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Preface

This work was performed at Philips Research in the Video Processing & Analysis department,
under supervision of Ahmet Ekin and Gerard de Haan. In this department there is much
experience with video processing algorithms for television, most importantly with motion
estimation, It is interesting to see how this knowledge suits other problems, and specifically in

this work how it fits MR image segmentation.

Based on 3D recursive search motion estimation (3DRS) [DeHaan93] an algorithm has been
developed for magnetic resonance image based brain tissue segmentation. Mainly the aspect
of so-called online (sample-by-sample) learning was introduced to this problem and was
adopted from 3DRS. This resulted in an interesting new algorithm that differs from the
common approach. An intermediate paper [Damkat06] was written and presented at the
Symposium on Intelligent Algorithms 2006' (SOIA06). Besides the basic algorithm described
in that paper, further developments and validation of the algorithm and an implemented bias
correction method are documented in this work.

The author would like to thank Ahmet and Gerard for their support and supervision.
Furthermore thanks go to the department and fellow students for a wonderful time at Philips

Research.

Chris Damkat,

March 2007.
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Abstract

The aging population in the European Union and the US has increased the importance of
research in neurodegenerative diseases. Imaging plays an essential role in this endeavor by
providing insight to the intricate cellular and inter-cellular processes in living tissues that will
otherwise be difficult, or impossible, to gain. Because of the sheer size of the imagery data,
the lack of sufficient medical staff, and the inaccuracies resulting from manual processing,
automated processing of image-based data to generate quantitative and reproducible results is
necessary. To this effect, in this thesis a fully automatic image-processing algorithm for brain
tissue segmentation from magnetic resonance (MR) images is proposed. Contrary to the
present iterative expectation maximization (EM) based algorithms, it uses online (sample-by-
sample) learning to adapt to the intensity inhomogeneity inherent to MR images. Since the
proposed method can adapt to the intensity inhomogeneity online, multiple iterations over the
data as in the present algorithms are not necessary, and consequently the processing time is
decreased dramatically. The used online learning scheme is based on learning vector
quantization and is further tailored to the segmentation of MR images by integration of spatial
context and the use of a special locality-preserving scanning order of the data. Explorations of
various scanning orders and a modification to the learning rule to allow for 3D learning have
lead to three variants of the proposed algorithm. These proposed methods are validated by
comparing the segmentation masks to basic k-means clustering, and present EM-based
methods, namely, FAST and the state-of-the-art EMS, on simulated and real datasets. The
proposed methods demonstrated a significant reduction of the processing time (a factor of 20)
compared to the EM-based methods. Tests on BrainWeb simulated data showed that
segmentation accuracy is comparable to the EM-based methods, however, tests on real data,
where the segmentations of EMS were used as ground truth, showed lower accuracy than the
EM-based FAST. Moreover, the tests on real data showed that the proposed methods as well
as FAST make a significant amount of misclassifications in the so-called deep grey matter
areas, which suggests the necessity of a spatial prior atlas as it is used in EMS.
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1 Introduction

The significance of effective healthcare solutions has increased dramatically as a result of the
aging population worldwide, particularly in North America and in the European Union.
Because age is considered as one of the high risk factors for some neurodegenerative diseases,
neurology will be immediately affected by this demographical change. The related statistics
across the EU and the US also supports this claim. In Europe, the European Brain Council
estimates the cost regarding neurological diseases as 139 billion euros per year. In the U.S.
alone, 4.5 million people have Alzheimer’s disease and by 2050, there will be 11 to 16 million
patients.

Neuro-research requires high-resolution imaging of the brain (see Figure 1 for a reference of
the brain). One of the best available medical imaging options for the brain is magnetic
resonance imaging (MRI). MRI is a non-invasive medical imaging modality that captures the
images of internal soft tissues at a very high contrast compared to the alternative computed
tomography (CT), without exposing the body to harmful ionizing radiation. MR images can
be used for diagnoses of several brain related diseases, e.g. Multiple Sclerosis, Alzheimer,
schizophrenia, epilepsy, Creutzfeldt-Jakob, brain tumors and lesions [VanLeemputPHDO1],
as well as for other quantitative applications. As most neurological diseases are associated
with structural changes in the brain, finding an outline of the brain structures and quantifying
the volume of certain structures is invaluable for neuro-research.

This work deals with automated MRI-based brain tissue segmentation/classification, where
the objective is to segment the brain image into the major tissue types: grey matter, white
matter, and cerebrospinal fluid (see Figure 3). In most cases, the resulting large set of MR
images after scanning makes human-based processing impractical and demands for automated
solutions. Furthermore besides being very time-consuming and thus expensive, human expert
segmentations are subjective, i.e., there is large inter- and intra-observer variability of the
obtained segmentations. Thus, an automatic segmentation algorithm, which delivers
reproducible, objective results and has computationally attractive complexity, is of high-value
for medical applications. Therefore, this is an area of extensive research, as is also indicated
by the high number of publications on this subject in the recent years.

As a contribution to this area, a new brain tissue segmentation algorithm is proposed in this
work that is based on so-called online (sample-by-sample) learning. Using online learning the
tissue class statistics can be deduced from the data and adaptation to the changes of these
statistics from one location to another, due to the intensity inhomogeneity inherent to the MR
images, is possible. This approach is different from the methods found in the (present)
literature, which model the intensity inhomogeneity as a multiplicative bias field and
iteratively improve approximations of the bias field and segmentation. Since the proposed
method can adapt to the intensity inhomogeneity online, multiple iterations are not needed
and the processing time is decreased dramatically. The used online learning scheme is based
on learning vector quantization (LVQ) [Kohonen86], and is further tailored to the
segmentation of MR images by integration of spatial context and the use of a special locality-
preserving scanning order of the data. The proposed algorithm is validated by comparing its
segmentation masks to basic k-means clustering, and Expectation Maximization based



methods, namely, FAST? [Zhang01] and the state-of-the-art EMS® [VanLeemput99], on
simulated BrainWeb [BrainWeb] and real datasets.

What follows next in this introduction, is a short description of the principles behind the MR
images, the problem definition describing the goal and challenges of this research, the main
contributions and finally the global outline of this complete work.
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Figure 1: Anatomical illustrations from ‘Gray's Anatomy' [Gray18]. (a) Axial slice and (b) coronal slice
showing the brain and its deeper structures.

1.1 MR Images

MRI is an imaging methodology which can be used to visualize the inside of living
organisms. The obtained images can be used for medical purposes to diagnose patients
without having to penetrate the body, i.e. it is non-invasive. Images can be obtained of
internal organs, for example images of the brain. MRI is best suited for brain imaging as it is
able to produce contrasts of soft tissues, moreover, compared to a CT scan, the MRI scanner
does not use ionizing radiation, which is detrimental to the human health in large doses.

MRI is based on the principle of nuclear magnetic resonance (NMR), and for medical
purposes it is based on the resonance of the hydrogen nuclei, i.e., single protons. These
protons behave as small magnets, with a magnetic moment, i.e., they rotate. In an MRI
scanner the subject is placed in a powerful uniform static magnetic field, the so-called By
field, which is directed in the z-direction, along the length axis of the patient. The field
strength is in the order of 0.3 to 3 Tesla (or even 7 Tesla in research), this is in the order of
100.000 times higher than the Earth’s magnetic field. The protons align with this magnetic

2FAST = FMRIB Automated Segmentation Tool, EMS = Expectation Maximization Segmentation, FMRIB = Oxford Centre
for Functional Magnetic Resonance Imaging of the Brain



field, parallel and anti-parallel, a slightly higher amount (~one in a million) is aligned parallel
with the field; consequently, the subject is magnetized in the z-direction, i.e. the longitudinal
direction.

This magnetization has a typical ‘frequency’, called the Larmor frequency, that is dependent
on the gyro-magnetic ratio of hydrogen, and linearly dependent on the strength of the
magnetic field. For hydrogen in a field with strength 1.5 Tesla the Larmor frequency is
63.864MHz. If an RF-pulse introduces a time-varying magnetic field with this specific
frequency perpendicular to the By field, the magnetization is flipped partially or totally
(depending on the strength and duration of the pulse) in the xy-plane, i.e. the energy is
absorbed and the protons are excited. This time-varying magnetic field is called the B; or
excitation field. After excitation, the magnetization in the xy-plane rotates with the Larmor
frequency, since all nuclei are now in-phase. After the RF-pulse is switched-off the
magnetization starts to return to the z-direction, and while this happens the nuclei return the
RF-signal, this signal can be received. Basically, the (transversal) magnetization in the xy-
plane dies out while the longitudinal magnetization re-establishes its original value; this is due
to two relaxation processes.

The first process is the so-called spin-lattice relaxation, T1, characterized by the time for the
z-component of the magnetization to re-establish its original value. The second process is the
spin-spin relaxation, T2, and it refers to the disappearance of the xy-component of the
magnetization due to de-phasing of the individual magnetization vectors of the nuclei due to
spin-spin interaction. The individual returned signals emitted by the nuclei are modulated by
properties of the tissue they are in. Finally, the signal is also modulated by the amount of
protons in a volume element which gives the proton density (PD) and is also tissue specific.

By choosing specific scanning parameters, the so-called T1 or T2 relaxation times or the PD
for the tissue in a specific location can be retrieved. As the returned values are tissue specific,
a contrast (a greyscale or multi-spectral’ image) can be obtained. The resulting 3D image is
called a volume, consisting of 2D slices, see Figure 2. An element in this volume is called a
voxel, which is the equivalent of a pixel in a 2D image.

(a) (b)

Figure 2: Exampile slices of several 'modalities', these are simulated images from the BrainWeb database.
(a) T1-weighted image, (b) T2-weighted image, and (c] PD-weighted image.

For a brain scan, the resolution of a volume is typically in the order 256x256x180 voxels, and
the dimensions of a voxel are in the order 1x1x1mm?>, and typically 16 bits per voxel are used
to store the intensity (although most formats support 8 bits or 32 bits as well). In Figure 2,
examples of a T1-weighted, T2-weighted and PD image are shown. In these images, it can be
seen that an MR image presents a contrast where the basic tissue types can be distinguished

3 By combination of multiple modalities (e.g. T1 and T2 or T2 and PD).



based on the intensity values. Note that the different anatomical structures as indicated in
Figure 1 cannot be distinguished by intensity alone. The presented images above give a rather
ideal image, which is not encountered in practice. The real MR scans contain noise and
intensity inhomogeneity, which is a shading effect, and other distortions, that hamper
straightforward tissue segmentation of the brain.

1.2 Problem definition

The brain is composed of several tissue types, namely white matter (WM), grey matter (GM),
cerebrospinal fluid (CSF), and in a head scan also skull, muscle, skin*, and background (BG)
are included. Finding the outline of the different brain tissues and quantifying the amount of
each tissue may be invaluable for the quantification of brain atrophy, which is correlated with
the progression of neurodegenerative diseases, or for studying the brain development over
time in general. For example in Alzheimer disease, which is associated with neuronal loss,
shrinking of the cortex, hippocampus and other structures can be observed while the
ventricles enlarge [Fischl02]. Basically the brain shrinks, and the GM amount decreases while
the CSF amount increases. If a segmentation of the brain in the basic tissue classes is
available, the progress of volumetric changes in these tissues can be monitored.

This main task is illustrated in Figure 3, where we see the input MRI image on the left and the
desired segmentation (classification) on the right. The image shown on the left is a T1-
weighted image; these images are commonly used for the segmentation as they present a good
GM-WM contrast and a good signal-to-noise ratio. On the right a labeled image with the
tissue classes CSF, GM, and WM is shown. From this figure we can see that the task is to
label every voxel with a tissue class. In the ideal MR, image every tissue class has its own
absolute intensity and once the tissue intensities are known, segmentation could be
accomplished by simple multi-level] thresholding with the appropriate thresholds.

segmentation/
classification

—

- white matter

{@ grey matter

cerebrospinal
fluid

Figure 3: The objective of the algorithm. On the left we see the ‘greyscale’ input image, on the right the
segmented image.

MR-based image segmentation, however, is not straightforward. The intensity values of a real
MR image vary with the scanning parameters; hence, the use of a standard thresholding or a
non-adaptive algorithm is not possible. Furthermore, MR images are degraded by field
inhomogeneity that results from various factors, such as imperfectness of magnetic coils,
patient attributes, etc., which cause intra-scan intensity variations of the tissues. This
inhomogeneity is generally modeled as a bias field, which is a spatially low-frequency

4 Skull, muscle, and skin and other non-brain tissues are ignored further in this work as they can be removed with a so-called
skull stripping algorithm, such as BET (see Chapter 6).



(slowly varying) multiplicative field [Sled98] and results in smearing of the intensity
histogram (see Figure 4); hence, the tissue classes overlap in intensity. In addition to the
above, there is also noise, which is assumed to be Gaussian® and additive in this work and
further increases the tissue class overlap. Then finally, the limited imaging resolution may
result in multiple tissues contributing to a single voxel intensity, leading to a blurred
appearance of the image. This phenomenon is called the partial volume (PV) effect and may
require special attention if severe. Figure 4 shows a visual impression of the above-mentioned
degradations.

(b)

& BG

log(count)

intensity
(d (e)

Figure 4: [BrainWeb)] simulations illustrating the typical degradations of the ideal image. (a)
Ideal image, (b] image with intensity homogeneity, (¢} image with noise, and [d] image with
partial volume effects due to thicker slices. (e} The intensity histogram where the arows
indicate the ideal histogram, where each tissue has one intensity, and the dotted line indicates
the smeared realistic histogram as a result of the degradations.

These degradations hamper the tissue segmentation of the MR brain images. A successful
segmentation algorithm should handle all these effects to obtain a valid segmentation.
Furthermore, this should be accomplished without user intervention, i.e. unsupervised, to
obtain an objective and reproducible result. Therefore, the tissue statistics should be extracted
from the data itself. And in the calculation of the statistics and the following classification,
inhomogeneity effects, noise, and PV if severe should be well accounted for. The obtained
segmentation should be accurate, as medical decisions will be based on it. Finally, the
segmentation should be obtained within a reasonable time. Present methods which are
publicly available, such as FAST [Zhang01], which is a C implementation of an EM-based
method, take about 10 minutes, on a Pentium 4 3GHz with 512 MB of memory, for a dataset
with a resolution of 256x256x120 voxels, while more complex methods described in the
literature can take up to 30 minutes or more [Awate06]. In this thesis, we aim for a different

5> The actual noise is Rician, however, Gaussian noise is a good enough approximation for this application, since the signal to
noise ratio is relatively high (u>>o0).



approach to reduce the computational complexity and that will show to significantly decrease
the necessary processing time.

The proposed algorithm should solve the following challenges:
Challenges:
- It should be robust to the effects inherent to the MR images, being:
o Inter-scan intensity variations.
o The intensity inhomogeneity, the intra-scan intensity variations.
o The partial volume effects, if severe.
o Noise.
- It should work without supervision and thus obtain objective and reproducible results.
- It should obtain the segmentation in a reasonable amount of time.

- The segmentation should be accurate.
1.3 Main Contributions

This thesis presents a new algorithm for tissue segmentation of MR brain images. The
proposed algorithm was influenced by 3D recursive search (3DRS) motion estimation
[DeHaan93], an algorithm for motion estimation in video sequences (for a more detailed
description of 3DRS and its relation to the proposed algorithm refer to Appendix B). This
influence led to a new algorithm for segmentation of the MR images, which differs from the
current algorithms found in the literature. The main point where it differs from the current
algorithms is the way it treats the intensity inhomogeneity, namely the proposed algorithm
inherently adapts to the inhomogeneity by learning/adapting ‘online’ (sample-by-sample).
Thereby it is not necessary to have multiple iterations over the data to segment the image
since it is able to segment the image in one pass over the data. The used online learning
scheme is based on LVQ (see Chapter 4), and is further tailored to the segmentation of MR
images by integration of spatial context and the use of a special scanning order of the data.

Main contributions:

- Online learning has been introduced to learn the tissue statistics and implicitly track
the intensity inhomogeneity inherent to MR images, which results in a significant
decrease of computational complexity.

- Different scanning orders have been explored to relax adaptation requirement of the
online learning scheme.

- Influence of spatial context has been integrated in the online learning scheme, to add
robustness to noise and improve overall stability.

- A modification to the online learning rule has been made to allow for 3D learning of
the tissue statistics.

- A separate bias field correction algorithm has been implemented in the initial phase of
this research.



1.4 Thesis outline

In Chapter 2 the current methods for handling the bias field and segmentation will be
discussed to be able to put the proposed method into perspective. In Chapter 3 an
implementation of a bias field correction method is described. Thereafter, in Chapter 4 LVQ
is introduced with relevant variants on which the proposed segmentation method is based. In
Chapter 5 the proposed method is described with some variants, which will be validated in
Chapter 6 by comparing it to base-line methods on simulated and real datasets. Finally, in
Chapter 7 the conclusion and discussion are given.



2 Literature on tissue segmentation and bias field

correction

This chapter gives an overview of the current methods for bias field correction and
segmentation. The description of bias field correction is relevant since the image
inhomogeneity is the main artifact hampering the intensity-based segmentation, and the
handling of the inhomogeneity plays a central role in the proposed method. Furthermore, there
is a strong relation between bias estimation and tissue segmentation, since once the bias is
known the segmentation is simplified a lot and conversely once the segmentation is known
the bias can be deduced. This fact is used widely in the iterative methods for bias field
correction and tissue segmentation. It eventually leads to expectation maximization based
segmentation methods integrating bias field correction, classification, tissue class model
updates, markov random field parameter estimation, and even registration to an anatomical or
tissue atlas in one iterative loop.

2.1 Bias field correction

The intensity inhomogeneity (a.k.a. shading, nonuniformity) (Figure 4(b)) is caused by,
among other effects, coil imperfectness, gradient-driven eddy currents, and electrodynamic
interactions with the subject, which makes it also patient dependent. Furthermore, its shape is
also dependent on the scanning parameters. The inhomogeneity presents no (large) difficulties
for visual inspection, however, it does hamper automated analysis profoundly, such as in
intensity-based tissue segmentation where the intensities are used to identify tissues and are
assumed to be the same throughout the whole volume. Although MR scanners can be
improved, the inhomogeneity is an inherent problem in MR imaging. One could measure the
inhomogeneity in vivo (during the scan) or by the use of phantom. However, as this approach
requires extra scans or hardware, which are not always available or simply impractical, many
retrospective (data-driven) methods have been published.

In these methods, the intensity inhomogeneity is generally explicitly modeled as a smooth
multiplicative field extending over the entire image [Sled98], although some methods also
consider an additive component, such as the method by Likar et al. [Likar01], this is largely
ignored.

The model of the bias field is thus described by:
I,(r)y=1,(r)-b(r)+n(r), (D

where, r =[x, y,z] is the location, 7,(r) is the observed image, /,(r) is the true image, b(r)
is the bias field, and n(r) is additive noise. Some methods log-transform the data to change
the multiplicative bias field to an additive one which simplifies the computation:

log(1,(r)) =log(Z,(r)) +log(b(r)), )
where the additive noise is ignored.

This low-frequency bias field could be removed by high pass filtering the image. Since the
bias field is multiplicative, the image is then first log transformed before the low frequencies
can be subtracted, this is called homomorphic filtering. Unfortunately, the frequency spectrum
of the brain overlaps that of the bias field, so the estimated bias-field is influenced by the



brain structure as well, and thus by high pass filtering, intensities of structures of the brain are
distorted.

Given that the solution is not straightforward, many different methods can be found in the
literature. For example: methods using filtering combined with some preprocessing to prevent'
the distortion of the brain structures [Cohen00; Cheng06], gradient based methods [Garcia05;
Luo05; Saha05], methods based on normalization of local histograms [Shattuck01], based on
classification/segmentation [Vanleemput99; Madabhushi06; Wells96], and methods based on
the global histogram [Sled98; Likar01; Vovk04; Vovk06].

Of all these methods one of the most cited methods is the method of Sled et al. [Sled98],
which is a nonparametric method for automatic correction of intensity nonuniformity in MRI
data, commonly known as N3. The term ‘nonparametric’ indicates that it does not rely on a
parametric model of the tissue intensities, and thus makes no assumptions and is fully
automatic. This iterative method is based on the notion that, due to the intensity variation
introduced by the bias field, the intensity distribution of the bias-distorted image is the blurred
version of the intensity distribution of the original undistorted image. The idea now is that the
distribution of the bias free image can be deduced from the distribution of the image
containing a bias field by deconvolving it with the blurring kernel and thus by sharpening (or
condensing) the distribution. The mapping of the intensities between these two distributions is
applied to the image and spatially smoothed using B-splines to obtain a bias field estimate.
This process (Figure 5) is repeated until it converges which requires in the order of 20
iterations. In this process sub-sampled data can be used since the bias field we are trying to
estimate is smooth.

B
%
calculate intensity ~
histogram
—
MR image containing [—
inhomogeneity ‘histogram sharpening’

apply mapping to the
image and apply
smoothness constraint

remove estimated
bias field

estimated bias field

l if bias field is ‘flat’

STOP

Figure 5: The process used to remove the bias from MR images as in N3 and Vovk's methods.

There are other methods using a similar technique as N3. The method by Likar et al.
[Likar01] models the bias field with second order polynomials and the entropy of the image is
minimized, i.e. the intensity distribution is condensed, by adjusting the parameters of the
polynomial bias-field model. The method by Vovk et al. [Vovk04] calculates ‘forces’ which
will condense the histogram and like in N3 maps these to the image and this estimate is
smoothed using a Gaussian kernel. However, in calculating the forces, the second derivative



of the image is taken to create a two-dimensional distribution (feature space) in which there
will be more discrimination between tissue types. This is helpful since in the one-dimensional
intensity histogram the tissue intensity distributions overlap considerably. In another method
by Vovk et al. [Vovk06] the feature space is raised to higher dimensions by combining
different modalities (e.g. PD and T2) and the forces are calculated within this space, thereby
allowing better discrimination between tissues and reducing overlap, which improves the
performance.

In the paper by Sled et al. [Sled98] a limitation hampering all retrospective methods is given,
which is that they cannot distinguish between variations caused by the bias and slow natural
variations, and thus also remove these slow natural variations. However, especially in high
Tesla MRI [Hu04] (3T or higher), the bias is much stronger than the subtle natural variations
and renders these insignificant. In the literature, papers giving an overview/review of the
methods are available [Sled97; Arnold0l; Belaroussi06; Huo06; Vovk07]. From the
evaluation by Arnold et al. [Amold0l1], where six algorithms are compared, it can be
concluded that N3 is robust and delivers the best performance together with the method
proposed by Shattuck et al. [Shattuck01]. Although Shattuck’s method performs a little better
in case of mild bias it performs worse in case of strong bias [Huo06]. Furthermore, given that
Shattuck’s method uses an explicit brain tissue intensity distribution model for which the
parameters are estimated from the global histogram, which makes the method less robust and
less generalized, N3 and similar methods can be considered the most valuable.

2.2 Tissue segmentation

In brain tissue segmentation, the objective is to segment a brain MR scan into the basic tissue
types, namely the CSF, GM and WM classes, which can be identified by their intensities in
the image (see Figure 3). However, given the degradations of the ideal image described in
Section 1.2, this is not straightforward. Besides inter-scan intensity variation, the intensity
inhomogeneity and noise cause the intensity distributions to overlap, and thus standard
histogram based thresholding, with the help of, e.g., k-means clustering (see Appendix A) to
obtain these thresholds, leads to misclassifications (Section 6.2).

Therefore, numerous methods, which aim to overcome these degradations, have been
published and research in this field is still ongoing. In this work we focus on the
classification-based, intensity-driven methods, which segment the brain by classifying
(individual) voxels based on their intensities, although extra information is often integrated in
the form of spatial context and optionally in the form of an atlas®. The intensities can be multi-
spectral due to the multiple modalities that can be obtained by changing the parameters of MR
scanner. It should be noted that besides the classification-based methods, there are region-
/edge-based methods, like [Jimenez-Alaniz06; Kong05]. In such methods, homogeneous
regions of voxels are grouped. These region-/edge-based methods are not described here
further since most, including the state-of-the-art, methods and our proposed method are
intensity-based.

For segmenting an image while handling the bias field degradation, Wells et al. [Wells96]
developed one widely cited classification-based method. This is an iterative method based on
expectation maximization (EM) and includes bias field estimation. In this algorithm, the tissue
intensity distributions are modeled by a mixture of Gaussians with parameters mean, variance,
and prior probability for each tissue (see Figure 6 for an impression of this mixture model on
the lower right). At the start of the algorithm the parameters are all initialized, the mean,

6 An atlas is a spatial probability map with prior tissue probabilities for each location.
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variance, and prior probability are obtained from training, and the estimated bias field is
initially flat. Using the tissue class model and the estimated bias field, tissue class
probabilities are assigned to all the voxels (E-step) and from this classified volume the
estimated bias field can be improved (M-step). The process is repeated for multiple iterations
until convergence (typically 5-10 on 1.5 Tesla data).

classify B 2.5 e r
update MRF
For initialization and EXpeCtatlon
oonstra!ning. of the .
dlassifications Maximization
f
i
:
/ A
update mixture model\> update bias field

Figure é: lterations in the Expectation Maximization method of Van Leemput.

Van Leemput et al. [VanLeemput99] expanded Wells’ method by updating the Gaussian
mixture model parameters in the iterations, with the use of spatial context via markov random
fields (MRFs), and integration of atlas information (See Figure 6). This method is considered
state-of-the-art in many publications and is often used as a reference. The use of spatial
context mainly overcomes the misclassification due to noise in the image since it introduces
dependency among neighboring voxels and thus resolves ambiguities (the tissue class overlap
due to noise). The atlas provides good initial estimates of the tissue parameters, and during the
iterations the atlas is used to constrain the classifications, this improves the robustness of the
method to severe bias fields. However, the atlas needs to be spatially registered to the brain
prior to the segmentation process, which requires additional computations.

More EM-based methods can be found in the literature [Fischl02; Fischl04; ZhangO1;
Murgasova06], and similar iterative methods based on fuzzy c-means clustering [Bezdek95],
including spatial context models and bias field estimation, are available as well [Liew06;
Shen05; Pham99; Cai07]. Although the performance of these iterative methods is good, the
main drawback of these iterative methods is that they are time-consuming, since they go
through the whole dataset multiple times.

Overviews discussing mainly the methods described above, including the region-based
methods, are available in the literature [Liew06; Clarke95; Cuadra05; Pham00; SuriO1].

Recent developments are methods combining segmentation and registration to an atlas
[Ashburner05; Pohl06] in the iterative loop. In these methods the registration and
segmentation are integrated in the iterative EM framework, and not applied sequentially as in
Van Leemput’s method. Integration of registration in the iterations improves the accuracy of
the registration and segmentation, and if an accurately registered atlas contains anatomical
labels, anatomical structures can be segmented automatically. For example, in the method by

11



Pohl et al. [Pohl06] the atlas helps in the segmentation of the thalamus (see Figure 1), which
is difficult to segment accurately based on intensity alone.

The proposed method in this thesis handles the inhomogeneity implicitly, while most methods
with bias field compensation introduced above model the intensity inhomogeneity explicitly
as a multiplicative bias field. Implicit adaptation to the inhomogeneity is achieved by
classifying using a tissue intensity model deduced from local sampling of the voxel data,
which is valid since the bias field is smooth, and thus the tissue statistics are locally
stationary. Other methods handling the bias field implicitly by local sampling are, for
example, the methods by Awate et al. [Awate06] and Yan et al. [Yan95]. However, the local
samplings in these methods have overlap and thus there is no gain in speed contrary to the
proposed method where this overlap is avoided by recursive learning and a special scanning
order of the data.
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3 Implementation of bias field correction

A new bias field correction method has been implemented; this was done in the early stage of
this research to get acquainted with the data and it is a valuable tool for further analysis of
MR images. The implementation is similar to the methods proposed by Sled et al. [Sled98]
and Vovk et al. [Vovk04], although there are some differences. A detailed description of the
method is given in this chapter. The method is validated on some images in Chapter 6,
although only qualitatively, since it is not the main subject of this thesis. Furthermore, it is
used to compare the performance of the proposed segmentation algorithm before and after
bias correction.

3.1 Methodology

As described in Section 2.1, the inhomogeneity in the MR image is commonly modeled as a
smooth multiplicative bias field, see Equation (1). In the implemented algorithm we also
assume this model and like most methods an additive component of the bias field is ignored.
The multiplicative bias field introduces additional variance to the image, which is expressed
in the intensity histogram of the image as dispersion, or ‘blurring’. Conversely, the histogram
of the unknown bias-corrected image can be estimated from the histogram of the image with
bias by condensing the histogram. In the implemented method this condensing is performed
by application of the mean shift [Cheng95], contrary to Sled and Vovk’s methods where other
but similar methods are used to condense the histogram. Mean shift is a simple procedure
where each point in vector space is mapped to the mean of the data points in its neighborhood.
In this method we use the mean shift on the intensity histogram to obtain a mapping between
intensities of the distorted image and those of an estimated bias-free image. From this
mapping we can calculate intensity-dependent, voxel-wise bias estimates, which can be
smoothed to obtain a bias field estimate. This process is repeated until convergence. See
Figure 5 for an impression of this algorithm.

Preprocessing

Standardization

Since the global intensity of the MR scan can vary largely, the image is standardized prior to
the application of inhomogeneity correction. This standardization is performed by linearly
scaling the intensity range of the image such that the 90" percentile of the intensity histogram
is set to 400.

Masking non-brain areas

The skull and other outliers, which might influence the bias estimation negatively, are masked
by selecting the larger smooth areas using a simple morphological operator’. The smooth
areas that remain are mainly the brain tissues. The morphological operation is applied per
slice and defined as follows:

0, if diff(xa }’) > Tsmoolh

] reprocesse (x’ y) = {
preprocessed I(x,y), otherwise

€)

where

7 Alternatively the non-brain areas can be removed using a skull-stripping algorithm.
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where 1(x,y) and Lyreprocessea(X,y) are the input and pre-processed slice, d is set to be 5Smm and
the smoothness threshold Tgmonp is set to 1. An example T1 input slice and its result can be
seen in Figure 7, where mainly only the brain tissues remain. The pre-processed slices will be
used for the estimation of the bias field, and the estimated bias field is applied to the original
input image.

Figure 7: Example of preprocessing on a Tl image.

Intensity-dependent bias estimates

The intensity-dependent bias estimates are calculated from the intensity histogram of the
whole preprocessed volume using mean-shift mapping. We define the mean-shift mapping in
the intensity histogram as:

s/2

> H piomea (fy 4D (f, +1)
fi(f)=1 (5)
D H yorea (s +1)

i=—s/2

where Higomedi) is the histogram of preprocessed input volume, f; is the distorted intensity,
f(f2) is the estimated corrected intensity for f;, and s is the size of the mean-shift window
which has been set 64 in the implementation. Thus f, is the mean intensity in the
neighborhood of intensity f; in the intensity histogram. From this intensity mapping, f; —
Jf«f2), an intensity-dependent bias estimate can be calculated:

b(f)= Tl 1.(fD) (6)

From the formula we can see that mapping in the background, where values are close to 0,
will be inaccurate due to lower signal to noise ratio and quantization. So, these inaccurate
estimates will have a large negative effect on the bias-field estimation, if not excluded.
Therefore, we exclude the background intensities and also outliers on the higher end of the
intensity range from the bias field estimation:
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In case of the brain, and given the correct thresholds T, and T, the selected intensity range
represents the brain tissue. In practice, the thresholds were set to 100 and the maximum of the
intensity range. The obtained intensity-dependent bias estimates can be applied to the image

to obtain voxel-wise, intensity-dependent bias estimates, i.e. 5'(7,,,cessea (F) -

Smoothing
Of the voxel-wise, intensity-dependent bias estimates, 5'(1,,,,yceseq () » SOME are erroneous

since there is overlap between the individual tissue intensity distributions in the histogram and
thus the mapping for some voxels will be incorrect. However, it is assumed that the majority
of the estimates is good. By spatially smoothing this initial estimate with a Gaussian kernel, to
apply the smoothness constraint of the bias field, a good approximation, b, (r), of the true

bias field can obtained.

Smoothing is performed in two dimensions within a slice, i.e. no inter slice-smoothing of the
bias estimates is performed. Smoothing only within the slices, and not in axial direction,
allows the algorithm to correct for rapid interslice intensity variations that can occur in some
scanning protocols. The used Gaussian smoothing kernel has a standard deviation of 20mm
and was cut off at the 10% points to save calculations. The resulting bias field estimate can
be removed from the input image by dividing the image by it.

Multiple iterations

The estimated bias field does not correct the intensity inhomogeneity at once. Therefore, the
procedure of calculating the bias estimates from the histogram, smoothing, and division is
repeated for multiple iterations, until convergence. However to improve the performance, two
extra steps are added to the procedure. First, to speed up the convergence, the shift calculated
by the mean shift is amplified:

fef)=4-(f (S - T+ 1a 8)

where A, the amplification, has a value of 5.0 in the implementation.

Secondly, to prevent drifting of the average image intensity, the average shift produced by the
mean-shift mapping is compensated for:

f H jtonea O '. (-1
S =1 (fa)+ e Thigh )]
Z Hdistorted (1)

=Tipw

And f"_ (f,) replaces f,(f,) in Equation (7).

Finally, these iterations are repeated until the energy of the estimated bias field in an iteration
goes below a certain threshold or a maximum number of iterations is reached. The energy E is
calculated using the following equation:
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| bsmooth (r) -1 |
. 2 e (10)
N

where b (r) is the smoothed bias field estimate and N is number of voxels in the volume.

smooth
The threshold to terminate the iterations based on the energy has been set to 0.001 and the
maximum number of iterations to 20.

Sub-sampling

Since the bias field is smooth it can be calculated on a sub-sampled version of the input
image, this significantly reduces the processing time of the algorithm (this is also applied by
Sled et al.). In this implementation the image is sub-sampled in the x and y direction to a
lower working resolution while the number of slices is maintained. After the algorithm is
converged and the final bias field is calculated, this final bias field is up-scaled and applied to
the original input image. In the implementation the standard working resolution was chosen to
be 128x128 pixels in a slice and the number of slices is maintained.

Pseudo-code

For final clarity the algorithm is described in pseudo-code in Table 1.

input: MR image distorted by intensity inhomogeneity
Step 1. standardize the intensity range

Step 2. sub-sample the image to the working resolution

Step 3. mask the non-brain brain areas by using Eq. (3)
repeat
Step 4. calculate the intensity histogram
Step 5. calculate voxel-wise intensity-dependent bias estimates
Step 6. spatially smooth the bias estimates to obtain an estimated bias field
Step 7. remove the bias field by division
Step 8. update the total bias field
until (bias field energy < threshold) or (maximum number of iterations is reached)
Step 9. upscale the total bias field
Step 10. remove the bias field from the original input image by division
output: corrected MR Image and estimated bias field

Table 1: Pseudo-code of the implemented bias-comrection method.
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4 Learning Vector Quantization

As learning vector quantization (LVQ) is the learning scheme on which the proposed
segmentation method is based and since it essential to understanding of the method an
introduction to LVQ is given in this chapter. LVQ [Kohonen86] belongs to the so-called
competitive learning methods of which other well-known examples are k-means clustering
[Bezdek95] (see Appendix A) and the self-organizing map (SOM) [Kohonen90].

LVQ is a learning scheme that can be used to obtain a classifier or quantizer, where
classification/quantization is based on a set of features, an input vector, e.g. the intensity of a
voxel. The obtained classifier is similar to one obtained through the well-known k-means
clustering, where k classes are represented by the mean of the samples assigned to them, the
centroid (reference vector), and each sample is assigned to the class with the closest centroid
calculated in the previous iteration, in this way the within-class variance is iteratively
minimized (see Appendix A). As a result, one obtains a meaningful representation of the data
by a relatively small number of classes, which represent the clusters in the data.

The main difference between k-means and LVQ is that in k-means the centroids are updated
after classifying the whole dataset, while in LVQ the reference vectors are updated after each
sample. Thus in LVQ the samples are processed one-by-one, this is so-called online learning.

In the next section the basics are explained, and then some relevant modifications of LVQ are
given after which LVQ is related to the proposed method.

4.1 Basics

Xy

X2j

argmin|| X; —W, |
1
X3

Xy [lx-ws|

Figure 8: An example LVQ network. x={xy;, X3 X3, X4j, ..., Xny}-

The LVQ algorithm can be thought of as a neural network where each class is represented by
a neuron® with a reference vector. Figure 8 depicts an exemplary LVQ network where the
input layer has four’ dimensions and the competition layer has three neurons with reference

8 Classes can also be represented by a group of neurons; however, this is ignored here since it is not used in our algorithm.

? Please note that in the present application of the proposed algorithm only one input dimension (the T1 image), a scalar, is
used. In our application more input dimensions could be obtained from different scans of the same brain using different
scanning parameters, i.e. other modalities.
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vectors, w;, for class i. The reference vectors represent three classes and the number of classes
is chosen in advance. For each input vector x;, the neuron whose reference vector is closest to
the input vector is assigned as the ‘winner’. In general, the euclidean distance measure is
used:

k(j) =argm’_1n “ X, —w, “ (1 1)
where x; is the input vector, w; is the reference vector of neuron i, representing class i, and £ is

the winning neuron/winner class for sample ;.

To obtain a network with reference vectors for valuable classification, the network should be
trained, i.e. it should ‘learn’. This learning is achieved by feeding the network with samples
from the dataset and updating the reference vectors after each sample with the following
recursive formula [Wu03]:

w.()=w,(t-D+a(®)h, - (x, —w,(1— 1) (12)
where A, is a neighborhood function and () is a learning rate, which is usually chosen as a
function decreasing with time.

If we have a training set of samples with their classification available, labeled by a human
supervisor, we can perform so-called supervised learning. For supervised LVQ, LVQI
[Kohonen90], the neighborhood function is defined as:

1 if i=k and x is classified correctly
h;, =q1-1 if i=kand x| is classified incorrectly (13)
0 ifizk
Afterlthe training phase is completed, the trained classifier can be used to classify new input
samples.

For unsupervised LVQ (ULVQ), where there are no labeled samples available for training, the
neighborhood function is defined as:

. ifi=k 14
BETN0 ifizk (

These neighborhood definitions lead to a crisp update method, in which only the reference

vector of the winner neuron, w;, is updated; this scheme is called ‘winner takes all’.
b

When using ULVQ with a decreasing learning rate, a(f), convergence is implied and the
resulting reference vectors are much like those obtained through k-means clustering. Namely,
the reference vectors automatically drift towards the dense clusters in the input data and
represent these clusters. In our application these clusters are the CSF, GM, and WM intensity
distributions.

For final clarity, in Table 2 the pseudo code for the training phase of ULVQ is given.
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initialize reference vectors
t=0
repeat
take an input sample j
find the winner k using (11)
update the reference vector using (12) and (14)
J=random sample number, t=f+ 1

until (a(f) is equal to 0) or (the maximum number of iterations is reached)

Table 2: Pseudo-code for training using ULVQ.

4.2 Modifications

In the following, two modifications to the basic ULVQ algorithm are described, which are
known in the literature and relevant to our application. These modifications are the
introduction of fuzziness and a Gaussian kernel.

4.2.1 Fuzzy LVQ

Fuzziness increases the performance of LVQ by preventing the algorithm from getting stuck
to local minima®, as it does in fuzzy c-means [Bezdek95]. Like in fuzzy c-means one can
assign each sample to all classes to a different degree. If we redefine the neighborhood
function we can introduce this fuzziness in the update scheme. Consequently, we update not
only the winner but also the other reference vectors and thereby abandon the ‘winner-takes-
all’ scheme, which is prone to local minima.

Fuzzy membership is described with the following membership function:

“2/(m-1
I, —w,

/li(xf)= C 2/(m-1
Z” X, —W, “_ D
i'=1

which is the same as the membership function in fuzzy c-means, where ¢ is the number of
classes, and m is the degree of fuzziness, typically m=2 in fuzzy c-means, and for the limit
m—>1 it leads to crisp (hard) classification (see Figure 9). This membership is based on the
relative inverse (squared) distance of a sample to all reference vectors.

(15)

The membership degree is then used in the neighborhood function in the following way
[Bezdek95; Wu03]:

B = (x )" (16)

see Figure 9 for graphical impression.

101t can converge into a set of neuron weights, which represent the data badly.
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422 Kernel LVQ

An LVQ method described in the literature using kernels in the update function is that of Wu
et al. [Wu06]. The kemel is typically defined as a Gaussian and makes the algorithm more
robust to outliers and noise.

The update function (12) is modified by adding an Gaussian kernel weight to it, which weighs
the contribution of the sample to the update of the reference vector based on its distance to the
reference vector, assuming samples with a large distance from the reference vector are noise
or outliers and should be ignored. Thus, the update function becomes:

Ix, -w, (=D’
B()

Sliw, -1 -1
)=

w, (=W, +a(0)-h,, -expi- b (x, —w,(=1)

where 4;;; is defined as in ULVQ (14). For adaptation to the scale of the dataset, f(?) is
introduced, which is the variance of the reference vectors, where ¢ is the number of classes,
and wW(r—1)is the average of all reference vectors. Again, see Figure 9 for a graphical

impression.
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Figure 9: Graphical representation of some of the discussed functions for three classes with
reference vectors with values 2, 4, and 8. [a) Fuzzy membership function {15) withm = 1.1 andin
(b} with m = 2. [c) is neighborhood function (16) with m = 2, and (d) crisp neighborhood
multiplied with kernels as in (17).

4.3 Use in the proposed method

To improve the robustness of our method both the Gaussian kernel and the fuzzy membership
are used.

The Gaussian kernel improves robustness to noise and outliers. Using a Gaussian kernel
seems essential in our application, especially with the use of online learning, where the kernel
helps to stabilize the algorithm. The kernel creates the ability to ignore outliers, which are not
modeled, and noise. In our case outliers can be artifacts in the scan, lesions, or non brain
tissue (skull, skin, bone, etc.) if they were not removed in advance. Without using the kernel,

the outlier intensities would have a large influence on the behavior of the algorithm and would
destabilize it.

Fuzziness has proven its ability to avoid getting stuck to local minima, since all the reference
vectors are updated, contrary to the winner-takes-all scheme, where some reference vectors
can be completely ignored [Karayiannis99]. Besides this valuable feature it appears to be a
good model for the partial volume effects, given the results of the fuzzy c-means based
segmentation methods mentioned in Section 2.2. Namely, the fuzzy membership of voxels to

different tissue classes models the mixture of pure tissue types present in one voxel, and
might thus even be essential to incorporate.
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S An adaptive online learning based tissue

segmentation method

Using LVQ (Chapter 4) we can train a classifier to classify the voxels of a brain image into
the tissue classes based on their intensity. If we use a LVQ network with 4 classes, one for
BG, CSF, GM, and WM, and train it with samples from the input image the reference vectors
will move towards the clusters in the data which are the BG, CSF, GM and WM intensity
distributions. If, after training, all voxels are assigned to the class with the closest reference
vector (i.e. the winner class) we obtain a brain image segmented into the tissue classes. This
segmentation is basically a multilevel thresholding procedure, which does not include
intensity inhomogeneity compensation and spatial context (such as MRFs) for noise
compensation. If the intensity inhomogeneity and/or noise are significant, this leads to an
unacceptable amount of misclassifications. Methods similar to the process described above,
where the training and classification phase are separated, are described in [Karayiannis99;
Alirezaie95].

The proposed segmentation method in this thesis is also LVQ-based, however, contrary to the
above-mentioned LVQ methods there is no real separation between the training and
classification phase whereby intensity inhomogeneity compensation is enabled. Namely, in
the method proposed here we continue learning during classification, i.e. a(¥)>0 during the
classification. By sample-by-sample learning during the classification the drifting tissue
intensities (due to the inhomogeneity) can be tracked, and if the scanning order of the data
allows this, the bias field is compensated for implicitly. In this way no modeling of the bias
field is needed and we can classify the data in one pass. This gives a significant reduction in
processing time, compared to present well-known EM-based methods for MR brain image
segmentation described in Section 2.2. These methods overcome the intensity inhomogeneity
in the data by iteratively classifying the data and updating an explicit model of the bias field.
As this means classifying the whole dataset multiple times and each time calculating a bias
field using low-pass filtering or polynomials it is computationally expensive.

The proposed method is based on the LVQ scheme with both fuzziness and a Gaussian kernel
as described in Chapter 4. However, additionally we need a special scanning order to be able
to track the intensity variations due to the bias in the 3 dimensional data. Therefore, several
so-called locality-preserving scanning orders are proposed in the next section. Furthermore,
we also make a modification to the update rule to allow influence of spatial context in
classification of a voxel for handling noise and improving spatial consistency of the produced
segmentations. Finally, there is an option to abandon the inherently 1D update rule of LVQ
and adopt a new 3D learning rule where the scanning order is of less importance. The
flowchart of the proposed algorithm is depicted in Figure 10.
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Figure 10: Flowchart of the algorithm. The thick lines indicate multiple vectors while thin lines indicate a
single vector.

The different scanning orders and the 3D learning rule lead to three versions of the proposed
algorithm, namely two based on 1D learning with different scanning patterns, the raster and
hybrid scan, and one based on 3D learning.

5.1 Scanning (1D-learning)

Since the LVQ scheme is inherently 1D, i.e. it learns by feeding samples sequentially, and the
input MR volume is 3D, a special 1D scanning order of this 3D data should be defined. In
order to be able to track the drift of the intensities due to the bias there should be no jumps in
the data observed along the 1D trail. Since as long as we do not jump location in the MR
volume, the present local model (reference vectors) is valid for the next (neighboring) sample
and only needs a small adjustment based on that next sample. Thus the scanning pattern
should have what is called a locality-preserving behavior. In this section two scanning
patterns are proposed, the raster scan and a hybrid scan based on the Hilbert space-filling
curve.

5.1.1 Raster

The most straightforward way of scanning the volume is to do it slice-by-slice and line-by-
line. However to preserve the locality of the data along the 1D trail, we alternate direction for

every line and every slice, i.e. we always move to a neighboring voxel and never jump
through the data.

slice n slice n+1
Figure 11: Raster scanning; meandering through lines and slices. The scale of the scanning pattern is
exaggerated for display.

Figure 11 shows in which order the samples are classified within a slice, once the slice is fully
classified we simply move up one voxel from the present location, assuming we are
classifying the volume from bottom to top, and scan this next slice.
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Scanning directions were chosen in this specific order after examining the bias field found in
the MR datasets used in this thesis. Namely, it was observed that the speed at which the bias
field typically changes is lowest in the horizontal direction, higher in the vertical direction,
and even higher the z-direction, although this can be different for other datasets.

5.1.2 Hybrid

Theoretically the best locality-preserving pattern is defined by the Hilbert space-filling curve,
see Figure 12. The Hilbert curve is defined for squares of size2"” x2",ne N, and can be

computed by recursion, namely the curve of order n consists of 4 rotated curves of order n-1.
Although the curve is also defined for higher dimensions, we limit ourselves to the 2D
version, since we also want to use spatial context information calculated in the previous slice,
as described in the next section.

B

Figure 12: Hilbert curves of order 1, 2, 3, and 4.

Compared to the raster scan, the Hilbert curve is not biased towards a specific direction and
therefore progresses slower through the data whereby there is more ‘time’ to adapt to the
drifting intensities. However, in our application, specifically in brain scans, the Hilbert scan is
not suited. This is since the hidden assumption, when using the Hilbert scan for our
application, is that the data covers the whole square and the inhomogeneity can be tracked
everywhere in this square. Since the brain only covers a circular segment of the square, using
the Hilbert scan would introduce jumps in the 1D observed data. Namely, due to the random
like pattern, the curve can exit the brain in a certain position and enter at a position far from
where it exited, and then the locality preserving behavior does not hold. These jumps disable
the ability of the online learning scheme to track the inhomogeneity.
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Figure 13: Hybrid scanning; meandering through lines and slices. The scale of the scanning pattern is
exaggerated for display.

Therefore a hybrid scanning pattern is proposed, which is a combination of the raster and
Hilbert scanning. There, small squares are scanned using the Hilbert curve and these squares
are concatenated in a raster pattern, see Figure 13. In this pattern the jumps in the observed
data are constraint, i.e. it will always reenter the brain close to where is exited. The hybrid
method is a balanced version of the Hilbert and raster scans and thereby it preserves the
locality and prevents large jumps in the observations.
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Figure 14; Example of proposed method combined with Hilbert scanning. (a) The input image with four

classes and inhomogeneity. (b} the segmentation using k-means based thresholding, and {c) the result

using the proposed LVQ based method. (d) shows the reference vector of the brightest class for each
location.

Although the Hilbert scan is not used on the brain data, it is interesting to illustrate the
performance of the proposed segmentation method using the Hilbert scan on a synthetic
image'’, see Figure 14. This synthetic image does match the square of the Hilbert curve and
the inhomogeneity can be tracked everywhere. For this image an 8™ order Hilbert curve was
used, i.e. 256x256. The image contains four classes and has strong inhomogeneity
degradation. Figure 14 (d) illustrates the tracking behavior of the proposed method.

5.2 Spatial context

In addition to the special scanning order, the influence of spatial context is added to the
algorithm. The spatial context is used to benefit from the fact that segments are homogeneous
connected regions spanning many voxels and thus there is correlation between the classes of
neighboring voxels. That is to say, if neighboring voxels are of class x then the current voxel
is probably of class x as well. Using this spatial context improves the algorithm’s noise
robustness and overall stability. The noise robustness is improved since by using the spatial
context the ambiguity due to the noise induced tissue intensity distribution overlap can be
resolved, by biasing the decision for classification to the class most found in the
neighborhood. Furthermore, the overall stability is improved since spatial consistency of the
tissue regions is imposed.

1 The synthetic image was manually created with a graphics editor.
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Figure 15: Used spatial context, i.e. neighborhood classifications. (a) for raster scanning, (b) for hybrid
scanning.

In Figure 15, the used spatial context is shown. The arrow indicates the current scanning
direction, the ‘?’ indicates the current voxel which should be classified, the white voxels have
already been classified, and the classification of the grey voxels is unavailable in the current
slice. However, the classification of these grey voxels is available in the previous slice'. If we
assume that the slices are thin (approximately 1mm) then the classifications can be taken from
the previous slice instead, since it will be highly correlated.

As the available classifications depend on the scanning pattern which is used, two contexts are
defined: in case of raster the neighboring classification of voxels A, B, C, and D can be taken,
and in case of the hybrid scan, due to its random like pattern, neighbors E, F, and G are taken
along the Hilbert curve.

5.3 Update rules

We base our method on LVQ with fuzziness and a kernel. Additionally, the spatial context
influence should be integrated in the LVQ scheme. The influence of the spatial context is
expressed by adjusting the ‘sensitivity’” of the neurons based on the neighborhood
classifications (A, B, C, and D or E, F, and G) of the voxel to be classified. We model this
sensitivity by adjusting the width of the Gaussian kernel:

” X; —W,»(t—l)
2(s,0)°
where a is now constant since we keep learning during classification, ¢ is a constant and

determines the default width of the kernels, and s;, the class dependent sensitivity is defined
as:

2

w () =w,(-D+a-(g(x,)" exp{- }(x; —w,(r=1) (18)

5; :ﬂ#i (19)

with #; is the number of voxels in the neighborhood belonging the class i and f is a constant,
which controls the influence of the neighborhood. Note that hereby the /) from Section 4.2.2
is replaced and the width of the kernel is dependent on the spatial context and not on the
variance of the reference vectors.

Finally, the winner is defined as the neuron £ having the maximum response:

12 Note that this gives a problem at initialization. However, this is solved by the introduction of an initialization phase, see
Section 6.2.2. Furthermore, using the context in this way prevents the need for iterative methods which are used for MRF
such as the commonly used iterated conditional modes (ICM) algorithm [Besag86; Shattuck01].
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5.4 3D-learning

Instead of using the traditional 1D-learning which requires special scanning orders we could
also use 3D-learning, where the recursion is three dimensional. This is achieved by storing the
model, i.e. all reference vectors, for all visited locations. Now by using the raster scanning
described above we can obtain a 3D recursion by averaging the model with the models
obtained in the previous slice and previous line, which were obtained using a different
scanning direction and thus different recursion direction.

We achieve this by not only updating the model with the sample we classify but by also
updating the model with the earlier obtained models in the neighborhood, so additionally to
the usual update step we have an extra model update being:

w, -+ 5i,l(rA) W, (1,)+ a’z(ai,l(rc) W, (tc)+ 51}1('») W, (t5))

w,(t') = (21)

1+ 5i,l(rA) ta, (5i,1(zc) + 5i,1(1D))

Where 1,4, ¢, and tp (note 1z = t-1) indicate the times when the locations that are defined as the
spatial context in Figure 15(a) were visited, I(f) is the class label assigned to voxel which was
visited at time ¢, and d,5 is 1 if a equals b and O otherwise, a; is used to weight the
contribution of the models found in the previous slice, which might be less accurate due to
thicker slices or abrupt intensity variation between slices.

Using the delta functions assures that the model we use from the neighborhood was updated
recently as well, this is necessary since the classes only appear in parts of the image. If we
would average the model with models in the neighborhood everywhere and neglect the delta
functions we would allow our model to be averaged with possibly worse models.

After the additional step (21) for 3D learning, the default rules (18), (19) and (20) are used,
however with #-1 replaced by £°.

Although 3D-learning improves the learning capability, there is a drawback, namely since the
models have to be stored in all locations the amount of memory needed for the algorithm
increases.

5.5 Discussion

In this chapter a new LVQ-based segmentation has been proposed. The main properties are
the use of online learning in combination with a special scanning order to adapt to the drifting
intensities and the integration of the spatial context for noise robustness and spatial
consistency.

Using the learning rate, a, the adaptivity of the methods can be controlled. Setting the learning
rate too low can cause the algorithm to be unable to keep up with the changing intensities.
Setting the learning rate too high leads to instabilities since the model will then only be based
on a short history of measurements.

a is used in 3D-learning and controls to adaptivity in the axial direction. Choosing a high
value allows only smooth variations in the axial direction to be tracked. Choosing a low value
allows for adaptation to rapid intensity changes in the axial direction, however, at the sacrifice
of stability.

27



o controls the default width of the kernels. Choosing a high value allows more influence of
outliers. On the other hand, a low value can make the algorithm lose its tracking ability since
then even changes due to the drifting intensities will be considered outliers.

With S the influence of the neighborhood classifications on the current classification can be
controlled. Setting 8 too low allows noise to pop through in the segmentations. Furthermore,
if B is too low, the consistency of the segments is not imposed. This especially decreases the
performance of the 1D learning based methods where consistency needs to be implied along
the axial direction since it is not implied in the continuity of the model in this direction as in
3D learning. On the other hand, setting f too high leads to loss of detail, since fine detail can
be mistaken for noise.

With the proposed methods the feasibility of using online learning for inhomogeneity
adaptation in MRI segmentation can be assessed. Therefore, in the next chapter, the methods
will be validated and from there conclusions can be drawn for further improvements and/or
modifications to the presented methods.

28



6 Validation

The results of the proposed algorithm should aid in a medical decision-making process and
therefore these results should be accurate. Consequently, thorough validation of a proposed
medical image-processing algorithm is needed before it would ever be fully trusted in medical
decision-making. In most cases the validation of medical image processing algorithms is not
straightforward, given the nature of the medical images with large natural variations,
variations and distortions due to the imaging equipment, and absence of a ground truth. Jannin
et al. [Jannin06] state that validation is rarely the main objective of traditional papers in
medical image processing, furthermore, there has been very little work in the standardization
of the validation processes and this is primarily caused by the diversity of problems and
approaches in medical image processing. Fortunately, for brain tissue segmentation there has
been fine work done at the McConnell Brain Imaging Centre with the creation of the
BrainWeb database [BrainWeb], which contains simulated MR brain scans for which the
ground-truth tissue maps are available. However, it is found in this chapter that good
performance for segmentation on the simulated brain scans does not validate the performance
on real brain scans.

Firstly, the correction performance of the implemented bias correction will be qualitatively
validated in the next section. Secondly, in Section 6.2, the proposed tissue segmentation
method is validated extensively by comparing it to several known methods on simulated data
from BrainWeb and 3 Tesla real data from the Leiden University Medical Center.

6.1 Bias field correction

As the implemented bias field correction method (Chapter 3) is based on a proven principle
and it is not the main focus of this thesis only qualitative validation is given. The method has
been tested on brain scans and visual inspection shows good results, i.e. the shading effect
disappears. The processing of these volumes takes in the order of 1-2 minutes on a 3GHz
Pentium 4 with 512 MB RAM using a C implementation of the algorithm.

In Figure 16, the result on a simulated brain image containing intensity inhomogeneity is
shown. This volume also contains, next to the smooth bias field, rapid interslice intensity
variations, clearly visible in the sagittal view. Since the implemented method smoothens only
within the slice it allows for adaptation to these rapid intensity variations. The final corrected
images show homogeneous tissue intensities throughout the whole volume, indicating that the
bias has been completely removed.

In Figure 17, results on real data are shown. The T1 image has a resolution of 256x256x120
voxels and the T2 images a resolution of 1024x1024x40 voxels and both are from the same
patient. Especially for the T2 images the downscaling to the 128x128 working resolution in
implemented method gives a dramatic speedup. These images were produced by a 3 Tesla
scanner, and contain more severe intensity variations within the slice compared to the
simulated data. The corrected images again show a homogeneous image where the bias has
been removed. Especially the correction on T2 image allows for more details to be visible in
central area in this specific contrast setting. The method was tested on 22 T1 and T2 images
and shows consistent results.
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Estimated bias field Corrected

Figure 16: Results of implemented bias correction method on simulated data. On the left the input
images, in the middle the estimated bias field, on the right the comrected images. Top row axial view,
bottom row sagittal view showing the rapid interslice intensity variations.

Input Estimated bias field Corrected

Figure 17: Resulfs of implemented bias correction method on real data. On the left the input images, in
the middle the estimated bias field, on the right the corrected images. Top row T1-weighted image,
bottom row T2-weighted image.
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6.2 Tissue segmentation

In this section we compare the methods proposed in Chapter 5 to several widely known and
available methods. Namely, the proposed methods are compared to k-means based
thresholding (Appendix A), FAST (FMRIB's” Automated Segmentation Tool) [ZhangOl1],
and EMS (Expectation Maximization Segmentation) [VanLeemput99]. FAST is an EM based
method with Gaussian mixture modeling, bias field compensation and MRF modeling. EMS
is similar to FAST in the mentioned features however it has additional information in the form
of atlas which contains tissue priors for each location, see Chapter 2. FAST and EMS are
freely available through the Internet' and were used with their standard settings. K-means
based segmentation has been implemented by the author in MATLAB.

We compare these methods on simulated data from BrainWeb [BrainWeb] and real 3 Tesla
data from the Leiden University Medical Center.

6.2.1 Methodology

Validation of the segmented images presents a difficulty since there is no ground-truth at hand
with which the produced segmentations can be compared. As ground truth a manually
segmented image by a human-expert could be used, however there is inter- and intra-observer
variability, and obtaining it is very time-consuming task. Therefore the BrainWeb database
has been created, which contains simulated MRI brain images for which the ground truth is
known. The simulated images are created from segmented images of real subjects, which
were obtained through an extensive process [Aubert-BrocheO6NI; Aubert-Broche06MI].
These simulated images model the relaxation times of the tissues, the inhomogeneity, partial
volume effects, and noise, and the amount of these can be controlled independently. However,
there is no ground truth available for the real MR dataset. Therefore, we take the results of
EMS as baseline in these experiments, since these seem closest to the truth after visual
inspection by the author.

To compare the quality of the segmentations as produced by the automatic methods, we
measure their agreement with the ground truth using the so-called Dice coefficient [Dice45]:
2-Q
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where D; is the Dice coefficient for class i, with Q; and Q' the volume of the segmentation

masks for class i of the ground truth and the automated method respectively, and Q' _, the

gNna
volume of their intersection. The measure gives a value between 0, meaning no overlap of the
segments; and 1, meaning perfect overlap. This measure is a commonly used measure in the
brain segmentation field. Besides this measure, segmentation results are depicted for visual
inspection.

Prior to segmentation the skull and other non-brain tissue were stripped from all the images
using BET2 (Brain Extraction Tool) of the FSL toolkit". After skull stripping only brain
tissue is left and all remaining voxels are CSF, GM, WM or BG (background).

13 Oxford Centre for Functional Magnetic Resonance Imaging of the Brain.

14 FAST is part of the FSL Toolkit of Oxford University, http://www.fmrib.ox.ac.uk/fsl/. EMS is available at Medical Image
Computing, Leuven, Belgium, http://www.medicalimagecomputing.com/downloads/ems.php.
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6.2.2 Initialization and settings for the proposed methods

Before using the proposed methods, the intensity range of the image is standardized by
scaling it so that the 90™ percentile of the intensity histogram is at 400. On the resulting brain
images we classify using four classes, WM, GM, CSF and BG. The reference vectors of the
four classes are initialized by equidistantly distributing them over the range 0-400. With the
initial reference vectors we start with refining them on the middle four slices using the
proposed method, which is the training phase. At the end of this training we assume that the
reference vectors are correct for the location where the training stopped. From there we
classify the upper and lower half of the brain by scanning upwards and downwards.

For the hybrid scanning method we use Hilbert squares of 16x16 pixels. For 1D-learning the
learning rate a was set to a constant 0.005, for 3D-learning a was set to 0.05 and @, to 0.2. The
width of the kemnels o was set to 20, and the spatial context parameter  was to 1.3 for all
three methods. Finally, the fuzziness parameter m was set to the commonly used value of 2.
These parameters were determined experimentally. A deeper study of the algorithm’s
behavior depending on these parameters could be for future research, for now we aim at
validation of the produced segmentations and comparing the performance depending on the
scanning pattern and 1D versus 3D learning.

6.2.3 Results

Processing time

It was suggested that the use of online learning would give a significant reduction in
computational complexity. For the experiments a 3GHz Pentium 4 with 512 MB RAM
running Windows XP was used, the processing times on this machine clearly support this
claim. However, it should be noted that the implementation of the publicly available methods

as well as the implementation of the proposed methods could almost certainly be optimized
further.

The processing time of FAST, which is a C implementation, on the used data was
approximately 10 minutes per volume for the standard setting of 8 iterations. Since EMS
requires additional registration of the brain to an atlas containing the priors, it requires more
time. Furthermore, EMS is available only as a MATLAB-based implementation, although
some critical functions are implemented as dynamically linked libraries (dIl’s). The
registration step takes approximately 8 minutes and segmentation 16 minutes, thus together 24
minutes per volume.

The proposed methods were implemented in C and require in the order of 30 seconds per
volume for the used datasets. This is a dramatic speedup compared to the EM based methods.
There is no significant difference between the proposed methods, although 3D learning is
more complex and requires slightly more time in the order of a few seconds. 3D learning is
more complex since it has an extra update rule and requires buffers for the storage of the class
model for each location.

Finally, there is no reference for the k-means method since it has been implemented in
MATLAB. However, since it ignores spatial information and is thus purely histogram-driven,
an implementation in C would probably be even faster than the proposed methods.

Simulated data

The simulated BrainWeb images are provided with their ground truth and the noise levels and
inhomogeneity of the simulated brain images can be controlled. The simulated brain images
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have a resolution of 256x256x181 voxels, where the voxels have a dimension 1x1x1mm’.

For these tests the T1-weighted images were used, where the voxel intensities simulate the
tissues T'1 relaxation times with a precision of 16 bits.

Table 3 and Figure 18 show the results of comparing the methods on the standard BrainWeb
volume where various amounts of inhomogeneity were introduced. In this specific test the
inhomogeneity was set to 0%, 20% and 40% while the noise level of 3% was constant. Where
for a 20% level, the introduced multiplicative field has a range of values of 0.90-1.10 over the
brain area, and the percentage of noise indicates the ratio between the standard deviation of
the noise and the intensity of the white matter tissue. The noise level was set 3% since this
was found comparable or higher than the noise levels found in the real data.

Inhom;) genelty | jags ke EMS | FAST | raster | Hybrid 3D-
[%] means learning
0% CSF 0.9526 |0.9475 | 0.8942 | 0.9351 0.9313 0.9388

GM 0.9474 |0.9379 | 0.9310 | 0.9374 | 0.9346 0.9445
WM 0.9524 |0.9345 | 0.9607 | 0.9463 | 0.9442 0.9525

CSF 0.9422 |0.9476 | 0.8931 | 0.9350 | 0.9309 0.9375
20% GM 0.9263 |0.9378 | 0.9313 | 0.9368 | 0.9338 0.9433
WM 0.9290 | 0.9347 | 0.9614 | 0.9455 | 0.9433 0.9508

CSF 0.9258 | 0.9478 | 0.8933 | 0.9335 | 0.9296 0.9344
40% GM 0.8921 |0.9373 | 0.9291 | 0.9343 | 0.9313 0.9387
WM 0.8913 | 0.934 | 0.9583 | 0.9427 | 0.9405 0.9451

Table 3: Results on standard BrainWeb volume, with various amounts of inhomogeneity and 3% noise.
Segmentation agreement using Dice coefficient.

Figure 18: Results on standard BrainWeb volume, with various amounts of inhomogeneity and 3% noise.
Segmentation agreement using Dice coefficient.

From the Table 3 we can clearly see that the performance of k-means decreases as the
inhomogeneity increases, this is as expected since this method has no bias field compensation.
It should also be noted that it has the best performance in case there is no inhomogeneity at
all. The remaining methods all have bias field compensation and give an almost constant
performance invariant of the amount of bias. However, there are differences between the
methods, and especially FAST stands out. FAST has a lower performance in CSF
classification and a higher performance in WM classification. Furthermore, it is interesting to
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note that the performance of the three proposed methods is similar on this data, with 3D

learning slightly better.
Subject class k-means EMS FAST Raster hybrid 1 3Dt
earning
& | CSF 0.8187 | 08135 | 0,7936 | 0.8144 | 08125 | 08154
GM 0.8818 | 0.8817 | 0.8809 | 0.8895 | 0,8878 | 0,8895
WM 0.8989 | 0.8974 | 0.9069 | 09064 | 0,9048 | 0,9048
CSF 0.7971 | 0.8006 | 07707 | 0.7924 | 0,7906 | 0,7939
51 [ GM 0.8928 | 0.8961 | 0.8959 | 09032 | 09015 | 09031
WM 0.8986 | 0.9010 | 09128 | 09118 | 09101 | 0,9100
4with |CSF 0.8238 | 0.8321 | 08062 | 0.8292 | 08268 | 0,8296
daa LGM 0.8142 | 08852 | 0.8738 | 0.8903 | 0,8883 | 0.8908
WM 0.8048 | 0.8964 | 08981 | 0.9045 | 0.9024 | 0,9024
swin LCSF 0.8214 | 08357 | 0.8029 | 0.8326 | 08296 | 0,8337
fold A LOM 0.8089 | 0.8896 | 0.8710 | 0.8946 | 0,8918 | 0,8947
WM 0.7956 | 0.8960 | 0.8810 | 009033 | 09004 | 0.8993
38 wit, LCSF 0.7878 | 0.8123 | 0.7987 | 0.8210 | 08186 | 0.8241
cis | GM 0.7709 | 0.8864 | 0.8619 | 0,8887 | 0,8895 | 0.8957
WM 0.7444 | 0.8938 | 0.8613 | 08844 | 0,8866 | 0,8868
41 with | CSF 0.8010 | 0.8290 | 08114 | 08331 | 08312 | 08351
fellp | OM 07851 | 0.8939 | 0.8769 | 08949 | 0,8943 | 0,9001
WM 07661 | 0.9036 | 0.8856 | 08972 | 0,8973 | 09017
45 wigy |CSF 0.8224 | 08433 | 08163 | 08422 | 0.8393 | 08423
e oM 0,8264 | 0.8946 | 0,8934 | 0.8967 | 08951 | 0,9013
WM 0.8199 | 0.9041 | 09133 | 09042 | 0,9037 | 09105
46 with | .CSF 0.8265 | 0.8358 | 08192 | 0.8345 | 08323 | 08348
e [GM 0.8164 | 0.8901 | 0.8872 | 08864 | 0,8848 | 0.8952
WM 0,8063 | 0.9021 | 09114 | 0,8941 | 0,8935 | 0,9076
CSF T0.8123 | 08253 | 08024 | 08249 | 08226 | 0.8261
Mean | GM 0.8246 | 0.8897 | 0.8801 | 0.8930 | 0,8916 | 0,8963
WM 0.8168 | 0.8993 | 08963 | 09007 | 0,8999 | 0,9029
Standard |LCSE 0.0147 | 0.0147 | 0,0154 | 00157 | 0,0154 | 0,0153
e [GM 00427 | 0.0050 | 00116 | 0,0054 | 0,0053 | 0,0049
WM 0.0560 | 0.0039 | 0,0188 | 0,0085 | 0,0073 | 0,0076

Table 4: Results on simulated data with various bias fields. Segmentation agreement using Dice
coefficient.
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The BrainWeb database was recently expanded with more simulated patients and also various
bias fields are available separately. Using this data we can test the performance of the
methods under patient and bias field variability. The noise and inhomogeneity specifications
of the new patients are not given at present. However, inspection shows that the noise level is
3-5% and the bias field is absent while there are some rapid interslice intensity variations.
Using these patients and the separately available bias fields A, B, and C a set of new test
subjects has been created. This set includes two patients without additional inhomogeneity,
two with field A, two with field B, and two with field C. The introduced inhomogeneity was
scaled to have a value of approximately 40%.

The results of these tests are given in Table 4 and Figure 19. Again, as we saw in the previous
test, the k-means method is most affected by the inhomogeneity and FAST has the lowest
performance in CSF classification. From visual inspection of the data this appears to be
mainly due to overestimation in size of the CSF segments. Furthermore, if we ignore k-means,
FAST has the highest standard variation in performance in this test, indicating that it is less
stable than the other methods. On this data set there is again no real difference among the
proposed methods.

For all methods the performance of CSF classification is lower compared to Table 3, this is
since in this test BET2 was used for skull stripping while in the previous test the ground truth
was used as mask. Since the area between the skull and the brain is filled with CSF some of
the CSF is usually removed together with the skull, and consequently this affects the volume
of the CSF. This is something that should always be taken into account when accurate
measurement of CSF volume is required. Furthermore, the overall score is lower than in Table
3, this can be attributed for a part to the fact that there is a mismatch between the resolution of
the simulated brain scans and the provided ground truth. Therefore, the ground truth was
downscaled and this seems to have introduced some interpolation errors to which the
segmentation comparisons are very sensitive. Nevertheless, the relative comparisons are still
valid.

[ X-11
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raster

Figure 19: Mean and standard deviation of the results shown in Table 4.

Since the Dice coefficient gives only a simplified impression of the performance, the
produced segmentations for subject 46 with field C are shown in Figure 20 and Figure 21.
Here we see axial and sagittal slices of a simulated MR image, the ground truth and the
segmentations of all methods. Clearly, k-means is affected enormously by the inhomogeneity
and the produced segmentation contains many misclassifications. The segmentations of the
remaining methods show far better results where the main artifact is the loss of some detail.
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In Figure 20 we can see a difference between the three proposed methods. In the lower left of
the brain, the area indicated with the arrow, some of the details are lost in the segmentations
of the proposed methods due to the darkening of the image is this area. This effect is strongest
in the 1D-learning with raster scanning, as it progresses quickly in the horizontal direction it
can not adapt to rapid change of intensity in this direction. Improvement can be seen in the
hybrid method and even more in the 3D-learning method, although only the EM methods
preserve the details in this slice fully. This indicates that the online adaptivity is not high
enough in the proposed methods, raising the learning rate might improve the results although
higher learning rates lead to instabilities. In Figure 21 we can see some loss of fine detail in
the cerebellum (indicated with the arrow). This is mainly due to the spatial context/MRFs
which are known to remove small details, since small details are easily mistaken for noise.

k-means EMS

raster hybrid 3D-learning

Figure 20: An axial slice of the segmentation of the different methods on subject 46 with field C.
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k-means

raster hybrid 3D-learning

Figure 21: An sagittal slice of the segmentation of the different methods on subject 46 with field C.
Real data

In these tests we compare the segmentation results on real data. The real data has been
provided by the Leiden University Medical Center. The used T1-weighted images have a
resolution of 256x256x120 voxels, where the voxels have a dimension of
0.88x0.88x1.20mm’ and the T1 relaxation time is represented with 16 bits. These scans were
produced by a scanner with a field-strength of 3 Tesla. As the intensity inhomogeneity
increases with the field strength it is severe in these images. Furthermore, since there is no
ground truth available for these images, the results of EMS are used as ground truth. That
EMS can be used as ground truth has been decided by the author after visual inspection of the
results.

Table 5 and Figure 22 show us the results of a comparison using the Dice coefficient and
EMS as ground truth on 5 real subjects. K-means again gives the lowest mean performance
and highest standard deviation since it has no bias compensation. The best overall performing
method is FAST, although it shows low scores on CSF classification like it did on the
simulated data. The higher performance of FAST suggests that the iterative EM approach
with Gaussian mixture and explicit bias field modeling do pay off for real data, which is
found to be more complex than simulated data, i.e. there is more natural tissue variation and
severe inhomogeneity. One could suggest that by increasing the learning rate in the 3D-
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learning method the results would improve further; however, experiments show that this is not
the case.

bias
subject class k-means FAST raster hybrid 3D: correcti
learning | on, 3D-
learning
CSF 0,8388 0,8249 0,8727 0,8671 0,8539 0,8920
R1 GM 0,8116 0,9037 0,8507 0,8463 0,8749 0,8747
WM 0,8242 0,9195 0,8499 0,8480 0,8928 0,8731
CSF 0,8226 0,8697 0.8931 0,8866 0,8753 0,9035
R2 GM 0,8347 0,9291 0,8621 0,8595 0,8954 0,8749
WM 0,8340 0,9302 0,8401 0,8399 0,8883 0,8519
CSF 0,6865 0,7792 0,8073 0,8019 0,7655 0,8222
R3 GM 0,7832 0,9101 0,8535 0,8442 0,8753 0,8590
WM 0,8147 0,9326 0,8568 0,8492 0,8980 0,8620
CSF 0,8407 0,8340 0,8548 0,8451 0,8049 0,8563
R4 WM 0,7781 0,8829 0,8458 0,8385 0,8716 0,8514
GM 0,8166 0,9285 0,8635 0,8605 0,9048 0,8694
CSF 0,8182 0,8315 0,8246 0,8188 0,7774 0,8174
R5 GM 0,8138 0,9024 0,8575 0.8547 0,8745 0,8638
WM ' 0,8399 0,9323 0,8618 0,8616 0,8982 0,8737
| CSF | 08014 | 08279 | 08505 | 08439 | 08154 | 0,8583
Mean WM 0,8043 0,9056 0,8539 0,8486 0,8783 0,8648
GM 0,8259 0,9286 0,8544 0,8518 0,8964 0,8660
Standard CSF 0,0650 0,0323 0,0349 0,0345 0,0477 0,0392
deviation GM 0,0234 0,0166 0,0062 0,0084 0,0096 0,0102
WM 0,0109 0,0054 0,0096 0,0091 0,0062 0,0092

Table 5: Results on real data with EMS as ground truth. Numbers indicate the segmentation agreement
with the Dice coefficient.

Of the proposed methods 3D-learning is clearly the winner, considering the GM-WM
classification, and stands out more than it did on the simulated data. This is due to the higher
adaptivity and higher stability, which are accomplished by the higher learning rate and
averaging of the model in all directions. However, 3D-learning scores lower on the CSF
classification. This can be understood by looking at the sagittal view of an example
segmentation on subject R4 depicted in Figure 24. There we can see that contrary to the 1D-
learning methods misclassifications are made in the cerebellum (indicated with the arrow).
There, due to the inhomogeneity, the image darkens dramatically. And since in 3D-learning
the change of the intensity model in the axial direction is constraint, i.e. it takes reference
vectors from the previous slice, this quick change cannot be tracked. By adjusting a, this
might be improved, however stability will be sacrificed. Since the 1D-learning methods do
not have this constraint they can adapt to this rapid change. This explanation is supported by
the results of first applying the implemented bias correction method before using the 3D-
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learning method, then we see that the CSF classification performance improves. However, the
performance of the GM and WM classification decreases. This also caused by
misclassifications in the cerebellum, because of the higher brightness of this area after bias
correction the 3D-learning method seems to favor WM over GM, like the 1D-learning
methods also do.

Interestingly, in Figure 23, which shows an axial view of the segmentations, we can see
disagreement in the central area (indicated with the box) between EMS and all the other
methods. Here areas which are classified as GM by EMS are classified as WM by the other
methods. These areas are the so-called deep grey matter, comprising the caudate nucleus,
putamen, and thalamus (see Figure 1), which are considered to belong to the GM class.
However, these appear to be brighter than the cortical GM and since they are closer to the
WM class in intensity they are considered to belong to the WM class by the other methods.
EMS can resolve this issue since it uses an atlas which gives priors which indicate a high
probability of GM in those areas. It is clear that it is the atlas in EMS that contributes to the
better classification of GM in this area since FAST which is essentially the same as EMS
apart from the atlas makes the same misclassifications as the proposed methods. Furthermore,
after bias correction the 3D-learning method still makes the same misclassifications, which
shows it is not related to shortcoming of bias compensation.

1
D.85

0.8

D,85

0,75 £ i
FAST k-means raster hybrid 3D-learning 3D-learning and blas
correction

Figure 22: Mean and standard deviation of the results shown in Table 5.

The misclassification of deep grey matter in the real data compared to the simulated data,
where this did not happen, indicate that the simulated data is different. Namely, the simulated
data does not model the natural variation of the tissue intensities, this also stated in Aubert-
Broche et al. [Aubert-BrocheNI06]. This can be seen when visually comparing the simulated
images with the real images, in the simulated images the tissue classes themselves are
homogeneous, discrete apart from the noise, while in the real images there is more variation in
the tissue intensities. Thus, validation on simulated images does not validate for real data.
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Raster Hybrid 3D learning

Figure 23: An axial slice of the segmentation of the different methods on subject R4, mainly showing the
misclassification in the deep grey matter structures.
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Raster 3D learning

Figure 24: An sagittal siice of the segmentation of the different methods on subject R4, mainly showing
the misclassification in the deep grey matter structures.

Additional inspection

As the deep grey matter areas have an intensity between the GM and WM intensities it could
be suggested that they can be modeled by fuzziness. However, the study of the fuzzy
membership of the voxels in the proposed methods indicates that this does not overcome the
problem. To illustrate this, the fuzzy segmentation of the voxels as produced by the 3D
learning method is depicted in Figure 25 where it is compared with the probabilistic
segmentation of EMS. The fuzzy segmentation is produced by storing the fuzzy membership
(15) for all classes for each location during the run of the algorithm. We can see that in the
fuzzy segmentations some more details are visible compared to the hard segmentations.
However, for example the thalamus (indicated with the arrow) can still not be distinguished in
the fuzzy segmentation of 3D learning, i.e. it is classified as 100% WM. Study of the stored
reference vectors depicted in Figure 26 shows this is caused by the fact that the relatively
large deep grey matter areas without clear boundaries are mistaken for inhomogeneity; i.e. the
smooth natural variations are mistaken for inhomogeneity. Therefore, it seems an atlas is
essential for good deep grey matter segmentation.

Furthermore, Figure 26 allows us to compare the behavior of the three proposed methods.
Like the fuzzy segmentations, these images were created by storing the reference vectors of
the winner class for each location'. Contrary to the similar segmentations produced by the
methods there are clear differences in the evolution of the reference vectors. As the raster
scanning progresses fast in the horizontal direction there is almost no adaptation to changes in

15 Note that the storage of a// reference vectors is integrated in the 3D-learning method by definition.
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this direction, consequently, the reference vector approximates the average of a tissue class in
a horizontal line. More adaptation in the horizontal direction is possible with the hybrid scan,
however, the results appear blocky and the smoothness constraint of the bias field is not
completely maintained. On the other hand, 3D learning allows for the best adaptation in all
directions while preserving the smoothness constraint since it is implied by averaging with
rule (21). If we combine this observation with the results in the previous tests on real and
simulated data it is clear that 3D learning does pay off.

Figure 25: Fuzzy segmentation of the 3D learning method compared to the probabilistic segmentation of EMS.
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Raster Hybrid 3D-learning

Figure 26: Top row shows subject R4 with contrast enhanced to show the inhomogeneity, (a) and (b)
axial slices, (b} sagittal slice. Remaining images show the reference vectors of the winner class for all
locations of the three proposed methods. Note that due to the high contrast setting only the reference
vectors of the WM class are visible.
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7 Conclusion and discussion

A new brain tissue segmentation method for MR images has been proposed. The method is
LVQ-based and uses online learning for the handling of the intensity inhomogeneity.
Together with an efficient integration of spatial context this leads to an efficient algorithm for
segmentation. A significant reduction of computation time (a factor of approximately 20)
compared to the EM-based methods has been demonstrated with this method. Tests on
simulated data showed segmentation accuracy comparable with these EM-based methods.
However, tests on real data where EMS was used as ground truth showed lower performance
than the EM-based FAST.

It should be noted that the focus in the literature has not been on speed, since the accuracy of
the methods is still the main subject. Therefore, it is not known how far the EM-based
methods could be optimized in computational sense. Perhaps sub-sampling, algorithmic
improvements, and code optimization can drastically speed up these methods and take away
the need for an alternative method if speed is an issue.

The attempt to use the Hilbert space-filling curve exposed a weakness of the use of online
learning for compensation for intensity inhomogeneity. Namely, we assume that the drifting
intensities can be tracked everywhere. However, this is not true for all data and this leads to
gaps in the observed data along the scanning path, where the intensities can not be tracked
since the model is not updated. Consequently, after a gap the model might mismatch the real
intensities and lead to misclassifications. The EM methods, however, are not vulnerable to
gaps.

The tests showed that there is difference between the proposed methods. Hybrid scanning
does improve the classification compared to raster scanning if there is strong intensity drift in
the scanning direction. However, in the overall Dice coefficients on the test set no real
differences are observed and raster appears slightly better. Although, the overall validation
showed clearly that 3D learning does improve the inhomogeneity compensation and stability,
and thus the classification, and therefore it is the preferred method.

Further study of the LVQ scheme with its variants might improve the performance. For
example the tracking ability of the online learning scheme might be improved by explicitly
modeling the multiplicative effect of the bias field in the update rule. Meaning that if one
class increases in intensity, probably the other classes should do so as well. This can be
accomplished by the use of a different neighborhood function where the multiplicative effect
is modeled by scaling all the reference vectors accordingly. However, the use of this rule
would not allow for the relative tissue intensities to be learned. Possibly, a combination of the
present rule with the rule suggested here could be considered. Karayiannis et al.
[Karayiannis99] discusses the use of different definitions of the membership and
neighborhood functions and applies these to MR brain segmentation, however in the
traditional sense where the learning and classification phase are separated. Furthermore, the
higher modeling of the tissue distributions as Gaussian mixtures (as is used in the EM
methods) might be necessary for the real data, where more natural variations are present. In
tests, however, it was found out that integrating the variance of the tissue intensity
distributions in the proposed method led to instabilities.

An important observation is that validation on the BrainWeb simulated data does not validate
the performance of a method on real data. This is due to the fact that the simulated brains do
not fully model the real data, namely, the natural variations of the tissue classes are not
modeled in the simulated data, as is also stated in Aubert-Broche et al. [Aubert-BrocheNI106].
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These natural tissue variations lead to misclassifications in the deep grey matter areas of real
data, by the proposed methods as well as by the EM-based FAST. Only EMS can classify
these areas correctly by the use of the prior atlas. There are also papers which address the
classification of the deep grey matter structures specifically [Murgasova06; Pohl06; Fischl02].

It could be suggested that these areas can also be identified by fuzzy membership as they
appear as large partial volume areas. However, it was shown that fuzziness alone does not
overcome this problem, since the relatively large deep grey matter structures without clear
boundaries are mistaken for intensity inhomogeneity. Finally, introducing extra classes which
model the mixed CSF-GM and GM-WM classes could be suggested. However, it was found
in experiments that this destabilizes the algorithm. Namely, if a higher number classes are
present, tracking ability of the intensity inhomogeneity decreases, since often the classifier
will hop to another class instead of tracking the inhomogeneity.

It is expected that integration of atlas information in the proposed method will improve the
segmentation accuracy. However, atlas registration is currently a time consuming task and if
no quick method is available, the speed advantage of the proposed method is less pronounced.
Furthermore, if atlas information is needed for the classification, the EM-based methods
integrating the atlas registration (see Section 2.2) in the iterative loop become of more
interest. These methods allow for more accurate registration and can provide labeling of
structures as well. Alternatively, improvement of deep grey matter classification might be
accomplished by the use of multiple modalities or a special scanning protocol [Prince95;
Fischl04] where the GM and WM classes are separated better, and thus atlas information is
not needed.

Although the performance is not highly accurate on real data, the method could for example
be used in cortical grey matter segmentation, CSF segmentation, bias estimation/correction, or
lesion detection. Furthermore, there might be other domains where the proposed method can
be applied, for example in microscopy where often illumination is non-uniform.
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Appendix A: k-means clustering

K-means clustering [MacQueen67] is a parametric data-clustering algorithm. Given a vector
space with data points, which form multiple clusters, the k-means algorithm automatically
partitions this vector space into classes representing these clusters. In k-means each class is
represented only by its mean, the centroid, and the number of classes, k, is fixed a priori.
After initialization, the algorithm works fully automatic through iterative minimization of the
within-class variance. The following equation expresses this minimization objective:

k
2
J=22lx ¢l
J=1ieS,

this is the so-called objective function, which should be minimized, S; are the samples
assigned to class j, x; are the samples, and ¢; are the class centroids.

This objective function can be minimized by iteratively:
* assigning each sample to the class with the nearest centroid,

e updating the class centroids by calculating the mean of the samples assigned to each
class.

The centroids should be initialized; this can be done randomly or uniformly over the sample
space, or via some smarter initialization algorithm. Alternatively, the assigned classes of the
samples can be initialized randomly and the algorithm can be started from the second step.
Since the initialization is not trivial, especially if the vector space is higher dimensional, and
the resulting clustering is dependent on this initialization, since it can converge into local
minima, the use of k-means should be carefully considered.
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Figure 27: Result of the k-means algorithm on a 2D dataset, with k = 2.

In Figure 27, a result of the k-means algorithm is shown. This is the result of the algorithm on
a two-dimensional dataset with k, the number classes, set to 2. The values of the centroids
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during the iteration steps are indicated with the squares, starting from the middle, and the
followed trail during the iterations is indicated with a thick line. The final classification for
the two classes is indicated with the triangles and circles.

Appendix B: 3D Recursive Search Motion

Estimation and its relation to the proposed method

Given the success of the 3D recursive search (3DRS) algorithm in motion estimation
[DeHaan93], where motion is estimated on block-basis for objects in a video sequence, and
recently in other video related applications, 3DRS has been used as an inspiration for an
algorithm for the segmentation of a MRI image, which can be thought of as a sequence of
frames. Although there are some fundamental differences between motion estimation and
image segmentation, a 3DRS-based approach resulted in an interesting new algorithm for this
specific segmentation problem.

In motion estimation the video frame is (usually) divided into small blocks (e.g. 8x8 pixels).
The objective is to find motion vectors for each of these blocks. These motion vectors should
reflect the motion of the objects in video sequence, i.e. the displacement of them between the
current and previous frame, on block resolution. The simplest way to find these motion
vectors is to compare each block with displaced blocks in the previous frame in a predefined
search range. The displacement vector resulting in the best match, the motion vector, is then
assigned to the block. This method takes a lot of comparisons for each block (in the order of
64x32, the size of the search range, block-comparisons), which is computationally expensive.
Furthermore, the results do not portray the real object motion, due to local ambiguity, which
is caused by repetition in the texture, total lack of texture, or change in brightness. 3DRS
solves this problem by only testing a small set of candidates for each block. These candidates
are obtained from the previously calculated motion vectors in the neighborhood. These
candidates are correlated, since objects are assumed to be bigger than blocks and they have
inertia, and thus provide good predictions for the motion vector of the current block, while
implying spatial (and temporal) consistency.

Figure 28: Candidates for the estimation of ‘2', S: Spatial candidates, T: Temporal candidate. The grey
area is not processed yet in the cumrent frame.
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In Figure 28, we can see where the candidates for the estimation of block ‘?* are taken from'.
The blocks are handled one by one in a scanning manner, as indicated by the arrow. Some
candidates can be taken from the neighborhood in the same frame since there the motion
vectors are already known, these are denoted with the ‘S’, the so-called spatial candidates.
However, in the grey area, which has not been processed yet, the motion vectors are not
known, but they were known for these locations in the estimation of the previous frame, from
where they can be taken. These candidates are called temporal candidates, denoted with ‘T".
Since the process needs to initiate and adapt, there are also update candidates, which are
spatial candidates with a noise vector added to them. All these candidates are tested, some
with penalties to prefer certain candidates, and the winner is assigned to the current block.
Finally, by alternating the scanning direction each line (meandering), convergence is achieved
faster. The algorithm steps are given in pseudo-code in Table 6. For a more detailed
description of 3DRS please refer to [DeHaan93].

start
take candidates from the neighborhood
generate extra update candidates by adding noise to some candidates

test all the candidates on the current block with penalties for some
candidates

assign the winner to the current block
go to the next block in the scanning order

goto start

Table é: Pseudo-code for the 3DRS motion estimation algorithm.

Mapping this algorithm to segmentation is not straightforward since there are fundamental
differences between motion estimation and intensity-based classification, which is what we
are doing in the segmentation of the MR brain images. First of all, in motion estimation only
the motion vector is unknown, while in segmentation both the class model and the
classifications are unknown and these are mutually dependent. Furthermore, in motion
estimation the motion of the current block identifies itself by the displacement vector giving
the best block-match, i.e. the motion can be locally observed, although this can be ambiguous
and is not always true. In intensity-based classification the class of a current sample (e.g. pixel
intensity) can only be identified in the context of the (local) intensity distribution/histogram,
as belonging to a cluster. From this histogram class statistics can be deduced, such as class
mean, variance, etc. Contrary to motion vectors, the histogram cannot be observed locally
since it is calculated from a set of samples. Finally, the number of classes in intensity-based
classification cannot be deduced explicitly and is thus usually set to a predefined number.
While in motion estimation, where the motion identifies itself, the number of classes is not an
issue.

By adopting aspects of 3DRS, which is inherently an efficient algorithm, it was expected that
this would lead to a computationally efficient algorithm for segmentation of brain MRI. The
aspects of 3DRS that were adopted in the MR segmentation algorithm are the way we use
spatial context by using the earlier calculated classifications from the neighborhood, and the
sample-by-sample model updating, optionally also with earlier calculated models from the
neighborhood (3D-learning). The purpose of the spatial context is to imply spatial consistency

16 The shown set up is the one typically used in 3DRS, although others can be used
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in the obtained segments and introduce robustness to noise influence by biasing the
classification of the current sample towards the classes found in the neighborhood. This
resembles so-called markov random fields (MRFs) that are widely used in image
segmentation. These neighborhood classifications can be obtained in a similar way as the
candidates in 3DRS motion estimation if we interpret the MR image as a sequence of slices.
Using the context in this way prevents the need for iterative methods that are used for MRF,
such as the commonly used iterated conditional modes (ICM) algorithm [Besag86;
Shattuck01]. Sample-by-sample updating of model parameters was found to resemble online
learning. This was found to be applicable particularly to MR image segmentation since it
enables a new approach to handling the intensity inhomogeneity inherent to MR images, and
this is in a more efficient way than it is handled in the present known algorithms. This
eventually led to an online competitive learning scheme based on learning vector quantization
with integration of spatial context and a special scanning order of the data for MRI
segmentation.
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