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Introduction 2

1 Introduction

Over the last decades, numerical solution methods for Partial Differential Equa-
tions (PDE’s) have become essential tools in the understanding, design and
optimisation of physical processes. In particular the Finite Element Method
(FEM) plays an important role in present-day engineering and has proven its
effectiveness on a wide range of applications. Many variations and extensions
of this method have been introduced to improve its efficiency and comprehen-
siveness, a well-known recent example of which is Isogeometric Analysis.

Isogeometric Analysis (IGA, [1]) replaces the function space that is used in
the Finite Element Method by a spline-based function space as used in Com-
puter Aided Design (CAD). These spline-based function spaces have better
approximation properties and avoid computationally expensive discretisation
procedures for CAD-generated structures. The Finite Cell Method can further
improve the flexibility of IGA applied to CAD-generated structures by weakly
implementing essential boundary conditions on trimmed objects and coupled
domains [2]. By advanced integration procedures applied in the Finite Cell
Method, it enables the application of IGA on geometrically and topologically
complex structures without laborious meshing procedures [3].

The Finite Cell Method (FCM, e.g. [2–17]) was introduced in [4] as an extension
of standard Galerkin methods, in which the grid does not need to match, but
simply needs to overlap the problem’s domain by weakly implementing essential
boundary conditions using Nitsche’s method [18]. The complexity of the prob-
lem’s domain is not captured by the mesh, but by the integration scheme, which
splits the discretised domain into a computational part over which integration is
performed and a fictitious part. FCM shows advantages over standard Galerkin
methods for problems which are hard, time-consuming or even impossible to
mesh, or would need frequent remeshing in the traditional way.

The Finite Cell method has been found to be prone to conditioning problems,
which impedes solving the resulting linear system. Different modifications that
focus on reducing the condition number have been proposed, such as basis func-
tion elimination [5] and virtual stiffness [2, 7–15]. These modifications limit the
condition number, but generally not to a satisfactory level. Without a proper
conditioning technique, it may be inevitable to adjust the FCM grid and apply
a direct solver in order to solve the linear system resulting from FCM formula-
tions [2, 8].

The primary research objective of this work is to analyse the origins of the
conditioning problems associated with FCM, and to study the possibilities for
ameliorating these problems by means of diagonal pre- and post-conditioning.
An important novel contribution of this work is the derivation of an explicit
relation between the condition number and the smallest basis function support
for uniform grids. This relation reveals a strong dependence of the condition
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number on the order of the employed spline discretisation, which stipulates the
need to develop a strategy to improve the conditioning of FCM.

Motivated by the aforementioned relation, in this work this improvement is
established by means of basis function scaling, which is shown to be equivalent
to diagonal-like pre- and post-conditioning of the system. The usage of basis
function scaling in combination with Nitsche’s method for imposing essential
boundary conditions is studied in detail in this work. It is demonstrated that
the proposed scaling strategy drastically improves the condition number for a
series of problems. Convergence problems of iterative solvers related to the poor
conditioning of FCM are rigorously resolved by means of the proposed scaling
strategy.

Section 2 presents the variational formulation of the Finite Cell Method and
analyses the conditioning in detail. An explicit relation between the condition
number and the smallest basis function support for uniform grids is derived
and experimentally verified. Section 3 describes the strategy to improve the
conditioning by basis function scaling and tests this strategy on various exam-
ples. In Section 4 the process of solving linear systems iteratively is described
in detail and the effect of improving the conditioning is demonstrated. Section
5 presents the results of several numerical examples to further study the ef-
fect of basis function scaling. Section 6 contains some concluding remarks and
recommendations concerning future research topics.
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2 The Finite Cell Method: An analysis of sys-
tem conditioning

In this section the variational formulation of the Finite Cell Method (FCM) is
presented, together with an analysis of the solvability and conditioning of the
resulting system.

2.1 Variational formulation

Consider the second-order, elliptic PDE over a domain Ω ⊂ Rd −div(A∇u) = f in Ω,
nA∇u = g on Γn,

u = u on Γe,
(2.1)

with A bounded, symmetric and strongly positive. Γn and Γe represent a natural
and essential boundary respectively, furthermore Γn ∩ Γe = ∅, Γn ∪ Γe = ∂Ω
and Γe 6= ∅. Problem (2.1) for example represents either linear elasticity with
A a stiffness tensor and u and f vector-valued deformations and body forces,
or Laplace’s problem with A the identity matrix and u and f scalar fields.
Boundary-fitted Galerkin methods such as the Finite Element Method use a
grid that matches Ω and can therefore impose the essential boundary condition
on Γe in a strong manner (i.e. encoded into the function space) and use the
weak form

find u ∈ H1
e (Ω) such that:

a(v, u) = la(v) ∀v ∈ H1
0 (Ω),

(2.2)

with

a(v, u) =

∫
Ω

∇vA∇udΩ,

la(v) =

∫
Ω

vfdΩ +

∫
Γn

vgdΓ,

(2.3)

and where H1
e (Ω) = {u ∈ H1(Ω)|u = u on Γe} and H1

0 (Ω) = {u ∈ H1(Ω)|u =
0 on Γe}. a(·, ·) is bilinear, symmetric, bounded and coercive on H1

0 (Ω) and
therefore forms an inner product that induces the energy norm ‖ · ‖a =

√
a(·, ·)

that is equivalent with the H1
0 -seminorm on Ω.

The Finite Cell Method is an unfitted Galerkin method, and uses a grid that
overlaps Ω such as e.g. a discretisation of Ω ∪ Ωfict as shown in Figure 2.1. In
the FCM literature (e.g. [2–17]) generally a physical domain (Ω or Ωphys), a
fictitious extension (Ωfict) and a complete or embedding domain (Ω, ΩC or Ωe)
-which is the union of the physical and fictitious domain- is defined. In this
work the fictitious domain will be completely omitted and therefore the physi-
cal domain is simply referred to by Ω. As essential boundary conditions cannot
be imposed in a strong manner on unmatching grids, the boundary conditions
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Ω

Ω�ct

Figure 2.1: A geometrically complex domain Ω that is embedded in a rectilinear
domain Ω ∪ Ωfict.

on Γe are weakly imposed using a Nitsche type boundary condition [18], giving
the weak form

find u ∈ H1(Ω) such that:

a(v, u) + b(v, u) = la(v) + lb(v) ∀v ∈ H1(Ω),
(2.4)

with

b(v, u) = −
∫

Γe

(vnA∇u+ unA∇v) dΓ,

lb(v) = −
∫

Γe

unA∇vdΓ.

(2.5)

a(·, ·) is not coercive on H1(Ω) however, and a(·, ·)+b(·, ·) is not even bounded or
positive (and certainly not coercive) on H1(Ω). In finite-dimensional subspaces
of H1(Ω), boundedness is not an issue however, and a(·, ·) + b(·, ·) can be made
coercive in a finite-dimensional subspace Vh(Ω) ⊂ H1(Ω) by adding a penalty,
c(v, u), which maintains the consistency. This yields

a(v, u) + b(v, u) + c(v, u) = la(v) + lb(v) + lc(v) ∀v ∈ H1(Ω), (2.6)

with

c(v, u) =

∫
Γe

βvudΓ,

lc(v) =

∫
Γe

βvudΓ,

(2.7)

and where the penalty factor β is either a global or an element-wise positive
constant. A global approach is presented here, but a local (element-wise) ap-
proach can be derived similarly. The penalty operator c(·, ·) gets its name from
the penalty method [6], where it is used to apply essential boundary conditions.
Introducing a global or element-wise, computable constant C and postulating
the condition that

‖nA∇v‖2L2(Γe) ≤ Ca(v, v) ∀v ∈ Vh(Ω), (2.8)
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the combined operator a(·, ·) + b(·, ·) + c(·, ·) is coercive on Vh(Ω) for β > C as

|b(v, v)| ≤2‖nA∇v‖L2(Γe)‖v‖L2(Γe) Cauchy-Schwarz

≤1

ε
‖nA∇v‖2L2(Γe) + ε‖v‖2L2(Γe) Peter-Paul

≤C
ε
a(v, v) + ε‖v‖2L2(Γe) (2.8)

≤a(v, v) + c(v, v) ∀v ∈ Vh(Ω) C < ε < β,

(2.9)

and therefore

a(v, v) + b(v, v) + c(v, v) ≥ a(v, v)− |b(v, v)|+ c(v, v)

≥ε− C
ε

a(v, v) + (β − ε)‖v‖2L2(Γe)

≥δ‖v‖2H1(Ω) ∀v ∈ Vh(Ω) Poincaré,

(2.10)

for some δ > 0. The last inequality in (2.10) is a specific form of the Poincaré
inequality as can be found in lemma B.63 in [19]. The minimal C for which
(2.8) holds coincides with the largest eigenvalue λ of the generalised eigenvalue
problem [5]

Ev = λAv, (2.11)

with

E =

∫
Γe

(nA∇N)
(
nA∇NT

)
dΓ,

A =

∫
Ω

∇NA∇NTdΩ,

(2.12)

and where N is a vector containing a basis of Vh(Ω). As shown by [18], C scales

with 1/h̃, where h̃ is either the typical length scale in the element (element-wise
constant) or the typical length scale in the smallest element (global constant).
All examples presented here use β = 2C as proposed by [5]. This choice does
not affect the strategy to improve the conditioning of the system, however, and
allows optimising the stability parameter as in [8]. For notational convenience,
the combined operators are denoted as

k(v, u) = a(v, u) + b(v, u) + c(v, u)

=

∫
Ω

∇vA∇udΩ +

∫
Γe

(
βvu− (vnA∇u+ unA∇v)

)
dΓ,

l(v) = la(v) + lb(v) + lc(v)

=

∫
Ω

vfdΩ +

∫
Γe

(
βvu− unA∇vdΓ

)
+

∫
Γn

vgdΓ.

(2.13)

As k(·, ·) is symmetric, bilinear, bounded and coercive on Vh(Ω) (w.r.t. the H1-
norm) it forms an inner product that induces the FCM-norm ‖v‖k =

√
k(v, v)

that is equivalent with the H1-norm on Ω.
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2.2 Condition numbers

In order to define the condition number, first the Euclidean vector-norm and
induced matrix-norm are defined as

‖x‖2 =
√
xTx, ‖A‖2 = max

x

‖Ax‖2
‖x‖2

. (2.14)

When solving a system of the form Ax = b, the condition number

κ2(A) = ‖A‖2‖A−1‖2, (2.15)

is of much interest. To begin with, the convergence speed of most iterative
methods to find x is dependent on κ2(A) [20]. For example, the Conjugate
Gradient method has a convergence bound given by [20]

‖x− xi‖A ≤ 2

(√
κ2(A)− 1√
κ2(A) + 1

)i
‖x− x0‖A, (2.16)

where xi is the approximation after i iterations and ‖ · ‖A denotes the energy
norm ‖x‖2A = xTAx. Furthermore the condition number determines whether
the residual is a good estimate for the error as

‖b−Axi‖2
‖A‖2

≤ ‖x− xi‖2 ≤ κ2(A)
‖b−Axi‖2
‖A‖2

. (2.17)

Moreover, the condition number is especially important when using finite preci-
sion arithmetics due to error propagation. Assume Ax = b and A (x+ x̃) = b+b̃
with b̃ a perturbation of b and x̃ the resulting perturbation of x. Then the quo-
tient of the relative errors is bounded by the condition number

‖x̃‖2/‖x‖2
‖b̃‖2/‖b‖2

=
‖x̃‖2‖b‖2
‖b̃‖2‖x‖2

=
‖A−1b̃‖2‖Ax‖2
‖b̃‖2‖x‖2

≤ ‖A
−1‖2‖b̃‖2‖A‖2‖x‖2
‖b̃‖2‖x‖2

= ‖A‖2‖A−1‖2 = κ2(A),

(2.18)

where the inequality follows directly from definition (2.14). Similarly, when

there is a perturbation of A, i.e.
(
A + Ã

)
(x+ x̃) = b, the quotient of the

relative errors is also bounded by κ2(A)

‖x̃‖2/‖x‖2
‖Ã‖2/‖A‖2

=
‖x̃‖2‖A‖2
‖Ã‖2‖x‖2

=
‖ −

(
A + Ã

)−1

Ãx‖2‖A‖2

‖Ã‖2‖x‖2

≤
‖
(
A + Ã

)−1

‖2‖Ã‖2‖x‖2‖A‖2

‖Ã‖2‖x‖2

= ‖
(
A + Ã

)−1

‖2‖A‖2

≤ ‖A−1‖2‖A‖2
1− ‖A−1‖2‖Ã‖2

≈ κ2(A),

(2.19)
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where the last approximate equality holds for small Ã. Hence, when the condi-
tion number is large, a small variation in A or b can result in a large error in
the solution x. This effect will be demonstrated in Section 4.

2.3 A condition-number bound for SPD-matrices

Because k(·, ·) is symmetric and coercive on Vh(Ω), the system matrix K is
symmetric and positive definite (SPD). Due to the symmetry of K, it has real-
valued eigenvalues (λi ∈ R) and an orthonormal set of eigenvectors (‖ξ

i
‖2 = 1

∀i, ξT
i
ξ
j

= 0 for i 6= j). As a result of this, for every vector v ∈ Rn there exists

a unique vector α ∈ Rn such that v =
∑
i αiξi and ‖α‖2 = ‖v‖2. Therefore

‖K‖22 = max
‖v‖2=1

‖Kv‖22 = max
‖α‖2=1

‖K
∑
i

αiξi‖
2
2 = max

‖α‖2=1
‖
∑
i

λiαiξi‖
2
2, (2.20)

and due to the orthonormality of the eigenvectors

‖K‖22 = max
‖α‖2=1

∑
i

λ2
iα

2
i = |λ|2max. (2.21)

Equation (2.21) follows from creating a set of indices I such that |λi| = |λ|max

for i ∈ I and |λi| < |λ|max for i /∈ I. The maximum is then attained for∑
i∈I α

2
i = 1 and αi = 0 for i /∈ I. Similarly

‖K−1‖22 = max
‖v‖2=1

‖K−1v‖22 = max
‖v‖2=1

1

‖Kv‖22
= max
‖α‖2=1

1

‖
∑
i λiαiξi‖

2
2

= max
‖α‖2=1

1∑
i λ

2
iα

2
i

=
1

|λ|2min

,

(2.22)

yielding

κ2(K) =
|λ|max

|λ|min
. (2.23)

Also, due to the symmetry of K, the Rayleigh quotient is bounded by the
eigenvalues

vTKv

vT v
=

∑
i,j αiαjξ

T

i
Kξ

j∑
i,j αiαjξ

T

i
ξ
j

=

∑
i λiα

2
i∑

i α
2
i

, (2.24)

hence

λmin ≤
vTKv

vT v
≤ λmax ∀v ∈ Rn. (2.25)

Inequality (2.25) is sharp as λi = ξT
i
Kξ

i
and therefore it holds that,

λmin = min
v 6=0

vTKv

vT v
= min
‖v‖2=1

vTKv,

λmax = max
v 6=0

vTKv

vT v
= max
‖v‖2=1

vTKv.

(2.26)
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Due to the positive definiteness of K

|λ|min = λmin,

|λ|max = λmax,
(2.27)

and therefore

κ2(K) =
|λ|max

|λ|min
= max
‖u‖2=1,‖v‖2=1

uTKu

vTKv
. (2.28)

The maximum over the full set ‖u‖2 = 1, ‖v‖2 = 1 is bounded from below by
the maximum over the smaller set of standard unit vectors, hence

max
‖u‖2=‖v‖2=1

uTKu

vTKv
≥ max

i,j

eTi Kei
eTj Kej

= max
i,j

Kii

Kjj
, (2.29)

with ei the ith standard unit vector. Combining (2.28) and (2.29) yields

κ2(K) ≥ max
i,j

Kii

Kjj
. (2.30)

Inequality (2.30) is a lower bound for the condition number of SPD-matrices.
The next subsection will show that (2.30) is very useful to estimate the condition
number of FCM-matrices.

2.4 Application to FCM-matrices

For FCM-matrices
Kii = k(φi, φi) = ‖φi‖2k, (2.31)

with φi the ith basis function. Therefore, inequality (2.30) applied to FCM-
matrices yields

κ2(K) ≥ max
i,j

‖φi‖2k
‖φj‖2k

. (2.32)

Because basis functions whose support only slightly intersects Ω can become
arbitrarily small, the condition number can grow arbitrarily large. Especially
large grids have many cut-off functions and are therefore likely to have at least
one function that is cut off undesirably.

To estimate the condition number of an FCM-matrix, a discretisation with
B-spline basis functions as described in appendix A is considered. When an un-
matching, one-dimensional, uniform grid of order p and grid size h (= ξi+1−ξi) is
cut off by the boundary between ξi and ξi+1, the last function is only supported
on [ξi, ξi+1] ∪Ω and is locally proportional to (x/h)p, with x a local coordinate
originating in ξi. When a multidimensional, uniform, rectilinear grid of order p
and grid size h in all directions is cut off, functions whose support only intersects
Ω on (a part of) one element, as displayed in Figure 2.2, are locally proportional
to

φ(x) ∝
d∏
i=1

(xi
h

)p
, (2.33)
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Ω
Ωfict

supp(Φ)

Γn

(a) Schematic representa-
tion of a support that is cut
off by the boundary.

(b) A two-dimensional sup-
port that is cut off within
one element.

(c) A three-dimensional
support that is cut off
within one element.

Figure 2.2: A basis function whose support only slightly intersects Ω and is
therefore cut off.

with xi the local coordinate in the ith direction and d the number of dimensions.

When it is assumed that such a basis function is cut off by a natural bound-
ary, then b(φ, φ) = c(φ, φ) = 0 and ‖φ‖k is proportional to the H1

0 -seminorm.

Therefore, with h̃i as in Figure 2.2

‖φ‖2k ∝ ‖φ‖2H1
0

=

∫
Ω

d∑
i=1

(∂xi
φ)

2
dΩ

=

h̃1∫
x1=0

h̃2(1−x1/h̃1)∫
x2=0

· · ·

h̃d(1−
d−1∑
i=1

xi/h̃i)∫
xd=0

d∑
i=1

(∂xi
φ)

2
d∏
i=1

dxi

∝
h̃1∫

x1=0

h̃2(1−x1/h̃1)∫
x2=0

· · ·

h̃d(1−
d−1∑
i=1

xi/h̃i)∫
xd=0

d∑
i=1

(
∂xi

d∏
i=1

(xi
h

)p)2 d∏
i=1

dxi

∝ 1

h2pd

h̃1∫
x1=0

h̃2(1−x1/h̃1)∫
x2=0

· · ·

h̃d(1−
d−1∑
i=1

xi/h̃i)∫
xd=0

d∑
i=1

x−2
i

d∏
i=1

x2p
i dxi

=
1

h2pd

d∑
i=1

h̃−2
i

d∏
i=1

h̃2p+1
i

1∫
y1=0

(1−y1)∫
y2=0

· · ·

1−
d−1∑
i=1

yi∫
yd=0

y−2
1

d∏
i=1

y2p
i dyi

(2.34)
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∝ 1

h2pd

d∑
i=1

h̃−2
i |supp(φ)|2p+1

≈ 1

h2pd
|supp(φ)|2p+1−2/d,

(2.34)

where in the approximation in the last step it is assumed that O(h̃1) = O(h̃2) =

· · · = O(h̃d), which is the worst-case scenario as this results in the, in norm,
smallest function. The norm of a basis function that is not cut off is estimated
on a full element. For p > 0 the support is larger than one element, but for
the determination of the order of magnitude it suffices to only consider a single
element, hence

‖φ‖2k ∝ ‖φ‖2H1
0
∝

h∫
x1=0

h∫
x2=0

· · ·
h∫

xd=0

d∑
i=1

(
∂xi

d∏
i=1

(xi
h

)p)2 d∏
i=1

dxi

∝ 1

h2pd

h∫
x=0

x2p−2dx

 h∫
x=0

x2pdx

d−1

=
h2pd+d−2

h2pd

1∫
x=0

x2p−2dx

 1∫
x=0

x2pdx

d−1

∝ h2pd+d−2

h2pd
.

(2.35)

Combining (2.32), (2.34), (2.35) and denoting the basis function with the small-

est support by φ̃ yields

κ2(K) ≥ max
i,j

‖φi‖2k
‖φj‖2k

∝ h2pd+d−2

|supp(φ̃)|2p+1−2/d

=

(
hd

|supp(φ̃)|

)2p+1−2/d

= η−(2p+1−2/d),

(2.36)

with η the minimal volume fraction defined as

η = min
i
ηi = min

i

|supp(φi)|
hd

, (2.37)

where it is assumed that the smallest cut-off element is of the form displayed
in Figure 2.2, which is a reasonable assumption as shown in [21]. It should be
noted that for splines of order p > 0, an uncut function φi has a volume fraction
ηi > 1 as it is supported on more than one element. Every unmatching grid has
at least one function φi with ηi < 1 however, and hence 0 < η < 1. The final
result is

κ2(K) ≥ C ∝ η−(2p+1−2/d), (2.38)
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which indicates a strong dependence on the spline order p, which is inconvenient
as for accuracy considerations higher-order splines are preferred. Especially for
FCM this is a major drawback, as one of the advantages of FCM is the simplicity
at which higher order discretisations can be implemented. The derivation of
(2.38) can also be done in a more general form for the Hn

0 -seminorm, which
results in

κ2(K) ≥ C ∝ η−(2p+1−2n/d), (2.39)

and will be used to estimate the condition number for L2-projections in the next
subsection. When a function is cut off by an essential boundary, the situation is
slightly different. To keep the analysis of these situations as simple as possible,
it is assumed that h̃1 = h̃2 = · · · = h̃d = h̃, which is valid to estimate the
orders of magnitude. For a small cut-off element as in Figure 2.2, b(φ, φ) can
be estimated by

b(φ, φ) ∝ φ∂nφ|Γ| ≈

φ︷ ︸︸ ︷(
h̃

h

)pd ∂nφ︷ ︸︸ ︷
h̃pd−1

hpd

|Γ|︷︸︸︷
h̃d−1 =

h̃d(2p+1−2/d)

h2pd

≈ 1

h2pd
|supp(φ)|2p+1−2/d,

(2.40)

which is the same order of magnitude as (2.34). The stability term c(φ, φ) can
be estimated by

c(φ, φ) ∝ βφ2|Γ| ≈

β︷︸︸︷
1

h̃

φ2︷ ︸︸ ︷(
h̃

h

)2pd
|Γ|︷︸︸︷
h̃d−1 =

h̃d(2p+1−2/d)

h2pd

≈ 1

h2pd
|supp(φ)|2p+1−2/d,

(2.41)

and is therefore of the same order of magnitude as (2.34) as well, where it is

used that β scales with 1/h̃ as mentioned in Subsection 2.1. From (2.40) and
(2.41) it follows that the norm of a small cut-off function when it is cut by an
essential boundary is of the same order of magnitude as when it is cut by a
natural boundary. For a function that is not cut off undesirably by an essential
boundary, b(φ, φ) can be estimated by

b(φ, φ) ∝ φ∂nφ|Γ| ≈
φ︷︸︸︷
1

∂nφ︷︸︸︷
1

h

|Γ|︷︸︸︷
hd−1 = hd−2,

(2.42)

which is the same order of magnitude as (2.35). When an element-wise sta-
bilisation parameter is applied, c(φ, φ) for such a function can be estimated
by

c(φ, φ) ∝ βφ2|Γ| ≈

β︷︸︸︷
1

h

φ2︷︸︸︷
1

|Γ|︷︸︸︷
hd−1 = hd−2,

(2.43)
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ΩΓfit Γtrim

grid

Figure 2.3: Schematic representation of the one-dimensional test case.

which is also the same order of magnitude as (2.35). Therefore, when element-
wise stabilisation is applied, (2.38) also holds for essential boundary conditions
on an unmatching boundary. When a global stabilisation parameter is applied,
c(φ, φ) for such a function can be estimated by

c(φ, φ) ∝ βφ2|Γ| ≈

β︷ ︸︸ ︷
1

hη1/d

φ2︷︸︸︷
1

|Γ|︷︸︸︷
hd−1 = hd−2η−1/d,

(2.44)

where it is used that h̃ ≈ hη1/d as η = (h̃/h)d. As a result of this, there will
be functions with a norm of magnitude hd−2η−1/d in the system such that the
application of (2.32) to a globally stabilised system yields

κ2(K) ≥ C ∝ η−(2p+1−2/d)η−1/d = η−(2p+1−1/d). (2.45)

Inequality (2.45) indicates that the condition number of globally stabilised sys-
tems has a stronger dependence on η than the condition number of locally
stabilised systems, because small values of η not only cause a certain function
to become very small, but also cause other functions to become very large.

2.5 Results

To verify the scaling relations (2.38), (2.39) and (2.45), several numerical ex-
periments were done. In one dimension, Laplace’s problem on the domain
Ω = (0, 1 − h + ηh) was discretised by a uniform grid with h = 1/4 and
p ∈ {1, 2, 3}. A schematic representation of this test case is displayed in Fig-
ure 2.3. At Γfit, the grid matched the domain and an essential boundary con-
dition was applied in a strong manner. At Γtrim, the grid did not match the
domain, and in the first experiment a natural boundary condition was applied
and in the second experiment a globally stabilised essential boundary condition
was applied in a weak manner. It should be noted that stabilisation in one
dimension is global by definition, as the size of the boundary is independent of
the volume fraction.

The resulting condition numbers from these discretisations are plotted against
η in Figure 2.4 for the natural boundary condition, and in Figure 2.5 for the es-
sential boundary condition, in which also the penalty factors β are displayed. In
these figures, the red circles depict the condition numbers and the white circles



The Finite Cell Method: An analysis of system conditioning 14

p=1

p=2

p=3

Figure 2.4: Condition numbers against η for the one-dimensional test case with
a natural boundary condition along the trimmed boundary for p ∈ {1, 2, 3}.

depict the lower bounds for the condition numbers from (2.30). In Figure 2.4,
a slope of −1 (= −(2p+ 1− 2/d) = −(2 + 1− 2)) is visible for p = 1, a slope of
−3 for p = 2 and a slope of −5 for p = 3, which is in agreement with (2.38) for
a natural boundary condition. In Figure 2.5a, a slope of −2 is visible for p = 1,
a slope of −4 for p = 2 and a slope of −6 for p = 3, which is in agreement with
(2.45) for a globally stabilised essential boundary condition, which the stabili-
sation in one dimension is by definition. The penalty factors β in Figure 2.5b
form a slope of −1, which is explained by β ∝ 1/h̃ ∝ 1/η in one dimension.

In two dimensions, an L2-projection was done and Laplace’s problem was solved
on a half ring with inner radius 1/2 and outer radius 1. A schematic representa-
tion of this test case is displayed in Figure 2.6. A uniform, rectilinear grid with
h = 1/4 was used with p ∈ {0, 1, 2, 3} for the L2-projection and p ∈ {1, 2, 3}
for Laplace’s problem. The grid matched the domain along the straight edges
of the half ring (Γfit) and was unmatching at the inner and outer radius of the
ring (Γtrim). By shifting the grid along Γfit with steps of h/2000, 1001 different
discretisations were generated. For Laplace’s problem, an essential boundary
condition was applied in a strong manner along Γfit and a natural boundary
condition, an element-wise stabilised essential boundary condition and a glob-
ally stabilised essential boundary condition were applied along Γtrim in a weak
manner.

The resulting condition numbers (and for the globally stabilised case also the
penalty factors β) are plotted against η in Figure 2.7 for the L2-projection and
in Figures 2.8, 2.9 and 2.10 for Laplace’s problem with a natural boundary con-
dition, an element-wise stabilised essential boundary condition and a globally



The Finite Cell Method: An analysis of system conditioning 15

p=1

p=2

p=3

(a) Condition numbers. (b) Penalty factors.

Figure 2.5: Condition numbers and penalty factors against η for the one-
dimensional test case with an essential boundary condition along the trimmed
boundary for p ∈ {1, 2, 3}.

Γtrim Γtrim

Γfit

Γfit

Figure 2.6: Schematic representation of the two-dimensional test case.



The Finite Cell Method: An analysis of system conditioning 16

p=1

p=2

p=3

p=0

Figure 2.7: Condition numbers against η for the two-dimensional test case with
an L2-projection for p ∈ {0, 1, 2, 3}.

stabilised essential boundary condition along Γtrim, respectively. In these fig-
ures the red circles depict the condition numbers and the white circles depict
the lower bounds for the condition numbers from (2.30). In Figure 2.7, a slope
of −1 is visible for p = 0, a slope of −3 for p = 1, a slope of −5 for p = 2 and
a slope of −7 for p = 3, which is in agreement with (2.39) for an L2-projection.
In Figures 2.8 and 2.9, a slope of −2 is visible for p = 1, a slope of −4 for p = 2
and a slope of −6 for p = 3, which is in agreement with (2.38) for a natural
boundary condition or an element-wise stabilised essential boundary condition.
In Figure 2.10a, a slope of −2 1

2 is visible for p = 1, a slope of −4 1
2 for p = 2

and a slope of −6 1
2 for p = 3, which is in agreement with (2.45) for a glob-

ally stabilised essential boundary condition. As predicted by inequality (2.45),
global stabilisation results in a steeper slope of the condition number than local
stabilisation. The penalty factors β in Figure 2.10b form a slope of − 1

2 , which

is explained by β ∝ 1/h̃ ∝ 1/η1/d = η−1/2 in two dimensions.

In three dimensions, Laplace’s problem is solved on a three-dimensional exten-
sion of the two-dimensional domain; a hemisphere with a centred hemispherical
exclusion with inner radius 1/2 and outer radius 1. A schematic representation
of this test case is displayed in Figure 2.11. A uniform, rectilinear grid with
h = 1/4 was used with p ∈ {1, 2, 3}. The grid matched the domain along the flat
base of the hemisphere (Γfit) and was unmatching at the inner and outer radius
(Γtrim). By shifting the grid along Γfit in 10 steps of h/20 in both directions
along the base of the hemisphere, 66 different discretisations were generated
(due to symmetry). An essential boundary condition was applied in a strong
manner along Γfit and a natural boundary condition and an element-wise sta-
bilised essential boundary condition were applied along Γtrim in a weak manner.
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p=1

p=2

p=3

Figure 2.8: Condition numbers against η for the two-dimensional test case with
a natural boundary condition along the trimmed boundary for p ∈ {1, 2, 3}.

p=1

p=2

p=3

Figure 2.9: Condition numbers against η for the two-dimensional test case
with an element-wise stabilised essential boundary condition along the trimmed
boundary for p ∈ {1, 2, 3}.
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p=1

p=2

p=3

(a) Condition numbers. (b) Penalty factors.

Figure 2.10: Condition numbers and penalty factors against η for the two-
dimensional test case with a globally stabilised essential boundary condition
along the trimmed boundary for p ∈ {1, 2, 3}.

(a) Left view.

Γtrim Γtrim

Γfit

Γfit

(b) Front and top view.

Figure 2.11: Schematic representation of the three-dimensional test case.
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p=1

p=2

p=3

Figure 2.12: Condition numbers against η for the three-dimensional test case
with a natural boundary condition along the trimmed boundary for p ∈ {1, 2, 3}.

The resulting condition numbers are plotted against η in Figures 2.12 and 2.13
for the natural boundary condition and the element-wise stabilised essential
boundary condition along Γtrim, respectively. The red circles depict the condi-
tion numbers and the white circles depict the lower bounds for the condition
numbers from (2.30). In both figures, a slope of −2 is visible for p = 1, a slope
of −4 for p = 2 and a slope of −6 for p = 3, which is in agreement with (2.38) for
a natural boundary condition or an element-wise stabilised essential boundary
condition.

Experiments with an L2-projection in one and three dimensions and with a
globally stabilised essential boundary condition along Γtrim in three dimensions
have also been found to yield the theoretically predicted proportionality rates
from (2.38), (2.39) and (2.45), but are not presented here for the sake of brevity.

2.6 Existing conditioners and solvers

Currently there are different approaches to improve or overcome the condi-
tioning problems associated with FCM. The authors of [5] have eliminated basis
functions with a volume fraction smaller than a certain volume fraction ε (which
was set to 10−6). Following (2.38), solving a two-dimensional Poisson’s problem
with cubic splines then still allows condition numbers up to 1024. To signifi-
cantly reduce the condition number with this strategy, ε would have to be set
much larger, which reduces the quality of the used function space. In many arti-
cles (e.g. [2, 7–15]), the norm of cut-off functions is increased by virtual stiffness,
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p=1

p=2

p=3

Figure 2.13: Condition numbers against η for the three-dimensional test case
with an element-wise stabilised essential boundary condition along the trimmed
boundary for p ∈ {1, 2, 3}.

which implies that a(·, ·) multiplied by a small parameter α -usually in the range
of (10−8 − 10−14) for higher-order splines [2]- is also integrated over the ficti-
tious domain. Although this approach has been shown to be feasible in many
situations, from a mathematical perspective this is not consistent with the orig-
inal problem and decreases the accuracy with increasing α [11]. Furthermore,
following (2.30), this still allows condition numbers of up to α−1. Therefore
this forces an inconvenient compromise between conditioning and accuracy to
be made. Due to the lack of proper conditioning techniques, the authors of
[8] resort to direct solvers which perform better than iterative methods for the
poorly conditioned systems encountered in FCM. As discussed in Subsection 2.2
however, direct solvers applied to systems with large condition numbers can still
give inaccurate results through error propagation. Furthermore, direct solvers
generally require O(n3) flops and O(n2) memory storage, opposed to O(n2)
flops and O(n) memory storage that are typically required for iterative solvers
for an n× n system [22–24]. Therefore iterative solvers are preferred for large-
scale simulations. As all these strategies have clear drawbacks, a new strategy
to improve the conditioning of FCM systems is proposed in the next section.
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(a) Unscaled basis functions. (b) Basis functions scaled to ‖φ‖L2 = 1.

Figure 3.1: Different bases for the same finite-dimensional function space.

3 Improving the conditioning by means of basis
function scaling

3.1 Basis function scaling

As shown in subsections 2.3, 2.4 and 2.5, the conditioning problems associated
with the Finite Cell Method are caused by the large differences between the
magnitude of the norms of separate basis functions. To improve the condi-
tioning, it is proposed to scale the basis functions such that all basis functions
have the same norm. Doing this does not change the finite-dimensional function
space but just changes the basis that is used for it. Therefore the approximated
solution is unaffected. An example with ‖φ‖L2 = 1 for all basis functions is
displayed in Figure 3.1.

As a result of the basis function scaling (from here on simply referred to as
scaling), inequality (2.32) yields κ2 ≥ 1 as a lower bound for the condition num-
ber. It should be noted that this strategy only decreases the lower bound for
the condition number from inequality (2.38) and does not guarantee to reduce
the condition number itself. Also, singular systems cannot become regular after
scaling the basis functions. In Subsection 3.2 and Section 5, the effectiveness of
scaling will be studied numerically.

The scaled system of equations can be formed by pre- and post-conditioning
the original system of equations

Ku = l, (3.1)
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with the diagonal matrix

D =


1

‖φ1‖k
. . .

1
‖φn‖k

 , (3.2)

such that the scaled system of equations becomes

DKDy = Dl,

u = Dy.
(3.3)

The scaled matrix has the value 1 on all of its diagonals and is diagonally
dominant because of the Cauchy-Schwarz inequality

DKD =

{
(DKD)i,i = k(φi,φi)

‖φi‖2k
=
‖φi‖2k
‖φi‖2k

= 1,

(DKD)i,j =
k(φi,φj)
‖φi‖k‖φj‖k ≤

‖φi‖k‖φj‖k
‖φi‖k‖φj‖k = 1 (i 6= j).

(3.4)

System (3.3) shows that scaling is the same as using a diagonal pre- and post-
conditioner. It is known from literature that diagonal pre- and post-conditioners
do not guarantee to reduce the condition number [25, 26]. In [27] it is mentioned
that especially for the Euclidean norm, optimality of a diagonal pre- and post-
conditioner is usually not easily verified. However, Theorem 4.3 in [27] does
prove that

κ2(DKD) ≤ qκ2(D̃KD̃), (3.5)

with D the diagonal matrix as in (3.2), D̃ the diagonal matrix that optimally
scales K and q the maximal number of nonzero elements in a row or column
of K. For rectilinear grids, which are applied in all experiments in this work,
q = (p+ 1)d when a scalar equation is solved and q = d̃(p+ 1)d when a vector

equation is solved, with p the spline order and d and d̃ the number of dimensions
of the domain and the vector-field respectively. Because this bounds the condi-
tion number by a known constant multiplied by the optimally scaled condition
number, scaling with D is at least quasi-optimal.

It is noted that scaling with the FCM-norm is not the only option. As b(φ, φ)
can be smaller than zero, it is possible that a function with a large influence
on the solution is small in norm. It can therefore be argued that it might be
better to scale with

√
a(φ, φ) + |b(φ, φ)|+ c(φ, φ) or

√
a(φ, φ) + c(φ, φ), which

are equivalent as |b(φ, φ)| ≤ a(φ, φ) + c(φ, φ) (see (2.9)), such that

a(φ, φ) + c(φ, φ) ≤ a(φ, φ) + |b(φ, φ)|+ c(φ, φ)

≤ 2 (a(φ, φ) + c(φ, φ)) .
(3.6)
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Defining diagonal matrices Da|b|c, Dac and D∗ as

Da|b|c =

{ (
Da|b|c

)
i,i

= 1√
a(φi,φi)+|b(φi,φi)|+c(φi,φi)

,(
Da|b|c

)
i,j

= 0 (i 6= j),

Dac =

{
(Dac)i,i = 1√

a(φi,φi)+c(φi,φi)
,

(Dac)i,j = 0 (i 6= j),

D∗ =

 (D∗)i,i =

√
a(φi,φi)+c(φi,φi)√

a(φi,φi)+|b(φi,φi)|+c(φi,φi)
,

(D∗)i,j = 0 (i 6= j),
= Da|b|cD

−1
ac ,

(3.7)

it holds that Da|b|c = D∗Dac and Dac = D−1
∗ Da|b|c and furthermore

‖D∗‖2 = max
i∈{1,...,n}

√
a(φi, φi) + c(φi, φi)√

a(φi, φi) + |b(φi, φi)|+ c(φi, φi)
≤ 1,

‖D−1
∗ ‖2 = max

i∈{1,...,n}

√
a(φi, φi) + |b(φi, φi)|+ c(φi, φi)√

a(φi, φi) + c(φi, φi)
≤
√

2,

(3.8)

such that κ2(D∗) ≤
√

2. Equivalence follows from

κ2(Da|b|cKDa|b|c) = κ2(D∗DacKDacD∗)

≤ κ2(D∗)
2κ2(DacKDac) ≤ 2κ2(DacKDac),

κ2(DacKDac) = κ2(D−1
∗ Da|b|cKDa|b|cD

−1
∗ )

≤ κ2(D∗)
2κ2(Da|b|cKDa|b|c) ≤ 2κ2(Da|b|cKDa|b|c),

(3.9)

where it is used that, for induced norms

κ(AB) = ‖AB‖‖ (AB)
−1 ‖ = ‖AB‖‖B−1A−1‖

≤ ‖A‖‖A−1‖‖B‖‖B−1‖ = κ(A)κ(B).
(3.10)

For large β, it can even be shown that scaling with ‖φ‖k is equivalent to scaling
with

√
a(φ, φ) + c(φ, φ). When the penalty factor β ≥ γC everywhere on the

domain for some constant γ > 1, (2.9) can be rewritten as

|b(φ, φ)| ≤ C

ε
a(φ, φ) +

ε

γC
c(φ, φ) =

1
√
γ

(a(φ, φ) + c(φ, φ)) , (3.11)

for ε =
√
γC (note that this implies C < ε < β). Therefore

√
γ − 1
√
γ

(a(φ, φ) + c(φ, φ)) ≤ a(φ, φ) + b(φ, φ) + c(φ, φ)

≤
√
γ + 1
√
γ

(a(φ, φ) + c(φ, φ)) ,

(3.12)
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such that by a similar derivation
√
γ − 1
√
γ + 1

κ2(DKD) ≤ κ2(DacKDac) ≤
√
γ + 1
√
γ − 1

κ2(DKD). (3.13)

As in this work all experiments were done with β = 2C, scaling with alternative
scaling factors did not yield any significant differences in the condition number
compared to standard diagonal scaling. Because of that, we propose to scale
with the FCM-norm as this is the simplest option, the only option that guar-
antees diagonal dominance and because of the mathematical evidence that this
bounds the condition number by q times the optimally scaled condition number.
When the value of β is reduced however, it may be profitable to scale with a
different factor.

Because, for β large enough, the scaling procedure is independent of β, im-
proving the condition number through scaling can be applied parallel with opti-
mising β for accuracy, as proposed in [8]. Besides optimising β for accuracy, one
could also study the effect of varying the value of β on the condition number,
especially in combination with scaling. Studying these effects and optimising β
for conditioning and accuracy in combination with scaling is beyond the scope
of this work.

3.2 Results

Basis function scaling has been applied to the test cases from Section 2.5. The
scaling significantly decreases the condition number and, except for systems
with a globally stabilised essential boundary condition, has been observed to
result in a condition number that is practically independent of η. Figure 3.2
displays the scaled and unscaled condition numbers for the L2-projection in
two dimensions for p = 0 and p = 2. In all figures in this section, the green
circles represent the scaled condition numbers and the red circles represent the
unscaled condition numbers. For p = 0, K is diagonal, such that after scaling it
becomes the identity matrix with κ2(DKD) = 1, which is visible in Figure 3.2a.
This is clearly optimally scaled, as also follows from (3.5).

Figures 3.3 and 3.4 display the scaled and unscaled condition numbers for
Laplace’s problem in two dimensions with a natural boundary condition and
an element-wise stabilised essential boundary condition for p = 2 and p = 3.
Figure 3.5 displays the scaled and unscaled condition numbers for Laplace’s
problem in three dimensions with a natural boundary condition and an element-
wise stabilised essential boundary condition for p = 2. It is visible that for all
experiments the condition numbers are significantly reduced and are practically
independent of η.

Figure 3.6 displays the scaled and unscaled condition numbers for Laplace’s
problem in two and three dimensions with a globally stabilised essential bound-
ary condition for p = 2. It is visible that for all experiments the condition
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(a) p = 0. (b) p = 2.

Figure 3.2: Unscaled (red) and scaled (green) condition numbers against η for
the two-dimensional L2-projection.

(a) Natural boundary condition. (b) Element-wise stabilised essential
boundary condition.

Figure 3.3: Unscaled (red) and scaled (green) condition numbers against η for
the two-dimensional test case for p = 2.
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(a) Natural boundary condition. (b) Element-wise stabilised essential
boundary condition.

Figure 3.4: Unscaled (red) and scaled (green) condition numbers against η for
the two-dimensional test case for p = 3.

(a) Natural boundary condition. (b) Element-wise stabilised essential
boundary condition.

Figure 3.5: Unscaled (red) and scaled (green) condition numbers against η for
the three-dimensional test case for p = 2.
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(a) Two-dimensional. (b) Three-dimensional.

Figure 3.6: Unscaled (red) and scaled (green) condition numbers against η for
the test case with a globally stabilised essential boundary condition along the
trimmed boundary for p = 2.

numbers are significantly reduced, but certainly not independent of η. It is no-
ticed that the slope in the scaled condition numbers is equal to the difference in
the slope of the unscaled condition numbers of the globally stabilised essential
boundary condition and the slope of the unscaled condition numbers of the nat-
ural and element-wise stabilised essential boundary condition. It is anticipated
that this behaviour is due to the large stabilisation factor β for small η, which
causes large differences in magnitude between the bulk and boundary terms. As
mentioned in Section 2, β scales with 1/h̃ ≈ η−1/d, which is exactly the slope
in the scaled condition numbers. Verification of this hypothesis is a topic of
further study.
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4 Solving FCM systems using iterative solvers

Systems of equations can be solved by either direct or iterative methods. As
mentioned in Section 2.6, iterative solvers are preferred as they generally only
require O(n2) flops and O(n) memory storage, opposed to direct solvers that
typically require O(n3) flops and O(n2) memory storage for an n × n system
[22–24]. However, the convergence speed of most iterative solvers depends on
the condition number, hence they perform poorly on badly conditioned systems.
The Conjugate Gradient (CG) method to solve symmetric positive definite ma-
trices is one of the best known iterative solvers and has proven to be very
effective [20, 28]. Because of that, in this work we will study the effectiveness
of the CG method for solving FCM systems.

4.1 Conjugate Gradient method

For a symmetric positive definite (SPD) matrix A, the bilinear operator(
x, y
)
A

= xTAy, (4.1)

is symmetric, bounded and coercive on L2 (Rn) and therefore forms an inner
product that induces the norm ‖ · ‖A for which it holds that

λmin‖x‖22 ≤ ‖x‖2A ≤ λmax‖x‖22, (4.2)

with λmin and λmax the minimal and maximal eigenvalue of A respectively. It
should be noted that when A is an FCM-matrix, it holds that (·, ·)A = k(∗, ∗)
and ‖ · ‖A = ‖ ∗ ‖k. The Conjugate Gradient method (CG) solves SPD systems
and is based on orthogonality with respect to (·, ·)A. Suppose the system

Ax = b, (4.3)

is to be solved iteratively using CG with the approximation and residual after
i iterations denoted by xi and ri = b −Axi respectively. In every iteration a
vector is created and added to a growing set of mutually perpendicular (w.r.t.
(·, ·)A) vectors {p

1
, . . . , p

i
}, where p

i
is created in the ith iteration. The ith ap-

proximation xi is then the orthogonal projection of the solution onto the span of
all vectors created so far 〈p

1
, . . . , p

i
〉. Because p

i
is orthogonal to 〈p

1
, . . . , p

i−1
〉,

this is the same as orthogonally projecting the solution onto xi−1 + 〈p
i
〉. This

reduces the computational cost significantly and causes every subsequent itera-
tion to be equally expensive, which is the main reason for why CG is so efficient
when compared to other projection methods where the computational cost is
not linear with the rank of the projection space. To minimise the ‖ · ‖A-norm
(and with that the FCM-norm) of the next approximation, the ith projection
direction p

i
is based on the direction of the steepest descend

∇‖x− xi−1‖2A ∝ A
(
x− xi−1

)
= ri−1, (4.4)
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and then orthogonalised to 〈p
1
, . . . , p

i−1
〉. The vector x − xi−1 is already or-

thogonal to 〈p
1
, . . . , p

i−1
〉 however, as xi−1 is the orthogonal projection of x

onto 〈p
1
, . . . , p

i−1
〉

x− xi−1 ⊥(·,·)A 〈p1
, . . . , p

i−1
〉. (4.5)

Also

〈p
1
, . . . , p

i−1
〉 = 〈p

1
, . . . , p

i−2
, ri−2〉

= 〈p
1
, . . . , p

i−2
, ri−3 + γAp

i−2
〉 for some γ

= 〈p
1
, . . . , p

i−2
,Ap

i−2
〉 ri−3 ∈ 〈p1

, . . . , p
i−2
〉

= 〈p
1
,Ap

1
, . . . ,Ai−2p

1
〉 induction.

(4.6)

Combining (4.5) and (4.6) yields

x− xi−1 ⊥(·,·)A〈p1
, . . . , p

i−1
〉

= 〈p
1
,Ap

1
, . . . ,Ai−2p

1
〉

⊃ A〈p
1
,Ap

1
, . . . ,Ai−3p

1
〉

= A〈p
1
, . . . , p

i−2
〉,

(4.7)

and because of the symmetry of A

ri−1 = A
(
x− xi−1

)
⊥(·,·)A 〈p1

, . . . , p
i−2
〉, (4.8)

such that ri−1 only has to be orthogonalised to p
i−1

to get p
i
, hence

p
i

= ri−1 + βi−1pi−1
, (4.9)

with(
p
i
, p
i−1

)
A

=
(
ri−1 + βi−1pi−1

, p
i−1

)
A

= 0,

⇒ βi−1 = −

(
ri−1, pi−1

)
A(

p
i−1

, p
i−1

)
A

= −

(
ri−1, pi−1

)
A(

ri−2, pi−1

)
A

p
i−2
⊥(·,·)A p

i−1

= −
(
ri−1, (x− xi−1)− (x− xi−2)

)
A(

ri−2, (x− xi−1)− (x− xi−2)
)
A

= −
(
x− xi−1, ri−1 − ri−2

)
A(

ri−2, (x− xi−1)− (x− xi−2)
)
A

A = AT

=

(
x− xi−1, ri−1

)
A(

ri−2, x− xi−2

)
A

=
rTi−1ri−1

rTi−2ri−2

x− xi−1 ⊥(·,·)A ri−2.

(4.10)
The vector x is then orthogonally projected onto xi−1 + 〈p

i
〉 such that

xi = xi−1 + αipi, (4.11)
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with(
x− xi, pi

)
A

=
(
x− xi−1 − αipi, pi

)
A

= 0,

⇒ αi =

(
x− xi−1, pi

)
A(

p
i
, p
i

)
A

=

(
x− xi−1, ri−1 + βi−1pi−1

)
A(

p
i
, p
i

)
A

=

(
x− xi−1, ri−1

)
A(

p
i
, p
i

)
A

=
rTi−1ri−1

pT
i
Ap

i

x− xi−1 ⊥(·,·)A p
i−1

.

(4.12)

After initialisation, CG reduces to the following algorithm.

while ‖r‖2 > tol do
β ← (rT r)/(sT s)
p← r + βp

α← (rT r)/(pTAp)
x← x+ αp
s← r
r ← b−Ax

end while

4.2 Convergence properties of CG

In exact arithmetics, when b is built up of m eigenspaces of A, CG converges in
m iterations as in that case x ∈ 〈p

1
, . . . , p

m
〉 such that xm = x. For the system

Ax = b with A an n×n matrix, m ≤ n and therefore CG ideally converges in at
most n steps. In finite precision arithmetics, the orthogonality between distant
projection vectors is lost however. Especially with large condition numbers,
the ratio between the magnitudes of the separate eigenspaces present in the
sequence A(x−x0),A2(x−x0), . . . , which is what the projection space is built-
up of, rapidly grows larger than the machine precision. Because the method
projects w.r.t. the ‖ · ‖A-norm, the method is still absolutely converging with
respect to this norm (and with that to the FCM-norm), but generally requires
more than m steps. As the ‖ ·‖A-norm is equivalent with the residual norm, the
residual converges as well, but is not guaranteed to decrease in every subsequent
iteration. As mentioned in Section 2.2, a convergence bound is given in [20]

‖x− xi‖A ≤ 2

(√
κ2(A)− 1√
κ2(A) + 1

)i
‖x− x0‖A, (4.13)

which also indicates that CG converges faster for well-conditioned systems.
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It should be noted that when solving a system, ‖x − xi‖A is unknown and
only the residual can be calculated. The equivalence between the residual and
‖x− xi‖A depends on the condition number

‖b−Ay‖22
‖A‖2

≤ ‖x− xi‖2A ≤ κ2(A)
‖b−Ay‖22
‖A‖2

. (4.14)

Therefore, for better-conditioned systems the residual is a better estimate for
the ‖ · ‖A-norm, which is usually the quantity of interest as this is equal to the
FCM-norm and equivalent to the H1(Ω)-norm.

4.3 Results

CG has been applied to the systems resulting from the two-dimensional exper-
iment in Subsection 2.5, with p = 2 with a natural boundary condition and
an element-wise stabilised essential boundary condition applied along the un-
matching boundary. The solution that was approximated is u = arctan (y/x).
Figures 4.1 and 4.3 show the convergence behaviour for systems that have large
unscaled condition numbers and Figures 4.2 and 4.4 show the convergence be-
haviour for systems that have relatively small unscaled condition numbers. In
these figures, it is visible that convergence is slow and that the ‖ · ‖A-norm and
the residual norm are very loosely equivalent for large condition numbers. The
iterations were stopped when the residual first became smaller than 10−12, which
supposedly indicated the system had converged. However, the figures show that
for large condition numbers the system was clearly not yet converged in the
‖ · ‖A-norm. Figures 4.5 and 4.6 display the average convergence behaviour and
standard deviation for 10000 systems in which the grid was vertically shifted
along Γfit by a random variable taken from a uniform distribution in the range
[0, 1) multiplied by the grid size h. In these figures it is visible that not only
the convergence is slower and the equivalence between the ‖ · ‖A-norm and the
residual norm is looser for unscaled systems, but that also the variation is much
larger, causing uncertainty in the quality of the solution of unscaled systems.

Solving systems very accurately is only relevant if the discretisation error is small
as well. For the grid with h = 1/4 that is used here, depending on the shift,
‖u−uh‖k ≈ 2 ·10−2 for the natural boundary condition and ‖u−uh‖k ≈ 3 ·10−2

for the element-wise stabilised essential boundary condition, with u denoting the
analytical solution and uh the (fully converged) numerical solution. Therefore
solving the linear system up to ‖x−xi‖A ≈ 10−5 for the natural boundary con-
dition and ‖x− xi‖A ≈ 10−4 for the element-wise stabilised essential boundary
condition -as is done for the unscaled system- would suffice and scaling is not
required. When the grid is refined, however, the discretisation error decreases
and at a certain moment the inaccuracy of the linear solver becomes the lead-
ing order error. As the inaccuracy of the linear solver is much larger for the
unscaled system than for the scaled system, the scaled system can be solved up
to a higher precision than the unscaled system. This is illustrated in Figure 4.7
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Figure 4.1: Convergence of CG for the test case with a natural boundary con-
dition along the unmatching boundary. The grid is shifted 0.26h, resulting in
a condition number of 1.2 · 1020 for the unscaled matrix and 22 for the scaled
matrix.

Figure 4.2: Convergence of CG for the test case with a natural boundary con-
dition along the unmatching boundary. The grid is not shifted, resulting in
a condition number of 3.9 · 107 for the unscaled matrix and 22 for the scaled
matrix.
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Figure 4.3: Convergence of CG for the test case with an essential boundary
condition on the trimmed boundary. The grid is shifted 0.26h, resulting in a
condition number of 5.8 · 1021 for the unscaled matrix and 373 for the scaled
matrix.

Figure 4.4: Convergence of CG for the test case with an essential boundary
condition on the trimmed boundary. The grid is not shifted, resulting in a
condition number of 1.0 · 107 for the unscaled matrix and 174 for the scaled
matrix.
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(a) ‖b−Axi‖2 (b) ‖x− xi‖A

Figure 4.5: Average convergence of CG for 10000 randomly shifted test cases
with a natural boundary condition on the trimmed boundary.

(a) ‖b−Axi‖2 (b) ‖x− xi‖A

Figure 4.6: Average convergence of CG for 10000 randomly shifted test cases
with an essential boundary condition on the trimmed boundary.
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Figure 4.7: Convergence plot under grid refinement, where the iterative solver is
stopped when the residual error first becomes smaller than 10−7 for the natural
boundary condition.

for the natural boundary condition and in Figure 4.8 for the element-wise sta-
bilised essential boundary condition. These figures display the average error
and standard deviation of 10 random shifts in the H1-norm, as the FCM-norm
‖ · ‖k is grid-dependent. It should be mentioned that with a tolerance of 10−12

as in the previous experiment, one needs an extremely fine grid to show this
effect. Therefore the tolerance in this experiment is set to 10−7. The straight
line of slope 2 (= p) in Figure 4.7, depicting the discretisation error before the
inaccuracy of the linear solver becomes dominant, is in agreement with Cea’s
lemma [22]. The straight line of the same slope in Figure 4.8 indicates the same
convergence rate, but there is no mathematical basis for this as the used op-
erator is grid-dependent and therefore Cea’s lemma does not apply here. The
slight divergence of the scaled system for the smallest grids can be explained by
the dependence of the scaled condition number κ2(DKD) on the grid size h, as
demonstrated in Subsection 5.2.2.
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Figure 4.8: Convergence plot under grid refinement, where the iterative solver is
stopped when the residual error first becomes smaller than 10−7 for the element-
wise stabilised essential boundary condition.
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(a) Original position.

x
y

(b) Intermediate position.

xy

(c) Final position.

Figure 5.1: Schematic representation of the setup with the centre of the square
located at the corner of an element.

5 Numerical examples

In this section, Laplace’s problem and a linear elasticity problem are solved on
grids at, relative to the domain, different positions and orientations to further
study the effect of basis function scaling on the condition number of the Finite
Cell Method. Also, the effect of grid refinement in combination with scaling on
the condition number is studied.

5.1 Laplace’s problem on a rotated domain

In the first example, Laplace’s problem is solved on a squared domain of length
1.06. This domain is placed on a uniform, rectilinear grid with grid size h = 1/4
and spline order p = 2, with the centre of the square located at the corner of
an element. The square is then rotated over 45◦ in 1000 steps, to create 1001
different discretisations. Essential boundary conditions are stabilised element-
wise. A schematic representation of the setup is displayed in Figure 5.1.

The problem that is solved is{
−∆u = cos(x)− cos(y) in Ω,

u = cos(x)− cos(y) on ∂Ω,
(5.1)

for Ω = (−0.53, 0.53)2, with analytical solution

u = cos(x)− cos(y), (5.2)

which is displayed in Figure 5.2. The discretisation errors and the condition
numbers for the different discretisations are displayed in Figure 5.3 and Fig-
ure 5.4 respectively.

In Figure 5.3a, the quality of the approximation is practically independent of
the smallest volume fraction η and in Figure 5.3b it is visible that the quality
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Figure 5.2: Analytical solution of Problem (5.1).

(a) Plotted against η. (b) Plotted against θ.

Figure 5.3: Discretisation errors in the H1
0 - and L2-norm for the domain with the

centre of the square located at the corner of an element. The yellow markers
display the discretisation errors of the FCM-solution and the black markers
display the discretisation errors of projections onto the used function space.

(a) Plotted against η. (b) Plotted against θ.

Figure 5.4: Unscaled (red) and scaled (green) condition numbers for the domain
with the centre of the square located at the corner of an element.
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(a) Original position.
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(b) Intermediate position.

xy

(c) Final position.

Figure 5.5: Schematic representation of the setup with the centre of the square
located at the centre of an element.

of the approximation has a slight dependence on θ. This dependence is a con-
sequence of the fact that the discrete trial space is orientation dependent. This
dependence is demonstrated by the black markers that display the discretisation
error of the best possible approximation which is obtained by projecting the an-
alytical solution onto the function space in H1

0 and L2 sense. In Figure 5.4a,
the unscaled condition number shows a similar dependence on η as derived in
Subsection 2.4 and observed in Subsection 2.5. The scaled condition numbers
show no dependence on η, as was also observed in Subsection 3.2.

The same experiment was conducted with the centre of the square located at the
centre of an element. A schematic representation of this setup is displayed in
Figure 5.5. The discretisation errors are visible in Figure 5.6 and the condition
numbers for the different discretisations are displayed in Figure 5.7.

In Figure 5.6a, it is observed that the quality of the approximation is prac-
tically independent of η again and in Figure 5.6b a similar slight dependence of
the quality of the approximation on θ as in Figure 5.3b is visible. In Figure 5.7a,
the scaled condition number shows a very different behaviour as was observed in
Figure 5.4a and Subsection 3.2 however. The scaled condition numbers are still
significantly lower than the unscaled condition numbers, but for certain values
of θ the scaled condition numbers are much larger than the scaled condition
numbers in Figure 5.4 and additionally they are observed to be dependent on
η. This behaviour has been studied by comparing the discretisations for which
the scaled condition number was relatively large to discretisations with small
values of η and small scaled condition numbers. It was observed that condition
numbers of discretisations with small values of η caused by cut-off elements as
in Figure 5.8a -which were analysed in Subsection 2.4 and present in Subsec-
tion 3.2- are reduced by scaling to significantly lower values than the condition
numbers of discretisations with small values of η caused by cut-off elements as
in Figure 5.8b. Also the scaled condition numbers of discretisations with small
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(a) Plotted against η. (b) Plotted against θ.

Figure 5.6: Discretisation errors in the H1
0 - and L2-norm for the domain with the

centre of the square located at the centre of an element. The yellow markers
display the discretisation errors of the FCM-solution and the black markers
display the discretisation errors of projections onto the used function space.

(a) Plotted against η. (b) Plotted against θ.

Figure 5.7: Unscaled (red) and scaled (green) condition numbers for the domain
with the centre of the square located at the centre of an element.
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Ω

(a) Small cut-off element for which only
one function is only supported on the very
small domain.

Ω

(b) Small cut-off element for which more
than one functions are only supported on
the very small domain.

Figure 5.8: Schematic representation of two differently cut-off elements that
may cause a small volume fraction η.

cut-off elements as in Figure 5.8a were practically independent of η, as opposed
to condition numbers of discretisations with small cut-off elements as in Fig-
ure 5.8b, that showed a strong dependence on η.

This behaviour can be explained by the number of basis functions that are
only supported on a small cut-off element. For small cut-off elements as in Fig-
ure 5.8a, only one basis function is only supported on this small cut-off element,
and after scaling this results in a condition number independent of η. (For
Lagrange-elements of order p > 1 this does not hold, as with these elements
there are more than one functions that are only supported on this small cut-off
element, such that a situation similar to Figure 5.8b occurs.) For small cut-off
elements of the form displayed in Figure 5.8b, p+1 basis functions are only sup-
ported on the small cut-off element. On the intersection of their support and
Ω, these functions are much more dependent on the vertical coordinate than
on the horizontal coordinate however, with vertical and horizontal coordinates
relative to the orientation in Figure 5.8b. Figure 5.9 shows for p = 2 that for
the relatively large value of η = 10−2 the basis functions only show a very slight
dependence on the horizontal coordinate, and that for η = 10−4 the functions
are virtually independent of the horizontal coordinate. This causes these func-
tions to become almost linearly-dependent, from here on referred to as quasi
linearly-dependent, which is not repaired by scaling and therefore the condition
number is reduced significantly less.

To verify wether the quasi linear-dependence is what limits the performance
of the basis function scaling, a linear-dependentness index

χ =
1 + α

1− α
, (5.3)
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(a) φ1 for η = 10−2. (b) φ2 for η = 10−2. (c) φ3 for η = 10−2.

(d) φ1 for η = 10−4. (e) φ2 for η = 10−4. (f) φ3 for η = 10−4.

Figure 5.9: The functions that are only supported on a small cut-off element as
in Figure 5.8b for p = 2 with η ∈ {10−2, 10−4}, scaled with the L2-norm. The
axes are relative to the grid size h, such that the full element is (0, 1)2.

is introduced, with

α = max
i,j

∣∣(φi, φj)k∣∣
‖φi‖k‖φj‖k

. (5.4)

From the Cauchy-Schwarz inequality it is known that 0 ≤ α ≤ 1, with α = 0
indicating that all functions are orthogonal and α = 1 indicating that there
is a pair of linearly-dependent functions. The linear-dependentness index χ is
formulated as in (5.3) because this would be the condition number of a scaled
system in which, except for the two functions that yield the maximum in (5.4),
all other functions are orthogonal. Therefore α = 0 yields χ = 1 as a scaled sys-
tem of orthogonal functions gives the identity matrix and α = 1 yields χ = ∞
as a system with a set of linearly-dependent functions is singular. The scaled
condition numbers from Figure 5.7b are plotted together with χ in Figure 5.10.
In this figure χ shows a similar behaviour and peaks at the same value of θ as
the scaled condition number, which strongly indicates that it is the quasi linear-
dependence that limits the performance of the basis function scaling. Further-
more it is visible that χ is smaller than the scaled condition numbers, which is
because the functions that yield the maximum in (5.4) are not orthogonal to all
other functions as assumed in (5.3).

A possible resolution to this problem is the orthonormalisation of these func-
tions by a Gram-Schmidt procedure, as displayed in Figure 5.11 for the functions
from Figure 5.9. This is a simple operation as only a very limited number of
functions is involved and the inner products between these are known. Also it
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Figure 5.10: Scaled condition numbers (green) and linear-dependentness index
χ (black) plotted against θ.

can be implemented using a similar pre- and post-conditioner, which in this case
is not diagonal but very sparse lower triangular, such that the system becomes

DKDT y = Dl,

u = DT y.
(5.5)

Because the support of the orthonormalised functions is unchanged, the sparsity
pattern of the conditioned system does not change either, such that an iteration
in the solving procedure is equally expensive.

The orthonormalisation was tested by applying the Gram-Schmidt procedure
to the functions with χ > 10. In Figure 5.12, the resulting condition numbers
are plotted for Laplace’s problem on the rotating domain with the centre of the
square located at the centre of an element. This shows a very promising result,
but as this only involves one example, more research is required to verify the
effectiveness of this method and to study at what value of χ the orthonormalisa-
tion should be applied. Furthermore there are also other possible resolutions to
the problem of the quasi linearly-dependent functions, such as replacing these
functions by an averaged function -which will have a negligible effect on the
accuracy as only a fraction of the domain is involved- and locally refining the
grid.

5.2 Linear elastic deformation of a plate with a circular
exclusion

In the second example a linear elasticity problem is solved on a square of size
1 with a circular exclusion of radius R = 1/4 at the corner. A schematic repre-



Numerical examples 44

(a) Original φ1. (b) Original φ2. (c) Original φ3.

(d) Orthogonalised φ̃1. (e) Orthogonalised φ̃2. (f) Orthogonalised φ̃3.

Figure 5.11: The original and orthonormalised (w.r.t. the L2-norm) functions
that are only supported on a small cut-off element as in Figure 5.8b for p = 2
with η = 10−4, scaled with the L2-norm. The axes are relative to the grid size
h, such that the full element is (0, 1)2.

(a) Plotted against η. (b) Plotted against θ.

Figure 5.12: Unscaled (red), scaled (green) and scaled and orthonormalised
(yellow) condition numbers for the domain with the centre of the square located
at the centre of an element.



Numerical examples 45

x

y Γn

Γe

Γe

Γe

Γe

1

1

1/4
Figure 5.13: Schematic representation of the domain with a circular exclusion.

sentation of the domain is displayed in Figure 5.13.

An isotropic elasticity model is applied using Lamé’s first parameter λ and
Lamé’s second parameter or shear modulus µ. The problem that is solved is set
such that the solution coincides with the analytical solution for an infinite plate
with a circular exclusion of radius R at the origin under axial tension T in the
x direction

ux =
Tx

µ

(
(2µ+ λ)r2 + (µ− λ)R2

4(µ+ λ)r2
+

3
4R

4 + x2R2

r4
− x2R4

r6

)
,

uy =
Ty

µ

(
−λr2 + (µ+ 3λ)R2

4(µ+ λ)r2
−

3
4R

4 + y2R2

r4
+
y2R4

r6

)
,

(5.6)

with r =
√
x2 + y2 denoting the distance from the origin. The analytical solu-

tion for T = 1, λ = 1 and µ = 1, which are used in this example, is displayed in
Figure 5.14.

The problem is stated as −div(σ(u)) = 0 in Ω,
nσ(u) = 0 on Γn,

u = u on Γe,
(5.7)

with Ω = (0, 1)2\B0,R, Γn = ∂B0,R ∩ (0, 1)2 and Γe = ∂(0, 1)2\B0,R as in
Figure 5.15, with u as in (5.6) and with σ(u) =

(
λII + 2µ4Is

)
: ∇u where I and

4Is denote the second-order identity tensor and symmetric fourth-order identity
tensor respectively.
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(a) x-deformation on the original domain. (b) y-deformation on the original domain.

(c) x-deformation on the deformed do-
main.

(d) y-deformation on the deformed do-
main.

Figure 5.14: Analytical solution.
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(c) Final position.

Figure 5.15: Schematic representation of the domain with a circular exclusion
rotated on the grid.

5.2.1 Grid rotation

Similar to the previous example, the domain is placed on a uniform, rectilinear
grid with grid size h = 1/4 and spline order p = 2, with the centre of the square
located at the centre of an element. The square is then rotated over 45◦ in 1000
steps, to create 1001 different discretisations. A schematic representation of the
setup is displayed in Figure 5.15.

Essential boundary conditions are stabilised element-wise by separate stabili-
sation terms for the first and second Lamé parameter

c1(u, v) =

∫
Γe

β1(n · u)(n · v)dΓ,

c2(u, v) =

∫
Γe

β2u · vdΓ,

(5.8)

with
β1 = 2λC1,

β2 = 4µC2,
(5.9)

for C1 and C2 satisfying∫
Γe

tr(∇v)2dΓ ≤
∫

Ω

C1tr(∇v)2dΩ,∫
Γe

(n∇sv)2dΓ ≤
∫

Ω

C2(∇sv)2dΩ.

(5.10)

Details about these stabilisation parameters can be found in [8]. The discreti-
sation errors and the condition numbers for the different discretisations are
displayed in Figure 5.16 and Figure 5.17 respectively.

In Figure 5.16a it is observed that the quality of the approximation is prac-
tically independent of η and in Figure 5.16b a slight dependence on θ can be
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(a) Plotted against η. (b) Plotted against θ.

Figure 5.16: Discretisation errors in the H1
0 - and L2-norm. The yellow markers

display the discretisation errors of the FCM-solution and the black markers
display the discretisation errors of projections onto the used function space.

(a) Plotted against η. (b) Plotted against θ.

Figure 5.17: Unscaled (red), scaled (green) and scaled and orthonormalised
(yellow) condition numbers.
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(a) Grid with h = 1/20.
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(b) Grid with h = 1/80.

Figure 5.18: Schematic representation of uniform grid refinement on the domain
with a circular exclusion.

noticed, as was also observed in the example with Laplace’s problem. Fig-
ure 5.17 shows that for certain values of θ, the condition numbers behave as
derived in Subsection 2.4 and observed in Subsection 2.5 and Subsection 3.2,
but for certain other values of θ a different behaviour is observed. For these
other values of θ, the unscaled condition numbers show a dependence on η in
a different slope than predicted by (2.38) and the scaled condition numbers are
relatively large and also show a dependence on η. Studying the discretisations
for which this unexpected behaviour occurred showed that at these values of θ
small cut-off elements as in Figure 5.8b were present. Therefore this behaviour
can be explained in a similar fashion as the effect observed in Figure 5.7 and
is again resolved by the orthonormalisation procedure, which was applied for
functions with a value of χ > 10.

5.2.2 Grid refinement

Problem (5.7) was also solved on uniform, rectilinear grids of different grid sizes
that match the essential boundaries, but do not match the natural boundary,
with a spline order of p = 2. The essential boundary conditions in this example
are applied in a strong manner, such that b(·, ·) = c(·, ·) = 0. A schematic repre-
sentation of the setup is displayed in Figure 5.18. It should be noted that cut-off
elements of the shape as displayed in Figure 5.8b are not possible with these
discretisations, and therefore the orthonormalisation procedure is not applied
here. The behaviour of the unscaled and scaled condition number as well as the
discretisation error for the different grid sizes was studied. The discretisation
errors and the condition numbers for the different discretisations are displayed
in Figure 5.19 and Figure 5.20 respectively.
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Figure 5.19: Discretisation errors in the H1
0 - and L2-norm under grid refinement.

The yellow markers display the discretisation errors of the FCM-solution and
the black markers display the discretisation errors of projections onto the used
function space.

(a) Plotted against the minimal volume
fraction η.

(b) Plotted against the grid size h.

Figure 5.20: Unscaled (red) and scaled (green) condition numbers.
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Figure 5.21: Unscaled η2p+1−k/dκ2(K) plotted against h.

Figure 5.22: Scaled h2κ2(DKD) plotted against η.

The straight lines of slope 2 (= p) for the H1
0 -error and slope 3 (= p+ 1) for the

L2-error in Figure 5.19 are in agreement with Cea’s lemma [22], which applies
here as b(·, ·) = c(·, ·) = 0 such that the FCM operator is independent of the grid.
It should be noted that reducing the condition number by scaling is important
to attain these levels of accuracy, as was demonstrated in Figures 4.7 and 4.8.
Figure 5.20a shows that the unscaled condition numbers behave as derived in
Subsection 2.4 and observed in Subsection 2.5. In Figure 5.20b it is visible that
the scaled condition numbers are proportional to 1/h2, and thus are observed
to exhibit the same behaviour as the condition number for standard finite ele-
ments for second-order elliptic PDE’s that is also proportional to 1/h2, caused
by the eigenvalues of the periodic functions with the longest and the shortest
wavelength captured by the grid [22]. The dependence of the unscaled condition
number on η is displayed more clearly in Figure 5.21, in which κ2(K)η2p+1−2/d

is plotted against h to show the relation κ2(K) ≈ Cη−(2p+1−2/d) for some con-
stant C as predicted by (2.38). Figure 5.22 shows κ2(DKD) ≈ C/h2 for some
different constant C by plotting κ2(DKD)h2 against η, which depicts a constant
value.
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6 Conclusion and recommendations

On the basis of the results presented in this work, it is concluded that the con-
ditioning problems that the Finite Cell Method is prone to can be resolved by
diagonal pre- and post-conditioning. From the estimate of the condition number
derived in Subsection 2.4 and the experimental verification in Subsection 2.5,
we can conclude that very small functions -which can occur when elements are
cut- are the main cause of the conditioning problems associated with FCM. The
proposed method to improve the conditioning by diagonal scaling has rigorously
reduced all condition numbers in Subsection 3.2 and Section 5 and has drasti-
cally improved the convergence speed and reliability of the iterative solver in
Subsection 4.3. Scaled systems do not show the discretisation-order dependent
sensitivity of the condition number to the orientation of the grid. Therefore
the simplicity at which higher order discretisations can be implemented in the
Finite Cell Method can be exploited further.

FCM conditioning can be further improved by resolving the problem of quasi
linearly-dependent functions encountered in Subsection 5.1. The proposed method
of orthonormalisation shows very promising preliminary results, but more re-
search is required to verify the effectiveness of this procedure.

A major challenge lies in generalising the scaling procedure for mixed meth-
ods, such that it can be applied to problems in the field of computational fluid
dynamics (CFD). Applying FCM to CFD -where it may even show more advan-
tages than in solid mechanics because of moving domains that generally require
remeshing- will increase the range of applicability of the method. Also the sim-
ulation of flows in porous media can to a great extend be simplified by the
application of the Finite Cell Method.
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Figure A.1: An example of B-splines of order p = 2 with a knot vector Ξ =
{0, 0, 0, 1, 2, 3, 4, 5}.

A B-spline functions

All basis functions used in this work are B-splines [1]. Starting with a non-
decreasing knot vector Ξ = {ξ1, · · · , ξn+p+1} containing the grid-points, B-
splines of order p are constructed by the Cox-de Boor recursion formula [29, 30].
For p = 0 the ith function is

Ni,0(x) =

{
1 if ξi ≤ x < ξi+1,
0 otherwise,

(A.1)

and for p > 0 the ith function is

Ni,p =
x− ξi
ξi+p − ξi

Ni,p−1(x) +
ξi+p+1 − x
ξi+p+1 − ξi+1

Ni+1,p−1(x). (A.2)

B-splines are (p + 1 −m)th-order continuous through a knot where m denotes
the multiplicity (i.e. the amount of times that the same knot is repeated). The
first knot in Figure A.1 has multiplicity p + 1 and therefore is discontinuous
there, such that on the left side an essential boundary can be imposed in a
strong manner. For this reason, matching grids always begin and end with
multiplicity p+ 1. Unmatching grids should be extended far enough beyond Ω
such that all elements that intersect Ω have equally many degrees of freedom.
In Figure A.1 this would imply that Ω = [0, c] with c ≤ 3. Multidimensional
B-splines are constructed by the vector product of knot vectors in different
dimensions. Because of the simple grids that are applied for the Finite Cell
Method, the physical domain is chosen to coincide with the parameter domain.
This is not the general case for the application of B-splines however.
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