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Abstract

During a glass forming process in industrial glass manufacturing, a glass gob that comes directly from

the furnace is forced into a desired shape. In general, practical experiments with glass forming are

considerably expensive, whereas the majority has to be performed under complicated circumstances,

e.g. high temperatures. In addition, the glass industry is fairly secretive about experimental data.

Therefore, computer simulation models are required to gain a better understanding and improvement

of glass forming processes.

The glass forming process simulation models considered revolve around three coupled, principal

physical problems. These are successively a flow problem for the motion of glass and air, an energy

problem for the energy exchange in glass, air and equipment, and an interface problem for the location

of the interfaces between glass and air. The boundary value problems are discretised by means of

finite element methods and a suitable time discretisation scheme. Subsequently, an iterative solver

with preconditioning is applied to solve the resulting systems of equations for each successive time

step.

Unfortunately, problems regarding the solver performance occur for flow problems in TNO Glass

Group’s glass forming process simulation models, as application of mesh refinement produces an

excessive increase in the number of iterations required by the iterative solvers for convergence, which

finally results in termination of the solvers. This solver problem does not occur, or at least to a lesser

degree, for the energy problem and the level set problem.

The solver performance is examined for TNO Glass Group’s glass pressing process simulation

model. Since the solver is relatively slow and instable for the three dimensional simulation model,

only the axi-symmetric model is used to test the solver performance. The discretisation methods used

for flow problems in the simulation model are validated.

In TNO Glass Group’s pressing process simulation model, ILU preconditioning with Sloan re-

ordering of the unknowns is used to improve convergence of iterative solvers. ILU preconditioning

can be improved by allowing additional fill-in and using Cuthill Mc Kee ordering instead of Sloan

ordering. The resulting improvement of the solver performance in TNO Glass Group’s axi-symmetric

pressing process simulation model is formidable. In addition it is shown that ILU preconditioning is

superior to several other preconditioners, such as Gauss-Seidel and Eisenstat. Other preconditioners

such as multigrid methods are suggested, but not tested due to implementation issues.
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Nomenclature

Abbreviations

Symbol Meaning

BC : Boundary Condition

BVP : Boundary Value Problem

FEM : Finite Element Method

ILU : Incomplete LU factorisation

PDE : Partial Differential Equation

Arithmetic

Symbol Description Mathematical Definition

· : column inner product ∀u∈Rn, A∈Rn×m : u·A = (uTA)T

: : double inner product ∀A∈Rm×n, B∈Rn×m :A:B = tr(AB) =
∑

i
∑

j Ai jB ji

Differential Operators

Symbol Description Mathematical Definition

∇· : divergence operator ∀A∈Rn×m : ∇·A =
(
∂x1 , . . . , ∂xn

)T ·A
∇ : gradient operator ∀u∈Rm : ∇u =

(
∂x1u, . . . , ∂xnu

)T

∆ : Laplace differential operator ∀u∈Rm : ∇·∇u
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Dimensionless Variables

Symbol Description Mathematical Definition

Scalars

p : pressure

µ : viscosity

Vectors

x : position

u : flow velocity

Tensors

T : stress tensor T = −pI + µ
(
∇su

)
d

Numerical Representations

Symbol Description Mathematical Definition

K : coefficient matrix

q : load vector

α̂˜k : iterative solution after kth iteration

∆t : time step

rk : iterative residual after kth iteration rk = Kα̂˜k − q

λk : kth eigenvalue

κ : spectral condition number κ = λmax/λmin

ε : tolerance of stop criterium

h : largest edge length in finite element mesh

ne : number of elements in finite element mesh

Numbers

Symbol Description

m : size of the coefficient matrix

n : space dimension
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Physical Quantities

Symbol Description Unit Mathematical Definition

Scalars

t : time [s]

p : pressure [Pa]

ρ : density [kg m−3]

µ : (dynamic) viscosity [kg m−1s−1]

cp : specific heat [J kg−1K−1]

λ : effective conductivity [W m−1K−1] λ = λc + λr

λc : thermal conductivity [W m−1K−1]

λr : radiative conductivity [W m−1K−1]

Vectors

x : position [m]

u : flow velocity [m s−1]

g : gravitational acceleration [m s−2]

Tensors

T : stress tensor [N m−2] T = −pI + µ
(
∇su

)
d

Subscripts

Symbol Description Mathematical Definition

d : deviatoric part ∀A∈Rn×n :
(
A

)
d =A −

1
3 tr(A)

Unitary Mappings

Symbol Description

I n : n × n unity matrix

ek : kth unity basis vector of Rn,

i. e. kth column of I n, 1 ≤ k ≤ n
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Chapter 1

Introduction

Nowadays, the presence of glass in our daily environment is simply indispensable. The utility of

windows, bottles, drinking glasses, lenses, television screens and many other applications of glass

strongly influences our present way of living. We might just look around us and ask ourselves: can

we still live our normal lives without glass?

Although the range of applications of glass has rapidly increased in the last few centuries, the

production of glass by melting raw materials is a process that humans have invented thousands of years

ago. The earliest glass objects used by men were found in nature. These glass objects involved chipped

pieces of obsidian, a natural volcanic glass, which were used by cave-dwellers for the production of

primitive tools and weapons [34]. Not earlier than 7000 B.C., the Egyptians started making their own

glass objects in the form of glass beads and jewelry. Still, it took until at least 1500 B.C., before

the first glass containers were produced. The first bottles were produced by winding pieces of glass

around moulds of concentrated sand and scraping the inside of the bottle [34]. A revolutionary course

occurred when the Syrian craftsmen discovered the glass blowing pipe around 200 B.C. [20]. The

invention of glass blowing eventually resulted in an improvement of glass jars and bottles and the

production of glass drinking vessels by the Romans. Furthermore, the discovery of glass blowing

in combination with colourants led to the invention of stained glass windows [34]. Currently, the

glass manufacturing industry has reached the point, where copper wires can be replaced by glass

optical fibers, which significantly reduces the amount of flaws in the transmission of information by

telecommunication [34].

1.1 Glass Manufacturing

Before glass can be used for a specific purpose, a glass product has to be manufactured. This section

describes some relevant glass manufacturing processes. Because this thesis is mainly concerned with

glass formation, available glass forming methods are discussed into more detail. Relevant sources
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for glass manufacturing processes are [34] and [16]. Here, J. E. Shelby [34] is primarily concerned

with the chemistry of glass forming, whereas D. Krause and H. Loch [16] focuss on the mathematics

behind glass forming techniques.

Below some general glass manufacturing processes are described in the order of their application.

The main source for these descriptions is [34].

Melting: In industry, the vast majority of glass products is manufactured by melting raw materials and

recycled glass in tank furnaces at an elevated temperature [34, 16]. Examples of raw materials

include silica, boric oxide, phosphoric oxide, soda and lead oxide. The temperature of the

molten glass in the furnace usually ranges between 1200 and 1600 ◦C. A slow formation of the

liquid is required to avoid bubble forming [34].

Forming: The glass melt is cut into uniform gobs, which are gathered in a forming machine. In

the forming machine, the glass gobs slightly cool down to below 1200 ◦C. Thereafter, each

individual molten gob is forced into the desired shape. In this stage, different types of products

require different forming techniques. Available forming techniques are pressing, press-blowing,

and blow-blowing, which are discussed further on. After the formation, the glass objects are

rapidly cooled down as to take a solid form.

Annealing: Development of stresses during the formation of glass may lead to static fatigue of the

product, or even to dimensional changes due to relaxation or optical refraction. The process of

reduction and removal of stresses due to relaxation is called annealing [34].

In an annealing process, the glass objects are positioned in a so-called Annealing Lehr, where

they are reheated to a uniform temperature region, and again gradually cooled down. The

rate of cooling is determined by the allowable final permanent stresses and property variations

throughout the glass [34].

Surface treatment: An exterior surface treatment is applied to reduce surface defects. Flaws in

the glass surface are removed by chemical etching or polishing. Thereafter, flaw formation

may be prevented by applying a lubricating coating to the glass surface. Crack growth is pre-

vented by chemical tempering (ion exchange strengthening), thermal tempering or formation of

a compressive coating. For more information about flaw removal and strengthening of the glass

surface, the reader is referred to [34].

In this thesis, the principal process step is the actual glass formation. Therefore, special attention

is paid to glass forming processes. In essence, there are three different forming techniques.

Pressing: Commercial glass pressing is a continuous process, where thin products (e. g. lenses, TV

screens) are manufactured by pressing a gob that comes directly from the melt [34]. Initially,

the gob is positioned in the centre of a mould. Over the mould, a plunger is situated. In order
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to enclose the space between the mould and the plunger, so that the glass cannot flow out,

an additional ring is positioned on top of the mould border. During the pressing process, the

plunger moves down through the ring and presses the gob into the desired shape. A picture

from an industrial pressing process can be seen in Figure 1.1.

Figure 1.1: Picture of pressing process

Press-blowing: A hollow glass object is formed by inflating a preform with pressurised air. This is

called the blowing stage of a press-blowing process. The preform is constructed by a pressing

stage (see Figure 1.2). In a pressing stage, the gob enters a mould from above. Once the gob

is inside the mould, the upper part of the mould is closed and the gob is pressed from below

by a plunger. After the pressing stage, the resulting preform is carried to another mould for the

blowing stage (see Figure 1.2). In the blowing stage, the glass is blown onto the mould wall.

Here, a correct preform is important for an appropriate distribution of the glass over the mould

wall.

Blow-blowing: The principle is the same as for press-blowing, except that the preform is produced

by a blowing stage. This forming process is of minor importance for this project.
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Figure 1.2: Schematic drawing of press-blowing process



1.2 Process Simulation 5

1.2 Process Simulation

In industry, glass forming processes take place at high production rates. At the same time, glass

manufacturers wish to optimise glass products to their customer’s satisfactory. Unfortunately, prac-

tical experiments are in general quite expensive, whereas the majority has to be performed under

complicated circumstances, e.g. high temperatures. In addition, the glass industry is fairly secretive

about experimental data. Therefore, it is no surprise that in the recent past glass blowing techniques

were based on experience, rather than on scientific research. To this day, computer simulation models

have been necessary to gain improvement and a better understanding of glass blowing processes.

There are several reasons why glass manufacturers, material and equipment suppliers or third

parties should be interested in process simulation. The main reasons for simulation of glass forming

processes are the following.

Process analysis: to fully comprehend what exactly is taking place during glass formation. If both

simulation results and results of practical experiments are available, they can be evaluated by

comparing them with each other.

Process optimisation: to optimise an existing glass forming process with respect to speed, smooth-

ness, strength, weight, cooling conditions, etc. Speculative methods to improve a glass forming

process are often expensive and time consuming, whereas better results may be obtained by

a thorough study of the physics behind the process. The effect of different settings (material,

geometry, modelling) on a process can relatively easily be analysed by running several simula-

tions. In this way, more optimal settings for the process can be obtained.

Process innovation: to analyse a completely new process. Before setting up a new forming process,

it can already be studied and optimised by means of process simulation.

In order to analyse, optimise and innovate glass manufacturing process steps, TNO Glass Group

(and some of its customers) has developed several 3D simulation tools. For simulation of glass fur-

naces, the finite volume simulation tool GTM-X is available, whereas for glass forming process steps,

simulation tools based on the software library Sepran are being set up and maintained. This thesis

considers two of these glass forming process simulation models: the blowing model for the blowing

stage in press-blowing processes and the pressing model for pressing processes.

Sepran is a finite element software library1 written in Fortran 77 language. It has originally been

developed at Delft University of Technology and is currently maintained and distributed by the engi-

neering firm Sepra. For an introduction to Sepran, the reader is referred to [29].

The glass forming process simulation models that are covered by this thesis revolve around three

coupled, principal physical problems. Both the pressing process and the blowing process can be
1A software library that makes use of Finite Element Methods. Finite Element Methods are extensively explained in

Chapter 4.
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described by these problems, although the specific formulations will be different. They determine the

physical behaviour of glass as well as air.

Flow problem: The motion of glass melt and air is described by the Navier-Stokes equations. For

glass, the viscous forces dominate, so that the flow problem for glass can be reduced to a Stokes

flow problem. The unknowns in the Stokes flow problem are the pressure and the flow velocity.

The latter is used as convection velocity in the energy problem and the interface problem, which

are described below

Energy problem: The energy exchange in glass, air and equipment is described by the heat equation.

Since the viscosity of glass depends on the temperature and heat convection depends on the flow

velocity, the energy problem is coupled to the flow problem.

Interface problem: The location of the glass-air interfaces is described by a convection problem.

The solution of the convection problem is a function that determines the location of the glass-

air interfaces. The material parameters in the flow problem and the energy problem depend on

the location of the interface. Moreover, the convection problem depends on the flow velocity.

The problem descriptions for the pressing model are given in section 3.5. The blowing model is not

discussed into detail in this thesis. For further details on the blowing model, the reader is referred to

[13].

1.3 Problem Description

The boundary value problem in glass forming process simulation models are discretised by means of

finite element methods and a suitable time discretisation scheme. Finally, an iterative solver is applied

to solve the resulting system of equations for each successive time step.

Unfortunately, for the discrete Stokes flow problem, problems regarding calculation speed occur,

as application of mesh refinement produces an excessive increase in the number of iterations. For

TNO Glass Group’s two dimensional pressing model, this increase is shown in Figure 1.3. From

these figures, it can be observed that for a coarse mesh, the number of iterations only slightly increases

as the mesh is refined. However for finer meshes, a substantial increase in the number of iterations

is perceived for a relatively insignificant mesh refinement. Further mesh refinement even leads to

stagnation of convergence or divergence of the solver. It should be mentioned that Sepran returns a

substantial condition number of the order of magnitude O(1022), even for the coarsest mesh considered

in Figure 1.3.

It can be observed that this problem does not occur, or at least to a lesser degree, for the energy

problem and the level set problem. In Figure 1.3, the contribution of the energy problem and the

interface problem is coloured red on top of the bars for the number of accumulative iterations at
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Figure 1.3: Increase in accumulative number of iterations for the BiCGstab solver with ILU preconditioning
applied to the discrete Stokes flow problem in the pressing model. An absolute stop criterium is used, with
tolerance ε = 1E-3. The refinements are 2k over both dimensions with respect to the original mesh. Left: The
number of iterations in the initial time step. Right: The number of iterations accumulated over all problems
over all time steps up to t = 90∆t, with ∆t = 1

900 . The contribution of the energy problem and the interface
problem is coloured red on top of the bars.

t = 90∆t. Since this contribution can even hardly be noticed in the bargraph, it may reasonably be

neglected. However, it is still important to consider the energy problem and the level set problem in

the analysis of the solver performance, since the convergence of the solver for the discretised flow

problem may be affected by the other problems, as the flow problem depends on the temperature and

the location of the glass-air interfaces.

Although the problem is observed for the pressing model as well as the blowing model, a full

problem analysis is considered for the pressing model only. This consideration is not fundamentally

restrictive, since similar physical problems are solved, and also the corresponding iterative solvers

show the same behaviour for both models. There are two main reasons to prefer the model pressing

over the blowing model. Firstly, it is interesting to include the effect of mesh deformation in the

pressing model. Secondly, the pressing model has been developed further than the blowing model.

A disadvantage is that the source code for TNO Glass Group’s pressing model is extensive and sub-

divided into a lot of subordinate Fortran files, which makes it considerably more time consuming to

study the pressing model. Where appropriate, results for the pressing model can also be used in the

blowing model.

1.4 Objectives

The main objective is to analyse the solver performance for the flow problem in the glass forming

process simulation models, with improvement of calculation speed and robustness as motivation. In
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particular, it is analysed whether the linear solvers do not require an unnecessary large number of

iterations for a reasonably accurate solution. In addition, the applied modelling is studied with respect

to the final linear system of equations. Improvement of the solver performance may be achieved by

changing numerical settings, applying different mathematical methods or by disregarding any physical

phenomena in the existing model.

1.5 Thesis Outline

This thesis is structured as follows. First, Chapter 2 focusses on the physical aspects of glass pressing.

Then, Chapter 3 uses the physics to derive a mathematical model for general pressing processes. At

the end of the chapter, some particular mathematical aspects of TNO Glass Group’s pressing model

are discussed. Chapter 4 explains finite element methods for general convection diffusion problems.

The finite element discretisation of the energy problem and the interface problem are covered by

this theory. Chapter 5 goes into further detail onto finite element methods for Stokes flow problems.

In this chapter, a literature review of different discretisation and solution methods is given and the

methods used in TNO Glass Group’s pressing model are critically examined. In addition, Chapter 6

discusses the performance of iterative solvers, as well as preconditioners and linear solvers for Stokes

flow problems. Some particular attention is paid to ILU factorisation preconditioning, which is used

in TNO Glass Group’s pressing model. Subsequently, Chapter 7 examines numerical results of some

test cases, both for TNO Glass Group’s axi-symmetric pressing model and a simple test model for

the simulation of a pressing process time step. Furthermore, numerical solutions are visualised and

analysed. Finally, Chapter 8 states the conclusions and gives some recommendations.
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Chapter 2

Physical Aspects of Glass Pressing

Before describing glass pressing models, it is convenient to study the physics of glass pressing

processes. This chapter deals with relevant physical aspects of glass pressing, which are subdivided

into three separable sections. Section 2.1 looks at the physics of glass pressing processes, section 2.2

deals with the material properties of glass and how they relate to the glass temperature, and section 2.3

is concerned with heat transfer in glass. For most parts of this chapter, the reader is referred to [38].

2.1 Glass Pressing Processes

In a glass pressing process, a glass gob is placed in the centre of a mould and pressed from above by

a plunger (see Figure 2.1). The mould-plunger construction is closed from above by fixing a ring that

encloses the bottom surface of the plunger on top of the mould border.

The temperature of the mould-plunger construction is typically about 500 ◦C. Because of the high

temperature of the glass gob (typically about 1000 ◦C), the surface temperature of the material will

increase. To keep the temperature of the material within acceptable bounds, the mould and plunger

are heat insulated by means of water-cooled channels.

The pressing process is initiated by applying an external force Fe to the plunger. This causes the

plunger to move down with velocity Vp(t). This plunger velocity is the result of the total force F on

the plunger, which is the sum of the external force Fe and the force of the glass on the plunger Fg:

dVp

dt
=

F
mp
=

Fe + Fg

mp
, (2.1.1)

where mp is the mass of the plunger. The force of the glass on the plunger is caused by the plunger

movement itself. Clearly, if a constant external force is applied to the plunger, the plunger moves down

until the force of the glass on the plunger is equal in magnitude to the external force. S. W. Rienstra

and T. D. Chandra [27] and K. Laevsky [17] deduce that the force Fg can be expressed as a linear
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Figure 2.1: Set-up for an axi-symmetric glass pressing process.

function of the plunger velocity Vp. So, in case of a constant external force, the plunger velocity

decreases exponentially in time.

2.2 Material Properties of Glass

In glass forming processes, the viscosity of glass plays an important role. The viscosity measures the

resistance to shear of a medium. The range of viscosity at relatively low temperatures is huge for glass:

it amounts from 10 Pa s at the melting temperature (about 1500 ◦C) to 1020 Pa s at room temperature.

The viscosity increases continuously as a glass melt is cooled, which makes glass forming possible. In

appropriate glass forming processes, the viscosity becomes so high just after the glass is formed, that

the glass melt retains its shape. Subsequently, the fixed glass form is cooled to a solid state. Typical

values for the viscosity in glass forming processes lie between 103 and 104 Pa s [38].

An important characteristic glass temperature is the transformation temperature Tg. The trans-

formation temperature is the temperature, for which the transition from properties corresponding to

liquid glass to properties corresponding to solid glass occurs. Typical values of the viscosity at the

transition temperature lie between 1011 and 1012 Pa s. The temperature dependence for the viscosity

of glass above the transformation temperature Tg is given by the VFT-relation, due to Vogel, Fulcher

and Tamman [38]:

µ(T ) = 10−A+B/(T−TL). (2.2.1)
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Here, A [log(Pa s)], B [ ◦C log(Pa s)] and TL [ ◦C] are the Lakatos coefficients, which depend on the

composition of the glass melt. Below Tg, the glass structure depends on the cooling speed and no

obvious viscosity-temperature relation is available [38].

For high temperatures, glass behaves as a Newtonian fluid. In this case, the glass melt is isotropic

and the stress tensor satisfies [38]

T = −pI + 2µ
(
∇su

)
d. (2.2.2)

The density-temperature relation is

ρ(T ) = ρ0
(
1 − β

(
T − T0

))
, (2.2.3)

where

• β [ ◦C−1] is the volumetric expansion coefficient,

• T0 [ ◦C] is a reference temperature,

• ρ0 [kg m−3] is the density at the reference temperature.

The volumetric expansion coefficient is often assumed constant and is above the transformation tem-

perature Tg typically ranged from 5·10−5 to 8·10−5 ◦C−1. This makes it in general quite reasonable

to assume incompressibility. The density of glass above Tg is of the order 2300 to 2500 kg m−3 and is

5 to 8% lower than at room temperature [38].

2.3 Heat Transfer in Glass

For glass, a global classification of the types of heat transfer dominating can be made:

to 300 ◦C : conduction,

from 300 to 800 ◦C : conduction and radiation,

from 800 ◦C : radiation and convection.

The contribution of both conduction and radiation results in a heat flux [W m−2]

q = −λ · ∇T, (2.3.1)

where λ is the effective conductivity [W m−1K−1], given by

λ = λc + λr. (2.3.2)
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Here, λc is the thermal conductivity and λr is the radiative conductivity. The heat conduction co-

efficient measures 1.0 W m−1K−1 at room temperature for NaCa-glass and increases with approxi-

mately 0.1 W m−1K−1 per 100 K. Calculation of the radiative conductivity is often a complicated

process. However, for non-transparant glasses, the radiative heat conductivity λr can be simplified by

the Rosseland approximation

λr(T ) =
16
3

n2σT 3

α
, (2.3.3)

where

• σ is the Stefan Boltzmann radiation constant [W m−2K−4],

• n is the average refractive index [-],

• α is the absorption coefficient [m−1].

The radiative conductivity λr in the sense of (2.3.3) is called the Rosseland parameter. Clearly, the

Rosseland parameter strongly depends on the temperature. This relation cannot be applied for highly

transparent glasses, since in this case not all radiation is absorbed by the glass melt. For more infor-

mation on heat transfer in glass, the reader is referred to [20, 38]. The NCNG Handbook for Glass

Fabrication by H. de Waal and R. G. C. Beerkens [38] has been used as a source for this section.
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Chapter 3

Mathematical Pressing Model

This chapter presents a mathematical model for glass pressing. As mentioned in section 1.2, glass

pressing processes are described by three coupled physical problems, which are explained in three

different sections of this chapter:

1. a flow problem for the motion of glass and air (section 3.2),

2. an energy problem for the energy exchange between glass, air and equipment (section 3.3),

3. an interface problem for the location of the glass-air interface (section 3.4).

For each of these problems a mathematical boundary value problem (BVP) can be set up. Together,

the three BVPs form a mathematical model for glass pressing.

This chapter is structured as follows. First section 3.1 defines the physical domains into which a

glass pressing construction can be subdivided and in which the BVPs are defined. Then, section 3.2-

3.4 set up and analyse the BVPs. Finally, section 3.5 discusses the mathematical model in TNO Glass

Group’s pressing model.

3.1 Geometry

In order to formulate a mathematical model, the axi-symmetric glass pressing construction is subdi-

vided into separate subdomains. First, separate domains for the equipment (mould, plunger and ring)

are considered. The mould and plunger can again consist of parts with different material properties,

for which separate subdomains should be defined. These subdomains of the equipment are only of

interest for the energy exchange problem and are therefore not discussed into detail in this thesis. In

the centre of the glass pressing construction, between the mould and the plunger, an axi-symmetric

glass gob is located. The remaining space between the mould, plunger and ring is filled with air. The
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Figure 3.1: Problem domains in pressing model

glass domain and the air domain are relevant for all physical problems involved. Their dimensions

change in time as the plunger moves down.

Figure 3.1 illustrates the subdivision of the glass pressing construction into subdomains by means

of a 2D-cut from the symmetry axis. The entire domain for the glass pressing construction, consisting

of equipment, glass melt and air, is denoted by Σ. Domain Σ is enclosed by Γo ∪ Γs, where Γo is the

outer boundary of the equipment and Γs is the axis of symmetry of the entire domain. Let Ωg and

Ωa be the glass domain and the air domain, respectively, separated by an interface Γi, as illustrated in

Figure 3.1. The boundary ∂Ω of Ω := Ωg ∪Ωa consists of four parts:

∂Ω = Ω ∩
(
Γs ∪ Γp ∪ Γr ∪ Γm

)
, (3.1.1)

where the indices s, p, r, m denote symmetric, plunger, ring and mould, respectively. Here,

Γr = Γr,1 ∪ Γr,2, (3.1.2)

where Γr,1 and Γr,2 are separated by the inner corner of the ring. Furthermore on ∂Ω, an outer normal

n and a tangential t are given.
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3.2 Stokes Flow Problem

Equations

The motion of glass melt and air is described by the Navier-Stokes equations for incompressible fluids.

These involve the momentum equations,

ρ
(∂u
∂t
+ u·∇u

)
= −∇p + ρg + ∇·

(
2µ∇su

)
d, inΩ, (3.2.1)

and the continuity equation,

∇·u = 0, inΩ. (3.2.2)

Here, the unknowns are the flow velocity u [m s−1] and the pressure p [Pa]. Note that the material

properties depend on the location of the glass-air interface. For glass the viscosity is temperature

dependent (see section 2.2), whereas for air the viscosity can be assumed to be uniform. Typical

values for the Navier-Stokes flow problem are:

glass density : ρ0,g = 2.5·103 kg m−3,

glass viscosity : µ0,g = 104 kg m−1s−1,

air density : ρ0,a = 1.0 kg m−3,

air viscosity : µ0,a = 10−5 kg m−1s−1,

gravitational acceleration : g0 = 9.8 m s−2,

pressing time : τ = 1.5 s,

length scale of the glass gob : L = 10−2 m.

Furthermore from L and τ, a typical velocity can be derived

V =
L
τ
. (3.2.3)

In order to apply a quantitative analysis, the Navier-Stokes equations are written in dimensionless

form. Introduce dimensionless variables

t∗ :=
t
τ
, x∗ :=

x
L
, u∗ :=

u
V
, p∗ :=

Lp
µ0V

. (3.2.4)

In addition, define the dimensionless viscosity and gravitational acceleration:

µ∗ =
µ

µ0
, g∗ =

g
g0
. (3.2.5)

For convenience, all dimensionless variables, spaces and operators with respect to the dimension-

less variables are denoted with superscript ∗. Substitution of the dimensionless variables into the
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Navier-Stokes equations and division by the order of magnitude of the diffusion term, µ0V
L2 , leads to

the dimensionless Navier-Stokes equations

Re
(∂u∗

∂t∗
+ u∗ ·∇∗u∗

)
= −∇∗p∗ +

Re
Fr

g∗ + ∇∗ ·
(
2µ∗∇∗su

∗)
d, inΩ∗, (3.2.6)

∇∗ ·u∗ = 0, inΩ∗, (3.2.7)

where

Re =
ρ0VL
µ0

, (3.2.8)

Fr =
V2

g0L
(3.2.9)

are the Reynolds number and the Froude number, respectively. Typical values for the dimensionless

numbers are

Reg = 1.7·10−5, Rea = 6.7, Fr = 4.5·10−3 (3.2.10)

From the small Reynolds number for glass, it can be concluded that the inertia forces can be neglected

with respect to the viscous forces. Furthermore,

Reg

Fr
= 3.8·10−3,

which means that also the contribution of gravitational forces is rather small. On the other hand,

air is hardly viscous, so that the flow of air is prescribed by the full Navier-Stokes equations. Since

the specific transport phenomena of air are not of any interest in the pressing model, the air in the

mathematical model is replaced by a fictive fluid to simplify the transport calculations. This fictive

fluid has viscosity 10 Pa, whereas its other material properties are the same as for air. This viscosity

is still much smaller than for glass, so that physical phenomena at the transition from glass to fictive

fluid are properly described. The Reynolds number for the fictive fluid is

Ref = 6.7·10−6. (3.2.11)

Hence the contribution of inertia forces and gravitational forces is negligible. Thus for both glass and

fictive fluid, the Stokes equations remain:

∇∗ ·T ∗ = 0, ∇∗ ·u∗ = 0, inΩ∗, (3.2.12)

where T ∗ is the dimensionless stress tensor, which satisfies (2.2.2) in terms of the dimensionless

variables.
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Boundary Conditions

The flow BCs are obtained as follows. On Γs, symmetry is assumed. For glass, no-slip BCs are

adopted, whereas for the fictive fluid, free-slip BCs are proposed. This is reasonable as long as the

viscosity of the fictive fluid is much smaller than the viscosity of glass. In order to simplify the flow

calculations, let the fictive fluid flow freely through the upper part Γr,1 of the ring. In conclusion, the

flow BCs can be formulated as

Γs ∩Ωg : u·n = 0, T n· t = 0,(
Γr ∪ Γm

)
∩Ωg : u·n = 0, u· t = 0,

Γp ∩Ωg :
(
u − up

)
·n = 0,

(
u − up

)
· t = 0,

Γm ∩Ωa : u·n = 0, T n· t = 0,

Γr,1 ∩Ωa : T n·n = 0, T n· t = 0,

Γr,2 ∩Ωa : u·n = 0, T n· t = 0,

Γp ∩Ωa :
(
u − up

)
·n = 0, T n· t = 0,

where, up = Vpez is the plunger velocity. For more information on the modelling of the flow BCs, the

reader is referred to [27].

3.3 Energy Exchange Problem

Equations

The energy exchange between glass, air (fictive fluid) and equipment is described by the heat equation

for incompressible media:

ρcp
(∂T
∂t
+ u·∇T

)
= ∇·

(
λ∇T

)
+ µ

(
∇su : ∇u

)
, inΣ, (3.3.1)

where the temperature T [K] is unknown. The energy problem is coupled to the flow problem, since

the viscosity is temperature dependent and the flow velocity appears in (3.3.1). In addition to the

typical values for the flow problem in section 3.2, the following typical values for the energy exchange

problem are considered:

initial glass temperature : T1 = 1000 ◦C,

initial equipment temperature : T0 = 500 ◦C,

specific heat of glass : cp,g = 1.4·103 J kg−1K−1,

specific heat of air : cp,a = 103 J kg−1K−1,

thermal conductivity of glass : λc,g = 5 W m−1K−1,

thermal conductivity of air : λc,a = 10−2 W m−1K−1.
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In order to write the heat equation in dimensionless form, introduce the dimensionless temperature

T ∗ :=
T − T0

T1 − T0
. (3.3.2)

Substituting the dimensionless variables into the heat equation and splitting up the effective conduc-

tivity into (2.3.2) give the dimensionless form

Pe
(∂T∗

∂t∗
+ u∗ ·∇∗T∗

)
= ∆∗T∗ + ∇∗ ·

(λr

λc
∇∗T∗

)
+ Br·µ∗

(
∇∗su∗ : ∇∗u∗

)
, inΣ∗, (3.3.3)

where

Pe =
ρ0cpVL
λc

, (3.3.4)

Br =
µ0V2

λc
(
T1 − T0

) (3.3.5)

are the Péclet number and the Brinkman number, respectively. For the energy exchange problem, they

have typical values

Peg = 46.7, Pea = 6.7, Brg = 1.8·10−4, Bra = 8.9·10−11. (3.3.6)

The Péclet number represents the ratio between the contribution of diffusion and convection. Appar-

ently, the heat transport in both glass and air is prescribed by thermal convection as well as diffusion.

On the other hand, the Brinkman numbers have insignificant values, and hence the influence of viscous

dissipation can be neglected. Thus, the heat equation simplifies to

∂T ∗

∂t∗
+ u∗ ·∇∗T ∗ = ∇∗ ·

(
λ∗∇∗T ∗

)
, inΣ∗, (3.3.7)

with

λ∗ =
1
Pe

λ

λc
. (3.3.8)

Boundary Conditions

The energy BCs follow from symmetry and heat exchange with the surroundings. This induces the

BCs

Γs :
(
λ∇T

)
·n = 0,

Γo :
(
λ∇T

)
·n = α

(
T − T∞

)
,

where T∞ is the temperature of the surroundings. Here, the heat transfer coefficient α can differ for

the mould, the ring or the plunger. On interfaces between different media, a steady state temperature

transition is imposed, that is, for a transition from medium 1 to medium 2,[
λ
∂T
∂n

]
1
=

[
λ
∂T
∂n

]
2
.
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3.4 Glass-Air Interface Problem

The location of the glass-air interfaces is described by a convection problem for a so-called level set

function [33]:

∂θ

∂t
+ u·∇θ = 0. (3.4.1)

Level set functions can be used to track the interface and label the subdomains:

θ < 0, in air (fictive fluid),

θ = 0, on the glass-air interface,

θ > 0, in glass.

The glass-air interface problem is coupled to the Stokes flow problem and the energy exchange prob-

lem, since the material properties depend on the location of the interface and the flow velocity appears

in the convection term of (3.4.1).

3.5 Mathematical Aspects of TNO Glass Group’s Pressing Model

Industrial modelling of glass pressing is generally recognised as a difficult problem. It involves a

physical system of two-phase Stokes flow coupled to heat exchange in fluids with moving boundaries,

which results in large-scale computations. At the moment, TNO Glass Group’s glass pressing simu-

lation model is one of the few process simulation models in the world that is able to simulate glass

pressing processes within a reasonable amount of CPU time. Consequently, specific information on

mathematical glass pressing process simulation models is limited.

Apart from the process simulation models for glass pressing processes, also process simulation

models for the pressing stage in press-blowing processes have been constructed. In theory, these glass

pressing model are quite similar. For more information on process simulation models for the glass

bottle and jar pressing stage, the reader can be referred to K. Laevsky [17].

It is noteworthy that TNO Glass Group’s glass pressing model has a few extensions upon the

pressing model that is dealt with in this thesis. Most importantly, TNO Glass Group’s glass pressing

model can also simulate glass pressing processes for three dimensional, not necessarily axi-symmetric

geometries. For convenience, in this report TNO Glass Group’s pressing model is referred to as TNO

Glass Group’s axi-symmetric model if the model is specifically applied to an axi-symmetric problem,

and as TNO Glass Group’s three-dimensional model for a general three-dimensional problem. In fact,

the solver problem originates from the three-dimensional pressing model, and is much more severe in

this model than in the axi-symmetrical model. However, because this three dimensional glass pressing
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model takes up a lot of CPU time and the iterative solver performance is relatively instable, the axi-

symmetrical model is used to analyse the solver performance in this project. TNO Glass Group’s

glass pressing model also has other features, such as radiation calculations and an annealing process

simulation model. Usually radiation calculations are switched off in the pressing model, since they

are considerably expensive.

It is as well important to remark that TNO Glass Group’s glass pressing model uses dimensional

problems, whereas the order of magnitude of each term in the PDEs is assessed as in the dimensionless

equations in Chapter 3. Although using dimensional problems cannot be recommended, it is shown

in Chapter 7 that for glass pressing process simulation models the solver performance and numerical

results are hardly affected if the problems are dimensional instead of dimensionless. However, in

order to prove correctness of the pressing model, this thesis generally applies the dimensionless form

of the problems.

The boundary value problems in TNO Glass Group’s glass pressing model are discretised by

means of finite elements methods (FEMs) and a suitable time discretisation scheme (e.g. Euler implicit

or Crank Nicolson). The discretisation schemes have been implemented in the finite element package

Sepran, which is briefly discussed in section 1.2. The FEMs applied are thoroughly explained in

Chapter 4 and Chapter 5.

In order to switch between no-slip and free-slip BCs across the moving glass-air interface, mixed

BCs are applied in TNO Glass Group’s glass pressing model. In tangential direction, these read

(
T n+ βu

)
· t = βVs, (3.5.1)

where β is the wall friction coefficient [N m−3s] and Vs is the slip velocity [m s−1]. Clearly, if

T n· t = 0 is desired, then β = 0 suffices. On the other hand, if a restriction for the tangential

velocity is imposed, then theoretically β → ∞, which comes to introducing a sufficiently large nu-

merical value for the wall friction coefficient. A disadvantage of this approach is that the large wall

friction coefficient also appears in the stiffness matrix, causing an oversized condition number.

To solve the resulting system of equations for each successive time step an iterative solver for

non-symmetric problems is used, usually BiCGstab [37, 28, 26] with an incomplete LU factorisation

preconditioner [28, 2]. Other iterative solvers for non-symmetric problems available in Sepran are

CGS, GMRES, GCR, GMRESR (a method with GMRES as inner loop and GCR as outer loop using a

variable polynomial preconditioner) and overrelaxation. Other relevant preconditioners in Sepran are

(modified) Eisenstat, Gauss Seidel and block SSOR [31]. Several iterative solvers and preconditioners

are examined in Chapter 6. For more information on iterative solvers and preconditioners, the reader

is referred to [28].

In Figure 3.2, a flow chart of TNO Glass Group’s pressing model is given. Here, it should be

mentioned that, although in this thesis the media are assumed to be incompressible, the density in the

TNO Glass Group’s pressing model can be taken temperature dependent (see section 2.2).
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Figure 3.2: Flowchart of the pressing model. At time t = 0, only a flow problem is solved. These flow solutions
are used at t = ∆t.
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Chapter 4

Galerkin Finite Element Methods

Galerkin finite element methods are essential building blocks of TNO Glass Group’s glass form-

ing process simulation models. Therefore, it is worth studying the basics of finite element methods

(FEMs). The objective of this chapter is to offer sufficient background in FEMs to understand the

principles of these glass forming process simulation models. The specific finite element theory for

Stokes flow problems is studied in Chapter 5. The main sources of this chapter are [19], [8] and [3].

Galerkin FEMs approximate the solution of a partial differential equation by means of a linear

combination of some suitable functions. These functions are defined with the internal structure of the

elements that partition the domain of interest.

FEMs have some considerable advantages compared to other numerical methods. Notably, FEMs

can relatively easily be applied on complex domains, since the domain can be partitioned into ele-

ments of a much simpler structure. Furthermore, computations can often be restricted to reference

elements that represent the structure of groups of elements, which significantly simplifies calculations

(J. M. L. Maubach, [19]).

This chapter is structured as follows. For the sake of illustration, Galerkin FEMs are applied

to convection-diffusion problems. Section 4.1 introduces the general form of convection-diffusion

equations, while section 4.2 states the boundary conditions (BCs). Subsequently, section 4.3 writes

the convection-diffusion problem in a so-called weak form. The result is called a variational problem.

Galerkin FEMs attempt to approximate the solution of the variational problem by a linear combination

of so-called basis functions, which span finite dimensional subspaces of the vector spaces that are

subject to the variational problem. Section 4.4 shows how such subspaces are constructed for a suitable

set of basis functions. Then, section 4.5 applies Galerkin FEMs to the variational problem, which

results in a discrete convection-diffusion problem. Section 4.6 discusses some suitable properties that

basis functions should satisfy, so that the discrete problem can relatively easily be solved. It appears

that a suitable construction of the basis functions is accompanied by a partition of the domain into

so-called elements. Section 4.7 illustrates how the coefficients and right hand side of the discrete
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convection-diffusion problem can be assembled by adding the contributions of all elements. Next,

section 4.8 deals with so-called isoparametric elements, for which the finite elements solutions are

approximated in the same way as the geometry. For completeness, section 4.9 briefly discusses a

numerical integration scheme that is widely used in FEMs. Finally, section 4.10 shows how numerical

boundary conditions can be incorporated into the discrete problem.

4.1 Convection-Diffusion Equations

It is instructive to apply the theory of FEMs in this section to convection-diffusion equations. Both the

heat equation and the convection equation for the glass-air interface in the glass forming process simu-

lation models are convection-diffusion equations. Moreover, FEMs for convection-diffusion equations

can easily be extended to more general types of partial differential equations (PDEs), including Stokes

flow equations, as can be seen in Chapter 5.

Convection diffusion equations have the following general form. Let n ∈ N be the dimension

of the problem. Consider a region of interest Ω ⊂ Rn that is open and polygonal bounded. Find

u ∈ C2(Ω) such that

L(u) = f inΩ, (4.1.1)

where L is the convection-diffusion differential operator, defined by

L(u) := −∇·
(
d∇u

)
+ c·∇u + s u. (4.1.2)

The coefficients in (4.1.2) are known as:

• the diffusion function d ∈ L∞(Ω),

• the convection vector c ∈
{
γ ∈ L∞(Ω)

∣∣∣ ‖∇γ‖∞ < ∞}n
,

• the source function s ∈ L∞(Ω),

• the right-hand side function f ∈ L2(Ω).

For definitions of the function spaces, the reader is referred to appendix A.
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4.2 Boundary Conditions

In order to find a unique solution of (4.1.1)-(4.1.2), BCs are required. Let ∂Ω denote the boundary of

Ω. The boundary can be split into several parts, on which one of the following three BCs holds:

1. Dirichlet BC on ΓD ⊂ ∂Ω:

u = uD, (4.2.1)

2. Neumann BC on ΓN ⊂ ∂Ω:

n·
(
d∇u

)
= gN , (4.2.2)

3. Robin BC on ΓR ⊂ ∂Ω:

n·
(
d∇u

)
= gR(u∞ − u), (4.2.3)

where uD : ΓD 7→ R, gN : ΓN 7→ R, gR : ΓR 7→ R are prescribed functions, n is the outer normal on

the surface ∂Ω, and u∞ ∈ R is a constant far-field solution, for example the temperature at infinity.

4.3 Variational Problems

Consider the following boundary value problem (BVP): find u ∈ C2(Ω) such that
L(u) = f , inΩ

u = uD, onΓD

n·
(
d∇u

)
= gN , onΓN ,

(4.3.1)

with ∂Ω = ΓD ∪ ΓN . In this general form, problem (4.3.1) is called the strong formulation of the BVP.

Solutions of (4.3.1) are called strong or classical solutions.

Alternatively, FEMs attempt to solve a so-called weak formulation of the BVP, or just the varia-

tional problem. The variational problem corresponding to BVP (4.3.1) is to find u ∈ H1
uD

(Ω;ΓD) such

that for all v ∈ H1
0(Ω;ΓD),∫

Ω

(
d∇v·∇u + v

(
c·∇u + s u − f

))
dΩ =

∫
ΓN

vgN dΓ. (4.3.2)

For definitions of the Sobolev spaces H1
uD

(Ω;ΓD) and H1
0(Ω;ΓD), the reader is referred to Appen-

dix A.3.

Solutions to (4.3.2) are called weak solutions of (4.3.1). Weak solutions of (4.3.1) can be proven

to exist and to be (local) unique [11, 24, 8]. Moreover, strong formulation (4.3.1) and variational

problem (4.3.2) can be related by the following theorem [24]:
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Theorem 4.3.1. Provided that all functions are sufficiently smooth, problems (4.3.1) and (4.3.2) are

equivalent.

Proof: In this proof, the definition Cp
g (Ω;Γ) =

{
u ∈ Cp(Ω)

∣∣∣ u
∣∣∣∣
Γ
= g

}
is adopted, for integer p ∈ N,

function g : Γ 7→ R and subdomain Γ ⊂ ∂Ω. Furthermore, it is assumed that d ∈ C1(Ω) ⊂ L∞(Ω)

and gN ∈ L2(ΓN).

• (4.3.1) =⇒ (4.3.2):

Suppose that u ∈ C2(Ω) is a classical solution of (4.3.1). Let v ∈ C1
0(Ω;ΓD). Multiplying

(4.1.1) by v and subsequently integrating over Ω yields∫
Ω

v
(
− ∇·

(
d∇u

)
+ c·∇u + s u − f

)
dΩ = 0. (4.3.3)

Partial differentiation of the first term in (4.3.3) gives∫
Ω

(
− ∇·

(
dv∇u

)
+ d∇v·∇u + v

(
c·∇u + s u − f

))
dΩ = 0. (4.3.4)

Since both d∇u and v are continuously differentiable, Gauss’ divergence theorem can be

applied to the first term in (4.3.4). The resulting integral over ∂Ω can be split up into∫
∂Ω

n·
(
dv∇u

)
dΓ =

∫
ΓD

n·
(
dv∇u

)
dΓ +

∫
ΓN

n·
(
dv∇u

)
dΓ. (4.3.5)

The integral over ΓD is zero, since v
∣∣∣∣
ΓD
= 0. So, application of Gauss’divergence theorem

to (4.3.4) gives∫
Ω

(
d∇v·∇u + v

(
c·∇u + s u − f

))
dΩ =

∫
ΓN

n·
(
dv∇u

)
dΓ. (4.3.6)

Finally, substitution of the Neumann boundary condition (4.2.2) into the integral over ΓN

results in weak formulation (4.3.2). Thus, u is a solution of (4.3.2).

• (4.3.2) =⇒ (4.3.1):

Suppose that u ∈ C2
uD

(Ω;ΓD) is a solution of (4.3.2). Assume that c and f are continuous

in Ω. Then, application of partial differentiation to the first term of weak formulation

(4.3.2) leads to∫
Ω

(
∇·

(
dv∇u

)
+ v

(
− ∇·

(
d∇u

)
+ c·∇u + s u − f

))
dΩ =

∫
ΓN

vgN dΓ, (4.3.7)

for all v ∈ H1
0(Ω;ΓD). Since d∇u is continuously differentiable, Gauss’ divergence theo-

rem can be applied to the first term of (4.3.7) for any v ∈ C1
0(Ω;ΓD). The result is∫

Ω

v
(
−∇·

(
d∇u

)
+ c·∇u + s u︸                          ︷︷                          ︸
=L(u)

− f
)

dΩ =
∫
ΓN

v
(
gN − n·

(
d∇u

))
dΓ, (4.3.8)

for all v ∈ C1
0(Ω;ΓD). In order to prove that u solves (4.3.1), it is sufficient to prove that

both the left-hand side integral and the right-hand side integral of (4.3.8) vanish for some

v ∈ C1
0(Ω;ΓD). First, suppose that

(
L(u) − f

)
(x0) , 0 for some x0 ∈ Ω. Without loss of
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generality, assume
(
L(u) − f

)
(x0) > 0. Note that because of the smoothness assumptions

L(u) − f is continuous in Ω. Then, let ε > 0 be small enough, such that L(u) − f > 0 in

the ball B(x0, ε) ⊂ Ω. Choose v ∈ C1
0(Ω;ΓD), such that v ≥ 0 in Ω and supp(v) ⊂ B(x0, ε),

with v(x0) > 0. Then, integration over Ω implies∫
Ω

v
(
L(u) − f

)
dΩ > 0. (4.3.9)

On the other hand, integral equation (4.3.8) leaves∫
Ω

v
(
L(u) − f

)
dΩ = 0. (4.3.10)

This is a contradiction, so L(u) − f = 0 in Ω. Next, suppose that
(
gN − n·

(
d∇u

))
(x0) , 0

for some x0 on ΓN . Without loss of generality, assume
(
gN − n·

(
d∇u

))
(x0) > 0. Then,

let ε > 0 be small enough, such that gN − n·
(
d∇u

)
> 0 on B(x0, ε) ∩ ΓN . Choose

v ∈ C1
0(Ω;ΓD), such that v ≥ 0 on ΓN and supp(v) ⊂ B(x0, ε), with v(x0) > 0. Then,

integration over ΓN implies∫
ΓN

v
(
gN − n·

(
d∇u

))
dΓ > 0. (4.3.11)

This is in contradiction to (4.3.8). It follows that also (4.2.2) is satisfied. Thus, u is a

classical solution of (4.3.1).

For a (variational) convection-diffusion problem, two kinds of BCs can be distinguished.

Essential boundary conditions Essential BCs prescribe the solution on some part of the boundary

domain. The Dirichlet BC (4.2.1) is an essential BC; it is not incorporated in integral equation

(4.3.2).

Natural boundary conditions Natural BCs do not need to be prescribed explicitly, since they are

naturally included into the variational problem. A natural BC often concerns a surface flux or a

boundary load. The Neumann BC (4.2.2) is a natural BC; from the second part of the proof of

Theorem 4.3.1, it follows that the Neumann BC is satisfied by integral equation (4.3.2).

4.4 Linear Vector Spaces

Rather than discretising the differential operator (4.1.2), FEMs approximate the solution via a suit-

able choice of a finite dimensional subspace of H1(Ω). Let {φi}
p
i=1 ⊂ Pq(Ω) be a set of p linearly

independent polynomials, then the span of {φi}
p
i=1 is the p-dimensional, linear vector space

V p(Ω) := [{φi}
p
i=1] =

{
v =

p∑
i=1

φivi
∣∣∣ vi ∈ R, i = 1, . . . , p

}
. (4.4.1)
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Because the functions {φi}
p
i=1 form a basis of V p(Ω), they are called basis functions of V p(Ω).

Similarly to (4.4.1), finite dimensional subspaces of the Sobolev space of weak solutions H1
uD

(Ω;ΓD)

and the Sobolev space of weight functions H1
0(Ω;ΓD) can be introduced. Let p ∈ N. Then, a linearly

independent set of suitable basis functions {φi}
p
i=1 ⊂ H1(Ω) gives rise to the linear vector spaces

UuD(Ω;ΓD) :=
{
û =

p∑
i=1

φiûi
∣∣∣ û

∣∣∣∣
ΓD
= uD, ûi ∈ R, i = 1, . . . , p

}
⊂ H1

uD
(Ω;ΓD), (4.4.2)

W0(Ω;ΓD) :=
{
v̂ =

p∑
i=1

φiv̂i
∣∣∣ v̂

∣∣∣∣
ΓD
= 0, v̂i ∈ R, i = 1, . . . , p

}
⊂ H1

0(Ω;ΓD), (4.4.3)

Note that in order to construct the subspace UuD(Ω;ΓD), it is required that uD ∈ [{φi}
p
i=1] in an approx-

imate sense.

4.5 Galerkin Finite Element Discretisation

Consider the weak formulation of BVP (4.3.1): find u ∈ H1
uD

(Ω;ΓD) such that

∀v∈H1
0 (Ω;ΓD) : a(v, u) = l(v), (4.5.1)

where a : H1
0(Ω;ΓD) × H1

uD
(Ω;ΓD) 7→ R and l : H1

0(Ω;ΓD) 7→ R are forms, defined by

a(v, u) =
∫
Ω

(
d∇v·∇u + v

(
c·∇u + s u

))
dΩ, (4.5.2)

l(v) =
∫
Ω

v f dΩ +
∫
ΓN

vgN dΓ. (4.5.3)

Note that form (4.5.2) is bilinear in (v, u) and form (4.5.3) is linear in v. Moreover, if c = 0, then

(4.5.2) is symmetric, that is, a(v, u) = a(u, v).

The Galerkin approximation of variational problem (4.5.1) is to find û ∈ UuD(Ω;ΓD) such that

∀v̂∈W0(Ω;ΓD) : a(v̂, û) = l(v̂). (4.5.4)

Let {φi}
p
i=1 be the set of basis functions that spans UuD(Ω;ΓD) and W0(Ω;ΓD). Then, any û ∈

UuD(Ω;ΓD) and v̂ ∈ W0(Ω;ΓD) can be written as

û = φT û˜, v̂ = φT v̂˜, (4.5.5)

with

û˜ =


û1
...

ûp

 , v̂˜ =


v̂1
...

v̂p

 , φ =


φ1
...

φp

 . (4.5.6)
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Discretised problem (4.5.4) restricts variational problem (4.5.1) to finding the vector of function values

û˜. Therefore, it is convenient to write (4.5.4) in terms of (4.5.6). To this end, the derivatives of û and

v̂ are written as linear combinations of the derivatives of the basis functions:

∇û =
(
∇φ

)T û˜, ∇v̂ =
(
∇φ

)T v̂˜. (4.5.7)

Substitution of (4.5.5) and (4.5.7) into (4.5.4) gives

a(v̂, û) = v̂˜T
Kû˜, (4.5.8)

l(v̂) = v̂˜T q, (4.5.9)

where

K =

∫
Ω

(
d∇φ

(
∇φ

)T
+ φ·

(
c·∇φ + s φ

))
dΩ, (4.5.10)

q =
∫
Ω

φ f dΩ +
∫
ΓN

φgN dΓ, (4.5.11)

Equation (4.5.4) should hold for any vector v̂˜ ∈ Rp, such that φT v̂˜ = 0 on ΓD, hence

Kû˜ = q. (4.5.12)

System of equations (4.5.12) is the Galerkin approximation of variational problem (4.5.1). In a

Galerkin approximation, the vector spaces UuD(Ω;ΓD) and W0(Ω;ΓD) are spanned by the same set of

basis functions. The matrixK is often referred to as the stiffness matrix and q is the load vector. Note

that

Ki j = a(φi, φ j), qi = l(φi), for i, j = 1, . . . , p. (4.5.13)

In general, it is required that the number of basis functions p is quite large, in order to obtain a

sufficient accurate approximation of the solution of (4.5.1). If the matrixK is full, existing methods to

solve system of equations (4.5.12) can become rather inefficient. Therefore, it is of major importance

to construct a set of basis functions, such that solving (4.5.12) is considerably efficient. The next

subsection discusses some important properties that the basis functions should satisfy, in order to

reduce the amount of such calculations.

4.6 Characteristic Properties of the Basis Functions

In the previous subsection, variational problem (4.3.2) is approximated by means of a finite set of

linearly independent basis functions {φi}
p
i=1, which span p-dimensional linear vector spaces for ap-

proximations of the weak solutions. The question remains how to choose a set of basis functions,

such that system of equations (4.5.12) can be solved in an efficient way.
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In order to reduce the amount of calculations required to solve system of equations (4.5.12), it is

desired that the stiffness matrix (4.5.10) is sparse. Typically, sparse matrices have regular patterns of

block diagonals with nonzero indices, whereas the other indices are zero. So, a set of basis functions

is looked for that satisfies a(φi, φ j) = 0 apart from a regularly structured sparsity pattern.

The construction of an appropriate set of basis functions can be illustrated by means of an example

for the one dimensional case [19].

Example 4.6.1. Let Ω = (0, 1), N ∈ N. Subdivide Ω into line segments ei = (x̂i, x̂i+1), for i = 1, . . .N,

with nodal points x̂ j =
j−1
N , for j = 1, . . .N + 1. Then, construct a set of basis functions {φ}N+1

i=1 , where

φi is defined by

φ1(x) =

1 − Nx, on e1;

0, elsewhere,

φ j(x) =


1 + N

(
x − x̂ j

)
, on e j−1;

1 − N
(
x − x̂ j

)
, on e j;

0, elsewhere,

for j = 2, . . . ,N,

φN+1(x) =

1 + N
(
x − 1

)
, on eN ;

0, elsewhere,

Note that the basis functions satisfy

φi(x̂ j) =

1, if i = j;

0, else.

Therefore, the nodal point x̂i is called a support point of φi, for i = 1, . . . ,N + 1. Moreover,∑
i

φi(x) = 1,

for all x ∈ Ω and the basis functions are linear per element. In Figure 4.1 a plot of φ3(x) and φ4(x) for

N = 7 is given. From this figure, it can be seen that for the stiffness matrix (4.5.10), a typical sparsity

pattern as in Figure 4.2 is obtained.
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Figure 4.1: Illustration of one dimensional basis functions and the support of their product.
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Figure 4.2: Sparsity pattern for the one dimensional basis functions. The corresponding 8 × 8 stiffness matrix
contains only 19 non-zero entries.
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Example 4.6.1 can be generalised in order to construct a basis for problem (4.5.4). Let N ∈ N.

Partition the domain of interest Ω into so-called elements ei, i = 1, . . . ,N, i. e.

Ω =

N⋃
i=1

ei. (4.6.1)

Assume that the elements are open subdomains of Ω and denote by ∂ei the boundary of element ei,

i = 1, . . . ,N. For some p ∈ N, let {x̂ j}
p
j=1 ⊂ Ω be the set of nodal points (e.g. vertices) of the elements

in Ω. A nodal point x̂ j is said to be a boundary node of an element ei, if

x̂ j ∈ ∂ei, i = 1, . . . ,N, j = 1, . . . , p.

On the other hand, x̂ j is said to be a internal node of ei, if

x̂ j ∈ ei, i = 1, . . . ,N, j = 1, . . . , p.

The element boundaries ∂ei, i = 1, . . . ,N, can be subdivided into edges between the boundary nodes.

An edge from boundary node x̂k to boundary node x̂l is denoted by ∂(x̂k, x̂l). For instance, Figure 4.3

illustrates a quadrilateral element with 5 nodes and 4 edges. Subsequently, define a set of basis

functions {φ j}
p
j=1, such that for all i = 1, . . . , p, the following properties are satisfied:

φ j(x̂ j) = δ jk =

1, if i = j;

0, else,
(4.6.2)

supp(φj) =
⋃{

ei
∣∣∣ x̂ j ∈ ei

}
, (4.6.3)

φ j = 0, on ∂(x̂k, x̂l), j , k, l. (4.6.4)

Property (4.6.2) defines the support points corresponding to the basis functions, that is if property

(4.6.2) is satisfied, then x̂ j is called a support point of φ j, for j = 1, . . . , p. Property (4.6.3) is illustrated

in Figure 4.4, in which a 2D square domain Ω is uniformly partitioned into square elements. Here,

the grey area is the support of φ25. The nodes and elements are numbered from left to right, bottom

to top. In this figure, node 25 is the support point of φ25. Finally, condition (4.6.4) says that the basis

function is zero on the boundary of the support. Properties (4.6.2)-(4.6.4) are characteristic for FEMs.

They induce sparsity of the stiffness matrix, as a(φi, φ j) is only nonzero if xi and x j belong to the same

element.

Obviously, a construction of a set of basis functions satisfying properties (4.6.2) and (4.6.3) attends

a partition into elements. As a consequence, it may not be easy to construct a suitable set of basis

functions, if the elements have complex geometries. Therefore, it can be useful to introduce local

transformations of the geometry in order to construct basis functions at element level. To this purpose,

so-called isoparametric elements are introduced. This is the topic of Section 4.8.
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Figure 4.3: A quadrilateral element with 5 nodes and 4 edges. The four vertices are boundary nodes and the
node in x5 is an internal node.

Figure 4.4: Support of a basis function for a square partition of a squared domain Ω into square elements.
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4.7 Assembly of the Stiffness Matrix and the Load Vector

The stiffness matrix K and the load vector q can be obtained from the contribution of each element.

For each element e, let le be the number of nodes of e and the vector φe denote the vector compris-

ing the le corresponding basis functions. Then, K and q can be assembled by a summation of the

contributions of different elements:

K =
∑

e

PeKeP
T
e , (4.7.1)

q =
∑

e

Peqe, (4.7.2)

where, for all elements e,

Ke =

∫
e

(
d∇φe

(
∇φe

)T
+ φe ·

(
c·∇φe + s φe

))
dΩ, (4.7.3)

qe =

∫
e
φe f dΩ +

∫
e∩ΓN

φegN dΓ. (4.7.4)

and Pe is a p× le projection matrix that maps the entries of the le × le element stiffness matrixKe and

le × 1 element load vector qe onto the entries of the global matrix K and load vector q, respectively.

So for any element e, the indices of Pe are given by

Pe,i j =

1, if xi = xe, j;

0, else,
(4.7.5)

where xe, j is the jth node of element e, for j = 1, . . . , le. Expressions (4.7.1) and (4.7.2) are often used

in computer implementations of FEMs.

4.8 Isoparametric Elements

In Section 4.6, a construction of a set of basis functions by means of a partition into elements is

proposed. In such a construction, the definitions of the set of basis functions and the mesh are closely

connected to each other. In the present section, it is shown how the basis functions can be constructed

by a suitable mapping of the element geometry.

Before going into more detail, it is worth studying some terminology.

Mesh: a partition into elements (see Figure 4.5).

Element type: the set of nodes, numbers of unknowns per node and edges of an element. Two

elements are of the same type, if there is a bijective mapping of the set of nodes, edges and

unknowns of the elements onto each other.
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Figure 4.5: A mesh consisting of three submeshes.

Submesh: a part of a mesh that is a partition into elements of the same type. Each mesh can be

subdivided into different submeshes (see Figure 4.5).

Reference element: an element that represents the elements in a submesh and has a relatively simple

geometry. Usually, computations are carried out for the reference element and solutions are

mapped onto the elements in the submesh.

Since the basis functions are constructed at element level, it is convenient to introduce a local

mapping of the element geometry, such that a straightforward, local construction of the basis functions

is possible. A local mapping of the geometry at element level can be achieved by mapping a reference

element onto an element in the submesh. This mapping is the result of interpolation over the nodes

of the reference element. Consider an element e, with nodes x̂1, . . . , x̂le . Let ê be a reference element

of the same type, with nodes ξ̂1, . . . , ξ̂le , and let {ϕ}lei=1 ⊂ H1(ê) be a set of interpolation functions

corresponding to the nodes ξ̂1, . . . , ξ̂le of ê, such that

ϕi(ξ̂ j) = δi j, for i, j = 1, . . . , le,

ϕ j(ξ) = 0, for ξ ∈ ∂(x̂k, x̂l), if j , k, l.

Write

ϕ =


ϕ1
...

ϕle

 .
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Figure 4.6: Mapping of reference elements onto arbitrary elements of equal topology.

Then, the mapping of the geometry of ê onto e is given by the coordinate interpolation

x(ξ) = Xeϕ(ξ), for ξ ∈ ê, (4.8.1)

where Xe = (x̂1| · · · |x̂le). Below, some examples for (bi-)linear interpolation functions are given.

Example 4.8.1. Consider a domain partition into two-dimensional quadrilateral elements ei, i =

1, . . . , p. In this case, a suitable reference element would be the square ê = (−1, 1)2. Denote the nodes

of ê by (ξ̂ j, η̂ j), for j = 1, . . . , 4. Then, for each i = 1, . . . , p, a local mapping of ê onto ei is given by

x(ξ, η) = Xiϕ(ξ, η), for (ξ, η) ∈ ê,

where Xi comprises the nodes of element ei and ϕ : ê 7→ R is a vector function, with ϕ j defined by

ϕ j(ξ, η) =
1
4
(
1 + ξ̂ jξ

)(
1 + η̂ jη

)
, j = 1, 2, 3, 4. (4.8.2)
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Example 4.8.2. Consider two-dimensional triangular elements ei, i = 1, . . . , p. Let ê be a triangular

reference element with nodes (ξ̂ j, η̂ j), for j = 1, 2, 3. This leads to a local mapping of ê onto ei, for

each i = 1, . . . , p, given by

x(ξ, η) = Xiϕ(ξ, η), for ξ ∈ ê,

where Xi comprises the nodes of element ei and ϕ : ê 7→ R has entries ϕ j defined by

ϕ j(ξ, η) =
1
λ

∑
k, j

∑
l, j,k

e jkl
(
ξ̂k − ξ

)(
η̂l − η

)
, j = 1, . . . , 3. (4.8.3)

where

λ =
∑

j

∑
k, j

∑
l, j,k

e jklξ̂kη̂l, (4.8.4)

with e jkl the alternator, which is given by

e jkl =


0, if two indices are equal;

1, if j, k, l is a cyclic permutation;

−1, if j, k, l is a non-cyclic permutation.

(4.8.5)

Suitable reference elements are for example equilateral or right-angled triangles.

An element e is said to be isoparametric, if both spatial coordinates and finite element solutions are

approximated by means of the same set of basis functions (F. P. T. Baaijens, [3]). So for isoparametric

elements, the vector of basis functions φe in element e is defined as

φe
(
x
)
=

ϕ(ξ), with x ≡ x(ξ), for ξ ∈ ê,

0, else.
(4.8.6)

Then, û can be written in terms of ξ by means of (4.8.6),

û(x) =
(
φe(x)

)T û˜e =
(
ϕ(ξ)

)T
û˜e , with x ≡ x(ξ), for ξ ∈ ê, (4.8.7)

where û˜e comprises the solution values corresponding to the vector of basis functions φe. Clearly,

ϕ is the vector of basis functions in ê. For isoparametric elements, the finite element solutions can

directly be computed by means of the basis functions in ê. Moreover, the finite element solutions are

approximated in the same way as the geometry.

For isoparametric elements, the element stiffness matrix and element load vector can be evaluated

in terms of the nodes of ê. Suppose that a local transformation of the geometry is applied on an

element e ⊂ Ω. Then, the element matrices (4.7.3) and (4.7.4) can be written in terms of ϕ. To this
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purpose, apply the chain rule for differentiation to obtain a relation between the Jacobian matrices of

φ and ϕ:

∇xφe = ∇xξ ∇ξϕ, (4.8.8)

where the subscripts x and ξ indicate to which variables differentiation or integration is applied. Here,

∇xξ is found from the inverse of ∇ξx:

∇xξ =
(
∇ξx

)−1
=

(
∇ξϕ X

T
e
)−1. (4.8.9)

Finally, the element stiffness matrix and element load vector can be calculated as

Ke =

∫
ê

(
d
(
∇ξx

)−1
∇ξϕ

((
∇ξx

)−1
∇ξϕ

)T
+ ϕ·

(
c·

(
∇ξx

)−1
∇ξϕ + s ϕ

)) ∣∣∣∇ξx
∣∣∣ dΩξ, (4.8.10)

qe =

∫
ê
ϕ f

∣∣∣∇ξx
∣∣∣ dΩξ +

∫
∂êN

ϕgN
∣∣∣∇ξx

∣∣∣∣
∂êN

∣∣∣ dΓξ, (4.8.11)

where ∂êN denotes the mapping of e∩ΓN onto ê, and ∇ξx
∣∣∣∣
∂êN

is the Jacobian matrix of x(ξ) restricted

to ∂êN .

4.9 Numerical Integration

In general, integrals (4.8.10) and (4.8.11) cannot be integrated analytically. However, they can be

approximated by using a numerical integration formula. A suitable numerical integration scheme can

be obtained by applying an interpolation formula. Suppose a function F ≡ F(ξ) is defined on an

element ê. Let {ξi}
q
i=1 ⊂ ê be a set of interpolation points, where q ∈ N is the so-called interpolation

order. Then, apply interpolation on F,

F ≈
q∑

i=1

piFi, (4.9.1)

for some interpolation functions p1, . . . , pq. Here, Fi = F(ξi), for i = 1, . . . , q. Then, integration

yields a quadrature formula,∫
ê

FdΩξ ≈
q∑

i=1

wiFi, (4.9.2)

where wi are the weights, which are given by

wi =

∫
ê

pidΩξ, for i = 1, . . . , q. (4.9.3)

In this context, the interpolation points are also referred to as quadrature points.
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The choice of the quadrature points influences the accuracy of the quadrature formula. Firstly, the

higher the interpolation order, the higher the order of the polynomial approximation of the integral.

In fact, it can be proven that the quadrature formula is exact for polynomials of degree ≤ q − 1 [8].

Secondly, the accuracy of the quadrature formula is determined by the position of the quadrature

points. Therefore, they should be chosen such as to obtain optimal accuracy. To this end, tables with

numbers and positions of quadrature points for optimal accuracy are available for different element

shapes [3, 25].

4.10 Numerical Boundary Conditions

In theory, essential BCs of variational problem (4.5.4) are enforced in the solution space, so that only

solutions of linear system (4.5.12) are allowed that satisfy the essential BCs. However, in practice,

there is no guarantee that numerical solutions of (4.5.12) satisfy the essential BCs. Therefore, the

linear system should be provided with an additional constraint

φT û˜ = uD, onΓD. (4.10.1)

So, for any i = 1, . . . , p, such that xi ∈ ΓD, the ith vector index of û˜ should satisfy

ûi =
(
φ(x̂i)

)T û˜ = uD(x̂i). (4.10.2)

Condition (4.10.2) can be included in linear system (4.5.12) as follows (J. M. L. Maubach, [19]).

Define the projection matrix

Pp := diag(pi), (4.10.3)

where

pi =

1, if x̂i ∈ Ω ∪ ΓN ;

0, if x̂i ∈ ΓD,
for i = 1, . . . , p. (4.10.4)

The projection matrix is used to modify the stiffness matrix and load vector. Define the matrices

KD = PpK +
(
I p −Pp

)
, (4.10.5)

qD = Ppq +
(
I p −Pp

)
u˜D , (4.10.6)

where u˜D is the column comprising uD(x̂1), . . . , uD(x̂n). Then, the solution of linear system

KD û˜ = qD (4.10.7)

satisfies the Dirichlet BC (4.2.1).
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Chapter 5

Finite Element Analysis of Stokes Flow
Problems in Glass Pressing

In Chapter 4, FEMs for convection diffusion equations are studied. The level set equation and the heat

equation in glass forming models are examples of convection diffusion equations. On the other hand,

the Stokes flow equations are not covered by the family of convection diffusion equations.

Since the solver problem discussed in Chapter 1 is observed for incompressible Stokes flow prob-

lems only, this chapter focusses on the finite element theory for this particular class of problems.

The purpose of this chapter is to show that an appropriate finite element discretisation of Stokes

flow problems leads to a well-defined linear system of equations. That is, the discretisation method

should enable one to solve the resulting system by means of an appropriate solver within a reasonable

amount of time. Apart from a discussion which discretisation methods can be found most suitable

for the Stokes flow problem, it is elucidated which methods are used in TNO Glass Group’s pressing

model, as it is sought to analyse the solver problem for this simulation model in particular. This chap-

ter will make it clear that the finite element discretisation methods used in the pressing model lead to

a theoretically well-defined system of equations. Then, the next step is to find a suitable numerical

method to solve the discretised Stokes flow problem. This is the topic of the Chapter 6.

This chapter is structured as follows. First, section 5.1 gives a weak formulation for Stokes

flow problems in pressing models. Then, section 5.2 discretises this weak formulation by means

of Galerkin FEMs. Furthermore, section 5.3 shows under which conditions the weak formulation and

the discretised problem have a unique solution, and if these conditions are satisfied for Stokes flow

problems in a glass pressing model. Here, subsection 5.3.1 focusses on the weak formulation and

subsection 5.3.2 on the discretised problem. In the discretised Stokes flow problem, a zero block in

the coefficient matrix appears on the diagonal, as a consequence of the absence of a pressure term in

the continuity equation. As this zero block can lead to considerable problems, section 5.4 discusses

several solution methods to deal with this. In this section, the solution method used in TNO Glass
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Group’s pressing model is compared to others, and it is motivated why the same method is also ap-

plied in this thesis. Next, section 5.5 discusses and compares different stable elements for Stokes flow

problems. The elements that are used in TNO Glass Group’s pressing model are called Mini-elements.

A Mini-element stabilises a Stokes flow problem by means of a so-called bubble-function. Section 5.6

shows for triangular Mini-elements that elimination of the bubble functions at element level leads to

a stabilised formulation of Stokes flow problems, for which it can be proven that it has a unique so-

lution. Since the finite element mesh used is crucial for the success of the FEM applied, section 5.7

explains how such a mesh is constructed in TNO Glass Group’s pressing model. Finally, section 5.8

states the conclusions on this chapter.

5.1 Variational Stokes Flow Problem

Consider the dimensionless, incompressible Stokes flow problem in the axi-symmetrical pressing

model in section 3.2: find u ∈
(
C2(Ω)

)2
and p ∈ C1(Ω), such that

∇·
(
2µ∇su

)
d − ∇p = 0, ∇·u = 0, inΩ,

u∗ ·n = 0, T n· t = 0, onΓg,1 ∪ Γa,2,

T n = 0, onΓa,1,

u∗ = 0, onΓg,2,

(5.1.1)

where

u∗ =

u − up, onΓp,

u, elsewhere,
(5.1.2)

and

Γg,1 = Γs ∩Ωg, (5.1.3)

Γg,2 =
(
Γr ∪ Γm ∪ Γp

)
∩Ωg, (5.1.4)

Γa,1 = Γr,1 ∩Ωa, (5.1.5)

Γa,2 =
(
Γm ∪ Γr,2 ∪ Γp

)
∩Ωa, (5.1.6)

(5.1.7)

Note that since tr(∇su) = ∇·u = 0, the subscript d can be omitted. Problem (5.1.1) also has a weak

formulation. First, define the vector spaces

Q := L2(Ω), (5.1.8)

U :=
{
u ∈

(
H1(Ω)

)2 ∣∣∣ (u∗ ·n)∣∣∣∣
Γg,1∪Γa,2

= 0, u∗
∣∣∣∣
Γeg
= 0

}
, (5.1.9)

V :=
{
v ∈

(
H1(Ω)

)2 ∣∣∣ (v·n)∣∣∣∣
Γg,1∪Γa,2

= 0, v
∣∣∣∣
Γeg
= 0

}
. (5.1.10)
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Then, a weak formulation of (5.1.1) is to find (u, p) ∈ U × Q, such that for all (v, q) ∈ V × Q,a(v,u) + b(v, p) = 0,

b(u, q) = 0.
(5.1.11)

where a :
(
H1(Ω)

)2
×

(
H1(Ω)

)2
7→ R and b :

(
H1(Ω)

)2
× Q 7→ R are bilinear forms, defined by

a(v,u) =
∫
Ω

(
2µ∇v:∇su

)
dΩ, (5.1.12)

b(v, q) =
∫
Ω

q∇·vdΩ. (5.1.13)

For definitions of the spaces H1(Ω) and L2(Ω), the reader is referred to Appendix A.3.

5.2 Finite Element Discretisation of Stokes Flow Problems

Variational Stokes flow problem (5.1.11) can be discretised by means of FEMs as follows. First,

define finite dimensional vector spaces for the pressure, velocity and weight functions. Let {ψi}
M
i=1

and {φi}
N
i=1 be sets of basis functions for the pressure and velocity, respectively. Then, the finite

dimensional vector spaces are defined as follows:

QM :=
{
p̂ =

M∑
i=1

ψi p̂i
∣∣∣ p̂i ∈ R, i = 1, . . . ,M

}
, (5.2.1)

UN :=
{
û =

N∑
i=1

φiûi
∣∣∣ (û∗ ·n)∣∣∣∣

Γg,1∪Γa,2
= 0, û∗

∣∣∣∣
Γg,2
= 0, ûi ∈ R

2, i = 1, . . . ,N
}
, (5.2.2)

VN :=
{
v̂ =

N∑
i=1

φiv̂i
∣∣∣ (v̂·n)∣∣∣∣

Γg,1∪Γa,2
= 0, v̂

∣∣∣∣
Γg,2
= 0, v̂i ∈ R

2, i = 1, . . . ,N
}
, (5.2.3)

(5.2.4)

Next, let (û, p̂) ∈ UN × QM, (v̂, p̂) ∈ VN × QM. For the sake of notation, introduce the vectors

û˜ =
 û˜1

û˜2

 , v̂˜ =
 v̂˜1

v̂˜2

 , φ =


φ1
...

φN

 , (5.2.5)

where,

û˜i =


û1,i
...

ûN,i

 , v̂˜i =


v̂1,i
...

v̂N,i

 , (5.2.6)



42 5 Finite Element Analysis of Stokes Flow Problems in Glass Pressing

for i = 1, 2. In terms of (5.2.5) and (5.2.6), û and v̂ can be written as

û =

φ
T û˜1

φT û˜2

 =
φT 0

0 φT

 û˜, v̂ =

φ
T v̂˜1

φT v̂˜2

 =
φT 0

0 φT

 v̂˜. (5.2.7)

The approximations for p and q in vector notation are

p̂ = ψT p̂˜, q̂ = ψT q̂˜. (5.2.8)

where

p̂˜ =


p̂1
...

p̂M

 , q̂˜ =


q̂1
...

q̂M

 . (5.2.9)

Substitution of (5.2.7) and (5.2.8) into the double inner product in form (5.1.12) yields

∇v̂:∇sû = ∇(φT v̂˜1 )·∇s(φT û˜1 ) + ∇(φT v̂˜2 )·∇s(φT û˜2 )

= v̂˜T
1
(
∇φ

)T
∇sφ û˜1 + v̂˜T

2
(
∇φ

)T
∇sφ û˜2 (5.2.10)

As a result, the discretised forms can be written as

a(v̂, û) = v̂˜T
K11û˜, (5.2.11)

b(v̂, q̂) = q̂˜T
K21v̂˜, (5.2.12)

where

K11 =

∫
Ω

2µ

 (∇φ)T
∇sφ 0

0
(
∇φ

)T
∇sφ

 dΩ, (5.2.13)

K21 =

∫
Ω

ψ∇·

φT 0
0 φT

 dΩ, (5.2.14)

The corresponding discretised variational problem is

∀v̂∈VN , q̂∈QM :

a(v̂, û) + b(v̂, p̂) = 0,

b(û, q̂) = 0.
(5.2.15)

System (5.2.15) holds for any vectors v̂˜ ∈ R2N , with
(
φT v̂˜1 , φ

T v̂˜2
)T
∈ VN , and q̂˜ ∈ RM, so

Kα̂˜ = 0, (5.2.16)
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where

K =

K11 K12

K21 0

 , (5.2.17)

withK12 = K
T
21, and

α̂˜ =


û˜̂
p˜

 . (5.2.18)

The discretised Stokes flow problem (5.2.16) forms a system of 2N + M equations with 2N + M

unknowns. However, the discretised continuity equation,

K21û˜ = 0, (5.2.19)

forms a system of M equations with 2N unknowns. Since it is not desirable that the velocity approxi-

mation is completely described by the continuity equation, it should hold that

M < 2N. (5.2.20)

Indeed, this demand lays some restrictions on the mesh to be used. All elements used in this thesis

satisfy this restriction, provided that the mesh is not too coarse.

For simplicity, it is assumed in the following sections that the viscosity µ is constant. For constant

viscosity, it holds that

∇·
(
2µ∇su

)
= µ

(
∇
(
∇·u

)
+ ∆u

)
= µ∆u,

so matrixK11 can be written as

K11 = µ

∫
Ω

 (∇φ)T
∇φ 0

0
(
∇φ

)T
∇φ

 dΩ. (5.2.21)

In Chapter 7, it is shown that the solver problem for constant viscosity occurs to the same extent as

for temperature dependent viscosity.
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5.3 Existence and Uniqueness of Solutions

5.3.1 Weak solutions

Existence and uniqueness of solutions of (5.1.11) is stated by the following theorem [12, 5]:

Theorem 5.3.1. Let a be a symmetric and positive semi-definite bilinear form on V × V. Then,

variational problem (5.1.11) has a unique solution, iff a satisfies

∃α>0 ∀v∈V(0) : a(v, v) ≥ α ‖v‖2V , (5.3.1)

where

V(0) =
{
v ∈ V

∣∣∣ ∀q∈Q : b(v, q) = 0
}
, (5.3.2)

and b satisfies

∃β>0 : inf
q∈Q

sup
v∈V, v,0

b(v, q)
‖v‖V

≥ β ‖q‖Q. (5.3.3)

The proof of theorem 5.3.1 can be found in [5]. Condition (5.3.1) is referred to as the ellipticity

condition and condition (5.3.3) is called the inf-sup condition or Brezzi-Babuška condition. Clearly,

for constant viscosity, the form a is symmetric and positive semi-definite. The presence of Dirichlet

BCs ensures that the ellipticity condition is satisfied [2], Ch. 3. The inf-sup condition is related to the

shape of Ω and is satisfied for fairly complicated flow domains [12], Ch. 8.

5.3.2 Finite Element Solutions

Similar conditions as (5.3.1) and (5.3.3) exist for the discrete Stokes flow problem (5.2.16). Introduce

the discrete ellipticity condition,

∃α̂>0 ∀v̂∈VN (0) : a(v̂, v̂) ≥ α̂ ‖v̂‖2V , (5.3.4)

and the discrete inf-sup condition,

∃β̂>0 : inf
q̂∈QM

sup
v̂∈VN ,v̂,0

b(v̂, q̂)
‖v̂‖V

≥ β̂ ‖q̂‖Q, (5.3.5)

where α̂ and β̂ do not depend on the size of the elements. Here

VN(0) =
{
v̂ ∈ VN

∣∣∣ ∀q̂∈QM : b(v̂, q̂) = 0
}
. (5.3.6)

It can be proven that if the discrete inf-sup condition is satisfied, then matrix K21 has full rank [12],

Ch. 8. Since condition (5.3.4) implies that K11 is positive definite, it follows that K is non-singular

if both (5.3.4) and (5.3.5) are satisfied. If VN ⊂ V , then condition (5.3.4) is automatically satisfied.

Satisfaction of condition (5.3.5) depends on the mesh and the type of element used. Elements that

satisfy condition (5.3.5) are called stable elements. Stable elements for Stokes flow problem (5.1.1)

are discussed in section 5.5.
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5.4 Solution Methods

Finite element discretisations of the Stokes flow equations are generally known as one of the most

prominent sources of indefinite linear systems [12], Ch. 8. They are characterised by a large zero-

block on the diagonal in the right-bottom of the stiffness matrix, which may lead to complications in

solving the system. The literature consulted supplies three different relevant methods to deal with this

kind of problem.

Penalty Function Methods

The continuity equation is perturbed by a small factor ε of the pressure:

∇·u + εp = 0. (5.4.1)

It can be proven that the solution of the perturbed system approximates the original solution, provided

that ε is small enough [9], Ch. 8. Advantages of the penalty function method are [32, 30, 9]:

• the system of equations is reduced, as the linear system for the continuity equation can be

decoupled from the linear system for the momentum equation,

• the calculation time decreases, as no partial pivoting is required.

On the other hand, the penalty method also has some disadvantages [32, 30]:

• the choice of ε depends on the magnitude of the unknown pressure,

• the inverse parameter 1
ε outweighs other entries in the stiffness matrix, causing a large condition

number.

A consequence of the latter disadvantage is that the penalty function is not suitable for large-scaled

problems. Since the condition number of the stiffness matrix of the discrete Stokes flow problem in

the pressing model is already substantial, as mentioned in Chapter 1, the penalty function method is

not a preferable choice [32, 30, 9].
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Methods of Divergence-Free Basis Functions

The basis functions are chosen, such that the continuity equation is automatically satisfied. So, the

vector spaces of velocity basis functions, UN and VN , are extended with additional incompressibility

conditions,

∇· û = 0, resp. ∇· v̂ = 0.

An advantage is that the number of unknowns is strongly reduced. However, the method can only

be applied for one specific type of elements: the so-called Crouzeix-Raviart elements. Furthermore,

some complications may arise in the application of this method. Basis functions that satisfy the

incompressibility condition have to be constructed, boundary conditions must be transformed and the

solution is to be transformed back to its original degrees of freedom. The method is not (yet) available

in Sepran, and is therefore not used in the pressing model. For more information, the reader is referred

to C. Cuvelier Et Al [9], Ch. 9.

Integrated Methods

The integrated method does not uncouple the velocity and pressure unknowns, which is the case in the

penalty function method and the method of divergence-free basis functions. Often, partial pivoting is

applied to deal with the zero diagonal elements. However, Rehman et al [26] state that this technique

is not used in Sepran, as it can change the profile or bandwidth of the coefficient matrix. Instead, the

unknowns are reordered, such that the velocity unknowns are calculated before the pressure unknowns

in the same nodes. Ordering methods are discussed in section 6.2.1. A disadvantage of integrated

methods is that the matrix, and hence also the calculation time, become much larger [30]. This

method is used in TNO Glass Group’s pressing model.
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5.5 Stable Elements

The purpose of this section is to discuss which stable elements are suitable for application in the

pressing model. Section 5.5.1 introduces so-called Mini-elements, which are used in TNO Glass

Group’s pressing model. Section 5.5.2 discusses so-called Taylor-Hood elements as possible alterna-

tives. Unfortunately, in Chapter 7 it appears that the solver performance for Taylor-Hood elements is

not generally much better than for Mini-elements. Finally, section 5.5.3 briefly discusses why other

elements available in Sepran are rejected in this thesis in favour of the aforementioned elements.

5.5.1 Mini-Elements

Mini-elements use linear basis functions in joint nodes for both velocity end pressure in the vertices,

assigning the same basis functions to pressure and velocity unknowns. These properties in themselves

do not suffice for an element to be stable. For example, R. Pierre [23] shows in a simple example that

triangular Courant elements (linear velocity - linear pressure elements) do not have a unique pressure

solution (such solutions are said to contain spurious pressure modes). Therefore, the vector space of

velocity basis functions for the Courant element is enriched by adding a so-called bubble function

in an additional node in the barycentre of the element. This bubble function is nothing more than a

Lagrange interpolant involving the nodes in the vertices of the element, which is just the normalised

product of the linear basis functions in these nodes:

be(x) =
∏

i

φe,i(x)
φe,i(x̂0)

, x ∈ e (5.5.1)

with x̂0 the position of the barycentre and indices i corresponding to the vertices x̂i of the element, i =

1, . . . le. The bubble function can be seen as an additional velocity basis function φe,0 (see Figure 5.1a

and Figure 5.1b). V. Girault and P. A. Raviart [14], Ch. II, have shown that triangular Mini-elements

are stable for uniform Stokes flow problems. However, R. Pierre [23] states that in many tests, the

pressure solutions is plagued with small amplitude oscillations. In order to reduce these, the mesh

has to be refined, which leads to an increase in computational time, especially in view of the solver

problem. In section 5.6, it can be seen that for Mini-elements a stabilised formulation of the Stokes

flow problem can be derived. For results for non-uniform Stokes flow problems, the reader is referred

to Chapter 7.

5.5.2 Taylor-Hood Elements

Taylor-Hood elements use joint nodes for the pressure and the velocity unknowns. They use kth order

continuous piecewise polynomials for the velocity and (k − 1)th order continuous piecewise polyno-

mials for the pressure, for some integer k > 1. Since Taylor-Hood elements with joint boundaries
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Figure 5.1a: Linear Mini-element (P1 − P1/bubble).
The element uses 4 nodes for the velocity unknowns
(x), including the bubble function in the barycentre,
and 3 nodes for the pressure nodes (O).

Figure 5.1b: Bilinear Mini-element (Q1−Q1/bubble).
The element uses 5 nodes for the velocity unknowns
(x), including the bubble function in the barycentre,
and 4 nodes for the pressure nodes (O).

use the same approximations for the velocity and the pressure, both the velocity and the pressure are

continuous in Ω. In this thesis, only Taylor-Hood elements with k = 2 are considered.

V. Girault and P. A. Raviart [14], Ch. II, have shown that Taylor-Hood elements are stable for

uniform Stokes flow problems. In addition, F. Brezzi and R. S. Falk [6] prove stability of higher-

order Taylor-Hood elements, also for uniform Stokes flow problems. In Chapter 7, some results for

Taylor-Hood elements for a test model for the simulation of a pressing time step are given.

Figure 5.2a shows a triangular Taylor-Hood element with quadratic velocity and linear pressure

(P2 − P1) and Figure 5.2b shows a quadrilateral Taylor-Hood element with biquadratic velocity and

bilinear pressure (Q2 − Q1). Let h denote the maximum of the edge lengths of the Taylor-Hood

element. Then the accuracy of the velocity approximations is O(h3) and the accuracy of the pressure

approximations is O(h2) [9], Ch. 7. C. Cuvelier et al [9] show how the basis functions for Taylor-Hood

elements can be constructed.

5.5.3 Elements for the Integrated Method

Basically, in Sepran three classes of elements can be used for the integrated method, namely Mini-

elements, Taylor-Hood elements and so-called Crouzeix-Raviart elements. The first two element types

are fairly suitable for the integrated method, especially Mini-elements, because of their stabilisation

property (see section 5.6). The third element type is often used in penalty function methods and

methods of divergence-free basis functions.
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Figure 5.2a: Quadratic velocity - linear pressure
Taylor-Hood element (P2 − P1). The element uses 6
nodes for the velocity unknowns (x) and 3 nodes for
the pressure nodes (O).

Figure 5.2b: Biquadratic velocity - bilinear pressure
Taylor-Hood element (Q2 − Q1). The element uses 9
nodes for the velocity unknowns (x) and 4 nodes for
the pressure nodes (O).

Crouzeix-Raviart elements use boundary nodes for the velocity unknowns and interior nodes for

the pressure unknowns. As a result, the pressure approximation is discontinuous in Ω. Sometimes,

additional joint interior nodes for both velocity and pressure unknowns are used.

For an evaluation of Crouzeix-Raviart elements for the integrated method, it is convenient to

compare them with Taylor-Hood elements with basis functions of the same degrees. For integrated

methods, Taylor-Hood elements are slightly computationally cheaper than Crouziex-Raviart elements,

since the amount of unknowns is somewhat smaller. Furthermore, Crouziex-Raviart elements are often

not accurate enough for axi-symmetric problems. An advantage of Crouziex-Raviart elements is that

the continuity equation is satisfied at element level, whereas Taylor-Hood elements are only mass-

conservative on the entire domain Ω. However, it is not clear whether the accuracy of the solution is

influenced by this property. Overall, Taylor-Hood elements are preferred to Crouziex-Raviart elements

in this thesis, the latter elements not being used [9], Ch. 7.
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5.6 Stabilised Stokes Flow Problems for Triangular Mini-Elements

In TNO Glass Group’s pressing model, the bubble functions in the triangular Mini-elements are elim-

inated at element level by means of so-called static condensation. In static condensation methods,

interior and boundary degrees of freedom are distinguished, i.e. degrees of freedom corresponding

to interior and boundary nodes of the elements, respectively. For the restriction of system (5.2.16) to

element level, this gives

K (bb)
e K

(ib)
e

K
(bi)
e K

(ii)
e


 α̂˜

(b)
e

α̂˜(i)
e

 =
 f e

0

 , (5.6.1)

where the superscripts (b) and (i) refer to boundary unknowns and interior unknowns, respectively.

Here,

∑
e

f e = 0, (5.6.2)

so that global system (5.2.16) holds. Elimination of the interior unknowns yields

K̃eα̂˜(b)
e = f e, (5.6.3)

where

K̃e = K
(bb)
e −K

(bi)
e

(
K

(ii)
e

)−1
K

(ib)
e . (5.6.4)

In this section, it is shown that static condensation at element level for Mini-elements is the same

as stabilising the Stokes flow equations for Courant elements. This has already been verified by R.

Pierre [23] and J. E. Maitre and E. Wabo [18] for static condensation applied to the global system

of Stokes flow equations. Although in theory the principle is the same for both global and element-

wise static condensation methods, experimental results in Sepran show that the solver performance

is slightly better if static condensation at element level is applied (see Chapter 7). Here, it should be

mentioned that it is not clear whether Sepran applies static condensation on the global system in case

no static condensation at element level is applied. Main sources for this section are [23] and [18].

The internal nodes of the Mini-elements, corresponding to the bubble functions, are eliminated

by means of (5.6.3)-(5.6.4). For simplicity, consider a linear Mini-element e. Let {ϕ1, ϕ2, ϕ3} be

the set of basis functions corresponding to the boundary nodes and let |e| denote the measure of e.

First, distinguish solution vectors α̂˜(b)
e , comprising the 9 boundary unknowns, and α̂˜(i)

e , comprising
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the 2 interior velocity unknowns. The coefficient matrices corresponding to the boundary and interior

unknowns are

K
(bb)
e =

K
(bb)
e,11 K

(bb)
e,12

K
(bb)
e,21 0

 , (5.6.5)

K
(ib)
e =

(
K

(ib)
e,11 K

(ib)
e,12

)
, (5.6.6)

K
(bi)
e =

K
(bi)
e,11

K
(bi)
e,21

 , (5.6.7)

K
(ii)
e =

(
K

(ii)
e,11

)
. (5.6.8)

Here, K (bb)
e is the coefficient matrices for the corresponding linear Courant element. The second and

third coefficient matrices are each others transposes, K (ib)
e =

(
K

(bi)
e

)T
. Substitution of (5.6.5)-(5.6.8)

into (5.6.4) gives

K̃e =


K

(bb)
e,11 −K

(bi)
e,11

(
K

(ii)
e,11

)−1
K

(ib)
e,11 K

(bb)
e,12 −K

(bi)
e,11

(
K

(ii)
e,11

)−1
K

(ib)
e,12

K
(bb)
e,21 −K

(bi)
e,21

(
K

(ii)
e,11

)−1
K

(ib)
e,11 −K

(bi)
e,21

(
K

(ii)
e,11

)−1
K

(ib)
e,12

 . (5.6.9)

The matrices in (5.6.9) can be evaluated as follows. For the matrixK (bi)
e,11, it holds that

K
(bi)
e,11 = µ

∫
e

 (∇ϕ)T
∇be 0

0
(
∇ϕ

)T
∇be

 dΩ

= µ

∇ϕ 0
0 ∇ϕ

T ∫
∂e

be ·n 0
0 be ·n

 dΓ

= 0. (5.6.10)

Hence, only the matrices corresponding to the boundary nodes and the right-bottom matrix in (5.6.9)

remain:

K̃e =

K (bb)
e,11 K

(bb)
e,12

K
(bb)
e,21 K̃e,22

 , (5.6.11)

where

K̃e,22 = −K
(bi)
e,21

(
K

(ii)
e,11

)−1
K

(ib)
e,12. (5.6.12)
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MatrixK (ii)
e,11 is a 2 × 2 diagonal matrix,

K
(ii)
e,11 = µ

∫
e
∇be ·∇bedΩ I 2 = µ ‖∇be‖L2(e)I 2 (5.6.13)

So, the right-bottom matrix K̃e,22 can be written as

K̃e,22 = −
(
µ ‖∇be‖L2(e)

)−1
∫

e
ϕ
(
∇be

)T dΩ
∫

e

(
∇be

)
ϕT dΩ

=
(
µ ‖∇be‖L2(e)

)−1
∫

e

(
∇ϕ

)T bedΩ
∫

e
be∇ϕdΩ

= κe

∫
e

(
∇ϕ

)T (
∇ϕ

)
bedΩ (5.6.14)

where in the second equation Gauss’ gradient theorem is applied, and κe > 0 is a constant proportional

to |e|, given by

κe =

∫
e bedΩ

µ ‖∇be‖L2(e)
. (5.6.15)

Finally, the global system of stabilised Stokes flow equations for triangular Mini-elements is

K̃α̂˜(b) = 0, (5.6.16)

where

K̃ =

 K̃11 K̃12

K̃21 K̃22

 , (5.6.17)

Here, the matrices K̃11, K̃12 and K̃21 correspond to the boundary nodes of the Mini-elements and

hence they equal the matrices K11, K12 and K21 for the corresponding Courant elements. Further-

more, the right-bottom matrix K̃22 is the assembly of the contributions of all elements:

K̃22 =
∑

e

κePe,22
( ∫

e

(
∇ϕ

)T (
∇ϕ

)
bedΩ

)
P

T
e,22, (5.6.18)

where Pe,22 is a N × 3 projection matrix that maps the entries of the 3 × 3 matrix K̃e,22 onto the

entries of the N × N matrix K̃22. So, system (5.6.16) corresponds to a stabilised variational Stokes

flow problem for linear Courant elements: find (u, p) ∈ U × Q, such that for all (v, p) ∈ V × Q, a(v,u) + b(v, p) = 0,

b(u, q) + c(p, q) = 0.
(5.6.19)

where c : Q × Q 7→ R is a bilinear form, given by

c(p, q) =
∑

e

κe

∫
e

(
∇q·∇p

)
bedΩ. (5.6.20)

J. E. Maitre and E. Wabo [18] prove that such a stabilised Stokes flow problem satisfies the inf-sup

condition.
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5.7 Construction of a Mesh in TNO Glass Group’s Axi-Symmetrical
Pressing Model

TNO Glass Group’s axi-symmetrical pressing model1 uses a mesh consisting of triangular Mini-

elements. This mesh is constructed for the final plunger position. Figure 5.3a- 5.3d show pictures

of the deformation of a coarse mesh in the pressing model from t = 0 s to t = 1.5 s. The pressing

time corresponding to the figures is exactly t = 1.5 s, so the mesh in Figure 5.3d is the one provided

as input for the pressing model. After the mesh for the lowest plunger position is constructed, it is

stretched in vertical direction by raising the plunger to its initial position. In each subsequent time

step, a new finite element mesh is generated that fits the new plunger position. Each mesh consists of

the same numbers of elements along each dimension of the domain. So, the mesh is compressed by

the plunger, just as the flow domain, until the mesh for the final plunger position is again obtained.

A disadvantage of this method is that the discrete Stokes flow problem can become ill-conditioned as

the triangles are flattened or stretched. This matter is discussed in Chapter 7.

1That is, TNO Glass Group’s pressing model in which the option ”axi-symmetric” is switched on (see section 3.5)
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Figure 5.3a: Coarse mesh in TNO Glass Group’s
axi-symmetrical pressing model at t = 0 s.

Figure 5.3b: Coarse mesh in TNO Glass Group’s
axi-symmetrical pressing model at t = 0.5 s.

Figure 5.3c: Coarse mesh in TNO Glass Group’s
axi-symmetrical pressing model at t = 1.0 s.

Figure 5.3d: Coarse mesh in TNO Glass Group’s
axi-symmetrical pressing model at t = 1.5 s.
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5.8 Conclusions of Finite Element Analysis

In conclusion, the discretisation methods for Stokes flow problems in TNO Glass Group’s Axi-

Symmetrical Pressing Model are stable and produce well-defined systems of equations. From this

point of view, no disproportionate problems should be expected for stable linear solvers, such as direct

methods. On the other hand, less robust linear solvers, such as most iterative solvers, may terminate

as the discrete Stokes flow problem becomes larger. So, although the choice of the discretisation

methods in this chapter is validated, a robust solution method for the resulting system of equations

is absolutely essential. Chapter 6 deals with preconditioners and iterative solvers for discrete Stokes

flow problems.
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Chapter 6

Linear Solvers and Preconditioners

The solver problem discussed in section 1.3 reveals the importance of a robust linear solver for Stokes

flow problems. B. Fischer [12] states that it is precisely the class of Stokes flow problems which

motivated the search for stable and efficient solvers for symmetric, indefinite systems. This chapter

discusses which linear solvers and preconditioners are particularly suitable for Stokes flow problems

and analyses their performance. Here, solvers and preconditioners that are available in TNO Glass

Group’s pressing model are highlighted. Section 6.1 gives a general analysis of the performance of

linear solvers for FEMS. Here the performance of iterative solvers is emphasised, but also other linear

solvers for Stokes flow problems are briefly discussed. Section 6.2 deals with ILU preconditioning,

which is applied in TNO Glass Group’s pressing model. In this section, also methods for reordering

the unknowns and additional fill-in for ILU are discussed. Finally, section 6.3 suggest some other

preconditioning techniques for Stokes flow problems.

6.1 Analysis of the Linear Solver Performance for Linear Systems Aris-
ing from Finite Element Methods

In section 3.5, some iterative solvers for non-symmetric matrices are mentioned. Among these, GM-

RES [28] and BiCGstab [37] belong to the most popular ones. For non-symmetric matrices, BiCGstab

generally provides much better results than other conjugate gradient-like methods, such as CGS and

BiCG [37]. Furthermore, in many tests the performance of BiCGstab or GMRES is much better than

for most minimisation methods, such as QMR [28]. In Chapter 7, the performance of GMRES for

TNO Glass Group’s pressing model is briefly discussed. In addition, U. M. Yang [39] also suggests

the CG method on normal equations, but since the condition number of the matrix for the discrete

Stokes flow problem is considerably large, this is not an obvious choice. In this thesis, the majority of

the tests have been carried out by means of a BiCGstab solver.
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After observing the solver problem in section 1.3, the questions may arise how many iterations

and which increase in iterations for mesh refinement is reasonable. In fact, for many iterative solvers,

upper bounds for the numbers of iterations are known. For example, for CG it can be proven that

[35, 2]

N < O
( √

κ(K) log
(1
ε

))
. (6.1.1)

Different orders of magnitudes of the required number of iterations for different iterative solvers are

given in Table 6.1, which is presented in [19], Ch. 26.9. From Table 6.1, it can be seen that an upper

bound as in (6.1.1) also holds for other conjugate gradient-like solvers, such as BiCGstab, and for

many minimisation methods, such as GMRES. In addition, O. Axelson and V. A. Barker [2] state that

for Galerkin FEMs,

K ∼ O(h−2), (6.1.2)

where h is the largest edge length in the finite element mesh. Since the condition number in TNO

Glass Group’s pressing model is observed to be substantial (O(1022) for coarse meshes), the number

of BiCGstab iterations can reasonably become huge. So, upper bound (6.1.1) would simply mean

that the condition number should be reduced in order to guarantee convergence within an acceptable

number of iterations. However, in Chapter 7 it is shown that divergence also occurs for condition

numbers of the order of magnitude O(104). Here, divergence means that the residual grows out of

bounds, so that the iterative process is terminated. Apparently, some other aspects are playing a role,

so that the upper bound is not properly satisfied for the non-symmetric iterative solvers that were

tested (e.g. GMRES and BiCGstab), even though their performance is good in general.

Table 6.1: Iterative methods with corresponding conditions for the coefficient matrix and required number of
iterations.

Type Methods Conditions # iterations
static Jacobi, SSOR, ... non-trivial O

(
κ(K)

)
minimisation GMRES, QMR, ... symmetric part positive definite

√
O
(
κ(K)

)
conjugate gradient-like BiCGstab, CGS, BiCG, ... non-trivial/none

√
O
(
κ(K)

)
optimal Multigrid, ... major non-trivial 1

A type of optimal methods for which there is a growing interest, particularly for application to

Stokes flow problems, is the class of so-called multigrid methods. Kan Et Al [15] state that multigrid

methods have become one of the most successful iterative techniques over the past 30 years. Multigrid

methods accelerate the solver process by interpolation of information on the solution from a coarse

mesh onto a fine mesh. In comparison with other methods, multigrid methods depend much less on
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the structure of the equations and the BCs. Moreover, the number of computations increases linearly

with the number of unknowns, although C. C. Douglas [10] states that this may be different for rather

complicated problems. According to C. C. Douglas [10], multigrid methods are difficult to apply

to nontrivial problems, although it is usually worth the effort. Furthermore, implementing multigrid

methods on unstructured meshes leads to some serious data-structure issues. A multigrid method

can as well be used as a preconditioner for BiCGstab; typically one multi-grid cycle is used as a

preconditioner for a conjugate gradient-like solver. Unfortunately, they are not (yet) supported in

Sepran [10, 1, 15].

6.2 Incomplete LU Factorisation Preconditioners

The efficiency and robustness of iterative solvers can be improved by using preconditioning. In gen-

eral, the reliability of iterative solvers highly depends on the quality of the preconditioner used. Since

all iterative solvers applied reveal lack of robustness for the Stokes flow problem in TNO Glass

Group’s pressing model, the choice of a suitable preconditioner may be crucial in order to improve the

iterative solver performance. In this section, the preconditioner currently used in TNO Glass Group’s

pressing model is analysed. Section 6.3 discusses some preconditioners that are particularly suitable

for Stokes flow problems.

In TNO Glass Group’s pressing model, incomplete LU factorisation (ILU) preconditioning is

used. The ILU preconditioner is known to perform quite well for a wide range of practical applica-

tion. An advantage of the ILU preconditioner is that it is rather easy and inexpensive to compute.

Disadvantages are that ILU preconditioning often leads to a crude approximation, so that many itera-

tions are required for convergence, and that the convergence rate is quite sensitive with respect to the

ordering of the unknowns. In section 7.2, results for the ILU preconditioner are compared with results

for some other preconditioners in Sepran [28, 22].

Incomplete LU factorisation computes a sparse lower triangular matrix L and a sparse upper

triangular matrix U, such that certain entries are zero in the residual matrix, given by

R = LU −K . (6.2.1)

The factorisation is the result of the application of Gaussian elimination to a certain pattern P in the

coefficient matrix K that contains the sparsity pattern. ILU can be proven to be feasible if K is

an M-matrix [28]. However, even if the coefficient matrix is symmetric positive definite, the ILU

preconditioner is not positive definite, so that efficient algorithms such as MINRES and SYMMLQ

[12] cannot be applied [26].
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6.2.1 Ordering Methods

Since the ILU preconditioner uses Gaussian elimination, additional care should be taken of zero en-

tries on the diagonal. Zero diagonal entries occur in the discrete Stokes flow problem with the inte-

grated solution method. Because in Sepran no pivoting is applied, it is necessary to reorder the un-

knowns in order to prevent the presence of zero diagonal entries in the Gaussian elimination process.

Prevention of zero diagonal entries in the Gaussian elimination process is not the only reason for

the application of ordering methods. M. Benzi et al [4] state that if either ‖R‖F or ‖R
(
LU

)−1
‖F is

large, where ‖ · ‖F is the Frobenius norm, the preconditioned iterative solver may fail to converge.

One way to overcome this phenomenon is to allow more fill-in (non-zero entries) by the Gaussian

elimination process. This is discussed in section 6.2.2. On the other hand, it might be sufficient to

reorder the unknowns, before applying ILU. M. Benzi et al [4] state that although the original purpose

of ordering methods was improvement of direct solvers, they can also have a favourable effect on the

performance of preconditioned iterative solvers applied to nonsymmetric linear systems [4].

In general, methods for reordering unknowns attempt to reduce the number of zero entries in

the coefficient matrix that are adjusted by the Gaussian elimination process. Y. Saad [28] gives the

following simple example.

Example 6.2.1. Consider the linear system
a11 0 a13 0

0 a22 a23 a24

a31 a32 a33 0

0 a42 0 a44




x1

x2

x3

x4

 =


b1

b2

b3

b4

 . (6.2.2)

Here, the sparsity pattern is contained in the main diagonal and four sub-diagonals. So for ILU, it is

natural to choose the pattern

P =
{
ai j

∣∣∣ |i − j| ≤ 2
}
.

Alternatively, reorder the unknowns by interchanging x2 and x3. The resulting system is
a11 a13 0 0

a31 a3 a32 0

0 a23 a22 a24

0 0 a42 a44




x1

x3

x2

x4

 =


b1

b3

b2

b4

 . (6.2.3)

Obviously, the new sparsity pattern consists of the main diagonal and only two sub-diagonals, which

form a smaller pattern P′ for the Gaussian elimination process. Note that pattern P has 4 more zero

entries than pattern P′. These zero entries are adjusted by the Gaussian elimination process. As a

result, the ILU of (6.2.2) will contain more fill-in, i.e. non-zero entries, than the ILU of (6.2.3).
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A class of ordering methods that is particularly useful for iterative solvers is the class of so-called

level-set ordering methods. A level set is defined recursively as the set of all unmarked neighbours

of all nodes of a previous level set. Available level-set ordering methods in Sepran are the Sloan

algorithm and the Cuthill Mc Kee algorithm [26]. In TNO Glass Group’s pressing model, the Sloan

algorithm is applied. Both methods attempt to reduce the profile of the matrix. In literature also

the reverse Cuthill Mc Kee algorithm is suggested, in which the Cuthill Mc Kee ordering of the

unknowns is reordered backward. M. Benzi Et Al [4] conclude from a wide range of applications

that reverse Cuthill Mc Kee appears to be superior to the regular Cuthill Mc Kee orderings in the

context of incomplete factorisation preconditioning. Y. Saad [28] gives the following explanation for

this. In the case of regular Cuthill Mc Kee ordering, small arrows on the diagonal pointing upward

can be observed in the matrix sparsity pattern (see Figure 6.1). For such patterns, Gaussian will lead

to relatively much fill-in. On the other hand, if the arrows point downward, as for reverse Cuthill

Mc Kee ordering, considerably less fill-in is obtained. Unfortunately, the reverse Cuthill Mc Kee

is not a built-in method in Sepran. An option would be to first apply the built-in Cuthill Mc Kee

algorithm and subsequently order the unknowns backward by means of a simple Fortran subroutine.

However, although the unknowns in the Sepran meshoutputfile seem properly ordered, the plotted

sparsity pattern is rather chaotic and does not match with the expected pattern. Results for the Sloan

and Cuthill Mc Kee ordering algorithms are given in Chapter 7.
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Figure 6.1: Sparsity patterns with arrows on the diagonal Left: Arrows pointing upward Right: Arrows
pointing downward.

After the application of a level-set reordering method, pressure and velocity unknowns are often

reordered so that the corresponding entries are separated from each other. In this case, the pressure

unknowns are usually ordered last, since it is more efficient to calculate them from the knowledge

of the velocity unknowns than the other way around. In a p-last ordering, all pressure unknowns

appear after all velocity unknowns in the coefficient matrix. In this way, block diagonals comprising
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either pressure or velocity unknowns arise. In order to hold the non-zero entries in the coefficient

matrix close to each other, often a p-last per level ordering is applied. This means that the pressure

unknowns are ordered such that they appear per level after the velocity unknowns. Both methods have

been tested and compared by M. Rehman et al [26] and G. Segal and K. Vuik [32] for the integrated

method. From these tests, it can be concluded that results for p-last per level are superior to those for

p-last. Results for p-last per level orderings are given in Chapter 7.

6.2.2 Level of Fill

In view of the solver problem, it may be the case that ILU preconditioning is insufficient to ensure con-

vergence of iterative solvers. On the other hand, by allowing some additional fill-in by the Gaussian

elimination process, the ILU becomes more accurate, which leads to a more efficient preconditioner.

In other words, the solver performance may improve by applying Gaussian elimination to a larger

pattern than the one in the original ILU [28].

The additional amount of fill-in can be regulated by introducing a so-called level of fill [28]. For

each entry in the coefficient matrix, a level of fill is defined, which is updated during the Gaussian

elimination process. The level of fill determines if an entry is adjusted by Gaussian elimination [28].

Rehman et al [26] state that in Sepran additional fill-in is allowed by applying ILU also to all

unknowns in the neighbours of the unknowns in the original pattern. They show test results for

a Stokes flow problem in a stretched backward facing step with BiCGstab, from which it can be

concluded that additional fill-in for ILU preconditioning in most cases leads to an improved solver

performance. Unfortunately, no literature is available in which the exact algorithm in Sepran is further

specified or a motivation for the method used is given. Results for ILU preconditioning with additional

fill-in are given in Chapter 7.
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6.3 Preconditioners for Stokes Flow Problems

Although ILU is known as a suitable preconditioner for many applications in physics, it may not be

sufficient for Stokes flow problems. Apart from some test results, such as for Sepran in [26] and [32],

which are often performed on relatively coarse meshes, the literature consulted does not provide much

support for ILU preconditioners for Stokes flow problems. In the literature, a wide range of different

preconditioners for Stokes flow problems are suggested. One of the preconditioners for Stokes flow

problems that is highly recommended in literature is the multigrid method, which is mentioned in

section 6.1 [2, 10, 22, 1, 15, 21].

D. Silvester and A. Wathen [36] explain under which conditions general block preconditioners are

successful for Stokes flow problems. These include modified incomplete factorisation, hierarchical

basis, multigrid and domain decomposition methods. They show that if the preconditioner for the

Laplacian terms is spectrally equivalent, the convergence rate of iterative solvers is independent of the

mesh size. Also experimental results are plausible [36, 12]. However, they assume that the coefficient

matrix is symmetric, which is not generally the case in the pressing model.
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Chapter 7

Numerical Results

In Chapter 5 different stable elements for the integrated method can be found. In Chapter 6 different

preconditioners and iterative solvers for discrete Stokes flow problems are presented. This chapter

discusses experimental results for both TNO Glass Group’s axi-symmetrical pressing1 model and a

simplified test model, for the relevant methods discussed in the previous chapters. Beforehand, it is

worth studying some useful definitions:

• rk = Kα̂˜k − q is the residual for the discrete Stokes flow problem in the kth iteration, with

α̂˜0 = 0,

• Nk is the accumulative number of iterations up to the kth time step, summed over all problems

and all time steps.

• κ(K) is the spectral condition number of the coefficient matrixK at t = 0,

• q is the approximate mesh refinement factor with respect to a so-called standard mesh in TNO

Glass Group’s pressing model, i.e. the standard mesh refined by a factor q by q.

This chapter is structured as follows. Section 7.1 numerical results of some test cases for TNO

Glass Group’s axi-symmetrical pressing model are examined and numerical solutions are visualised

and analysed. Section 7.2 introduces a simple test model for the simulation of a pressing process time

step. Then, results for some test cases for this test model are examined. The test cases are based

on the theory in the previous chapters. Section 7.3 applies settings that lead to positive results for

the test model to the axi-symmetrical pressing model. The result is an improved axi-symmetrical

pressing model with respect to the solver performance. This chapter is concluded by examining some

numerical solutions for the improved axi-symmetric pressing model and comparing them to results in

section 7.1.
1That is, TNO Glass Group’s pressing model in which the option ”axi-symmetric” is switched on (see section 3.5)
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7.1 Results for TNO Glass Group’s Axi-Symmetrical Pressing Model

7.1.1 Solver Performance for the Stokes Flow Problem

In section 1.3 an example of the solver performance for BiCGstab with ILU preconditioning is given.

From this example it can be clearly seen that application of mesh refinement for the discrete Stokes

flow problems produces an excessive increase in the number of iterations. Chapter 5 analyses the

discretisation methods applied in TNO Glass Group’s pressing model, which leads to the conclusion

that they are stable and suitable for their stated purpose. The objective of this section is to analyse the

sensitivity of the solver performance in TNO Glass Group’s pressing model to changes in numerical

or modelling settings.

For the representation of the results, the number of iterations for the initial Stokes flow problem,

N1, and the accumulative number of iterations up to the 90th time step, N90, are considered. Since

no time derivatives occur in the Stokes flow problems, a fixed time step ∆t = 1
900 is chosen. Further

on in this section, the Stokes flow problems are decoupled from the energy exchange problem and

glass-air interface problem, so that neither the material parameters in the Stokes flow equations are

time dependent. In this case, the size of the time step will not influence the solver performance, which

only slightly changes in time, as in each time step a different flow domain and mesh are considered.

Furthermore, it should be mentioned that the 90th time step corresponds to a point in time (t = 0.1) at

which the glass melt has not reached the bend in the mould-plunger construction yet.

Condition Number

In section 1.3 it is mentioned that the condition number of the coefficient matrix in initial discrete

Stokes flow problems in TNO Glass Group’s pressing model is substantial. This condition number is

determined from the diagonal of the LU factorisation (min/max). In section 3.5 it is explained that

the condition number significantly increases because of a large numerical value of the wall friction

coefficient. Experiments confirm that the condition number is also sensitive to the numerical value of

the viscosity. A larger condition number means that the coefficient matrix is closer to singular, hence

larger numerical errors will occur and iterative solvers that are not robust enough will fail to converge.

Table 7.1 sets out the condition numbers of the coefficient matrices in initial discrete Stokes flow

problems for BiCGstab with ILU preconditioning and different mesh densities. As verified in sec-

tion 6.1, the condition number is proportional to O(h−2), and hence to O(q2). Although the increase in

the condition number is always quadratic, the increase in the number of iterations is linear for coarse

meshes, but much larger for fine meshes. Moreover, the number of iterations for q = 1
2 is rather

small, whereas the condition number for this mesh density is already considerable. Further on it can

be observed that the solver problem may as well occur to the same extent for much smaller condi-

tion numbers, from which it may be concluded that the solver behaviour is not directly related to the

condition number.
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Table 7.1: Numerical data for BiCGstab with ILU preconditioning applied to the discrete Stokes flow problem
in TNO Glass Group’s axi-symmetrical pressing model.

q ‖r0‖2 N1 N90 κt=0
1
2 2.73E-1 12 1362 3.70E22
1 3.83E-1 27 2760 1.55E23
2 5.39E-1 164 13647 6.37E23
3 6.59E-1 1752 109930 1.45E24

Iterative Solvers

The solver problem also occurs for different iterative solvers from BiCGstab. For example for GMRES

with ILU preconditioning on the standard mesh, 74 iterations until convergence are observed for the

initial Stokes flow problem and 6411 accumulated iterations at the 90th time step. If the standard

mesh is one time two by two refined (q = 2), even 3618 iterations until convergence are observed for

the initial Stokes flow problem and after a few time steps, GMRES reaches the maximum number of

iterations allowed. The modelling settings are the same as for BiCGstab in section 1.3. In conclusion,

the solver problem is even worse for GMRES than for BiCGstab.

Stop Criterium

From Table 7.1, it can be concluded that the normalised initial residual ‖r0‖ increases with the mesh

density. Apparently, the residual depends on the mesh size. Since on the other hand the tolerance

remains independent of the mesh size, an absolute stop criterium may be too strict for fine meshes.

If the solver cannot reduce the residual anymore on fine meshes to below a small fixed tolerance,

it will finally terminate, whereas the smallest residual obtained may be quite reasonable in view of

the small mesh size. This is an inducement to employ a relative stop criterium with respect to the

initial residual. However, from Table 7.1 it can be seen that the stop criterium hardly makes any

difference in the relative increase in Nk. Note that the relative stop criterium is slightly stricter, as the

initial residuals are smaller than one. Thus, the stop criterium used does not contribute to the solver

problem.

Simplification of Stokes Flow Problems

Discrete Stokes flow problems in themselves for the discretisation methods concerned are not expected

to give rise to problems of such nature as encountered in the previous sections. However, the flow

of glass in a pressing process is essentially influenced by three characteristic physical phenomena

involved.
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Figure 7.1: Accumulative number of iterations for the BiCGstab solver with ILU preconditioning in the pressing
model. The blue bars represent the results for an absolute stop criterium and the red bars represent the results
for a relative stop criterium with respect to the initial residual. The tolerance is ε = 1E-3.

1. The flow problem is temperature dependent, so that it is influenced by the energy exchange

during the pressing process.

2. Glass and air are separated by a sharp interface.

3. The flow domain is changing as a result of the plunger movement.

Phenomenon 1 is not expected to give any problems, since at each time step a temperature distribution

is calculated and the corresponding numerical values are substituted into the discrete Stokes flow

problem. In this way, each time step a Stokes flow problem with a slightly different viscosity is

solved. However, although after substitution the temperature will not explicitly appear in the flow

problem anymore, the viscosity will still be dependent on the position. The modelling of phenomenon

2 involves discontinuities in material properties and BCs. This may lead to extreme gradients or

singular behaviour in the numerical model, which can affect the condition of the discrete Stokes flow

problem considerably. Such behaviour can particularly be expected at the glass-air interface near the

equipment boundary. This possibility is further analysed in Appendix B. Finally, from the previous

results it can be concluded that phenomenon 3 does not influence the solver problem, since the number

of iterations in the first time step, N1, is almost the same as the average number of iterations up to the

90th time step, N90
90 .

The influence of phenomena 1 and 2 can be verified by excluding the phenomena in the pressing

model. Phenomenon 1 can easily be omitted by taking a constant viscosity. If also the BCs are the

same on each side of the glass-air interface, the flow transition will be smooth at the interface. For

example, let the viscosity of the glass melt be equal to the viscosity of the fictive fluid and assume free

slip conditions for both glass and fictive fluid. A test case for this example with BiCGstab and ILU

preconditioning on the standard mesh (q = 1) leads to 32 iterations until convergence for the initial
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Stokes flow problem and 3195 accumulated iterations at the 90th time step. For q = 2, N1 = 141 and

N90 = 13491, respectively. So, in comparison to the original problem (see for example Table 7.1),

hardly any improvement in the solver performance is observed. A full simplification of a Stokes flow

problem in a pressing process time step is considered in section 7.2.

Implementation of Boundary Conditions

In section 3.5 it is mentioned that mixed BCs are applied on all boundaries in TNO’s pressing model.

This leads to the choice of a large numerical value for the friction coefficient in equation (3.5.1), and

hence to a significant increase in the condition number.

Two obvious possibilities are available to test the influence of the large friction coefficient on the

solver performance. Firstly, the solver performance can be tested for a different pressing problem, for

which mixed BCs are imposed instead of Dirichlet BCs. This can easily be done by decreasing the

friction coefficient in the original problem. Secondly, Dirichlet BCs can explicitly be prescribed after

each time step instead of an approximation by means of an extremely large friction coefficient. This

can be achieved by means of the procedure explained in section 4.10. In this way, the same problems

are solved, but the method is computationally relatively inefficient, since after each time step a new

projection matrix has to be constructed.

Results for the second method are shown in Table 7.2 and Figure 7.2. The solver problem for

Dirichlet BCs seems to be even worse than for mixed BCs with a large friction coefficient, as for

Dirichlet BCs the increase in iterations from q = 2 to q = 3 is approximately two times as large as for

mixed BCs. From the data for Dirichlet BCs in Table 7.2, it can be seen that for q = 3 almost 20 times

more iterations are required than for q = 2. Table 7.2 also reveals that the solver performance not

necessarily improves if the condition number is reduced; in contrast to the still perceptible, excessive

increase in the number of iterations, the condition number is shrunk by a factor 106.

Table 7.2: Numerical data for BiCGstab with ILU preconditioning applied to the discrete Stokes flow problem
in TNO Glass Group’s axi-symmetrical pressing model for an implementation of Dirichlet BCs instead of mixed
BCs

q ‖r0‖2 Nt=0 Nt=0.1 κt=0
1
2 4.24E-1 10 1150 1.513E16
1 4.24E-1 18 2000 1.321E17
2 5.97E-1 131 10901 8.547E17
3 7.30E-1 3760 191177 3.984E18
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Figure 7.2: Accumulative number of iterations for the BiCGstab solver with ILU preconditioning in the pressing
model. The blue bars represent the results for Mixed BCs with β = 1010 and the red bars represent the results
for Dirichlet BCs. An absolute stop criterium with tolerance ε = 1E-3 is used.

Mesh Distribution

From Figure 5.3a- 5.3d in section 5.7 it can be seen that the elements are not uniformly distributed

over the width of the flow domain. In order to calculate high gradients at the equipment walls, a

noticeable increased mesh density prevails at these locations. This may lead to unexpected numerical

results and in the worst case to the violation of inf-sup condition (5.3.5). The influence of this mesh

distribution on the solver performance can easily be observed by solving the pressing model for a

uniform mesh distribution over the width of the flow domain. The results are given in Figure 7.3.

Obviously, the solver performance depends on the mesh distribution, but the increase in iterations for

mesh refinement is much more severe for the uniform mesh distribution than for the original mesh

distribution.

Naturally, this observation raises the question, for which mesh distribution the number of iterations

will be minimal. To this purpose, introduce a so-called mesh distribution factor σ for the pressing

model, which represents the ratio of the number of elements at the middle of the mould plunger

construction to the number of elements at the equipment wall, measured over the width of the flow

domain. For the original mesh σ = 0.2. In Figure 7.4 the number of iterations for the BiCGstab solver

with ILU preconditioning on the standard mesh is given for different mesh distributions. It appears

that on the original standard mesh the number of iterations is quite minimal. It also becomes clear

that N90 is roughly of the same order of magnitude for all mesh distributions. Therefore, it cannot be

expected that the solver problem can be significantly reduced by applying a different mesh density.

Remarkably, Nk also seems to be more stable in time for larger mesh distribution factors, since

N90 becomes closer to 90 times N1 as σ→ 1. This property can still be observed for σ = 0.2, but for

σ = 0.1, N90 is only approximately 10 times N1. This stability in time is an important property, since
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Figure 7.3: Accumulative number of iterations for the BiCGstab solver with ILU preconditioning in the pressing
model. The blue bars represent the results for the original mesh distribution and the red bars represent the results
for a uniform mesh distribution in normal direction. An absolute stop criterium with tolerance ε = 1E-3 is used.
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Figure 7.4: Accumulative number of iterations for the BiCGstab solver with ILU preconditioning in the pressing
model with q = 1 for different mesh distributions. An absolute stop criterium with tolerance ε = 1E-3 is used.

it means that the solver problem does not increase as the elements are flattened or stretched during

the mesh deformation. Although this property is still preserved for σ = 0.2 up to 90 time steps, clear

changes in the solver performance can become perceptible after for example 900 time steps. Yet these

changes are in most cases not alarming and the precise effect of mesh deformation on these results

is not clear, since also the problem itself is changing because of the decelerating plunger, moving

interface and increasing viscosity.

The influence of mesh stretching on the solver performance has been tested in Sepran by Rehman

et al [26]. They reveal that if the mesh is stretched too much, this could result in a enormous increase
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in iterations or even lead to termination of the solver.

The phenomenon of mesh stretching is also mentioned in section 3.5. Although it is not exactly

clear to which extent the solver performance is influenced by mesh deformation, it is certain that

mesh deformation is not the main cause of the solver problem. In fact, it is not expected that element

deformation during the pressing process has an abominable effect on the solver performance. More-

over, existing mesh adaption algorithms that avoid mesh deformation due to a changing domain are

known for their relative inefficiency (see for example the Sepran user manual [31]). Therefore, the

mesh adaption algorithm in TNO Glass Group’s pressing model is not considered for improvement.

In section 7.2 the solver performance is tested on a fixed mesh that partitions the flow domain into

square cells, so that mesh deformation does not play any role.
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7.1.2 Numerical Solutions

In this section numerical solutions of the pressing model are plotted to observe how they behave, in

particular in view of mesh refinement. All problems are solved by the BiCGstab solver with ILU

preconditioning. An absolute stop criterium with ε = 1E-3 is used.

In Figure 7.5a-7.5d, Figure 7.6a-7.6d and Figure 7.7a-7.7d, pictures of the flow of glass and air for

different mesh densities at different times are given. From these pictures, it appears that the glass-air

transition becomes thinner and smoother after mesh refinement. The location of the glass-air interface

at each time step only slightly changes if the mesh is refined from q = 1
2 to q = 1. Note that the

glass-air interface stretches out somewhat further near the mould than near the plunger. Since there is

no gravity, this is apparently the result of the plunger pressing the glass away. It can also be observed

that for q = 1 some air is left at t = 1.5, whereas for coarser meshes, all air in the flow domain has

disappeared by this time. In conclusion, numerical solutions improve perceptibly if mesh refinement

is applied, which confirms the necessity of improving the solver performance for fine meshes. The

figures do not indicate any suspicious behaviour in the flow profile after mesh refinement that could

reasonably lead to an excessive increase in the number of iterations.
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Figure 7.5a: Flow of glass and air in TNO Glass
Group’s axi-symmetrical pressing model for q =
1
2 at t = 0 s. Glass is orange and air is blue.

Figure 7.5b: Flow of glass and air in TNO Glass
Group’s axi-symmetrical pressing model for q =
1
2 at t = 0.5 s. Glass is orange and air is blue.

Figure 7.5c: Flow of glass and air in TNO Glass
Group’s axi-symmetrical pressing model for q =
1
2 at t = 1.0 s. Glass is orange and air is blue.

Figure 7.5d: Flow of glass and air in TNO Glass
Group’s axi-symmetrical pressing model for q =
1
2 at t = 1.5 s. Only glass is left.
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Figure 7.6a: Flow of glass and air in TNO Glass
Group’s axi-symmetrical pressing model for q = 1
at t = 0 s. Glass is orange and air is blue.

Figure 7.6b: Flow of glass and air in TNO Glass
Group’s axi-symmetrical pressing model for q = 1
at t = 0.5 s. Glass is orange and air is blue.

Figure 7.6c: Flow of glass and air in TNO Glass
Group’s axi-symmetrical pressing model for q = 1
at t = 1.0 s. Glass is orange and air is blue.

Figure 7.6d: Flow of glass and air in TNO Glass
Group’s axi-symmetrical pressing model for q = 1
at t = 1.5 s. Only glass is left.
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Figure 7.7a: Flow of glass and air in TNO Glass
Group’s axi-symmetrical pressing model for q = 2
at t = 0 s. Glass is orange and air is blue.

Figure 7.7b: Flow of glass and air in TNO Glass
Group’s axi-symmetrical pressing model for q = 2
at t = 0.5 s. Glass is orange and air is blue.

Figure 7.7c: Flow of glass and air in TNO Glass
Group’s axi-symmetrical pressing model for q = 2
at t = 1.0 s. Glass is orange and air is blue.

Figure 7.7d: Flow of glass and air in TNO Glass
Group’s axi-symmetrical pressing model for q = 2
at t = 1.5 s. Only glass is left.
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In Figure 7.8a-7.8d pictures of the temperature distribution in the glass pressing construction for

q = 1 at different times are given. The temperature ranges between 550 ◦C and 1000 ◦C. The glass

temperature slowly expands into the equipment domain, but only a thin boundary layer becomes hotter

than 550 ◦C within 1.5 s. On the other hand, the glass rapidly heats the air and by t = 1.0 s, the entire

cavity in the glass pressing construction takes the glass temperature.

Figure 7.8a: Temperature distribution in TNO
Glass Group’s axi-symmetrical pressing model for
q = 1 at t = 0 s. The temperature ranges from ca
550 ◦C (blue) to ca 950 ◦C (orange).

Figure 7.8b: Temperature distribution in TNO
Glass Group’s axi-symmetrical pressing model for
q = 1 at t = 0.5 s. The temperature ranges from
ca 550 ◦C (blue) to ca 950 ◦C (orange).

Figure 7.8c: Temperature distribution in TNO
Glass Group’s axi-symmetrical pressing model for
q = 1 at t = 1.0 s. The temperature ranges from
ca 550 ◦C (blue) to ca 950 ◦C (orange).

Figure 7.8d: Temperature distribution in TNO
Glass Group’s axi-symmetrical pressing model for
q = 1 at t = 1.5 s. The temperature ranges from
ca 550 ◦C (blue) to ca 950 ◦C (orange).
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In order to verify the accuracy of numerical solutions, mass conservation of glass is examined.

Since incompressibility is assumed, also the glass volume should be conserved. In Figure 7.9 the

glass volume is plotted as a function of time for different mesh densities. As expected, numerical

solutions are more accurate and correct themselves more quickly for finer meshes. For comparison:

for q = 1
2 the volume difference is more than 1 percent on average, whereas for q = 2 the volume

difference is ca 0.12 percent on average. Furthermore, for q = 1
2 the volume gain is even ca 3 percent

at t = 1. This expresses itself for instance in Figure 7.5c, where the glass flow front has travelled

further than the glass flow front in Figure 7.6c and Figure 7.7c.
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Figure 7.9: Glass volume (Vg [m3]) conservation

From the results in this section, it does not appear that any circumstances in the pressing model

arise that may lead to an extensive increase in iterations as the mesh is refined. The next step is to

test the solver performance for a most simplified pressing model. This model is again implemented in

Sepran, using a minimum amount of source code.
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7.2 Results for a Test Model for the Simulation of a Pressing Process
Time Step

In this section the solver performance is analysed for a simple pressing model (see Figure 7.10). In this

test model a pressing process time step for a rectangular domain is considered. The domain contains

only one flow medium. On top of the domain there is a constant inflow, which resembles a plunger

pressing the medium from above at a fixed time. The medium within the rectangle can only flow

out through the right side, where there is free flow. Furthermore, on top and on the bottom, no slip

conditions are prescribed, whereas the left side represents a symmetry-axis. Both the axi-symmetric

problem, as well as the Cartesian version are considered. The finite element mesh is constructed as in

Figure 7.11.

In this section, the following numerical settings are used, unless stated otherwise. The flow do-

main is squared and a uniform mesh is constructed by partitioning the domain into square cells of

size h × h for some h, and subsequently subdividing the cells into two triangular Mini-elements (see

Figure 7.11). The bubble functions in the Mini-elements are eliminated by static condensation at el-

ement level as explained in section 5.6. The BiCGstab solver with ILU preconditioning is applied.

Numerical solutions are accepted if an absolute stop criterium with ε = 1E-10 is satisfied.
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Figure 7.10: Test problem for the simulation of a pressing process time step

Figure 7.11: Uniform partitioning of a rectangular domain into right-angled triangular Mini-elements. Left:
Subdivision of a h × h square cell into two right-angled triangular Mini-elements. Right: Mesh consisting of
32 Mini-elements.



7.2 Results for a Test Model for the Simulation of a Pressing Process Time Step 79

7.2.1 Simulation of an Axi-Symmetric Glass Pressing Process Time Step

First of all, consider an axi-symmetric glass pressing time step. Let the material parameters be equal

to their typical values in section 3.2, i.e. ρ0 = 2.5·103 kg m−3, µ0 = 104 kg m−1s−1. In addition, let

the height of the domain be equal to the characteristic length L = 0.01 m. For the plunger velocity,

the value V = −1.26·10−1 m s−1 is chosen. So, the Reynolds number is Re = 3.15·10−4.

The flow problem is solved for both the dimensional and the dimensionless case on a mesh con-

sisting of 45056 right-angled triangular Mini-elements (a partition into 32 by 704 square cells, as the

length of the domain is 0.22 m). Figure 7.12a-7.12c shows the results for the dimensional problem

and Figure 7.12a-7.12c shows the results for the dimensionless problem. Apart from the dimensions,

both the flow and pressure profiles are rather similar. In Table 7.3 numerical data for both problems

is set out. For both problems approximately the same amounts of iterations are required until con-

vergence. Overall these numbers are slightly higher for the dimensionless model, but apparently this

is the result of the larger initial residuals. Furthermore, it can be observed that the condition number

for the dimensionless model are roughly a factor 105 smaller than the condition number for the di-

mensional model. However, this cannot be seen back in the solver performance, since in comparison

the iterations increases by the same amounts and the solver terminates for the same mesh densities.

That the increase in iterations is actually excessive can be concluded by comparing the CPU time for

BiCGstab to the CPU time for the direct method. On all meshes, the iterative solver takes longer than

the direct method, especially on fine meshes, whereas iterative solvers have been developed because

of the relative inefficiency of direct methods for fine meshes. For 180224 elements, the iterative solver

even takes ca 40 times as much CPU time to solve the problems as the direct method. Note that for

720896 elements, the direct method executes because of a shortage on storage capacity. For the same

reason, the condition number could not be computed.

Table 7.3: Numerical data for the test model for the simulation of a glass pressing process time step

elements 2816 11264 45056 180224 720896
iterations 20 36 153 7985 -

dimensional initial residual 1.14 1.60 2.26 3.20 4.53
model condition number 3.94E19 3.15E20 2.53E21 2.02E22 -

CPU time 1.68E-1 7.73E-1 8.27 1.39E3 -
CPU time for direct method 1.37E-1 5.80E-1 3.61 34.6 -

iterations 22 36 168 9133 -
dimensionless initial residual 9.01 12.7 18.0 25.4 35.9
model condition number 3.97E14 3.18E15 2.55E16 2.04E17 -

CPU time 2.08E-1 1.05 13.4 1.74E3 -
CPU time for direct method 1.45E-1 6.27E-1 3.98 37.6 -
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Figure 7.12a: Flow velocity solution in x-direction for the
test model for the simulation of a glass pressing process
time step.

Figure 7.12b: Flow velocity solution in z-direction for the
test model for the simulation of a glass pressing process
time step.

Figure 7.12c: Pressure solution for the test model for the
simulation of a glass pressing process time step.
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Figure 7.13a: Flow velocity solution in x-direction for
the test model for the simulation of a dimensionless glass
pressing process time step.

Figure 7.13b: Flow velocity solution in z-direction for
the test model for the simulation of a dimensionless glass
pressing process time step.

Figure 7.13c: Pressure solution for the test model for the
simulation of a dimensionless glass pressing process time
step.
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7.2.2 Different Preconditioners

For the remainder of this section, consider a dimensionless pressing process on a two-dimensional,

Cartesian, squared domain. Let µ = Re−1 = 2·10−2. This value has been experimentally determined

to give a small condition number for a large range of test cases.

The following preconditioners are tested: no preconditioner, Gauss-Seidel, Eisenstat and ILU

(see the Sepran manual [31]). Figure 7.14 gives the corresponding numbers of iterations for 512

elements (the condition number is only 113 in this case). Obviously, this number is smallest for

ILU preconditioning. If the mesh is a factor 2 by 2 refined, BiCGstab diverges for Gauss-Seidel and

Eisenstat preconditioning, whereas ILU results in 41 iterations and without preconditioning not less

than 1781 iterations are required. The corresponding CPU times for the refined mesh are 1.65 without

preconditioning and 0.20 for ILU. In conclusion, the ILU preconditioner is the best option among the

aforementioned ones.
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Figure 7.14: Numbers of iterations for 512 elements and different preconditioners.

7.2.3 Different Orderings of the Unknowns

The solver performance is tested for different orderings of the unknowns. Different ordering methods

are discussed in section 6.2.1. Let N be the number of iterations until convergence and ne the number

of elements in the mesh. Figure 7.15 shows the increase in iterations as the mesh is refined for different

ordering methods. For all meshes Cuthill Mc Kee gives slightly better results than Sloan. In addition,

in all cases p-last/level leads to a better solver performance for both ordering methods. Table 7.4 also
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gives the CPU time. Indeed, the CPU time is smallest for Cuthill Mc Kee with p-last/level. Note that

the decrease in CPU time for the Reverse Cuthill Mc Kee algorithm if p-last/level is applied is fairly

insignificant. In conclusion, the number of iterations can be reduced by using Cuthill Mc Kee instead

of Sloan. However, although some improvement is gained, the iterative solver still terminates as the

mesh is refined from 32768 to 131072.
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Figure 7.15: Numbers of iterations N for different orderings of the unknowns and different values of log4(ne/2).

Table 7.4: Number of iterations and CPU time for different orderings of the unknowns and different mesh
densities.

ne 2048 8192 32768 131072
Sloan N 41 116 937 -

CPU 2.04E-1 1.77 50.9 -
Sloan p-last/level N 34 83 639 -

CPU 1.44E-1 1.03 21.3 -
Cuthill Mc Kee N 41 154 920 -

CPU 1.56E-1 1.44 30.5 -
Cuthill Mc Kee p-last/level N 35 83 517 -

CPU 1.40E-1 8.65E-1 17.3 -

Figure 7.16a-7.16c show the sparsity pattern of the coefficient matrix for different ordering meth-

ods. The domain is partitioned into 512 elements, which corresponds to 784 unknowns. Apparently, in

the coefficient matrix without reordering, the pressure unknowns come before the velocity unknowns.
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It can be seen that the differences between the sparsity patterns for Sloan and Cuthill Mc Kee order-

ings are rather small. The in section 6.2.1 suggested “arrows” on the diagonal in the sparsity pattern

corresponding to Cuthill Mc Kee ordering do not seem to appear in Figure 7.16c, and appear only to a

small extent in Figure 7.17b. Figure 7.16b-7.16c show that the non-zero entries are clustered closely

together. On the other hand, Figure 7.17a-7.17b illustrate that if additionally p-last/level ordering

is applied, the clusters are spread over a larger number of smaller clusters. This is the result of the

pressure unknowns being separated from the velocity unknowns.
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Figure 7.16a: Sparsity pattern of coefficient matrix with-
out reordering for 512 elements.
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Figure 7.16b: Sparsity pattern of coefficient matrix with
Sloan reordering for 512 elements.
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Figure 7.16c: Sparsity pattern of coefficient matrix with
Cuthill Mc Kee reordering for 512 elements
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Figure 7.17a: Sparsity pattern of coefficient matrix with
Sloan and p-last/level reordering for 512 elements.
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Figure 7.17b: Sparsity pattern of coefficient matrix with
Cuthill Mc Kee and p-last/level reordering for 512 ele-
ments
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7.2.4 Additional Fill-In for the ILU Factorisation Preconditioner

From section 7.2.2 it can be concluded that ILU preconditioning leads to better results for the test

model than for example Gauss-Seidel or Eisenstat preconditioning. In section 6.2.2 it is explained how

the effect of ILU preconditioning may be improved by allowing some fill-in. Figure 7.18 shows results

for ILU preconditioning with additional fill-in together with Cuthill Mc Kee reordering. For conve-

nience, they are compared to results for ILU preconditioning without additional fill-in and Cuthill Mc

Kee with p-last/level reordering as well as for the default method, Sloan reordering. The results are

remarkable. Up to 32768 elements (log4(ne/2) = 7), the number of iterations N increases by a factor 2

if log4(ne) adds 1. For 32768 elements and Cuthill Mc Kee with p-last/level reordering, N is as much

as 5 times smaller if some additional fill-in is allowed. On top of that, BiCGstab with ILU precondi-

tioning with additional fill-in and Cuthill Mc Kee with p-last/level reordering does not terminate for

524288 elements (log4(ne/2) = 9). Even if the mesh is further refined to 1179648 elements, BiCGstab

converges in not more than 3233 iterations. Note that the grow factor of the number of iterations still

increases as the mesh is steadily refined. However, this increase is not necessarily excessive, as there

is no guarantee that the increase should be linear for mesh refinement and the solver is able to deal

properly with large-scaled flow problems.
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Figure 7.18: Numbers of iterations N for Sloan and Cuthill Mc Kee with p-last/level, with and without addi-
tional fill-in for the ILU factorisation preconditioner, for different values of log4(ne/2).

The computational cost of additional fill-in for the ILU preconditioner is known to be considerable

[28], Ch. 10. Therefore, it is worth also considering the CPU time. From Table 7.5 it appears that for

coarser meshes there is no significant difference between the CPU times for no fill-in and additional
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fill-in for Cuthill Mc Kee with p-last/level reordering. On the other hand, for 32768 elements, this

difference in CPU time is considerable. Indeed, the CPU time per iteration for ILU preconditioning

with additional fill is two times larger as without additional fill. However, the improvement in the

solver performance is such beneficial that the gain in CPU time is still favourable.

Table 7.5: Number of iterations and CPU time for Sloan and Cuthill Mc Kee with p-last/level, with and without
additional fill-in for the ILU preconditioner, for different mesh densities.

ne 2048 8192 32768 131072 524288
Sloan no additional fill N 41 116 937 - -

CPU 2.04E-1 1.77 50.9
Cuthill Mc Kee p-last/level no additional fill N 35 83 517 - -

CPU 1.40E-1 8.65E-1 17.3
Cuthill Mc Kee p-last/level additional fill N 20 46 104 355 1325

CPU 1.50E-1 8.45E-1 6.10

Figure 7.19a-7.20d show the sparsity pattern of ILU for Cuthill MCKee and p-last/level reorder-

ing. Figure 7.19a-7.19d illustrate ILU without additional fill, whereas Figure 7.20a-7.20d illustrate

ILU with additional fill. It can be observed that for 512 elements, the ILU preconditioner without ad-

ditional fill has 20834 non-zero entries, whereas the ILU preconditioner with additional fill has 29916

non-zero entries, which is a significant difference. This explains the considerable increase in CPU

time per iteration.
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Figure 7.19a: Sparsity pattern of L-matrix in ILU
for coefficient matrix with Cuthill Mc Kee and p-
last/level reordering for 512 elements.
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Figure 7.19b: Sparsity pattern of U-matrix in ILU
for coefficient matrix with Cuthill Mc Kee and p-
last/level reordering for 512 elements.
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Figure 7.19c: Sparsity pattern of coefficient matrix
with Cuthill Mc Kee and p-last/level reordering for
512 elements.
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Figure 7.19d: Sparsity pattern of ILU preconditioner
for coefficient matrix with Cuthill Mc Kee and p-
last/level reordering for 512 elements.
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Figure 7.20a: Sparsity pattern of L-matrix in ILU
with additional fill for coefficient matrix with Cuthill
Mc Kee and p-last/level reordering for 512 elements.
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Figure 7.20b: Sparsity pattern of U-matrix in ILU
with additional fill for coefficient matrix with Cuthill
Mc Kee and p-last/level reordering for 512 elements.
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Figure 7.20c: Sparsity pattern of coefficient matrix
with Cuthill Mc Kee and p-last/level reordering for
512 elements.
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Figure 7.20d: Sparsity pattern of ILU preconditioner
with additional fill for coefficient matrix with Cuthill
Mc Kee and p-last/level reordering for 512 elements.
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7.2.5 Different Types of Elements

The solver performance is tested for the stable elements suggested in Chapter 5. Figure 7.21 gives

a bargraph with the numbers of iterations for different mesh densities. From this bargraph, it can be

seen that elimination of the bubble function at element level gives better results. Furthermore, the

solver performance for rectangular elements is better than for triangular elements. By far the best

solver performance is observed for rectangular Taylor-Hood elements (Q2 − Q1). This is contrary to

the results for triangular Taylor-Hood elements (P2−P1), for which the solver terminates for all mesh

densities considered. Although results are best for rectangular elements, they are not preferred because

they are less suitable for partitioning curved domains. Of course, isoparametric Q2 − Q1 elements

can be used to fit the curved boundaries, but this may give the additional problem that sign changes

in the Jacobian matrix ∇ξx may occur due to reversed curved edges of the elements. In addition, note

that application of Taylor-Hood elements leads to an increase in the number of unknowns, and hence

more computational work is required per iteration. Indeed, this is in contrast to the gain in accuracy.

Thus, triangular Mini-elements with elimination of the bubble function at element level are preferred

in TNO Glass Group’s axi-symmetric pressing model.
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Figure 7.21: Numbers of iterations N for for different elements and for different values of log4(ne/2). The
ILU preconditioner with Cuthill Mc Kee with p-last/level reordering and additional fill-in is used. Here, also
Mini-elements are considered for which the bubble function is not eliminated at element level.
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7.2.6 Conclusions

From the results in this section, the following can be concluded.

• ILU preconditioning leads to better results for the test model than the other preconditioners

tested. This preconditioner is also used in TNO Glass Group’s pressing model.

• Cuthill Mc Kee reordering of the unknowns gives slightly better results than Sloan reordering.

In TNO Glass Group’s pressing model, Sloan reordering is used. Furthermore, p-last/level

reordering of the unknowns leads to slightly better results.

• Cuthill Mc Kee with p-last/level reordering in combination with additional fill-in for ILU gives

substantial improvement of the solver performance.
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7.3 Results for an Improved Axi-Symmetrical Glass Pressing Model

The conclusions of section 7.2 indicate that the solver performance for the Stokes flow problem in

TNO Glass Group’s pressing model can significantly be improved. In this section the test cases for

the test model in section 7.2 with positive results are applied to TNO Glass Group’s axi-symmetrical

pressing model.

7.3.1 Solver Performance for the Stokes Flow Problem

Figure 7.22a-7.22d show results for ILU preconditioning with additional fill and Cuthill Mc Kee

with p-last/level reordering applied to TNO Glass Group’s axi-symmetrical pressing model. Here,

an absolute stop criterium with tolerance ε = 1E-3 is used. In Figure 7.22d ∆N900 at the vertical

axis denotes the number of iterations for the Stokes flow problem in the 900th time step only. As

for the test problem in section 7.2, the improvement is remarkable. However, even for additional

fill-in and Cuthill Mc Kee with p-last/level reordering, divergence is observed for q = 8 after 900

time steps. Why divergence does not occur at earlier points in time is not precisely clear, but possible

causes may be mesh deformation or changes in the flow of glass and air. Also note that in many cases

only 1 iteration is required in the 900th time step. It is not likely that this is a consequence of mesh

deformation, since it is expected that the solver performance remains the same or becomes worse as

the elements are flattened such as illustrated in Figure 5.3d. Apparently, solving the flow problem

becomes almost trivial, as the plunger slows down and the flow domain is filled with glass, so that the

flow velocity and pressure gradients approach zero.
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Figure 7.22a: Number of iterations for the BiCGstab
solver with ILU preconditioning applied to the dis-
crete Stokes flow problem at t = 0 in the pressing
model.
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Figure 7.22b: Accumulative number of iterations for
the BiCGstab solver with ILU preconditioning at t =
0.3 in the pressing model.
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Figure 7.22c: Accumulative number of iterations for
the BiCGstab solver with ILU preconditioning at t =
1.5 in the pressing model.
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Figure 7.22d: Number of iterations for the BiCGstab
solver with ILU preconditioning applied to the dis-
crete Stokes flow problem at t = 1.5 in the pressing
model.
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7.3.2 Numerical Solutions

In this section, numerical solutions of the improved pressing model are examined on accuracy and

compared with the solution in section 7.1.2. The flow problems problems are solved by the BiCGstab

solver with ILU preconditioning with additional fill and Cuthill Mc Kee with p-last/level ordering.

An absolute stop criterium with ε = 1E-3 is used.

Figure 7.23a-7.23d show pictures of the flow of glass and air for q = 1 at different times. The

pictures for q = 1 in Figure 7.23a-7.23d are exactly the same as in Figure 7.6a-7.6d in section 7.1.2,

from which it may be concluded that the accuracy is the same for both Sloan and Cuthill Mc Kee,

p-last/level with extra fill. To obtain a better view of the accuracy of the solutions, the volume conser-

vation of glass is examined. In Figure 7.24a-7.24b, the glass volumes as functions of time for Sloan

and Cuthill Mc Kee, p-last level with extra fill are compared for q = 1 and q = 2, respectively. From

these figures it can be concluded that on average the differences in glass volume are insignificant.

Figure 7.25a-7.25f show pictures of the flow of glass and air for q = 4 at different times. Since

numerical solutions for Sloan and Cuthill Mc Kee, p-last/level with extra fill are almost equal, Fig-

ure 7.25a-7.25f can well be compared with the figures in section 7.1.2. From the pictures, it can be

observed that the glass-air interface is again much thinner and smoother than for coarser meshes. In

comparison with Figure 7.7a-7.7d slight changes in the shape or location of the flow front may be

noticed. For example in Figure 7.7d the glass flow has already run onto the far end of the ring in the

flow domain, whereas in Figure 7.25f, the flow front hardly can be noticed to touch this part of the

boundary. So, the gain in accuracy for mesh refinement from q = 2 to q = 4 is clearly perceptible in

the simulation results.



96 7 Numerical Results

Figure 7.23a: Flow of glass and air in the im-
proved axi-symmetrical pressing model for q = 1
at t = 0 s. Glass is orange and air is blue.

Figure 7.23b: Flow of glass and air in the im-
proved axi-symmetrical pressing model for q = 1
at t = 0.5 s. Glass is orange and air is blue.

Figure 7.23c: Flow of glass and air in the im-
proved axi-symmetrical pressing model for q = 1
at t = 1.0 s. Glass is orange and air is blue.

Figure 7.23d: Flow of glass and air in the im-
proved axi-symmetrical pressing model for q = 1
at t = 1.5 s. Only glass remains.
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Figure 7.24a: Glass volume (Vg [m3]) conservation
for q = 1.
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for q = 2.
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Figure 7.25a: Flow of glass and air in the im-
proved axi-symmetrical pressing model for q = 4
at t = 0 s. Glass is orange and air is blue.

Figure 7.25b: Flow of glass and air in the im-
proved axi-symmetrical pressing model for q = 4
at t = 0.25 s. Glass is orange and air is blue.

Figure 7.25c: Flow of glass and air in the im-
proved axi-symmetrical pressing model for q = 4
at t = 0.5 s. Glass is orange and air is blue.

Figure 7.25d: Flow of glass and air in the im-
proved axi-symmetrical pressing model for q = 4
at t = 0.75 s. Glass is orange and air is blue.
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Figure 7.25e: Flow of glass and air in the im-
proved axi-symmetrical pressing model for q = 4
at t = 1.0 s. Glass is orange and air is blue.

Figure 7.25f: Flow of glass and air in the im-
proved axi-symmetrical pressing model for q = 4
at t = 1.5 s. Glass is orange and air is blue.
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Chapter 8

Conclusions and Recommendations

8.1 Conclusions

For the Stokes flow problem in TNO Glass Group’s glass pressing process simulation model, problems

regarding calculation speed of iterative solvers occur, as application of mesh refinement produces an

excessive increase in the number of iterations, and finally the solver even terminates. This solver

problem can also be seen in a simple test model for the simulation of a pressing process time step.

Although the spectral condition number in the pressing model is substantial, only small condition

numbers are obtained in the test problems.

A thorough examination of the discretisation methods for Stokes flow problems in TNO Glass

Group’s axi-symmetrical pressing model leads to the conclusion that they are stable and result in well-

defined linear systems of equations. However, since the behaviour of iterative solvers is in general

rather unpredictable, this gives no guarantee that the solver performance will be reliable.

For the finite element discretisation triangular Mini-elements are used. The bubble functions are

eliminated by means of static condensation at element level. The elements are proven to be stable.

Triangular Mini-elements are preferable above the other elements that have been tested, because the

solver performance for triangular Mini-elements is satisfactory in comparison to the other elements,

Mini-elements require low computational cost and triangular elements are more appropriate for a

partition of curved domains.

Preconditioning offers good prospects to improve the solver performance. Preconditioners tested

are Gauss-Seidel, Eisenstat and ILU. Out of these, ILU gives the best results. Some improvement in

the number of iterations is gained by applying Cuthill Mc Kee reordering instead of Sloan reordering.

Substantial improvement in the solver performance can be observed if additional fill for the ILU is

allowed. Although additional fill for ILU results in a significant increase in CPU time per iteration, the

gain in efficiency is still considerable. Most importantly, after additional fill for the ILU is applied, the
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discrete Stokes flow problem can be solved by means of an iterative solver on relatively fine meshes,

for which the solvers terminated before.

Although the improvement gained by ILU with additional fill is encouraging, iterative solvers for

the pressing model still terminate on extremely fine meshes as the plunger reaches it lowest position.

Possible causes of this are the mesh deformation in the pressing model, during which the elements are

flattened as the plunger moves down, or changes in the flow of glass and air. The mesh deformation

may have a subordinate influence on the solver performance.

8.2 Recommendations

The solver performance still leaves room for improvement. Firstly, the influence of mesh deformation

on the solver performance can be studied into more detail. A mesh adaption algorithm that avoid

mesh deformation may be applied to overcome termination of the iterative solver, but existing mesh

algorithms are known to be rather inefficient and therefore cannot be recommended for general use.

Some improvement may also be gained by taking elements of different thickness. However, it is not

clear how much improvement can be gained by avoiding too much flattening of the elements. Sec-

ondly, different preconditioners can be used. Notably, multigrid methods are highly recommended in

literature. For example, M. F. Adams et al [1] states that he can solve a solid mechanics problem with

up to 237 million degrees of freedom with an algebraic multigrid method as preconditioner for a con-

jugate gradient solver. However, ILU preconditioning with Cuthill Mc Kee reordering and additional

fill already results in a positive solver performance, and it is doubtful how much improvement can be

gained by application of different preconditioners. Since results of ILU with additional fill are already

encouraging, it may as well be a good idea to test different incomplete factorisation preconditioners,

such as ILUT [28]. Note that preconditioners such as multigrid methods and ILUT have yet to be

implemented in Sepran, which may be quite time consuming and lead to additional difficulties.

The ILU preconditioner with Cuthill Mc Kee reordering and additional fill has not (yet) been

applied to TNO Glass Group’s three dimensional pressing model. The preconditioner may not nec-

essarily have the same effect on the three dimensional pressing model as on the axi-symmetric press-

ing model. In the three dimensional model the profile or the bandwidth of the coefficient matrix

may just become to large by allowing some additional fill, so that hardly any or no improvement

in the solver performance will be gained. Nonetheless, regarding the considerable improvement in

the axi-symmetric model, application of the preconditioner to the three dimensional problem is quite

promising.
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Appendix A

Vector Spaces

This appendix is devoted to vector spaces and their corresponding inner products that arise from

functional analysis. The vector spaces are defined in association with a polygonal bounded domain

Ω ∈ Rn.

A.1 The Vector Space of Lebesgue p-Integrable Functions

Let p ∈ N. Define the set of Lebesgue p-integrable functions as

Lp(Ω) =
{
u : Ω→ R

∣∣∣ ∫
Ω

|u|pdx < ∞
}
. (A.1.1)

The related Lp(Ω) norm is

‖u‖Lp(Ω) =

( ∫
Ω

|u|pdx
) 1

p

. (A.1.2)

A special case is the set of Lebesgue square integrable functions,

L2(Ω) =
{
u : Ω→ R

∣∣∣ ∫
Ω

u2dx < ∞
}
. (A.1.3)

For u, v ∈ L2(Ω), the L2(Ω) inner-product is given by

(u, v)L2(Ω) =

∫
Ω

u v dx. (A.1.4)

It can be seen that the induced norm, ‖u‖L2(Ω) =
√

(u, u)L2(Ω) conforms to definition (A.1.2).
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A.2 The Vector Space of Essentially Bounded Measurable Functions

Define the set of essentially bounded measurable functions as

L∞(Ω) =
{
u : Ω→ R

∣∣∣ ‖u‖∞ < ∞}
, (A.2.1)

where the L∞(Ω) norm is set to

‖u‖∞ = inf
{
C ≥ 0

∣∣∣ |u| ≤ C almost everywhere on Ω
}
. (A.2.2)

A.3 Sobolev Spaces

The Sobolev space H1(Ω) is defined by

H1(Ω) =
{
u ∈ L2(Ω)

∣∣∣ ∫
Ω

|∇u|2dx < ∞
}
. (A.3.1)

For u, v ∈ H1(Ω), the H1(Ω) inner-product is given by

(u, v)H1(Ω) =

∫
Ω

(
∇u∇v + u v

)
dx. (A.3.2)

The H1(Ω) inner-product induces a H1(Ω) norm:

‖u‖H1(Ω) =
√

(u, u)H1(Ω) =

( ∫
Ω

(
|∇u|2 + |u|2

)
dx

) 1
2

. (A.3.3)

In addition, the constrained Sobolev space is

H1
g(Ω;Γ) =

{
u ∈ H1(Ω)

∣∣∣ u
∣∣∣∣
Γ
= g

}
, (A.3.4)

for some subset Γ ⊂ Ω and g : Γ 7→ R. In view of weak formulations, it is important to note that

C2(Ω) is dense in H1(Ω) [7].
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Appendix B

Analysis of the Behaviour of Flow
Solutions at the Glass-Air Interface near
the Equipment Boundary

This appendix focusses on the possibility of numerical instability due to singular behaviour of flow

solutions at the glass-air interface in a neighbourhood of the equipment boundary. Consider a point P

on Γi ∩ Γe, with Γe = Γm ∪ Γr ∪ Γp (see Figure B.1). Consider a small neighbourhood ΩP of P in Ω.

Assume constant viscosity in ΩP. So, the Stokes flow equations read

µ∆u − ∇p = 0, (B.1)

∇·u = 0. (B.2)

Consider the rotation of the momentum equations around P. Then since

∇ × ∇p = 0,

the flow velocity satisfies

∇ × ∆u = 0, inΩP. (B.3)

As the flow problem is not essentially three-dimensional and only a small vicinity of a point on the

equipment boundary is considered, it is convenient to simplify the flow problem to two-dimensional

Cartesian coordinates:

u = uex + wez, inΩP. (B.4)



105

Figure B.1: Neighbourhood of equipment boundary of glass-air-interface.

Then as a result of the continuity equation, the flow velocity can be written in terms of a stream

function ψ,

u = ∇ × ψey, inΩP. (B.5)

In terms of (B.5), only the y-component of (B.3) is non-trivial and results in the bi-harmonic equation

∆2ψ = 0, inΩP. (B.6)

Since P is the centre of the domain of interest, it is convenient to write the stream function ψ locally

in terms of polar coordinates (r, θ), where r =
√

(x − xP)2 + (z − zP)2 (see Figure B.1). To this end,

consider a semicircle BP, δ ⊂ ΩP around P for some δ > 0, given by

BP, δ =
{
(r, θ)

∣∣∣0 < r < δ, θ0 ≤ θ ≤ π
}
, (B.7)

where θ0 is the angle of the glass air interface to the equipment boundary of the air domain. So, the

semicircle is bounded by the equipment wall, the glass-air interface and a maximum distance r = δ.

In order to impose BCs on the equipment wall, it should be noticed that the glass-air interface is

propagating to the right in time. Without loss of generality, assume that the interface at point P is



106
B Analysis of the Behaviour of Flow Solutions at the Glass-Air Interface near the Equipment

Boundary

propagating with constant velocity uP = (1, 0)T for a short period of time. Next, consider u as the

velocity with respect to the interface, that is u := u − uP. Then the no-slip condition for glass induces

u
∣∣∣∣
φ=π
= −1. (B.8)

So, relatively to the interface, each point on the equipment boundary is moving to the left. In addition,

adopt the BC for an impenetrable wall

v
∣∣∣∣
φ=π
= 0. (B.9)

In order to find a solution of (B.6), separation of variables with respect to (r, θ) is applied:

ψ(r, θ) = R(r)Θ(θ). (B.10)

This seems reasonable, since any external contributions to the flow are omitted and the semicircular

flow domain can basically be considered infinitely extended. In terms of (B.10), the flow velocity

components can be written as

u(r, θ) = ψx(r, θ) = R′(r)Θ(θ) cos θ + r−1R(r)Θ′(θ) sin θ, (B.11)

v(r, θ) = −ψy(r, θ) = −R′(r)Θ(θ) sin θ + r−1R(r)Θ′(θ) cos θ. (B.12)

These solutions should satisfy BCs (B.8)-(B.9): BC (B.8) gives

Θ(π) =
1
R′
, (B.13)

and BC (B.9) leads to

Θ′(π) = 0. (B.14)

From (B.13), it follows that R′ = R1 is constant, so that R is linear:

R(r) = R1r + R0. (B.15)

As a result, substitution of (B.10) into PDE (B.6) yields

rR1
(
Θ′′′′ + 2Θ′′ + Θ

)
+ R0

(
4Θ′′′′ + Θ′′

)
= 0, (B.16)

or

R1
(
Θ′′′′ + 2Θ′′ + Θ

)
= 0, (B.17)

R0
(
4Θ′′′′ + Θ′′

)
= 0. (B.18)
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Since R1 , 0, it holds that

Θ′′′′ + 2Θ′′ + Θ = 0, (B.19)

which has a solution of the form

Θ(θ) = Aeiθ + Bθeiθ +Ce−iθ + Dθe−iθ, (B.20)

for some constants A, B,C,D. Since (B.20) is not a solution of 4Θ′′′′ + Θ′′, it follows from (B.18)

that R0 = 0. Without loss of generality, choose R1 = 1. It remains to find the coefficients in (B.20).

Coefficients A and C can be determined from BCs (B.13)-(B.14):

A = −
(
Bπ +

i
2
(
D − B

)
+

1
2

)
, (B.21)

C = −
(
Dπ −

i
2
(
D − B

)
+

1
2

)
. (B.22)

Next, in order to have a real flow velocity, it is required that the imaginary part of Θ is zero. This

results in the system of equations
Im(B) − Im(D) −Re(B)π + Re(D)π = 0,

Re(B) − Re(D) = 0,

−Im(B)π − Im(D)π = 0,

Im(B) + Im(D) = 0.

(B.23)

This system has solution B = D ∈ R. Finally, it follows that

R(r) = r, (B.24)

Θ(θ) =
(
2D

(
θ − π

)
− 1

)
cos θ. (B.25)

Substitution of (B.24) and (B.25) into flow velocity (B.11)-(B.12) gives flow solution

u(θ) =
(
2D

(
θ − π

)
− 1

)
cos 2θ + D sin 2θ, (B.26)

v(θ) = −
(
2D

(
θ − π

)
− 1

)
sin 2θ + D

(
cos 2θ + 1

)
. (B.27)

Since the flow solution (B.26)-(B.27) is independent of the radius, point P is not a singular point of

this solution. The remaining constant D depends on the flow of air in a vicinity of P. If for simplicity

air is replaced by vacuum in the flow calculations, it can be assumed that the velocity gradient is zero

at the interface. This involves the additional BCs:

n·∇u·n
∣∣∣∣
θ=θ0
= 0, (B.28)

n·∇u· t
∣∣∣∣
θ=θ0
= 0, (B.29)



108
B Analysis of the Behaviour of Flow Solutions at the Glass-Air Interface near the Equipment

Boundary

where

∇u =
1
r

 0 1
2
(
∂θu − v

)
1
2
(
∂θu − v

)
∂θv − u

 , (B.30)

n =
 cos θ0

sin θ0

 , (B.31)

t =
− sin θ0

cos θ0

 . (B.32)

Application of BCs (B.28)-(B.29) results in D = 0 and θ0 = 0. Apparently, for the given assumptions

there is no solution with θ0 > 0. However, in view of the round flow front in the glass pressing process

simulation results in Chapter 7, θ0 = 0 seems to be a satisfactory approximation of the exact angle.

The corresponding flow velocity field is

u(θ) =

− cos 2θ

sin 2θ

 , 0 < θ ≤ π. (B.33)

Figure B.2 shows the vector field corresponding to the flow velocity relatively to the equipment bound-

ary. The flow velocity properly follows the propagation of the glass-air interface and no suspicious

behaviour can be encountered. So, the analytic results are in agreement with the numerical experi-

ments.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

P 

Figure B.2: Vector field of flow solution in a small vicinity of point P at the equipment boundary between glass
and vacuum.
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