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Abstract

Inspired by the observation of synchronization of two pendulum clocks by Chris-
tiaan Huygens, a comparable experimental setup is designed and analyzed in
this report. Instead of using pendulum clocks, metronomes have been used as
oscillators in the setup. Coupling between the metronomes is introduced in the
system by horizontal translation of the connecting platform.

After description of the design of the experimental setup and the measurement
methods, a model is proposed which is used to analyze the system. The model
consists of two driven pendula attached to a mass which is connected to the
outside world by a linear spring and damper. The escapement, which provides
energy input to the metronomes, is modeled as a sinusoidal shaped torque be-
tween fixed angles. Given the dynamical model, the parameters of the system
are estimated from experiments using a nonlinear Kalman filter and the results
are validated.

Synchronization experiments have been performed for two distinct configura-
tions of the system. First synchronization of the metronomes has been investi-
gated for a relative eigenfrequency of the platform approximately twice as large
as the frequency of the metronomes. In this configuration only anti-phase syn-
chronization is observed. When the relative eigenfrequency of the platform is
almost equal to the metronomes’ frequency, both in- and anti-phase synchro-
nization is possible, depending on the parameters of the system. Finally the
results obtained in the experiments are reproduced qualitatively in simulations
with the dynamical model.
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Chapter 1

Introduction

1.1 Synchronization in history

One of the first documented observations of synchronization is by the Dutch
scientist Christiaan Huygens. In the 17th century maritime navigation called
for more accurate clocks in order to determine the position of a ship on sea.
Christiaan Huygens’ solution for precise timekeeping was the invention of the
pendulum clock (Yoder 1988). During some time Huygens was bound to his
home due to illness, he observed that two pendulum clocks, attached to the
same beam supported by chairs, would swing in exact opposite direction after
some time (Huygens 1893, 1932, 1986). A drawing made by Christiaan Huygens
is given in figure 1.1. Disturbances or different initial positions did not affect the
synchronous motion which resulted after about half an hour. This effect which
Huygens called “sympathie des horloges” is nowadays know as synchronization
and is characterized by Pikovsky et al. (2001) as “an adjustment of rhythms
of oscillating objects due to their weak interaction”. The oscillating objects
in Huygens’ case are two pendulum clocks and are weakly coupled through
translation of the beam.

Many more cases of synchronization have been identified in nature and tech-

Figure 1.1: Drawing by Christiaan Huygens of two pendulum clocks attached to a beam which
is supported by chairs. Synchronization of the pendula was observed by Huygens in this setup.
From (Huygens 1932).

1



nology around us. A striking example in biology is the synchronized flashing
of fireflies Buck (1988). A better understanding of synchronization might also
help gaining insight into the working of the human brain. The occurrence of
synchronization in relation to the retrieval of stored patterns in the brain is hy-
pothesized by Von Der Malsburg (1999). Experimentally, synchronization has
been shown in EEG studies of cat brains by Gray et al. (1989).

Synchronization is also found in technology, for example the frequency synchro-
nization of triode generators. These generators were the basic elements of early
radio communication systems Appleton (1922). Using synchronization it is pos-
sible to stabilize the frequency of a high power generator with a precise, low
power one.

1.2 Problem definition

Three centuries later the phenomenon of synchronizing driven pendula is, to
our best knowledge, repeated twice experimentally. In the first research by
Bennett et al. (2002), one has tried to accurately reproduce the findings of
Huygens in an experimental setup consisting of two pendulum clocks attached
to a freely moving cart. The results of this experiment confirm the documented
observations of Christiaan Huygens. A rather simple but interesting experiment
is described by Pantaleone (2002), where synchronization of two metronomes is
discussed, which are coupled by a wooden board rolling on soda cans. The
metronomes in this setup would synchronize most of the time with in-phase
oscillations. However when extra damping was added to the base, also anti-
phase synchronization was observed. A photo of the setup is given in figure 1.2.

Figure 1.2: Setup with two metronomes coupled by a wooden board rolling on soda cans. In
contrast to the findings of Christiaan Huygens mostly in-phase synchronization was observed.
From (Pantaleone 2002). .

The research presented in this report is inspired by the observations of Chris-
tiaan Huygens, the work of Bennett et al. (2002) and Pantaleone (2002). The
main objective will be to perform and analyze synchronization experiments with
a setup consisting of driven pendula. This problem will be subdivided in the
following steps:

• Design a mechanical setup with two metronomes and a coupling medium.
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• Choose a measurement system for the oscillation of the metronomes and
movement of the coupling medium.

• Derive, identify and verify a model for the experimental setup.

• Perform synchronization experiments with the setup.

• Evaluate and compare the synchronization experiments with simulations.

1.3 Report outline

The report will be organized in the following order, first in chapter 2 the exper-
imental setup is described. In this chapter the design of the setup and the mea-
surement methods are discussed. When this is treated, a mathematical model
describing the setup is introduced. Especially the modeling of the metronomes
used in the experiments is given attention. Identification of the setup with
the derived model is discussed in chapter 4. In the next chapter the synchro-
nization experiments are treated. Combining the results of the identification
and the experiments, synchronization simulations are discussed in chapter 6.
Finally the conclusions from the project are drawn and recommendations for
further research are given.
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Chapter 2

Experimental setup

The design of the experimental setup is described in this chapter. First the
concept and the individual parts of the setup are discussed, finally the measure-
ment methods are given attention. The basic idea of the setup is to be able
to perform synchronization experiments with two oscillators which are coupled
mechanically. Due to the coupling the oscillators influence each other and can
synchronize.

In order to keep the setup simple and cheap, two off the shelf metronomes,
which are normally used for indicating a rhythm for musicians, are chosen as
oscillators. Coupling between the metronomes is obtained by mounting them
on a platform which can translate in horizontal direction. A photograph of the
experimental setup is given in figure 2.1.

Figure 2.1: Photograph of the experimental setup.

2.1 Metronomes

The metronomes are made by Wittner, type Maelzel (series 845) and consist of a
pendulum and a driving mechanism, called the escapement. The energy lost due
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to friction is compensated by this escapement. A photograph of a metronome
is given in figure 2.2 indicating the various parts. The escapement consists of a
spring which loads a toothed wheel. These teeth have a V-shape and alternately
push away one of the two cams fixed to the axis of the pendulum. The typical
”tick-tack” sound of mechanical metronomes is produced each time the next
teeth hits a cam.

The frequency of the metronomes can be adjusted with a counterweight attached
to the upper part of the pendulum. Variation of the frequency between 2.4 rad/s
and 10.8 rad/s is possible with the weight attached, without it the frequency of
the metronomes increases to 12.3 rad/s. The amplitude of the metronomes’ os-
cillations cannot be influenced, however at increasing frequencies the amplitude
decreases.

A

B

D
C

B C

E

Figure 2.2: Photograph of one of the metronomes on the left and a close up of the axis of
the pendulum on the right. The main parts of the metronome are the counterweight of the
pendulum (A), toothed wheel with cams above it (B), torsional spring (C) and the pendulum
with a weight on its end (D). On the right the cams which are fitted to the axis of the
pendulum (E) are visible. The toothed wheel (B) loads the cams in the indicated direction
by the torsional spring (C).

2.2 Platform

The platform does not only act as a support for the metronomes but because of
its possible horizontal translation it couples the dynamics of both metronomes
as well. In order to keep the equations of motion of the total system simple a
suspension with linear stiffness and damping is desired. Regarding the dimen-
sions of the platform, only the resulting weight is important, as this parameter
influences the coupling strength between the metronomes. Based on the results
in Bennett et al. (2002), Pantaleone (2002), a weight of approximately 2 kg is
chosen for the platform. With additional iron bars the mass of the platform can
be increased easily afterwards. Considering the desired mass and enough place
to install the metronomes, the length, width and thickness of the platform are
respectively 345, 95 and 20 mm.

As long as the translation of the platform is not too large (mm range) the use
of leaf springs makes a frictionless translation possible with linear stiffness and
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Figure 2.3: Placement of the three leaf springs between the platform and the supporting
frame.

damping properties (Rosielle & Reker 2000). In the initial design the leaf springs
had a width equal to that of the platform. Installing these leaf springs turned
out to be impossible without buckling them due to small errors in alignment of
the platform with the frame. To solve this problem, the broad leaf springs are
replaced by three smaller leaf springs in the configuration depicted as 1,2,3 in
figure 2.3. When the platform is installed carefully, so that the leaf springs do
not buckle and the platform is horizontal, the stiffness and damping of the leaf
springs show a linear behavior.

In order to calculate the necessary dimensions for leaf springs the following
estimates have been used. The stiffness of a leaf spring can be estimated by
assuming it behaves as two bars clamped at one side. For small deflections the
stiffness of a bar clamped at one side is given by Fenner (1989)

k =
Ehb3

4L3
, (2.1)

where E is the elastic modulus, h the width, b the thickness and L the length
of the bar. The leaf spring has a stiffness equal to (2.1) since both halves of the
leaf spring take half the deflection and half the force. The eigenfrequency of the
platform in rad/s is estimated by

Ω =

√
Ehb3

4(l/2)3M
+
g

l
(2.2)

where l is the length of the leaf spring, M the mass of the platform and g the
constant of gravity. For the setup the following dimensions for the leaf springs
are chosen: l=80 mm, b=0.4 mm and h=15+15+10 mm (three leaf springs).
The constants are E = 200 · 109 kg/m/s2 and g=9.81 m/s2. The platform has a
mass of 2.35 kg which results in an eigenfrequency of approximately 31 rad/s.

2.3 Measurements

In the setup the angle of the metronomes and the translation of the plat-
form are of interest. Since alteration of the dynamics of both the metronomes
and the platform should be avoided, contactless measurement methods have
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been chosen. All signals are recorded using a Siglab data acquisition system,
model 20-42. First the measurement of the metronomes is discussed, secondly
that of the translation of the platform.

The angle of the metronomes is measured using a sensor based on the anisotropic
magnetoresistance (AMR) principle, described eg. in Applications of magnetic
position sensors (2002), Linear/angular/rotary displacement sensors (2003). The
resistance of AMR materials changes when a magnetic field is applied. Above
a minimal field strength the magnetization of the material saturates and aligns
with the external field and the following relation holds for the resistance R

R ∼ cos2 θ (2.3)

where θ is the angle between the magnetic field and the current through the
resistor. By combining four AMR resistors in a bridge of Wheatstone a change
in resistance is converted to a voltage difference. Two of these bridges of Wheat-
stone are located in the sensor, but are rotated 45◦ degrees with respect to each
other. As a result the voltage difference of bridges A and B can be written as

∆VA = VsS sin 2θ , ∆VB = VsS cos 2θ (2.4)

where Vs is the voltage supplied to the bridges and S is the AMR material
constant. The angle θ can be calculated from these signals by

θ = 1
2 arctan(∆VA/∆VB) (2.5)

regardless of the value of voltage Vs and constant S. Due to manufacturing
tolerances the bridges will show an offset when no magnetic field is applied.
This offset can be corrected in software when both signals are recorded.

In the experimental setup the AMR sensor is mounted on the platform and
a small permanent magnet is attached to the pendulum. In order to obtain a
strong magnetic field a Neodymium magnet is used. From both sensors electrical
wires have to be guided from the platform to the outside world. In an early
setup these wires were relatively thick and introduced considerable nonlinear
damping to the platform. In order to solve this problem, thinner wires and a
routing along the leaf springs was chosen. This approach solved the problem of
nonlinear damping.

The position and velocity of the platform is measured using a Polytec Vibrom-
eter, type OFV 3000 with a OFV 302 sensorhead. The position measurement
is based on interferometry, the velocity measurement on the Doppler shift of a
laser beam reflected on the platform.
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Chapter 3

Model

The model used for identification and analysis of the system will be discussed
in this chapter. The setup will be modeled as two non-identical driven pendula
attached to a mass which is connected to the outside world by a spring and
damper. A schematic drawing of the setup is given in figure 3.1. First, using
Lagrange’s formalism, the equations of motion will be derived and secondly a
model for the escapement of the metronomes will be proposed.

M

θ1

l1

m1

θ2

l2

m2

k
d3

x

~e1

~e2

Figure 3.1: Schematic drawing of the setup, which consists of two pendula with mass mi

and length li attached to the platform with mass M . The platform is suspended by a spring
and damper. The degrees of freedom of the system are the angle θi and the translation x in
horizontal direction.

3.1 Equations of motion

Assuming the setup consists of rigid bodies the equations of motion can be
derived using Lagrangian mechanics, see eg. De Kraker & Van Campen (2001).
The generalized coordinates are chosen as

qT = [θ1, θ2, x] (3.1)

which are the angles of the pendula and the translation of the platform. The
kinetic energy T (q, q̇) of the system can be expressed as

T (q, q̇) = 1
2m1~̇r1 · ~̇r1 + 1

2m2~̇r2 · ~̇r2 +
1
2
M~̇r3 · ~̇r3 (3.2)
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where r1, r2 and r3 are respectively the translation of the center of mass of
pendulum I, II and the platform, m1 and m2 are the mass of pendulum I and
II, l1 and l2 the lengths of the center of mass to the pivot point of pendulum I
and II, M is the mass of the platform and

~r1 = (x+ l1 sin θ1) · ~e1 − l1 cos θ1 · ~e2 (3.3a)
~r2 = (x+ l2 sin θ2) · ~e1 − l2 cos θ2 · ~e2 (3.3b)
~r3 = x · ~e1 (3.3c)

The potential energy V (q) of the system consists of gravity acting on the pendula
and the energy stored in the spring,

V (q) = m1gl1(1− cos θ1) +m2gl2(1− cos θ2) + 1
2kx

2 (3.4)

where g is the constant of gravity and k is the spring stiffness of the platform.
The generalized forces Qnc include viscous damping in the hinges of the pendula
and the platform and a torque fi exerted by the escapement on the pendula and
can be written as

Qnc =

 f1−d1θ̇1
f2−d2θ̇2
−d3ẋ

 (3.5)

where di are the viscous damping constants of respectively the two pendula and
the platform. With Lagrange’s equations of motions

d

dt

∂ T

∂q̇
− ∂ T

∂q
+
∂V

∂q
=
(
Qnc

)T (3.6)

the equations of motion for the system become

m1l1
2θ̈1 +m1l1g sin θ1 +m1l1 cos(θ1)ẍ+ d1θ̇1 = f1 (3.7)

m2l2
2θ̈2 +m2l2g sin θ2 +m2l2 cos(θ2)ẍ+ d2θ̇2 = f2

Mẍ+ d3ẋ+ kx+
n∑

i=1

mili

(
θ̈i cos θi − θ̇2i sin θi

)
= 0.

These equations for the metronomes can be simplified by dividing all terms by
mili

2, which give for i = 1, 2

θ̈i + ωi
2 sin θi +

1
li

cos(θi)ẍ+
di

mili
2 θ̇i =

1
mili

2 fi (3.8)

where ωi =
√
g/li.

The equations of motion can be written in dimensionless form using the following
transformations. The dimensionless time is defined as τ = ωt and the position
of the platform as y = x/l = xω2/g, where ω = 1

2 (ω1+ω2) is the mean frequency
of both pendula. The derivatives of the angles with respect to the dimensionless
time are written as θ′ and the following relations hold

dθ

dt
=
dθ

dτ

dτ

dt
= ωθ′ ,

d2θ

dt2
= ω2θ′′.
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The equations of motion now become

θ′′i + γ2
i cos θiy

′′ + γ2
i sin θi + δiθ

′
i = εi fi (3.9)

y′′ + 2Ωξy′ + Ω2y +
2∑

i=1

βiγ
−2
i

(
cos θiθ

′′
i − sin θiθ

′
i
2) = 0,

with coupling parameter βi = mi

M , scaled eigenfrequency of the metronomes
γi = ωi/ω, damping factor δi = dωi

2

mig
, forcing parameter of the escapement

εi = ωi
4

mig2 , eigenfrequency of the platform Ω2 = k
Mω2 and damping ratio of the

platform ξ = d3

2
√

kM
.

3.2 Escapement

So far the escapement has been indicated by the unknown function fi. In order
to be able to simulate the response of the setup the following model is proposed.
As described in section 2.1 and illustrated in figure 2.2, the escapement of a
metronome operates by pushing away cams on the axis of the pendulum.

Without deriving an accurate mechanical model of the escapement it is assumed
the escapement operates between two fixed angles and does not depend on the
speed of the pendulum. In order to keep the model continuous a sinusoidal func-
tion is chosen, which function value and first derivative is zero at its boundaries.
The following expression is used for function f

f(θ, θ′) =

{
0, θ < φ ∨ θ > φ+ ∆φ

1−cos(2π θ−φ
∆φ )

2∆φ , φ ≤ θ ≤ φ+ ∆φ ∧ θ′ > 0
(3.10)

where φ and φ + ∆φ are the angles between which the mechanism works. In
figure 3.2 the torque of the escapement is plotted versus time when the pendulum
would follow a sinusoidal trajectory.
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Figure 3.2: The torque exerted by the escapement on the pendulum is plotted versus time
together with the angle and velocity of the pendulum. Since the model is dimensionless all
signals are in radians.
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Chapter 4

Identification

The model derived in the previous chapter will be used to identify the para-
meters of the experimental setup. This will be done in three parts, first the
parameters of the platform will be identified. For this purpose the pendula
of the metronomes are held at a fixed angle. Secondly the identification of the
metronomes will be discussed. Now the platform is held at rest to avoid influence
of the platform and coupling of the metronomes. Finally the coupling between
the metronomes and the platform will be estimated. One of the metronomes is
fixed and the response of the other oscillating metronome and the platform is
measured.

4.1 Platform

When the pendula of the metronomes are fixed to the platform, the setup be-
comes a single degree of freedom mass-spring-damper system. When the terms
relating to the oscillation of the metronomes are removed from (3.7), the equa-
tions of motion for the platform become

Mẍ+ d3ẋ+ kx = 0. (4.1)

This equation can be written into a form equivalent to (3.9)

ẍ+ 2Ω̃ξẋ+ Ω̃2x = 0 (4.2)

were Ω̃ = ωΩ is the eigenfrequency of the platform in rad/s, whereas the eigen-
frequency Ω used in the equations of motion (3.9) is dimensionless.

Since the differential equation (4.2) is linear a solution can be found explicitly

x(t) = x(0)e−Ω̃ξt cos(Ω̃
√

1− ξ2 t). (4.3)

Using the Hilbert transformation, introduced in appendix C, the amplitude and
phase of an oscillating signal can be calculated. From these signals of either the
velocity or the position of the platform, the damping and eigenfrequency of the
system can be extracted. When plotted on a logarithmic scale the slope, named

13



Table 4.1: Mass, eigenfrequency and dimensionless damping factor of the platform obtained
from the experiments.

M [kg] Ω̃ [rad/s] ξ [‰]
2.35 21.78 0.80
2.35 21.80 0.77
2.35 21.80 0.80
3.16 19.73 0.75
3.96 18.43 0.72
3.96 18.41 0.69
4.36 17.90 0.66
4.77 17.46 0.71
5.16 17.09 0.66
5.76 16.59 0.75
6.17 16.32 0.65
6.56 16.07 0.66
6.98 15.84 0.64
7.37 15.64 0.65
8.18 15.28 0.64

b, of the amplitude versus time is equal to −Ω̃ξ. The damped eigenfrequency,
Ω̃d = Ω̃

√
1− ξ2 and can be calculated from the slope of the phase versus time.

The dimensionless damping coefficient and the eigenfrequency can be derived
from b and Ω̃d by

Ω̃ =
√
b2 + Ω̃2

d

ξ = b/Ω̃.
(4.4)

The experiments are performed by giving the platform a push by hand and mea-
suring the response. The recorded oscillation after the excitation is the natural
response of the platform described by (4.3) and using the Hilbert transform the
damping factor and eigenfrequency can be calculated. The decay is the slope of
the amplitude on a logarithmic scale versus time, fitted with the least squares
method. The eigenfrequency can be obtained from the phase of the Hilbert
transform by estimating the slope of the phase in time with a least square fit.

The experiment is performed multiple times with different masses on top of the
platform. The results are summarized in table 4.1 and a typical experiment is
plotted in figure 4.1, showing the amplitude and phase of the measured velocity
of the platform. The mass of the platform is 3.96 kg in this experiment, which
results in an eigenfrequency of 18.43 rad/s and a dimensionless damping factor
of 0.72 ‰.

The position signal has a higher noise level than the velocity measurement which
can be explained by the fact that the position is measured by counting fringes.
Especially at low amplitude the discrete steps start to effect the accuracy of the
measurement. For this reason the velocity measurements are used for calculating
the damping factor and the eigenfrequency.
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Figure 4.1: Measurement of the velocity of the platform after a displacement of about 0.5
mm. The mass of the platform is 3.96 kg in this experiment. In the upper plot the amplitude
of the velocity is plotted on a logarithmic scale versus time. Below is the phase of the velocity
signal plotted, used for determining the eigenfrequency of the platform.

Varying the mass of the platform will influence the dynamic properties since the
reciprocal mass can be found in both the eigenfrequency and the dimensionless
damping factor. If the translational stiffness of the platform is assumed to con-
sist of a spring stiffness and a pendulum effect of the leaf springs, the following
relations hold

Ω̃2 = ks
1
M

+
g

L

ξΩ̃ =
d3

2
· 1
M

(4.5)

were ks is the stiffness, L the length of the leaf springs and g the constant of
gravity. When Ω̃2 and ξΩ̃ are plotted versus 1/M in figure 4.2 together with
a least-square fit, the linear relationships of (4.5) can be seen. The fit of Ω̃
however does not go through the origin, indicating the damping is not purely
viscous.
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Figure 4.2: Variation of the mass M of the platform influences the eigenfrequency and the
product of the dimensionless damping factor and the eigenfrequency. A linear relationship
between both Ω̃2 and ξΩ̃ versus 1/M is expected.

4.2 Metronomes

The second part of the experimental setup that has to be identified consists of
the metronomes. In chapter 3 the metronomes are modeled as a pendulum with
a driving mechanism called the escapement.

Kalman filter

Since the model of the metronomes is nonlinear, a different method has to be
used to estimate the parameters of the metronomes. A popular technique is
the Kalman filter, see eg. Gelb et al. (2001), which produces optimal, unbiased
and consistent estimations of the system states for linear systems. The filter is
optimal in the sense that the difference between the actual and estimated state
is minimized. However since the system is nonlinear and parameters have to be
estimated, a nonlinear extension of the Kalman filter is used. First the basics
of the Kalman filter are introduced.

Consider the following nonlinear discrete model which state xk is to be estimated

xk+1 = f(xk, uk, vk), vk ∼N(0, Q(k))
yk = g(xk, wk), wk ∼N(0, R(k)) (4.6)

with input uk, process noise vk, measurement yk and measurement noise wk.
The process and measurement noise are independent of each other, white and
with normal probability distributions.

The objective of the filter is to estimate the state of the system based on the
model and past measurements. The a priori state estimation x̂k(−) and error
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covariance Pk(−) estimates are defined as

x̂k(−) = E[xk|Y k−1] (4.7)
Pk(−) = E[(xk − x̂k(−))(xk − x̂k(−))>|Y k−1] (4.8)

where Y k−1 =
[
y0 y1 . . . yk−1

]
is a matrix containing the past measure-

ments.

The a posteriori update of the state estimation x̂k(+) is performed in the filter
so that the error covariance is minimized. This results in the Kalman gain Kk

x̂k(+) = x̂k(−) +Kk[yk − g(x̂k(−), wk)] (4.9)
Kk = Pxy(k)P−1

y (k) (4.10)

where

ŷk(−) = E[yk|Y k−1] (4.11)
Pxy(k) = E[(xk − x̂k(−))(yk − ŷk(−))>|Y k−1] (4.12)
Py(k) = E[(yk − ŷk(−))(yk − ŷk(−))>|Y k−1]. (4.13)

The corresponding a posteriori update of the covariance matrix Pk(+) is

Pk(+) = E[(xk − x̂k(+))(xk − x̂k(+))>|Y k] = Pk(−)−KkPy(k)K>
k . (4.14)

Because for nonlinear systems calculation of the expectations is in most cases
difficult, the state and output equations are approximated. A common way to
do this is by Taylor approximations which results in the Extended Kalman filter,
see eg. Gelb et al. (2001). Due to the approximation of the nonlinear equations
the filter is no longer an optimal filter in the above mentioned sense.

For the estimation of the parameters of the metronomes a different extension of
the linear Kalman filter is used. The filter proposed in Nørgaard et al. (2000),
solves the problem of calculation of the expectations by making use of poly-
nomial approximations and stochastic decoupling. In particular, a multidimen-
sional extension of Stirling’s interpolation formula is used which is introduced in
appendix B. Secondly a linear transformation is used which performs a stochas-
tic decoupling. For eg. state xk this is done by calculating a Cholesky factor of
the covariance Px

Px = SxS
>
x (4.15)

so that the following applies for the transformed stochastic vector z = S−1
x x

E[(z − E[z])(z − E[z])>] = I, (4.16)

where I is the unity matrix.

The resulting equations to calculate the Kalman gain Kk and the a priori and
a posteriori update of the covariance matrix Pk are given in appendix A and in
more detail in Nørgaard et al. (2000).

The main advantage of the estimator is that the Jacobian of the state equations
is no longer needed. Since the escapement is strongly nonlinear this makes
implementation of the filter much easier.
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Model of the metronome

The model which is used for the metronomes consists of the equations of motion
in (3.9) without the terms relating to the translation of the platform. Secondly,
the influence of the escapement is assumed to be asymmetric, i.e. different for
negative and positive angles. This is expressed by an escapement forcing para-
meter ε+ and escapement angles φ+, ∆φ+ for positive angles of the metronome
and ε−, φ−, ∆φ− for negative angles. The equation of motion then becomes

θ′′i + γ2
i sin θi + δiθ

′
i = ε+i f(θi, θ

′
i)− ε−i f(−θi,−θ′i). (4.17)

where

f(θ, θ′) =

{
0, θ < φ ∨ θ > φ+ ∆φ

1−cos(2π θ−φ
∆φ )

2∆φ , φ ≤ θ ≤ φ+ ∆φ ∧ θ′ > 0
(4.18)

Beside the angle θ and velocity θ′, the following parameters will be estimated for
each metronome: γ, δ, ε+ and ε−. The angles φ+,− and ∆φ+,− will be chosen
by hand as it turned out that the estimation of these angles did not converge.

In the filter the state x̂ is defined as a concatenation of the original states and
the parameters which need to be estimated

x̂ =
[
θ θ′ γ δ ε+ ε−

]>
. (4.19)

Escapement angles

The angles φ and ∆φ will not be estimated using the nonlinear filter but are
chosen based on the plots in figure 4.4, where the velocity and acceleration are
plotted versus the angle. The frequency of the metronomes is set to approx-
imately 4 rad/s, almost three times as small as in the synchronization exper-
iments. This is done to pronounce the effect of the escapement compared to
the (viscous) damping in the system. The velocity and acceleration signal for
the plot are obtained by numerically differentiating the angle. Before differen-
tiation, the angle is filtered by a fourth order bandstop filter between 45 and
55 Hz to eliminate the disturbances around 50 Hz, without removing the signal
at higher frequencies. In figure 4.3 the power spectral density is plotted for
metronome I when oscillating with a constant amplitude.

In the plots the angles, between which the escapement is assumed to influence
the pendulum, are indicated by dashed vertical lines. Although the escapement
is modeled only as a single push, more complicated behavior can be seen. After
the first increase of the velocity more oscillations are visible. These vibrations
are probably caused by the fact that the next tooth of the escapement hits
the other cam on the pendulum after the push. This effect is neglected, so
the sinusoidal peak as described in (3.10) will be assumed to be an adequate
model. The values of φ+,− and ∆φ+,− are chosen by hand from figure 4.4 for
metronome I and II and are given in rad below

I: φ+ = 0.25, ∆φ+ = 0.07, φ− = 0.24, ∆φ− = 0.06
II: φ+ = 0.22, ∆φ+ = 0.09, φ− = 0.28, ∆φ− = 0.06
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Figure 4.5: Amplitude of both metronomes in the experiment which is used for identification
of the metronomes.

Parameter estimation

Given the angles between which the escapement operates, the states and other
parameters can be estimated. With the platform held stationary the angles of
the uncoupled oscillating metronomes are measured. When the metronomes
oscillate with a steady amplitude, a measurement of one minute is performed.
This corresponds to approximately a hundred oscillations. Using the Hilbert
transform, see appendix C, the frequency of both metronomes is determined
and given together with the mean frequency below in rad/s

ω1 = 10.565, ω2 = 10.553, ω̄ = 10.559

Before filtering the data with the nonlinear estimator the time t in seconds is
converted to the dimensionless time by τ = ω̄t.

The amplitude of the oscillations is shown in figure 4.5. Between both metronomes
a difference in amplitude is visible, which is probably caused by variation in
manufacturing, for example in stiffness of the springs and friction in the joint.
The amplitude of each metronome also shows a variation in time. This is prob-
ably due to the fact that the profile of the teeth, which transfers power from
the spring of the escapement to the pendulum, differ from each other. In or-
der to keep the model of the metronomes simple these variations are neglected
however.

The initial conditions of the estimated state x̂ are chosen in the following man-
ner. First the measurements used in the filter are truncated in a smart way to
obtain an estimate for the initial velocity of the pendulum. An extremum of the
angle of the metronome is chosen as the first data point to be used in the filter.
At this point the angular velocity is assumed to be zero. The initial condition
for the first state, the angle, is then set equal to the measured angle and that
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of the velocity of the pendulum to zero. The initial values of the parameters in
x̂ are chosen based on simulations which qualitatively give the same results as
seen in the experiments and are for both metronomes:

γ̂(0) = 1.0, δ̂(0) = 0.02, ε̂+(0) = ε̂−(0) = 0.05

The Kalman filter has to be initialized with the initial error covariance matrix
P0, process noise covariance Q and measurement noise covariance r. The val-
ues of these covariance matrices are chosen based on engineering insight and
with fine-tuning by hand. The measurement noise covariance is set at a large
value of r = 1 · 10−2 compared to the resolution of the angular measurement of
1 · 10−3 rad. This value is estimated from variation of the measured angle when
the metronomes are at rest. The large value of the measurement noise covari-
ance appears to be necessary in order to estimate the parameters properly. For
smaller values the parameters do not converge to a constant value but adapt
due to the variation in amplitude of the metronome as seen in figure 4.5. Since
these characteristics are not modeled, the noise covariance is increased to ignore
the variation.

The process noise covariance is chosen as a diagonal matrix since no coupling
between the elements of the estimated state x̂ is assumed. The values are

Q =


1 · 10−6 0 0 0 0 0

0 1 · 10−3 0 0 0 0
0 0 1 · 10−6 0 0 0
0 0 0 1 · 10−6 0 0
0 0 0 0 1 · 10−6 0
0 0 0 0 0 1 · 10−6

 .

The first element of Q is chosen small since the relation between the angle and
the velocity is assumed to be valid, the second value deals with the second time
derivative of the angle. The covariance of this term is chosen large to accom-
modate for unmodeled forces acting on the metronome which show up in this
part of the equation of motion. The process noise covariance of the parameters
is set to a small but non-zero value since these parameters are assumed to be
constant, but at the same time it is uncertain whether the model is correct.
Finally for the initial error covariance matrix P0 a diagonal matrix is chosen as

P0 =


1 · 10−2 0 0 0 0 0

0 1 · 100 0 0 0 0
0 0 1 · 10−1 0 0 0
0 0 0 1 · 10−1 0 0
0 0 0 0 1 · 10−1 0
0 0 0 0 0 1 · 10−1

 .

With these settings the states and parameters of both metronomes are esti-
mated. In figure 4.6 the time series of the estimated parameters are plotted.
The horizontal lines in the plot indicate the mean value and the standard devia-
tion around the mean in the last half of the experiment. Within the duration of
the experiment all parameters converge to a constant value. However a differ-
ence in convergence time and variation of the final value can be observed. The
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Table 4.2: The mean values of the estimated parameters for metronomes I and II are given
in this table, together with the standard deviation (std) around the mean. These values are
calculated from the last half of the time series in order to exclude the transient behavior at
the start of the filtering.

γ δ [·10−2] ε+ [·10−2] ε− [·10−2]
run mean std mean std mean std mean std

I 1st 1.04462 1.1 · 10−4 2.374 0.020 4.795 0.031 5.180 0.033
I 2nd 1.04459 1.2 · 10−4 2.353 0.021 4.760 0.018 5.145 0.020
II 1st 1.04995 1.1 · 10−4 2.311 0.019 5.269 0.043 5.685 0.044
II 2nd 1.04993 1.1 · 10−4 2.295 0.018 5.235 0.023 5.653 0.030

parameters ε+ and ε− reach their final value the slowest. This can be explained
by the fact that these parameters only have an influence on the system when
the escapement acts on the pendula.

Using the final values of the parameters as initial conditions and the last value
of the error covariance P for the initial covariance matrix P0 the data is filtered
again. The resulting time series of the parameters are plotted in figure 4.7. Here
it can be seen that the parameters do not diverge from the initial values. This
can also be seen in table 4.2 where the mean values and the standard deviation
for the metronomes and both runs of the filter are given.

Verification

The model for the metronomes with the estimated parameters are compared
to two different measurements. First a simulation is run with the same initial
conditions as the experiments used for estimating both metronomes. The results
are given in figure 4.8 where the amplitude of the oscillations is plotted together
with the difference in phase of the simulated response and the measurement. In
these plots it can be seen that the model matches the experiments qualitatively,
but differences are present.

First of all, as expected, the amplitude of the oscillations in the simulations do
not vary during time, this is due to the choice of the model of the escapement.
The amplitude of the simulated response is on average also larger than the
amplitude of the measured angles. This is most visible for metronome I, were
the difference is about 1%. In the plot of the phase difference between the
simulated and measured oscillation an increasing phase difference is visible.
This means that the measurement has a slightly higher frequency than the
simulated metronome. In one hundred oscillations this grows to approximately
0.7π rad, per oscillation a difference of about 0.4%. Although this is a small
value, over time the simulated and measured response diverge, since the phase
error accumulates.

In the second set of experiments, which are compared to simulations with the
identified parameters, the initial angle of the pendula is smaller than the final
amplitude of the oscillations. In figure 4.9 the amplitude and difference in
phase of the experiments and simulations are plotted. For both metronomes
the final amplitude reached in the simulation, matches the amplitude of the
measurements, but the time in which this steady state is reached, is smaller.
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Figure 4.6: Estimated parameters for metronome I and metronome II after a first run with
the chosen settings and initial conditions of the filter. The horizontal line in the subplots
indicates the mean value of the parameter over the last half of the experiment and the dashed
lines the standard deviation around the mean.
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Figure 4.7: Estimated parameters for metronome I and II with the resulting values of the first
estimation as initial conditions. The error covariance matrix is initialized with the last values
from P obtained in the first run. The horizontal solid line in the subplots indicates the mean
value of the parameter over the last half of the experiment and the dashed lines the standard
deviation around the mean of the interval.
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The phase difference between the measurement and simulation shows an error
of about 1.2π rad over approximately 140 oscillations, a relative error of 0.4%
per oscillation. This error in phase is comparable to the findings in the previous
comparison between simulation and experiment in figure 4.8.
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Figure 4.8: The measured angle of the metronomes is compared to simulations run with the
estimated parameters. The amplitude of the oscillations is given in the upper plot of each
subfigure, the difference in phase between the simulation and experiment in the lower subplot.
A negative phase difference implies the simulated response oscillates slightly slower than the
measurement.
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Figure 4.9: The model simulated with the estimated parameters is compared to a different
measurement. The metronomes are started from an angle smaller than the steady state am-
plitude that is reached. This is visible in the upper plot for each metronome where amplitude
of the oscillations is given. The difference in phase between the simulation and experiment
is plotted in the lower subplot. A negative phase difference implies the simulated response
oscillates slightly slower than the measurement.
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4.3 Coupling parameter

The only parameters that are not estimated yet, are the coupling parameters
βi, where i is 1 or 2 for either metronome I or II. This parameter determines
how much influence a metronome has on the platform. In the derivation of the
model the parameter is defined as the ratio between the mass of the pendulum
m and the platform M . To verify whether the coupling parameter is inversely
proportional to the mass of the platform, β is estimated for several values of M .

In order to keep the estimation as simple as possible, experiments are performed
with one metronome fixed, while the other is oscillating on the platform. The
equations of motion for this system are

θ′′i + γ2
i cos θiy

′′ + γ2
i sin θi + δiθ

′
i = εi fi (4.20)

y′′ + 2Ωξy′ + Ω2y + βiγ
−2
i

(
cos θiθ

′′
i − sin θiθ

′
i
2) = 0,

where i is either 1 or 2 for metronome I and II.

The estimation is carried out with the same nonlinear Kalman filter used for
finding the parameters of the metronomes. All parameters beside βi are set to
the values found in the previous estimations. The state x̂ of the filter consists
of the angle of the metronome θ, the position of the platform y, their time
derivatives and the parameter β

x̂ =
[
θ y θ′ y′ β

]> (4.21)

The measurements which are used in the filter are the angle of the metronome
and the position and velocity of the platform.

The process noise covariance matrix Q is set to

Q =


1 · 10−6 0 0 0 0

0 1 · 10−8 0 0 0
0 0 1 · 10−3 0 0
0 0 0 1 · 10−5 0
0 0 0 0 0

 ,
the initial proces noise covariance P0 to

P0 =


1 · 10−1 0 0 0 0

0 1 · 10−2 0 0 0
0 0 5 · 10−1 0 0
0 0 0 1 · 10−2 0
0 0 0 0 1 · 10−3


and the measurement noise covariance r to

r =

1 · 10−2 0 0
0 1 · 10−2 0
0 0 1 · 10−2


The initial conditions of the estimated states are set to the measured angle,
position and velocity at τ = 0. The measured data is clipped at a moment the
angle of the metronome is maximal. The velocity of the metronome is assumed
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Figure 4.10: Error between measurements and estimated states plotted versus time. The
resulting error is scaled with the amplitude of the corresponding state. The mass of the
platform is 2.35 kg.

Table 4.3: For various mass of the platform the coupling parameter is given for metronome I
(a) and II (b).

(a) Metronome I

M [kg] β [×10−3]
2.35 3.77
3.75 2.34
5.17 1.70
6.78 1.29
8.18 1.06

(b) Metronome II

M [kg] β [×10−3]
2.35 3.86
3.75 2.38
5.17 1.69
6.78 1.27
8.18 1.03

to be zero at that moment. The initial guess for the parameter β̂ is chosen
based on simulations which are compared to the measurements.

In figure 4.10 the measurements of an experiment and the corresponding esti-
mated states of the filter are plotted. A good match between the experiment
and the filtered state can be seen. The time response of the estimated value β̂ is
given in figure 4.11. Here two runs of the filter are plotted, one with the initial
covariance matrix P0 and initial condition for β̂ chosen as above, the second
estimation is performed with the initial covariance matrix set to the values of
the covariance matrix at the end of the first run. As can be seen the estimated
value β̂ is equal in both experiments when the value has converged.

The estimated values β̂ for several masses of the platform are given in table
4.3 and are plotted in figure 4.12 versus 1/M . A linear relation between the
coupling parameter and the reciprocal mass can be seen for both metronomes.
The values for each metronome differ from each other, but this is to be expected
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values of the initial covariance matrix P0 and the initial condition for β are set to the described
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since the metronomes are not identical.

The obtained estimated value β̂ is verified with an experiment by running a
simulation with initial conditions equal to the experiment. In figure 4.13 the
error between the simulation and measurement of the angle θ of metronome I,
position y and velocity y′ of the platform is plotted together with the simulated
response. A good match between the measurement and the simulation can be
seen. The results for different masses of the platform and metronome II are
comparable.
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Figure 4.12: The estimated values of the coupling parameter β plotted versus the reciprocal
mass of the platform. The results for both metronomes show a linear relation between β and
1/M .
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(a) Scaled error between measurement and simulation
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Figure 4.13: In subfigure (a) the error between the simulated model with the estimated
parameters and the measurements is plotted. The error signals are scaled with the maximal
amplitude of the corresponding responses. The simulated response is plotted in subfigure (b).
The mass of the platform is 2.35 kg in the experiment.
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Chapter 5

Experiments

5.1 Anti-phase synchronization

Experiments have been performed with the setup to show synchronization of
the metronomes. The parameters that can be varied in the experimental setup
are the frequency of the metronomes and the mass of the platform.

The frequency of the metronomes is chosen as high as possible in order to reduce
the time experiments will take. By adjusting the counterweights the frequency
difference between both metronomes is minimized, since a too large difference
will make synchronization impossible Bennett et al. (2002).

For anti-phase synchronization this can be explained as follows. If the metronomes
have a nonidentical natural frequency and they would oscillate in exact anti-
phase, the net force exerted by the two pendulums on the platform is not zero.
For identical metronomes this force would be zero and due to the assumed
damping of the leaf springs, oscillation of the platform damps out. However
as there is still a net force from the metronomes, the platform will start to or
keep oscillating. This translation of the platform will then disrupt the anti-
phase oscillation of the metronomes. For increasing frequency difference of the
metronomes, this is assumed to eventually lead to desynchronization.

Not only a difference in frequency between the metronomes will cause this effect.
Also a difference in mass, damping or influence of the metronomes makes the
metronomes nonidentical and prevents exact anti-phase synchronization.

The second parameter that can be changed is the mass of the platform. Chang-
ing this influences the dynamics of the system in three ways. First, the coupling
between the metronomes changes since the coupling parameter β is proportional
to the reciprocal mass of the platform. Secondly the relative eigenfrequency of
the platform changes, increasing the mass of the platform lowers the eigenfre-
quency. Finally the relative damping factor of the platform depends on the
mass, for increasing mass the dimensionless damping decreases.
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Strong coupling

In the experiments the frequency of metronome I is set to 10.57 rad/s and
that of metronome II to 10.55 rad/s, which results in a mean frequency of
ω = 10.56 rad/s and a relative frequency difference of 0.2%. The mass of
the platform is varied between 2.35 kg and 8.18 kg in five steps, resulting in
a coupling parameter β varying between 3.8 · 10−3 and 1.1 · 10−3. For each
choice of mass the experiments are started with several initial conditions. Since
the metronomes need to be started by hand, reproducing the initial conditions
exactly between experiments is impossible.

When the mass of the platform is varied, the following observations can be made
from the experiments. For small mass the setup synchronizes for seemingly
all initial conditions and the difference in phase shows a variation of about
10%. When the mass of the platform increases the metronomes do not always
synchronize anymore. When they do, the phase difference is comparable to that
in experiments with small mass of the platform.

A typical example of the experiments, in which synchronization for seemingly
all initial conditions is observed, is depicted in figure 5.1, where the difference
in phase of the metronomes, their amplitudes and the dimensionless velocity
of the platform are plotted. The mass of the platform in this experiment is
2.35 kg, resulting in a coupling factor β = 3.8 · 10−3, dimensionless eigenfre-
quency Ω = 2.1 and dimensionless damping factor ξ = 7.9 · 10−4. The resulting
difference in phase between the metronomes, when they are synchronized, is
approximately 0.8π rad with a variation of 0.1π rad. The amplitude of the os-
cillations of metronome II is larger than that of metronome I, which is also the
case, and with comparable magnitude, when the metronomes run uncoupled.
The difference in amplitude of the metronomes is approximately 0.05 rad and
the amplitude of metronome I and II is respectively about 0.82 and 0.87 rad.

The difference in amplitude might explain why the metronomes do not oscillate
with a phase difference of π. Since the metronomes oscillate with different
amplitudes when running uncoupled, they are nonidentical. As explained before
no exact anti-phase synchronization is expected of nonidentical metronomes.

The variation in amplitude of the oscillations, which is also present when the
metronomes run uncoupled, is probably the reason that the phase difference
shows a large amount of variation.

Weak coupling

When the mass of the platform increases, the system does not synchronize
for all initial conditions anymore. However some other interesting phenomena
do occur. An example of such an experiment, is plotted in figure 5.2, where
M = 5.17 kg and accordingly β = 1.7 · 10−3, Ω = 1.6 and ξ = 6.8 · 10−4.
After approximately τ = 2000 the system looses synchrony and the amplitude
of the metronomes start oscillating in a peculiar way. When the amplitude of
metronome II increases, the amplitude of metronome I decreases. Energy seems
to be exchanged between both metronomes at a time scale approximately 100×
larger than that of the metronomes. The oscillations of the platform die out
when the difference in amplitude between the metronomes is maximal and at
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Figure 5.1: A synchronization experiment in which phase synchronization can be observed.
The dimensionless parameters are as follows in the experiment, β = 3.77 · 10−3, Ω = 2.1 and
ξ = 7.8 · 10−4. The mean phase difference between both metronomes is 0.80π after τ = 1000,
but a variation of about 10% can be seen around this value.

about the same time the phase difference of the metronomes passes through an
odd multiple of π. The system is thus momentarily in anti-phase synchronization
but due to the large difference in amplitude of the metronomes this state is not
stable.

A similar response can be seen in the experiment plotted in figure 5.3 with the
same parameters as in the previous experiment, but with different initial condi-
tions. Now the metronomes seem to synchronize around τ = 1000, then diverge
and synchronize again after τ = 2600. However the length of the experiment
is too short to be sure whether the metronomes will not desynchronize again.
The increase and decrease of the amplitude of each metronome and quenching
of the platform’s oscillation is also present in this experiment.

In the performed experiments phase synchronization of two metronomes is vis-
ible, however the influence of disturbances in the system are clearly visible in
the difference in phase of the metronomes. One of the disturbances acting on
the system is the irregular operation of the escapement. Due to this the am-
plitude of the uncoupled metronomes also show a variation of about 10% when
oscillating, as shown in figure 4.5.
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Figure 5.2: Experiment with β = 1.7 · 10−3 in which synchronization is lost. When this
happens the amplitudes of the metronomes diverge and start oscillating. The parameters in
this experiment are β = 1.7 · 10−3, Ω = 1.6 and ξ = 6.8 · 10−4.
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Figure 5.3: After losing synchronization around τ = 2000 the system synchronizes again with
a phase difference of 0.8π. The parameters in this experiment are β = 1.7 · 10−3, Ω = 1.6 and
ξ = 6.8 · 10−4.
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5.2 In- and anti-phase synchronization

In a slightly changed experimental setup more types of synchronization can be
observed. Instead of leaf springs of 0.4 mm thickness, more flexible leaf springs
with 0.1 mm thickness are used. With this change in the experimental setup the
value of Ω is approximately 1. A major drawback of this value is that resonance
of the platform is possible since the frequency of the platform is close to that
of the metronomes. When the oscillations of the platform become too large,
the metronomes will hit the frame. To prevent this, damping of the platform
is increased using magnetic damping. The extra damping also decreases the
eigenfrequency of the platform, but this change is less than 1% for the current
setup. The counterweights of the metronomes are removed in these experiments,
as a result of which the frequency of the metronomes increases to 12.18 rad/s
and the relative frequency difference to 1%, which is higher compared to the
previous experiments.

For a small coupling parameter the system exhibits approximate anti-phase
synchronization, as can be seen in figure 5.4. The mass of the platform is
2.35 kg in this experiment, resulting in a coupling strength β = 9.6 · 10−3,
relative eigenfrequency Ω = 0.96 and dimensionless damping ξ = 7.8%. When
the mass of the platform increases, anti-phase synchronization does no longer
occur, instead the metronomes synchronize in two different ways depending on
the initial conditions. In figure 5.5 in-phase synchronization is obtained after
starting the metronomes with approximate equal angles. If the metronomes are
started in anti-phase, the system synchronizes to a constant phase difference
of about 0.67 and a large difference in amplitude between metronome I and II,
which is shown in figure 5.6. In both figures the mass of the platform is 4.56 kg,
resulting in a coupling strength β = 4.7 · 10−3, relative eigenfrequency Ω = 0.94
and dimensionless damping ξ = 4.2%.

A difference in amplitude of the platform’s oscillations is visible between in-
and anti-phase synchronization, in figure 5.4 and 5.5. When the metronomes
oscillate with anti-phase synchronization, the amplitude of the velocity of the
platform is about 0.7 · 10−2, whereas the amplitude of the platform’s velocity
increases to 1.5 ·10−2 when the metronomes show in-phase synchronization. For
perfect anti-phase synchronization one would expect the platform to stop oscil-
lating as the net force from both metronomes on the platform is zero. However
in the experiment, due to differences between the metronomes, the phase dif-
ferences with which the metronomes synchronize is not exactly π rad and the
amplitudes of the metronomes are not equal. As a result the metronomes still
excite the platform. In the case of in-phase synchronization the force of the
metronomes acting on the platform is combined instead of canceled and a larger
amplitude of the platform’s oscillation can be expected.
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Figure 5.4: Experiment in which the metronomes synchronize with approximate anti-phase.
The parameters of the system are β = 9.6 · 10−3, Ω = 0.96 and ξ = 7.8 · 10−2.
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Figure 5.5: For large enough mass of the platform and with the initial conditions close to in-
phase synchronization, the metronomes synchronize in-phase. The parameters of the system
are β = 4.7 · 10−3, Ω = 0.94 and ξ = 4.2 · 10−2.
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Figure 5.6: The metronomes synchronize with a constant phase but a large difference in
amplitude for equal parameters of the system as when in-phase synchronization is observed,
the initial conditions differ however. The parameters of the system are β = 4.7·10−3, Ω = 0.94
and ξ = 4.2 · 10−2.
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Chapter 6

Simulations

Simulations with the model proposed in chapter 3 and estimated parameters
from chapter 4, have been performed and are compared to the results obtained
in the experiments.

6.1 Anti-phase synchronization

The values of the parameters of the metronomes used in the simulations are given
in table 6.1. The other parameters are given for each individual comparison
between experiment and simulation as they depend on the chosen mass of the
platform.

Strong coupling

In figure 6.1 a simulation is compared to the experiment, in which anti-phase
synchronization is observed. In general, matching dynamics can be seen, but
differences are present as well. First of all the metronomes do synchronize
in approximate anti-phase style, but not with the same phase difference as
in the experiment. Whereas the real metronomes have a phase difference of
approximately 0.8π rad, in the simulation it is 0.95π rad. Apparently the
model approaches exact anti-phase synchronization more closely than the real
metronomes do. This also effects the oscillation of the platform, its velocity is

Table 6.1: Values of the parameters of the metronomes I and II.

(a) Metronome I

[rad]
γ 1.0446 φ+ 0.25
δ 2.35 · 10−2 φ− 0.24
ε+ 4.76 · 10−2 ∆φ+ 0.07
ε− 5.15 · 10−2 ∆φ− 0.06

(b) Metronome II

[rad]
γ 1.0499 φ+ 0.22
δ 2.30 · 10−2 φ− 0.28
ε+ 5.24 · 10−2 ∆φ+ 0.09
ε− 5.65 · 10−2 ∆φ− 0.06
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about four times smaller in the simulation compared to the experiment. The
amplitudes of the metronomes show the same behavior and magnitude in the
simulation as in the experiment, a difference between the amplitudes remains
after the system has synchronized.

The steady state response of the simulation and experiment are plotted for a
few oscillations in figure 6.2. Now the behavior of the metronomes and platform
is visible in more detail. In order to compare the responses more easily the time
window is different for the experiment and simulation, but with approximate
equal phase for metronome I at the beginning. In these plots the difference
between the simulated and measured amplitude of the platform can be seen.
The amplitude differs about a factor four, but the shape of the oscillation is
comparable. In the response of the platform, the influence of the metronomes
and the eigenfrequency of the platform, which is exactly twice as high as the
frequency of the metronomes, can be seen.

The frequency difference between the metronomes seems to be a key factor in
the dynamics of the setup. After adjusting the parameter γ2, which regulates
the frequency of metronome II, from the estimated value of 1.0499 to 1.0488,
the response of the simulated systems matches the experiment almost perfectly.
In figure 6.3 the phase difference, amplitude of the metronomes and the velocity
of the platform is plotted. Here it can be seen that the phase difference is
approximately 0.8π rad after synchronization, which is also observed in the
experiment. The velocity of the platform also shows a better match compared
to the previous simulation. Apparently the resulting oscillation of the platform
is mainly dictated by the phase difference between the metronomes when the
system has synchronized.

The reason why changing the value of γ2 gives better results, can be explained
by comparing the frequency difference between the two metronomes in both
experiments and in simulations. In figure 6.4 the phase difference between the
response of the uncoupled metronomes is plotted. A horizontal line in this
plot would mean that the metronomes run at exactly equal frequencies. It can
be seen that the simulation with the adjusted value for γ2 shows roughly the
same response as the experiment, metronome I is oscillating slightly faster than
metronome II. The other simulation, with the estimated value for γ2 = 1.0499,
has an opposite frequency difference, which is also smaller as the slope is less
steep.

A thing that is still different between the simulation and the experiment is
the time needed for synchronization, which is visualized in figure 6.5, where
the phase difference between the metronomes of both the experiment and the
two simulations are plotted. Here it can be seen that the slope of the phase
difference is steeper in the experiment than in both simulations. The reason
why this happens is unclear.
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(a) experimental results
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(b) simulation

Figure 6.1: Experimental results (a) and simulation (b) in which approximate anti-phase
synchronization can be seen. The parameters of the system are β = 3.77 · 10−3, Ω = 2.1 and
ξ = 7.8 · 10−4.
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Figure 6.2: Steady state response of the experimental and simulated system, which shows
approximate anti-phase synchronization. The angles of metronome I and II are given in the
upper plots, the translation of the platform in the lower.
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Figure 6.3: Simulation of the system with a slightly changed parameter γ2 from the value
which is estimated. Due to this changes the frequency difference between both metronomes
decreases and better match with the experiment results. The parameters of the system are
β = 3.77 · 10−3, Ω = 2.1 and ξ = 7.8 · 10−4.
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Figure 6.5: Phase difference between the metronomes for the experiment and two different
simulations performed. The parameters of the first simulation are all directly estimated. In
the second simulation the value for the parameter γ2 is changed, which decreases the frequency
difference between the metronomes. The parameters of the system are β = 3.77·10−3, Ω = 2.1
and ξ = 7.8 · 10−4.
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Weak coupling

In experiments with a larger mass of the platform, which results in a smaller
coupling parameter and a lower eigenfrequency of the platform, the system
does not synchronize for all initial conditions as shown in section 5.1. The
experiment in which the system desynchronizes is compared with a simulation in
figure 6.6. Here quite a different response can be seen, whereas the system does
not synchronize in the experiment, the metronomes do synchronize in almost
perfect anti-phase in the simulation. The remarkable increase and decrease in
amplitude of the metronomes does not occur either. As expected the oscillations
of the platform are relatively small since the metronomes almost reach anti-
phase synchronization.

As for the experiment with anti-phase synchronization the parameter γ2 is varied
from its estimated value of 1.0499. In figure 6.7 a simulation with γ2 = 1.0464
is plotted. Although the response is not equal to what is observed in the exper-
iment, synchronization for a short while and after that desynchronization with
the oscillations in the amplitude of the metronomes, this last effect is present in
the simulation. A reason for the fact that only desynchronization can be seen in
this simulation might be that the differences between the metronomes are too
large, preventing synchronization. In the experiment the differences are possi-
bly smaller, which makes synchronization possible, but due to the disturbances
acting on the metronomes the system is pushed out of synchronization.

6.2 In- and anti-phase synchronization

The experiments, shown in section 5.2, with the thin leaf springs and a eigen-
frequency of the platform of approximately Ω = 1, are compared to simulations
in this section.

The values of the parameters of the metronomes used in these simulations are
given in table 6.2. The other parameters are given for each individual compar-
ison between experiment and simulation as they depend on the chosen mass of
the platform.

In figure 6.8 a simulation is shown with the same parameters and initial con-
ditions as the experiment in which approximate anti-phase synchronization is
observed. Qualitatively the same response can be seen, the metronomes have
a phase difference of about 0.9π and the amplitude of metronome II is larger

Table 6.2: Values of the parameters of the metronomes I and II.

(a) Metronome I

[rad]
γ 1.0568 φ+ 0.25
δ 8.97 · 10−3 φ− 0.24
ε+ 8.38 · 10−3 ∆φ+ 0.07
ε− 4.43 · 10−2 ∆φ− 0.06

(b) Metronome II

[rad]
γ 1.0549 φ+ 0.22
δ 1.30 · 10−2 φ− 0.28
ε+ 3.20 · 10−2 ∆φ+ 0.09
ε− 3.05 · 10−2 ∆φ− 0.06
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(a) experimental results
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(b) simulation

Figure 6.6: Experimental results (a) and simulation (b) in which approximate anti-phase
synchronization can be seen. The parameters of the system are β = 1.7 · 10−3, Ω = 1.6 and
ξ = 6.8 · 10−4.
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Figure 6.7: Simulation of the system with a slightly changed parameter γ2 from the value
which is estimated. Due to this changes the frequency difference between both metronomes
decreases and better match with the experiment results. The parameters of the system are
β = 1.7 · 10−3, Ω = 1.6 and ξ = 6.8 · 10−4.

than that of metronome I, however differences between the experiment and the
simulation can be seen. The velocity of the platform is approximately twice as
large in the simulation compared to the experiment and the transient behavior
differs quite. This can be seen in more detail in figure 6.9 where the angles
and velocity of the platform are plotted versus time for both the simulation and
the experiment. Whereas the angles of the metronomes have approximately
equally increasing amplitudes in the experiment, a decrease in the amplitude of
metronome II can be seen in the simulation around τ = 35. This affects the
oscillation of the platform as well, in the experiment the platform comes almost
to a standstill around τ = 70 whereas the platform does not slow down that
much in the simulation.

The reason for this large difference in transient behavior remains unclear. The
model of the escapement probably has influence, as the amplitude of metronome
II decreases in the experiment as well, but does not become smaller than 0.3 rad,
which is assumed to be the approximate angle at which the escapement stops
working.

A simulation with the same parameters and initial conditions as an experi-
ment in which in-phase synchronization is observed, is given in figure 6.10. The
response of the model matches that of the physical setup, the metronomes syn-
chronize in-phase, have a small difference in amplitude and the velocity of the
platform is approximately equal. For different initial conditions, but equal para-
meters, the experimental setup also shows a type of synchronization where the
phase difference between the metronomes is about 0.7π rad and the amplitudes
of the metronomes differ a factor two. In simulations this response is found
as well and is shown in figure 6.11. The role of the metronomes is switched
however, in the simulation metronome I has the larger amplitude. Although
not shown in this report this switch of role is also seen in experiments.
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Figure 6.8: Simulation with the same parameters and initial conditions as the experiment in
which anti-phase synchronization is observed. The parameters of the system are β = 9.6·10−3,
Ω = 0.96 and ξ = 7.8 · 10−2.
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Figure 6.9: The transient of the angles of the metronomes and velocity of the platform are
plotted for both the simulation and experiment. Around τ = 35 a decrease in the amplitude
of metronome II can be seen in the simulation, whereas this does not occur in the experiment.
The parameters of the system are β = 9.6 · 10−3, Ω = 0.96 and ξ = 7.8 · 10−2.
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Figure 6.10: In-phase synchronization can be observed in this simulation. The parameters of
the system are β = 4.7 · 10−3, Ω = 0.94 and ξ = 4.2 · 10−2.
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Figure 6.11: A simulation is shown where the metronomes synchronize with a phase difference
of 1.3π rad and have a large difference in amplitude. The role of the metronomes is switched,
compared to the response observed in a similar experiment. The parameters of the system
are β = 4.7 · 10−3, Ω = 0.94 and ξ = 4.2 · 10−2.
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Chapter 7

Conclusions and
recommendations

The objective of this research was to design an experimental setup in which
synchronization of metronomes can be observed, perform experiments with the
setup and verify the results with simulations. In order to keep the design simple,
two off-the-shelf metronomes have been used as oscillators. Coupling between
the metronomes is made possible by allowing horizontal translation of a platform
on which they are mounted. To be able to study the dynamics, measurement of
the angles of the metronomes and oscillation of the platform is made possible.

After designing and realizing the setup, experiments have been performed in
which synchronization of the pendula is observed. In experiments with an
eigenfrequency of the platform higher than the frequency of the metronomes,
only anti-phase synchronization or no synchronization is obtained. In a slightly
changed setup, where this eigenfrequency is approximately equal to the fre-
quency of the metronomes, besides anti-phase synchronization also in-phase
synchronization is observed.

In order to compare the experiments with simulations a model is proposed and
the introduced parameters are estimated from experiments. The estimation
is performed in three steps, first the parameters of the separate metronomes
are identified, secondly the parameters of the platform without the oscillating
metronomes are obtained and finally the coupling between each metronome and
the platform is estimated. Using the model and these parameters, the results
found in the experiments are compared to simulations.

In the following sections the conclusions and recommendations, which can be
drawn from the presented work, will be given. Beside the discussion on the
synchronization itself, extra attention is given to the practical implementation.
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7.1 Conclusions

Experimental setup

An experimental setup, based on two off-the-shelf metronomes, has been real-
ized. The use of leaf springs to suspend and allow only horizontal translation
of the platform was successful. The chosen range of eigenfrequencies of the
platform, which depends on the length and thickness of the leaf springs and
the mass of the platform, was adequate for the synchronization experiments.
In measurements the response of the platform showed linear spring stiffness
and linear viscous damping for the amount of translation that is found in the
synchronization experiments.

The chosen measurement system of the angle of the metronomes, using the
magnetoresistance principle, performs well. The magnets which are needed, can
be installed easily on the metronomes. Initial problems with nonlinear damping
of the platform due to the electrical wires needed for the magnetic sensors have
been solved by using thinner wires and a smarter routing. Measurement of the
position and velocity of the platform was successful with the LASER vibrometer.

Although synchronization has been obtained with the metronomes, they are
not ideal for experiments where the focus is on analysis of synchronization.
The only thing that can be adjusted in the metronomes is their frequency. The
amplitude cannot be changed, which is not ideal as the amplitude is rather large
in the current setup. In some experiments this has proven to be a problem as
the pendulum hits the supporting frame. Since these impacts are not modeled,
they should be avoided. A final drawback of using the metronomes in the setup
is the amount of variation they show in amplitude over a timescale of several
oscillations.

Modeling and estimation

A model is derived to compare simulations with the experiments. The platform
is modeled as a mass attached to the fixed world by linear springs and damping.
The metronomes are modeled as pendula with a viscous damping term and a
driving mechanism. Modeling this escapement proved to be the most difficult
part. Based on measurements of a freely oscillating metronome, the escapement
has been modeled as a sinusoid shaped pulse located between fixed angles, which
gives the pendulum a push when moving upward. Besides the fact that it is only
a crude approximation for the real dynamics present, it captures the essentials
of the escapement. A disadvantage of the used model for the escapement is, that
it is too complicated to be used analytically. This is be a problem for future
research.

In order to make the model more transparent, it is made dimensionless by scaling
time and introducing new parameters. The result of this transformation is that
the influence of the dimensionless parameters is easier to understand, but a
drawback is that a change of one of the physical parameters influences many
dimensionless parameters.

The parameters defined in the model are estimated in three steps. First only
the parameters of the platform are estimated, secondly the metronomes are
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identified when oscillating freely and finally the coupling strength between the
metronomes and the platform is estimated. By breaking up the complete model
in smaller parts a better overview over the estimation is kept. For the identi-
fication a nonlinear Kalman filter is used, which uses interpolation to linearize
the state equation. This filter is used since its implementation is simpler com-
pared to a more common extended Kalman filter. According to the literature
(Nørgaard et al. 2000), the filter should perform in practice at least as good as
the extended Kalman filter, this is however not verified in this report.

When comparing the response of the subsystems to measurements, a good match
is obtained. The largest differences are found in the response of the metronomes,
which is not surprising as the model of the escapement is a crude approximation
of a complex mechanism in reality.

The use of the Hilbert transform to calculate the phase and amplitude of the
response of the metronomes gives good results. These properties of the signals
characterize the dynamics of the system better than the angles itself. Although
not a problem for this research, a drawback of the method is that it can only
be used offline.

Experiments

Synchronization of the metronomes has been obtained with the experimental
setup. Depending on the initial conditions and parameters of the system the
metronomes synchronize with varying phase differences. Two distinct configu-
rations, regarding the eigenfrequency of the platform relative to the frequency
of the metronomes, have been studied.

When the pendula oscillate at a frequency lower than the resonance frequency
of the platform, only anti-phase or desynchronization of the metronomes is ob-
served. Whether and to what phase difference the system synchronizes seems
to depend mainly on the coupling strength of the metronomes, the frequency
difference between the metronomes and the initial conditions. For a relatively
large coupling parameter the setup shows an approximate anti-phase synchro-
nization for seemingly all initial conditions. The fact that the system does not
oscillate in exact anti-phase and with equal amplitudes can be explained by the
fact that the metronomes are nonidentical.

A mix of approximate anti-phase synchronization, no synchronization at all or
desynchronization is observed when the coupling strength is decreased. What
type of response is observed, is influenced by the initial conditions of the setup
and by disturbances acting on the metronomes. Due to variation in the es-
capement mechanism which drives the pendula, the amplitude of the oscilla-
tions changes during time. Combined with the weaker coupling synchroniza-
tion is sometimes lost or not obtained at all in the experiments. However if
the metronomes do synchronize, it is in approximate anti-phase. The desyn-
chronization which is observed, is attributed to the disturbances acting on the
metronomes.

A richer set of responses is observed when the eigenfrequency of the platform
is lowered to approximately the frequency of the metronomes by fitting thinner
leaf springs. For this configuration anti-phase synchronization is observed for
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strong coupling of the platform. But for a smaller coupling strength and a
smaller relative eigenfrequency of the platform either in-phase synchronization
or a response is found, where the phase difference between the metronomes is
approximately 0.7π rad and a large difference between the amplitude of the
metronomes exists.

Simulations

With the derived model and estimated parameters simulations have been per-
formed and compared to the results found in experiments. A qualitative match
is found between the simulations and experiments for both the configurations
with different thickness of the leaf springs. In the analysis of the simulations
it turned out that the frequency difference between the metronomes influences
the dynamics of the system significantly.

7.2 Recommendations

The experiments, performed with the setup, show that various synchronization
regimes are possible. Although no efforts have been taken to exactly reproduce
the findings of Huygens, regarding synchronization of pendulum clocks or the
more recent work in Bennett et al. (2002) and Pantaleone (2002), the setup
described in this report shows similar types of synchronization.

As the metronomes used in the experimental setup differ in both frequency and
amplitude when oscillating uncoupled, the results are an example of synchro-
nization between nonidentical systems. The observed effects of the differences
between the metronomes are that no exact anti- or in-phase synchronization
occurs, but with a small phase and amplitude difference. For approximate anti-
phase synchronization this result can be understood physically in the following
way. If the nonidentical metronomes would oscillate in exact anti-phase the
resulting force from the metronomes on the platform is not zero, as it would
be for two identical metronomes. As a result the platform is excited and will
subsequently influence the metronomes as well. This drives the metronomes
away from exact anti-phase synchronization.

It might be interesting to investigate experimentally and analytically how dif-
ferences between the oscillators influence the synchronization that evolves, es-
pecially the phase and amplitude difference.

For further research and experiments with the setup, several recommendations
can be given. First of all a better model of the metronomes, especially of the
escapement, has to be considered. This might provide a better insight in the
dynamics of the setup and the influence of the parameters can be understood
better.

Regarding the chosen set of parameters of the setup, the value of the relative
eigenfrequency of the platform needs to be evaluated. So far only experiments
have been performed with either the relative eigenfrequency around the fre-
quency of the metronomes or above it. No experiments have been run with
an eigenfrequency significantly lower than the metronomes. This configuration
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is used in Pantaleone (2002), where in-phase synchronization is prevalent over
anti-phase synchronization. Possibly this type of synchronization can be found
in the setup as well.

For the demonstration of synchronization the setup performs very well, how-
ever for analysis of the dynamics affecting synchronization, the setup is less
well suited. The problem is located in the metronomes, whose dynamics is not
understood completely, resulting in a model that does not match the measure-
ments very well. A solution would be to design a new setup for which the
following recommendations can be given. Although never a goal in this project,
the possibility to actuate the pendulums and platform for control strategies is
included in the ideas for a new setup.

• Replace the metronomes by pendula connected to an electrical motor. The
energy input can then have an arbitrary form, which makes eg. any steady
state amplitude of the oscillations possible.

• Design the pendula so that they have an equal eigenfrequency and can
be adjusted in steps of ±1‰ of the relative frequency difference. The
adjustment should be reproducible.

• Variation of the stiffness and damping of the platform should be made
possible through the proposed actuation. Values of the relative eigenfre-
quency between at least 0.5 to 2 are advisable.

• The exact frequency of the pendula is not of interest, however it should
be chosen so that appropriate relative eigenfrequencies of the platform are
obtainable. For the current setup the frequency of the pendula should be
increased a factor two to reach a relative eigenfrequency of the platform
of 0.5.

• Replace the measurement of the translation of the platform by a different
method than the LASER vibrometer. This should solve the problems
of the relative measurement, ie. the zero position is unknown and drift
occurs during long measurements.

• In the current setup the translation of the platform is limited to approxi-
mately 1-2 mm, which suffices for the performed experiments. As only for
small oscillations the assumed linearity of the model is appropriate. How-
ever if larger oscillations are necessary, either the model for the platform
should be adopted or the setup should be changed to take care or avoid
nonlinear response of the platform.

• When designing the setup and cables, eg. power to the electromotors,
have to run from the platform to the supporting frame, take into account
that nonlinear damping can arise.

• Although the design of the leaf springs does show linear behavior, a proper
constructive design is advisable. Points of attention are the restriction of
the degrees of freedom, stiffness perpendicular to the direction of transla-
tion and linearity of the wanted stiffness and damping.
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Appendix A

Nonlinear state estimation

For the estimation of the parameters of the metronomes in section 4.2 and
the coupling strength in section 4.3 a nonlinear filter has been used, proposed
in Nørgaard et al. (2000). The structure of the estimator is discussed in this
appendix.

Consider the following nonlinear discrete model which state is to be estimated

xk+1 = f(xk, uk, vk), (A.1)
yk = g(xk, wk) (A.2)

with state xk, input uk, process noise vk, output yk and measurement noise wk.
The process and measurement noise are independent of each other, white and
with normal probability distributions

vk ∼ N(0, Q(k)) (A.3)
wk ∼ N(0, R(k)). (A.4)

The objective of the filter is to estimate the state of the system based on the
model and past measurements. The a priori state x̄k and error covariance P̄k

estimates are defined as

x̄k = E[xk|Y k−1] (A.5)
P̄k = E[(xk − x̄k)(xk − x̄k)>|Y k−1] (A.6)

where Y k−1 =
[
y0 y1 . . . yk−1

]
is a matrix containing the past measure-

ments.

The a posteriori update of the state estimation x̂k is performed in the Kalman
filter so that the error covariance is minimized. This results in the Kalman gain
Kk

Kk = Pxy(k)P−1
y (k) (A.7)

x̂k = x̄k +Kk[yk − g(x̄k, wk)] (A.8)

where

ȳk = E[yk|Y k−1] (A.9)
Pxy(k) = E[(xk − x̄k)(yk − ȳk)>|Y k−1] (A.10)
Py(k) = E[(yk − ȳk)(yk − ȳk)>|Y k−1]. (A.11)
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The corresponding a posteriori update of the covariance matrix P̂k is

P̂k = E[(xk − x̂k)(xk − x̂k)>|Y k] = P̄k −KkPy(k)K>
k . (A.12)

As for nonlinear systems calculation of the expectations is in most cases dif-
ficult, the state and output equations are approximated. The filter proposed
in Nørgaard et al. (2000), which is utilized in this report, solves this problem
by making use of polynomial approximations and statistically decoupling of the
stochastic vectors. In particular, a multidimensional extension of Stirling’s in-
terpolation formula is used which is introduced in appendix B. Secondly a linear
transformation is used which performs a stochastic decoupling. For eg. state
xk this is done by calculating a Cholesky factor of the covariance Px

Px = SxS
>
x (A.13)

so that the following applies for the transformed stochastic vector z = S−1
x x

E[(z − E[z])(z − E[z])>] = I, (A.14)

where I is the unity matrix.

The following four square Cholesky factorizations are defined

Q = SvS
>
v , R = SwS

>
w

P̄ = S̄xS̄
>
x , P̂ = ŜxŜ

>
x

(A.15)

of which Sv and Sw can be calculated in advance, the other two S̄x and Ŝx

are updated during application of the filter. Using the first order truncated,
indicated by superscript (1), Stirling’s polynomial approximation the following
matrices can be defined

S
(1)
xx̂ (k) = {S(1)

xx̂ (k)(i,j)} =
{(fi(x̂k + hŝx,j , uk, v̄k)− fi(x̂k − hŝx,j , uk, v̄k))/2h} (A.16)

S(1)
xv (k) = {S(1)

xv (k)(i,j)} =
{(fi(x̂k, uk, v̄k + hŝv,j)− fi(x̂k, uk, v̄k − hŝv,j))/2h} (A.17)

S
(1)
yx̄ (k) = {S(1)

yx̄ (k)(i,j)} =
{(gi(x̄k + hs̄x,j , w̄k)− gi(x̄k − hs̄x,j , w̄k))/2h} (A.18)

S(1)
yw (k) = {S(1)

yw (k)(i,j)} =

{(gi(x̄k, w̄k + hsw,j)− gi(x̄k, w̄k − hsw,j))/2h} (A.19)

where s̄x,j denotes the jth column of S̄x and similarly for the other matrices.

The update of the a priori error covariance matrix can be written as

P̄ (k + 1) = S̄x(S̄x)> = S
(1)
xx̄ (k)(S(1)

xx̄ )> + S(1)
xv (k)(S(1)

xv )> (A.20)
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where the (rectangular and nontriangular) Cholesky factor can be found as

S̄x(k + 1) =
[
S

(1)
xx̄ (k) S

(1)
xv (k)

]
. (A.21)

This matrix must be converted to a square Cholesky factor for further use, for
example by Householder triangularization.

A similar matrix exists for Py(k) where

Sy(k) =
[
S

(1)
yx̄ (k) S

(1)
yw (k)

]
, (A.22)

which must also be converted to a square Cholesky factor.

Now the Kalman gain Kk can be calculated as

Kk = S̄x(k)(Syx̄(k))>(Sy(k)Sy(k)>)−1. (A.23)

Finally the a posteriori matrix P̂ (k) can be updated by triangularization of the
following matrix

Ŝx(k) =
[
S̄x(k)−KkS

(1)
yx̄ (k) KkS

(1)
yw (k)

]
. (A.24)

In the above description of the filter a first order truncated Stirling’s polynomial
approximation is given, whereas the filter used for the estimation of the para-
meters, uses a second order approximation. This does not change the structure
of the filter, but does complexify the various equations. The detailed equations
of this filter can be found in Nørgaard et al. (2000).

Finally it can be remarked that while the estimator introduced above, assumes
discrete updates of the dynamical model, the model proposed in chapter 3 is a
continuous time model. Using a fourth order Runge-Kutta method, Kreyszig
(1993) the continuous model is discretized in the implementation of the filter.

59



60



Appendix B

Stirling’s interpolation
formula

The Stirling’s interpolation formula is introduced in this appendix. First the
one dimensional case is given and after that the multidimensional case. A more
detailed description can be found in Fröberg (1970).

A one dimensional, analytic function f(x) can be approximated around the
point x̄ with the Stirling’s approximation formula by

f(x) = f(x̄+ ph) = f(x̄) + pµδf(x̄) +
p2

2!
δ2f(x̄) +

[
p+ 1

3

]
µδ3f(x̄)

+
p2(p2 − 1)

4!
δ4f(x̄) +

[
p+ 2

5

]
µδ5f(x̄) + . . .

(B.1)

where h is a selected interval length and the operations δ and µ are defined as

δf(x) = f(x+ h/2)− f(x− h/2) (B.2)

µf(x) =
1
2
(
f(x+ h/2) + f(x− h/2)

)
. (B.3)

For practical use only the first or second order polynomial approximations are
used and (B.1) can be approximated by

f(x) ≈ f(x̄) + f ′DD(x̄)(x− x̄) +
f ′′DD(x̄)

2!
(x− x̄)2 (B.4)

where

f ′DD(x̄) =
f(x̄+ h)− f(x̄− h)

2h
(B.5)

f ′′DD(x̄) =
f(x̄+ h) + f(x̄− h)− 2f(x̄)

h2
. (B.6)

When restricted to second order polynomials, the interpolation formula can be
written for the multidimensional case, where x ∈ Rn is a vector and y = f(x) a
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vector function, as

y ≈ f(x̄) + D̃∆xf +
1
2!
D̃2

∆xf (B.7)

where

D̃∆xf =
1
h

(
n∑

p=1

∆xpµpδp

)
f(x̄) (B.8)

D̃2
∆xf =

1
h2

 n∑
p=1

∆x2
pδ

2
p

n∑
p=1

n∑
q=1
q 6=p

∆xp∆xq(µpδp)(µqδq)

 f(x̄) (B.9)

and
δpf(x̄) = f(x̄+ 1

2hep)− f(x̄− 1
2hep) (B.10)

and ep is the pth unit vector. The average operator µp is extended in a similar
way.
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Appendix C

Complex demodulation

The characteristic features of oscillating signals are the amplitude and phase.
Using the Hilbert transform it is possible to derive these signals from a response
y(t) in the time domain Ziemer & Tranter (2002). The Hilbert transform ỹ(t)
can be considered as a filter that shifts the phase of all frequency components
by −π/2 radians and is defined as

H[y(t)] = ỹ(t) =
1
πt

∗ y(t) =
1
π

∫ ∞

−∞

y(τ)
t− τ

dτ (C.1)

Using the Hilbert transform the signal can be written in its analytic signal form
Y (t)

Y (t) = y(t) + jỹ(t) = A(t) exp(jψ(t))
ỹ(t) = H[y(t)],

(C.2)

where A(t) is the envelope signal (amplitude) and ψ(t) is the instantaneous
phase of the vibration. These two signals can easily be calculated from the
analytic signal by

A(t) =
√
y2(t) + ỹ2(t)

ψ(t) = arctan(ỹ(t)/y(t))
(C.3)
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Appendix D

Article Chaos’06

Article submitted to Chaos’06, the first IFAC Conference on Analysis and Con-
trol of Chaotic Systems, which will be held June 28-30 2006 in Reims, France
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A study of Huijgens’ synchronization. Experimental results

W.T. Oud1, H. Nijmeijer1, and A.Yu. Pogromsky1

Eindhoven University of Technology, Department of Mechanical Engineering, Eindhoven, The Netherlands

1 Introduction

One of the first scientifically documented observations of synchronization is by the Dutch scientist
Christiaan Huygens. In the 17th century maritime navigation called for more accurate clocks in
order to determine the longitude of a ship. Christiaan Huygens’ solution for precise timekeeping
was the invention of the pendulum clock [15] with cycloidal-shaped plates to confine the pendulum
suspension. Those plates resulted in isochronous behavior of the pendulum independent of the
amplitude and were genius invention of that time. During time Huygens was bound to his home due
to illness he observed that two pendulum clocks attached to the same beam supported by chairs
would swing in exact opposite direction after some time [8, 9, 10]. A drawing made by Christiaan
Huygens is given in figure 1. Disturbances or different initial positions did not affect the synchronous
motion which resulted after about half an hour. This effect which Huygens called “sympathie des
horloges” is nowadays known as synchronization and is characterized by [12] as “an adjustment of
rhythms of oscillating objects due to their weak interaction”. The oscillating objects in Huygens’ case
are two pendulum clocks and are weakly coupled through translation of the beam.

Fig. 1: Drawing by Christiaan Huygens of two pendulum clocks attached to a beam which is supported by
chairs. Synchronization of the pendulums was observed by Huygens in this setup. From [9]

Many more cases of synchronization have been identified in nature and technology around us [14].
Two striking examples in biology are the synchronized flashing of fireflies [5] or synchronization of
neurons in the brain when performing perceptual tasks. Synchronization is also found in technology,
for example the frequency synchronization of triode generators. These generators were the basic
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elements of early radio communication systems [3, 6]. Using synchronization it is possible to stabilize
the frequency of a high power generators and there are more other applications we are unable to
mention in this paper.

Three centuries later the phenomenon of synchronizing driven pendula is, to our best knowledge,
repeated twice experimentally. In the first research by Bennett, Schatz, Rockwood and Wiesenfeld
[4], one has tried to accurately reproduce the findings of Huygens in an experimental setup consisting
of two pendulum clocks attached to a free moving cart. The results of this experiment confirm the
documented observations of Christiaan Huygens. A rather simple but interesting experiment is
described by Pantaleone [11], where the synchronization of two metronomes is discussed, which are
coupled by a wooden board rolling on soda cans. The metronomes in this setup would synchronize
most of the time with in phase oscillations.

The research presented in this paper is inspired by the observations of Christiaan Huygens, the
work of Bennett et al. and Pantaleone. The main objective is to perform and analyze synchronization
experiments with a setup consisting of driven pendula. Particular attention is paid to different
syncronization regimes that can be observed in this situation : anti-phase, observed by Huygens,
in-phase: observed by Blekhman and explained with the van der Pol equation for each pendulum
and possible intermediate regimes.

The paper is organized as follows. First the design of the setup and the measurement methods are
discussed and the mathematical model describing the setup is introduced. Then the synchronization
experiments are discussed. Finally, conclusions are drawn and recommendations for further research
are given.

2 Experimental setup

The experimental setup consists of two metronomes coupled by a platform which can translate
horizontally. The metronomes are made by Wittner, type Maelzel (series 845). The platform is
suspended by leaf springs, which allows a frictionless horizontal translation. A photograph of the
experimental setup is given in figure 2.

Fig. 2: Photograph of the setup.
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2.1 Metronomes

The metronomes which are normally used for indicating a rhythm for musicians consist of a pendu-
lum and a driving mechanism, called the escapement. The energy lost due to friction is compensated
by this escapement. The escapement consists of a spring which loads on a toothed wheel. These teeth
push alternately one of the two cams on the axis of the pendulum. Each time the teeth hit a cam
a tick is produced, the typical sound of mechanical metronomes. The frequency of the metronomes
can be adjusted with a contra weight attached to the upper part of the pendulum. Variation of the
frequency between 2.4 rad/s and 10.8 rad/s is possible with the weight attached, without it the
frequency of the metronomes increases to 12.3 rad/s. The amplitude of the metronome’s oscillations
cannot be influenced, however at increasing frequencies the amplitude decreases.

2.2 Platform

The platform does not only act as a support for the metronomes but because of its horizontal
translation it couples the dynamics of both metronomes as well. In order to keep the equations
of motion of the total system simple a suspension with linear stiffness and damping is desired. As
long as the translation of the platform is not too large (mm range) the use of leaf springs makes a
frictionless translation possible with linear stiffness and damping properties [13]. In order to calculate
the necessary dimensions for leaf springs the following estimates have been used. The stiffness of
a leaf spring can be estimated by assuming it behaves as two bars clamped at one side. For small
deflections the stiffness of bar clamped at one side is given by [7]

k =
Ehb3

4L3
, (1)

where E is the elastic modulus, h the width, b the thickness and L the length of the bar. The leaf
spring has a stiffness equal to (1) since both halves of the leaf spring take half the deflection and
half the force, thus equal to the stiffness of a single sided clamped beam. The eigenfrequency of the
platform in rad/s is estimated by

Ω =

√
Ehb3

4(l/2)3M
+
g

l
(2)

where l is the length of the leaf spring, M the mass of the platform and g the constant of gravity.
For the setup the following dimensions for the leaf springs are chosen: l=80 mm, b=0.4 mm and
h=15+15+10 mm (three leaf springs). The constants are E = 200 · 109 kg/m/s2 and g=9.81 m/s2.
The platform has a mass of 2.35 kg which results in an eigenfrequency of 31.2 rad/s.

2.3 Measurements

In the setup the angle of the metronomes and the translation of the platform are of interest. Since
alteration of the dynamics of both the metronomes and the platform should be avoided, contactless
measurement methods have been chosen. All signals are recorded using a Siglab data acquisition
system, model 20-42. First the measurement of the metronomes is discussed, secondly that of the
translation of the platform.

The angle of the metronomes is measured using a sensor based on the anisotropic magnetoresis-
tance (AMR) principle [1], [2]. The resistance of AMR materials changes when a magnetic field is
applied. Above a minimal field strength the magnetization of the material aligns with the external
field and the following relation holds for the resistance R

R ∼ cos2 θ (3)

where θ is the angle between the magnetic field and the current through the resistor. By combining
four AMR resistors in a bridge of Wheatstone a change in resistance is converted to a voltage
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difference. Two of these bridges of Wheatstone are located in the sensor, but are rotated 45◦ degrees
with respect to each other. As a result the voltage difference of bridges A and B can be written as

∆VA = VsS sin 2θ , ∆VB = VsS cos 2θ (4)

where Vs is the voltage supplied to the bridges and S is the AMR material constant. The angle θ
can be calculated from these signals by

θ = 1
2 arctan(∆VA/∆VB) (5)

regardless of the value of voltage Vs and constant S. Due to manufacturing tolerances the bridges
will show an offset when no magnetic field is applied. This offset can be corrected in software when
both signals are recorded.

The velocity of the platform is measured using a Polytec Vibrometer, type OFV 3000 with a
OFV 302 sensorhead. The measurement is based on the Doppler shift of a laser beam reflected on
the platform.

3 Mathematical model of the setup

Assuming the setup consists of rigid bodies the equations of motion can be derived using Lagrangian
mechanics. The generalized coordinates are chosen as

qT = [θ1, θ2, x] (6)

which are the angles of the pendulums from the vertical and the translation of the platform. The
kinetic energy T (q, q̇) of the system can be expressed as

T (q, q̇) = 1
2m1ṙ1 · ṙ1 + 1

2m2ṙ2 · ṙ2 +
1
2
M ṙ3 · ṙ3 (7)

where r1, r2 and r3 are respectively the translation of the center of mass of pendulum 1, 2 and the
platform, m1 and m2 are the mass of pendulum 1 and 2, l1 and l2 the lengths of the center of mass
to the pivot point of pendulum 1 and 2, M is the mass of the platform and

r1 = (x+ l1 sin θ1) · e1 − l1 cos θ1 · e2 (8a)
r2 = (x+ l2 sin θ2) · e1 − l2 cos θ2 · e2 (8b)
r3 = x · e1 (8c)

The potential energy V (q) of the system is given by

V (q) = m1gl1(1− cos θ1) +m2gl2(1− cos θ2) + 1
2kx (9)

where g is the constant of gravity and k is the spring stiffness of the platform. The generalized
forces Qnc include viscous damping in the hinges of the pendulums and the platform and the torque
fi(θi, θ̇i) exerted by the escapement mechanism on the pendulums and can be written as

Qnc =




f1(θ1, θ̇1)− d1θ̇1

f2(θ1, θ̇1)− d2θ̇2

−d3ẋ


 (10)

where di are the viscous damping constants of respectively the two pendulums and the platform.
With Lagrange’s equations of motions

d

dt

(
T,q̇

)
− T,q + V,q =

(
Qnc

)T (11)
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the equations of motion for the system become

m1l1
2θ̈1 +m1l1g sin θ1 +m1l1 cos(θ1)ẍ+ d1θ̇1 = f1(θ1, θ̇1)

m2l2
2θ̈2 +m2l2g sin θ2 +m2l2 cos(θ2)ẍ+ d2θ̇2 = f2(θ2, θ̇2) (12)

Mẍ+ d3ẋ+ kx+
n∑

i=1

mili

(
θ̈i cos θi − θ̇2

i sin θi
)

= 0.

These equations for the metronomes can be simplified by dividing all terms by mili
2, which give for

i = 1, 2

θ̈i + ωi
2 sin θi +

1
li

cos(θi)ẍ+
di

mili
2 θ̇i =

1
mili

2 fi(θi, θ̇i) (13)

where ωi =
√
g/li.

The equations of motion can be written in dimensionless form using the following trans-
formations. The dimensionless time is defined as τ = ωt and the position of the platform as
y = x/l = xω2/g, where ω is the mean angular frequency of both pendulums. The derivatives
of the angles with respect to the dimensionless time are written as

dθ

dt
=
dθ

dτ

dτ

dt
= ωθ′ ,

d2θ

dt2
= ω2θ′′.

The equations of motion now become

θ′′i + γ2
i cos θiy′′ + γ2

i sin θi + δiθ
′
i = εi f(θi, θ′i), (14)

y′′ + 2Ωξy′ +Ω2y +
2∑

i=1

βiγ
−2
i

(
cos θiθ′′i − sin θiθ′i

2) = 0,

with coupling parameter βi = mi
M , scaled eigenfrequency of the metronomes γi = ωi/ω, damping

factor δi = dωi
2

mig
, eigenfrequency of the platform Ω2 = k

Mω2 and damping ratio of the platform

ξ = d3

2
√
kM

. The factor εi = ωi
4

mig2 will be set to 1 in further equations, since this factor can be taken
into account in the model of the escapement.

3.1 Escapement

So far the escapement has been indicated by the function f(θ, θ′). A close inspection of the
metronomes shows that the escapement gives the pendulum a push when going upward. Without
deriving an accurate mechanical model of the escapement mechanism this torque is approximated
by the following normalized expression:

f(θ, θ′) = 0, if θ < φ ∨ θ > φ+∆φ (15)

f(θ, θ′) =
1− cos(2π θ−φ∆φ )

2∆φ
,

if φ ≤ θ ≤ φ+∆φ ∧ θ′ > 0

where θ1 and θ2 are angles between which the mechanism works. In figure 3 the torque of the
escapement is plotted versus time when the pendulum would follow a periodic trajectory.
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Fig. 3: The torque exerted by the escapement on the pendulum is plotted versus time together with the
angle and velocity of the pendulum. The vertical axis is scaled in order to illustrate the torque more clearly.

4 Experimental results

Several experiments are performed in order to gain experience with the dynamics of the system.
Parameters which can be varied in the experiment are the mass of the platform, the mass and fre-
quency of the metronomes and the amount of damping in the system. Converted to the dimensionless
parameters the influence of the physical parameters is:

∆ = (ω1 − ω2)/ω , ω = (ω1 + ω2)/2
β = m/M

Ω =
√
k/M/ω

ξ = d/2/
√
kM

The experiments show different phenomena, first of all when the damping of the platform is too
small (< 2.0 kg/s) the pendulums hit the frame. These experiments are discarded since we want to
avoid collisions in the experiments. Apparently, without enough damping the platform and conse-
quently the metronomes are excited too much. For larger damping synchronization with different
phase differences is observed. Three different types of responses can be identified, anti phase synchro-
nization, intermediate (neither anti nor in) regime with a large amplitude difference of the angles of
the metronomes and finally in phase synchronization.

4.1 Anti-phase synchronization

Experiments have been performed with the setup to show synchronization of the metronomes. The
parameters that can be varied in the experimental setup are the frequency of the metronomes and the
mass of the platform. The frequency of the metronomes is chosen as high as possible in order to reduce
the time experiments will take. By adjusting the counterweights the frequency difference between
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both metronomes is minimized, since too large a frequency difference will make synchronization
impossible [4]. The second parameter that can be changed is the mass of the platform. Changing
this influences the dynamics of the system in three ways. First, the coupling between the metronomes
changes since the coupling parameter β is the ratio between the mass of the metronome’s pendulum
and the total mass of the platform. Secondly the relative eigenfrequency of the platform changes,
increasing the mass of the platform lowers the eigenfrequency. Finally the relative damping factor
of the platform depends on the mass.

In the experiments the frequency of metronome I is set to 10.565 rad/s and that of metronome
II to 10.553 rad/s, which results in a mean frequency of ω = 10.559 rad/s and a relative frequency
difference of ∆ = 1.1 · 10−3. The mass of the platform is varied between 2.35 kg and 8.18 kg in five
steps, resulting in a coupling parameter β varying between 19.5·10−3 and 5.60·10−3. For each choice
of mass the experiments are started with several initial conditions. Since the metronomes need to
be started by hand, reproducing the initial conditions exactly between experiments is impossible.

When the mass of the platform is varied, the following observations can be made from the
experiments. For small mass the setup synchronizes to approximately constant phase for all initial
conditions. When the mass of the platform increases the metronomes do not always synchronize
anymore. When they do the phase difference is comparable to that in experiments with small mass
of the platform.

A typical example of the experiments, in which synchronization for all initial conditions is ob-
served, is depicted in figure 4, where the difference in phase of the metronomes, their amplitudes
and the dimensionless velocity of the platform are plotted. The mass of the platform in this ex-
periment is 2.35 kg, resulting in a coupling factor β = 19.6 · 10−3, dimensionless eigenfrequency
Ω = 2.1 and dimensionless damping factor ξ = 7.9 · 10−4. The resulting difference in phase between
the metronomes, when they are synchronized, is approximately 0.8π with a variation of 0.1π. The
amplitude of the oscillations of metronome II is larger than that of metronome I, which is also
the case, and with comparable magnitude, when the metronomes run uncoupled. The difference is
approximately 0.05 rad and the amplitude of metronome I and II is respectively about 0.80 and
0.85 rad. As the metronomes do not synchronize in exact anti-phase, the platform keeps oscillating.
The amplitude of the dimensionless velocity of the platform is approximately 0.01.
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Fig. 4: A synchronization experiment in which phase synchronization can be observed. The dimensionless
parameters are as follows in the experiment, ∆ = 7.9 · 10−4, β = 0.020, Ω = 2.1 and ξ = 7.8 · 10−4. The
mean phase difference between both metronomes is 0.80π after τ = 2000, but a variation of about 10% can
be seen around this value.

When the mass of the platform increases, the system does not always synchronizes to a constant
phase. An example of such experiment is plotted in figure 5, where M = 5.17 kg and accordingly
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β = 8.9 · 10−3, Ω = 1.6 and ξ = 6.8 · 10−4. After approximately τ = 2000 the system looses
synchrony and the amplitude of the metronomes start oscillating. A similar phenomenon occurs
in the experiment plotted in 6 with the same parameters but different initial conditions. In this
experiment the metronomes seem to synchronize around τ = 1000, then diverge, but synchronize
again after τ = 2600. However the length of the experiment is too short to be sure whether the
metronomes will not desynchronize again.
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Fig. 5: Experiment with β = 8.9 · 10−3 in which synchronization is lost. When this happens the amplitudes
of the metronomes diverge and start oscillating.

1000 2000 3000 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

τ

∆ 
ph

as
e 

[π
 r

ad
]

1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

τ

am
pl

itu
de

 θ
 [r

ad
]

I
II

1000 2000 3000 4000
−5

−4

−3

−2

−1

0

1

2

3

4

5

τ

dy
/d

τ 
[×

0.
00

1]

Fig. 6: After losing synchronization around τ = 2000 the system synchronizes with a phase difference of
0.8π. The coupling factor in this experiment is β = 8.9 · 10−3.

In the performed experiments phase synchronization of two metronomes is visible, however the
influence of disturbances in the system are clearly visible in the difference in phase of the metronomes.
One of the disturbances acting on the system is the irregular operation of the escapement. Due to
this the amplitude of the uncoupled metronomes also show a variation of about 10% when oscillating.
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4.2 In- and anti-phase synchronization

In a slightly changed experimental setup more types of synchronization can be observed. Instead of
leaf springs of 0.4 mm thickness, more flexible leaf springs with 0.1 mm thickness are used. With this
change in the experimental setup the value of Ω is approximately 1. A major drawback of this value
is that resonance of the platform is possible since the frequency of the platform matches that of the
metronomes. When oscillations of the platform become too large, the metronomes will hit the frame.
To prevent this, damping of the platform is increased using magnetic damping. The counterweights
of the metronomes are removed in these experiments, as a result the frequency of the metronomes
is increased, as well as the relative frequency difference compared to the previous experiments.

For a small coupling parameter the system synchronizes with approximate anti-phase, as can be
seen in figure 7. The mass of the platform is 2.35 kg in this experiment, resulting in the following
dimensionless parameters, β = 16.6 · 10−3, Ω = 0.96 and ξ = 7.8%. When the mass of the platform
increases anti-phase synchronization does no longer occur, instead the metronomes synchronize in
two different ways depending on the initial conditions. In figure 8 in-phase synchronization is ob-
tained after starting the metronomes with approximate equal angles and in-phase. If the metronomes
are started with anti-phase, the system synchronizes to a constant phase difference of about 0.65
and a large difference in amplitude between metronom I and II, this is shown in figure 9. In both
figures the parameters of the system are β = 8.56 · 10−3, Ω = 0.94 and ξ = 4.2%.
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Fig. 7: Experiment in which the metronomes synchronize with approximate anti-phase.

5 Conclusions

This paper presents some experimental results on synchronization of two metronomes attached
to a common beam that can move in horizontal direction. From those experiments it becomes
evident that different synchronization regimes can (co-)exist depending on the system parameters.
It is worth mentioning that we have observed from those experiments some intermediate seemingly
chaotic regimes of oscillations. Further research will be devoted towards theoretical studies of those
oscillations.
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Fig. 8: For large enough mass of the platform and with the initial conditions close to in-phase synchronization,
the metronomes synchronize in-phase.
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Fig. 9: The metronomes synchronize with a constant phase but a large difference in amplitude for equal
parameters of the system as when in-phase synchronization is observed, the initial conditions differ however.
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Samenvatting

Gëınspireerd door de observatie van synchronisatie van twee slingeruurwerken
door Christiaan Huygens, is een vergelijkbare opstelling ontworpen en geanaly-
seerd in dit verslag. In plaats van pendulum klokken zijn metronomen ge-
bruikt als oscillatoren in de opstelling. De koppeling tussen de metronomen is
aangebracht door horizontale beweging van het platform waarop de metronomen
bevestigd zijn.

Na beschrijving van het ontwerp van de opstelling en de gebruikte meetmeth-
oden, is model geponeerd, waarmee het systeem is geanalyseerd. Dit model
bestaat uit twee aangedreven slingers, bevestigd aan een massa, welke is ver-
bonden met de vaste wereld met een lineaire veer en demper. Het echappement,
wat voor energietoevoer in de metronomen zorgt, is gemodelleerd als een sinus-
vormige moment tussen twee vastgelegde hoeken. Alle parameters in het model
zijn gëıdentificeerd met een niet-lineair Kalman filter en de resultaten van de
identificatie zijn gevalideerd.

Synchronisatie experimenten zijn uitgevoerd voor twee verschillende configu-
raties van het systeem. Ten eerste is synchronisatie van de metronomen bekeken,
wanneer de relatieve eigenfrequentie van het platform ongeveer twee keer zo
groot is als de natuurlijke frequentie van de metronomen. In deze situatie is
alleen anti-fase synchronisatie waargenomen. Als de eigenfrequentie van het
platform echter rond de frequentie van de metronomen ligt, is zowel anti- als
in-fase synchronisatie mogelijk, afhankelijk van de parameters van het systeem.
Tot slot zijn de bevindingen van de experimenten kwalitatief bevestigd in sim-
ulaties met het model.
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