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Abstract

The evaluation of the ruin probability in the classical Cramér-Lundberg risk model
is one of the most interesting and challenging problems in the area of risk theory,
especially in the presence of heavy-tailed claims. In this research, we study and evaluate
the performance of various ruin probability approximations using real data. More
specifically, we consider the heavy-tailed asymptotic, phase-type and corrected phase-
type approximations. Moreover, we apply the corresponding approximations to the
distribution of the loss on the portfolio and Value at Risk. To be able to use these
approximations, we need to have the appropriate claim size distribution. Therefore,
we model the claim sizes with a heavy-tailed, a phase-type and a mixture of these
two distributions, while we assume that the inter-arrival time of the claims follows an
exponential distribution. Since we cannot calculate the exact ruin probability based on
our data, we assume that the true distribution of the claim sizes is a mixture of a phase-
type and a heavy-tailed distribution. Finally, we perform a comparison of the outcomes
of each approximation with the empirical distribution of the loss and the Value at Risk
derived by the real data and the ruin probability obtained by the simulations.
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1 Introduction
The numerical evaluation of the ruin probability and the steady-state waiting-time distri-
bution of a queue are two important problems in the areas of risk and queueing theory,
respectively, and therefore they have been widely studied in the literature ([5], [6] and ref-
erences therein). The ruin probability is defined as the probability that the reserve of an
insurance company will ever drop below zero, while, the time an arriving customer in steady-
state has to wait in a queue until his service starts is called waiting time. It can be shown
that the ruin probability with initial reserve u is equivalent to the stationary probability
that the waiting time of a customer exceeds u of an G/G/1 queue, where the service times
correspond to the random claim sizes ([5], [6]). This implies that the ruin probability and
the waiting time distribution can be calculated interchangeably, and henceforth we restrict
ourselves to the notations of the risk theory.

In this research, we study the numerical evaluations of the ruin probability in the classical
Cramér-Lundberg risk model. In this model, let u be the initial capital of an insurance
company where claims for money arrive according to a Poisson process and the total premium
rate is p. Under the assumption of exponentially decaying claim size distributions, the ruin
probability is available via the classical Pollaczek-Khinchine formula ([6]), since the Laplace
transform of the claim size distributions in these cases is available in closed form. Hence,
numerical transform inversion can be used on the Pollaczek-Khinchine formula.

However, in insurance models this assumption often is not applicable and heavy-tailed
distributions are more appropriate for modeling claim sizes ([16]). In such distributions, an
extremely large claim size can have a nontrivial probability since heavy-tailed distributions
decay more slowly than any exponential function. In the presence of heavy-tailed claim sizes,
numerical methods become challenging or even problematic. This happens because they use
the Laplace transform and oftentimes the heavy-tailed distributions do not have a closed-
form, analytic Laplace transforms. Thus, since the ruin probability cannot be computed
explicitly, it needs to be approximated.

When the average amount of claim per time unit is smaller, but almost equal, to the
premium rate and the first two moments of the claims size distribution are finite, heavy-
traffic approximations can be used ([26]). The disadvantage of this approximation is that for
many heavy-tailed distributions the condition on the first two moments is not satisfied. On
the other hand, when on average, the expected premiums are much larger than the expected
claims, the use of the light-traffic approximations is more appropriate ([3], [9], [13], [14],
[34]). However, in risk theory, the light-traffic approximations are of limited interest, since
the heavy-traffic scenario, where the premium rate is slightly bigger than the average claim
per unit of time, is most often argued to be the typical case.

The approximation proposed by Beekman in [8] is based on the idea of matching moments
of the ruin probability, however several heavy-tailed distributions may have infinite higher-
order moments. The ruin probability approximation in [38] is a refinement of the central
limit theorem.

A stream of papers ([20], [33]) proposed to approximate directly the Laplace transform of
the claim sizes rather than the claim size distribution, using the Transform Approximation
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Method. Even though these approximations are quite effective in handling distributions with
infinite moments, their accuracy cannot be predetermined.

As mentioned earlier, heavy-tailed distributions may lack a Laplace transform in closed
form. One way to get around this difficulty is to approximate the heavy-tailed distribution
with a phase-type distribution whose Laplace transform is available in closed form ([7], [19],
[22], [25], [32], [36]). Even though these methods can approximate the claim size distribution
with high accuracy, the number of phases needed in order to achieve a desired accuracy has
to be found by trial and error.

When the claim size distribution belongs to the subexponential class (a subclass of the
heavy-tailed distributions), the so-called heavy-tailed approximations can be used to approx-
imate the ruin probability ([18], [29]). The main drawback of these approximations is that
they are asymptotic approximations. This means that they provide a good fit only at the
tail of the ruin probability, especially when the average claim per unit of time is close to
the premium rate. Moreover, if the claim size distribution is a regularly varying distribu-
tion, an approximation which can transit from the heavy-traffic regime to the heavy-tailed
asymptotic is proposed in [28].

A stream of papers suggests that only a fraction of a sample might follow a heavy-tailed
distribution ([11], [21]), while the rest could follow a light-tailed distribution. This implies
that the claim size distribution can be modeled as a mixture of a phase-type distribution
and a heavy-tailed distribution. Based on this assumption for the claim size distribution,
Vatamidou et al. propose in [37] the use of the corrected phase-type approximations, aiming
to combine the best elements of phase-type and heavy-tailed asymptotic approximations.

In this research, our purpose is to evaluate the performance of various ruin probability
approximations using real data. For this reason, we use the Danish data which consist of
2167 claims over one million Danish Krone (DKM) and their arrival date from the years
1980 to 1990 inclusive. In order to be able to apply any of the existing ruin probability
approximations, it is necessary to know the inter-arrival time and claim size distributions.
However, since we have real data, these distributions are not a-priori known and thus, they
have to be evaluated from our data.

By assumption, the claims arrive to the insurance company according to a Poisson pro-
cess, whose parameter is estimated by the data we have. The distributions used to model
the claim size distribution can be split into three main categories: heavy-tailed, phase-type
and a mixture of a phase-type and a heavy-tailed. For each category we follow different
procedures to fit a distribution on our data and to choose the most appropriate distribution
inside a category.

After the fitting of various distributions on the Danish data and based on the fitted
distribution, we calculate the ruin probability using the appropriate approximation. When
the claim size distribution is approximated with a phase-type one, we can use directly the
Pollaczek-Khinchine formula to evaluate the ruin probability ([6]). In the case of a heavy-
tailed claim size distribution, we use the heavy-tailed asymptotic approximation for the ruin
probability ([18]). Finally, when the Danish data impose a mixture of a phase-type and a
heavy-tailed distribution as the claim size distribution, we can apply the corrected phase-
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type approximations ([37]).
Besides the ruin probability, a very popular tool in real-world applications to measure the

operational risk is the Value at Risk (VaR). For a given portfolio, a VaR with a probability
level q and fixed time horizon is defined as the threshold value such that the loss on the
portfolio over the given time horizon exceeds this value with probability 1 − q. In other
words, VaR is the (1−q)-quantile of the loss on the portfolio in a fixed time interval and can
be derived from our data. Moreover, for each approximation we use for the ruin probability,
we can apply the corresponding approximation for the distribution of the loss on the portfolio
in a fixed time horizon and derive the associated VaR. We compare the outcomes of each
approximation with the empirical distribution of the loss on the portfolio and the VaR
obtained by the Danish Data.

Finally, since we cannot extract the exact ruin probability using the Danish data, we
assume that the true claim size distribution is one of the distributions which we fit on our
data. Based on this assumption, we derive the exact ruin probability using simulations
and we compare the performance of the ruin probability approximations we consider in this
research.

The rest of the thesis is organized as follows. In section 2, a detailed description of
the model we use is given. In sections 3, 4 and 5, we study various fitting techniques for
each category of distributions we use to model our claim sizes and procedures to choose the
most appropriate distribution in each category. In sections 6, 7 and 8, we describe the ruin
probability and loss on the portfolio approximations whose performance is evaluated in this
research. In sections 10, 11 and 12, we apply to the Danish data the fitting procedures and
goodness-of-fit techniques described in previous sections and we give the related results. In
sections 13 and 14, the outcomes of applying different approximations for the distribution
of the loss on the portfolio, VaR and ruin probability, to our data, are given. Additionally,
we compare these outcomes with the ones we derived from the Danish data or simulations.
Finally, in section 15, we summarize and discuss our final conclusions for the approximations
we considered in this research.

2 Model description
The model we use in this research is based on the classical Cramér-Lundberg risk model,
also called compound Poisson model ([6]). This model assumes that the claims arrive to the
insurance company according to a Poisson process {Nt}t≥0 with rate λ. Let Ui denote the
size of the ith claim, then the Ui’s are strictly positive i.i.d. with common distribution G. In
addition, premiums flow in at rate p > 0 per unit of time. The risk reserve process, {Rt}t≥0,
has the following form,

Rt = u+ pt−
Nt∑
i=1

Ui,
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where Nt is the number of claims that arrived in [0, t], and u = R0 is the initial reserve of
the risk process. The probability of ultimate ruin of the insurance company is defined as the
probability of that its reserve ever drops below zero

ψ(u) = P(inf
t≥0

Rt < 0) = P(inf
t≥0

Rt < 0|R0 = u).

The only difference between the model described here and the classical Cramér-Lundberg
risk model is that, in the latter model, the premiums flow in at rate p = 1 per unit of time.
However, in [6], it is proven that for any p 6= 1 one can define R̃t = R t

p
which yields

ψ̃(u) = ψ(u). This implies that the two models actually are equivalent.
Usually it is more convenient to work with the claim surplus process {St}t≥0, defined as

St = u − Rt. Let M = supt≥0 St, then the probability that the supremum M exceeds u is
equivalent to the ruin probability ψ(u), i.e.

ψ(u) = P(M > u).

Mathematically, the ruin probability of the classical Cramér-Lundberg risk model is re-
lated to the workload (virtual waiting time) process {Wt}t>0 of an initially empty M/G/1
queue by means of

ψ(u) = P(Wt > u),

since the claim sizes can be considered as the service times of customers who arrive to the
system according to the same Poisson process as the claims.

In risk theory, there is a constant named ρ, such that

ρ = λE[U ],

which is interpreted as the average amount of claim per unit of time. It should not be
confused with the corresponding quantity ρp in queuing theory, which represents the traffic
intensity of the system, even though both are calculated in the same way.

A further basic quantity in risk theory is the safety loading

η =
p− ρ
ρ

,

i.e. η is defined as the relative amount by which the premium rate p exceeds ρ. Obviously,
an insurance company should try to ensure that η > 0 ([6]).

When p = 1, ρ is equivalent to ρp and the assumption η > 0 yields ρ < 1. Otherwise,
when p 6= 1, we have that ρp = ρ

p
and η > 0 implies ρ < p.

As we mentioned in the introduction, apart from the ruin probability, VaR is also widely
used in real-world applications. For a fixed period of time [0, t], let

Losst(x) := P(
Nt∑
i=1

Ui > x),
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where
∑Nt

i=1 Ui is called aggregate loss or total loss and basically represents the loss on the
portfolio in the time interval [0, t]. Then, the VaR, which is defined as the threshold value
such that the probability of the aggregate loss to exceed this value over a given time horizon
is less than a given level q, is actually equal to the (1− q)-quantile of Losst(x).

We continue by introducing some common notation we use throughout this report. For
a distribution F , we denote by

(i) f(x), its probability density function (PDF),

(ii) F (x), its cumulative distribution function (CDF),

(iii) F̄ (x) = 1− F (x), its complementary cumulative distribution function (CCDF),

(iv) F ∗l, its l-th convolution,

(v) fLT (s) =
∫∞
0
e−sxd(F (x)), its Laplace transform and

(vi) mF , its mean.

In addition, if the distribution has finite mean, the stationary excess distribution is defined
as

F e(t) =
1

mF

∫ t

0

F̄ (x)dx.

As we commented in the introduction, the claim size distribution G is not known in ad-
vance. Therefore, in the following part, before we examine the ruin probability and total loss
approximations, we give the definitions of various distributions and study fitting procedures
and goodness-of-fit tests that we can apply to the Danish data.
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Part I

Fitting a distribution
In the following sections, we give the definitions of the distributions we use in this study and
we consider fitting techniques for each distribution. More specifically, in section 3, we define
the heavy-tailed distributions and two main subclasses of them. Then, the definitions of the
Pareto, Log normal and Weibull distributions, and techniques to estimate their parameters
based on a data set are given. In section 3.4, we study different goodness-of-fit tests which
help us determine which of the heavy-tailed distributions is the most plausible one for our
data. Similarly, in section 4, the definition of the phase-type distributions is provided,
and several algorithms to approximate a non-negative distribution with a phase-type one
are described. Moreover, in section 4.3, we discuss how we can choose how many phases
our phase-type distribution needs in order to obtain an accurate approximation of the real
distribution. Finally, in section 5, we sketch the procedure which fits a Pareto distribution
on the tail of a data set. Moreover, the corresponding goodness-of-fit test is given which
could be used to answer the question of the plausibility for the tail of this data set to follow
a Pareto distribution.

3 Heavy-tailed distribution
In simple words, a distribution is heavy-tailed if its tail is heavier than the tail of an Expo-
nential distribution. Mathematically, a distribution P is said to be heavy-tailed if P̄ (x) > 0
for all x ≥ 0, and

lim
x→∞

P̄ (x+ y)

P̄ (x)
= 1, ∀y ≥ 0.

Since the class of the heavy-tailed distributions is quite large, usually one works with a
subclass of it. A well known subclass is called subexponential. A distribution P belongs to
this subclass if P̄ (x) > 0 for all x ≥ 0, and it holds that

lim
x→∞

P̄ ∗m(x)

P̄ (x)
= m, ∀m ≥ 2.

Additionally, a subclass of the subexponential class, and hence of the heavy-tailed dis-
tributions, is the class of the regularly varying distributions. A distribution P is regularly
varying if

P̄ (x) = x−αL(x),

where L(x) is slowly varying, i.e. we have

lim
x→∞

L(xy)

L(x)
= 1, ∀y > 0.
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For more information regarding the heavy-tailed distributions the reader is referred to
[35] and the references therein.

In the literature, the heavy-tailed distributions used most often to model the claim sizes
are the Pareto, Lognormal and Weibull distributions ([6], [18]). Thus, in the rest of this
section, the definitions of these three distributions are given, along with different techniques
to estimate their parameters given a data set. Let Data = {d1, d2, ..., dn} be the observed
data set and n its size.

A common fitting method is the Maximum Likelihood Estimator (MLE) since it can pro-
vide unbiased, consistent and efficient estimators of the true parameters of the distribution,
when the sample size is bigger than 30. Given a set of observed data and an underlying sta-
tistical model, the MLE method selects the set of values for the parameters of the statistical
model that maximizes the likelihood function.

3.1 Pareto distribution

The Pareto distribution, also known as the power law distribution, is a regularly varying
distribution, and its PDF is given by

p(x) =
α− 1

β

(
x

β

)−α
, for x ≥ β,

where α is called the shape parameter, and β > 0 is some lower bound to the power law
behaviour. Usually it holds that 2 < α < 3 ([11]), and here we assume that α > 2. The
CCDF of the Pareto distribution is then

P̄ (x) =

(
x

β

)−α+1

, for x ≥ β,

and its mean is equal to

mP =
(α− 1)β

α− 2
.

3.1.1 Estimating the parameters of the Pareto distribution

When the purpose is to fit a Pareto distribution to the observed data set Data, first, we
set the lower bound of the distribution: β = mini=1,..,n di. Hence, we only need to estimate
the shape parameter α. In the literature, there are several methods to estimate α, so in the
rest of this section we give a brief survey of the available methods, and we propose some
variations as well.

1. Using MLE ([24]). When the underlying statistical model is the Pareto distribution,
the MLE for the shape parameter, α, is:

αMLE =
n∑n

i=1 log (di/β)
+ 1.
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However, the MLE method tries to adjust α in order to achieve a good fit in the
center of the distribution, without caring a lot about the tail where there are fewer
observations. In contrast, the Hill estimator, which we explain below and can be used
when the distribution is regularly varying, is designed especially to achieve a better fit
in the tail.

2. Using Hill Plot. Initially the observations are ordered such that d(1) ≥ d(2) ≥ ... ≥ d(n),
where d(i) represents the i-th largest value in the data set. Then

αHill(k) =
k − 1∑k−1

i=1 log (d(i)/d(k))
+ 1, k = 2, ..., n,

is called the Hill estimator based on the k upper order statistic ([21]). Notice that
for k = n, the Hill estimator is equivalent to the MLE. Obviously, the Hill estimator
depends on the choice of k, however there is little guidance available for choosing k in
the case of real data (see [15]).

Therefore, in practice, a plot of the points (k, αHill(k)), with 2 ≤ k ≤ n, is constructed.
This plot is called Hill Plot ([15]). The value of the estimate αHill is inferred from
the stable region in that graph. The Hill plot is quite effective when the underlying
distribution is Pareto or quite close to Pareto. When another distribution is considered,
the Hill plot might not be so informative and an alternative plot can be constructed,
like the one proposed in [31]. The issue of this method is that a point is picked from the
stable region of the plot manually and this could affect the precision of the estimation.

3. Using rank-frequency plots. If the observed data follows a Pareto distribution, plotting
the points (dk, P̄ (dk)) on a doubly logarithmic scale, results in a graph which shows a
straight line since

P̄ (x) =

(
x

β

)−α+1

log P̄ (x) = log

(
x

β

)−α+1

log P̄ (x) = (1− α) log x+ (α− 1) log β.

Notice that the straight line on a doubly logarithmic scale is a necessary condition but
not a sufficient one, since data coming from a different distribution could mimic this
behaviour (see [11] and [30]).

Based on the rank-frequency plots there are two possible ways to estimate the shape
parameter:

(a) By performing least-squares linear regression on the logarithms of the points,
i.e. on the points (log di, log P̄ (di)), where the points log P̄ (di) are the dependent
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variables. Using this method, the slope of the straight line can be found ([24]).
Let slccdf denote the estimated slope, then for our estimate αccdf,l we have that

1− αccdf,l = slccdf ⇒ αccdf,l = 1− slccdf .

Notice that since by assumption α > 2 ⇒ 1 − α < 0, slccdf is expected to be a
negative number.

(b) By using a variation of the previous one. Instead of performing a linear regression
on the logarithmic points, we can perform a non-linear regression on the actual
points. The function gccdf (x) = δccdfx

γccdf is used as the model function, since the
CCDF of Pareto has basically this form. Then, for the estimated shape parameter
αccdf,nl we have

1− αccdf,nl = γccdf ⇒ αccdf,nl = 1− γccdf .

Similar to the previous method, we expect that γccdf < 0.

These methods, as well as other variations on the same theme like the ones we describe
later, can generate significant systematic errors. Moreover, since the assumptions of
the regression do not hold, it is hard to estimate these errors. For a more detailed
explanation on this problem and other problems related to these methods, the reader
is referred to [11] and the references therein.

4. Using histograms. Construct a histogram using bins of constant linear or logarithmic
width which represents the density distribution of the quantity of interest. Let bins
denote the number of bins used in the histogram and xi, i = 0, ..., bins, where x0 = 0, be
the bin limits. Then, for a histogram with constant linear width holds that xi+1−xi = w
for all i = 0, ..., bins− 1, while, when constant logarithmic width is used, it holds that
log xi+1 − log xi = lw for all i = 0, ..., bins− 1.

In case of heavy-tailed distributions, an advantage of having constant logarithmic
width, is the reduction of the number of zero and low-count bins at larger values
of x. This occurs because the linear width, wi, of bin i increases linearly with x since
it holds

log xi+1 = log xi + lw ⇒ xi+1 = xie
lw,

which yields
wi = xi+1 − xi ⇒ wi = xi(e

lw − 1).

This linear dependency of the linear width with x yields that the number of observations
lying in each bin is not determined only by x but also by the linear width. Therefore,
when the histogram using constant logarithmic width represents the number of counts
lying in each bin or the frequency distribution instead of the density, an estimate of the
quantity 1− α is provided (for the proof the reader is referred to [10] and [39]). This,
however, does not occur when the bins have constant linear width. In other words, an
estimate of α is given regardless of what the histogram represents.
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If the data follows a Pareto distribution, then by plotting the points (meani, Deni) for
i = 1, ..., bins where meani = xi−1+xi

2
and Deni is the density value corresponding to

bin i, on a doubly logarithmic scale, as in (3), this graph shows a straight line regardless
of the type of histogram and the number of bins used. Thus, the same methods used
in (3), can be applied to the points (meani, Deni), i = 1, ..., bins excluding the zero
counts bins. So, we have:

(a) The shape parameter is equal to the absolute value of the slope, which can be
found by performing least-squares linear regression on the logarithms of the points
(meani, Deni), i.e.

αhist,l = |slhist|,
where slhist denotes the estimated slope, and it holds that slhist < 0.

(b) Perform non-linear regression on the points (meani, Deni), using the function
ghist(x) = δhistx

γhist as model function. Then

αhist,nl = |γhist|.

Once again, we expect γhist < 0.

Aside from the problems related to the regression, which we mentioned before, an
additional issue of the last procedures is the choice of the number of bins, since it
can influence the estimate of the shape parameter (see [11]). However, there is no
optimal method for choosing the number of bins. Therefore the following formulas can
be applied:

• Square-root choice: bins = d
√
ne,

• Sturges’ formula: bins = dlog2 n+ 1e and
• Rice Rule: bins = d1

2
n

1
3 e, which is basically a simple alternative to Sturges’

formula,

where dxe returns the smallest integer greater than or equal to x.

5. Using a plot of the points (bins, αbins). Since there is no right choice for how many bins
to use in a histogram and inspired by the idea of Hill Plot, in this method we construct
a plot of the points (bins, αbins), for bins = 2, ..., B, where αbins is the estimated α
using bins number of bins (the choice of B is based on the size of the sample and the
range of the values). Then, we check if there is a point (bins, αbins) in the graph for
which the value of αbins becomes stable. If α∗bins is such a value, we set

αH = α∗bins.

As mentioned earlier, there are two possible ways to construct a histogram (with con-
stant linear or logarithmic width), and two methods to estimate the shape parameter
(by linear or non-linear regression), thus the method described above is applied for
each kind of histogram using both of the estimation methods for the shape parameter.
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3.2 Log normal distribution

The Log normal distribution has PDF

p(x) =
1

xσ
√

2π
e−

(log x−µ)2

2σ2 , for x ≥ 0,

where µ and σ are, respectively, the mean and standard deviation of the variable’s natural
logarithm. In other words, if X ∼ Log normal (µ, σ2), then Y = logX ∼ N(µ, σ2). The
CDF of the Log normal distribution is

P (x) = Φ

(
log x− µ

σ

)
, for x ≥ 0,

where Φ(x) is the CDF of the standard Normal distribution. Finally its mean is equal to

mP = e(µ+
1
2
σ2).

3.2.1 Estimating the parameters of the Log normal distribution

Given the observed data set Data and Log normal distribution as the underlying statistical
model, the following fitting procedures can be used to estimate the true parameters of the
model.

1. Using MLE ([24]). In order to estimate the parameters µ and σ2 of the Log normal
distribution we can use the values log di and thus the problem is reduced to that of
estimation of the parameters of the Normal distribution. Hence for the parameters of
the Log normal distribution, estimated according to the MLE method, we have that:

µMLE =

∑n
i=1 log di
n

,

and
σ2
MLE =

∑n
i=1(log di − µMLE)2

n
.

2. Using graphical estimation ([24]). This method is based on the observation that the
tangents at two points of inflexion of the PDF remain close to the curve for a consid-
erable length. So one has to calculate the ratio of the observed slopes of the inflection
tangents and then use the for this purpose available tables to estimate σ. Finally, µ
can be estimated using the formula

µgraph =
3

2
σ2
graph +

1

2
log x1x2,

where x1 and x2 are the points of the x-axis where the tangents cut the horizontal axis
and σgraph is the estimated σ.
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3.3 Weibull distribution

The PDF of the Weibull distribution is

p(x) =
αw
βw

(
x

βw

)αw−1
e−( x

βw
)
αw

, for x ≥ 0,

where αw and βw are called the shape and scale parameters of the Weibull distribution
respectively. The CCDF of the distribution is given by

P̄ (x) = e−( x
βw

)
αw

, for x ≥ 0,

which implies that if the random variable X follows a Weibull distribution, then Y =
(
X
βw

)αw
has the Exponential distribution with PDF pY (y) = e−y for y > 0. The Weibull distribution
is a heavy-tailed distribution if the shape parameter is less than one, i.e. if αw < 1. Finally
the mean of the Weibull distribution is

mP = βwΓ

(
1 +

1

αw

)
,

where Γ(s) =
∫∞
0
xs−1e−xdx, for s > 0 is the Gamma function.

3.3.1 Estimating the parameters of the Weibull distribution

Using one of the following methods on the data set Data, the true parameters of the Weibull
distribution can be estimated.

1. Using MLE ([24]). The MLE of the shape parameter of the Weibull distribution is:

αw,MLE =

( n∑
i=1

d
αw,MLE

i log di

)(
n∑
i=1

d
αw,MLE

i

)−1
− n−1

n∑
i=1

log di

−1 ,
which is an implicit equation that in general must be solved numerically. Then for the
scale parameter the MLE is:

βw,MLE =

[
n−1

n∑
i=1

d
αw,MLE

i

] 1
αw,MLE

.

2. Using the Method of Moments ([24]). Because of the fact that the coefficient of vari-
ation of the Weibull distribution depends only on the shape parameter αw, we can
determine αw numerically. The coefficient of variation is given by the following for-
mula

CVw(αw) =

√
Γ
(

1 + 2
αw

)
+
[
Γ
(

1 + 1
αw

)]2
Γ
(

1 + 1
αw

) ,
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and so a table with CVw(αw) values can be formed for various values of the shape
parameter. Then, we need to calculate the coefficient of variation of the data on
hand and compare this value with the values in the table. The corresponding αw is
the estimated one. Let αw,mom denote the estimated shape parameter of the Weibull
distribution using the Method of Moments. The scale parameter can be determined
by the following formula

βw,mom =

∑n
i=1 di

nΓ
(

1 + 1
αw,mom

) .
3.4 Choosing a heavy-tailed distribution

As we saw in the previous sections, we can fit any distribution on our data, regardless of
the true distribution. However, the fitting procedures tell us nothing about how good the
fittings are. Hence, after fitting a distribution, a goodness-of-fit test is needed in order to
check if it is plausible that our data is drawn from this probability distribution. In other
words, we test the null hypothesis

H0 : the true distribution of the data set is distribution P,

against the alternative

H1 : the true distribution of the data set is not distribution P.

There are two types of tools that we use to assess whether our sample could come from
a specified distribution: the quadratic EDF statistics (i.e. tests which are based on the
empirical distribution function) and graphical techniques. In the rest of this section we
describe goodness-of-fit tests of both types which we use in this research.

3.4.1 Quadratic EDF statistics

In this study, we use the Anderson-Darling and Cramér-von Mises statistics, which are
both quadratic EDF statistics. These tests measure the distance between the empirical
distribution F of a sample of size n and the hypothesized distribution P by

n

∫ +∞

−∞
(F (x)− P (x))2w(x)dP (x),

where w(x) is a suitable function which gives weights to the squared difference (F (x)−P (x))2.
When the weighting function is equal to 1, the statistic

W 2 := n

∫ +∞

−∞
(F (x)− P (x))2dP (x),

is called Cramér-von Mises statistic. The Anderson-Darling statistic is defined as

A2 := n

∫ +∞

−∞

(F (x)− P (x))2

P (x)(1− P (x))
dP (x),
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and it is obtained when the weighting function is w(x) = [P (x)(1−P (x))]−1. Thus, compared
to the Cramér-von Mises distance, the Anderson-Darling distance places more weight on
observations in the tail of the distribution.

Once the EDF test statistics are computed, the associated probability values (p−values)
can be found. The hypothesis that the data are drawn from P is rejected with a given level
of significance. An advantage of these tests is that they are consistent under any alternative.
This means that if the true distribution is not P , we will eventually reject the null hypothesis
as n→∞, no matter what the true distribution is. For more information we refer the reader
to [12] and the references therein.

3.4.2 QQ-plot

The QQ-plot is a graphical technique for determining the validity of a distributional as-
sumption for a data set. It plots the quantiles of the data set against the quantiles of the
distribution in question. It can also be used to check if two data sets come from populations
with a common distribution.

In each case, a reference line for which holds y = x is also plotted. If the null hypothesis
is correct, in other words if the data set follows that specific distribution, then the points
of the QQ-plot should fall approximately along this reference line. In case the alternative
hypothesis is valid, there is a departure of the points from this reference line.

In the following section, we continue with the definition and some characteristics of the
phase-type distributions, which belong to the second category of distributions we use to
model the claim size distribution.

4 Phase-type distributions
Let {J(t)}t≥0 be a Markov process on the finite state-space {0, 1, ..., ph}, where states 1, ..., ph
are transient and state 0 is absorbing. Then, {Jt}t≥0 has an intensity matrix of the form

Q =

(
T t
0 0

)
,

whereT is a ph×ph dimensional matrix called the phase-type generator, t is a ph dimensional
column vector called exit vector and 0 is the ph dimensional row vector of zeros. Since each
row of Q sums to zero, it holds that t = −Te, where e is a ph dimensional column vector
of ones. Let π = (π1, ..., πph) denote the initial distribution, where πi = P[J0 = i] for all
i = 1, ..., ph. By assumption the probability of starting in the absorbing state is equal to
zero, i.e. π0 = P[J0 = 0] = 0.

Then, the time until absorption X = inf{t ≥ 0|Jt = 0} has a phase-type distribution.
The dimension of π is the dimension of the phase-type distribution and the pair (π,T) is a
representation of the phase-type distribution.

Some basic characteristics of a phase-type distribution are:

(i) the PDF p(x) = π exp{Tx}t,
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(ii) the CDF P (x) = 1− π exp{Tx}e and

(iii) the Laplace transform plt(s) =
∫∞
0
e−sxd(P (x)) = π(sI−T)−1t.

For a more detailed description of the phase-type distributions and their characteristics,
the reader is referred to [7], [32] and the references therein. In this rest of this section,
the definitions of two special cases of phase-type distributions are given. Additionally, we
provide a brief survey of different algorithms to approximate a data set or a distribution
with a phase-type one. Finally, in section 4.3, a procedure to choose how many phases are
needed is described.

4.1 Special cases of phase-type distributions

Two of the best known phase-type distributions are the Hyperexponential and the Coxian
distributions. Asmussen et al. in [7] establish that all the phase-type distributions corre-
sponding to acyclic distributions coincide with the Coxian distributions. This implies that
a Coxian distribution provides almost always a fit as good as a general phase-type distri-
bution. Moreover, Feldmann et al. proved in [19] that any distribution with completely
monotone density can be approximated by a Hyperexponential distribution. In this section
the structure of these two types of phase-type distributions is given.

4.1.1 Hyperexponential distribution

A Hyperexponential distribution, i.e. a mixture of exponentials, represents a Markov process
which may start in any state and gets absorbed without visiting any other state. This means
that π = (π1, ..., πph) with

∑ph
i=1 πi = 1 and T is written as

T =


−µ1 0 0 . . . 0

0 −µ2 0 . . . 0
...

... . . . . . . ...
...

... . . . . . . ...
0 0 0 . . . −µph

 ,

where µi > 0 is the rate of state i, i = 1, ..., ph, i.e. the Markov process spends on average
1
µi

time in state i. An illustration of a Hyperexponential distribution with ph phases can
be found in figure 1. Since, the Hyperexponential distribution can be defined by π and
µi, i = 1, ..., ph, we denote this distribution as

Hyperexponential[(π1, ..., πph), (µ1, ..., µph)].
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Figure 1: Representation of the Hyperexponential distribution.

4.1.2 Coxian distribution

A Coxian distribution describes a Markov process which starts in the first state, i.e. we have
π = (1, 0, ..., 0). Moreover, from a state i, it is allowed to jump to state i+1 with probability
tri or to the absorption state with probability 1 − tri for each i = 1, ..., ph − 1 while from
state ph, it can only be absorbed. Let µi for i = 1, ..., ph be the rates of each state i, then

T =



−µ1 tr1µ1 0 . . . 0 0
0 −µ2 tr2µ2 . . . 0 0
...

... . . . . . . ...
...

...
... . . . . . . ...

...
0 0 0 . . . −µph−1 trph−1µph−1
0 0 0 . . . 0 −µph


.

When tri = 1 for all i = 1, ..., ph the distribution is called Hypoexponential distribution
(or generalized Erlang). If, in addition, µi = µ for all i = 1, ..., ph then the distribution is
called Erlang. A diagram of a Coxian distribution with ph phases can be found in figure 2.
We use the notation

Coxian[(tr1, ..., trph−1), (µ1, ..., µph)],

to describe a Coxian distribution, since it provides us with the necessary information in order
to construct its phase-type generator matrix T.
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Figure 2: Representation of the Coxian distribution.

4.2 Fitting phase-type distributions

There are various fitting techniques for phase-type distributions available based on maximum
likelihood estimators. Some of these methods can be applied when an approximation of a
distribution with a phase-type one is required ([19], [22] and [36]). On the other hand, the
techniques in [25] and [32] can be applied for fitting a phase-type distributions to a data set.
Finally, the proposed method in [7] can be used for both data sets and distributions. A brief
summary of three articles, one from each category, is given hereafter.

4.2.1 EM algorithm

The EM algorithm, proposed in [7], is an iterative maximum likelihood method whose goal
is to estimate the parameters of the phase-type distributions, π and T. The EM algorithm
starts with an initial guess for these parameters and in each iteration, a new estimate for
the pair (π,T) is produced such that the value of the Likelihood function using these new
parameters is greater than the previous ones. Ultimately, after some iterations, the sequence
of the estimates (π,T) should converge to a stationary point which maximizes the Likelihood
function. Since there is no guarantee that the derived solution is optimal, the authors suggest
to try different initial values in order to avoid local maxima and saddle points. It is worth
mentioning that the EM algorithm allows to fit any phase-type distribution to any non-
negative distribution or data set. Additionally, the number of phases, ph, is considered
as an input parameter of the EM algorithm. Finally, the mean of the fitted phase-type
distribution is equal to the mean of the distribution or the data set. An implementation of
the EM algorithm, called the EMpht-program, is given by M. Olsson and can be found in
[27].
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4.2.2 An EM-based technique

Horváth et al. in [22] notice that in case of long-tailed data sets1, the EM algorithm may
not be able to capture the tail correctly since it searches for a global maximum. Based on
this observation, Riska et al. in [32] propose a divide-and-conquer technique to fit a data
set into a mixture of Erlang and Hyperexponential distributions if the data set has a non-
monotone density and into a Hyperexponential distribution if the data set has a completely
monotone density. More specifically, the data set is divided into smaller sets based on its
histogram such that each partition has coefficient of variation greater than a certain value.
Then, using the EMpht-programme, an Erlang or a Hyperexponential distribution is fitted to
each partition. The final result is generated by properly combining the fitted distributions.
Note that, even though the number of phases used for each partition is a known parameter
of the algorithm, the number of phases, ph, of the final result is not known a priori.

4.2.3 FW algorithm

The algorithm proposed by Feldmann and Whitt in [19] is a recursive heuristic approach used
for approximating a completely monotone non-negative distribution with a Hyperexponential
distribution. The algorithm fits the most right portion of the tail of the distribution into a
single Exponential distribution which basically represents a phase of the Hyperexponential
distribution. In addition, it calculates the probability of entering this particular phase. Then,
the weight of the fitted portion is subtracted from the distribution and the process is repeated.
The algorithm terminates when the parameters of all the phases of the Hyperexponential
distribution are known. Similar to the EM algorithm, the number of phases, ph, is an input
parameter of the algorithm.

4.2.4 An alternative EM-based technique

In case the data set cannot be partitioned based on the criteria proposed by Riska et al. in
[32] an alternative technique is required. For this purpose, the data set is partitioned into
two parts based on [11] (a brief description is given in section 5). One part includes the so-
called heavy-tailed claims, while the other part contains the rest of the observations. For each
part, the EMpht-programm is used for fitting a Coxian or a Hyperexponential distribution.
The final result is obtained by merging the fitted distributions properly using the weight of
each partition. Note that in contrast to the algorithm in [32], the number of phases used
for each partition does not have to be the same and their sum gives the total number of
phases, ph. Moreover, it is not necessary to fit the same type of phase-type distribution to
each part. For example, a Coxian distribution with 3 phases can be used for one part and a
Hyperexponential distribution with 2 phases for the other part.

Thus, in short, the procedure consists of the following basic steps:

1. Apply the method proposed in [11].
1A data set is called long-tailed when it is plausible to fit a heavy-tailed distribution on it.
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2. Fit a Coxian or a Hyperexponential on each part.

3. Combine the two fitted distributions to obtain the final result.

4.3 Choosing the number of phases

All the algorithms described in section 4.2 require as an input parameter the number of
phases, ph. Therefore, the fitting is done in a trial-and-error fashion starting with one
phase. The process continues by adding one phase each time until a certain degree of fitness
is obtained. The purpose is to derive the most parsimonious model for the data. In other
words, we search for a model which can approximate the original distribution of the data
and, at the same time, should not be too complex. Asmussen et al. in [7] proposed the use
of Akaike Information Criterion (AIC) for this purpose. The reason is that AIC deals with
the trade-off between the goodness-of-fit of the model and its complexity. However, in this
research, the main criterion chosen for model selection is the corrected Akaike Information
Criterion or AICc. Basically, AICc is equal to AIC with a greater penalty to the models
with more parameters (for more information regarding AIC and AICc the reader is referred
to [2] and [23] and the references therein).

The formulas of AIC and AICc are:

AIC = 2k − 2logLik,

and
AICc = AIC +

2k(k + 1)

n− k − 1
,

where n is the size of the sample, k is the number of parameters of the fitted model and
logLik the value of the log-Likelihood function. When a Hyperexponential distribution is
used, k = 2ph while using a Coxian distribution implies k = ph(ph− 1).

Besides AICc, the log-Likelihood value (logLik) is also used as an auxiliary goodness-of-
fit score. Hence, the preferable model is the one that maximizes the logLik while it minimizes
AICc. Finally, the plot of the CDF of the empirical distribution of the data set and the
CDF of the fitted distribution is used as a visual criterion of choosing how many phases are
required.

In the following section, we describe the distributions in the last category of distributions
we use to model the claim size distribution. In addition, we briefly explain the corresponding
fitting procedure and goodness-of-fit test.

5 Mixture model: Light-tailed and heavy-tailed distribu-
tion

Let Data = {d1, d2, ..., dn} be the observed data set of which we would like to estimate its
distribution. The methods described in section 3.1 fit a Pareto distribution to all observed
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values. They set the lower bound β of the Pareto distribution equal to the minimum observed
value in Data. However, it is possible that only the tail of the true distribution follows a
Pareto distribution. This implies that the lower bound of the Pareto distribution can be
greater than mini=1,...,n di and that the observed values smaller than β come from a population
with a different distribution. Hence, the true distribution of the data set has the form

F (x) = (1− ε)Flt + εFht,

where Flt is the CDF of a distribution, Fht is the CDF of the Pareto distribution and ε
is the probability to obtain a heavy-tailed value, i.e. an observed value from the Pareto
distribution.

In the following section we describe the method proposed by [11] for finding where the tail
of the distribution starts, i.e. the lower bound of the Pareto, as well as, the shape parameter
of it. Notice that, applying the following method results in the separation of the data into
two subsets. One subset contains all the observed values smaller than the lower bound of
the Pareto distribution and we refer to this set as the light-tailed part of the data set. The
rest of the elements of Data belong to the second subset, namely the heavy-tailed part of
the data set.

Moreover, even though we fit a Pareto distribution on the heavy-tailed part, the distri-
bution Plt remains unknown. However, in case of non-negative values in the light-tailed part
we can approximate its distribution with a phase-type one using the EM algorithm described
in section 4.2.1.

Finally, the probability of having a heavy-tailed value ε is calculated by dividing the
number of the observed values above the lower bound over the size of the data set.

5.1 Estimating the lower bound and shape parameter of the Pareto
distribution

Initially, a set which contains all the unique values of Data is formed. Then, we try as the
lower bound of the Pareto distribution, β, one by one all these values. The process continues
by calculating the MLE of the shape parameter corresponding to each value

α = 1 + nab

[
nab∑
i=1

log

(
dj
β

)]−1
, di, such that di ≥ β,

where nab is the number of observations that are greater than the lower bound we use.
Afterwards, using the Kolmogorov-Smirnov (KS) statistic we quantify the distance between
the empirical distribution of the observations with value at least β, Fht, and the fitted Pareto
distribution, denoted by Pht,

D = max
x≥β
|Fht(x)− Pht(x)|.

Having calculated the KS statistic for each element in the set that we form in the begin-
ning, the lower bound of the Pareto distribution is that value with the minimum KS statistic
value and the shape parameter is the corresponding MLE.

21



The next step is to apply an appropriate goodness-of-fit test to verify if it is plausible
for the tail of the true distribution to follow this Pareto distribution. Therefore, in the next
section, we describe a goodness-of-fit test constructed for this purpose.

5.2 Goodness-of-fit test

In order to test if it is plausible to model the distribution of a data set with a mixture
model where one of the involved distributions is the Pareto distribution, Clauset et al. in
[11] provide the corresponding goodness-of-fit test.

In this test, after finding the lower bound and the shape parameter of the Pareto dis-
tribution, we generate a large number of synthetic data sets that follow the same Pareto
distribution above the lower bound and have the same distribution as the observed data
below the lower bound. This can be done by simply selecting one element uniformly at
random from the light-tailed part of the data set with probability 1 − ε or by generating
a random number drawn from the Pareto distribution with probability ε. Then, for each
synthetic data set, we apply the method described in the previous section and we calculate
its KS statistic. The p−value of this goodness-of-fit test is the fraction of time the resulting
statistic is larger than the value for the empirical data. Hence, the hypothesis that the tail
of the true distribution is Pareto is ruled out when the p−value is smaller than 0.1.

Based on an analysis of the expected worst-case performance of the test, Clauset et al.
in [11] propose that if we wish the p−value to be accurate to about 2 decimal places, then
we should generate about 2500 synthetic sets.
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Part II

Literature overview on the
approximations
In this part, a survey is given of the approximations we compare in this project. As we
described in the previous part, we can model the claim size distribution using a heavy-tailed,
a phase-type or a mixture of a phase-type and a Pareto distribution. Based on the claim
size distribution used, we have to apply the appropriate ruin probability approximation.
Therefore, we describe the heavy-tailed asymptotic, the phase-type and the corrected phase-
type approximations for the ruin probability. Moreover, for each approximation we give the
corresponding approximation for the distribution of the total loss and thus the corresponding
approximation of the VaR.

6 Heavy-tailed asymptotic
Oftentimes, in financial applications, it is suitable to model the claim size distribution using
a heavy-tailed distribution (see [6], [16] and the references therein). However, in many cases,
the Laplace transform of a heavy-tailed distribution is not available in closed form. This
implies, that techniques which use the Laplace transform like the one in [1] are difficult or
impossible to use in practice.

However, when the claim size distribution belongs to the subexponential class, asymptotic
approximations for the ruin probability are available ([18], [28], [29]). More specifically, for
the Cramér-Lundberg risk model, Embrechts and Veraverbeke in [18] prove that for a claim
size distribution G with finite first moment mG such that ρ < p, if the integrated tail
distribution Ge(t) := 1

mG

∫ t
0
Ḡ(x)dx belongs to the subexponential class then

ψ(u) ∼ ψ̂hta(u) :=
λ

p− ρ

∫ ∞
u

Ḡ(x)dx, as u→∞. (6.1)

Notice that, due to the asymptotic character of this approximation, it is possible for
ψ̂hta(u) to give values bigger than 1 for small u’s. For example, let the claim size distribution
be a Pareto distribution as we defined in section 3.1 with shape parameter α > 2 then the
ruin probability can be approximated by

ψ̂hta(u) =
λ

p− ρ

∫ ∞
u

(
x

β

)−α+1

dx

=
λβα−1

p− ρ

∫ ∞
u

x−α+1dx

=
λβα−1u2−α

(p− ρ)(α− 2)
.
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Solving ψ̂hta(u) ≤ 1 with respect to u gives

ψ̂hta(u) ≤ 1

u2−α ≤ (α− 2)(p− ρ)

λβα−1

u ≥
(

λβα−1

(α− 2)(p− ρ)

) 1
α−2

> 0, (6.2)

since all parameters are positive by assumption and λβ 6= 0. Let uhta =
(

λβα−1

(α−2)(p−ρ)

) 1
α−2 ,

then, in words, the inequality in (6.2) means that the heavy-tailed asymptotic approximation
can only provide an estimate for u’s greater than uhta.

Additionally, using the same method for proving the asymptotic relationship in (6.1),
Embrechts et al. (see [16]) show that if the claim size distribution G belongs to the subex-
ponential class then the aggregate claim distribution can be estimated by

Losst(x) = P(
Nt∑
i=1

Ui > x) ∼ λtḠ(x), as x→∞. (6.3)

Similar to the ruin probability approximation, it is expected that the approximation of
Losst(x), λtḠ(x), gives values bigger than 1 for small values of x. Finally, as we mentioned
in section 2, VaR is the (1− q)−quatile of Losst(x). Thus by solving the equation

λtḠ(x) = 1− q,

with respect to x, we can obtain the heavy-tailed asymptotic approximation of VaR for a
given level q.

7 Phase-type approximations
Several papers ([7], [19], [25], [36]) propose the use of a phase-type distribution for fitting
the claim size distribution since otherwise the ruin probability may not be available in closed
form. In other words, it tends to be easier to analyze the behaviour of the ruin probability
if the claim size distribution is a phase-type one. This is the case because they have simple
Laplace transforms and so they are algorithmically tractable. Moreover, any distribution on
[0,∞) can be approximated arbitrarily close by a phase-type distribution since for any finite
number of phases, the class of phase-type distributions is dense ([4]). This implies that one
does not expect an essential difference between the actual distribution and the approximated
one.

When the claim size distribution is a phase-type disrtibution and under the assump-
tion that ρ < p, the approximation of the ruin probability can be obtained by the known
Pollaczek-Khinchine formula (see [6]):
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1− ψ(u) = (1− ρp)
∞∑
n=0

ρnp (Ge)∗n(u),

where ρp = ρ
p
and (Ge)∗n represents the n-th convolution of the stationary excess distribution

of the claim sizes. By using Laplace transforms, one gets

m(s) := Ee−sM =
1− ρp

1− ρpgeLT (s)
,

where geLT (s) is the Laplace transform of the stationary excess distribution of the claim sizes.
Now, by inverting the Laplace transform 1−m(s)

s
, the phase-type approximation of the ruin

probability, ψ̂ph(u), can be derived.
The basic idea of this kind of approximations is to approximate the claim size distribution

instead of approximating the ruin probability directly. After approximating the claim size
distribution with a phase-type one, we can obtain the distribution of the aggregate claim by
simulations. Afterwards, by taking the (1− q)-quantile of the CCDF of the aggregate claim,
we can derive the corresponding phase-type approximation of VaR at level q.

8 Corrected phase-type approximations
Vatamidou et al. in [37] use a mixture model for the claim size distribution based on
heavy-tailed statistical analysis which suggests that only a small fraction of the upper-order
statistics of the sample is relevant for estimating tail probabilities ([21]). This implies that
the distribution of the claim sizes can be written as

G(x) = (1− ε)Glt(x) + εGht(x), x ≥ 0,

where Glt and Ght are the CDF of a phase-type and a heavy-tailed distribution with means
mlt and mht, respectively. Hence, a random claim is heavy-tailed with probability ε and
light-tailed with probability 1− ε. Moreover, we assume that mht <∞ and set δ = λmlt and
θ = λmht . Based on this model, two ruin probability approximations are proposed in [37].

The first approximation, called the corrected discard approximation, is

ψ̂cd(u) :=

(
1− εθ

p− δ + εδ

)
ψd(u) +

εθ

p− δ + εδ
P(Md +Md +He > u),

where ψd(u) is the approximation of the exact ruin probability when we discard the heavy-
tailed claim sizes (i.e. G(x) = (1 − ε)Glt(x) + ε), Md is the supremum of its corresponding
claim surplus process andHe follows the excess distribution ofGht. A necessary and sufficient
condition in order to get a valid approximation for all values of u is: |εθ| < |p− δ + εδ| (for
more details the reader is referred to [37]).
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The second approximation is the corrected replace approximation and it is defined as

ψ̂cr(u) :=

(
1− εδ − εθ

p− δ

)
ψr(u) +

εθ

p− δ
P(M r +M r +He > u)− εδ

p− δ
P(M r +M r +Le > u),

where ψr(u) is the approximation of the exact ruin probability when we replace the heavy-
tailed claim sizes with phase-type ones (i.e. ε = 0) and M r is the supremum of its corre-
sponding claim surplus process. Finally He and Le follow the excess distributions of Fht and
Flt respectively. Similarly, a sufficient condition for this approximation to be valid for all u’s
is: ε < |p−δ|

max{δ,θ} .
Based on the results in [37], the corrected replace approximation tends to give better

numerical estimations. However, the corrected discard approximation is simpler and always
underestimates the exact ruin probability with error O(ε2).

Besides the approximations for the ruin probability, the corresponding corrected discard
approximation for the total loss is given. Based on this approximation, the distribution of
the aggregated claim in a fixed time interval [0, t] is defined as

Losscdt (x) := e−λεtP

(
NP∑
i=1

Li > x

)
+ (1− e−λεt)P

(
NP∑
i=1

Li +H > x

)
, (8.1)

where Li and H follow, respectively, Glt and Ght and NP is a Poisson process with rate
λ(1− ε)t which represents the number of phase-type claims in the time period [0, t]. Finally,
the corrected discard approximation of VaR at level q is obtained by taking the (1 − q)-
quantile of Losst(x) as given in (8.1).
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Part III

Danish data
The Danish data consist of 2167 claims over one million Danish Krone (DKM) from the
years 1980 to 1990 inclusive. Table 1 shows the first 10 entries of the Danish data. The
average claim size per customer is 3.38509 millions, while the average claim size per day is
1.82702 millions.

In this part, we apply the techniques, described in sections 3, 4 and 5 to estimate the
claim size distribution. More specifically, we fit on the claim sizes of the Danish data heavy-
tailed, phase-type and mixtures of these two types of distributions. Afterwards, we apply
the appropriate goodness-of-fit tests for each fitted distribution.

However, as mentioned before, we assume that the claims arrive to the insurance company
according to a Poisson process. Therefore, in section 9, we first estimate the rate of that
Poisson process using the arrival dates of the Danish data.

Having estimated the arrival rate and the claim size distribution, we can apply the
appropriate approximation for the ruin probability, the distribution of the aggregate claim
and VaR in the next part.

Arrival date Claim size
1 03/01/1980 1.683748
2 04/01/1980 2.093704
3 05/01/1980 1.732581
4 07/01/1980 1.779754
5 07/01/1980 4.612006
6 10/01/1980 8.725274
7 10/01/1980 7.898975
8 16/01/1980 2.208045
9 16/01/1980 1.486091
10 19/01/1980 2.796171
...

Table 1: The first 10 entries of the Danish data.

9 Arrival rate for the Danish data
As mentioned earlier, we assume that the claims arrive according to a Poisson process. In
this section we estimate the rate of this Poisson process. Notice that in our data we only
have the day of the arrival of the claims, but not the exact time of the arrival. Thus, first
we have to calculate how many customers arrived during each day in the years 1980 to 1990
inclusive. Then, we compute the parameter λ of the Poisson process using the MLE. The
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Figure 3: CDF of the empirical distribution of the number of claims per day and of the
Poisson process with λ = 0.539323.
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result we obtain is:
λ = 0.539323.

The graph, in figure 3, shows the empirical distribution of the number of claims per day
and the Poisson process estimating this distribution.

In order to verify the assumption that the claims arrive according to a Poisson process
with rate λ = 0.539323, we use the Pearson’s chi-squared test. This test is a statistical test
which can be applied on categorical data. Using this test, we find that our assumption is
not rejected at the 5% level since the test returns a p−value of 0.24134.

Statistic p−value
Pearson χ2 4.19326 0.24134

Table 2: Results of the Pearson’s chi-squared test.

10 Fitting a heavy-tailed distribution
In the following sections we apply the fitting procedures described in section 3 and for each
fitted distribution we test if it is a plausible model for our data. In section 10.4, we choose
the heavy-tailed distribution that fits the best according to the results we derive and the
QQ-plots.

10.1 Fitting a Pareto distribution

In order to select which method can estimate the shape parameter efficiently for our data
set, we perform a small experiment. We draw 25 random samples of size 2167 from a Pareto
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distribution where its lower bound is β = 1. We use the values α = 2.1, 2.3, 2.5, 2.7, 2.9 as
the shape parameter of the Pareto distribution. For each of these samples, we estimate the
shape parameter using all the described methods in section 3.1.1. The results of the methods
and our conclusions can be found in the Appendix.

Based on the experiment, the methods we select to estimate the shape parameter of the
Pareto distribution are the MLE, the non-linear regression using the CCDF points and the
Hill Plot. Using these methods, we calculate the shape parameter:

αMLE = 2.27073,

αccdf,nl = 2.28267,

and

αhill = 2.413.

Now, we take the average value of these three estimates as the shape parameter of the Pareto
distribution to estimate the distribution of the Danish Data, hence we have

α = 2.32213.

For the lower bound β of the Pareto distribution, we take the smallest value of the Danish
data, hence β = 1. When the claim size distribution is a Pareto one with α = 2.32213 and
β = 1, the mean average claim size per customer is: 4.10434.

In figure 4, one can see the empirical distribution of the claim sizes against the fitted
Pareto distribution. The range of the x-axis in the left figure is from 0 to 100 while in the
right figure the range is from 0 to 20 for better visualization of the results.

The results of the quadratic EDF goodness-of-fit tests we describe in section 3.4 are given
in table 3. Based on these results the null hypothesis that the data are distributed according

Figure 4: CDF of the empirical distribution of the Danish data and the fitted Pareto distri-
bution.
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(a) Range of the x-axis: from 0 to 100.
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(b) Range of the x-axis: from 0 to 20.
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Statistic p−value
Anderson-Darling 134.741 0.
Cramér-von Mises 2.744 2.793× 10−7

Table 3: Results of the quadratic EDF tests for the Pareto distribution.

to this Pareto distribution is rejected, since the p−values of both tests are smaller than the
significance level 0.05. This implies that the Pareto distribution is not a plausible model for
the Danish data.

10.2 Fitting a Log normal distribution

Using the MLE for the Log normal distribution we derive that

µ = 0.78695 and σ2 = 0.51369.

Hence, in this case, the average claim size per customer is: 2.83997. In figure 5, we can see
the CDF’s of the claim sizes and the Log normal distribution with parameters µ = 0.78695
and σ2 = 0.513687.

Based on the results of the quadratic EDF tests, which can be found in table 4, this
Log normal distribution is a poor model for our data set, since both tests return a p−value
significantly smaller than 0.05.

Figure 5: CDF of the empirical distribution of the Danish data and the fitted Log normal
distribution.
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(a) Range of the x-axis: from 0 to 100.
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(b) Range of the x-axis: from 0 to 20.

Statistic p−value
Anderson-Darling 87.193 0.
Cramér-von Mises 14.791 1.110× 10−16

Table 4: Results of the quadratic EDF tests for the Log normal distribution.
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10.3 Fitting a Weibull distribution

Using the MLE formulas we gave in section 3.3.1, we derive that the shape parameter of the
Weibull distribution is

aw = 0.95852,

and the scale parameter is
bw = 3.29075.

The average claim size per customer, when we use a Weibull distribution to model the claim
size distribution, is: 3.35352. A plot of the CDF of the fitted Weibull distribution and the
empirical distribution of the claim sizes can be found in figure 6.

However, this Weibull distribution is also rejected at 5% level of significance based on the
Anderson-Darling and Cramér-von Mises tests, because in both tests the resulting p−values
are smaller than 0.05 as shown in table 5.

Figure 6: CDF of the empirical distribution of the Danish data and the fitted Weibull
distribution.
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(a) Range of the x-axis: from 0 to 100.
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Statistic p−value
Anderson-Darling 210.919 0.
Cramér-von Mises 36.254 1.776× 10−15

Table 5: Results of the quadratic EDF tests for Weibull distribution

10.4 QQ-plots

As we can notice from the results in the previous sections, all the heavy-tailed distributions
we fitted on the Danish data are rejected as poor models. However, to get an insight into
the performance of the heavy-tailed asymptotic approximation we choose the best heavy-
tailed distribution among the fitted ones.
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The plots 7a, 7b and 7c show the QQ-plots of the Pareto, Log normal and Weibull
distribution respectively. Notice that all the QQ-plots have the same scale in both axes such
that we are able to compare them. We notice that in none of these plots the points fall even
approximately along the reference line.

More specifically, in case of the Pareto distribution we see that until value 18 the points
form a straight line that approximately coincides with the reference line. However, for values
larger than 18 the distance of the points from the reference line is increasing, implying that
the tail of the Pareto distribution is heavier than the tail of the empirical distribution of the
Danish data.

From the QQ-plot for the Log normal distribution we notice that only the points with
value less than 4 fall near the reference line. Similarly, for the Weibull distribution we have
an approximately straight line near the reference line for values smaller than 6. In both
cases, it appears that the tail of the distribution of the claim sizes is heavier than the tails
of the Log normal and Weibull distributions.

Therefore, we conclude that the best fitting distribution is the Pareto distribution with
shape parameter α = 2.32213 and lower bound β = 1.

Figure 7: QQ-plots
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(a) Danish data against Pareto distribution.
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(c) Danish data against Weibull distribution.
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11 Phase-type distributions
In this section, we provide the results of applying the EM algorithm and the alternative EM-
based technique we described in sections 4.2.1 and 4.2.4. More specifically, in section 11.1,
the results of the EM algorithm using all the claim sizes of the Danish data can be found.

In section 12, the method in [11] is applied and thus the Danish data is split into two
parts. The first part, called the light-tailed part of Danish data, includes the claims smaller
than 1.37622. All the other claims in the Danish data belong to the second part, namely
the heavy-tailed part of the Danish data. Following the alternative EM-based procedure, a
Hyperexponential and a Coxian distribution are fitted to each part and the results of these
fittings are given in sections 11.2 and 11.3. Finally, the results of these methods are given
in section 11.4.

The EM-based technique proposed in [32] cannot be applied because regardless of the
histogram used (constant linear or logarithmic width and number of bins) the Danish data
cannot be partitioned with respect to the condition required in this paper. Moreover, the
FW algorithm is not used since it is not designed to treat data. In theory, we could first fit a
suitable heavy-tailed distribution to our data and then apply the FW algorithm. However,
this implies that the approximation depends on the quality of the statistical model.

Note that, in this section, there is no comparison between two different types of phase-
type distributions. This means, for example, that a fitted Hyperexponential distribution is
not compared with a fitted Coxian distribution.

11.1 Using all the claims in the Danish data

In this section, the results of fitting Hyperexponential and Coxian distributions to all claim
sizes of the Danish data can be found. For this fittings, we used the EMpht-program ([27]),
which is an available implementation of the EM algorithm.

11.1.1 Fitting a Hyperexponential distribution

phases logLik AICc
1 -4809.38 9622.77
2 -4556.63 9121.27
3 -4556.63 9125.29

Table 6: Results for the Hyperexponential model used to fit all Danish data.

Table 6 gives the values of the logLik and the AICc for fitting a Hyperexponential
distribution with 1, 2 and 3 phases to the Danish data. Based on these results, we conclude
that a Hyperexponential distribution with 2 phases is the most appropriate choice for our
data. This is the case because the Hyperexponential distribution with 1 phase (i.e. an
Exponential) has greater AICc and at the same time significant smaller logLik value than
the Hyperexponential with 2 phases. Additionally, the Hyperexponential distribution with 3
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phases has bigger AICc than the 2-phases Hyperexponential while there is no improvement
for the logLik value. The Hyperexponential distribution with 2 phases that the EMpht-
program gave is:

Hyperexponential[(0.956892, 0.043108), (0.401224, 0.043102)].

The plot in figure 8 represents the CDF of the empirical distribution of the claim sizes
and the CDF of the fitted Hyperexponential distribution.

Figure 8: CDF of the empirical and the chosen Hyperexponential distribution for all the
Danish data.

C
D

F

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Empirical

Hyper

claim size

(a) Range of the x-axis: from 0 to 100.

C
D

F

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

claim size

(b) Range of the x-axis: from 0 to 20.

11.1.2 Fitting a Coxian distribution

Table 7 provides the logLik and AICc values for fitting a Coxian distribution with ph phases
to the Danish data, where ph = 1, ..., 11. Using the same reasoning as in the previous section,
the 10-phase Coxian distribution defined by

Coxian[(4.199325, 4.199325, 4.199325, 4.199325, 4.199325, 4.199325, 4.199325,
0.501553, 1.164039, 0.057310), (1, 1, 1, 1, 1, 1, 0.272706, 1, 0.197573)],

is the chosen Coxian distribution. Figure 9 shows the CDF of the empirical distribution of
the Danish data and the CDF of the chosen Coxian distribution.

34



phases logLik AICc
1 -4809.38 9620.77
2 -4576.32 9158.64
3 -4107.37 8224.78
4 -3933.44 7880.93
5 -3848.75 7715.58
6 -3793.61 7609.35
7 -3753.45 7533.08
8 -3722.61 7475.44
9 -3698.01 7430.31
10 -3654.59 7347.53
11 -3752.52 7547.48

Table 7: Results for the Coxian model used to fit all Danish data.

Figure 9: CDF of the empirical and the chosen Coxian distribution for all the Danish data.
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11.2 Using the light-tailed part of the Danish data

In this section, the EMpht program is applied to the light-tailed part of the Danish data
only. In other words, we are at the second step of the alternative EM-based procedure (see
4.2.4).

11.2.1 Fitting a Hyperexponential distribution

Based on table 8 we conclude for the light-tailed part of the Danish data that the preferable
model is the Hyperexponential distribution with 1 phase, i.e. the Exponential distribution
with rate µ1 = 0.851929. Figure 10 shows the plot of the empirical distribution of the light-
tailed part of the data against the Exponential distribution with rate 0.851929.
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Figure 10: CDF of the empirical and the chosen Hyperexponential distribution for the light-
tailed part of the Danish data.
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phases logLik AICc
1 -706.60 1417.21
2 -706.60 1421.26

Table 8: Results for the Hyperexponential model used to fit the light-tailed part of the
Danish data.

11.2.2 Fitting a Coxian distribution

In case of fitting a Coxian distribution to the light-tailed part of the Danish data the result
of the EM algorithm is always an Erlang distribution. As in the previous fittings, starting
for one phase we calculate for each Coxian distribution its parameters and its logLik and
AICc values. However, from the plot of the CDF of the fitted Erlang distribution for
ph = 1, 2, 3 and 4 against the empirical distribution of the light-tailed part, we see that
these two distributions are not close. Therefore we start increasing the number of phases
instead of by 1, by 5 until we reach 20 phases and after that by 10 until we have 60 phases.

As we can see in table 9, the AICc decreased and the logLik value increased as we added
phases. Hence, we cannot apply the same reasoning as in the previous sections. We decided
to stop at 60 phases since it became very time consuming and there is no indication of how
many phases are needed in order to reach a desired result.

Hence, based on figure 11 and the fact that it has the highest logLik value and the
smallest AICc value, the chosen Coxian distribution for the light-tailed part is an Erlang
distribution with 60 phases and parameter 51.115591. Figure 12 shows the CDF of the
chosen Erlang distribution against the emprirical distribution of the light-tailed part of the
Danish data.
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Figure 11: CDF of the empirical and the fitted Erlang distributions for the light-tailed part
of the Danish data.

phases logLik AICc
1 -706.60 708.60
2 -473.96 475.96
3 -344.79 346.80
4 -255.62 257.62
5 -187.76 189.77
10 15.27 -13.27
15 127.34 -125.34
20 202.69 -200.69
30 300.82 -298.82
40 362.66 -360.66
50 404.69 -402.68
60 434.19 -432.19

Table 9: Results for the Coxian model used to fit the light-tailed part of the Danish data.
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Figure 12: CDF of the empirical and the chosen Erlang distribution for the light-tailed part
of the Danish data.

11.3 Using the heavy-tailed part of the Danish data

In this section, we approximate the empirical distribution of the heavy-tailed part of the
Danish data with a phase-type distribution using the EMpht program. The purpose is to
combine these results with the ones we derived in the section 11.2 in order to proceed in
section 11.4 with the third and last step of the alternative EM-based technique.

11.3.1 Fitting a Hyperexponential distribution

Table 10 gives the values of logLik and AICc when we fit to the heavy-tailed part of the
Danish data a Hyperexponential distribution with 1, 2 and 3 phases. The best fit is obtained
by a Hyperexponential distribution with 2 phases and parameters:

Hyperexponential[(0.039418, 0.960582), (0.034461, 0.309305)]

because compared to the other two Hyperexponential distributions this one has the lowest
AICc and at the same time the highest logLik value. Figure 13 shows the empirical distri-
bution of the heavy-tailed part of the data and the fitted Hyperexponential distribution.

phases logLik AICc
1 -3812.10 7628.20
2 -3651.20 7310.43
3 -3651.20 7314.46

Table 10: Results for the Hyperexponential model used to fit the heavy-tailed part of the
Danish data.
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Figure 13: CDF of the empirical and the chosen Hyperexponential distribution for the heavy-
tailed part of the Danish data.
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11.3.2 Fitting a Coxian distribution

Based on the results in table 11 the preferable Coxian model for the heavy-tailed part of the
Danish data is a Coxian distribution with 7 phases since its AICc is the smallest among the
fitted Coxian distributions while its logLik value is the highest. Thus, the chosen Coxian
distribution is:

Coxian[(3.278436, 3.278436, 3.278436, 1.025819, 3.278436, 3.278436, 0.080553),
(1, 1, 1, 1, 1, 0.140928)].

The graph in figure 14 shows the CDF of the empirical distribution of the heavy-tailed part
of the Danish data and the CDF of the Coxian distribution described before.

phases logLik AICc
1 -3812.10 7626.19
2 -3635.48 7276.98
3 -3322.46 6654.95
4 -3182.73 6379.50
5 -3111.11 6240.30
6 -3070.12 6162.36
7 -3039.58 6105.34
8 -3110.85 6251.92

Table 11: Results for the Coxian model used to fit the heavy-tailed part of the Danish data.
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Figure 14: CDF of the empirical and the chosen Coxian distribution for the heavy-tailed
part of the Danish data.
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11.4 Combination of the two parts

In this section, we basically perform the final step of the alternative EM-based technique.
In other words, we try to combine the distributions we used to approximate the empirical
distribution of the light- and heavy-tailed parts of the Danish data in a proper way.

Before we can do that we need to know the probability of having a light- or a heavy-
tailed claim. In section 12, the probability ε of having a heavy-tailed claim is calculated
and it is equal to ε = 0.718966, thus the probability for the claim size to be light-tailed is
1− ε = 0.281034.

Now, based on the fact that for each part of the Danish data we use two different phase-
type distributions to model their empirical distribution, there are four final estimates for the
distribution of the claim sizes of the Danish data.

Note that the Exponential distribution with rate 0.851929, which is the chosen Hyperex-
ponential model for the light-tailed part of the Danish data in section 11.2.1, is clearly less
accurate than the Erlang distribution with 60 phases and rate 51.115591 found in section
11.2.2. However, both distribution are used in the mixture models. The reason for this is
that we would like to determine the influence of the distribution of the light-tailed part in
the estimation of the VaR and the ruin probability. We expect this influence to be small
since almost 70% of the claims are heavy-tailed. However, we want to verify this since in
section 11.2.2 the number of phases used to model the light-tailed part stops at 60, without
finding the best phase-type distribution.

Let Exp and Erl denote the chosen Hyperexponential and Coxian distributions for the
light-tailed part of the Danish data, respectively. Moreover, let Hyp2 and Cox2 be the
Hyperexponential and Coxian distributions we used to model the distribution of the heavy-
tailed part of the Danish data. Now, using the alternative EM-based technique, the phase-
type distributions that approximate the distribution of the Danish data can be written as:

1. P = (1− ε)Exp+ εHyp2,
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2. P = (1− ε)Exp+ εCox2,

3. P = (1− ε)Erl + εHyp2 and

4. P = (1− ε)Erl + εCox2.

The plots in figures 15−18 show the empirical distribution of the Danish data against the
results of the alternative EM-based technique we just described.

Figure 15: CDF of the mixture (1 − ε)Exp + εHyp2 against the CDF of the empirical
distribution of the Danish data.
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Figure 16: CDF of the mixture (1 − ε)Exp + εCox2 against the CDF of the empirical
distribution of the Danish data.
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Figure 17: CDF of the mixture (1− ε)Erl+ εHyp2 against the CDF of the empirical distri-
bution of the Danish data.
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Figure 18: CDF of the mixture (1− ε)Erl + εCox2 against the CDF of the empirical distri-
bution of the Danish data.
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12 Mixture model: Phase-type and Pareto distribution
In this section we fit a mixture model on the distribution of the Danish data. The mixture
model consists of a phase-type distribution and a Pareto distribution. More precisely, we
fit a Pareto distribution on the tail of our data. Having estimated this Pareto distribution,
a proper goodness-of-fit test is used to answer if it plausible for the tail of this data set to
follow this distribution. The distribution of the rest of the claims can be approximated with
a phase-type distribution since we only have positive claim sizes.

Following the procedure proposed in [11] and briefly described in section 5 we derive that
the lower bound and the shape parameter of the Pareto distribution are:

β = 1.37622 and α = 2.40006.
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The corresponding KS statistic value is: 0.014717. Additionally, by applying the corre-
sponding goodness-of-fit test we derive that the p−value is 0.4092. This implies that it is
plausible that the tail of the Danish data follows this Pareto distribution and thus it makes
sense to consider a mixture model for our data.

This yields that our data set can be split into two subsets: the light-tailed part and
the heavy-tailed part which follows a Pareto distribution with shape parameter 2.40006
and lower bound 1.37622. The distribution of the light-tailed part is approximated by a
Hyperexponential and by a Coxian distribution using the EMpht program of which the
results can be found in section 11.2. Hence, we have two mixture models: Exponential with
Pareto and Erlang with Pareto.

Finally, in order to estimate the probability of having a heavy-tailed claim we compute
the fraction of the claims in the Danish data with value at least 1.37622. The result is
that with probability ε = 0.718966 we obtain a heavy-tailed claim and so with probability
1− ε = 0.281034 we get a light-tailed claim.

In figures 19 and 20 one can see the plots of the CDF of the empirical distribution of the
Danish data and the CDF of the mixtures models.

Figure 19: CDF of the mixture Exponential and Pareto against the CDF of the empirical
distribution of the Danish data.
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Figure 20: CDF of the mixture Erlang and Pareto against the CDF of the empirical distri-
bution of the Danish data.
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Part IV

Numerical results
Having estimated the claim size distribution in the previous part, we can now apply for each
fitted distribution the appropriate approximation for the total loss, the VaR and finally for
the ruin probability. More specifically, in section 13 we compare the empirical distribution
of the aggregate claims with the distributions which we obtained by using the heavy-tailed
asymptotic, phase-type and corrected discard approximations. Additionally, we derive the
associated VaR’s to each approximation and we compare them to the VaR’s we obtained
from the Danish data. We continue in section 14 with the ruin probability approximations.
Since we cannot extract the exact ruin probability by using our data, we assume that the
true distribution of the claim sizes is the mixture of the Erlang and the Pareto distribution
we found in section 12. Using this distribution, we run simulations and we evaluate the
performance of the various ruin probability approximations. Finally, we summarize our
conclusions for the approximations in section 15.

13 Total loss and Value at Risk
As we mentioned in section 2, for a fixed period of time [0, t] we have that the CCDF of the
total loss is:

Losst(x) = P(
Nt∑
i=1

Ui > x),

where
∑Nt

i=1 Ui is the aggregate claim in [0, t]. In this research, we consider the fixed period
time equal to 1 day, i.e. t = 1. Using the arrival dates of the claims in the Danish data
we can derive the aggregate claim for each date between the years 1980 to 1990 inclusive.
Hence, we can calculate the CCDF of the empirical distribution of the total loss in one day,
Loss1(x).

For each approximation we can apply to the total loss we obtain its estimated values for
xv = 0.01v, v = 0, ..., 5800 and we calculate the corresponding relative and absolute errors.
In other words, let L̂oss1(xv) denote the approximated value of the Loss1(xv) at xv for one
approximation, we compute the corresponding relative error by

rev :=
|L̂oss1(xv)− Loss1(xv)|

Loss1(xv)
,

and the absolute error using

aev := |L̂oss1(xv)− Loss1(xv)|.

Based on the average relative and maximum absolute errors the approximations return for
the total loss, we evaluate their performance.
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Furthermore, we can compute the exact VaR for one day for any given probability level
q. Embrechts et al. mention in [17] that usually, in operational risk, the VaR is calculated
for a probability level q for which it holds that 0.001 ≤ 1 − q ≤ 0.0025. In our research,
however, we obtain the VaR for the probability levels qj such that

1− qj = 0.001j, for j = 1, ..., 10.

For all the probability levels qj we calculate the relative error between the exact VaR and the
approximated VaR. In this case though we do not require the absolute value of the difference,
since we do not take the average of the relative errors. Thus, for any given level qj we can
also see if the approximation under- or over-estimates the VaR.

In the following sections, we apply the heavy-tailed asymptotic, phase-type and cor-
rected discard approximations in order to estimate the distribution of the total loss in one
day. Moreover, we derive the associated VaR’s for the probability levels we mentioned ear-
lier. More specifically, in section 13.1, the performance of the phase-type approximations is
evaluated while in section 13.2 we analyze the results of the corrected discard approxima-
tions. Finally, in section 13.3, an overall comparison of the heavy-tailed asymptotic, phase-
type and corrected discard approximations is given. Two different approaches are used for
this comparison. We compare the results of the approximations to the results obtained by
the Danish data in section 13.3.1 and to the simulations results of a certain mixture model
in section 13.3.2. In section 14, we assume that the true distribution of the claim sizes is a
mixture of an Erlang and a Pareto distribution and use simulations to find the ruin prob-
ability. Therefore, we also derive the distribution of the total loss and VaR by simulations
when the claim size distribution is this particular mixture.

13.1 Evaluation of the phase-type approximations

In section 11, we approximate the claim size distribution by using six different phase-type
distributions. More precisely, using a Hyperexponential (Hyper), a Coxian, a mixture of an
Exponential and a Hyperexponential (Exp+Hyp), a mixture of an Exponential and a Coxian
(Exp+Cox), a mixture of an Erlang and a Hyperexponential (Erl+Hyp) and finally using a
mixture of an Erlang and a Coxian (Erl+Cox). For each of these phase-type distributions
we calculate the distribution of the total loss for one day by simulations and we derive the
VaR for the probability levels qj.

Table 12 shows the average relative and maximum absolute errors obtained by the phase-
type approximations for Loss1(x). In figure 21, the points (xv, rev), v = 0, ..., 5800 are plotted
for all the approximations we consider in this section. Furthermore, table 13 gives the VaR
based on the Danish data for the different probability levels and the relative errors when the
claim size distribution is approximated with a phase-type distribution.

As shown in table 12, the relative errors of all the phase-type approximations are quite
small. This implies that the shape of the approximated total loss distribution can be close
to the shape of the true distribution. Moreover, the average relative errors of the phase-
type distributions Coxian, Exp+Cox and Erl+Cox are smaller than the other three where
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Average relative error Maximum absolute error
Hyper 0.5403× 10−2 9.6588× 10−2

Coxian 0.2076× 10−2 2.2608× 10−2

Exp+Hyp 0.5661× 10−2 10.6081× 10−2

Exp+Cox 0.3549× 10−2 5.4774× 10−2

Erl+Hyp 0.4885× 10−2 6.9401× 10−2

Erl+Cox 0.2477× 10−2 2.1239× 10−2

Table 12: Average relative and maximum absolute errors of the phase-type approximations
for the distribution of the total loss in one day.

1− q VaR Hyper Coxian Exp+Hyp Exp+Cox Erl+Hyp Erl+Cox
0.001 57.4106 0.2933 0.1340 0.4135 -0.0596 0.4015 -0.0483
0.002 46.5000 0.2665 0.1391 0.2604 0.0111 0.2869 -0.0049
0.003 36.5849 0.3515 0.2436 0.3243 0.1240 0.3075 0.1350
0.004 32.2525 0.3556 0.2814 0.1948 0.1413 0.2833 0.1365
0.005 29.0371 0.2774 0.2868 0.1734 0.1882 0.1764 0.1555
0.006 27.0186 0.1895 0.2538 0.0905 0.1678 0.0898 0.1815
0.007 24.9703 0.2009 0.2397 0.0248 0.2016 0.0226 0.2072
0.008 24.5555 0.0753 0.1660 -0.0537 0.1567 -0.0504 0.1229
0.009 21.4864 0.1416 0.2331 -0.0051 0.2469 0.0018 0.2510
0.010 19.6336 0.0956 0.2353 -0.0215 0.2664 -0.0014 0.2751

Table 13: The VaR based on the data and the relative errors of the different phase-type
approximations.

a Hyperexponential distribution is used instead of a Coxian. Similar remarks apply on the
maximum absolute errors. It is worth mentioning that the large absolute errors for the
Hyper, Exp+Hyp and Exp+Cox occur for small values of xv, as we can notice from the plots
in figure 21.

From the results in table 13, we can indicate that in most cases we have an overesti-
mate of VaR. Moreover, it is interesting to compare Exp+Hyp to Erl+Hyp and Exp+Cox to
Erl+Cox. In both cases using an Erlang distribution instead of an Exponential to approxi-
mate the light-tailed part does not really influence the estimation of the VaR. This occurs
probably because only 30% of our data can be characterized as ligth-tailed claims. On the
other hand, we reach the opposite conclusion when we compare Exp+Hyp to Exp+Cox and
Erl+Hyp to Erl+Cox. In other words, the phase-type distribution used to approximate the
heavy-tailed claims has a strong influence in the estimation of VaR. Finally, we indicate that
by using a mixture model, we can almost always improve the accuracy of the estimates.

Additionally, for smaller values of 1−q, Erl+Cox provided the best estimated VaR, while,
for bigger values, we obtain better estimates from Erl+Hyp. If we take into consideration
that, in risk theory, it is common to have 1 − q ∈ [0.001, 0.0025], we can conclude that
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from all the phase-type approximations Erl+Cox is the best approximation for the Danish
data. However, in the following sections we compare both Erl+Hyp and Erl+Cox to other
approximations.

Figure 21: Plots of the relative errors for the distribution of the total loss.
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(a) Using the Hyper model.
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(b) Using the Coxian model.
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(c) Using the Exp+Hyp model.
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(d) Using the Exp+Cox model.
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(e) Using the Erl+Hyp model.
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(f) Using the Erl+Cox model.
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13.2 Evaluation of the corrected discard approximations

In section 11.2.2, we approximated the light-tailed part of the Danish data once with an
Exponential distribution and once with an Erlang distribution. Therefore, there are two
mixture models for the claim size distribution where the tail follows a Pareto distribution
(see also section 12). We refer to them as the Exp+Par and the Erl+Par model.

In this section, we apply the corrected discard approximation in order to estimate the
distribution of the total loss and VaR. Furthermore, we discuss the related results.

Table 14 presents the average relative and maximum absolute errors. We obtain these
values by using the Exp+Par or Erl+Par model as the claim size distribution in the corrected
discard approximation for the total loss and comparing these with the empirical total loss
distribution. Similar to the previous section, in figure 22, the plots of the points (xv, rev), v =
0, ..., 5800 for the two different models are given. Last, in table 15, we give the exact VaR and
the relative errors of the two different applications of the corrected discard approximations.

Average relative error Maximum absolute error
Exp+Par 3.0314× 10−2 32.0530× 10−2

Erl+Par 2.9335× 10−2 27.8850× 10−2

Table 14: Average relative and maximum absolute errors of the corrected discard approxi-
mations for the distribution of the total loss in one day.

Figure 22: Plots of the relative errors for the distribution of the total loss.
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(a) Using the Exp+Par model.
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(b) Using the Erl+Par model.

As shown in table 14, both approximations provide large average relative and maximum
absolute errors. According to [37], the approximation error of the distribution of the total
loss is of order O(ε2). In other words, the performance of the approximation depends on the
probability of having heavy-tailed claims, ε. This implies that for large ε the approximation
is expected to perform poorly. In our case ε is relative large (ε = 0.718966), which can
explain the poor results we obtain from this approximation.
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1− q VaR Exp+Par Erl+Par
0.001 57.4106 -0.6114 -0.6131
0.002 46.5000 -0.6936 -0.6981
0.003 36.5849 -0.6941 -0.7039
0.004 32.2525 -0.7036 -0.7188
0.005 29.0371 -0.7063 -0.7270
0.006 27.0186 -0.7113 -0.7364
0.007 24.9703 -0.7097 -0.7391
0.008 24.5555 -0.7227 -0.7535
0.009 21.4864 -0.7000 -0.7361
0.010 19.6336 -0.6874 -0.7270

Table 15: The VaR based on the data and the relative errors of the two different corrected
phase-type approximations.

Once again we notice that using an Exponential distribution for the light-tailed part of
the Danish data only increases the errors. However, there is no significant difference between
the results of the two models.

Furthermore, as we can see in table 15, both approximations provide really poor estimates
for the VaR for all values of 1− q. In addition, there is no essential difference in the estimate
of the two approximations. This occurs because the Pareto distribution is much heavier than
the Exponential as well as the Erlang distributions. This implies that Pareto distribution
influence more the estimation of the VaR. Another factor is that the probability of having a
light-tailed claim is 0.281034, while the probability of having a heavy-tailed claim is 0.718966.

13.3 Comparison of the different approximations

In this section, we compare the various approximations for the distribution of the aggre-
gate claims and VaR. However, from the phase-type approximations, we consider only the
Erl+Hyp and the Erl+Cox models which perform the best as we saw in section 13.1. Ad-
ditionally, for the corrected discard approximation we view only the results of the Erl+Par
model. The reason is that even though both models (Exp+Par and Erl+Par) provide quite
similar results, it appears from section 11.2.2 that an Erlang distribution is a more appro-
priate choice for the light-tailed part of the Danish data.

The rest of this section is organized as follows. In section 13.3.1, the results of the
approximations are compared to the results we derive from the Danish data. In section
13.3.2, the performance of the approximations is evaluated with respect to the assumption
that the true distribution of the claim sizes is the Erl+Par model. This means, that we obtain
the distribution of the total loss and VaR by simulations for the case that the Erl+Par model
is the claim size distribution and the arrival rate remains the same. The performance of the
approximations is evaluated based on these results. We perform this comparison because
in section 14 we use this model as the true claim size distribution to derive the exact ruin
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probability and to evaluate the approximations. Moreover, we check if we obtain similar
conclusions to the ones in section 13.3.1. Additionally, we would like to examine if we can
determine the performance of a ruin probability approximation by the performance of the
corresponding approximation for the distribution of the total loss and VaR.

13.3.1 In case of the Danish data

In this section, we evaluate the performance of the heavy-tailed asymptotic approximation
(denoted as Pareto) and we compare it with the phase-type and corrected discard approxi-
mations. Due to the asymptotic relation in (6.3) the heavy-tailed asymptotic approximation
of the total loss return values bigger than 1 when x < 0.627 since it holds that

λḠ(x) = λ ∗ x−1.32213 ≤ 1⇒ x ≥ 0.627.

Therefore we calculate the relative and absolute errors only for xv = 0.01v, v = 70, ..., 5800.
In table 16, the average relative and maximum absolute errors of the approximations are
given. Note that also for the results of the other approximations, we only take into account
the errors calculated for xv ≥ 0.7. In figure 23, the plot of the relative errors is provided
for the heavy-tailed asymptotic approximation of Loss1(x). Last, table 17 gives the relative
errors of the various approximations for the VaR.

Average relative error Maximum absolute error
Pareto 0.7253× 10−2 45.4862× 10−2

Erl+Hyp 0.4611× 10−2 6.9401× 10−2

Erl+Cox 0.2370× 10−2 2.1239× 10−2

Erl+Par 2.4136× 10−2 27.8850× 10−2

Table 16: Average relative and maximum absolute errors of the different approximations for
the distribution of the total loss in one day.

Figure 23: Plot of the relative errors for the distribution of the total loss, using the Pareto
model.
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A first conclusion is that the average relative errors of the phase-type and corrected
discard approximations decrease when we exclude the points xv, v = 0, ..., 70. This happens,
because as we can see in figures 21e, 21f and 22b, we obtain large errors for smaller values
of the xv. On the other hand, the excluding the points xv, v = 0, ..., 70 does not affect the
maximum absolute errors of these approximations.

Furthermore, we notice that the heavy-tailed asymptotic approximation of the Loss1(x)
provides large relative error, especially, in comparison to the phase-type approximation. This
occurs probably because the Pareto distribution is not a plausible model for our data set.
Moreover, we derive quite large errors for small values of x, as we can see in figure 23.
However, it performs on average better than the correct discard approximation.

Similar remarks apply to the results for the VaR. The heavy-tailed asymptotic approxi-
mation provides bad estimates of the VaR for smaller values of 1− q. However, we indicate
that it performs considerably better for larger values of 1−q. Actually, sometimes it performs
even better than the phase-type approximations.

In general, the phase-type approximations give the most accurate results for Loss1(x) and
VaR while the corrected discard perform the worst among the approximations. Therefore,
one could expect the same conclusions for the corresponding ruin probability approximations.
In other words, it is expected that the phase-type approximations for the ruin probability
achieve the most accurate results among the different approximations. In section 14, we
examine whether or not this is true.

1− q VaR Pareto Erl+Hyp Erl+Cox Erl+Par
0.001 57.4106 1.0289 0.4015 -0.0483 -0.6131
0.002 46.5000 0.4829 0.2869 -0.0049 -0.6981
0.003 36.5849 0.3870 0.3075 0.1350 -0.7039
0.004 32.2525 0.2657 0.2833 0.1365 -0.7188
0.005 29.0371 0.1875 0.1764 0.1555 -0.7270
0.006 27.0186 0.1118 0.0898 0.1815 -0.7364
0.007 24.9703 0.0706 0.0226 0.2072 -0.7391
0.008 24.5555 -0.0159 -0.0504 0.1229 -0.7535
0.009 21.4864 0.0288 0.0018 0.2510 -0.7361
0.010 19.6336 0.0397 -0.0014 0.2751 -0.7270

Table 17: The VaR based on the data and the relative errors of the different approximations.

13.3.2 In case of the Erl+Par model

In this section, we assume that the true claim size distribution is the Erl+Par model, as
we do in the next section for the ruin probability. Based on this assumption and using
simulations, we derive the distribution of the aggregate claim and VaR. Now, the results we
derived from the approximations are compared to the results of the simulations. Using this
comparison we will later be able to determine the validity of the proposition that the best
type of approximation for Loss1(x) and VaR is also the best type for the ruin probability.
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There are two reasons why we choose this particular model as the true distribution of the
claim sizes. First, in section 12, the results of the goodness-fit-test tell us that it is plausible
for the tail of the Danish data to follow a Pareto distribution. Second, in section 11.2.2, it
appears that it is more appropriate to approximate the light-tailed part of the Danish data
with an Erlang distribution.

In figure 24, the CCDF of the empirical distribution of the total loss is plotted against the
CCDF of the aggregate claim when we use the Erl+Par model as the claim size distribution.
Graphically, at least, we could say that these two lines are approximately the same. In figure
25, the CCDF of the distribution of the total loss based on the simulations and the different
approximations are plotted.

It seems that the phase-type approximations capture better the curve of the Loss1(x),
especially the Erl+Cox model. As we explained in the previous section, the heavy-tailed
asymptotic approximation does not provide an estimate for x < 0.627. However, it appears
that it performs better for x’s bigger than 20. Finally, we notice that the corrected discard
approximation is the most inaccurate approximation for the Loss1(x).

Table 18 presents the VaR we derive using simulations as well as the relative errors of
the different approximations for it. Once again we notice that we obtain the worst results by
the corrected discard approximation. Furthermore, it is worth mentioning that even though
the phase-type approximation using the Erl+Cox model is one of the best with respect to
the Danish data, the same thing does not hold in this case. We obtain almost always better
estimates from the heavy-tailed asymptotic approximation. It appears that we achieve more
accurate results by the phase-type approximation when the Erl+Hyp model is used.

In the following section, we apply the various ruin probability approximations and we
discuss the related results. Moreover, we examine if indeed we achieve a better approx-
imation for the ruin probability by using the phase-type or the heavy-tailed asymptotic
approximation.

Figure 24: Plot of the CCDF of empirical distribution of the aggregate claim and of the
simulations.
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Figure 25: Plots of CCDF of distribution of the aggregate claim using simulations and the
approximations.
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1− q simulation Pareto Erl+Hyp Erl+Cox Erl+Par
0.001 101.4090 0.1486 -0.2066 -0.4612 -0.7810
0.002 62.2783 0.1072 -0.0391 -0.2570 -0.7746
0.003 46.6180 0.0885 0.0261 -0.1093 -0.7676
0.004 37.5235 0.0879 0.1030 -0.0231 -0.7583
0.005 32.3518 0.0658 0.0559 0.0371 -0.7550
0.006 28.9310 0.0383 0.0177 0.1034 -0.7538
0.007 26.0085 0.0279 -0.0182 0.1590 -0.7495
0.008 23.7626 0.0169 -0.0187 0.1604 -0.7453
0.009 22.0525 0.0024 -0.0239 0.2188 -0.7429
0.010 20.5919 -0.0087 -0.0479 0.2158 -0.7397

Table 18: The VaR based on simulations and the relative errors of the different approxima-
tions.

14 Ruin probability
In this section, we evaluate the ruin probability approximations we consider in this research.
We assume that the true distribution of the claim sizes is a mixture of an Erlang distribution
with 60 phases and rate equal to 51.115591 and a Pareto distribution with shape parameter
α = 2.40006 and scale parameter β = 1.37622. Note that this distribution is one of the
distributions we derived in section 12, while, in section 13.3.2 we explained why we choose
this particular distribution. The average claim size using this distribution is 3.7926 which is
higher than 3.38509, the mean of the claim sizes of the Danish data.

Given the Danish data, we require that the premium rate is higher than ρ = λE(U) =
1.82702 since otherwise the safety loading η is negative. Using the mixture of the Erlang and
Pareto distribution as the claim size distribution, it must hold for the premium rate that

p > 2.04544 = p1.
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A premium rate within the interval (1.82702, 2.044544] implies that either the mixture
model is not the true distribution of the claim sizes or that the system is not stable. More-
over, by construction, all the phase-type distributions have the same mean as the Danish
data. This implies that for 1.82702 < p ≤ 2.04544 only the phase-type approximations are
available. However, since by assumption the true claim size distribution is the mixture of an
Erlang and a Pareto distribution and the system is stable, we do not consider a premium
rate smaller than 2.04544.

When we model the claim size distribution with a Pareto distribution the average claim
size is 4.10434 and thus the premium rate must be higher than p2 = 2.21356. In section 8,
we saw that additional conditions are required for the corrected phase-type approximations.
Namely, for the corrected discard we have that

|εθ| < |p− δ + εδ| ⇒ p > 2.04544 = p3,

and for the corrected replace, solving ε < |p−δ|
max {δ,θ} with respect to p and for given ε = 0.718966

we obtain that
p > 2.50104 = p4.

Figure 26 illustrates for which premium rates we can apply the approximations to our
data. In this research we use as premium rate the values pj, j = 1, ..., 4 rounded up to the
first decimal, i.e. p = 2.1, 2.3 or 2.6. Hence, for p = 2.1 we can apply only the phase-
type and corrected discard approximations. For premium rate equal to 2.3 the heavy-tailed
asymptotic approximation can be applied too, while for p = 2.6 all the ruin probability
approximations can be used.

Figure 26: Premium rate condition for the approximations.

For each premium rate we demonstrate the corresponding results in figures 27, 28 and 29.
Keep in mind that the corrected phase-type approximations do not include any statistical
error since they use as the claim size distribution the true distribution.

For p = 2.1: First, we notice that for this premium rate, we actually have a heavy-traffic
regime. Therefore, as it can be shown from the simulations the ruin probability of an
insurance company is high in this scenario. The phase-type approximations provide more
accurate results when u takes values in the interval (3, 40). However, soon they provide
values near zero while the real ruin probability is larger than 0.7. Moreover, even though the
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corrected discard approximation provides a better estimate of the ruin probability, there is
a significant difference between the approximation and the real ruin probability. This might
occur because by construction this approximation takes into consideration the appearance
of at most one heavy-tailed claim.

For p = 2.3: The first observation is that the heavy-tailed asymptotic provides an estimate
for the ruin probability only when u ≥ 9900.27, according to the relation in (6.2). Once again,
we observe that the corrected discard approximation is closer to the exact ruin probability.
Finally, the phase-type approximations estimate that the ruin probability is equal to zero
for u’s bigger than 150.

For p = 2.6: For this premium rate we derive conclusions similar to the previous ones. For
the heavy-tailed distribution, using (6.2) we derive that u ≥ 94.77 in order to obtain valid
estimates for the ruin probability. Moreover, we indicate that the corrected replace approx-
imation is actually increasing until the lower bound of the Pareto, i.e. for u ∈ (0, 1.37622).
Besides that, however, it estimates the ruin probability more accurately than the other
approximations.

In section 13.3, the corrected discard approximation was characterized as the worst ap-
proximation for the distribution of the total loss and VaR for both Danish data and simula-
tions. However, in this section, it provided more accurate results for the ruin probability than
the phase-type and heavy-tailed asymptotic approximations. This implies that we cannot
really determine the performance of a ruin probability approximation by the performance of
the corresponding approximation for Losst(x) and VaR.

Even though the ruin probability approximations are compared given only one data set,
we are still able to have some insights regarding their performance. In the next section, we
summarize our research and we discuss the performance of the approximations we consider
in this study.
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Figure 27: Plots of ruin probability using simulations and the approximations for premium
rate p=2.1.
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Figure 28: Plots of ruin probability using simulations and the approximations for premium
rate p=2.3.
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Figure 29: Plots of ruin probability using simulations and the approximations for premium
rate p=2.6.
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15 Conclusions
The purpose of this research is to evaluate the performance of various ruin probability ap-
proximations using real data. More specifically, we considered the heavy-tailed asymptotic,
phase-type and corrected phase-type approximations for the ruin probability.

All these approximations assume that the claims arrive to an insurance company accord-
ing to a Poisson process while the premiums flow with a constant rate. However, for the
claim size distribution each approximation considers a different type of distribution. More
precisely, the heavy-tailed asymptotic approximation considers a heavy-tailed distribution,
the phase-type approximation a phase-type distribution and finally the corrected phase-type
approximation considers a mixture of a phase-type and a heavy-tailed distribution. There-
fore, to be able to apply these approximations, we estimated the parameter of the Poisson
process using the arrival dates of our data. Additionally, we fitted appropriate distributions
on the claim sizes of our data set.

Unfortunately, we cannot calculate the exact ruin probability using our data. Hence, we
assumed that the true claim size distribution is one of the distributions we used to model our
data. Basically, we used the distribution that is most likely to be the true distribution based
on our results. Using this distribution, the performance of the approximations is evaluated
with respect to the ruin probability we obtained by simulations.

Furthermore, we considered the corresponding heavy-tailed asymptotic, phase-type and
corrected discard approximations for the distribution of the total loss and VaR. The reason
is that we can derive the empirical distribution of the total loss and VaR from our data and
hence we can compare them with the results we obtained by these approximations.

Additionally, we examined the possibility to determine the performance of a ruin prob-
ability approximation by the performance of the corresponding approximation for the total
loss and VaR. However, according to our results this is not really possible. In other words,
a type of approximation which performs poorly for the estimates of the total loss and VaR
might provide good estimates for the ruin probability.

More specifically for the performance of the approximations we could say that approx-
imating the claim size distribution with a phase-type one can yield a good approximation
for the distribution of the total loss. Therefore, it is possible to obtain good estimates of
the VaR by the phase-type approximation even for probability levels really close to 1. It is
advisable to divide the data into subsets for better approximations. However, it is possible
to overfit the data, especially, in the tail. Moreover, as it was expected, the approximation
of the smaller observed values does not influence the estimation of the VaR. Finally, even
though they can provide quite accurate results for the distribution of the total loss and VaR,
it seems that the same thing does not hold for the ruin probability. As we noticed, they
decay a lot faster than the actual ruin probability.

Furthermore, it seems more natural to model the claim size distribution with a mixture
of light- and heavy-tailed distributions rather than with a heavy-tailed only. However, when
the probability of having a heavy-tailed claim is relatively large, the heavy-tailed asymptotic
approximation can provide a good estimate for the distribution of the total loss and VaR.
However, due to its asymptotic character, the heavy-tailed asymptotic approximation cannot
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always provide an approximation for the distribution of the aggregate claims or the ruin
probability. In addition, it is not possible to determine where the asymptotic behavior
starts. In other words, even though we can calculate from which point on the approximation
produces a valid estimate, we can not detect in which point exactly the tail of the aggregate
claims or of the ruin probability starts.

For the corrected phase-type approximations we have that, by construction, they take
into account the appearance of at most one heavy-tailed claim. This seems to be enough
to approximate the tail of the total loss. However, when the probability of having a heavy-
tailed claim is high, their approximation error is not negligible. We may have to consider
more heavy-tailed claims in order to improve the performance of the approximations. Similar
remarks apply to the performance of the approximations for the ruin probability, especially,
in a heavy-traffic regime. However, it is worth mentioning that the corrected discard ap-
proximation, regardless of its bad performance for the total loss and VaR, provided the most
accurate results for the ruin probability after the corrected replace approximation.

Finally, we indicate that when real data are used then inevitably the ruin probability
approximations include statistical errors. Therefore, it is important for a proper statistical
analysis to precede the application of any ruin probability approximation. Furthermore, one
should re-evaluate the findings when more data become available.
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A Appendix
In section 3.1.1, we described several methods to estimate the shape parameter α of a Pareto
distribution given that the lower bound β is known. In this section, we apply all of these
methods in 25 different data sets of size 2167. Their true distribution is a Pareto with lower
bound equal to 1 and shape parameter α = 2.1, 2.3, 2.5, 2.7 or 2.9. The results of each
approach for each data set can be found in tables 19−23. The estimates with absolute error
less than 0.01 are given with bold characters.

For better understanding of our conclusions, before we analyze the results, we demon-
strate for one specific sample (α = 2.5), the results we obtain by each method:

• Using the MLE we derive that αMLE = 2.493.

• The Hill plot of this data set can be found in figure 30. Based on this plot we have
that αHill = 2.485.

Figure 30: Hill plot.
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• By applying non-linear regression on the points (di, P̄ (di)), we derive that αccdf,nl =
2.504. Applying linear regression on the logarithms of those points yields αccdf,l = 2.639.

• The estimated shape parameter of the Pareto distribution using histogram with con-
stant linear width is denoted as: αbins,method, where bins is the number of bins used
and method stands for linear (l) or non-linear (nl) regression. The estimates for our
test case are:

– for bins = 13, α13,nl = 4.570 and α13,l = 2.449,

– for bins = 26, α26,nl = 3.313 and α26,l = 2.016 and

– for bins = 49, α49,nl = 2.532 and α49,l = 1.808.

Similarly, we denote by αlog,bins,method the estimates we obtain by using linear or non-
linear regression on the points produced from a histogram with constant logarithmic
width and number of bins equal to bins. The results of these procedures are:
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– for bins = 13, αlog,13,nl = 2.492 and αlog,13,l = 2.399,

– for bins = 26, αlog,26,nl = 2.483 and αlog,26,l = 2.401 and

– for bins = 49, αlog,49,nl = 2.462 and αlog,49,l = 2.339.

• Last, in figures 31 and 32, one can find the plots we obtain by estimating, respectively,
αbins,method and αlog,bins,method for bins = 2, ..., 100. The resulting shape parameters are
denoted as αloop,method and αlog,loop,method. The estimates of the shape parameter based
on these methods are:

– using constant linear width: αloop,l = 1.983 while we can not determine the shape
parameter using the plot in figure 31b, since there is no stable region, and

– using constant logarithmic width: αlog,loop,l = 2.313 and αlog,loop,nl = 2.439.

Figure 31: Using histograms with constant linear width.
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(b) Performing non-linear regression.

Figure 32: Using histograms with constant logarithmic width.
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It is quite obvious that the techniques based on histograms with constant linear width
perform poorly, regardless of whether we perform linear or non-linear regression and their
estimates are highly variable. Additionally, the number of bins used has a strong influence on
the estimated shape parameter. It appears that having less bins can yield a better estimate
for the shape parameter

The methods using the histogram of the data with constant logarithmic width perform
better in comparison to constant linear width. However their estimates are also dependent
on the width of the bins. Applying non-linear regression to the histogram with constant
logarithmic width improve its performance. We observe the exact opposite behaviour when
we use constant linear width.

The graphs, based on the histogram techniques, do not provide reliable estimates of the
shape parameter. However, they provide insights regarding the sensitivity of the histogram
methods to a variety of decisions (like number of bins used, etc). This implies that histogram
based methods are not able to produce consistent estimates. For other issues with regression
techniques the reader is referred to [11].

The methods using the CCDF points can provide us with good estimates of the shape
parameter of the Pareto distribution. Moreover, it appears that their performance is consis-
tent. It is worth mentioning that by performing non-linear regression instead of linear the
accuracy of the estimates increases.

Even though the estimates of the Hill plot are consistent, they can be described as biased
since it is required to infer the estimate for the shape parameter from the graph. Finally, the
MLE is proven mathematically to be one of the best approaches for estimating the shape
parameter since it is the minimum variance unbiased estimator of the shape parameter α
([24]).
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Method α = 2.1
MLE 2.133 2.097 2.087 2.097 2.093
CCDF, non linear 2.112 2.089 2.089 2.099 2.094
CCDF, linear 2.277 2.192 2.206 2.191 2.212
13, non linear 4.176 5.727 6.986 3.411 4.780
13, linear 2.463 2.266 2.168 2.410 2.296
26, non linear 4.053 5.448 5.971 2.860 4.306
26, linear 1.991 1.682 1.668 1.948 1.761
47, non linear 3.266 4.861 5.675 2.310 3.212
47, linear 1.745 1.388 1.405 1.728 1.501
log, 13, non linear 1.972 2.080 2.111 2.150 2.057
log, 13, linear 2.074 1.950 1.911 2.198 2.117
log, 26, non linear 1.992 2.168 2.196 2.146 1.986
log, 26, linear 2.049 1.922 1.886 2.114 2.031
log, 47, non linear 2.069 2.170 2.166 2.081 2.031
log, 47, linear 2.050 1.926 1.841 2.054 1.986
Hill plot 2.202 2.081 2.081 2.111 2.111
Loop, non linear - - - - -
Loop, linear 1.904 1.429 1.22 1.746 1.666
log, Loop, non linear 2.065 2.218 2.092 2.061 1.998
log, Loop, linear 2.042 1.945 1.84 1.998 1.966

Table 19: Estimation of the shape parameter of Pareto distribution based on different meth-
ods. The true parameter, in these cases, is equal to 2.1.

Method α = 2.3
MLE 2.263 2.322 2.298 2.293 2.284
CCDF, non linear 2.258 2.336 2.282 2.289 2.283
CCDF, linear 2.395 2.460 2.391 2.442 2.380
13, non linear 6.991 6.991 3.248 3.929 4.969
13, linear 2.064 2.064 2.353 2.46513 2.362
26, non linear 5.972 6.335 2.366 2.969 4.653
26, linear 1.623 1.595 1.960 2.106 1.938
47, non linear 5.350 6.330 1.638 2.340 3.480
47, linear 1.470 1.331 1.745 1.836 1.688
log, 13, non linear 2.281 2.357 2.404 2.351 2.353
log, 13, linear 1.970 1.960 2.329 2.295 2.123
log, 26, non linear 2.319 2.352 2.481 2.166 2.446
log, 26, linear 2.014 1.985 2.270 2.266 2.146
log, 47, non linear 2.278 2.426 2.473 2.174 2.425
log, 47, linear 2.000 1.947 2.197 2.198 2.112
Hill plot 2.232 2.296 2.258 2.353 2.258
Loop, non linear - - - - -
Loop, linear 1.283 1.429 1.825 1.851 1.746
log, Loop, non linear 2.313 2.345 2.502 2.155 2.471
log, Loop, linear 1.966 1.935 2.218 2.124 2.061

Table 20: Estimation of the shape parameter of Pareto distribution based on different meth-
ods. The true parameter, in these cases, is equal to 2.3.
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Method α = 2.5
MLE 2.518 2.493 2.469 2.540 2.530
CCDF, non linear 2.495 2.504 2.472 2.506 2.517
CCDF, linear 2.656 2.639 2.589 2.729 2.735
13, non linear 4.378 4.570 3.433 3.675 6.335
13, linear 2.232 2.449 2.504 2.442 2.166
26, non linear 3.318 3.313 2.500 2.542 4.358
26, linear 1.876 2.016 2.073 1.992 1.887
47, non linear 2.323 2.532 1.752 1.547 3.511
47, linear 1.758 1.808 1.843 1.845 1.712
log, 13, non linear 2.577 2.492 2.517 2.492 2.452
log, 13, linear 2.368 2.399 2.414 2.533 2.330
log, 26, non linear 2.681 2.483 2.561 2.499 2.521
log, 26, linear 2.338 2.401 2.368 2.495 2.360
log, 47, non linear 2.670 2.462 2.548 2.490 2.498
log, 47, linear 2.275 2.339 2.341 2.415 2.297
Hill plot 2.561 2.485 2.447 2.564 2.561
Loop, non linear - - - - -
Loop, linear 1.825 1.983 1.904 1.851 1.746
log, Loop, non linear 2.660 2.439 2.534 2.502 2.502
log, Loop, linear 2.353 2.313 2.376 2.408 2.313

Table 21: Estimation of the shape parameter of Pareto distribution based on different meth-
ods. The true parameter, in these cases, is equal to 2.5.

Method α = 2.7
MLE 2.707 2.702 2.678 2.718 2.755
CCDF, non linear 2.714 2.710 2.680 2.735 2.742
CCDF, linear 2.842 2.840 2.864 2.887 2.914
13, non linear 3.350 4.452 2.945 3.934 4.074
13, linear 2.458 2.411 2.476 2.439 2.531
26, non linear 2.255 3.379 1.761 2.837 2.702
26, linear 2.104 2.068 2.098 2.066 2.126
47, non linear 1.393 2.450 0.9341 1.855 1.760
47, linear 1.956 1.861 1.902 1.910 1.966
log, 13, non linear 2.813 2.829 2.568 2.848 2.766
log, 13, linear 2.593 2.511 2.689 2.542 2.549
log, 26, non linear 2.737 2.921 2.515 2.661 2.805
log, 26, linear 2.556 2.496 2.584 2.486 2.566
log, 47, non linear 2.763 2.746 2.486 2.605 2.803
log, 47, linear 2.534 2.405 2.569 2.486 2.542
Hill plot 2.685 2.655 2.776 2.715 2.746
Loop, non linear - - - - -
Loop, linear 1.914 1.914 1.977 1.851 2.04
log, Loop, non linear 2.723 2.754 2.471 2.628 2.786
log, Loop, linear 2.502 2.376 2.534 2.439 2.502

Table 22: Estimation of the shape parameter of Pareto distribution based on different meth-
ods. The true parameter, in these cases, is equal to 2.7.
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Method α = 2.9
MLE 2.878 2.921 2.938 2.931 2.876
CCDF, non linear 2.884 2.915 2.925 2.895 2.885
CCDF, linear 3.0389 3.133 3.211 3.125 2.994
13, non linear 2.885 4.164 4.235 3.719 2.796
13, linear 2.480 2.443 2.411 2.411 2.353
26, non linear 1.690 2.786 2.562 2.413 1.539
26, linear 2.099 2.132 2.034 2.118 2.034
47, non linear 0.832 1.680 1.460 1.390 0.718
47, linear 1.910 1.859 1.945 1.932 1.798
log, 13, non linear 2.862 2.844 2.906 2.886 2.827
log, 13, linear 2.759 2.672 2.692 2.733 2.720
log, 26, non linear 2.833 2.892 2.792 2.946 2.826
log, 26, linear 2.699 2.644 2.738 2.606 2.654
log, 47, non linear 2.797 2.838 2.753 3.029 2.832
log, 47, linear 2.636 2.538 2.603 2.596 2.602
Hill plot 2.867 2.957 3.018 2.927 2.867
Loop, non linear - - - - -
Loop, linear 2.103 2.04 1.977 2.103 2.04
log, Loop, non linear 2.786 2.818 2.723 3.007 2.881
log, Loop, linear 2.565 2.534 2.628 2.565 2.534

Table 23: Estimation of the shape parameter of Pareto distribution based on different meth-
ods. The true parameter, in these cases, is equal to 2.9.
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