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Abstract

Geophysical flows affect the Earth’s climate and weather and in these flows,
dipolar vortices play an important role. In order to gain a better understand-
ing of dipolar vortices, they are generated and studied in the laboratory.

In this study, a novel method of electromagnetically generating symmetric
dipolar vortices with improved control over propagation trajectory is inves-
tigated experimentally and numerically.
As a first step, the generated dipoles have been characterized. In the forma-
tion phase, the dipole has two closely packed concentrated vorticity patches
which is point-dipole-like. In the early time stage, the dipole is similar to
a super-smooth dipole and in later time stages the dipole transitions into a
more Chaplygin-Lamb dipole-like structure.

Subsequently, the new generation method has been applied in various
dipolar vortex collisions experiments where the collision outcomes are sensi-
tive to small deviations in propagation trajectory, to highlight the improved
control over the propagation trajectory.

Lastly, the new method has been applied in experiments with a shearing
background flow to illustrate the method’s minimal intrusiveness in experi-
ments, especially with background flows.
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Chapter 1

Introduction

1.1 Vortices in geophysical flows

On Earth there are large-scale flows that occur naturally. These flows are
referred to as geophysical flows which drive the fluid motion in the Earth’s
atmosphere and oceans. Consequently, geophysical flows affect the climate
and weather. Therefore by having a better understanding of geophysical
flows, weather and climate forecasts can be improved.

In geophysical flows, vortex structures play a significant role. A prime
example is atmospheric blocking, where large-scale vortex patterns in the at-
mospheric pressure field are nearly stationary and can persist for several days
or even weeks. Due to this blocking, the weather and climate remains un-
changed for extended periods of time. An illustration of atmospheric blocking
is shown in Figure 1.1a. In Figure 1.1a, the blocking high and low pressure
system forms a dipolar vortex-like structure. The figure is sketching a situ-
ation where the structure is affecting and deflecting the Jet stream and the
trajectory of a hurricane.

There are many different types of vortices. The two most elementary vor-
tex structures are the monopolar vortex and dipolar vortex. The monopolar
vortex is a single vortex whereas the dipolar vortex is a structure with two
closely packed vortices with oppositely signed vorticity. Vorticity is a mea-
sure of rotation at a certain point, expressed in units of s−1. The two poles of
dipolar vortex interact with each other which results in a self-induced prop-
agation. This effect is called self-propulsion. In addition to self-propulsion,
dipolar vortices can trap particles inside and the combination gives rise to
a naturally occurring transport mechanism. One example, are vortex struc-
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Figure 1.1: a) Figure showing an illustration of atmospheric blocking. The
blocking high and low pressure system form a dipolar-vortex like structure that
affects the weather and climate of the surrounding region. Image courtesy of
T. Rabenhorst. b) Figure depicting the transportation of Sahara sand over
the Atlantic Ocean by a vortex-like structure. Image taken from N. Kuring,
SeaWiFS Project.

tures that trap sand from the Sahara desert and transports the sand over
large distances. Figure 1.1b shows a satellite image of Sahara sand being
transported over the Atlantic ocean by a dipolar vortex like structure.

1.2 Geophysical flows and quasi-2D flow con-

ditions

An important feature of large-scale geophysical flows is that they are two-
dimensional(2D) in good approximation or also known as quasi-2D(Q2D).
This Q2D behaviour is due to the combination of the Earth’s planetary back-
ground rotation, shallowness of the fluid layer and density stratification. The
planetary background rotation is the first Q2D flow inducing factor. How
background rotation induces Q2D flow is described by the Taylor-Proudman
theorem [1][2].
The second factor, the shallow-layer approximation is considered valid as the
Earth’s atmosphere and oceans have a typical horizontal length scale that is
significantly bigger than its typical vertical length scale.
The third factor is density stratification which suppresses vertical motion due
to buoyancy forces.
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1.3 The realization of Q2D conditions in the

laboratory

Laboratory experiments involving Q2D vortices generally utilize a combina-
tion of shallow-layer, stratification and background rotation to promote Q2D
conditions. This study focuses specifically on generating symmetric dipolar
vortices that have a straight propagation trajectory. The experiments in this
study are carried out in a shallow stratified fluid.

The use of background rotation is a method to achieve Q2D flow condi-
tions. This was proven theoretically by Proudman [2] and studied experimen-
tally by Taylor [1]. Comparatively, the shallow layer is not as effective when
using background rotation. This is due to enhanced bottom friction effects
which consequently result in a faster decay of generated dipoles. Experi-
ments using background rotation typically have a larger fluid depth. Thus
the bottom friction effects play a significantly smaller role and vortices in
rotating fluid are relatively ’long-lived’.

In a study by Zavala et al. [3], non-linear Ekman effects influence dipolar
vortices. The Ekman effect results in an asymmetry in decay rate between
the cyclonic and anticyclonic parts of the dipole. The cyclonic direction
shares the same rotational direction as the background rotation and vice
versa for the anticyclonic direction. The asymmetry results in a deflected
propagation trajectory in the anticyclonic direction. Background rotation is
more effective for inducing Q2D condition but non-linear Ekman effects are
a disadvantage when working with background rotation. Non-linear Ekman
effects can be suppressed by increasing the magnitude of the background
rotation. However, a faster rotating table can be relatively hazardous and
technically difficult to build.
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1.4 Dipolar vortex generation methods

Dipolar vortices are easily generated in shallow fluid layers by using any
external forcing that induces linear momentum. One example of such an ex-
ternal forcing is an electromagnetical forcing. Notable studies on generating
vortices electromagnetically are performed by Tabeling et al. [4] (array of
monopolar vortices) and Honji & Haraguchi [5] (dipolar vortices). A sketch
of the setup by Tabeling et al. is shown in Figure 1.2. In both studies the
setup is similar but also in numerous other studies as this specific setup is
commonly used. This type of setup consists of a rectangular container with
electrodes positioned at opposite sides. While magnets are placed beneath
the container.
An electric potential is applied over the two electrodes which generates an
electric current running through the electrolytic fluid. The combination of
the electric current and magnetic field generates a Lorentz force. In this type
of method, the curl of the generated Lorentz force is non-zero which means
that vorticity is generated, leading to a dipolar vortex.

Figure 1.2: Figure showing an illustration of an alternative electromagnetical
forcing mechanism used in the study performed by Tabeling et al. Image taken
from Tabeling et al. [4].
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Figure 1.3: Figure showing an illustration of a syringe-type setup used in the
study performed by Flór et al. Image taken from Flór et al. [6].

There are alternative forcing mechanisms besides electromagnetic forcing
such as injections with pipettes/syringes in stratified fluid. The time evo-
lution of the injected fluid by using pipettes/syringes has for example been
documented in a study by Flór et al. [6] and by Flór & van Heijst [7].

The experimental setup used by Flór et al. consists of a syringe-type forc-
ing mechanism as depicted in Figure 1.3. Flór et al. [6] made observations
of the evolution of an isolated turbulent region in a two-layer stratified fluid.
During the forcing a conical 3D turbulent region emerges. Subsequently, the
vertical inertia becomes the same order as buoyancy forces. At this time
the turbulent region reaches its maximum vertical size. Soon after the grav-
itational collapse starts to set in, which causes the structure to reduce in
size. Afterwards, the structure transforms into a single sharp intrusion and
a dipolar vortex structure emerges.
The syringe-type method generates a jet which is initially turbulent. This
initial turbulent phase of the dipole results in relative unpredictable propa-
gation trajectory and strength.
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Flór et al. utilized a linearly stratified fluid, which has the advantage
that the generated vortices are relatively long-lived. However, the prepara-
tion time for setting up this type of stratification can take up to one week,
while the setup time for a two-layer stratification is generally in the order of
ten minutes (used in the proposed method).
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Figure 1.4: Figure showing an illustration of a mechanical flap mechanism
used in the study performed by Albagnac et al. Image taken from Albagnac
et al. [8].

Mechanical forcing mechanisms can also be used to generate dipoles in-
stead of syringes and electromagnetic forcing mechanisms. To give an ex-
ample: Albagnac et al. [8] used two mechanical flaps. An illustration of
this experimental setup is shown in Figure 1.4. These mechanical flaps are
relatively large in size, which can be relatively intrusive. The intrusiveness of
large mechanical mechanisms is most notable during experiment with back-
ground flow.

For example, investigations on the interaction between vortices and shear
flow as for example studied by Trieling et al. [9]. The no-slip condition
imposed by the mechanical components submerged into the fluid blocks and
perturbs the background flow.
Fernandes et al. [10] used a piston mechanism to study dipolar vortex-shear
interaction. The mechanism is fixed at a position permanently and thus
restricting to only generate dipoles at a single position. Furthermore, this
mechanism can only generate dipoles propagating at a relatively small range
of angle.
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1.5 Study outline

The goal of this study is to investigate a new method of generating dipolar
vortices in a shallow stratified fluid layer, considering a novel design of a
dipolar vortex generator device, utilizing electromagnetic forcing.

The project has three parts: (i) to characterize the generated dipolar vortices,
(ii) to apply the dipole generator in experiments. The latter part of the
project is performed in order:

1. to show the enhanced control over propagation trajectories and vortex
strength, compared to alternative methods. This is achieved by study-
ing dipolar vortex collisions. Dipolar vortex collisions are sensitive to
small offsets of propagation trajectories and strength. Thereby giving
an indication if there is sufficient control.

2. To illustrate the compact design as a relative unintrusive forcing mech-
anism. This is achieved by generating dipolar vortices in a shearing
background flow.

Furthermore, the new dipolar vortex generation method is investigated nu-
merically through Comsol Multiphysics to complement experimental results.
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Chapter 2

Theory

2.1 Relevant equations and dimensionless num-

bers

The equation governing the incompressible flow in a Newtonian fluid is given
by the Navier-Stokes equation (NS) [11] which is the conservation of momen-
tum:

∂ū

∂t
+ (ū · ∇)ū = −1

ρ
∇P + ν∇2ū +

1

ρ
J̄× B̄ (2.1)

with velocity ū, the density ρ, the pressure P , the kinematic viscosity ν, the
electric current density J̄ and the magnetic field B̄. Furthermore, considering
incompressible fluids

∇ · ū = 0. (2.2)

Vorticity is an important parameter in studies considering vortices. Vorticity
ω is defined as:

ω̄ = ∇× ū. (2.3)

The vorticity equation is derived by taken the curl of the NS equation (equa-
tion (2.1)) as follows

∂ω̄

∂t
+ (ω̄ ·∇)ω̄ = ω ·∇ū−ω∇· ū+

∇ρ×∇P

ρ2
+ν∇2ω̄+

1

ρ
∇× (J̄× B̄) (2.4)

The Navier-Stokes equation can be non-dimensionalized for this specific flow
system. This is done by using a typical length scale L, a typical time scale
T , a initial current density J0 and the magnetic field strength B0. This will
result in the non-dimensionalized Navier-Stokes equation:

∂ū∗

∂t∗
+ (ū∗ · ∇∗)ū∗ = −∇∗P ∗ +

ν

U0L
∇∗2ū∗ +

J0B0L

ρU0
2 (J̄∗ × B̄∗) (2.5)
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J0 =
I0

A(L)
(2.6)

A(L) = HLJ (2.7)

U0 =
L

T
(2.8)

J0 can be expressed in terms of I0 and a typical surface area A(L) as expressed
in equation (2.6), that depends on the typical electric current cross-sectional
length scale LJ and H the typical fluid depth as described in equation (2.7).
U0 can be reformulated with the typical length scale L and the typical time
scale T , as illustrated in equation (2.8).

The typical length scale L is defined as de the electrode gap distance as

L = de (2.9)

and the typical time scale T is defined as tf the forcing time duration as

T = tf . (2.10)

Then the substitution of equations (2.6), (2.7) and (2.8) into equation (2.5)
will result in:

∂ū∗

∂t∗
+ (ū∗ · ∇∗)ū∗ = −∇∗P ∗ +

1

Re
∇∗2ū∗ + C(J̄∗ × B̄∗) (2.11)

Equation (2.11) has two non-dimensional numbers, the electromagnetic forc-
ing coefficient C and the Reynolds number Re:

C =
I0B0t

2
f

ρHαd2e
(2.12)

Re =
d2e
νtf

(2.13)

The coefficient α = 4.84 in equation (2.12) is discussed later.

The dimensionless numbers C and Re are used in the non-dimensional
NS equation and used as input parameters in numerical simulations. These
numerical simulations model the generated dipoles by the proposed electro-
magnetic device. The numerical fluid simulation is strictly 2D but the flow
in experiments are quasi-2D and will exhibit some 3D effects.
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2.2 Dipolar vortex models

There have been numerous studies on analytical solutions of 2D vortex struc-
tures. For this study, there are three relevant analytical solutions. Namely,
the Chaplygin [12]-Lamb [13] (circular) dipole, the super-smooth (elliptical)
dipole and the point-dipolar vortex.

2.2.1 The Chaplygin-Lamb dipolar vortex

The most widely known theoretical dipolar vortex solution is the Chaplygin-
Lamb(CL) dipole solution. The CL solution was first known as the Lamb-
dipole but Meleshko and van Heijst [14] found out that this solution was
found independently by Chaplygin (1899, 1903) and Lamb (1895, 1906).

The Chaplygin-Lamb (CL) dipole is an analytic solution considering the
steady, inviscid, incompressible, 2D Euler equations where the dipolar vortex
solution has a continuous vorticity distribution on a circular region. Stokes
showed that any flow represented by the stream function ψ(x, y) defined as:

u =
∂ψ

∂y
, v = −∂ψ

∂x
(2.14)

with u and v the velocity components in x and y-direction (Cartesian).
Note that with ω̄ = ωēz, where ω = −∇2ψ. Then this flow satisfies the
equation:

ω =
∂2ψ

∂x
+
∂2ψ

∂y
(2.15)

with F an arbitrary function of ψ and if

F (ψ) = −k2ψ (2.16)

where k is a constant(for coherent structures F (ψ) = ω(ψ)). Then switching
to 2D polar coordinates r and θ as follows

x = rcos(θ), y = rsin(θ) (2.17)

the following equation is obtained

∂2ψ

∂r2
+

1

r

∂2ψ

∂θ2
+ k2ψ = 0. (2.18)

Meleshko & van Heijst [14] solved equation (2.18) which then results in
the CL-dipole solution for two regions. One region is the inside of the circular
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domain (separatrix) with radius a and the other region is the outside of this
circular domain:

ψ = CB1(kr)sin(θ), r < a (2.19)

ψ = U(r − a2

r
)sin(θ), r > a (2.20)

with B1 a Bessel function (of the first kind).

Figure 2.1: A figure showing the a) The iso-ψ lines, b) the vorticity distribu-
tion, c) the vorticity cross-section and d) the ω-ψ relation corresponding to
the Chaplygin-Lamb dipolar vortex solution. Image taken from Kizner et al.
[15]

Figure 2.1 illustrates the Chaplygin-Lamb dipole. In numerous experi-
mental studies, dipoles have been observed that show close similarity with
the theoretical Chaplygin-Lamb dipole solution.

2.2.2 The super-smooth dipolar vortex

Dipoles with elliptical boundaries represent a family of dipole solutions, with
the CL-dipole being a particular case. A relevant dipolar vortex with such an
elliptical boundary is the super-smooth (SS) dipolar vortex. The SS-dipole
has been found and named by Kvholes & Kizner [15][16][17]. The name
super-smooth was used as this dipole has a relatively smooth transition of
vorticity at the vortex separatrix, in contrast to the Chaplygin-Lamb dipole.

The SS-dipole and CL-dipole have more differences besides the smooth
transition of vorticity at the separatrix. One such difference is the separatrix
eccentricity ε which is an important parameter for distinguishing different
elliptical dipoles:

ε =
ry
rx

(2.21)
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with rx and ry the minor and major axis of the elliptical boundary (separa-
trix), respectively. Kvholes & Kizner calculated that the eccentricity of the
SS dipole ε = 1.162.

Kvholes & Kizner [16] derived the SS-dipole using steady-state solutions
of an ideal 2D Euler flow, similar to the derivation of the CL-dipole. However
instead of using a circular separatrix they also enabled elliptical separatrices.
Furthermore, instead of the linear relation (CL-dipole) shown in equation
(2.16), they proposed a 7th order polynomial ω-ψ relation:

ω = c1ψ + c3ψ
3 + c5ψ

5 + c7ψ
7 (2.22)

They calculated the exterior solution ψ
′(ex) analytically and subsequently

used ψ
′(ex) to obtain the interior solution ψ

′(in) by adopting an iterative
method and a polynomial approximation of ψ

′(in) described in equation (2.22).
The 7th order polynomial approximation was used by Kizner et al. for study-
ing elliptical dipolar vortices, however the SS-dipole is approximated with
only the 3rd order(ω = c3ψ

3).

Figure 2.2: A figure showing the a) The iso-ψ lines, b) the vorticity distri-
bution, c) the vorticity cross-section and d) the ω-ψ relation corresponding
to the super-smooth dipolar vortex solution. Image taken from Kizner et al.
[15]

Figure 2.2 illustrates the super-smooth dipole. Kizner et al. [15] numer-
ically compared the evolution of symmetric 2D dipolar structures of three
different types: the squeezed dipole, the CL-dipole and the SS-dipole.

Furthermore, Trieling et al. [18] considered barotropic elliptical dipoles
experimentally in a rotating fluid. The dipolar vortices in the experiment
matched the SS-dipole better than the CL-dipole solution.

13



2.2.3 The point-dipolar vortex

The point-dipolar vortex (PD) is set of two closely packed point vortices,
which is based on potential theory. The point vortex has a singular vorticity
distribution described by a Dirac-delta function in 2D polar coordinates as:

ω(r) = γδ(r) (2.23)

with γ the strength of the point vortex. The azimuthal flow induced by the
point vortex is irrotational and described by:

vθ(r) =
γ

2πr
. (2.24)

The point-vortex can never be observed experimentally but PD-like dipoles
with two closely packed concentrated vorticity patches are relevant which are
a kind of in between a PD and SS-dipole.
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Chapter 3

Experimental and numerical
methods
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3.1 Experimental setup

Figure 3.1: a) A sketch showing the front-view of the electromagnetic gen-
erator. The red lines indicate the two electrodes, while the gray rectangles
illustrate the individual permanent magnets. The electrode gap distance is
de and the magnet size is indicated with dm. b) A photograph showing the
side-view of the electromagnetic generator, the small transparent casing is
visible at the bottom of the image where two power cables are connected to
the electrodes. The four magnets residing in the transparent casing are also
visible.

The electromagnetic dipole generator is illustrated in Figure 3.1. Figure
3.1a shows a sketch of the front-view and Figure 3.1b depicts a photograph
of the generator. The perspex casing contains platinum coated electrodes
that are passing through the casing. The platinum coating is used to min-
imize oxidation and other chemical reactions. Additionally, the electrodes
are insulated to prevent any electrical interaction with surrounding compo-
nents. The electrodes are connected to an external power source. When the
electrodes are (partially) submerged into an electrolytic fluid, a current can
be driven through the fluid.
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Figure 3.1 shows another important component: the cylindrically shaped
magnet. The magnet is not a single magnet but a combination of smaller
magnets stacked together with identical diameter dm of 2.5 cm. The center
of each magnet coincides with the center of the casing and the electrodes are
placed in symmetric fashion. The combined effect of driving current through
a fluid and the magnetic field induces a Lorentz force. The Lorentz force is
a volume force acting on the fluid, which can generate a dipolar vortex.

Figure 3.2: a) Top-view of the experimental setup. The casing around the
magnets is depicted with a dashed black lines, the camera field of view is
indicated with dashed red lines and the electrode pair is depicted as two gray
circles. The length of the fluid tank L2 and the width W2 are also illustrated.
Loff = 7 cm which is the offset between the electrodes and the field of view.
The x and y-axes are also indicated, with x = 0 and y = 0 at the center of the
magnet(during forcing). b) Side-view of the experimental setup showing the
stratification with lower density ρ1 and higher density ρ2. The dashed black
lines indicate the camera field of view. The device with electrodes, magnets,
casing, arm and lever are also sketched. The x and z-axes are also indicated,
with z = 0 at the water and air interface (the free surface).
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Figure 3.2a,b shows a sketch of the top-view and side-view of the exper-
imental setup, respectively. Figure 3.2a illustrates the dipole generator and
a water tank with: length L2 = 52 cm, width W2 = 52 cm and depth H2 =
2 cm. The fluid in the tank has a depth H of 0.8 cm. In addition, the fluid
has two layers of salt solution (electrolytic) with different salt concentration,
sketched in Figure 3.2b. The upper layer has a lower density salt solution
than that of the bottom layer. The upper layer thickness is approximately
0.4 cm and the bottom layer 0.4 cm. The upper layer has a density ρ1 of
1.03 kg/L and the lower layer has a density ρ2 of 1.15 kg/L. The two-layer
stratification is to reduce bottom friction effects. In the top-view sketch,
Loff is shown which is the offset between position of the electrodes and the
camera field of view with Loff = 7 cm.
Figure 3.2 also indicates the x,y and z-axes. The x = 0 and y = 0 is defined
as the center of the magnet (during forcing). The z = 0 as defined as the
interface of the water and air interface (the free-surface).

The vortex dipole generator is positioned above the tank at a certain po-
sition. Subsequently, the generator and it’s electrodes are lowered and fixed
at this position by an electrical clamping system. When lowered, the two
electrodes submerge into the fluid. A Kepco power source that supplies the
current I during forcing.

After forcing, the clamping mechanism releases and the generator and
electrodes retract back to the original position. This setup is used during the
study of the characterization of the generated dipolar vortex. For the dipole
collisions, the same setup is used but with the addition of another generator.
The experimental setup used for generating vortices in a shearing background
flow is different and is discussed later.
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3.2 Experimental methods

In this study, dye is used to visualize the flow and the structure of dipolar
vortices. To obtain quantitative data, particle image velocimetry (PIV) is
used. In PIV, tracer particles are used to visualize the flow. The tracer
particles in the fluid are then illuminated by a light source (Fluorescent light
tubes). The fluid flow is recorded with a camera and these images are then
processed with PIV software (PIVtec). Properties of the flow can be ex-
tracted by correlating ’image pairs’ taken consecutively with a very short
time interval. The extracted flow properties from PIV are for example, the
velocity and the vorticity field. The obtained velocity and vorticity field are
then smoothed with a Gaussian filter and plotted with software (MATLAB).

3.2.1 Experimental procedure

The first step is to fill the tank with fluid of higher density ρ2. Afterwards
the lower density fluid with the particles is added into the tank.
Poly-amid particles are mixed into the fluid with the lower density ρ1 with a
diameter of 20 µm or 50 µm. In addition to the poly-amid particles, a sur-
factant solution is added. Surfactants reduce the surface tension and keeps
the tracer particles from clumping at the free surface. The mixing of parti-
cles into fluid, instead of adding them afterwards, reduces their reflectivity
but significantly reduces the ’particle clumping’. Particle clumping inhibits
particles to follow the fluid motion adequately.

To get reliable data from PIV measurements, there should be an adequate
amount of particles in the PIV ’investigation area’. The ’investigation area’ is
in this case the camera field of view, which is divided into tiny ’interrogation’
areas. As a rule of thumb, there should be 6-10 particles in each ’interroga-
tion area’. This has been confirmed by manually analyzing captured camera
images before PIV processing starts.
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3.3 Numerical methods

The numerical simulations are performed using Comsol Multiphysics, a direct
numerical simulation (DNS) and finite element method. In order to model
the experiments, three models are used in Comsol:

1. the 2D electric model, to obtain the current density field J(x, y)

2. the 3D magnetic field model, to obtain the magnetic field B(x, y, z)

3. the (laminar) 2D fluid model, the actual model that represents the
experimental setup. where data from the electric and magnetic model
are imported into to model the Lorentz Force J(x, y)×B(x, y, z = 0).

The electric and fluid model are both strictly 2D. The magnetic field model
is 3D but a 2D slice is taken at z = 0 which is the vertical position at the
air and water interface(free-surface) and the magnetic is at position z = 5
cm, see Figure 3.2b. The Lorentz Force J(x, y) × B(x, y, z = 0) is pulsed
using a smoothed rectangular function for a duration corresponding to a
typical forcing time in experiments. In all three models, the length is non-
dimensionalized in de and the time in tf .

Figures 3.3 and 3.4a,b show the numerically obtained magnetic field Bz,
electric current density Jx and Jy, respectively.

The 2D fluid model has four no-slip boundaries that act as the fluid tank
walls. The fluid model itself has approximately half a million mesh elements.
These are distributed with a significantly higher concentration in the close
vicinity of the electrodes, where the vorticity is generated(dipole formation
region). From the formation region into the propagation direction of the
dipole there is also a higher concentration of mesh elements.

Two numerical fluid simulation methods were used to model the exper-
imental generation method. In experiments, the electrodes are submerged
during the forcing but after forcing these are retracted out of the fluid. There-
fore two fluid models are used.
The first model simulating the forcing, with no slip electrodes. At the end
of the forcing, the velocity field is exported to the second model.
The second model uses the velocity field as initialization. The electrodes are
not present to model the retraction of the electrodes after forcing. The space
previously occupied by the electrodes is replaces with fluid having initial
values with zero velocity.
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Figure 3.3: Figure showing a snapshot of a typical numerically obtained z-
component of the magnetic field Bz, normalized with B0.
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Figure 3.4: Figure showing a snapshot of a typical numerically obtained elec-
tric current density J normalized with J0. The a) the x component Jx and
b) the y component Jy. The J0 is defined as Jymax which is larger than Jxmax
which results in the displayed values for Jxmax as 0.8 instead of 1.
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Chapter 4

Characterization of the
electromagnetically forced
dipolar vortex

4.1 Important forcing parameters and vortex

characteristics

The first goal is to characterize the generated dipolar vortices. The important
parameters for the generation and evolution for the dipolar vortex are:

1. the electric current strength I

2. the strength of the magnetic field B

3. the forcing time tf

4. the electrode gap distance de

The (dynamical) characteristics of the vortex and the dependence on the
various forcing parameters is investigated by varying one specific (forcing)
parameters while keeping the other parameters constant.
Vortex characteristics such as the velocity field of the vortex structure are
studied by implementing PIV. From the velocity field of the dipolar vortex
and the surrounding ambient fluid, relevant properties can be investigated.
These properties include the vorticity field and the vorticity cross-section
through the vortex cores. A vortex core corresponds to the vorticity center
of magnitude from one of the individual vorticity patches. The center of
vorticity intensity is analogous to the center of mass principle but instead of
mass density, the vorticity magnitude is utilized. Other quantities are the
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propagation velocity of the dipolar vortex center vc, the separation distance
between the vortex cores dc and the ω − ψ relation of the dipolar structure.

Table 4.1 shows the values of the forcing parameters used in each in-
dividual experiment. These values are used to calculate the dimensionless
numbers C and Re, which are used as input parameters for the numerical
simulations.

I0 (A) B0 (T) de (cm) Forcing time tf (s) C Re

1.0 0.25 2.5 0.4 7.0 1560
1.0 0.50 2.5 0.4 14 1560
0.4 0.50 2.5 0.5 8.7 1250
1.0 0.50 2.5 0.5 22 1250
0.6 0.50 1.0 0.5 82 200
0.6 0.50 2.5 0.5 13 1250
1.0 0.50 2.5 0.4 14 1560
1.0 0.50 2.5 1.0 87 625

Table 4.1: Table giving an overview of the experimental forcing parameters
with the corresponding electromagnetic forcing coefficient and Reynolds num-
ber.
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4.2 General behaviour of the generated dipo-

lar vortex

Figure 4.1: Set of snapshots showing the time evolution of a vortex dipole
generated through electromagnetic forcing and visualized with dye.
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The general behaviour of the generated dipolar vortices is studied. One
set of forcing parameters with typical values has been considered, which is:
I = 1.0 A, B = 0.51 T, tf = 0.4 s and de = 2.5 cm. Figure 4.1 shows
the qualitative behaviour of a generated vortex propagating through a shal-
low stratified fluid-layer and is being visualized using fluorescent dye (Flu-
orescein). Data from PIV measurements is presented in order to attain a
quantitative characterization of the flow using the following properties:

1. the vorticity field ω

2. the vorticity cross-section

3. the vortex eccentricity ε

4. the ω − ψ relation

Figure 4.2 shows three experimentally obtained snapshots illustrating the
time evolution of the vorticity field taken at t =14 s, 24 s and 34 s, respec-
tively. Note that the camera field of view is positioned 7 cm away from the
dipole formation region.

Figure 4.2: A figure showing three experimentally obtained snapshots of the
experimentally obtained time evolution of the vorticity field with typical forc-
ing parameters: I = 1.0 A, B = 0.51 T, tf = 0.4 s and de = 2.5 cm. The
colour-bar indicates the value of the vorticity ω.
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4.3 Comparison of the generated dipolar vor-

tex with the super-smooth and Chaplygin-

Lamb dipole

4.3.1 Comparison of vorticity fields

Figure 4.3: Experimentally obtained vorticity fields at a) an early time stage
and b) later time stage. The colour-bar indicates the value of the vorticity ω.
The vorticity (field) visualized with iso-lines of c) the SS-dipole and d) the
CL-dipole. c),d): image courtesy of Kizner et al. [15].

The early propagation stage is shown in Figure 4.3a. This experimentally
obtained snapshot shows a vorticity field with two slightly separated and cir-
cular vorticity patches of oppositely signed vorticity. This shows similarity
with the vorticity field of the SS-dipole depicted in Figure 4.3c.
The later propagation stage illustrated by Figure 4.3b shows a dipole con-
sisting of two semi-circular vorticity patches. This shows similarity with the
CL-dipole illustrated in Figure 4.3d.
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In numerically obtained figures, the vorticity is normalized with the max-
imum vorticity ω∗ found in that specific snapshot and is defined as:

ω∗ =
ω

ωmax
(4.1)

Figure 4.4: Numerically obtained vorticity field indicated with a colour bar
and the volume force indicated with black arrows. The volume force and
resulting vorticity field indicate that this method of generating dipoles initial-
izes a point-dipole-like structure. The snapshot is taken at t = 0.2 tf (after
forcing). The vorticity is normalized with ωmax found in that snapshot.

The induced Lorentz volume force is investigated numerically. The typi-
cal volume force is shown in Figure 4.4, where the volume force is indicated
with black arrows with the size indicating the magnitude and the generated
vorticity is indicated with a colour bar. The snapshot is taken at t = 0.1 tf .
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The vorticity equation describes the generation of vorticity shown in equa-
tion (2.4). In the previous electromagnetic generation methods, the vorticity
is generated by the Lorentz volume force i.e. ∇× (J ×B) 6= 0, with current
density distribution J̄other = J0ēx.

The novel generation method has a different J distribution which is sim-
ilar as shown in Figure 3.4. The ∇× (J ×B) was calculated analytically in
a simplified case. The simplified case considered a single electrode in a fluid
with an electric potential relative to infinity. The J in polar coordinates then
has a profile with J̄ = J0

r
. From this J , the resulting ∇× (J ×B) = 0.

Therefore, the novel method induces a Lorentz force that plays a lesser
role in generating vorticity. The vorticity is instead generated by the elec-
trodes imposing the no-slip condition. As a result, a PD-like structure
emerges with the novel generation method whereas this is not the case with
previous electromagnetic generation methods.

This can explain the experimentally observed relatively short 3D turbu-
lent formation stage and thus relatively fast transition into a more laminar
Q2D flow. Consequently, the novel method generates symmetric dipoles with
improved control and predictability of the propagation trajectory.
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Figure 4.5: Figure showing a numerically obtained time evolution of the vor-
ticity field during the formation phase: a) the vorticity field just after the
forcing duration tf ends. A ring of vorticity is visible around the no-slip
electrodes, b) the vorticity field 0.1 tf after forcing, initialized with the ve-
locity field of a) showing the ring of vorticity without the electrodes, c) the
vorticity field 0.5 tf after forcing showing that the vorticity ring is deforming
and d) the vorticity field 1.0 tf after forcing, showing that the vorticity ring
deformed to a PD-like structure. With C = 7 and Re = 1560 which corre-
sponds to the experiment shown in Figure 4.3. The vorticity in each snapshot
is normalized with the ωmax in that specific snapshot.

The formation phase is investigated which is the phase just after forcing.
Figure 4.5 shows numerically obtained snapshots of the vorticity field during,
a) t = 0 after forcing(first model with no-slip electrodes), b) t = 0.1 tf after
forcing where two rings of oppositely signed vorticity are visible(second model
without no-slip electrodes), c) t = 0.5 tf after forcing where the two vorticity
rings are deformed significantly and d) t = 1.0 tf after forcing where a PD-like
structure emerges, respectively.
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Figure 4.6: Figure showing numerically obtained time evolution of the vortic-
ity and stream-function field. a) The vorticity and stream-function field dur-
ing forcing showing a PD-like structure, b) the vorticity and stream-function
field at a early propagation stage showing a SS-dipole-like structure and c)
the vorticity and stream-function field at a later stage showing a transition
into a more CL-dipole-like structure. With C = 7 and Re = 1560, which
corresponds to the experiment shown in Figure 4.3. The vorticity in each
snapshot is normalized with the ωmax in that specific snapshot.

The time evolution of the vorticity field is also numerically investigated in
a larger time interval. Figure 4.6a,b,c shows the vorticity and stream-function
field field right after formation, early and later stage of the propagation, re-
spectively.
Figure 4.6a shows a more PD-like structure. Figure 4.6b shows a SS-dipole-
like structure and Figure 4.6c shows a CL-dipole-like structure.
The dimensionless numbers are C = 7 and Re = 1560, corresponding to the
first experiment listed in Table 4.1.
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4.3.2 Comparison of vorticity cross-sections

Figure 4.7: Experimentally obtained vorticity cross-sections at a) an early
time step and b) a later time step. Experimental forcing parameters I = 1.0
A, B = 0.51 T, tf = 0.4 s and de = 2.5 cm. c) and d) show the vorticity
cross-section of the SS and CL-dipole, respectively. c),d): image taken from
Kizner et al. [15].

The vorticity cross-section is defined as the intersecting line of the two
centers of positive and negative vorticity. Figure 4.7a,b show experimentally
obtained vorticity cross-sections at an early and later time step, respectively.
Figure 4.7c,d show the vorticity cross-sections of the SS and CL-dipole, re-
spectively.

In some cross-sections a ’vorticity plateau’ is visible, this is defined as
a relatively large region with zero or close to zero vorticity. The vorticity
cross-sections of PD-like and SS-dipoles have a plateau.
In Figure 4.7a,c it is visible that the cross-section at an early time stage
(experimental) is similar to the SS-dipole. In Figure 4.7b,d it is visible that
at a later time stage the vorticity plateau has reduced in size significantly,
similar to the CL-dipole.
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Figure 4.8: Figure showing numerically obtained time evolution of the vortic-
ity cross-section: a) the vorticity cross-section field during forcing showing a
PD-like structure, b) the ω cross-section at a early propagation stage showing
a SS-dipole-like structure c) the vorticity cross-section at a later stage show-
ing a transition into a more CL-dipole-like structure. With C = 7 and Re =
1560 which corresponds to the experiment shown in Figure 4.3. The vorticity
in each snapshot is normalized with the ωmax in that specific snapshot.
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Figure 4.8 shows three vorticity cross-sections at different times which are
obtained numerically from the same simulation and time-steps/snapshots as
Figure 4.6.
Figure 4.8a,b,c shows the ω cross-section just after formation, the early and
later propagation stage, respectively. The three snapshots in Figure 4.8a,b,c
show similarities with the PD, SS-dipole and CL-dipole respectively. The
vorticity plateau is relatively large just after formation and subsequently
reduces in size significantly at the later stages.
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4.3.3 Comparison of vortex eccentricities ε

Figure 4.9: Figure illustrating the experimentally obtained vorticity distri-
bution, corresponding stream function iso-lines in the co-moving frame and
the manually computed approximation of the separatrix indicated by the black
ellipse. a) ε = 1.06 b) ε = 1.10. The forcing parameters are: I = 1.0 A, de
= 2.5 cm, tf = 0.5 s and B = 0.51 T.

Figure 4.10: Figure illustrating the experimentally obtained vorticity distribu-
tion and corresponding streamfunction iso-lines in the co-moving frame with
forcing parameters: I = 1.0 A, de = 2.5 cm, tf = 0.5 s and B = 0.51 T.
The black ellipse approximates the vortex separatrix.a)ε = 1.24, b) ε = 1.15.

Another important parameter is the vortex separatrix eccentricity ε. The
ε is defined as the ratio between the axis length perpendicular to the prop-
agation direction and the axis length parallel to the propagation direction.
The eccentricity of the SS-dipole has value of ε = 1.162, while the CL-dipole
has an eccentricity of 1.
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The vortex separatrix is computed by utilizing PIV data. First ψ is cal-
culated by integrating the velocity field numerically in a co-moving frame.
The co-moving frame ’speed’ is computed using the velocity of the dipole
center. This is done by calculating the average velocity of the dipole center
in a time interval of δt = 1 s around the specific snapshot. Subsequently, the
black elliptical line indicates the manually computed separatrix.

In Figure 4.9 and 4.10, the vortex separatrix eccentricity has been com-
puted for two different experimental measurements. The separatrices are
constructed manually using the ψ-function. However, small deviations can
result in significant deviations of ε values with this method of computing the
separatrix. This is due to estimating the separatrix by using the iso-ψ lines
as they are not well-defined enough for accurate ε measurements.
The calculated values for ε range from 1.06 to 1.24. These ε values are larger
than the value of 1 which is the value for the Chaplygin-Lamb dipole.
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Figure 4.11: Figure illustrating an experiment using dye visualization where
the vortex separatrix is made visible. The calculated eccentricity: ε = 1.16
which matches the value ε = 1.162 of the super-smooth dipole sufficiently

The ε is computed more accurately with an alternative method is using an
experiment with dye visualization as shown in Figure 4.11. The eccentricity
is derived from Figure 4.11 with a value of ε = 1.16 which matches the
SS-dipole value ε = 1.162 sufficiently.
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Figure 4.12: Figure showing a numerically obtained time evolution of the
eccentricity ε. The dashed lines: blue represents the PD predicted value
ε = 1.21, red represents the SS-dipole predicted value ε = 1.16 and black
represents the CL-dipole predicted value ε = 1.

The estimation of ε from experimental data can be difficult, therefore ε is
also estimated numerically. The numerically obtained values of ε are plotted
versus the time (in tf ) shown in Figure 4.12. In this Figure three dashed
lines are visible. The blue, red and black dashed lines correspond to the PD,
SS and CL-dipole predicted values for ε, respectively.

The ε(tf ) found for the (numerically) generated dipole again show the
same trend. First the dipole is PD-like, subsequently an intermediate struc-
ture similar to the SS-dipole and then transitions into a CL-dipole-like struc-
ture later on.
Notable in Figure 4.12 is the ’plateau’ where the dipole holds the SS-dipole
eccentricity of 1.16 for a relatively long time.
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4.3.4 Comparison of the ω-ψ scatter plots

Figure 4.13: Experimentally obtained ω-ψ scatter plot: a) at an early time
stage and b) at a later time stage. c),d) The (analytical) ω-ψ relations of the
SS and CL-dipole, respectively. c),d): image courtesy of Kizner et al. [15].

Figure 4.13a,b shows the ω-ψ scatter plot computed from experimental
data at early and a later time step, respectively. The ω-ψ scatter plot of the
SS-dipole and CL-dipole are shown in Figure 4.13c,d respectively.
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At early stages the ω-ψ shows a ’curved’ shape, visible in Figure 4.13a.
This shape is similar to results found by Flór and van Heijst [7] whom com-
pared ω-ψ scatter plots of dipolar vortices in a stratified fluid obtained from
experiments with two different ω-ψ relations(analytical):

ω = k2ψ + βψ3 (4.2)

ω = Csinh(k2ψ) (4.3)

Equation (4.2) describes a third order polynomial and equation (4.3) de-
scribes a sinh-function. Although slightly different, the two functions seem
to be similar to the shape of the ω-ψ scatter plot in the early stages of the
dipole illustrated in Figure 4.13a. The scatter plot shape at early time stages
is similar to the SS-dipole shown in Figure 4.13c.

At later stages, the ω-ψ scatter plot has significantly less ’curved’ shaped(more
linear-like), shown in Figure 4.13b. This is more comparable to the ω-ψ of
the CL-dipole shown in Figure 4.13d.
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Figure 4.14: Numerically obtained time evolution of the ω-ψ scatter plot. a)
ω-ψ scatter plot at an early time stage similar to the PD-case, b) ω-ψ scatter
plot at a later time stage similar to the SS-dipole and c) ω-ψ at the final
stages which is similar to the CL-dipole.
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Figure 4.14 depicts three numerically obtained ω-ψ scatter plots com-
puted from the three snapshots/data corresponding to the simulation shown
in Figure 4.6.
Figure 4.14a,b,c shows the time evolution of ω-ψ scatter plots just after for-
mation, the early and later stage. Figure 4.14a,b,c also shows similarity with
the PD-like, SS and CL-dipole.
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Figure 4.15: Numerically obtained time evolution of the ω-ψ scatter plot. a)
ω-ψ scatter plot at t = 1 tf , b) ω-ψ scatter plot at t = 5 tf . The scatter plots
have been fitted with a 7th order polynomial as described by equation (2.22),
indicated by a red line. The ω and ψ are normalized with ωmax and ψmax.
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Figure 4.16: Numerically obtained time evolution of the power fit coefficients
c1, c3, c5 and c7. These are normalized with the sum of all the coefficients.
The blue line indicates the value of c5 +c7(PD-like), the red line indicates the
value of c3(SS-like) and the black line indicates the value of c1(CL-dipole).

Numerically obtained ω-ψ scatter plots are fitted over time. The fit curve
is a 7th order polynomial approximation as described by ω = c1ψ + c3ψ

3 +
c5ψ

5 + c7ψ
7(equation (2.22)). Two snapshots of the fitting are shown in Fig-

ure 4.15.

The CL, SS and PD-like dipoles are estimated as follows:

1. CL-dipole: ω = c1ψ

2. SS-dipole: ω = c3ψ
3

3. PD-like: ω = c5ψ
5 + c7ψ

7

The c coefficients are the power fit coefficients and these are normalized with
the sum of all the coefficients. The (normalized) coefficients are then plot-
ted over time as shown in Figure 4.16. The blue line indicates the value of
c5 + c7(PD-like), the red line indicates the value of c3(SS-like) and the black
line indicates the value of c1(CL-dipole).

Figure 4.16 illustrates that the time evolution of the ω-ψ scatter plot
shows the trend of being similar to PD-like, then becomes similar to the
SS-dipole and then transitioning into a CL-dipole-like shape.
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4.3.5 Summary of comparison

The experimental and numerical results of a typical propagating vortex gen-
erated by the proposed device have been analyzed by utilizing the vorticity
field, vorticity cross-section, the vortex separatrix eccentricity ε and the ω-ψ
scatter plots.

Typically, the generated dipolar vortex right after formation shows sim-
ilarity with the point-dipole, at early time stages it is similar to the super-
smooth dipole and evolves into a more Chaplygin-Lamb-like dipole at later
time stages.

45



Chapter 5

The dipolar vortex behaviour
with varied forcing parameters
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The effect of individual forcing parameters on the behaviour of the dipole
is investigated. This is again done by considering experiments where a single
forcing parameter is varied while the other parameters are kept constant.
The investigated properties include:

1. the vorticity field ω

2. the enstrophy Z

3. the vorticity cross-section

4. the vortex core distance dc

5. the vortex centre propagation speed vc

6. the ω − ψ scatter plot

5.1 The effect of varied parameters I and B

Figure 5.1: Experimentally obtained time evolution of the dipole with forcing
parameters: tf = 0.5 s, de = 2.5 cm, B = 0.51 T, but with varying electric
current strength I: a) I = 0.4 A, b) I = 1.0 A. The colour-bar indicates the
value of the vorticity ω.
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Figure 5.2: Experimentally obtained time evolution of the dipole with param-
eters: tf = 0.4 s, I = 1.0 A, de=2.5 cm, but with varying B: a) B = 0.25
T, b) B = 0.51 T. The colour-bar indicates the value of the vorticity ω.

The vorticity fields are utilized to visualize the change in the dipolar vor-
tex behaviour when varying the four forcing parameters. The vorticity fields
are also used to quantify the change in the absolute maximum vorticity ωmax
i.e. the highest value of maximum or minimum vorticity.

Experimentally obtained vorticity fields are shown in Figures 5.1 and 5.2
with varied I and B, respectively. These two figures show snapshots of the
vorticity fields of a propagating vortex dipole at two different time steps.
The first time step corresponds to an early propagation stage and the second
time step corresponds to a later stage.
Note that the field of view of the camera is shifted Loff = 7cm in the prop-
agation direction (denoted as the x-direction in the figures) with respect to
the origin of formation as shown in Figure 3.2a.

The increase in the current I and magnetic field B results in a stronger
Lorentz force and consequently the ωmax is expected to be higher. Figures
5.1a,b and 5.2a,b show the vorticity fields with I = 0.4 A and I = 1.0 A,
B = 0.25 T and B = 0.50 T, respectively.
At around t = 33 s, the vorticity fields in Figures 5.1 and 5.2b with 2.5 times
as high I and B have a 2 times as high ωmax than Figures 5.1 and 5.2a,
respectively.
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5.2 The effect of varying tf

Figure 5.3: Experimentally obtained time evolution of the dipole with param-
eters: I = 1.0 A, de = 2.5 cm, B = 0.51 T, but with varied forcing time tf :
a) tf = 0.4 s, b) tf = 1.0 s. The colourbar indicates the value of the vorticity
ω.

Figure 5.3a,b show the vorticity fields with tf = 0.4 s and tf = 1.0 s,
respectively. The observation of Figure 5.3a,b at t = 18 s or t = 17 s, respec-
tively shows that for higher tf , slightly higher values of ωmax are observed.

Between Figure 5.3a,b at t = 18 s or t = 17 s, respectively the difference
in vortex size dv is the most notable. The dipole in Figure 5.3a with tf = 0.4
s results in dv = 4.0 cm and in Figure 5.3b with tf = 1.0 s results in dv = 5.5
cm.
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5.3 The effect of varying de

The fourth and last studied forcing parameter is the electrode gap distance
de. It is expected that varying the de affects the density current J . For
example bringing the electrodes closer together should lead to an increased
J , assuming that the current I with smaller de is then effectively driven
through a smaller cross-sectional surface. The cross-sectional surface A as
function of de is defined as follows:

A(de) = HLJ(de) (5.1)

with H the fluid depth and LJ(de) the electric current cross-sectional length
which is numerically obtained defined as when the integral of J over LJ
encompasses 95% of the total current I running through the fluid.

Figure 5.4: A figure showing a sketch of de, LJ and the two electrodes. LJ
is the cross-sectional length in the 2-D electric numerical model that is is
determined when the line integral of J over LJ encompasses 95% of the total
current running through the fluid.

Figure 5.4 illustrates a sketch of de, LJ and the two electrodes.
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Figure 5.5: Figure depicting the numerically obtained LJ as a function of de.
The graph shows a linear relation between LJ(de) and de. Where LJ is the
cross-sectional length that encompasses 95 % of the electric current running
through the fluid. The linear fit has a slope of α = 4.84± 0.01.

Figure 5.5 shows LJ as a function of de computed using the numerical
(2D) electric model. The de is varied from 1 cm to 10 cm with increments
of 1 cm. The measurements points are indicated by black markers and a
linear fit is applied, which matches sufficiently. The linear fit has a slope of
α = 4.84± 0.01 and using the found value of α results in:

A(de) = αHde = 4.84Hde (5.2)

Then using equation (5.2), the current density can be defined as follows

J =
I

4.84Hde
(5.3)

where I is the electric current, H the fluid depth and de the electrode gap
distance.
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Figure 5.6: Experimentally obtained time evolution of the dipole with param-
eters: tf = 0.5 s, I = 0.6 A, B = 0.51 T, but with varying electrode gap
distance de: a) de = 1.0 cm, b) de = 2.5 cm. The colourbar indicates the
value of the vorticity ω.

Figure 5.6a,b shows experimentally obtained vorticity fields, with de be-
ing varied from 1.0 cm to 2.5 cm, respectively.
At around t = 22 s, the difference in de results in relatively constant values
ωmax and the dipole size dv also stays relatively constant.

Equation (5.3) shows that an increase in electrode distance de results in a
decrease in J . Therefore, it is expected that increasing de results in a weaker
Lorentz force and consequently in a lower ωmax. However, there is only a
relatively small decrease in ωmax observable in Figure 5.6a,b.
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Figure 5.7: Experimentally obtained figure giving an overview of the effect of
varying forcing parameters on the absolute maximum vorticity ωmax.

Figure 5.7a-d gives an overview of ωmax as a function of the forcing pa-
rameters I, B , tf and de, respectively. For increased values of I and B
results in higher values of ωmax. For higher values tf shows slightly lower
values for omegamax. Figure 5.7d shows a different trend than observed in
Figure 5.6, where increasing de does not result in a lower ωmax, but instead
results in a higher ωmax.
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5.4 The enstrophy decay time td

The enstrophy Z is defined as:

Z =
1

2

∫∫
S

ω2dS (5.4)

where the integration of ω2 is over a surface S, which is the camera field of
view. Z is the enstrophy and ω is the vorticity.

Figure 5.8: Experimentally obtained time evolution of the enstrophy Z with
(forcing) parameters: I = 1.0 A, B = 0.51 T, tf = 0.5 s s and de = 2.5 cm.
The two dashed red lines indicate the time interval where the graph is fitted
as shown in Figure 5.9

The property enstrophy measured over a larger time scale is utilized for
estimating the enstrophy decay time td. Figure 5.8 shows the time evolution
of the enstrophy Z for parameters: I = 1.0 A, B = 0.51 T, tf = 0.5 s and
de = 2.5 cm.

In order to estimate the decay time of the enstrophy, Figure 5.8 is fitted
with the function ae−t/b. Swaters et al. [19] and Flór et al. [20] also used an
exponential function to describe viscous decay of dipoles (in stratified fluid).
The fitted graph is shown in Figure 5.9.
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Figure 5.9: Experimentally obtained time evolution of the enstrophy that is
fitted with an exponential function ae−t/b which models the enstrophy decay
rate. The region that is shown corresponds to the one indicated by the two
dashed red lines, e.g. in Figure 5.8.

The enstrophy is modeled with:

Z(t) = Z0 e
− t

td (5.5)

The two dashed lines in Figure 5.8 indicate the fit time interval and splits
the graph into three time intervals i.e. I, II and III. Time interval I cor-
responds to the dipole coming into the field of view so enstrophy Z keeps
increasing until the dashed line on the left-hand side. Time interval II is the
fit time interval. Time interval III is the interval where the dipole is either
starting to move out of the field of view and/or has very low vorticity values,
which decreases the accuracy of PIV measurements.
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Experiment # Z0 [m2s−2] Decay time td [s]

I0.4A 54 8.8
I1.0A 320 7.9

B0.25T 41 10.6
B0.51T 187 8.5

tf 0.4s 290 6.7
tf 1.0s 274 7.8

de1.0cm 125 6.9
de2.5cm 125 9.1

Table 5.1: Table giving an overview of the experimentally obtained fit coeffi-
cients a(Z0) and b(td) with the fit function ae−

t
b with varied forcing parame-

ters.

The fit coefficient a estimates the enstrophy at t = 0 (Z0), the fit coef-
ficient b estimates the enstrophy decay time td. The two fit coefficients a
and b are computed for different measurements (with varying various forcing
parameters). The results are summarized in Table 5.1.

The values presented in Table 5.1 show that increasing I and B increases
the value found for Z0. This is expected as an increase in I and B results in
a stronger Lorentz force.

This is in contrast to varying tf and de where Z0 remains relatively un-
changed. This can be linked to ωmax which also stays relatively constant for
varied tf and de. For tf , this can be explained as with longer forcing times
where typically tf > 1.0s starts to induce a more turbulent dipole formation.
During this turbulent formation, the flow can no longer be approximated
as 3D effects become more dominant. The transition to a more turbulent
flow can possibly cause decay and energy loss during the formation phase.
This means that increasing tf above a certain critical tfc value, the formation
phase is relatively more turbulent. Possibly, the generation of vorticity is less
efficient as energy is lost through 3-D effects. Therefore increasing tf after
tfc has a relatively small effect on the resulting Z0.

The found decay times td are calculated over a large time interval where
the most of the time the flow can be considered Q2D. Then the bottom fric-
tion and thus viscosity is the important factor in the decay of the dipole. As
the viscosity is constant in all experimental measurements, the td is expected
to be relatively constant.
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The experimentally found td in various measurements seems to be relatively
constant, indicating that td is independent of the forcing parameters, as ex-
pected.

The effect of bottom friction in shallow fluid layers on the decay of dipolar
vortices (Q2D turbulence) was investigated numerically (2D-simulation) by
Clercx et al. [21].

Clercx et al. modeled the enstrophy Z as follows:

Z(t) = Z0 e
−2λt (5.6)

with Z(t) the total enstrophy, Z(0) the enstrophy at t =0 and λ the bottom-
friction coefficient. Using equation (5.5) and equation (5.6) then conversion
of λ to the enstrophy decay time td = 1/2λ. The results from the study of
Clercx et al. and the from λ converted decay times td are then:

H [mm] λ [s−1] td [s] Re

4 0.15 3.3 1500
6 0.07 7.1 2000
8 0.038 13.2 3000

Table 5.2: Table giving an overview the results of Clercx et al. [21] of bottom
friction decay rates λ in fluid with different fluid depth H and the from λ
converted td. The corresponding Re-values are also given.

Table 5.1 shows that increasing tf and de does not affect the calculated
Z0 significantly. To confirm this, the dependency of Z0 and td on tf is inves-
tigated. Ten measurements have been performed with I = 1.0 A, B = 0.51
T, de = 2.5 cm with tf = 0.2, 0.3, 0.4, 0.5, 0.7, 1.0, 1.2, 1.5, 2.0, 3.0 s.
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Figure 5.10: A figure showing experimentally obtained a) Z0 and b) td versus
forcing time tf from different experiments. The forcing parameters are: I =
1.0 A, B = 0.51 T, de = 2.5 cm with varied tf = 0.2, 0.3, 0.4, 0.5, 0.7,
1.0, 1.2, 1.5, 2.0, 3.0 s. The dashed line indicates the separates two regimes:
I) laminar formation phase and II) transition to a more turbulent formation
phase.

The parameters Z0 and td are then plotted versus tf and shown in Figure
5.10a,b respectively. The dashed line in Figure 5.10 indicates two regimes:
I) laminar formation phase and II) transition to a more turbulent formation
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phase. The transition to a more turbulent phase occurs with longer forcing
times tf ≥ 1.0 s.

The result of Clercx et al. [21] for a fluid depth of H= 8 mm is tdclercx =
13.2 s and the experimentally obtained decay time in this study is td = 7.5
s. Note that Clercx et al. used a one-layer shallow fluid layer while in this
study a two-layer stratified shallow layer is used. Therefore, td ≥ tdclercx is
expected as stratification results in longer decay times. But the found results
have shorter decay times instead.

This can be explained as the numerical study of Clercx et al. [21] was a
2D simulation but the flow in experiments is Q2D. Thus 3D effects can have
a role in causing the found discrepancy. Furthermore, the decay times are
fitted not from t = 0 but from a later time (t ' 20 s) which can lead to errors
in estimating td.
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5.5 The effect of stronger forcing on the gen-

erated dipolar vortex.

Figure 5.11: Figure showing three experiments with B = 0.51 T, tf = 0.5
s and de = 2.5 cm but with three values for I: a,b) 1.0 A, c,d) 2.0 A and
e,f) 3.0 A. a,b) show a laminar flow, c) shows a deformed dipole cause by the
relatively turbulent formation but in d) the flow becomes laminar and a dipole
emerges. e,f) both show a deformed dipole because of the relative turbulent
formation and a dipole emerges out significantly later, out of the field of view.
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The transition to a more turbulent formation phase occurs when tf >
1.0 s but also when I or B are increased to a certain value. This is because
increasing I, B and tf effectively increases the energy/momentum generated
into the fluid.

To visualize this transition, three measurements are performed with B =
0.51 T, tf = 0.5 s and de = 2.5 cm but with three values for I: 1.0, 2.0 and
3.0A. These are shown in Figure 5.11a+b,c+d,e+f respectively.
Figure 5.11a,b shows the measurement with I = 1.0 A where the flow is lam-
inar in both snapshots. For I = 2.0 A, the fluid jet is not laminar in Figure
5.11c and transitions to a more laminar flow in Figure 5.11d. For I = 3.0 A,
both snapshots Figure 5.11e,f show a transition to a relatively turbulent flow.

The more turbulent formation phase results in unpredictable propagation
trajectories and symmetry of the dipolar vortex. To counteract this, the
optimal forcing time tf is set at tf ≤ 1.0 s.
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5.6 The behaviour of the vortex size dv with

varied forcing parameters

The vortex size dv is defined as the size of the vortex separatrix. The vorticity
cross-sections can be utilized to estimate dv and thus the time evolution of
the vorticity cross-section can be used to determine the time evolution of dv.

Figure 5.12: Experimentally obtained vorticity cross-sections with constant
forcing parameters B = 0.51 T and de = 2.5 cm, tf = 0.5 s but for different
values of I: a) I = 0.4 A, b) I = 1.0 A.
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Figure 5.13: Experimentally obtained vorticity cross-sections with constant
forcing parameters I = 1.0 A, de = 2.5 cm and tf = 0.5 s for different values
of B: a) B = 0.25 T, b) B = 0.51 T.
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Figure 5.14: Experimentally obtained vorticity cross-sections with constant
forcing parameters I = 1.0 A, B = 0.51 T and de = 2.5 cm but for different
values of tf : a) tf = 0.4 s, b) tf = 1.0 s.

Figures 5.12, 5.13 and 5.14 show the vorticity cross-sections with varied
I, B and tf , respectively.
The increase in I and B does not affect the total size of the vortex dv sig-
nificantly which stays 7 cm. The increase in tf affects dv slightly. The
measurements with tf = 0.4 s and tf = 1.0 s show values of dv = 5 cm and
Lv = 6 cm, respectively.
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Figure 5.15: Experimentally obtained vorticity cross-sections with constant
forcing parameters I = 1.0 A, B = 0.51 T and tf = 0.5 s but for different
values of de: a) de = 1.0 cm, b) de = 2.5 cm.

Figure 5.15 shows the cross-sections for varied de. Figure 5.15a,b shows
the cross-sections with de = 1.0 cm and de = 2.5 cm, which show a slight
increase with dv = 4.5 cm and dv = 5 cm, respectively.
These measurements were performed after t = 22 s. The effect of varied de
on the vortex size might be more notable during an earlier time stage.
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5.7 Vortex core separation distance dc as a

function of time

The alternative method of determining the vortex size is using the vortex
core separation distance dc. The vortex core separation distance dc is defined
as the distance between the positive and negative vortex core.

Figure 5.16: Experimentally obtained time evolution of dc with constant forc-
ing parameters B = 0.51 T, de = 2.5 cm and tf = 0.5 s but for different values
of I: a) I = 0.4 A, b) I = 1.0 A.
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Figure 5.17: Experimentally obtained time evolution of dc with constant forc-
ing parameters I = 1.0 A, de = 2.5 cm and tf = 0.5 s but for different values
of B: a) B = 0.20 T, b) B = 0.51 T.
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Figure 5.18: Experimentally obtained time evolution of dc with constant forc-
ing parameters I = 1.0 A, B = 0.51 T and de = 2.5 cm but with different
values of tf : a) tf = 0.4 s, b) tf = 1.0 s.
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5.7.1 The effect of varied parameters I, B and tf on dc

Figures 5.16, 5.17 and 5.18 show the experimentally obtained dc as a function
of time with varied I, B and tf , respectively.

Measurement dc [cm]

It=32 = 0.4 A 2.4
It=32 = 1.0 A 2.7
Bt=35 = 0.25 T 2.6
Bt=35 = 0.51 T 3.0
tf t=19 = 0.4 s 2.6
tf t=19 = 1.0 s 2.9

Table 5.3: Experimentally obtained overview of dc with varied forcing param-
eters I, B and tf , respectively but compared at an identical time step.

The dc has been calculated from Figures5.16, 5.17 and 5.18 and table 5.3
gives an overview of the results. The table shows small increases in dc with
higher values of I, B and tf .
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5.7.2 The effect of varied parameters de on dc

Figure 5.19: Experimentally obtained time evolution of dc with constant forc-
ing parameters I = 1.0 A, B = 0.51 T and tf = 0.5 s but for different values
of de: a) de = 1.0 cm, b) de = 2.5 cm.

Figure 5.19a,b shows the experimentally obtained time evolution of dc(t)
with de = 1.0 cm and de = 2.5 cm, respectively. Note that dc(t = 0) = de
which is shown numerically in Figure 4.5.
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de [cm] dc(t = 0) [cm] dc(t = 22) [cm]

1.0 1.0 2.1
2.5 2.5 2.6

Table 5.4: Table showing values of dc(t) corresponding to a specific measure-
ment with de.

The dc is measured with varied de at t = 22 s. Table 5.4 gives an overview
of the results.

Figure 5.20: a) Graph illustrating the vortex core separation distance dc with
a large field of view. The electrode distance de is 2.5 cm.

Subsequently, another measurement is performed for de with a larger field
of view to capture the time interval between t = 0 and t = 22 s. Figure 5.20
shows this measurement. Note that dc(t = 0) ' 2.5 cm which is the electrode
distance de = 2.5 cm.

Batchelor [11] found that by forcing fluid (Q2D) with a certain amount of
linear momentum, a dipolar vortex will emerge with a specific ’equilibrium’
size Leq, depending on the linear momentum put into the fluid. This can be
a possible explanation for the difference in dc ’growth’ as the equilibrium size
Leq corresponding to generated linear momentum ((J × B)tf ) with forcing
parameters I = 1.0 A, B = 0.51 T and tf = 0.5 s can be close to 2.5 cm.
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Therefore there are two factors that restrict the vortex size dv (or dc)
which is:

1. the vortex size restriction due to de

2. The ’equilibrium’ size Leq.

In the interval between t = 0 and t = 22 s. For de = 2.5 cm the dipole
already has a size close to the Leq but for de = 1.0 cm this is not the case.
Consequently, for de = 1.0 cm, the dc starts to increase significantly more
until it reaches the size Leq.

To prove that for Leq ≤ de, de instead dominates the behaviour of dc, a
measurement with a decrease in linear momentum which decreases the cor-
responding Leq is considered.
Figure 5.18a shows an experiment with lower generated linear momentum
as there is a shorter tf , comparatively. At t = 18 s, the dc is about 2.6 cm
which only deviates 0.1 cm from de.

Thus, if Leq de then Leq(linear momentum input) is important for the
behaviour of dc at early time stages.
If Leq ≤ de then de is the important factor for dc.

After a certain time, the horizontal (and vertical) diffusion of vorticity
caused by viscous effects becomes dominant. This causes a relatively slow
increase of dc over time.

The diffusion of vorticity was investigated by Swaters [19] and Flór&van
Heijst [7]. The diffusion of vorticity was caused by fluid entrainment at early
time stages while at later timescales viscous effects become dominant. They
suggested a linear time-dependency of dc at later timescales.
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5.8 The propagation speed of the vortex cen-

tre vc as a function of time

The generated dipole propagates with a certain velocity vc. The vc is defined
as the propagation velocity of the vortex centre. This propagation velocity
has a time dependance as it decays because of viscous effects(bottom fric-
tion).
To investigate the propagation velocity of the generated dipoles in experi-
ments, the PD and CL-models and their predicted propagation velocities are
compared with the experimentally measured vc.

The velocities of the PD and CL-dipole have an analytical expression as
function of the circulation Γ. The CL-dipole velocity vCL found by Flór and
Van Heijst [7] and the PD velocity vpd are respectively defined as follows:

vCL =
Γ

2.362πdc
(5.7)

vpd =
Γ

2πdc
(5.8)

with circulation Γ and the vortex core separation distance dc.
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Figure 5.21: Experimentally obtained vc over time. The red line indicates
vpd while the blue indicates vCL. The forcing parameters are: I = 0.5 A,
B = 0.51 T, tf = 1.0 s and de = 2.5 cm.

The dipole propagation velocities of the PD vpd and CL-dipole vCL, are
calculated through Γ the experimentally obtained circulation of the flow, us-
ing Equation (5.7) and 5.8). This done at each individual (experimental)
measurement point indicated by the black markers as shown in Figure 5.21.
The blue line and red-line represents the CL-dipole and PD, respectively.
The velocity vpd and vCL are not obtained numerically.
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Figure 5.22: Experimentally obtained time evolution of vc with forcing pa-
rameters B = 0.51 T, de = 2.5 cm and tf = 0.5 s but for different values of
I: a) I = 0.4 A, b) I = 1.0 A. Additionally, the red line is the predicted prop-
agation speed of the PD model while the blue line is the predicted propagation
speed of the CL-dipole.
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Figure 5.23: Experimentally obtained time evolution of vc with forcing pa-
rameters I = 1.0 A, de = 2.5 cm and tf = 0.5 s but for different values of
B: a) B = 0.20 T, b) B = 0.50 T. Additionally, the red line is the predicted
propagation speed of the point vortex model while the blue line is the predicted
propagation speed of the CL-dipole.
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Figure 5.24: Experimentally obtained time evolution of vc with forcing pa-
rameters I = 1.0 A, B = 0.51 T and de = 2.5 cm but for different values of
tf : a) tf = 0.4 s, b) tf = 0.8 s. Additionally, the red line is the predicted
propagation speed of the point vortex model while the blue line is the predicted
propagation speed of the CL-dipole.
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Figure 5.25: Experimentally obtained time evolution of vc with forcing pa-
rameters I = 1.0 A, B = 0.51 T and tf = 0.5 s but for different values of
de: a) de = 1.0 cm, b) de = 2.5 cm. Additionally, the red line is the pre-
dicted propagation speed of the PD model while the blue line is the predicted
propagation speed of the CL-dipole.
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The propagation velocity vc over time is measured for various forcing pa-
rameters values. These are shown in Figures 5.22 (I), 5.23 (B), 5.24 (tf ) and
5.25 (de), respectively.

Figures 5.22 and 5.23 show a relatively large discrepancy between the ex-
perimental data and PD/CL predicted values. In contrast, the discrepancy
is relatively small in Figures 5.24 and 5.25.

Figures 5.22a and 5.23a present measurements at a later time stage at
t ≥ 32 s. But the other measurements are performed earlier at t ≥ 15 s.

The difference in discrepancy is due to the lower propagation velocities
found at later time stages. Consequently, the flow at later time stages has a
relatively low Reynolds number thus indicating that viscous effects are more
dominant.
This explains the relatively larger discrepancy as the PD and the CL-dipole
are inviscid models/solutions.
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5.9 The ω-ψ scatter plots with varied forcing

parameters

Figure 5.26: Experimentally obtained ω-ψ scatter plots with varied I: a)
I = 0.4 A and b) I = 1.0 A. The constant parameters are: B = 0.51 T,
tf = 0.5 s and de = 2.5 cm.
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Figure 5.27: Experimentally obtained ω-ψ scatter plots with varied B: a)
B = 0.20 T, b) B = 0.51 T. The constant parameters are: I = 1.0 A,
tf = 0.5 s and de = 2.5 cm.

Figure 5.28: Experimentally obtained ω-ψ scatter plots with varied tf : a)
tf = 0.4 s, b) tf = 1.0 s. The constant parameters are: I = 1.0 A, B = 0.51
T and de = 2.5 cm.
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Figure 5.29: Experimentally obtained ω-ψ scatter plots with varied de and
different point of time: a) de = 1.0 cm, b) de = 2.5 cm. The constant
parameters are: I = 1.0 A, B = 0.51 T and de = 2.5 cm.

The vortex coherence can be analyzed using ω-ψ scatter plots in order to
study the the dipolar vortex structure deformation over time.
Coherent vortices are vortex structures that do not deform over time. An-
alytically obtained ω-ψ relations generally have perfect vortex coherence as
shown in Figures 2.1d and 2.1d. The experimentally obtained ω-ψ scatter
plots are never perfectly coherent as experimentally generated dipoles exhibit
time-dependent behavior.

The experimentally obtained ω-ψ scatter plots with varied forcing param-
eters are shown in Figures 5.26, 5.27, 5.28 and 5.29.
Although experimentally obtained ω-ψ scatter plots can never be perfectly
coherent, however all the scatter plots show an asymmetry in coherence. The
negative vorticity patch is relatively more coherent than the positive vorticity
patch.
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5.10 Asymmetry in coherence of the dipolar

vortex cores

In Figures 5.26, 5.27, 5.28 and 5.29 one observes a recurring asymmetric
coherence between the positive and negative vorticity patches. The nega-
tive vorticity patch is more coherent than the positive vorticity patch as it
has less scattering. This asymmetry in coherence can be due to errors in
PIV, asymmetric lighting of tracer particles resulting from data processing.
The asymmetric situation can possibly be caused during the formation of
the dipole or rather during the generation of vorticity as there is no known
asymmetrical mechanism after forcing, which can be the cause of the mea-
sured asymmetry in the ω-ψ scatter plots.
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5.10.1 The effect of the electric potential switch

Figure 5.30: A pair of images which displays the difference when reversing
the ’polarity’ of the system. During the two experiments Fluorescein (yellow
or green) is used to visualize the dipole. The darker spots in the ’disturbed’
patch are red dye-particles.
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The electrodes have opposite charge or polarity during forcing i.e. an
electrode corresponding to the anode and the other to the cathode. Conse-
quently there is an asymmetric distribution of chemical particles and possibly
the occurrence of different chemical reactions locally.

Figure 5.30 shows two laminar dipolar vortices with disturbances in one
vorticity patch while the opposite vorticity patch seems relatively undis-
turbed. The darker spots causing the disturbance are red coloured dye-
particles at the free surface while the lighter dye are green coloured dye-
particles. Because of gray-scale, the red particles can be confused with a
region with no dye.

The red dye-particles are possibly a result of a chemical reaction that only
occurs at one of the electrodes, thus only causing disturbances at the free
surface of the vorticity patch generated at that specific electrode. This effect
is not observed without the presence of (Fluorescein) dye in the vicinity of
the electrodes during forcing.
This effect is also not observed when doing measurements with tracer parti-
cles instead of Fluorescein dye.

Orndorff and Hemmer [22] investigated Fluorescein and its derivatives
where the yellow Fluorescein could be converted to red Fluorescein, which
can be a possible candidate for the observed red dye-particles during this
study. The chemical conditions for the conversion of the yellow Fluorescein
into red Fluorescein were: a hot fluid with slightly acidic conditions. This
might be a possible explanation of the effect of observing red particles, which
affect the propagating dipolar vortex at the free surface as the current driven
through the fluid can potentially raise the temperature and the salt solution:
Na+Cl− and H2O might provide H+ (acidity).
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5.11 Numerical simulations with varied di-

mensionless numbers C and Re

The numerical simulations are performed utilizing Comsol Multiphysics using
the (laminar flow) 2-D fluid model.

The Reynolds number Re defined by equation (2.13) and electromagnetic
forcing coefficient C defined by equation (2.12) play important roles in finding
different parameter regimes. The numerical simulations are visualized using
vorticity fields that are normalized as defined in equation (4.1).
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Figure 5.31: Numerically obtained snapshots of the dipole formation and
propagation with C = 10 and Re = 100 at three time steps. The colour bar
indicates the normalized vorticity ω∗. a) t = 1, b) t = 5 and c) t = 10 scaled
in tf .
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Figure 5.32: Numerically obtained snapshots of the dipole formation and
propagation with C = 200 and Re = 100 at three time steps. The colour bar
indicates the normalized vorticity ω∗. a) t = 1, b) t = 2 and c) t = 3 scaled
in tf .
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5.11.1 The effect of varying C

The dimensionless electromagnetic forcing coefficient C is defined in equation
(2.12): C= I0B0t

2
f .ρHαd

2
e.

The coefficient C is varied in two simulations and vorticity fields are
plotted at three time steps. These are shown in Figure 5.31 (C = 10) and
Figure 5.32 (C = 200). At Re = 100 with C=10, the early propagation phase
is relatively ’stable’ while the early stage becomes unstable with C = 200.
For C = 200 two dipoles are generated while for C = 10 only one is created.

89



Figure 5.33: Numerically obtained snapshots of the dipole formation and
propagation with C = 10 and Re = 10 at three time steps. The colour bar
indicates the normalized vorticity ω∗. a) t = 1, b) t = 5 and c) t = 10 scaled
in tf .
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Figure 5.34: Numerically obtained snapshots of the dipole formation and
propagation with C = 10 and Re = 3000 at three time steps. The colour bar
indicates the normalized vorticity ω∗. a) t = 1, b) t = 5 and c) t = 10 scaled
in tf .
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5.11.2 The effect of varying Re

The Reynolds number is defined in equation (2.13): Re= d2e.νtf . The coeffi-
cient Re is varied in two simulations and vorticity fields are plotted at three
time steps. These are shown in Figure 5.33 (Re = 10) and Figure 5.34 (Re
= 3000). For C = 10 and low Re-values = 10, the dipole propagates very
slowly and grows in size significantly. For high Re-values, the dipole only
grows slightly in size but propagates much faster.
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Chapter 6

Electromagnetically forced
dipolar vortex collisions

The electromagnetic device and setup used during this study has a short ex-
periment preparation time, which is in the order of a few minutes. Moreover,
the device generates symmetric dipoles in addition to providing improved
control over the forcing strength and the initial trajectory of the generated
dipolar vortex. Dipolar vortex collisions provide a convenient way to illus-
trate this. Four cases are investigated:

1. The head-on frontal collision (no offset) of two identical dipoles

2. The frontal collision of two identical dipoles with an offset, with the
aim to produce tripolar vortex-like structures;

3. Oblique dipole collisions;

4. Dipole collisions with a sharp edged wall;

5. Dipolar vortex collision with a sharp-edged gap in a simply connected
domain.
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6.1 Head-on frontal dipolar vortex collision

Figure 6.1: Dye visualization of a frontal collision of two dipolar vortices
in gray-scale. The 90o deflection angle after collision indicates that the two
dipoles had an (close to) equal strength with straight trajectories.
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Figure 6.1 shows an experimental observation of a head-on frontal colli-
sion between two dipolar vortices generated with the proposed device. The
three images shown in Figure 6.1 have been re-sized to show the essential re-
gion of the collision in the the field of view. Figure 6.1a shows the two dipolar
vortices approaching each other at a collision course, Figure 6.1b shows the
collision of the dipolar vortices and Figure 6.1c shows the aftermath of the
collision.

After the collision, two ’new’ dipolar vortices emerge and the two initial
dipolar vortex structures and the trajectories are symmetric. Consequently,
the two emerging dipolar vortices exchange vortex cores and propagate per-
pendicularly with respect to the original trajectories.
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Figure 6.2: a) Figure illustrating a frontal collision of two dipolar vortices.
Image courtesy of van Heijst and Flór [23]. b) Figure illustrating a frontal
collision of two dipolar vortices. Image taken from Voropayev & Afanasyev
[24].

Van Heijst and Flór [23] investigated dipolar vortex dynamics in a strat-
ified fluid including a head-on frontal collision between two dipolar vortices
shown in Figure 6.2a. In this study, the vortex dipole was generated using a
syringe to inject fluid into the stratified fluid. This vortex generation method
generally creates relatively asymmetric dipolar structures, which make the
propagation trajectory less predictable and thus less reproducible.
The head-on collision was also investigated by Voropayev & Afanasyev [24]
and the experimental observation obtained in that study are shown in Figure
6.2b. The setup is similar to the setup used by Van Heijst and Flór, with
linearly stratified fluid and using a syringe-type device for generating dipoles.
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6.2 Frontal dipolar vortex collision with off-

set

Figure 6.3: Dye visualization of an oblique collision of two dipolar vortices
in gray-scale. a) shows the two dipolar vortices approaching each other. b)
shows the start of the collision between the two dipolar vortices. c) shows the
emergence of a tripolar vortex but this configuration is relatively unstable. d)
the tripolar vortex starts to break up, where two ’new’ dipolar vortices will
propagate away from each other.

The frontal dipolar collision itself is interesting however if the collision
is done carefully with a certain offset an (unstable) tripolar vortex can be
created momentarily. Figure 6.3 shows snapshots of a dipole collision with a
specific offset generated by the proposed device. Figure 6.3a shows the two
dipolar vortices approaching each other. Figure 6.3b shows the start of the
collision between the two dipolar vortices. Figure 6.3c shows the emergence
of a tripolar vortex but this configuration is relatively unstable. In Figure
6.3d, the tripolar vortex starts to break up, where two ’new’ dipolar vortices
will propagate away from each other.
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Figure 6.4: Figure illustrating a numerical collision of two dipolar vortices
with an specific offset to a tripolar vortex. The dipolar vortices are visualized
with potential vorticity. The time scale used in this figure is a advective time
scale: T = 2π

f
, with f the Coriolis frequency. Image taken from Dubosq &

Viúdez [25].

Figure 6.4 shows a numerical simulation of a tripolar vortex formed (tem-
porarily) by a dipolar vortex collision performed in the numerical study by
Dubosq & Viúdez [25].

Figure 6.5: Figure showing a relatively stable tripolar vortex created using
background rotation. Image courtesy of van Heijst et al. [26].
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The formation of more stable tripolar vortex has been achieved in an
experimental study by Van Heijst et al. [26]. Instead of using dipole col-
lision, the tripolar vortex is created using a thin-walled cylinder placed at
the centre of the setup with background rotation. The fluid inside the cylin-
der at the centre is stirred in the same rotational direction (cyclonic) as the
background rotation and an isolated vortex emerges. This isolated vortex
has a cyclonic vortex in the centre with a outer ring of anticyclonic vorticity.
After the vortex is rotating in a stable fashion the cylinder is released swiftly.
The formation of the tripolar vortex in this experiment is shown in Figure 6.5.
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6.3 Oblique dipolar vortex collision

Figure 6.6: Dye visualization of an oblique collision of two dipolar vortices
in gray-scale.
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An experimental observation of the oblique vortex collision generated by
the proposed device is shown in Figure 6.6. The initial stage where the two
dipolar structures approach in an oblique collision course (the angle between
the initial dipole trajectories is close to 900) is depicted by Figure 6.6a. Figure
6.6b shows the actual collision where the two dipolar structures come into
contact and ’exchange’ vortices. Figure 6.6c shows that the resulting ’upper’
dipolar vortex is relatively small and compact while the opposite is true
for the ’lower’ vortex pair. The more compact upper dipolar vortex travels
straight up, confirming the 90o angle between the trajectories of the two
initially symmetric vortex dipoles.
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Figure 6.7: Figure illustrating an oblique collision of two dipolar vortices.
Image taken from Voropayev & Afanasyev [24].

Voropayev & Afanasyev [24] have performed a study on dipolar vortex
collisions in a stratified fluid, including frontal collisions but also oblique
dipolar vortex collisions. Their experimental observation is shown in Figure
6.7. Their dipolar vortices are generated by injecting fluid into a stratified
fluid utilizing a pair of syringes.
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6.4 Dipolar vortex collision with a sharp-edged

wall

Figure 6.8: Dye visualization of a frontal collision of a dipolar vortex with
a sharp edge with close to zero offset, in gray-scale. The colour plots show
the numerically obtained vorticity time evolution of the collision between a
dipolar vortex and a sharp-edge. Numerically obtained images courtesy of
van Hooft [27].
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The previous collisions considered two dipolar vortices colliding with each
other, this section considers one dipolar vortex colliding with a sharp-edged
wall. Figure 6.8a,b,c shows an experimental observation of the dipolar vortex-
sharp-edged wall collision. Figure 6.8a shows the dipolar vortex approaching
the tip of the sharp-edge. From this image a close to zero offset between the
vortex centre and the sharp-edge tip is observed. This indicates the accuracy
in which the dipole trajectory is controlled.

The actual collision is visible in Figure 6.8b where the dipolar vortex is
deformed in an asymmetric fashion. This is due to the asymmetric geometry
of the (sharp-edged) wall obstructing one half and with no obstruction in
the other half with the region free of obstruction. The vortex dipolar vortex
colliding with the sharp-edge wall generates secondary vorticity and results
into two dipolar vortices propagating away from the wall. This is observed
in Figure 6.8c, where two dipolar vortices are visible, the largest propagating
’upwards’ and the smaller dipolar vortex in the vicinity of the wall propa-
gating relatively slowly away. This asymmetrical geometry also affects the
vorticity distribution of the two resulting dipolar vortices.

A numerical model of the collision is shown in Figure 6.8d,e,f. The flow is
visualized with the vorticity field. Figure 6.8d shows the two dipolar vortex
structures approaching. Figure 6.8e shows the collision and Figure 6.8f shows
the resulting flow field after collision. The experimental observations and
numerical simulation show similar behaviour qualitatively.
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6.5 Dipolar vortex collision with a sharp-edged

gap in a simply connected domain

Figure 6.9: Figure showing a frontal collision of a dipolar vortex with a
sharp-edged gap in a simply connected domain, in gray-scale.
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Figure 6.9 shows a frontal collision of a dipolar vortex with a sharp-edged
gap in a simply connected domain, visualized with dye. A simply connected
domain means that the two walls/boundaries that create the gap are ex-
tended entirely towards the walls of the water tank, closing off/separating
the tank into two halves. This is to ensure that there is no fluid flow in any
region except through the shard-edged gap.

Figure 6.9 shows six snapshots of a dipolar vortex collision with a sharp-
edged gap in a simply connected domain. Figure 6.9a shows a (primary)
dipolar vortex approaching the sharp-edged gap. Figure 6.9b shows that
this primary dipole cannot pass the gap but does advect/’push’ some fluid
through the gap however no vorticity is passed through. Figure 6.9c,d shows
that secondary vorticity is created at the two sharp edges, similar to Figure
6.8. Two new (asymmetric) dipoles are created and ’rebound’, following a
curved trajectory where both collide. This collision is shown in Figure 6.9e
which leads to vortex pair exhange. In Figure 6.9f, one dipole moves towards
the left and the other propagates to the right-hand side towards the gap.
The dipole that propagates through the gap is significantly smaller than the
primary vortex shown in Figure 6.9a, which enables the passing-through.

Van Hooft [27] studied dipolar vortex collisions with a sharp-edged gap in a
simply connected domain numerically. van Hooft concluded that a very well
controlled environment is required in order to obtain a symmetrical result in
an experiment; he was unable to perform experiments with sufficient sym-
metric results, which were conducted with a mechanical forcing mechanism
in a rotating fluid (background rotation).

Figure 6.9 highlights the novel electromagnetic generation method’s abil-
ity of generating symmetric dipolar vortices with improved control over dipole
propagation trajectories.
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Chapter 7

Vortex-shear interaction

7.1 Brief introduction

Atmospheric blocking is an example of a dipolar vortex structure. This
structure can affect the weather and climate in the surrounding region for
a prolonged time. A deforming background flow can influence the stability
of this blocking structure. In order to investigate the stability of dipolar
vortices, the dipolar vortices are subjected to a deforming background flow
i.e. a shearing background flow.

7.2 Experimental setup: Dipolar vortex and

shear flow interaction

The interaction between a vortex dipole and a shear flow is investigated ex-
perimentally. As a first step, a mechanical piston mechanism is used similar
to mechanism used by Fernandes et al. [10].
The experimental setup to investigate the interaction consists of a water tank
with length L1 = 200 cm, width W1 = 100 cm and the tank is filled with a
two-layer stratified shallow fluid with a total fluid depth H = 8 mm, in order
to promote a Q2D flow.
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Figure 7.1: A sketch showing the top-view of the setup in which the interac-
tion of dipole with a shearing background flow is studied. The two channel
walls are sketched as two black bars. The direction of the shear flow is also
indicated. The mechanical piston system responsible for injecting fluid into
the channel is also visible in the lower part of the sketch.

Figure 7.2: Experimentally obtained velocity profile of the shearing back-
ground flow.
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Figure 7.1 shows a sketch illustrating the top view of the experimental
setup. Electromagnets are installed beneath the water tank and electrodes
are installed at the channel walls in order to generate a magnetic field and
electric current to maintain a shear flow in the fluid present in the channel.

The piston injects fluid perpendicularly to the shear flow propagation di-
rection. The fluid is injected at the centre of a channel where the shear flow
has a Poiseuille-like profileas illustrated in Figure 7.2. The velocity profile of
the shear flow has a negative direction close to the channel walls.

The mechanical generator consists of two parts, a piston which pushes
fluid into the injector front piece. This front piece is a narrow corridor where
the fluid goes through and then moves outwards into the channel as a jet.
This jet is initially turbulent but soon a dipolar vortex structure is formed.

There are two cases of dipolar vortex-shear interaction are investigated.
These are the perpendicular fluid injection and fluid injection at an angle,
into the channel.
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7.3 Perpendicular fluid injection

Figure 7.3: Experimentally obtained time evolution of a perpendicular dipole
injection without a shearing background flow that is created through injection
of luid through the lower channel wall and perpendicular to it: a) The dipole
formation starts with secondary vorticity created at the lower channel wall,
b,c) The dipole moves in a straight trajectory from the lower channel wall to
the upper channel wall and d) the dipolar vortex collides with the upper wall
creating secondary vorticity close to the upper channel wall.

Fluid is injected into the channel perpendicularly with respect to the wall
and a jet of fluid is created. Subsequently a dipolar vortex structure emerges.
In the absence of a background flow, the dipolar vortex propagates along a
straight-line trajectory from the lower channel wall towards the upper channel
wall. The vortex dipole can collide with the upper channel wall, depending
on the injection volume and speed.
The subsequent formation and propagation of the dipolar vortex without a
background flow is shown in Figure 7.3.
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Figure 7.4: Experimentally obtained time evolution of a perpendicular dipole
injection into a shearing background flow: a) The fluid is injected and the
dipole is starting to form, note that the (opposite) secondary vorticity at the
lower channel walls are also visible, b) The formation process is finalizing and
the shear-flow is starting to advect the dipole structure in the direction along
the channel. c) and d) the dipolar structure is starting to deform as a result of
the interaction with shear, depending on either adverse or cooperative shear
the adverse shear interaction is breaking up one of the two vorticity patches.

In the case the shearing background flow is present, initially the vortex
dipole propagates perpendicularly into the channel. This is illustrated in
Figure 7.4a. Afterwards, the shearing flow causes the vortex dipole to be
advected into a certain direction along the channel length as shown in Figure
7.4b.
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Moreover, the shear flow interaction causes the negative vorticity ’patch’
to be deformed and disintegrated. The disintegration is visible as the nega-
tive vorticity core is smaller in size and there is a negative vorticity tail which
has been ’shed’ off the dipolar structure (Figure 7.4c,d). In this specific case,
the negative vorticity patch has been deformed while the positive patch is
only slightly deformed.
Consequently, the total circulation is no longer zero but is in this case posi-
tive. This results in an asymmetric dipolar vortex curving towards the lower
channel wall.

The shearing background flow induces vorticity in the fluid as follows:

ω =
∂v

∂x
− ∂u

∂y
(7.1)

with the velocity component along the channel u and the velocity component
perpendicular to the channel v. If the vorticity of the dipolar vortex has the
same sign as the vorticity induced by the shearing flow then this is called
’co-operative shear’ and if the vorticity of the dipolar vortex has the opposite
sign as the vorticity induced by the shearing flow then this is called ’adverse
shear’.

Earlier studies [9][28][29] have revealed that monopolar vortices in adverse
shear interaction may break up. This is in contrast to cooperative shear
interaction, which deforms the initially circular-shaped monopolar vortex
into an elliptic monopolar vortex.
This effect is also visible in Figure 7.4, where the negative vorticity patch is
experiencing an adverse shearing interaction and the positive vorticity patch
is interacting cooperatively with the shear-flow.
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7.4 Oblique fluid injection

Figure 7.5: The top-half image is a sketch of the injection of a dipole at an
angle. This causes an asymmetry in fluid entrainment and consequently the
formation of an asymmetric dipole. The injection fluid velocity is decomposed
in the x and y-direction and the dashed line arrow shows the straight path
and the non-dashed arrow shows the actual (curved) path of the dipole after
formation. The bottom-half shows experimental results of an oblique injection
of fluid. This results in an asymmetric entrainment of fluid and consequently
the formation of an asymmetric dipole. a) The formation of the dipole where
the asymmetry in generated vorticity is already visible and this is also visible
in the secondary vorticity produced. b,c,d) The dipole is following a curved
trajectory caused by the asymmetric vorticity distribution.
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The interaction between a dipole propagating at an angle and a back-
ground shear flow is studied next. Fluid is mechanically injected into channel
at an angle to create a dipolar vortex with an oblique trajectory. This situa-
tion is illustrated in Figure 7.5. The dipolar vortex does not propagate along
a straight trajectory (as in the case with a perpendicular injection), but has
a curved path. This is due to an asymmetric geometry, which induces an
asymmetric entrainment of fluid. This generates an asymmetric dipole with
a curved path.

At this particular angle, the x-component of the velocity enhances the
fluid entrainment from the left-hand side. While the fluid entrainment does
not enhance fluid coming from the right-hand side. More fluid entrainment
causes the dipole to be asymmetric and in this specific case, strengthens
the left patch which has positive vorticity. This asymmetric dipole does not
propagate along a straight path but initially bends towards the left as the net
vorticity of the dipole is positive. The injection fluid velocity is decomposed
in the x and y-direction.
The dashed line arrow shows the desired straight path and the non-dashed
arrow shows the actual (bended) path of the dipole after injection.

This effect is shown experimentally in Figure 7.5. Figure 7.5a shows the
formation of a asymmetric dipolar structure and the positive vorticity patch
is already visibly larger in both size and strength. This results in a larger
generation of secondary vorticity at the lower channel wall.
The asymmetric dipolar vortex continues to follow a curved trajectory path
towards the left as shown in Figure 7.5b,c and d. This means that this par-
ticular mechanical dipole generation mechanism is not viable for creating a
symmetric dipolar vortex with an angled trajectory.
Furthermore, parallel injections are also not possible, where a generated dipo-
lar vortex propagates parallel to the channel and shearing background flow.
This is because the piston mechanism is permanently mounted into the lower
channel wall.
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7.5 Applying the electromagnetic dipole gen-

erator in a shearing background flow

7.5.1 Parallel vortex-shear interaction

Figure 7.6: Dye visualization of a dipolar vortex propagating parallel into an
adverse shearing background flow with a relatively large offset to the channel
left-side, in gray-scale. The camera field of view is centred with respect to
the channel walls and shearing background flow (velocity profile as shown in
Figure 7.2).

Figure 7.6 shows four experimentally obtained snapshots of a generated
dipole using the novel electromagnetic generation method propagating par-
allel with respect to the channel walls into an adverse shearing background
flow. The profile of the shearing background flow is similar to the one shown
in Figure 7.2.
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The camera field of view is centred with respect to the two channel walls.
The dipole in Figure 7.6a shows a small offset to the left-hand side of the
channel. This small offset causes an asymmetric (adverse) shearing on the
dipole. The asymmetric shearing causes a difference in deformation of the
two vortex cores shown in Figure 7.6b,c and d.

Figure 7.7: Figure showing a dipolar vortex propagating parallel to the ad-
verse shearing background flow with only a slight offset to the channel left-
side, in gray-scale. The camera field of view is centred with respect to the
channel walls and shearing background flow (velocity profile is shown in Fig-
ure 7.2).

Figure 7.7 shows four experimentally obtained snapshots of a generated
dipole also propagating parallel into the identical adverse shearing flow. How-
ever, the dipole shown in Figure 7.7a has a much smaller offset than the dipole
shown in Figure 7.6a. Although there is less dye in the right vortex core, it
is visible that the deformation is less pronounced in Figure 7.7b,c and d.
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Chapter 8

Conclusions

The novel electromagnetical dipolar vortex generation method has been stud-
ied experimentally and numerically. As a first step, the generated dipoles
have been characterized using the time evolution of the vorticity field, the
vorticity cross-section, the vortex eccentricity ε and the ω-ψ scatter plots.
The generated dipole just after forcing has a point-dipole-like structure, grad-
ually changing into a super-smooth-like dipole at an early time stage and
finally evolving into a Chaplygin-Lamb dipole-like dipole at later time stages.

Subsequently, the generated dipoles have been studied with varied forcing
parameters: the electric current I, the magnetic field strength B, the forcing
time tf and the electrode gap distance de.
This has been done by analyzing the effect of varied forcing parameter on:
the maximum vorticity ωmax, vortex size dv, the vortex core distance dc, the
vortex enstrophy decay time td, the dipole (centre) propagation velocity vc
and the ω-ψ scatter plots.

The novel generation method has been applied in experiments where the
outcome is sensitive to propagation trajectories and showcased the method’s
ability to generate symmetric dipolar vortices with improved control over
(initial) propagation trajectories.
Furthermore, the novel method has been applied in a shearing background
flow and showcased the novel method as a minimally intrusive way of gener-
ating dipolar vortices in a background flow.
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Recommendations for future studies

For future studies, the dipole generator can be applied into various exper-
iments where a well-controlled environment is required. The generator can
also be applied more extensively in experiments with a background shear
flow. The effectiveness of the novel generator in the presence of background
rotation can also be studied in the future.

Additionally, the formation stage(vorticity generation) can be investi-
gated in a more detailed way. Furthermore, the effect of different electrode
shapes (circular or rectangular) can be investigated and possibly more than
two electrodes can be utilized.
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