Er—r¢¢r {0(,'01' 0 Sign(i) i }

Pt o e Pt Gt 0 0 (A.2)

Except for the choices of Ky, Kp (= KqA) and I'! the adaptive controller is totally defined.
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APPENDIX B: ADAPTATION VALUES FOR RT-ROBOT

In this appendix the adaptation values are determined for the RT—robot with friction and
unmodelled dynamics. The adaptation values have to be chosen small enough so that the
bandwidth of the controlled system stays smaller than the bandwidth of the unmodelled
dynamics. The unmodelled dynamics (see equations 3.12) have an eigenfrequency of 25
[rad/s]. The poles of the controlled system are determined by linearization of the controlled
system at different points of time (different points on the desired trajectory). A

representative point of time is:

= 0.27 [s].

In paragraph 3.3 the PD controller is designed to create eigenfrequencies and damping
factors (in r— and @—direction):

wo = 10 frad/s]

f=1[- (3:2)

With this eigenfrequency the bandwidth of the controlled system is smaller than the
bandwidth of the unmodelled dynamics. The poles of the controlled linearized system at

= 0.27 [s] are:

—10

poles with PD controller jg

-10 p—direction

r—direction

The adaptive controller with hundred percent parameters and adaptation off results in the
following poles of the controlled system:

:20 r—direction
poles with adaptation off | _,,
-5 yp—direction

These poles are equivalent with:

F= 1 % [[riii/s]

The eigenfrequency has stayed exactly the same as in (3.2). The hundred percent
parameters only cause larger damping, by which two poles have become smaller and two
poles have become larger. Although two poles have become 20 [rad/s], they will not cause
instability. The amplitude response starts decreasing at frequencies above 5 [rad/s]. So the
amplitude of input signals with frequency 20 [rad/s] will decrease a lot. When the



eigenfrequency stays the same and the damping factor increases, the controlled system
becomes slower. The adaptive controller with hundred percent parameters and adaptation
off will not cause instabilities.

Now the adaptation values have to be chosen small enough to avoid instabilities. When

D
<D

COWOO
ONOOO
OO ODOO

ODLOOWO
(]
(=

| U

I
cooow

the poles of the linearized controlled system are:

poles with adaptation on | —5.5—0.6j

The extra poles are from the adaptation law. The sequence of the above poles is arbitrary.
~ The bandwidth with these poles will not have increased significantly in proportion to the
bandwidth with adaptation off. With the chosen I'! no instabilities will occur. But it is
clear that the influence of the adaptation on the poles is not small. For smooth parameter
estimates, the adaptation process should be much slower than the control bandwidth. Now
it is possible that, for example, a constant mass parameter is partly estimated as a time
dependent friction. In that case the friction parameter will not converge smoothly.

-B2-



APPENDIX C: DERIVATION OF XY-TABLE MODEL

In this appendix the equations of motion of the simulated system from figure 4.2 in
chapter 4 are given with the values used for all parameters. For the sake of convenience

figure 4.2 is shown again.

e

Im,
g
y 4 '
—_— _ml
A I 4 I
S Joeem—— —
X, X
04/ K S
%z,Wz I (@ r“g‘,? A J,

Figure 4.2: Simulated system

The used symbols of figure 4.2 are:

01 angular displacement of belt wheel 1

P2 angular displacement of belt wheel 2

3 angular displacement of belt wheel 3

Xy position of x—slide 1 on slideway 1

X3 position of x—slide 2 on slideway 2

y position of the end—effector on the y—slideway
b distance between slideway 1 and 2

1 length of the y—slideway

Ix radius of the belt wheels 1 and 2

Iy radius of belt wheel 3

m; mass of x—slide 1

m; mass of x—slide 2

Ine mass of the end—effector

my mass of the y—slideway including the y—motor
Ji moment of inertia associated with ¢y

Ja J2 (moment of inertia associated with ;) is assumed to be zero
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J3 moment of inertia associated with @3
W, friction torque associated with ¢,
W, friction torque associated with o,
W3 friction torque associated with 3
T, motor torque on belt wheel 1

T; motor torque on belt wheel 3

k spring constant

X = Pifx

X3 = Qorx

y = pary

a= a.rcta.n(-}-c—%{g)

The values used in the simulations are:

b=1[m]

rx = 0.01 [m]

m; = 3.8 [kg]

me = 2.3 [kg]

J; = 5x10~4 [kgm?]
W1 = 0.2 [Nm]
W3 = 0.02 [Nm]

1=1[m]

Iy = 0.01 [m]

m; = 3.8 [kg]

my = 8.5 [kg]

J3 = 5x105 [kgm?]
W2 = 0.2 [Nm]

k = 0.2 [Nm/rad]

Remark: These parameters do not correspond to the parameters of the actual

XY—table

All masses are considered point masses. The angle « is assumed to be small:

xl1 - x2

a:—B——;cosacl;sinaz a

The equations of motion of the simulated system, derived with the help of the method of
Lagrange and the software package MAPLE, are

M(q)i + h(g,q) = f

with
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¢ = [p1 42 0] :
Mi=Ji+ [my + 3my(p)? + me(f%&)ﬂrx?

My = Moy = [my(}) — 4my(D)? + me(BER) — mo(ZEE)7jr,2
Mj3=M; =0 | ,
Moz = [m2 + my — my() + 3my(p)? + me — 2me(“€%rl) + me(‘wf’,ﬂ) Ary?

_ = {{/)4 -— {f)n\f..- &
M23 o M32 = ‘mell'_l_r_ul_".l er
13 D ]

M3z = J3 + mery? )
hy = 2me( sty ) LR 91 — 92) s + k(1 — ¢2)

2 . . .
hy = 2me(b - go3ry)£¥1r)—’2‘—(901 — p2)p3 — k(<P1 - <P2)
2 . .

h; = -—me( sﬂsry)&%f—( W1 — P2)2
f1 = T1 —_ Wlsign(gbl)

fg = —WzSign((:Oz)
f3 = T3 — Wsign(ps)

Equations (C.1) are used for the simulated system. The model used for controller design is
simplified by assuming that there is no torsion spring. Then the angles ¢ and ¢, are
exactly the same. If the torsion spring is unmodelled, equations (C.1) can be replaced by:

with

Mqi+w(g) =7 (C.2)

QT = [¢1 p3]

Myu=J+ [m1 + m2 + me + my]rx2
Mp=Mz =0

Mz = J3 + mery?

wi= (W1 + Wy)sign(epy)

wa = Wsign(ps)

T1="T

T9= T3

The values of the parameters are:
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P; = My = 2.34x10-3 [kgm?]
Py = M3y = 2.80x10-4 [kgm?]
P3= Wi+ Wy = 0.40 [Nm]
P, = W3 = 0.02 [Nm]
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APPENDIX D: ADAPTIVE CONTROLLER DESIGN FOR XY-TABLE

In this appendix the adaptive controller is designed according to chapter 2 for the
simulated XY—table of chapter 4.

System:

H(Q)q + '“"(G’/

Control law:
7= H(q)q + Wq) — Kas

i

T
7

7= Y(4,4,8r,8:) @ — Kas (2.3)
Adaptation law:
i =-T1Y (4,8, ) (2.4)

This yields for XY—table with dynamic equations (4.1):

[ P1 0 } [ P3Sign((;91) }
H= 0 P2 W= P4sign(<p3)

~[8] =[] #-mom

[@u 0 sign(ey)
Y=

0 g3r O sign({os) } (D.1)

Now the adaptation values are determined for the XY—table. For a good comparison the
bandwidth of the system with adaptive controller is not allowed to be larger than the
bandwidth of the system with PD controller. The poles of the controlled system are
determined by linearization of the controlled system at different points of time (different
points of desired trajectory). The poles are determined of the system with torsion spring. A
representative point of time is:

t = 0.125 [s].

In paragraph 4.3 the PD controller is designed to create eigenfrequencies of 10 [rad/s] for
the simplified model of equations (4.3). The poles of the controlled linearized system with
torsion spring at t = 0.125 [s] are:
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—3.3 + 21.2j

~3.3 —21.2j
poles with PD controller _—_53(’)5

—10.0

—10.0

The simplified model, a second order system with degrees of freedom ¢; and ¢3, would have
shown four poles with value —10. But the poles of the simulated system, a third order
system with degrees of freedom ¢y, ¢, and s, are influenced by the torsion spring. In
paragraph 4.6 discretization effects are discussed. The mentioned frequency of 3.4 [Hz| can

be derived with:

/332 4+ 2112 _,, [Fi]

Maximum response frequency = o

The adaptive controller with hundred percent parameters and adaptation off results in the
following poles of the controlled system:

[ 2.8 + 20.7]]
—2.8 —20.7j
. . —25.6

poles with adaptation off 5.0

=5.0

| —20.0

The hundred percent parameters cause larger damping, through which two poles have
become much smaller and two poles have become much larger. Although two poles have
become 20 [rad/s] and 25.6 [rad/s], they will not cause instability. The amplitude response
starts decreasing at frequencies above 5 [rad/s]. So the amplitude of input signals with
frequency 20 [rad/s] will decrease a lot. The adaptive controller with hundred percent
parameters and adaptation off will not cause instabilities.

Now the adaptation values have to be chosen small enough. When

2.5%1077 0 0 0
| 0 25x10% 0 0
=] o 0 1.0x101 0

0 0 0  1.0x107

the poles of the linearized controlled system are:

[—3.4 +20.4j ]
—3.4 —20.4j
-17.1
—14.7
. . -7.0
poles with adaptation on 6.0
—4.9 +0.3j
—4.9 —0.3j
0,0
| 0,0
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The extra poles are from the adaptation law. The sequence of the above poles is arbitrary.
The bandwidth with these poles will not have increased in proportion to the bandwidth
with adaptation off. But it is clear that the influence of the adaptation on the poles is not
small. For smooth parameter estimates the adaptation process should be much slower than
the control bandwidth. This fact will be reckoned with in the practical experiments with

the XY—table.
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APPENDIX E: DESIGN OF KALMAN OBSERVER

A Kalman observer is designed to estimate the position and speed one sample ahead. Then
there are no time delays. The simplified model of the actual XY—table is:

(5.1)

First the Kalman observer will be designed in x—direction. The design will be based on a
discrete time model to make no discretization errors. Because the Kalman observer must be
able to work with different sampling frequencies, the discrete time model is derived as
function of the sampling time. The second order differential equation in x—direction can be
represented as a set of two first order differential equations. First a state vector, the
control input and the output are defined:

State: 2(t) = [;{Eg]

Input: u(t) = Fy
Output: y(t) = x(t)

Because the model is a simplification of the actual system, there will be process noise w(t).
This process noise is modelled as noise on input u(t). Whether this is correct, will be
verified later on. Then the first order differential equations are:

(1) = #(t) = a(t)
i(t) = ¥(t) = —5—{u(t) + w(t) — Psign(x(t))

With sampling time Ts and measurement noise v(t) the discrete time model can be written
as: '

7(n+1) = Aqz(n) + Bq[u(n) — Pssign(x(n))] + Gaw(n)
y(n) = Cax(n) + v(n)

2
Ad= [ér{s] Bd=Gd=%_l'x [%2] Cd=[1 O]

To estimate one sampling step ahead the observation update will be according to equation
(6.54) of Kok (1985):
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3(n+1) = Aa3(n) + Ba[u(n) — Pssign(x(n))] + K(y(n) - CaZ(n))
with the optimum gain matrix K° according to equation (6.69) of Kok (1985):

Ko = AaQCq"[ Vv + C1QC4"]

ation is only mentioned to see the difference with MATLAB, without explaining
n and s is optimal gain matrix is calculated with function dige of the

and symbols. This opt

J a2
software package MATLAB. Because of another updating method, this function calculates
an other solution:

dige(A4,Ga, Ca, Q. R) = QCa"[ Vv + CaQC4"]
which results in:

Ko = Aq x dlqe(44,G4,Ca,Q,R)
with:

Q = covariance(w)
R = covariance(v)

The next step is to determine the covariances @ and R. The measurement noise is
determined by the measurement inaccuracy due to incremental encoders. To be safe this
inaccuracy is multiplied with factor two. The process noise is determined by experiment.
After the experiment the real speed can be determined using a central difference scheme.
When the applied input force is used as input for the discrete time model with friction, the
position and speed of this model are different from the measured position and speed. An
input force is calculated such that the discrete time model with friction follows the
measured speed exactly. This is simply done by calculating the acceleration needed to
follow the change of speed between two successive samples. Therefore it is always possible
to consider the process noise as a disturbance of the input force. Then the difference
between this calculated input force and the actually applied input force is the process noise.
The covariances of process and measurement noise are:

Q = 3.0x108 [N?]
R = 3.5x10-% [mm?]

With MATLAB is calculated:

Ky = Aa~x [2(1)7]
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with the estimation error covariances of:

position: 3.4x10-6 [mm?2]

speed: 8.0 [mm2/s?]

Q = 1.3x107 [N?]
R = 8.4x10-5 [mm?]

With MATLAB is calculated:

_ 0.9
Ky = Aq [140]

with the estimation error covariances of:

position: 1.3x10-3 [mm?2]

speed: 46.0 [mm2/s?]

But simulations afterwards showed better results with:

_ 0.6
Ky = Aq [140]
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APPENDIX F: ADAPTIVE CONTROLLER DESIGN FOR XY-TABLE

In this appendix the adaptive controller is designed according to chapter 2 for the actual
XY-—table of chapter 5.

Syst

em:

H)i+wg=r1
Control law:
= H(q)r + #(q) — Kas

7= Y{(¢,4,¢r,qr)a — Kq3 (2.3)
Adaptation law:
o=-T"1 YT( 9,4, 4r, r)s (2.4)

This yields for XY—table with dynamic equations (5.1):

[Py 0 ] [Pssign(iﬂ
w =

H= LO p2J Psign(y)
r=[k] 1= [7] S =@irarsrd
xr O sign(x)
Y=[ 0yr O sign(ir)} (F-1)

In paragraph 5.5 the PD controller is designed to create eigenfrequencies of 4x27 [rad/s]
and damping factor 0.70 as in equations (5.17). The poles are determined by using the
simplified model of equations (5.1). The controlled system is linearized around a point at
the desired trajectory of equations (5.18) at t = 0.01 [s]. At this point of time the desired
speed is not zero anymore to examine the maximum influence of adaptation of friction
parameters, but the desired acceleration is still almost maximum to examine the maximum
influence of adaptation of mass parameters. This point of time shows the maximum
influences of the adaptation. Because of the simplified model the x— and y—direction can be
examined separately. Only PD feedback results in poles:

, ~17.59 + 17.95]
X: PD feedback [ _17.59 — 17.95] ]
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_ —17.59 + 17.95j
Y: PD feedback [_17_59 o 17.95j]

This could be expected because:

(5.17)

The adaptive controller with hundred percent parameters but no adaptation results in:

:%g '?g control poles
X: Adaptation off 0
0 adaptation poles
:%g ' Sl)g control poles
Y: Adaptation off 0
0 adaptation poles

The extra zero poles are from the adaptation of mass and friction, which is still off. The
two non zero poles are equivalent with: '

wo = 4x27 [rad/s]
B =1.06

which means that the eigenfrequency has stayed exactly the same as in equations (5.17),
but the damping factor has become larger. A larger damping factor means a slower system.
The bandwidth of the adaptive controller with adaptation off will not be larger than the
bandwidth of the PD controller. Until now the adaptation values were always determined
small enough not to increase the bandwidth. But to achieve smoothly converging
parameters it is much more sensible to choose the adaptation values such that the extra
poles due to adaptation and the influence on the existing poles are small. The adaptation
values of the matrix I'! (chosen diagonal) are:

I'y;7t: adaptation value of mass parameter in x—direction P,
I';271: adaptation value of mass parameter in y—direction P,
I'33~1: adaptation value of friction parameter in x—direction P3
I'4471: adaptation value of friction parameter in y—direction P4

The adaptation values in x—direction will be increased in steps of factor ten until the
adaptation poles and the influence on the control poles become too large.
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B B :éggg control poles
X Tt =10% 1" 1 39 .
0 adaptation poles
[ —17.95
. trol poles
Dot 102 | 1759+ 12.704 1‘:0“
Xo Tt =107 | 1050 29970 | Voo vore
0 * | } adaptation poles
hd J

It is clear that adaptation value 10-2 results in a too large adaptation pole and in too large
influence on one of the the control poles. Adaptation value 10-3 results in a relatively small
adaptation pole. The same is done for the other adaptation values:

4 103 _—_éz gg control poles
Xi Taa®=10° | 2769 | | g0
0 adaptation poles

The combined influence in x—direction is:

—17.95
X: Iyt=10"3, '35t = 103 _33_(1)% control poles
B 0 adaptation poles

In y—direction:

—17.95

Y: Tyt=10+4 | 738-87

0 adaptation poles
J

control poles

102 :;,Z g‘;’ control poles
Y Paat =100 1 Z%67 | 1 g caiion ool
0 adaptation poles

The combined influence in y—direction:

—-17.95
Y: oot =104 Dyyt = 102 —33,33 control poles
B 0 adaptation poles
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Because the controlled system with non-linear adaptation law is linearized, the
differential equations are dependent. There is always one pole with value zero. But global
asymptotic stability of the non linearized system is assured by the adaptive controller
itself, which is based on a derivative of the manipulator’s total energy smaller or equal to
zero. This of course is only valid as long as unmodelled dynamics are not excited. The
adaptation values:

result in very good parameter estimates as can be seen in chapter 5. The conclusion is that
the adaptation values can be determined with a simplified model. The poles have to be
determined via linearization of this controlled model. The adaptation values are found
quickly by increasing these values with large steps (factor ten). The suitable adaptation
values are the values at which the adaptation poles and the influence on the control poles
are small.
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