
 Eindhoven University of Technology

MASTER

Analysis of advanced aggregation techniques for software metrics

Vasilescu, B.N.

Award date:
2011

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/1f95ea14-4b21-47fc-a249-0eaefa208f14


Analysis of
Advanced Aggregation Techniques

for Software Metrics

Bogdan Vasilescu

July 2011





Eindhoven University of Technology
Department of Mathematics and Computer Science

Analysis of Advanced
Aggregation Techniques

for Software Metrics

Bogdan Vasilescu

in partial fulfilment of the requirements for the degree of
Master of Science in Computer Science and Engineering

Supervisor: dr. Alexander Serebrenik

Examination Committee:
prof. dr. Mark G. J. van den Brand

dr. Serguei Roubtsov
dr. Alexander Serebrenik

Eindhoven, July 2011





Acknowledgements

This thesis is the result of my graduation project, which concludes the mas-
ter program Computer Science and Engineering at the Eindhoven University
of Technology. The project was carried out within the Software Engineer-
ing and Technology group of the department of Mathematics and Computer
Science.

First and foremost I owe my deepest gratitude to my supervisor, Dr.
Alexander Serebrenik, who has continuously supported and encouraged me
throughout this period. His comments, suggestions, and advice were invalu-
able to the completion of this work. One simply could not wish for a better
or friendlier supervisor.

Moreover, I would like to show my gratitude to the members of the
Algorithms group of the department of Mathematics and Computer Science,
for endowing me with an algorithmic mindset and for teaching me to be
critical and conscientious about my work.

Furthermore, I would like to thank the members of my examination
committee, prof. dr. Mark van den Brand and dr. Serguei Roubtsov, for their
feedback after my interim presentations and suggestions for improvement of
this work. Likewise, I am grateful to Vincent Kusters and Martijn Klabbers
for their interest and comments on how to improve the readability of this
thesis.

Additionally, I am indebted to the staff of the Laboratory for Quality
Software for accommodating me during this period, and for creating such a
pleasant and propitious work environment.

Finally, pursuing this master program and writing this thesis would not
have been possible without the financial support of Océ-Nederland B.V.

Bogdan Vasilescu
Eindhoven,
July 2011

2





Abstract

A popular approach to assessing software maintainability and predicting its
evolution involves collecting and analyzing code metrics. However, met-
rics are usually defined on a micro-level (e.g., method, class), and should
therefore be aggregated in order to provide insights in the evolution at the
macro-level (system). In addition to traditional aggregation techniques such
as the mean, median, or sum, econometric aggregation techniques on the one
hand , such as the Gini, Theil, MLD, Kolm, Atkinson, and Hoover inequal-
ity indices, and threshold-based aggregation techniques on the other hand,
such as the approaches in the quality models set forth by the SIG company
or Squale consortium, have been proposed and applied to software metrics.

In this thesis we study several main econometric and threshold-based
aggregation techniques for code metrics, with the goal of distilling require-
ments for future aggregation techniques for software metrics. We perform
our study along two directions. In the first part we assume a theoretical
standpoint and study properties of these techniques relevant to aggregation
of code metrics. Additionally, we show that root-cause analyses can be per-
formed efficiently using the Theil index, and that the aggregation technique
in Squale shares common properties with inequality indices, and has a formal
relation to the Kolm index.

In the second part we present the results of a series of empirical studies
of all three categories of aggregation techniques considered (i.e., traditional,
econometric, and threshold-based) using different metrics and aggregation
levels. For example, we observe consistently high and statistically signifi-
cant correlation between the Gini, Theil, MLD, Atkinson, and Hoover in-
equality indices for all metrics considered, i.e., aggregation values obtained
using these techniques convey the same information regardless of the met-
ric. However, even though it might seem that all these indices are equally
appropriate, this is not true since different indices have different application
domains, emphasize different dimensions of inequality and possess different
decomposability properties.

Finally, based on our theoretical and empirical analyses, in the third
part we propose requirements for future aggregation techniques for software
metrics.

4





Contents

Abstract 4

1 Introduction 10
1.1 Publications arising from this thesis . . . . . . . . . . . . . . 14

I Theoretical analysis 16

2 Traditional aggregation techniques 18

3 Econometric aggregation techniques 22
3.1 Inequality indices and software metrics . . . . . . . . . . . . . 22
3.2 Mathematical properties . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Domain . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Interpretation . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Invariance . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.4 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.5 Transfers principle . . . . . . . . . . . . . . . . . . . . 32
3.2.6 Sensitivity to transfers . . . . . . . . . . . . . . . . . . 33
3.2.7 Population principle . . . . . . . . . . . . . . . . . . . 34
3.2.8 Decomposability . . . . . . . . . . . . . . . . . . . . . 34

3.3 Discussion and summary . . . . . . . . . . . . . . . . . . . . . 41

4 Threshold-based aggregation techniques 44
4.1 SIG star ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Deriving thresholds on metrics . . . . . . . . . . . . . 45
4.1.2 Computing a risk profile . . . . . . . . . . . . . . . . . 46
4.1.3 Deriving thresholds on risk profiles . . . . . . . . . . . 47
4.1.4 Computing a star rating . . . . . . . . . . . . . . . . . 47

4.2 Squale global marks . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.1 Mathematical properties . . . . . . . . . . . . . . . . . 50

4.3 Discussion and summary . . . . . . . . . . . . . . . . . . . . . 56

Concluding remarks 58

6



II Empirical analysis 60

Introduction 61

5 Pilot studies 62
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.1 Data collection . . . . . . . . . . . . . . . . . . . . . . 63
5.2.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.1 Correlation with bugs . . . . . . . . . . . . . . . . . . 65
5.3.2 Correlation between different techniques . . . . . . . . 67

5.4 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . 69
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Extensive correlation study 72
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2.1 Qualitas Corpus Dataset . . . . . . . . . . . . . . . . . 73
6.2.2 Data collection . . . . . . . . . . . . . . . . . . . . . . 74
6.2.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . 75

6.3 Studying the correlation between aggregation techniques . . . 75
6.3.1 Which and how much do aggregation techniques agree? 75
6.3.2 What is the nature of the relation between aggregation

techniques? . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.3 Which index to choose? . . . . . . . . . . . . . . . . . 96

6.4 Studying the evolution of the correlation
between aggregation techniques . . . . . . . . . . . . . . . . . 97

6.5 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . 103
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 Threshold-based aggregation techniques study 106
7.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2.1 Do the SIG and Squale approaches agree? . . . . . . . 109
7.2.2 Do other techniques agree with SIG or Squale? . . . . 109
7.2.3 Does the aggregation level influence correlation? . . . 113

7.3 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . 113
7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8 Highlighting undesirable values in the aggregate 116
8.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.3 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . 122

7



8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Concluding remarks 124

III Requirements 126

9 Requirements for aggregation of software metrics 128

10 Conclusions 132
10.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

List of Figures 135

List of Tables 139

Appendices 153

A Proposed tooling 154
A.1 Example workflow . . . . . . . . . . . . . . . . . . . . . . . . 156
A.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8





Chapter 1

Introduction

Measurement and metrics have long been regarded by software practition-
ers as useful and necessary [25, 42, 75, 89]. Recently, metrics have also been
recognized as part of the software development fabric, essential to under-
standing whether the quality of the software we are building corresponds to
our expectations [88]. Thus, many different metrics have been proposed, as
well as a plethora of tools to compute them and perform quality assessments.

Considering the different stakeholders participating in software projects
(e.g., developers, managers, users, etc.), quality needs to be evaluated at dif-
ferent levels of detail. For example, developers use metrics to assess whether
the implementation meets the design quality guidelines and to identify po-
tential areas of improvement [96]. In contrast, project managers use metrics
to evaluate the project status and assess whether, e.g., the budget will be
exceeded, while maintainers use metrics to assess which modules should be
refactored and what should be upgraded and improved [39].

However, metrics are usually defined at micro level (method, class), while
analyses of quality aspects such as maintainability require insights at macro
(system) level. Moreover, due to privacy reasons, it might be undesirable
to disclose metrics data pertaining to a single developer as opposed to that
pertaining to the entire project [102]. Metrics should therefore be aggregated.

We distinguish between two types of aggregation of software metrics. On
the one hand, aggregation can be performed on values obtained by applying
different metrics to the same software artifacts. For example, the Main-
tainability Index (MI) [83] aggregates the Halstead Effort, McCabe’s cyclo-
matic complexity, the number of lines of code, and the number of comment
lines. Similarly, the Modularization Quality (MQ) [69] aggregates intra-
connectivity (cohesion) and inter-connectivity (coupling).

On the other hand, aggregation can be performed on values obtained by
applying the same metric to different software artifacts, which is also the
focus of this thesis. For example, Weighted Methods per Class (WMC) [22] is
the sum of McCabe’s cyclomatic complexities of methods defined in a class,

10



while average number of lines of code for a class is the arithmetic mean
of the number of lines of code of all the nested methods. Note that the
two types of aggregation are not mutually exclusive, and often the former
encompasses the latter. For example, when computing the Maintainability
Index, one needs to compute the average number of lines of code per module
and the average cyclomatic complexity first.

When focusing on aggregation of values obtained by applying the same
metric to different software artifacts, popular aggregation techniques include
additive measures (sum), central tendency measures (mean, median), sta-
tistical dispersion measures (standard deviation, variance), or distribution
shape measures (skewness, kurtosis) [12,63,64,87]. Their main advantage is
universality (metrics-independence), i.e., the measures should be calculated
in the same way regardless of the metrics being considered.

However, as the distribution of many interesting software metrics is
skewed [112], the interpretation of central tendency measures (mean, me-
dian) becomes unreliable: the mean can be misleading for highly skewed
distributions due to influence of outliers, while the median, although less
sensitive to outliers, can yield different results if a small change occurs in
the data set, e.g., one value is removed [114, 115]. Similarly, since both the
standard deviation and the variance are based on the mean, they also become
unreliable for highly skewed distributions, where they do not convey infor-
mation about the asymmetry. On the other hand, albeit easily computable,
the sum loses the absolute value information and it is unbounded, making
relative comparisons difficult. Skewness and kurtosis suffer from the same
drawback, i.e., they are unbounded, and therefore cause difficulties when
comparing systems with different population sizes [113].

Alternatively, distribution fitting [23,98,112] consists of selecting a known
family of distributions (e.g., log-normal or exponential) and fitting its pa-
rameters to approximate the metric values observed. The fitted parameters
can then be seen as aggregating these values. However, the fitting pro-
cess should be repeated with each new metric considered. Moreover, it is
still a matter of controversy whether, e.g., software size is distributed log-
normally [23] or double Pareto [52]. We do not consider distribution fitting.

Recently, there is an emerging trend in using more advanced aggrega-
tion techniques borrowed from econometrics, where they are used to study
inequality of income or welfare distributions [29–31]. The motivation for
applying such techniques to software metrics is twofold.

First, as numerous countries have few rich and many poor, numerous
software systems have few very big (complex) components, and many small
(simple) ones [14,46,113]. Thus, it is common both for software metrics, and
for econometric variables to have strongly-skewed distributions (Figure 1.1).

Second, the shape of these distributions, which appear visually to follow
a power law, renders the use of traditional aggregation techniques such as
the sample mean and variance questionable at best. Indeed, it was reported

11



Source Lines of Code: freecol−0.9.4

SLOC per class

F
re

qu
en

cy

0 500 1000 1500 2000 2500 3000

0
10

0
20

0
30

0
40

0
Household income in Ilocos, Philippines (1998)

Income

F
re

qu
en

cy

0 500000 1500000 2500000

0
10

0
20

0
30

0
40

0
50

0

Figure 1.1: Software metrics (SLOC) and econometric variables (household
income in the Ilocos region, the Philippines [121]) have distributions with
similar shapes.

that many important relationships between software artifacts follow a power-
law distribution [23, 118], and it is known that a power-law distribution
may not have a finite mean and variance [14]. These realizations led to the
application of econometric techniques to aggregation of software metrics [46,
99,113–115], and to our current interest in these aggregation techniques.

Nonetheless, although reliable for highly-skewed distributions, income
inequality indices have not been designed for software metrics, and there
are situations in which they cannot be applied to such data. For example,
the presence of a logarithm in the definition of the Theil index hinders its
application to negative values (e.g., the Maintainability Index ranges from
171 to an unbounded negative number), for which the logarithm is undefined.

Concomitant to studies of aggregation of software metrics by means of
econometric inequality indices, new techniques for aggregation of the same
metric applied to different artifacts have been proposed in the SIG [5] and
Squale [76] software quality models. For example, in contrast to inequality
indices, aggregation in Squale starts with the translation of each metric
value to an individual mark in the range [0, 3], such that clearly desirable
values get the highest mark (3). The translation function is chosen such
that when a certain threshold is exceeded, the individual mark decreases
following an exponential curve. Individual marks are then aggregated to
a global, system-level mark. Nonetheless, for the Squale approach to be
applicable, metrics values should be first transformed to individual marks in
the range [0, 3], and threshold values for different metrics should be known.
Such thresholds have been published by the Squale project [10], or can be
derived empirically from measurement data using the approach proposed
by Alves et al. [6]. Nevertheless, a more extensive threshold validation is
desirable. Moreover, a theoretical and empirical comparison between the
Squale approach and the econometric inequality indices was, so far, missing.

12



In this thesis we study advanced aggregation techniques for software
metrics, such as the inequality indices and the approaches proposed in the
SIG and Squale quality models, with the goal of distilling requirements for
future aggregation techniques for software metrics.

The thesis is organized in three parts. In the first part, comprising
Chapters 2-4, we perform a theoretical analysis of three categories of existing
aggregation techniques, and discuss their applicability to software metrics.
In the second part of the thesis, consisting of Chapters 5-8, we perform
an empirical analysis of the aggregation techniques in part one. Finally, in
the third part, comprising Chapter 9, based on insights derived from both
the theoretical and the empirical analyses in the first two parts, we identify
requirements for aggregation of software metrics.

Specifically, Chapter 2 discusses traditional aggregation techniques such
as mean, sum, or median. Chapter 3 introduces econometric inequality
indices such as the Gini or the Theil indices, and discusses their applicability
to software metrics. In a recent study [5], the authors claim that inequality
indices do not provide means of identifying the underlying measurements
(single values) which explain the computed inequality. In contrast, our main
contribution in Chapter 3 shows that root-cause analyses are indeed possible
using the Theil index, and can be performed efficiently (Lemma 3.2.1).

Chapter 4 discusses threshold-based approaches such as the ones pro-
posed in the SIG and Squale quality models. Our main contributions are
the study of mathematical properties of the aggregation technique in Squale,
and the comparison of these properties to mathematical properties of the
inequality indices.

Next we proceed with the empirical evaluation of the aggregation tech-
niques. Specifically, in Chapter 5 our main contributions are two pilot stud-
ies, conducted in order to assess the feasibility of performing similar large-
scale studies, and to distill requirements for the tooling to facilitate them.
Appendix A describes the proposed tooling satisfying these requirements.

Later, in Chapter 6 our main contribution is an extensive empirical com-
parative study of the traditional aggregation techniques and the inequality
indices applied to aggregating different code metrics from class to package
level. We determine which and to what extent the aggregation techniques
agree, i.e., rank distributions of metric values similarly, and we study the
evolution of the statistical correlation between the various techniques in
time, as the systems evolve. In Chapter 7 we change the aggregation level
to method–class and perform a similar correlation study, extended to enable
the comparison with the threshold-based aggregation techniques. In Chap-
ter 8 our main contribution is a direct empirical comparison between the
inequality indices and the aggregation technique proposed in Squale.

Finally, we conclude the previous theoretical and empirical analyses with
the identification of requirements for aggregation techniques for code metrics
in Chapter 9.

13



1.1 Publications arising from this thesis

The work described in this thesis has been published as described in the
following list:

1. Bogdan Vasilescu, Alexander Serebrenik, and Mark G. J. van den
Brand. Comparative study of software metrics aggregation techniques.
In Stephane Ducasse, Laurence Duchien, and Lionel Seinturier, edi-
tors, 9th Belgian-Netherlands Software Evolution Seminar (BeNeVol
2010), pages 80–84, Lille, 2010.

2. Bogdan Vasilescu, Alexander Serebrenik, and Mark G. J. van den
Brand. By no means: A study on aggregating software metrics. In
Giulio Concas, Massimiliano Di Penta, Ewan Tempero, and Hongyu
Zhang, editors, 2nd International Workshop on Emerging Trends in
Software Metrics (WETSoM 2011), Honolulu, HI, USA, 2011.

3. Bogdan Vasilescu, Alexander Serebrenik, and Mark G. J. van den
Brand. You can’t control the unfamiliar: A study on the relations
between aggregation techniques for software metrics. International
Conference on Software Maintenance (ICSM 2011), IEEE, Williams-
burg, VA, USA, 2011, accepted.

4. Karine Mordal, Nicolas Anquetil, Jannik Laval, Alexander Serebrenik,
Bogdan Vasilescu, and Stéphane Ducasse. Practical software quality
metrics aggregation. Under review for the Journal of Software Main-
tenance and Evolution special issue of the 15th European Conference
on Software Maintenance and Reengineering (CSMR 2011), Wiley.

Although this thesis is written as a linear document, the actual research
evolved from a pilot study and involved significant exploration of ideas,
experimenting and back-tracking. The above publications relate to this
thesis as follows.

The two early papers helped set the grounds for the work presented in
this thesis. Specifically, the BeNeVol’10 contribution (paper 1) represents
a pilot theoretical and empirical comparative study of different aggregation
techniques for software metrics (the mean, as well as the Gini, Theil, Atkin-
son, and Kolm inequality indices). In this paper we aggregated source lines
of code (SLOC) values from class to package level, and we studied correla-
tion between the aggregated values and the number of defects per package.
As a result on a single snapshot of ArgoUML, we observed that the choice
of aggregation technique matters, i.e., it influences the correlation between
the aggregated SLOC values and the validation metric (number of defects
per package). Furthermore, we observed that the aggregation techniques fall
into two groups, with high and statistically significant correlation among the

14



techniques in each group, i.e., they convey the same information: the mean
and the Kolm index on the one hand, and the Gini, Theil, and Atkinson
indices on the other hand.

However, a significant threat to the validity of such studies is the repre-
sentativeness of the case study considered. Consequently, in paper 2, pub-
lished at WETSoM’11, we investigated three case studies (ArgoUML, Adem-
piere, and Mogwai Java Tools) by means of the aforementioned aggregation
techniques augmented by the sum, median, and Hoover inequality index.
We observed that indeed the choice of aggregation technique influences the
correlation with defects. However, the separation of the techniques into two
groups with high and statistically significant correlation among the elements
in each group was not as clear as before, and was not consistent across the
systems. Nevertheless, the Gini, Theil, Atkinson, and Hoover inequality in-
dices showed high and statistically significant correlation among themselves,
i.e., the aggregated values obtained using these techniques convey the same
information.

In paper 3, to appear at ICSM’11, we built on the BeNeVol’10 and WET-
SoM’11 articles, and we extended them in two ways. First, we presented the
results of an extensive correlation study of the most widely-used traditional
(mean, median, sum, standard deviation, variance, skewness, and kurtosis)
and econometric (Gini, Theil, Atkinson, Hoover, and Kolm) aggregation
techniques, applied to lifting SLOC values from class to package level in
the 106 systems comprising the Qualitas Corpus [110]. Second, apart from
measuring the strength of the correlation between the various aggregation
techniques, we also investigated the nature of this relation, and studied its
evolution on a subset of 12 systems from the Qualitas Corpus. As a result,
we consistently observed a clear separation of the techniques into two groups
(the mean and the Kolm index on the one hand, and the Gini, Theil, Hoover,
and Atkinson indices on the other hand), with high and statistically signif-
icant correlation among the elements in each group. In spite of this high
correlation, one index or another might still be preferred, and we discussed
some of the rationale behind such a choice.

Finally, in the JSME submission (paper 4) we investigated the rela-
tion between the Squale model and the econometric inequality indices, and
we showed that although Squale has been designed for software metrics, it
shares common properties with the inequality indices. Additionally, since
one of the strong points of Squale is its sensitivity to bad (unwanted) values,
we performed an empirical comparison with data based on metrics extracted
from Eclipse1, in which we tested the behavior of the Squale aggregation and
the econometrical inequality indices in presence of an increasingly larger
number of low individual marks.

1
http://www.eclipse.org/

15

http://www.eclipse.org/


Part I

Theoretical analysis

16





Chapter 2

Traditional aggregation
techniques

As mentioned earlier, aggregation of software metrics can be understood in
two ways.

First, there is a need to combine different metrics as recommended by
quality-model design methods such as Factor-Criteria-Metric (FCM) [75], or
Goal-Question-Metric (GQM) [13], i.e., aggregation is performed on values
obtained by applying different metrics to the same software artifacts. For
example, cyclomatic complexity might be combined with test coverage met-
rics to stress the importance to cover complex methods rather than simple
accessors [74].

Second, there is a need to obtain insights in the quality of an entire
system based on the metric values obtained from low-level system elements,
i.e., aggregation is performed on values obtained by applying the same met-
ric to different software artifacts. Examples thereof include the Weighted
Methods per Class (WMC) or average number of lines of code metrics, as
discussed in the Introduction. Additionally, using the FCM model in [70] to
assess the maintainability of a system involves computation of such metrics
as number of source lines of code (SLOC), cyclomatic complexity, number
of methods per class, or inheritance depth (DIT). All these metrics can only
be computed for methods and/or classes. However, the maintainability as-
sessment requires insights at system level. One possible approach is to first
aggregate each metric from method/class level to the system level, and then
combine these system-level results into a unified assessment.

In this thesis we focus on the latter, i.e., aggregation performed on val-
ues obtained by applying the same metric to different software artifacts.
In this sense, we study three categories of aggregation techniques: stan-
dard summary statistics (e.g., mean, median, etc.), econometric inequality
indices (e.g., Gini, Theil, etc.), and threshold-based approaches (e.g., the
aggregation proposed in the Squale quality model [76]). In this chapter we

18



detail the traditional aggregation techniques, and discuss their appropriate-
ness for software metrics. Later, we discuss econometric inequality indices
as aggregation techniques in Chapter 3, and threshold-based approaches to
aggregation of software metrics in Chapter 4.

Throughout the current and the following two chapters we will denote as
X the collection {x1, . . . , xn} of values to be aggregated. An element xi ∈ X
is either the value of a certain metric for class or method i, or the income
received by individual i, when we refer to the econometric inequality indices
in Chapter 3.

In order to aggregate values obtained by applying the same metric to
different software artifacts, standard summary statistics such as additive
measures (sum), central tendency measures (mean, median), statistical dis-
persion measures (standard deviation, variance), or distribution shape mea-
sures (skewness, kurtosis) are often used [12,56,64].

The sum , denoted as xtotal , is probably the simplest aggregation measure.
The sum is defined as

xtotal =

n∑
i=1

xi. (2.1)

However, albeit its simplicity, the sum loses the absolute value information
(recall, e.g., that MI [83] and code delta [47] may have negative values) and
it is unbounded, making relative comparisons difficult.

The arithmetic mean (or simple average), denoted as x̄, is defined as

x̄ =
xtotal
n

. (2.2)

The mean is a good measure of centrality, but only for symmetrical (e.g.,
normal) distributions. The mean can be misleading for skewed distributions
due to influence of outliers, since it does not convey the standard deviation of
the population and may dilute unwanted values in the generally-acceptable
results [55].

To illustrate this problem, consider the example of the maintainability
index MI, whose definition typically involves computing the average number
of lines of code per module [83], such that systems with lower average LOC
are preferred. Table 2.1 presents the number of lines of code values for four
classes in two consecutive versions of a software system. When computing
mean(SLOC) in both cases, Version 2 appears to be better since it has
a lower average value. However, this hides the fact that Class A became
an outlier after the refactoring. Therefore, while the aggregated value is
better (i.e., smaller), the maintainability of the system might have actually
decreased.

19



Table 2.1: SLOC values for four classes in two consecutive versions of a
system.

Class A B C D Mean

Version 1 24 25 27 24 25.0
Version 2 71 9 10 8 24.5

An alternative approach to highlighting undesirable values is to increase
their weight in the average. However, as shown in [76], this suffers from
similar drawbacks, thus incorrectly suggesting a decrease of the software
quality while the code has actually improved, or vice versa.

The median , denoted as x̃, is defined as

x̃ =

{
x(n+1)/2, if n is odd;
1
2(xn/2 + xn/2+1), if n is even.

(2.3)

The median is less sensitive to outliers than the mean, but can yield different
results if a small change occurs in the data set, e.g., one value is removed:

x̃(1, 1, 1, 13, 13, 13) = x̄(1, 1, 1, 13, 13, 13) = 7

x̃(1, 1, 13, 13, 13) = 13

x̄(1, 1, 13, 13, 13) = 8.2

The variance and standard deviation are measures of statistical dispersion.
The variance , denoted as var , is defined as

var(X ) =
1

n− 1

n∑
i=1

(xi − x̄)2 (2.4)

On the other hand, the standard deviation , denoted as σ(X ), is equal to
the square root of the variance.

σ(X ) =
√

var(X ) (2.5)

Both the standard deviation and the variance are based on the mean, hence
they also become unreliable for highly skewed distributions, where they do
not convey information about the asymmetry.

The skewness and the kurtosis offer two more alternatives to aggregation of
software metrics. Skewness, denoted as γ1, measures the asymmetry of a
distribution, and is defined as

γ1(X ) =
1

n

∑n
i=1 (xi − x̄)3

σ3(X )
. (2.6)

20



A distribution with relatively few low values typically has negative skew, and
is said to be left-skewed. On the other hand, a distribution with relatively
few high values has positive skew, and is said to be right-skewed. Skew is
zero when the distribution is symmetric about the mean.

In contrast, kurtosis, denoted as γ2, measures the peakedness of a dis-
tribution, and is defined [105] as

γ2(X ) =
1

n

∑n
i=1 (xi − x̄)4

σ4(X )
(2.7)

For the normal distribution, γ2 = 3. For this reason, kurtosis is sometimes
defined [105] as γ′2(X ) = γ2(X )− 3, which is also known as excess kurtosis.
High kurtosis corresponds to a distribution with sharp peaks and long fat
tails, while low kurtosis corresponds to a distribution with rounded peaks
and short thin tails. A distribution with γ2 > 3 (γ′2 > 0) is called leptokurtic,
one with γ2 < 3 (γ′2 < 0) is called platykurtic, and one with γ2 = 3 (γ′2 = 0)
is called mesokurtic.

Similar to the variance and standard deviation, the skewness and kur-
tosis are unbounded, hence cause difficulties when comparing systems with
different population sizes [113].

Software metrics such as SLOC are typically right-skewed and leptokur-
tic. For example, for the distribution of SLOC per class in Hibernate release
3.6.0-beta4 (Figure 2.1), skewness = 12.6 and kurtosis = 245.5.

SLOC

F
re

qu
en

cy

0 100 200 300 400 500

0
50

0
10

00
15

00

Figure 2.1: Distribution of SLOC in Hibernate in release 3.6.0-beta4.

21



Chapter 3

Econometric aggregation
techniques

The second category of aggregation techniques considered consists of econo-
metric inequality indices, commonly used to study inequality of income
or welfare distributions [29–31]. Specifically, we consider the Gini [43],
Theil [111], Atkinson [8], Hoover [54] (also known as the Ricci-Schutz coeffi-
cient, the Robin Hood index, or the relative mean deviation), and Kolm [60]
income inequality indices. When the distribution is equal, i.e., each per-
son has the same share of the overall income or wealth, any such measure
reaches its absolute minimum, zero. Deviations from this equality, when
some individuals assume a higher share of the total income or wealth than
others, correspond to an increase in the value of the inequality measure.

In contrast with the traditional techniques, the econometric inequality
indices can be used successfully to aggregate software metrics, since they
provide a synthesis of the skewness, kurtosis, mean, and variance statistics
of the data, without being affected by skewed distributions [113]. In this
chapter we introduce and define the inequality indices considered. Later,
in Section 3.2, we discuss more advanced mathematical properties of the
inequality indices, as well as implications of these properties on aggregation
of software metrics.

3.1 Inequality indices and software metrics

In econometrics, such indices are used to measure and to explain the in-
equality of income or wealth distributions. For example, inequality indices
applied to 138 countries show reductions in global inequality of gross do-
mestic product (GDP) per capita during the 1980s and 1990s [94].

Similar insights can be derived by applying inequality indices to soft-
ware metrics. For example, one of the pieces of information often required
when analyzing a software system is the degree of concentration of function-

22



ality within it [113]. In this sense, one wishes to understand, e.g., whether
functionality is widely distributed across classes (corresponding to low in-
equality of income in econometrics), or whether there are only a few classes
implementing most of the functionality in the system (corresponding to high
inequality of income in econometrics). Obtaining such information for a cer-
tain version of a system can help indicate the presence of god classes or
machine-generated code, while tracking it across multiple releases can help
reveal significant architectural shifts [99,113].

The intuition above can be formalized using the Lorenz curve, initially
proposed to measure and visualize the concentration of wealth [66]. Conse-
quently, a Lorenz curve plots on the y-axis the percentage of wealth cumu-
latively assumed by the bottom x% of the population. It ranges between
the diagonal y = x (i.e., the line of perfect equality), corresponding to each
individual assuming the same percentage of the total wealth, and the line
that is zero for all values of x < 1 and 1 for x = 1 (i.e., the line of perfect
inequality), corresponding to a single individual assuming the total wealth.

IHoover

IGini =
A

A

B

A+B = 2A

Figure 3.1: Lorenz curve for SLOC in Hibernate in release 3.6.0-beta4.

The Lorenz curve can be used to study the concentration of functionality
within a software system. Figure 3.1 shows an example of a Lorenz curve
for the number of source lines of code (SLOC) metric in Hibernate release
3.6.0-beta4. We observe significant deviation from the diagonal, i.e., there is
high inequality in the distribution of SLOC among the classes in Hibernate.
Additionally, we observe that approximately 70% of all classes accumulate
only 20% of the total size of Hibernate. Similarly, the top 10% of all classes
accumulate more than 50% of the total size. This finding is in line with
the Pareto principle [84], stating that roughly 80% of the effects stem from
20% of the causes. Evidence for the Pareto principle have been reported in
numerous areas of human activity, including computer science. For example,
commit, email, and bug reporting activities in open-source projects have
been reported to adhere to the Pareto principle [46]. Similarly, 20% of the
most reported bugs in Microsoft Windows and Office are known to cause
80% of the errors [93].

23



Two of the inequality indices considered in this thesis (the Gini index,
IGini, and the Hoover index, IHoover) are derived from the Lorenz curve, and
more effectively summarize it than our informal observations above.

First, if A is the area between the line of perfect equality and the Lorenz
curve, and B is the area below the Lorenz curve, then the Gini index
is computed as A

A+B [33]. More formally, IGini can be defined to measure
inequality between groups or between the individuals within a group.

For the population X = {x1, . . . , xn}, let G be a mutually exclusive and
completely exhaustive (MECE) partitioning intom groups {G1, G2, . . . , Gm}.
Let wj be the income share of group Gj , i.e., the ratio of the income of Gj
and the total income.

wj =

∑
x∈Gj x

xtotal
(3.1)

Let pj be the population share of group Gj , i.e., the ratio of the cardinality
of Gj and the cardinality of X .

pj =
|Gj |
|X |

=
|Gj |
n

(3.2)

Consequently, the Gini index between groups can be expressed as the re-
sult of a comparison, across all groups, of the ratio between income and
population shares [24]:

IGini(G) =
1

2

m∑
i=1

m∑
j=1

pipj

∣∣∣∣wipi − wj
pj

∣∣∣∣, (3.3)

where |x| is the absolute value of x.
Alternatively, rather than measuring the inequality between different

groups of individuals, e.g., inequality of income between the European Union
member states, or inequality of size between the different components of
Hibernate (engine, persister, testing, etc.), one might be interested in mea-
suring inequality within a certain population (group) of individuals. It is
easy to observe that when each group consists of only one individual, m = n,
pi = 1

n , and wi = xi∑
x∈X x

, and equation 3.3 rewrites to

IGini(X ) =
1

2n2x̄

n∑
i=1

n∑
j=1

|xi − xj | (3.4)

Second, the Hoover index [54] (also known as the Ricci-Schutz coeffi-
cient, the Robin Hood index, or the relative mean deviation) is equivalent
to the maximum vertical distance between the Lorenz curve and the line
of perfect equality (Figure 3.1). For the grouping G, IHoover measures the

24



total absolute differences between the income and population shares of the
groups, and is defined [4] as

IHoover(G) =
1

2

m∑
j=1

|wj − pj | , (3.5)

where wj is the income share of Gj and pj is the population share of Gj .
Alternatively, at the individual level, equation 3.5 rewrites to

IHoover(X ) =
1

2nx̄

n∑
i=1

|xi − x̄| , (3.6)

when each group consists of a single individual, for m = n, pj = 1
n , and

wj =
xj∑
x∈X x

.

To summarize, for a population X one can compute the inequality be-
tween the individuals {x1, . . . , xn} regardless of how X is partitioned (equa-
tions 3.4 or 3.6). Alternatively, given a partitioning G = {G1, . . . , Gm},
thus the population and income shares of each group, one can compute
the inequality between the groups {G1, . . . , Gm} regardless of the actual
dispersion of the distribution of income among individuals in each group
(equations 3.3 or 3.5). However, when computing the inequality between
all individuals {x1, . . . , xn}, i.e., within the entire population, it is often de-
sirable to assess the contribution to the total inequality introduced by the
partitioning, i.e., the contribution of the inequality between the groups.

Such a property is desirable, e.g., when measuring the inequality of size
(SLOC) between the classes in a software system which is organized into
packages. In this sense, an important question in interpreting the inequality
value aggregated on a system level pertains to the extent to which the result
can be attributed to differences between system subcomponents. For ex-
ample, one might be interested in assessing whether the disproportionately
large classes are concentrated only in few packages, or they are spread over
the entire system.

To answer this question it is therefore desirable to express the aggrega-
tion (inequality) result computed at a system level in terms of between-group
and within-group components, hence obtain a clear separation of the inequal-
ity introduced by the partitioning into {G1, . . . , Gm} from the inequality
within each group Gj , 1 ≤ j ≤ m. Various approaches to decomposition of
a global-level inequality result into between-group and within-group contri-
butions have been proposed for various inequality indices [16,17,30,85,101].
We refer to such a property of an inequality index as decomposability, and we
discuss it in more detail in Section 3.2. Now, for the purpose of exposition,
we restrict to the most common, additive decomposition of the aggregation
result computed at a system level as the sum of a non-negative within-group
term and a non-negative between-group term, where the within-group contri-
bution is itself a weighted sum of applying the same aggregation technique

25



(inequality index) at the subcomponent level [101]. In econometrics, one
commonly further requires that the sum of the weighting coefficients be 1.

I(X ) = Iwithin + Ibetween

=
m∑
j=1

ωjI(Xj) + Ibetween , (3.7)

where Xj is the distribution of values in Gj , and ωj is the weight assigned
to the inequality within Gj in the total within-group term, 1 ≤ j ≤ m.

Furthermore, the between-group term can be used to measure to what
extent the aggregated value at the system level (i.e., the overall inequality)
can be explained by a specific partitioning of the system into subcompo-
nents [29, 99]. We discuss explanation of inequality in more detail in Sec-
tion 3.2. The lack of such a decomposability property is a major shortcoming
of the Gini and Hoover inequality indices [28].

The Theil index [111] is a member of the generalized entropy class
of inequality measures and it satisfies the decomposability property. For a
grouping G, the Theil index can be defined to measure inequality between
groups [111] as

ITheil(G) =

m∑
j=1

(
wj log

wj
pj

)
, (3.8)

where wj is the income share of Gj , and pj is the population share of Gj .
Similarly, it is easy to observe that when each group consists of only one

individual, m = n, pj = 1
n , and wj =

xj∑
x∈X x

. Hence, the Theil index can

be defined to measure inequality between the individuals within a group as

ITheil(X ) =
1

n

n∑
i=1

(xi
x̄

log
xi
x̄

)
(3.9)

Pertaining to decomposability (equation 3.7), for a MECE partitioning
G1, . . . , Gm, ITheil can be decomposed into a between-group and a within-
group component, as follows.

ITheil(X ) = IbetweenTheil + IwithinTheil , (3.10)

such that

IwithinTheil =

m∑
j=1

wjITheil(Gj), (3.11)

where wj is the income share of Gj , and ITheil(Gj) is computed using
equation 3.9.

26



The between-group component IbetweenTheil can be computed either using
equation 3.8, or, by further exploiting the decomposability property of ITheil,
using equation 3.9 and replacing each x ∈ X with x̄j , where x̄j is the mean
of the group Gj that x is part of, i.e., x̄j = 1

|Gj |
∑

x∈Gi x, 1 ≤ j ≤ m [101].

IbetweenTheil = ITheil(x̄1, x̄1, . . . , x̄1, x̄2, x̄2, . . . , x̄2, . . . , x̄m, x̄m, . . . , x̄m)

|G1| |G2| . . . |Gm| (3.12)

Conducive to illustrating decomposability and to giving a more intuitive
interpretation to the Theil index, we measure inequality of SLOC per class
in JMoney release 0.4.4, a personal finance (accounting) manager written in
Java, taking into account the organization of JMoney into four packages.

N
um

.c
ls

S
LO

C

net.sf.jmoney
net.sf.jmoney.io
net.sf.jmoney.gui
net.sf.jmoney.model

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.2: Inequality of SLOC: population (classes) and income (SLOC)
shares for each package in JMoney release 0.4.4.

Figure 3.2 plots the population and income shares for each package in
JMoney. We observe, e.g., that the net.sf.jmoney.gui package which imple-
ments the graphical user interface contains 50% of the classes, which account
for approximately 75% of the total size of JMoney.

To characterize the inequality of SLOC between packages, we apply ITheil

from equation 3.8. The total IbetweenTheil is obtained by summation of all values
in the last column of Table 3.1, which provides a complete overview of the
population and income shares of each package, as well as the contribution
of each package to the sum (the total IbetweenTheil ). Alternatively, IbetweenTheil can
be computed using equation 3.9 by replacing each x ∈ Gj with x̄j , where x̄j
is the mean of Gj [101], j = 1, . . . , 4.

Table 3.1: Computing IbetweenTheil for the four packages in JMoney 0.4.4.

Package Num.classes SLOC pj wj IbetweenTheil
- net.sf.jmoney 10 634 0.19 0.08 -0.07
- net.sf.jmoney.io 3 721 0.05 0.09 0.05
- net.sf.jmoney.gui 27 5714 0.50 0.75 0.29
- net.sf.jmoney.model 14 630 0.26 0.08 -0.09
Total 54 7699 1 1 0.18

27



So far we were able to compute IbetweenTheil between the four packages in
JMoney 0.4.4. In order to capture also the dispersion of the distribution
of SLOC values among classes in each package (Figure 3.3), a natural way
to move forward and compute IwithinTheil for each package is to apply the same
procedure at the aggregation level of a package rather than the entire system,
using equation 3.9.

net.sf.jmoney

F
re

qu
en

cy

0 200 600 1000

0
2

4
6

8
10

net.sf.jmoney.io

0 200 600 1000

0
2

4
6

8
10

net.sf.jmoney.gui

0 200 600 1000

0
2

4
6

8
10

net.sf.jmoney.model

0 200 600 1000

0
2

4
6

8
10

Figure 3.3: Distribution of SLOC for the packages in JMoney release 0.4.4.
The colors match the ones used in Figure 3.2

Table 3.2 presents the results of computing IwithinTheil for each of the four
packages in JMoney release 0.4.4. The total IwithinTheil is obtained by weighted
summation of all values in the last column of Table 3.2, using the income
shares as weights (equation 3.11).

Table 3.2: Computing IwithinTheil for each of the four packages in JMoney 0.4.4.

Package Num.classes SLOC pj wj IwithinTheil
- net.sf.jmoney 10 634 0.19 0.08 0.17
- net.sf.jmoney.io 3 721 0.05 0.09 0.44
- net.sf.jmoney.gui 27 5714 0.50 0.75 0.38
- net.sf.jmoney.model 14 630 0.26 0.08 0.60
Total 54 7699 1 1 0.39

We note that the result obtained by summation of the total IbetweenTheil and
IwithinTheil previously computed is equal to the value of ITheil applied to the
union of the four sets of SLOC values per class corresponding to each of the
four packages (equation 3.10).

ITheil(JMoney) = IbetweenTheil + IwithinTheil = 0.18 + 0.39 = 0.57,

which corresponds to low inequality when compared to the maximal value
of ITheil for a population of 54 classes, i.e., log 54 ' 3.99. We discuss inter-
pretation of inequality index results in more detail in Section 3.2.

28



In addition to ITheil above, also known as the first Theil index, Theil [111]
has also introduced the second Theil index, known as the mean logarith-
mic deviation , and defined as

IMLD(X ) =
1

n

n∑
i=1

(
log

x̄

xi

)
(3.13)

IMLD is another member of the generalized entropy class of inequality mea-
sures, and it also satisfies the decomposability property [29].

Moreover, we study the Atkinson and the Kolm inequality indices. The
Atkinson index [8], denoted as IAtkinson, is defined as

IαAtkinson(X ) = 1− 1

x̄

(
1

n

n∑
i=1

x1−α
i

)1/(1−α)

(3.14)

In our implementation, IAtkinson is a standard instantiation of the Atkinson
family of indices, for α = 0.5 [30,120], i.e.,

IAtkinson(X ) = 1− 1

x̄

(
1

n

n∑
i=1

√
xi

)2

(3.15)

Finally, the Kolm index [60], denoted as IKolm, is defined as

IβKolm(X ) =
1

β
log

[
1

n

n∑
i=1

eβ(x̄−xi)

]
(3.16)

In our implementation, IKolm is a standard instantiation of the Kolm family
of indices, for β = 1 [120], i.e.,

IKolm(X ) = log

[
1

n

n∑
i=1

ex̄−xi

]
(3.17)

In the remainder of this thesis we refer to the standard instantiations of the
Atkinson and Kolm inequality indices, unless stated otherwise.

29



3.2 Mathematical properties

In this section we discuss a number of properties of the inequality indices, as
well as implications of these properties on aggregation of software metrics.

3.2.1 Domain

The domain of the aggregation technique determines its applicability to
classes of software metrics. Econometric inequality indices are usually ap-
plied to income or welfare distributions, i.e., to sets of positive values. How-
ever, there are software metrics, such as the Maintainability Index MI [83],
that may have negative values. Since log x and

√
x are undefined for x < 0,

ITheil, IMLD, and IAtkinson are undefined as well. Unlike these indices, IGini,
IHoover, and IKolm can be used to aggregate negative values.

Moreover, as log 0 is undefined, direct application of the Theil index for-
mula in presence of zero values (equation 3.9) is not possible. The usual ap-
proach in econometrics is to consider that a person with no income does not
contribute to the income distribution, hence ITheil(x1, . . . , xn−1, 0) should
be defined as ITheil(x1, . . . , xn−1). While this approach is valid for software
metrics where zero denotes emptiness (e.g., SLOC, number of classes in a
package, etc.), it is less appropriate, e.g., for the normalized distance from
the main sequence Dn [72], where Dn = 0 is the most desirable situation,
indicating perfect balance between abstractness and instability.

Alternatively, for the sake of simplicity, one can replace 0 by a very

small ε > 0, such that ITheil(x1, . . . , xn−1, 0)
def
= ITheil(x1, . . . , xn−1, ε). This

observation can be generalized for an arbitrary number of zeros as long as
at least one non-zero value is present.

Finally, formulas for the Gini index (equation 3.4), the Theil index
(equation 3.9), and the Atkinson index (equation 3.15) involve divisions
by x̄ = xtotal

n , while the formula for the Hoover index (equation 3.6) involves
division by xtotal . Hence, these indices are undefined if xtotal = 0.

3.2.2 Interpretation

The interpretation of the aggregated value depends on the range of the
aggregation technique. For example, 0.99 indicates a very high degree of
inequality if IGini, IHoover, or IAtkinson are considered, while in case of ITheil

the interpretation would depend on the number of values being aggregated.
All the indices considered are zero when all individuals have identical income.

The Gini, Hoover, and Atkinson indices range over
[
0, 1− 1

n

]
if all the

values being aggregated are positive [4, 90]. In general, this is not neces-
sarily the case, e.g., IGini(1,−1.5) = −2.5 and IHoover(1,−1.5) = −2.5. As
mentioned in the previous paragraph, IAtkinson(1,−1.5) is undefined.

30



In contrast, the Theil index ranges over [0, log n] [4]. To facilitate di-
rect comparison with the Gini, Hoover, and Atkinson indices, ITheil can be
normalized to the range [0, 1], e.g., by dividing it by log n, or by computing
e−ITheil . The Kolm index ranges over non-negative reals [60].

3.2.3 Invariance

We call the aggregation technique invariant with respect to addition if

I(x1, . . . , xn) = I(x1 + c, . . . , xn + c), (3.18)

for any x1, . . . , xn and c, provided that I(x1 + c, . . . , xn + c) exists.
Similarly, we call the aggregation technique invariant with respect to

multiplication (scale invariant) if

I(x1, . . . , xn) = I(x1 · c, . . . , xn · c), (3.19)

for any x1, . . . , xn and c, provided that I(x1 · c, . . . , xn · c) exists.
It can be shown that IGini, ITheil, IHoover and IAtkinson are invariant with

respect to multiplication [4, 8, 29]. Unlike these indices, IKolm is invariant
with respect to addition [60].

In econometrics, an important argument in favor of scale invariance is
the independence from the unit in which a variable is measured, e.g., it is not
necessary to deal with currency conversions when measuring the inequality
of income measured in USD or EUR.

Similar benefits arise when applying scale-invariant measures to software
metrics. For example, in case of aggregating source lines of code (SLOC)
measured per file, the results obtained are not affected if percentages of the
total SLOC are considered rather than the SLOC values themselves.

Additionally, scale invariance enables that inequality be comparable across
different metrics. For example, one might be interested in comparing the
inequality in lines of code to that in percentage of comments per file across
a given system, which is otherwise meaningless. We illustrate such a com-
parison in Figure 3.4, which displays the Lorenz curves for the source lines
of code (SLOC) and percentage of lines with comments (PLwC) metrics in
ArgoUML in release 0.30.2. We observe significant deviation from the diag-
onal for L(SLOC) and little deviation from the diagonal for L(PLwC), i.e.,
across the classes in ArgoUML there is high inequality in the distribution of
SLOC, and low inequality in the distribution of PLwC. These observations
are confirmed by applying the Gini and the Hoover indices: IGini(SLOC) =
0.69, IGini(PLwC) = 0.19; IHoover(SLOC) = 0.53, IHoover(PLwC) = 0.14.

However, by multiplying each value by a constant, it is less clear that
the inequality actually remained unchanged, since the rich benefit more
than the poor in absolute terms, e.g., from an increase by 10% in everyone’s
income. This drawback becomes much clearer when considering also that

31



% Classes

%
 S

LO
C

, %
 P

Lw
C

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

L(SLOC)

L(PLwC)

Figure 3.4: Lorenz curves for SLOC and PLwC in ArgoUML 0.30.2.

the inequality indices are zero when all individuals have identical income.
For example, in case of aggregating cyclomatic complexity measured per
class, a Java package in which all classes have equally low complexity is
probably much more desirable than one in which all classes have equally
high complexity.

On the other hand, the invariance with respect to addition allows to
ignore, e.g., headers containing the licensing information and included in all
source files.

3.2.4 Symmetry

For an aggregation technique, symmetry [40] or impartiality [60] states that
the final result should not be dependent on the order of the elements being
aggregated, i.e., it should be invariant to permutations of the aggregated
values.

Symmetry is very important for software metrics since one does not
want, e.g., the aggregated value to depend on whether the name of one of
the files has been changed from “AAAA” to “ZZZZ”. All inequality indices
are symmetric [60].

3.2.5 Transfers principle

According to the Pigou-Dalton principle of transfers [97], a strictly positive
transfer from a richer to a poorer individual, without reversing their status
and with leaving all other incomes unchanged, should result in a strictly
positive reduction in the inequality index.

IHoover is not affected by transfers between people on the same side of
the mean [8], hence it is said not to satisfy the principle of transfers.

IHoover(1, 1, 3, 30) = IHoover(1, 2, 2, 30) ' 0.61

In contrast, IGini, ITheil, IAtkinson, IKolm, and IMLD all satisfy the principle
of transfers [4, 60].

32



3.2.6 Sensitivity to transfers

Consider again the population X = {x1, x2, . . . , xn}, where xi is the income
of individual i. Assume, without loss of generality, that X is sorted. Assume
a transfer of k euro occurs from a poorer person with income xi to a richer
person with income xj , where xi ≤ xj , without modifying any of the other
incomes.

Among the inequality indices that satisfy the principle of transfers, there
are differences in their relative sensitivity to transfers at different income
levels. For example, in econometrics one is interested in assessing whether
a transfer of 50 euro from a person earning 100 euro to a person earning
150 euro has the same impact as a transfer of 50 euro from a person earning
10000 euro to a person earning 10001 euro. Similarly, with software metrics,
one might be interested in assessing how differently a decrease in SLOC of
20 for one class with SLOC 50 at the cost of an equivalent increase in SLOC
for another class with SLOC 60 affects the overall inequality of SLOC than
a decrease in SLOC of 20 for one class with SLOC 500 at the cost of an
equivalent increase in SLOC for another class with SLOC 600.

Typically, one can distinguish between three dimensions of inequality [21]:
inequality due to extreme relative wealth, inequality among the less extreme
incomes, or inequality due to extreme poverty. In case of SLOC, extreme
relative wealth, i.e., inequality associated with the exceptionally rich, corre-
sponds to a non-egalitarian distribution of functionality caused by systems
having few very big or complex components and many small or simple ones.
Analogously, inequality due to extreme poverty is caused by systems hav-
ing few very small components rather than few very big ones. Inequality
among the less extreme incomes corresponds to a more uniform distribution
of differences in functionality among the components of the system.

A change in IGini depends on the number of individuals with incomes in
between xi and xj , i.e., on the ranks (i,j) of the individuals rather than their
income [4]. Therefore, for a normal distribution IGini is sensitive to transfers
around the middle (among the less extreme incomes) [4,21]. Similarly, for a
positively-skewed distribution (e.g., SLOC) IGini is sensitive to transfers at
the low (poor) end, since for such distributions there are many more values
in the [20, 50] interval than, e.g., in the [320, 350] interval. It follows that
a transfer from one method/class with SLOC 20 to another with SLOC 50
will have more effect on IGini than an equal transfer from one method/class
with SLOC 320 to another with SLOC 350.

In contrast, a change in ITheil or IMLD depends on the ratio of xi and
xj . It follows that the lower the income level (extreme poverty), the more
sensitive to transfers ITheil and IMLD are [4]. In contrast to the theoreti-
cal approach in [4], Champernowne [21] reports opposite findings, i.e., that
ITheil is sensitive to inequality due to the exceptionally rich rather than the

33



extremely poor, after experimenting with a number of simulated distribu-
tions.

The sensitivity of IαAtkinson and IβKolm to different dimensions of inequality
depends on the values of the parameters α and β [60]. As α increases,
IαAtkinson is more sensitive to transfers at the lower end of the distribution
and less sensitive to transfers at the top. In the limiting case α → ∞,
I∞Atkinson is only sensitive to transfers to or from the poorest individual. On
the other hand, in the limiting case α = 0, I0

Atkinson = 0. Similarly, if β = 0
then I0

Kolm = 0, and if β →∞ then I∞Kolm is only sensitive to transfers to or
from the poorest individual.

3.2.7 Population principle

The population principle [29] states that a distribution X should be regarded
equivalent from an inequality point of view to a distribution X ′ obtained by
replicating X a number of times.

All inequality indices satisfy the population principle [29,60]. Note that
even traditional aggregation techniques such as the mean satisfy the popu-
lation principle.

3.2.8 Decomposability

Decomposability into between-group and within-group components is the key
property necessary for explanation of inequality by partitioning the values to
be aggregated into disjoint groups. In econometrics such groups correspond,
e.g., to education level, gender or ethnicity, while in software evolution re-
search, e.g., to package, programming language and maintainer’s name [99].

To explain inequality Cowell and Jenkins introduced the R index in [30],
defined as the ratio of the inequality between the groups and the total
amount of inequality, given a decomposable inequality index I and a MECE
partitioning G = {G1, . . . , Gm}.

R(G) =
Ibetween(G)

I(X )
(3.20)

R indicates what share of the inequality can be explained by the parti-
tioning into {G1, . . . , Gm}, and it ranges between 0 and 1. R = 0 in case of a
trivial partition of the population into one group, i.e., inequality can be com-
pletely attributed to inequality within the group. R = 1 corresponds to the
case when the partition is “complete”, i.e., every element of the population
is considered as a group in itself.

For example, using R and ITheil, in [1] expenditure in Indonesian house-
holds has been shown to be better explained by the education level of the
head of the household (32.6%) than by the province of residence (18.9%) or
by the gender of the household’s head (2.6%). This suggests that, e.g., in

34



order to reduce expenditure inequality, the Indonesian government should
invest in education rather than in reducing gender inequality. Similarly, it
has been observed that 17.4% of inequality in file sizes (SLOC) of the Linux
Debian lenny distribution can be explained by the package these files be-
long to, while the implementation language can account for only 5.32% of
the inequality [99].

Alternative approaches to decomposability

Application of the R index requires that the inequality measure be decom-
posable into between-group and within-group components. Expressing the
within-group component is straightforward for any inequality index, since
the index itself is defined for populations of arbitrary size, i.e., selection of a
measure for the entire population automatically provides a measure for any
subgroup. On the other hand, there are two main approaches to expressing
the between-group component in the literature [30]. Let G = {G1, . . . , Gm}
be a given MECE partitioning of the population X . Let nj be the cardinality
of Gj , for all j, 1 ≤ j ≤ m.

First, the between-group component can be interpreted as a function of
the group means, i.e.,

Ibetween = Φ(x̄1, x̄2, . . . , x̄m), (3.21)

where x̄j is the mean of Gj , i.e., x̄j = 1
nj

∑
x∈Gj x, for all j, 1 ≤ j ≤ m.

In this approach, the aggregation result computed at a system level is
typically decomposed [17, 101] as the sum of a non-negative within-group
term and a non-negative between-group term, i.e.,

I(X ) = Iwithin + Ibetween (3.22)

In constructing the between-group term, inequality within each subgroup is
eliminated using the group means, hence between-group inequality is mea-
sured as the inequality which would be experienced by the entire population
if each person in a subgroup would receive the subgroup mean income [16].

Examples of inequality indices thereof are ITheil and IMLD, for which the
between-group and the within-group components are

IwithinTheil =
m∑
j=1

wjITheil(Gj) (3.23)

IbetweenTheil = ITheil(x̄1, x̄1, . . . , x̄1, x̄2, x̄2, . . . , x̄2, . . . , x̄m, x̄m, . . . , x̄m)

(n1) (n2) (nm)

35



and,

IwithinMLD =

m∑
j=1

pjIMLD(Gj) (3.24)

IbetweenMLD = IMLD(x̄1, x̄1, . . . , x̄1, x̄2, x̄2, . . . , x̄2, . . . , x̄m, x̄m, . . . , x̄m)

(n1) (n2) (nm),

respectively, where wj is the income share of Gj , and pj is the population
share of Gj .

Second, the between-group component can be interpreted as a function
of the group equally-distributed equivalents, i.e.,

Ibetween = Φ(ξ1, ξ2, . . . , ξm), (3.25)

where ξj is the equally-distributed equivalent for Gj . In econometrics, the
equally-distributed-equivalent income for the whole population [8, 59], ξ, is
the income that, if given to each person, results in an income vector which
is “equivalent” to the actual distribution as measured by a given social-
evaluation function W . In econometrics, social-evaluation functions are
commonly associated with utilitarianism [36] and can be used to capture
the well-being of economically isolated individuals in a society [35]. For-
mally, given a social-evaluation function W : Rn → R and the distribution
of income x1, . . . , xn, then the equally-distributed-equivalent ξ is determined
by W (x1, . . . , xn) = W (ξ, . . . , ξ). The equally distributed equivalent ξj for
a group Gj is defined analogously.

In this approach, instead of measuring between-group inequality as the
overall inequality which would result if each person received his/her sub-
group’s mean income, Ibetween is instead computed as the overall inequal-
ity which would result if each person received his/her subgroup’s equally-
distributed equivalent income.

Both IAtkinson and IKolm are defined with respect to such a social-
evaluation function W , which assumes a particular form depending on the
inequality index considered [16]. The resulting decomposition of IAtkinson

into within-group and between-group components is

IAtkinson(X ) = IwithinAtkinson + IbetweenAtkinson − IwithinAtkinsonI
between
Atkinson, (3.26)

where

IwithinAtkinson =
m∑
j=1

wjIAtkinson(Gj) (3.27)

IbetweenAtkinson = IAtkinson(ξ1, ξ1, . . . , ξ1, ξ2, ξ2, . . . , ξ2, . . . , ξm, ξm, . . . , ξm),

(n1) (n2) (nm)

36



In the case of IαAtkinson, ξj is expressed as

ξj =

(
1

nj

nj∑
i=1

x1−α
i

) 1
1−α

(3.28)

In contrast, the resulting decomposition of IKolm into within-group and
between-group components is

IKolm = IwithinKolm + IbetweenKolm , (3.29)

where

IwithinKolm =
m∑
j=1

pjIKolm(Gj)

IbetweenKolm =
m∑
j=1

pjξj − ξ (3.30)

In the case of IβKolm, ξ is expressed as

ξ = − 1

β
log

(
1

n

n∑
i=1

e−βxi

)
(3.31)

Discussion of these notions in further detail goes beyond the scope of this
thesis1. Therefore, we limit ourselves to emphasizing that all the different
forms of decomposition into between-group and within-group components
suggested for different inequality indices and discussed above are equally-
suited for explaining the inequality using R (equation 3.20).

Root-cause analyses

Apart from explanation of inequality at partition level, decomposability (via
the R index) enables root-cause analyses, i.e., it provides means to identify
the underlying measurements which explain the computed inequality. For
example, when applying inequality indices to aggregation of SLOC values
computed per class, decomposability enables one to identify the single class,
or the top 10% of the classes, most responsible for the observed inequality.

However, in order to answer such questions, a MECE partitioning of
the system must be given first. If one is interested, e.g., in identifying
the single value most responsible for the observed inequality in the set
X = {x1, x2, . . . , xn}, there are n candidate partitionings ({xi},X \ {xi}),

1For alternative forms of decomposition, as well as, e.g., decomposition of IAtkinson
according to the group means rather that the equally-distributed equivalents see [16,30]

37



for all i = 1, . . . , n. Assuming x1 ≤ xi ≤ xn, for all i = 1, . . . , n, we
show that it suffices to consider only the partitionings ({x1},X \ {x1}) and
({xn},X \ {xn}), since it is either the lowest (x1) or the highest (xn) value
that contributes the most to the inequality.

We illustrate the following lemma using a definition of R specialized to
the Theil index:

R({G1, . . . , Gm}) =
IbetweenTheil ({G1, . . . , Gm})

ITheil(X )
, (3.32)

where ITheil is decomposed using the vector of group means (equation 3.23).
Note that R is undefined when ITheil(X ) = 0, i.e., when all values being

aggregated are equal. However, this is not a serious limitation since there is
no inequality when all values being aggregated are equal, and explanation
of inequality is only relevant in the presence of it.

Lemma 3.2.1. Let X = {x1, x2, . . . , xn} be a collection of values such that
x1 ≤ xi ≤ xn, for all i = 1, . . . , n. If there exist at least two distinct
values in X (R is defined), then it is either x1 or xn that contributes the
most to the inequality measured using ITheil, i.e., it is either the partitioning
({x1},X \ {x1}) or the partitioning ({xn},X \ {xn}) that provides the best
explanation for the inequality measured using ITheil.

Proof. We distinguish between two cases: either xi ≤
∑n
j=1,j 6=i xj
n−1 or

xi ≥
∑n
j=1,j 6=i xj
n−1 . We show for all i = 2, . . . , n − 1 that if xi ≤

∑n
j=1,j 6=i xj
n−1 ,

then the partitioning ({x1},X \ {x1}) provides a better explanation for the
inequality measured using ITheil than partitioning ({xi},X \ {xi}), i.e., we
show

R ({x1},X \ {x1}) ≥ R ({xi},X \ {xi}) , (3.33)

for all i = 2, . . . , n − 1. Similarly, one can show that if xi ≥
∑n
j=1,j 6=i xj
n−1 ,

then the partitioning ({xn},X \ {xn}) provides a better explanation for the
inequality measured using ITheil than any partitioning ({xi},X \ {xi}), for
all i = 2, . . . , n− 1, i.e.,

R ({xn},X \ {xn}) ≥ R ({xi},X \ {xi}) ,

for all i = 2, . . . , n− 1.
By definition,

R ({x1},X \ {x1}) =
IbetweenTheil ({x1},X \ {x1})
ITheil({x1, x2, . . . , xn})

,

and

R ({xi},X \ {xi}) =
IbetweenTheil ({xi},X \ {xi})
ITheil({x1, x2, . . . , xn})

38



Since there exist at least two distinct values in the set {x1, x2, . . . , xn},
ITheil({x1, x2, . . . , xn}) 6= 0. It follows that proving (3.33) is equivalent to
proving

IbetweenTheil ({x1},X \ {x1}) ≥ IbetweenTheil ({xi},X \ {xi})

Let G be the group X \ {x1} = {x2, . . . , xn}, and let mean(G) be the

mean of the values in G, i.e., mean(G) =
∑n
j=2 xj
n−1 . Similarly, let G′ be

the group X \ {xi} = {x1, . . . , xi−1, xi+1, . . . , xn}, and let mean(G′) be the

mean of the values in G′, i.e., mean(G′) =
∑n
j=1,j 6=i xj
n−1 . Since the inequality

between groups is invariant to the dispersion of the distribution within each
group, each value in each group can be replaced by the mean value of the
group [101]. Then

IbetweenTheil ({x1},X \ {x1}) = IbetweenTheil ({x1}, {x2, . . . , xn})
= ITheil (mean({x1}),mean(G), . . . ,mean(G))

= ITheil

(
x1,

∑n
j=2 xj

n− 1
, . . . ,

∑n
j=2 xj

n− 1

)

However, ITheil satisfies the principle of transfers, i.e., a transfer of δ ≥ 0
from a richer to a poorer individual, without reversing their roles, does not
increase inequality.

Let δ = xi−x1
n−1 . Since x1 ≤ xi ≤ xn, for all i = 1, . . . , n, then δ ≥ 0.

We subsequently transfer δ from each mean(G) to x1. Since xi ≤
∑n
j=1,j 6=i xj
n−1 ,

then the subsequent n − 1 transfers of size δ to x1 do not reverse the roles
between x1 and any of the mean(G). Indeed, after all the transfers x1

becomes

x1 + (n− 1) · δ = x1 + (n− 1)
xi − x1

n− 1
= xi,

and each of mean(G) becomes

mean(G)− δ =

∑n
j=2 xj

n− 1
− δ

=

∑n
j=2 xj

n− 1
− xi − x1

n− 1

=

∑n
j=1,j 6=i xj

n− 1

Because xi ≤
∑n
j=1,j 6=i xj
n−1 , then the subsequent n− 1 transfers of δ from each

mean(G) to x1 do not reverse their roles in the hierarchy, since

x1 + (n− 1) · δ ≤ mean(G)− δ

39



It follows that

ITheil

(
x1,

∑n
j=2 xj

n− 1
, . . . ,

∑n
j=2 xj

n− 1

)

≥ ITheil

(
x1 + δ,

∑n
j=2 xj

n− 1
− δ, . . . ,

∑n
j=2 xj

n− 1

)
≥ . . .

≥ ITheil

(
x1 + (n− 1) · δ,

∑n
j=2 xj

n− 1
− δ, . . . ,

∑n
j=2 xj

n− 1
− δ

)

= ITheil

(
xi,

∑n
j=1,j 6=i xj

n− 1
, . . . ,

∑n
j=1,j 6=i xj

n− 1

)
= ITheil

(
mean({xi}),mean(G′), . . . ,mean(G′)

)
= IbetweenTheil ({xi}, {x1, . . . , xi−1, xi+1, . . . , xn})
= IbetweenTheil ({xi},X \ {xi})

If xi ≤
∑n
j=1,j 6=i xj
n−1 , we have shown that the partitioning ({x1},X \ {x1})

provides a better explanation for the inequality measured using ITheil than
any partitioning ({xi},X \ {xi}), for all i = 2, . . . , n − 1. Similarly, if

xi ≥
∑n
j=1,j 6=i xj
n−1 , then the partitioning ({xn},X \ {xn}) provides a better

explanation for the inequality measured using ITheil than any partitioning
({xi},X \ {xi}), for all i = 2, . . . , n− 1.

Since for any xi ∈ X , either xi ≥
∑n
j=1,j 6=i xj
n−1 or xi ≤

∑n
j=1,j 6=i xj
n−1 , we con-

clude that when one is interested in identifying the single value most respon-
sible for the observed inequality in the set X = {x1, x2, . . . , xn}, then it suf-
fices to consider only the partitionings ({x1},X \ {x1}) and ({xn},X \ {xn}),
since it is either the lowest (x1) or the highest (xn) value that contributes
the most to the inequality.

�

Therefore, when applying inequality indices to aggregation of SLOC values
measured per class, Lemma 3.2.1 allows one to answer questions such as
“Which class contributes the most to the observed inequality?”, or “Which
classes are responsible for 80% of the observed inequality?”. The former
can be answered by considering only the partitionings ({x1},X \ {x1}) and
({xn},X \ {xn}), where x1 is the smallest class and xn is the largest class
considered, and computing the R index using equation 3.32. The class that
contributes the most to the observed inequality (either x1 or xn) is the
class for which the R index is the largest. The latter can be answered by
repetitively determining the class that contributes the most to the observed
inequality, removing it from the data set, and repeating the process until
the desired percentage of total inequality is reached.

40



3.3 Discussion and summary

In this chapter we have presented a number of income inequality indices,
initially used to study the inequality of income or wealth distributions. We
have analyzed some of their mathematical properties and we have studied
their applicability to software metrics. Table 3.3 summarizes information
about domain, range, invariance (w.r.t addition or multiplication), decom-
posability, symmetry, principle of transfers, and population principle for the
inequality indices considered.

Table 3.3: Mathematical properties of the inequality indices considered.

Index Domain Range Inv. Dec. Sym. Tra. Pop.

IGini Rnx̄ 6=0 R† ∗ N Y Y Y

ITheil Rn∀xi≥0,∃xi>0 [0, log n] ∗ Y Y Y Y

IMLD Rn∀xi≥0,∃xi>0 R≥0 ∗ Y Y Y Y

IαAtkinson Rn∀xi≥0,∃xi>0 [0, 1− 1
n ] ∗ Y Y Y Y

IHoover Rnx̄ 6=0 R† ∗ N Y N Y

IβKolm Rn R≥0 + Y Y Y Y
† [0, 1− 1

n

]
, if ∀xi ≥ 0, ∃xi > 0.

The results of the examination of the appropriateness of six inequality
indices (IGini, ITheil, IMLD, IHoover, IAtkinson, and IKolm) for software metrics
have shown that:

• ITheil, IMLD, and IAtkinson cannot be used to aggregate metrics with
negative values (e.g., the Maintainability Index);

• The six indices do not range over the same intervals. To enable direct
comparison between them, they should be normalized to the same
range;

• All six inequality indices are zero when all individuals have identical
income, i.e., when all metrics data values are equal;

• Invariance with respect to multiplication enables that inequality be
comparable across different metrics. However, scale-invariant inequal-
ity indices (IGini, ITheil, IMLD, and IAtkinson) do not discern between
all values being equal but low, and all values being equal but high;

• An important question in interpreting the value aggregated on a sys-
tem level pertains to the extent to which the result can be attributed
to differences between system subcomponents. The decomposability
property of ITheil, IMLD, IAtkinson, and IKolm enables such analyses.

41



Additionally, decomposability enables that the influence of the parti-
tioning on the overall inequality be quantifiable;

• The decomposability property also enables root-cause analyses up to
single-value level, i.e., one can identify the single value which con-
tributes the most to the inequality being measured, by partitioning
the n values into two groups, one of size 1 and the other of size n− 1.
Although there are n such partitionings for a population of size n, we
have shown for ITheil that such root-cause analyses can be performed
efficiently, by only considering the partitionings in which the groups
of size 1 contain either the lowest, or the highest observed values;

• Decomposability studies require that the partitions used be mutually
exclusive and completely exhaustive (MECE). However, partitions of
a software system do not necessarily satisfy MECE, e.g., the decompo-
sition of Java systems into packages and subpackages, in which classes
may exist which are not part of any of the subpackages.

From the previous analysis it follows that when using inequality indices
for aggregation of software metrics, often several choices exist between using
one index or another, when all the applicability criteria are met by more
indices simultaneously. To simplify the choice, we recall the observation of
Allison [4] by which all scale-invariant inequality measures which satisfy the
principle of transfers have a simple relation to the Lorenz curve.

Indeed, given two distributions X and Y, if the Lorenz curve for Y is
never above and is somewhere below the Lorenz curve for X , then any scale-
invariant inequality index which satisfies the principle of transfers (i.e., IGini,
ITheil, IMLD, IAtkinson) will give the same rank ordering [4,40,71]. However,
it is not uncommon in econometrics for two Lorenz curves to intersect [34].
In such cases, e.g., ITheil may give one rank ordering, while IAtkinson gives an-
other. We further investigate agreement between different inequality indices
empirically in Chapters 5 and 6.

42





Chapter 4

Threshold-based aggregation
techniques

Aggregation of software metrics, regardless of whether we refer to aggrega-
tion of different metrics applied to the same artifact, or aggregation of the
same metric applied to different artifacts, has been around ever since soft-
ware quality assessments started being performed [19]. For example, if we
refer to aggregation of the same metric applied to different artifacts, which
is also the focus of this thesis, average number of lines of code [61] for a class
(i.e., the arithmetic mean of the number of lines of code of all the nested
methods) and Weighted Methods per Class (WMC) [22] (i.e., the sum of
McCabe’s cyclomatic complexities [73] of methods defined in a class) have
been around since as early as 1984 and 1994, respectively.

However, aggregation of software metrics has not been recognized as a
research topic on its own until very recently [99, 113–115] when, besides
traditional aggregation techniques such as sum or mean, more advanced
approaches to aggregation of software metrics have been proposed.

In addition to the econometric inequality indices discussed in Chapter 3,
more recent work in software quality models has proposed threshold-based
approaches to aggregation of software metrics. We can distinguish between
threshold-based aggregation techniques using hard thresholds (i.e., a soft-
ware artifact is given a certain rating as long as the values of its associ-
ated metrics stay within certain boundaries), such as the approach in the
Software Improvement Group (SIG) quality model [5], and threshold-based
aggregation techniques using soft thresholds (i.e., the rating computed for
a software artifact does not exhibit staircasing effects as the the values of
its associated metrics change slightly), such as the approach in the Squale
quality model [76].

The approach to aggregation of code-level measurements to system-level
star ratings in the SIG quality model [5] is the most recent version to date of
a series of threshold-based methodologies to aggregate software metrics (e.g.,

44



[27,50]). The approach to aggregation of code-level measurements to system-
level global marks in the Squale quality model [76] improves upon previous
models for software product quality that use averages or weighted averages
for aggregation of software metrics (e.g., [11,20,95]), by proposing a solution
that addresses some of the shortcomings associated with these aggregation
techniques. Certification models such as the ones proposed in [49,117] do not
describe the low-level details, metrics, and aggregation techniques involved
in quantifying particular quality attributes, hence go beyond the scope of
this thesis.

4.1 SIG star ratings

Aggregation of code-leve measurements to system-level star ratings in the
SIG quality model is a two-step process

In the first step, individual measurements are aggregated into risk profiles
using thresholds on metrics [6, 50]. A risk profile represents the percentage
of total source code that falls into each of four risk categories (low, moder-
ate, high, and very high). The thresholds used to identify the boundaries
between the categories are derived empirically from the measurement data
of a benchmark of 100 proprietary and open-source systems written in Java
and C# [6]. For example, the thresholds derived for the McCabe cyclomatic
complexity metric are 6, 8, and 14, i.e., the methods with McCabe in (−∞, 6]
are considered low risk, (6, 8] moderate risk, (8, 14] high risk, and [14,∞)
very high risk.

In the second step, risk profiles are further aggregated into a system-level
star rating (on a 5-point scale) using a similar, threshold-based approach.
The thresholds, this time on risk profiles rather than metrics, are again
derived empirically from the same benchmark data, such that each star on
the 5-point scale represents equally 20% of the systems in the benchmark.

We discuss the specifics of each step below.

4.1.1 Deriving thresholds on metrics

The methodology proposed in [6] for deriving thresholds for metrics consists
of six steps, as follows. The authors illustrate each step with the examples
on Azureus/Vuze below.

Extraction of metrics: Metrics are extracted from a benchmark of soft-
ware systems. For each entity (e.g., method, class) in each system,
the value of the metric is recorded, as well as the entity’s weight,
i.e., its SLOC value. For example, the MyTorrentsView.createTabs()
method of Azureus/Vuze has a McCabe metric value of 17 and a weight
(SLOC) value of 119.

45



Calculation of weight ratio: For each entity (e.g., method, class) in each
system, the weight ratio is computed, i.e., the ratio between the en-
tity weight (SLOC value) and the total weight (total SLOC) of the
system. For example, the MyTorrentsView.createTabs() method of
Azureus/Vuze represents 0.036% of the entire system.

Aggregation of entities: For each metric value, the weight ratios for all
entities with that metric value are summed for each system. For ex-
ample, all entities with a McCabe metric value of 17 represent 1.485%
of the total size of Azureus/Vuze.

Aggregation of systems: For each metric value, the previously-aggregated
weight ratios are normalized by the number of systems in the bench-
mark (e.g., if there are 100 systems in the benchmark and all enti-
ties with a McCabe value of 17 represent 1.485% of the total size of
Azureus/Vuze, then they represent 1.485

100 % of all code). Next, the total
weight for each metric value is computed. For example, a McCabe
metric value of 17 represents 0.658% of all code.

Aggregation of weight ratios: The metric values are sorted ascendingly
and a density function is computed, for which the x-axis represents
the benchmark-level weight ratio (0-100%), and the y-axis represents
the metric value scale. The density function plots for each percent-
age of the weight (1%, 2%, . . . , 100%) the maximal metric value. For
example, for 60% of the overall code the maximal McCabe value is 2.

Derivation of thresholds: The three thresholds delimiting the four risk
categories are derived by choosing 70% (i.e., low risk between 0-70%),
80% (i.e., moderate risk between 70-80%), and 90% (i.e., high risk
between 80-90% and very high risk between 90-100%) of all code. For
example, for the McCabe metric the thresholds are 6, 8, and 14.

4.1.2 Computing a risk profile

Computing a risk profile starts by categorizing all methods into the four risk
categories, given their metric values. Next, the weights for each category
are computed, i.e., the sum of the sizes of all the methods in the category
divided by the total size of the system. The resulting risk profile is a 4-tuple
in which each element represents the percentage of total source code that
falls into each of the four risk categories. For example, the risk profile for
ArgoUML shows that 74.2% of the code is low risk, 7.1% moderate risk,
8.8% high risk, and 9.9% very high risk [5].

46



4.1.3 Deriving thresholds on risk profiles

The aggregation of risk profiles into a system-level star rating is again per-
formed using a threshold-based approach, with thresholds for risk profiles.
These thresholds are derived from the same benchmark of systems using
the methodology proposed in [5], which consists of the following steps. The
authors illustrate each step with the examples on ArgoUML below.

Computation of risk profiles: The risk profiles are computed for all sys-
tems in the benchmark, using the approach above.

Computation of cumulative risk profiles: The cumulative risk profiles
are computed for all systems in the benchmark, i.e., the relative size
of each risk category plus all higher categories. Since the cumulative
relative size for the low risk category is 100% by definition, one needs
to compute the cumulative relative size only for the moderate, high,
and very high risk categories. It follows that for the 5-point star scale
used, 4 sets of thresholds are sufficient to cover it, where each set of
thresholds consists of three values for the moderate, high, and very
high risk categories. For example, given the previous risk profile for
ArgoUML, the cumulative relative size for the very high risk category
is 9.9%, for the high risk category is 9.9% + 8.8% = 18.7%, for the
moderate risk category is 9.9% + 8.8% + 7.1% = 25.8%, and for the
low risk category is 9.9% + 8.8% + 7.1% + 74.2% = 100% (the latter
can thus be omitted).

Choice of partition: The desired distribution of the systems per rating,
i.e., the number of systems in the benchmark for each rating, is cho-
sen. For example, for a benchmark of 100 systems and a 5-point scale
with uniform distribution, each rating represents equally 20% of the
systems, i.e., 20 systems are rated with one star, 20 with two stars, etc.

Derivation of thresholds: The smallest possible thresholds for the three
risk categories are computed using an optimization algorithm that
takes as input all cumulative risk profiles and the partition, such that
the desired number of systems for that rating is preserved. Discussing
the optimization algorithm goes beyond the scope of this thesis. The
exact threshold values for SLOC can be found in [5].

4.1.4 Computing a star rating

A system-level star rating for a given system is computed by determining
the set of minimal thresholds, such that these all thresholds are higher or
equal than the values of the cumulative risk profile of the system. For
ease of presentation, we illustrate the computation of a discrete rating. A
continuous scale can be obtained by linear interpolation, as described in [5].

47



Let RP = (RPM , RPH , RPV H) be the cumulative risk profile (RPL is
omitted since RPL = 100%). Let {(T iM , T iH , T iV H) | 1 ≤ i < N} be the set
of thresholds on risk profiles for an N -point star scale.

Then, a star rating R ∈ {1, 2, . . . , N} is computed [5] as

R = N −min (iM , iH , iV H) + 1, (4.1)

where

iM = min
1≤i<N

(RPM ≤ T iM )

iH = min
1≤i<N

(RPH ≤ T iH)

iV H = min
1≤i<N

(RPV H ≤ T iV H) (4.2)

For example, given the cumulative risk profile for McCabe in ArgoUML
of (25.8%, 18.7%, 9.9%) as well as the necessary thresholds, the resulting
rating is three stars. Since each star on the 5-point star corresponds to 20%
of the systems in the benchmark used for deriving the thresholds, and since
there are two two stars above, and two stars below the rating of ArgoUML,
then this implies that 40% of the systems in the benchmark scored higher,
and 40% scored lower than ArgoUML.

The drawbacks of the SIG approach are twofold. First, as noted in [76],
in practice such thresholds are often company-, or even development-team-
dependent inside the same company. Consequently, it is not clear if the same
thresholds can be applied across various companies and development teams.
Moreover, the thresholds have been derived from benchmark data containing
certain releases of the systems in the benchmark, and it is not clear whether
the same thresholds can be applied when analyzing subsequent releases of a
software system, since the threshold values do not evolve as software evolves.

Second, by translating the individual measurements to a discrete scale
(with risk profiles), minor changes in quality may not be reflected in the
rating, thus discouraging small, progressive improvements. For example, if
the McCabe value of all methods with McCabe 13 drops to 10 in a subse-
quent release of the same software system, without any other changes, the
improvement in quality would not be reflected in the rating.

Note that this “staircasing” problem cannot be avoided by using the
continuous variant of the SIG approach, since computing the risk profiles,
when the problem becomes apparent, precedes computing the star rating,
when the continuous scale can be used.

48



4.2 Squale global marks

Squale [76] is another quality model that introduces threshold-based for-
mulas to aggregate metric values. While Squale covers both aggregation of
different metrics applied to the same artifact and aggregation of the same
metric applied to different artifacts, in the coming discussion we focus only
on the latter, which is considered as a two-phase process.

First, values of individual metrics are translated to individual marks in
the range [0, 3], such that clearly desirable values get the highest mark (3),
and clearly undesirable values get the lowest mark (0). The translation
function is chosen such that when a certain threshold is exceeded, then
the individual mark decreases following an exponential curve. As a result,
the individual mark tends quickly towards zero, stressing the presence of
undesirable metric values. Moreover, in contrast to the SIG approach, the
translation is continuous, ensuring that minor changes in metric values are
reflected in the aggregated result (individual mark). Figure 4.2 shows an
example of such a translation function, used to transform the SLOC values
computed for each method to individual marks (IMs).

SLOC per method

In
di

vi
du

al
 M

ar
k 

(I
M

)

0 10 20 30 40 50 60 70 80 90 110 130 150 170

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 4.1: Translation function from SLOC per method to IMs.

Second, individual marks are aggregated to a system-level global mark
(again in the range [0, 3], where 3 is the perfect mark). The aggregation
function (hereafter denoted as IλSquale or ISquale if the value of λ is not im-
portant) is defined in terms of a parameter λ, which stresses or loosens the
tolerance for bad individual marks.

IλSquale = − logλ

(
1

n

n∑
i=1

λ−IMn

)
, (4.3)

where IMi is the individual mark of method/class i.
Typically, three values for λ are used [76]: 30 (hard weighing) is associ-

ated with low tolerance for bad individual marks, i.e., the global mark falls
in the range [0, 1] as soon as there are a few low IMs; 9 (medium weighing) is
associated with medium tolerance for bad individual marks, i.e., the global
mark falls in the range [0, 1] only when there are significantly many low IMs;
3 (soft weighing) is associated with large tolerance for bad individual marks,
i.e., the global mark falls in the range [0, 1] only when most IMs are low.

49



4.2.1 Mathematical properties

ISquale has been introduced to aggregate non-negative values in the range
[0, 3] (individual marks). However, in this section we generalize it and apply
ISquale directly to software metrics. In this sense, we discuss mathematical
properties of ISquale and we compare them to the properties of the inequality
indices discussed in Section 3.2.

When applied directly to software metrics, the domain of ISquale becomes
Rn, with λ ∈ R+ \{1}. Similarly, the range of ISquale is R. In contrast to the
inequality indices that are zero when all values are equal, from the definition
above (equation 4.3) it follows that ISquale(x, . . . , x) = x.

We start by showing that ISquale(x1, . . . , xn) ranges always between the
smallest and the largest values being aggregated. Moreover, if λ > 1, ISquale

is upper bound by the mean, while if 0 < λ < 1 then ISquale is lower bound
by the mean.

Lemma 4.2.1. Let x1, . . . , xn be real numbers such that x1 ≤ xi ≤ xn, for
all i, 1 ≤ i ≤ n. Let x̄ = 1

n

∑n
i=1 xi. Then

x1 ≤ ISquale(x1, . . . , xn) ≤ xn,

for all λ ∈ R+ \ {1}. Moreover, if λ > 1, then

x1 ≤ ISquale(x1, . . . , xn) ≤ x̄

Similarly, if 0 < λ < 1, then

x̄ ≤ ISquale(x1, . . . , xn) ≤ xn

Proof. Since x1 ≤ xi ≤ xn for all 1 ≤ i ≤ n, then it also holds that
−xn ≤ −xi ≤ −x1. Next, we distinguish between λ > 1 and 0 < λ < 1.

If λ > 1, then for all i it holds that λ−xn ≤ λ−xi ≤ λ−x1 . Therefore,

nλ−xn ≤
n∑
i=1

λ−xi ≤ nλ−x1

≡ λ−xn ≤ 1

n

n∑
i=1

λ−xi ≤ λ−x1

≡ − xn ≤ logλ

(
1

n

n∑
i=1

λ−xi

)
≤ −x1

Hence

x1 ≤ ISquale(x1, . . . , xn) ≤ xn

50



If 0 < λ < 1, then λ−x1 ≤ λ−xi ≤ λ−xn . By the same argument,

λ−x1 ≤ 1

n

n∑
i=1

λ−xi ≤ λ−xn

≡ − xn ≤ logλ

(
1

n

n∑
i=1

λ−xi

)
≤ −x1

Hence

x1 ≤ ISquale(x1, . . . , xn) ≤ xn

Now, recall that the geometric mean never exceeds the arithmetic mean.

n

√√√√ n∏
i=1

λ−xi ≤ 1

n

n∑
i=1

λ−xi

However, n
√∏n

i=1 λ
−xi = λ−

1
n

∑n
i=1 xi = λ−x̄. Hence,

λ−x̄ ≤ 1

n

n∑
i=1

λ−xi

If λ > 1, then

−x̄ ≤ logλ

(
1

n

n∑
i=1

λ−xi

)

and

− logλ

(
1

n

n∑
i=1

λ−xi

)
≤ x̄,

i.e.,

ISquale(x1, . . . , xn) ≤ x̄

Similarly, if 0 < λ < 1, then

−x̄ ≥ logλ

(
1

n

n∑
i=1

λ−xi

)

and

x̄ ≤ ISquale(x1, . . . , xn)

�

51



From the software engineering point of view, Lemma 4.2.1 has the following
implications. If one is interested in highlighting the low values in the data
set, i.e., low values are undesirable, then a parameter λ > 1 should be
chosen. Such situations arise, e.g., when aggregating individual marks into
a global mark. Similarly, if one is interested in highlighting the high values
in the data set, i.e., high values are undesirable, then a parameter 0 < λ < 1
should be chosen. Such situations arise, e.g., when applying ISquale directly
to aggregation of SLOC values. Moreover, the Squale aggregation is more
sensitive to undesirable values than the mean.

The next lemma relates the aggregated values for different values of λ.

Lemma 4.2.2. Iλ
k

Squale(x1, . . . , xn) = 1
kI

λ
Squale(kx1, . . . , kxn), for all k ∈ R \ {0}

and λ ∈ R+ \ {1}.

Proof.

Iλ
k

Squale(x1, . . . , xk) = − logλk

(
1

n

n∑
i=1

(λk)−xi

)

= − 1

logλ λ
k

logλ

(
1

n

n∑
i=1

(λk)−xi

)

=
1

k

(
− logλ

(
1

n

n∑
i=1

λk(−xi)

))

=
1

k
IλSquale(kx1, . . . , kxn)

�

It follows that one can choose λ = e as the standard instantiation of the
Squale family of indices.

Lemma 4.2.3. IλSquale(x1, . . . , xn) = 1
log λI

e
Squale(x1 log λ, . . . , xn log λ)

Proof. From Lemma 4.2.2 we have

Iλ
k

Squale(x1, . . . , xn) =
1

k
IλSquale(kx1, . . . , kxn),

for all k ∈ R \ {0} and λ ∈ R+ \ {1}. Let λ = e. Then

Ie
k

Squale(x1, . . . , xn) =
1

k
IeSquale(kx1, . . . , kxn)

Let k = log λ. Then

Ie
log λ

Squale(x1, . . . , xn) =
1

log λ
IeSquale(x1 log λ, . . . , xn log λ)

52



Hence

IλSquale(x1, . . . , xn) =
1

log λ
IeSquale(x1 log λ, . . . , xn log λ)

�

In addition, similar to the inequality indices, ISquale is symmetric and satis-
fies the population principle. The first statement follows immediately from
the definition of ISquale. We prove the second statement next.

Lemma 4.2.4. Let y1, . . . , ym be a replication of x1, . . . , xn, i.e., let there
exist k such that m = nk and yj = xdj/ke for all j, 1 ≤ j ≤ m. Then, ISquale

satisfies the population principle, i.e.,

IλSquale(y1, . . . , ym) = IλSquale(x1, . . . , xn)

Proof.

IλSquale(y1, . . . , ym) = − logλ

 1

m

m∑
j=1

λ−yj


= − logλ

 1

nk

nk∑
j=1

λ−yj


= − logλ

 1

nk

nk∑
j=1

λ−xdj/ke


= − logλ

(
1

nk

n∑
i=1

kλ−xi

)

= − logλ

(
k

nk

n∑
i=1

λ−xi

)

= − logλ

(
1

n

n∑
i=1

λ−xi

)
= IλSquale(x1, . . . , xn)

�

Next we compare ISquale with IKolm [60], introduced in Chapter 3. Recall

the definition of IβKolm:

IβKolm(x1, . . . , xn) =
1

β
log

(
1

n

n∑
i=1

eβ(x̄−xi)

)
where x̄ is the mean of x1, . . . , xn.

The following lemma establishes a formal relation between ISquale and
IKolm.

53



Lemma 4.2.5. I log λ
Kolm(x1, . . . , xn) + IλSquale(x1, . . . , xn) = x̄

Proof. To see that the lemma holds, observe that

I log λ
Kolm(x1, . . . , xn) + IλSquale(x1, . . . , xn)

=
1

log λ
log

(
1

n

n∑
i=1

elog λ(x̄−xi)

)
− logλ

(
1

n

n∑
i=1

λ−xi

)

=
1

log λ
log

(
1

n

n∑
i=1

λx̄−xi

)
− 1

log λ
log

(
1

n

n∑
i=1

λ−xi

)

=
1

log λ

(
log

(
1

n
λx̄

n∑
i=1

λ−xi

)
− log

(
1

n

n∑
i=1

λ−xi

))

=
1

log λ

(
log

1
nλ

x̄
∑n

i=1 λ
−xi

1
n

∑n
i=1 λ

−xi

)
=

1

log λ

(
log λx̄

)
= x̄

�

Using Lemma 4.2.5 we can establish a number of additional properties of
ISquale for any x1, . . . , xn ∈ Rn. Without loss of generality, let x1 ≤ xi ≤ xn,
for all 1 ≤ i ≤ n.

Lemma 4.2.6. For all c ∈ R it holds that IλSquale is “unit translatable”, i.e.,

IλSquale(x1 + c, . . . , xn + c) = IλSquale(x1, . . . , xn) + c

Proof. From Lemma 4.2.5 we have

IλSquale(x1 + c, . . . , xn + c) =mean(x1 + c, . . . , xn + c)− I log λ
Kolm(x1 + c, . . . , xn + c)

But

mean(x1 + c, . . . , xn + c) = mean(x1, . . . , xn) + c

Since IβKolm is invariant with respect to addition [60], then

I log λ
Kolm(x1 + c, . . . , xn + c) = I log λ

Kolm(x1, . . . , xn)

It follows that

IλSquale(x1 + c, . . . , xn + c) = mean(x1, . . . , xn) + c− I log λ
Kolm(x1, . . . , xn)

= IλSquale(x1, . . . , xn) + c

�

54



Lemma 4.2.7. Let xi < xj and let δ > 0 be such that xi + δ ≤ xj − δ.
Then, IλSquale satisfies the “anti-transfers principle”, i.e.,

IλSquale(x1, . . . , xi, . . . , xj , . . . , xn) < IλSquale(x1, . . . , xi + δ, . . . , xj − δ, . . . , xn)

Proof. Since IKolm is known to satisfy the transfers principle [60], then
for any β it holds that

IβKolm(x1, . . . , xi, . . . , xj , xn) > IβKolm(x1, . . . , xi + δ, . . . , xj − δ, . . . , xn),

for xi, xj and δ as above.
From Lemma 4.2.5 we have

I log λ
Kolm(x1, . . . , xn) =mean(x1, . . . , xn)− IλSquale(x1, . . . , xn),

and

I log λ
Kolm(x1, . . . ,xi + δ, . . . , xj − δ, . . . , xn)

= mean(x1, . . . , xi + δ, . . . , xj − δ, . . . , xn)

− IλSquale(x1, . . . , xi + δ, . . . , xj − δ, . . . , xn)

= mean(x1, . . . , xi, . . . , xj , . . . , xn)

− IλSquale(x1, . . . , xi + δ, . . . , xj − δ, . . . , xn)

The claim follows. �

From the software engineering point of view, unit translatability allows
one to calculate ISquale if, e.g., headers containing the licensing information
have been added to all source files. In this case, the value of ISquale applied to
lines of code per file for the modified system equals the value of ISquale applied
to lines of code per file for the system before the modification, increased by
the number of lines in the header.

The “anti-transfers principle” is symmetric to the transfers principle of
IKolm. Intuitively, the anti-transfers principle means that ISquale measures
equality as opposed to IKolm (or any of the other inequality indices satisfying
the principle of transfers, i.e., IGini, ITheil, IMLD, and IAtkinson) measuring
inequality. In this sense, transferring money from a reacher person to a
poorer person increases ISquale, i.e., increases equality, whereas the same
transfer decreases IKolm, i.e., decreases inequality.

In software engineering, if source lines of code values measured per
method are considered undesirable when greater than 36 [76], then a de-
crease in SLOC of 20 for one method with SLOC 60 at the cost of an equiv-
alent increase in SLOC for another method with SLOC 20 would result in
an increase of quality as measured by ISquale, i.e., a decrease in the number
of undesirable values.

55



Equally-distributed equivalent

The intuition that ISquale measures equality can be further formalized by
considering the econometric notion of an equally-distributed equivalent, dis-
cussed in Section 3.2.

Recall that given a social-evaluation function W : Rn → R and the
distribution of income x1, . . . , xn, the equally-distributed-equivalent ξ is de-
termined by W (x1, . . . , xn) = W (ξ, . . . , ξ).

Blackorby et al. [16] have shown that for an important class of social-
evaluation functions1, the corresponding equally-distributed equivalent can
be written as

ξg(x1, . . . , xn) = g−1(
1

n

n∑
i=1

g(xi)), (4.4)

for a function g.
Clearly, IλSquale belongs to this family of equally-distributed equivalents

for g(x) = λ−x.

4.3 Discussion and summary

In this chapter we have presented and analyzed two threshold-based ap-
proaches to aggregation of software metrics. The results of our analysis
have shown that:

• Aggregation of metrics values using a discrete threshold-based ap-
proach (e.g., the aggregation of individual measurements to risk pro-
files in the SIG approach) can lead to small, progressive improvements
in quality not being reflected in the rating, and should thus be avoided.
In contrast, the Squale approach provides a continuous model for met-
ric aggregation.

• Thresholds should be derived and validated for both the SIG approach,
as well as the Squale approach to be correctly applicable. Moreover,
it may be the case that thresholds should co-evolve as systems evolve.

• A high rating obtained with either the SIG or the Squale approaches
is not necessarily an indication of good software engineering practices.
For example, [51] recommends seven as the guideline for the maximal
depth of inheritance tree (DIT) [22]. However, even though when all
depth of inheritance tree (DIT) values are 0 or 1 the recommendation

1More precisely, the social-evaluation function W should be continuous, S-concave,
increasing, the population should have not less than 3 individuals, and that some non-
singleton strict subset of the population is separable from its complement. Discussion of
these notions in further detail goes beyond the scope of this thesis.

56



of [51] is followed, such a situation suggests that the designers might
not be taking advantage of reuse of methods through inheritance [22].
Hence, DIT uncovers an essential shortcoming of the threshold-based
methods: the threshold-based methods assume that if all values are
“good” (i.e., low risk, desirable), then also the entire system is “good”,
while this assumption does not hold for DIT.

• Although designed for software metrics, the aggregation of individual
marks to a global mark in the Squale approach (ISquale) satisfies a
number of common and complementary properties of the econometric
inequality indices, e.g., the population principle and the anti-transfers
principle. Moreover, ISquale can be formalized using the econometrical
notion of equally-distributed equivalent, and has a formal relation with
IKolm.

57



Concluding remarks

In the previous three chapters we have performed a theoretical analysis of
three categories of aggregation techniques for software metrics, and we have
discussed their applicability to the task in hand. In this section we provide
an overview of our findings.

The first category of aggregation techniques for software metrics con-
sidered comprises standard summary statistics such as the sum, mean, or
median, commonly used to aggregate software metrics [12,20,63,64,87]. The
mean meaningfully captures the central tendency in a data set as long as the
distribution is close to normal. However, it is common for software metrics
to have strongly-skewed distributions [14, 46, 113], for which the mean fails
to accurately capture the central tendency, thus proving inappropriate for
aggregation of such metrics data.

To illustrate the problems with using the median as aggregation tech-
nique for software metrics we refer to the example in [113]. Before a refac-
toring of Lucene, a text search engine library written in Java, the median
of the strongly-skewed distribution of cyclomatic complexity at class level
was five. After the refactoring, new classes were added to the system and
the median increased to eight, wrongly suggesting that overall cyclomatic
complexity in Lucene increased, when in fact the increase in median was
only due to the increase in population size.

Such strongly-skewed distributions are more accurately tackled with
measures of asymmetry and peakedness, e.g., skewness and kurtosis. How-
ever, as opposed to statistics such as sum or mean which have been known
to associate with software quality attributes (e.g., mean applied to the num-
ber of lines of code added per revision is associated with changeability [77]),
skewness and kurtosis are used only to characterize distributions of software
metrics [12,53,58,100], and lack association with any quality attribute.

The second category of aggregation techniques for software metrics con-
sidered consists of econometric inequality indices, commonly used to study
inequality of income or welfare distributions. The inequality indices have
been designed for strongly-skewed distributions such as the distributions
of income or wealth, and are thus appropriate for application to strongly-
skewed software metrics.

58



Even though they also lack established association with quality attributes,
inequality indices are known to provide insights into software quality issues.
For example, the typical range for IGini applied to various class-level metrics
was reported to be between 0.45 and 0.75, while values greater than 0.85
were a strong indicator for the presence of machine-generated code [113].
Similar associations between high values for ITheil and presence of machine-
generated code have been reported in [99]. However, since ITheil is un-
bounded, analyses of its typical range require its normalization first.

Nonetheless, despite that high values for inequality indices applied to
various metrics have been known to provide insights into software quality
issues, we stress that measuring inequality in the values of quality metrics
is conceptually different than measuring quality. Therefore, interpretation
of the results of applying inequality indices to software metrics rests on the
expertise of the analyst and in the particular characteristics of the project
under examination rather than the statistic itself.

A serious drawback to inequality indices becomes apparent when applied
to equal values (or values within a small range, i.e., when the ratio between
the maximum and the minimum values in the data set is close to one). In
such cases, regardless of whether the values are all high or all low, all inequal-
ity indices will be zero (or have very small values). However, decomposable
inequality indices offer two important benefits. On the one hand, such in-
dices provide means to explain the inequality of the metric values by their
partitioning into mutually-exclusive and completely-exhaustive groups. On
the other hand, decomposable inequality indices offer traceability and pro-
vide means to perform root-cause analyses at the level of individual values.

The quality of software is better captured by the third category of aggre-
gation techniques for software metrics considered, i.e., the threshold-based
approaches. Nonetheless, even though such techniques result in a system-
level quality evaluation result, high ratings may not necessarily also indicate
good software engineering practices, as it is, e.g., the case with DIT.

On the other hand, such techniques can be adapted to the requirements
of each company performing the quality assessments (e.g., Squale), and pro-
vide means to trace the results back to individual measurements (e.g., SIG).
However, the discrete mapping of metric results in the SIG approach intro-
duces staircase and threshold effects, that may hide detailed information and
trigger wrong interpretation. In this sense, small, progressive improvements
in the values of the metrics may not be reflected in the result if they remain
in the same intervals. Moreover, even though there are generally-accepted
guidelines for the maximal values of metrics such as DIT (e.g., in [51]) or
cyclomatic complexity (e.g., in [73]), it is not a priori clear that for metrics
such as SLOC thresholds for the maximally-acceptable values remain con-
stant as systems evolve. Therefore, when applying either the SIG or the
Squale threshold-based approaches, one should also consider the validity of
thresholds.

59



Part II

Empirical analysis

60



Introduction

The second part of the thesis discusses the results of various empirical anal-
yses of the aggregation techniques in part one. The two studies [114, 115]
which form the basis for Chapter 5 represent pilot empirical comparisons of
different aggregation techniques for software metrics. In [114] we aggregate
SLOC values from class to package level, and study statistical correlation
between the aggregated values and the number of defects per package, as
well as statistical correlation between the various aggregation techniques,
on a single snapshot of ArgoUML. Later, in [115], we investigate three case
studies (ArgoUML, Adempiere, and Mogwai) by means of an augmented list
of aggregation techniques, and we focus on studying statistical correlation
between the aggregated values and the number of defects per package.

The pilot studies are conducted in order to assess the feasibility of per-
forming similar large-scale studies, and to distil requirements for the tooling
to facilitate them. As a result, we propose tooling satisfying these require-
ments (Appendix A), and we conclude that future studies with the number
of defects as validation metric are infeasible unless data quality can be en-
sured. Therefore, in the remaining part of the empirical analysis we concen-
trate on statistical correlation between the various aggregation techniques,
at different aggregation levels, and using different metrics.

Specifically, we present the results of an extensive correlation study based
on [116] of the traditional and econometric aggregation techniques in Chap-
ter 6, in which we aggregate size (SLOC, LOC, NOS, NOSt), low-variance
(DIT, NOC), and limited-range (PBS, PLwC) metrics from class to package
level on the 106 systems comprising the Qualitas Corpus [110].

Later, in Chapter 7 we change the aggregation level from class–package
to method–class in order to enable the comparison with the threshold-based
aggregation techniques, and we present the results of a correlation study of
all three categories of aggregation techniques discussed in the first part. For
the purpose of illustration, we choose SLOC as metric.

Finally, aggregation techniques which are part of software quality models
(e.g., Squale) are usually designed to highlight undesirable metrics values in
order to warn the software engineers in case of potential problems. In Chap-
ter 8 we empirically compare inequality indices to the aggregation technique
in Squale in their ability to highlight undesirable values in the aggregate.

61



Chapter 5

Pilot studies

5.1 Introduction

Fault prediction models usually employ software metrics which were pre-
viously shown to be a strong predictor for defects [18, 45, 77, 79, 81]. Such
a metric is size, e.g., measured in source lines of code (SLOC) [38]. Size
(SLOC) not only corresponds to the intuitive belief that large systems have
more faults in them than small systems, but was shown in [38] to act as
an early indicator of problems better than, e.g., object-oriented metrics
such as the Chidamber and Kemerer suite [22] or the Lorenz and Kidd
suite [65]. Indeed, although such metrics had been validated with respect
to fault-proneness of classes (defects), studies prior to [38] did not check for
the confounding effect of size. After controlling for size, none of the above
metrics could be associated with defects anymore. Hence SLOC remains a
reliable and easily-measurable predictor for defects.

In this study we aggregate SLOC values from class to package level using
the traditional aggregation techniques and the inequality indices introduced
in Chapters 2 and 3, respectively. Specifically, we consider the mean, median,
sum, standard deviation, variance, skewness, and kurtosis, as well as IGini,
IHoover, ITheil, IMLD, IAtkinson, and IKolm. We exclude the threshold-based
aggregation techniques in Chapter 4 from the pilot study since neither the
SIG, nor the Squale approaches have published thresholds for the number of
source lines of code measured per class. Additionally, although the Squale
approach could be in principle applied directly to metrics data, preliminary
experiments suggested that it is unfeasible to apply Squale to aggregation
of large metrics values since the larger the value, the smaller the influence
it has on the aggregated results (ISquale is nominally applied to individual
marks, i.e., normalized metrics values in the range [0, 3]).

Based on the assumption that size is a good predictor for defects, hence
size and defects should be statistically correlated, we wish to understand
(i) whether the aggregation technique influences the presence and strength

62



of this relation, and (ii) whether and which aggregation techniques convey
the same information and are thus redundant.

As case studies we have chosen ArgoUML1, a popular UML modeling
tool, Adempiere2, an open-source ERP application, and Mogwai Java Tools3,
a Java Entity Relationship design and modeling (ERD) application. All
three are written in Java. ArgoUML is one of the most studied open-source
software systems ever, e.g., with four references at the 2011 European Con-
ference on Software Maintenance and Reengineering only [15, 26, 44, 103].
Adempiere has been studied before on several occasions [41,99]. Both Adem-
piere and Mogwai Java Tools have been identified as amenable to such stud-
ies [48] since they satisfy a number of desirable criteria (e.g., have a sufficient
number of developers or a sufficiently advanced development status, and ac-
curately keep track of bugs).

5.2 Methodology

In order to answer the two questions in Section 5.1, we aggregated SLOC val-
ues from class to package level, and we conducted two series of experiments.
In the first set of experiments we studied statistical correlation between
the aggregated metrics and the defects and we answered question (i). In
the second set of experiments we studied statistical correlation between the
aggregated metrics themselves and we answered question (ii).

Both sets of experiments adhere to the methodology described below.
Although we illustrate the data collection process with examples from Ar-
goUML, we summarize the characteristics of all three cases in Table 5.1

5.2.1 Data collection

To perform the two sets of experiments we started by choosing the case
(ArgoUML, Adempiere, Mogwai) version with the highest number of bug
fixes. The choice for bug fixes rather than reports, dismissals etc. is moti-
vated by the fact that commit messages only contain (at best) information
about the fixed bugs (typically indicated by keywords such as “issue” or
“fix” followed by the ID of the issue in the issue tracker). This information
is needed in order to associate bugs with Java classes. Moreover, this follows
the approach described in [37]. Since we only analyze a snapshot of each
case, the choice for the faultiest version ensures that the defect population
is sufficiently large for the analysis to be accurate. For example, from the
approximately 150 versions of ArgoUML released throughout its history, the
version 0.13.4 has the highest number of bug fixes associated with it (89).
It contains 94 packages and 1230 classes.

1
http://http://argouml.tigris.org/

2
http://www.adempiere.com/index.php/ADempiere_ERP

3
http://sourceforge.net/projects/mogwai/

63

http://http://argouml.tigris.org/
http://www.adempiere.com/index.php/ADempiere_ERP
http://sourceforge.net/projects/mogwai/


Next, the source code of the selected versions was automatically pro-
cessed and the the list of packages and Java classes contained in each package
was extracted. For each package in each of the three systems, we aggregate
the SLOC values of all the classes directly contained in that package, in turn,
using each of the aggregation techniques considered. We say that a class C
is directly contained in a package P if there exists no subpackage P ′ of P
different from P such that C is contained in P ′.

In all experiments we considered packages containing at least two classes.
This is motivated by the fact that when applied to packages containing only
one class, all inequality indices are equal to zero. For example, 77 packages
meet this requirement for version 0.13.4 of ArgoUML, from a total of 94.

In the following step we manually mapped the defects (bug fixes) to Java
packages by analyzing the commit messages of the version control system
log. Since the same class could have been affected multiple times during
the fix of a known bug (e.g., because of a wrongly-implemented fix the first
time), we only recorded it once in order to minimize noise. For example,
out of the 89 issues associated with version 0.13.4 of ArgoUML, there are
only 42 issues mentioned in the commit log (e.g., because some of the issues
required changes to non-Java source files). The cardinality of the defect sets
per package generated a list containing an element for each of the packages,
and served as our validation metric.

5.2.2 Data analysis

To measure statistical correlation, either between aggregation techniques
and defects, or between values aggregated using different techniques, we
have a choice between linear or rank correlation coefficients.

Linear coefficients (e.g., Pearson [86]) are sensitive only to a linear re-
lation between two variables. On the other hand, rank coefficients (e.g.,
Kendall [57] or Spearman [104]) are more robust to nonlinear relations since
they only measure the extent to which an increase in one variable (not nec-
essarily linear) corresponds to an increase in the other variable. To illustrate
the difference between linear and rank correlations, consider the four data

Table 5.1: Summary of the characteristics of the three cases.
ArgoUML Adempiere Mogwai

Version considered 0.13.4 4.1.0 2.6.0
Number of Java classes 1230 4237 2310
Number of packages 94 161 365
Number of dense packages (≥ 2 classes) 77 133 271
Number of bugs considered 89 303 143
Number of bugs mapped 42 213 38

64



sets of [7] in Figure 5.1, which have the same mean, variance, Pearson cor-
relation coefficient, and regression line, yet are substantially different.

5 10 15

4
6

8
10

12

Pea: 0.816; Ken: 0.963; Spe: 0.990

●
●

●

●
●

●

●
●

●

●
●

5 10 15

4
6

8
10

12

Pea: 0.816; Ken: 0.636; Spe: 0.818

●

●
●

●
●

●

●

●

●

●

●

5 10 15

4
6

8
10

12

Pea: 0.816; Ken: 0.563; Spe: 0.690

●

●
●●

●

●

●

●

●

●

●

5 10 15

4
6

8
10

12

Pea: 0.816; Ken: 0.426; Spe: 0.5

●

●

●

●
●

●

●

●

●

●

●

Figure 5.1: Data sets of [7]: Pearson’s r is constant, while Kendall’s τ and
Spearman’s ρ decrease and reflect the nonlinearity of the relation.

Consequently, we use a rank correlation coefficient and we opt for Ken-
dall’s τ since Spearman’s ρ is known to be difficult to interpret [80]. We
account for ties as described in [91]. Using Kendall’s τ , in the first set of
experiments we measure correlation in turn, between SLOC data aggregated
from class to package level using the different aggregation techniques, and
defects. Similarly, in the second set of experiments we measure correlation
between SLOC data aggregated from class to package level using all pairs
of aggregation techniques. We stress that statistical correlations are not
transitive [62], i.e., we have to consider all pairs of aggregation techniques4.

All computations were performed using R [92].

5.3 Results

We discuss the results from each set of experiments separately.

5.3.1 Correlation with bugs

For correlation between SLOC and defects, the results are summarized in
Table 5.2, where boldface corresponds to two-sided p-values not exceeding
0.01, and italics corresponds to those between 0.01 and 0.05.

The following observations can be derived:

• Correlation with the number of defects always ranges from very low
(τ ' 0.02 for mean in ArgoUML) to medium (τ ' 0.49 for sum in
Adempiere). None of the techniques indicates strong and also statis-
tically significant correlation with the number of defects.

• Values aggregated using the mean indicate very inconsistent results. In
ArgoUML mean shows very low correlation with defects, while in Mog-
wai mean together with standard deviation (0.197), variance (0.197),

4While [62] considered Pearson’s correlation coefficient, their counterexample also
shows lack of transitivity for Spearman’s ρ and Kendall’s τ .

65



ArgoUML

Num. bugs

N
um

. p
ac

ka
ge

s

0 2 4 6 8 10 12

0
5

10
15

20
25

30
35

Adempiere

Num. bugs

N
um

. p
ac

ka
ge

s

0
20

40
60

80

0 1

Mogwai

Num. bugs

N
um

. p
ac

ka
ge

s

0
50

10
0

15
0

20
0

0 2 4 6 8 10 12 14 16

Figure 5.2: Distributions of the number of bugs per package.

and IKolm (0.204) indicate the strongest (among the techniques con-
sidered) statistically significant correlation with the number of defects.

• Values aggregated using the sum indicate the strongest (for ArgoUML
and Adempiere) and third strongest (for Mogwai) statistically signifi-
cant correlation with the number of defects. Although the correlation
is not high, this confirms the intuition that large packages have more
faults than small packages. Values aggregated using skewness indicate
stronger correlation with the number of defects for ArgoUML that
sum, but the correlation is less statistically significant.

• Values aggregated using IGini, ITheil, IMLD, IHoover, and
IAtkinson indicate consistently similar and statistically significant corre-
lation with the number of defects for ArgoUML and Mogwai, although
none of them ever indicates the strongest correlation. ArgoUML and
Mogwai are also the two systems for which the number of bugs mapped
to packages is much lower that the number of packages considered
(42/77 in ArgoUML, and 38/271 in Mogwai). There is also high in-
equality in the number of bugs per package, caused by most packages
having no bugs (Figure 5.2).

• Values aggregated using skewness and kurtosis are also inconsistent,
indicating very high (among the techniques considered) correlation
with the number of defects for ArgoUML, and very low correlation with
the number of defects for Mogwai, although ArgoUML and Mogwai
are similar in the number of defects per package, i.e., they both have
significantly less bugs mapped to packages than actual packages. The
correlation is not statistically significant for any of the three systems.

• In the case of Adempiere there are more bugs than packages (213/133),
and there is also a more egalitarian distribution of bugs per package
(Figure 5.2). The inequality indices start to diverge, and the correla-
tion with defects is less statistically significant.

To summarize our answer to question (i), correlation between SLOC and
defects is not strong, and is influenced by the aggregation technique.

66



Table 5.2: Correlation between aggregation techniques and defects
ArgoUML Adempiere Mogwai

mean 0.023 0.411 0.197
median -0.142 0.336 0.129
sum 0.312 0.490 0.151
sd 0.191 0.370 0.197
var 0.191 0.370 0.197
skewness 0.322 0.151 0.032
kurtosis 0.291 0.104 0.099
IGini 0.266 0.212 0.134
ITheil 0.269 0.168 0.135
IMLD 0.227 0.148 0.139
IHoover 0.239 0.098 0.122
IAtkinson 0.244 0.149 0.138
IKolm 0.144 0.422 0.204

5.3.2 Correlation between different techniques

The results of the second set of experiments are summarized in Table 5.3
for ArgoUML, Table 5.4 for Adempiere, and Table 5.5 for Mogwai, where
Kendall correlation results with two-sided p-values not exceeding 0.01 are
typeset in boldface, and those between 0.01 and 0.05 are typeset in italics.

Experiments on all three systems suggest that:

• One groups of aggregation techniques, consisting of IGini, ITheil, IMLD,
IHoover, and IAtkinson, is clearly distinguishable since there is high and
statistically significant correlation between the aggregation techniques
in the group. Across the three systems, the correlation coefficient
between aggregation techniques in this group ranges between 0.81 and
0.95, and is always statistically significant.

• Another group of aggregation techniques, comprising the mean, stan-
dard deviation, and variance shows medium-high and statistically sig-
nificant correlation with IKolm for all three systems, ranging between
0.64 and 0.85.

• The mean shows medium-high and statistically significant correlation
with the median, standard deviation, and variance for all three sys-
tems, ranging between 0.57 and 0.73. However, the mean-median and
the mean-IKolm pairs are a very good example of the non-transitivity
of statistical correlations [62], since the correlation between the me-
dian and IKolm does not exceed 0.57, while the correlation between
mean and IKolm does not drop below 0.64 for any of the systems.

• The perfect correlation coefficient between standard deviation and
variance can be explained by the fact that the standard deviation is a
monotonic transformation of the variance.

67



To summarize our answer to question (ii), our results indicate that the
aggregation values obtained using IGini, ITheil, IMLD, IHoover, and IAtkinson

convey the same information. A similar claim, although less strong, can be
made for IKolm, mean, standard deviation, and variance.

Table 5.3: Kendall correlation results between techniques, for ArgoUML.
med sum sd var ske kur IGin IThe IMLD IHoo IAtk IKol

mea 0.59 0.35 0.58 0.57 0.00 -0.05 0.22 0.23 0.31 0.25 0.27 0.68
med 0.14 0.19 0.19 -0.24 -0.21 -0.14 -0.13 -0.044 -0.12 -0.09 0.32
sum 0.41 0.41 0.26 0.21 0.37 0.36 0.37 0.32 0.36 0.46
sd 1.0 0.27 0.14 0.62 0.64 0.69 0.67 0.68 0.80
var 0.27 0.14 0.62 0.64 0.69 0.67 0.68 0.80
ske 0.82 0.44 0.48 0.36 0.43 0.42 0.09
kur 0.28 0.33 0.22 0.26 0.28 0.00
IGin 0.93 0.88 0.86 0.91 0.50
IThe 0.88 0.88 0.94 0.51
IMLD 0.85 0.93 0.60
IHoo 0.89 0.53
IAtk 0.56

Table 5.4: Kendall correlation results between techniques, for Adempiere.
med sum sd var ske kur IGin IThe IMLD IHoo IAtk IKol

mea 0.71 0.49 0.72 0.72 0.10 0.02 0.22 0.20 0.22 0.18 0.20 0.80
med 0.31 0.47 0.47 -0.12 -0.13 -0.01 -0.02 0.01 -0.04 -0.01 0.57
sum 0.51 0.51 0.34 0.27 0.37 0.33 0.29 0.24 0.31 0.54
sd 1.0 0.29 0.21 0.48 0.47 0.46 0.44 0.46 0.82
var 0.29 0.21 0.48 0.47 0.46 0.44 0.46 0.82
ske 0.84 0.41 0.42 0.27 0.36 0.35 0.13
kur 0.28 0.33 0.18 0.22 0.25 0.05
IGin 0.89 0.81 0.82 0.87 0.39
IThe 0.85 0.85 0.93 0.37
IMLD 0.82 0.92 0.39
IHoo 0.87 0.34
IAtk 0.38

Table 5.5: Kendall correlation results between techniques, for Mogwai.
med sum sd var ske kur IGin IThe IMLD IHoo IAtk IKol

mea 0.73 0.43 0.60 0.60 0.01 -0.00 0.13 0.14 0.15 0.16 0.15 0.64
med 0.28 0.37 0.37 -0.23 -0.15 -0.08 -0.07 -0.04 -0.06 -0.05 0.43
sum 0.50 0.50 0.19 0.15 0.41 0.38 0.37 0.35 0.38 0.54
sd 1.0 0.23 0.15 0.52 0.53 0.53 0.55 0.53 0.85
var 0.23 0.15 0.52 0.53 0.53 0.55 0.53 0.85
ske 0.68 0.41 0.39 0.29 0.38 0.34 0.09
kur 0.26 0.27 0.19 0.19 0.22 0.04
IGin 0.93 0.88 0.87 0.91 0.47
IThe 0.91 0.90 0.95 0.47
IMLD 0.86 0.95 0.49
IHoo 0.89 0.48
IAtk 0.49

68



5.4 Threats to validity

The results presented above should be considered preliminary and a number
of threats to validity should be addressed in the future.

First of all, with respect to construction validity we need to consider a
representative set of benchmarks rather than only ArgoUML, Adempiere,
and Mogwai, and a representative set of their versions.

Furthermore, our information about the defects might be incomplete,
since not all defects might be recorded in the issue tracking system. More-
over, our mapping of defects to classes might be imperfect due to limited
recording of this information in the commit messages.

Finally, we have considered only one metric, namely SLOC, and it is not
clear whether the results obtained can be generalized to additional metrics.

5.5 Conclusions

As a result of the pilot study, we have observed that the choice of aggrega-
tion technique influences the correlation between SLOC values measured per
class and aggregated to package level, and the number of defects per pack-
age. However, we have observed that bugs which are reported in the issue
tracking systems are severely underreferenced in the version control system
(VCS) log. For example, only 38 out of the 143 bugs reported and fixed
for Mogwai 2.6.0 are referenced in the VCS log. This observation, together
with the observation in [9] that only 47.6% of bug fix related commits are
documented in the issue tracking systems, i.e., bugs are underreported in
the issue tracking systems, lead us to conclude that future studies with the
number of defects as validation metric are unfeasible, unless data quality
can be ensured.

On the other hand, as a result of the pilot study we have observed high
correlation between IGini, ITheil, IMLD, IHoover, and IAtkinson, and similarly
between IKolm, mean, standard deviation, and variance, suggesting that val-
ues aggregated using these techniques convey the same information. How-
ever, in the pilot study we have considered only one metric (SLOC), only
three systems, and only a single version from each system.

Therefore, we intend to focus on correlation between different aggrega-
tion techniques rather than correlation with a validation metric (e.g., num-
ber of defects) and we intend to extend the pilot study along the following
directions:

Metrics: We extend the study to a number of SLOC variants, i.e., number
of lines of code (LOC), number of semicolons (NOS), and number of
statements (NOSt), as well as to limited-range metrics such as the
percentage of branching statements (PBS) and the percentage of lines
with comments (PLwC) [82], and low variance metrics such as the

69



depth of inheritance tree (DIT) and the number of children (NOC) [22,
108].

Representative set of benchmarks: We extend the study to the 106
systems comprising the Qualitas Corpus. The Qualitas Corpus [110]
is a curated collection of open-source Java software systems, intended
to be used for empirical studies of code artifacts.

Representative set of versions: We extend the study to the Evolution
Corpus, a subset of 13 systems (out of the 106 systems in the Qualitas
Corpus) with 10 or more versions available, totaling 414 versions.

Threshold-based techniques: We extend the study by also aggregating
metrics from method to class level rather than from class to package
level, thus enabling the comparison with the threshold-based aggrega-
tion techniques (i.e., SIG and Squale), for which translation functions
(from metrics values to individual marks) and thresholds for source
lines of code measured per method have been published [5, 6, 76].

In order to accommodate these extensions and support the empirical
evaluation of different aggregation techniques, appropriate tooling must be
developed. The tooling should have following characteristics:

• Flexibility: the tooling should be easily extendible to new metrics
and new aggregation techniques, and should permit the aggregation of
metrics values at different aggregation levels.

• Integration with metrics-extraction tools: the tooling should enable
the further processing of metrics-data previously extracted by third-
party tools.

• Reuse of existing components: whenever appropriate, the tooling should
reuse existing components, e.g., implementations of the inequality in-
dices or other statistical computations.

• Scalability: the tooling should be robust and scalable with respect to
new aggregation techniques, new software systems to be analyzed, and
new metrics, both in terms of running time, as well as used resources.

• Export: the tooling should enable the export of processed data to
common formats such as CSV.

• Research prototype: the tooling is meant as a research prototype,
and its sole user is the researcher performing the experimental evalua-
tion of different aggregation techniques. Therefore, user-interface and
portability concerns are superfluous.

70





Chapter 6

Extensive correlation study

6.1 Introduction

In this chapter we present the results of an extensive correlation study of the
traditional and econometric aggregation techniques discussed in Chapters 2
and 3, respectively, applied to lifting metrics values from class to package
level. This study represents an extension along two directions of the pilot
studies in Chapter 5. First, we consider several other metrics besides number
of source lines of code (SLOC), i.e., number of lines of code (LOC), number
of semicolons (NOS), number of statements (NOSt), percentage of branching
statements (PBS), percentage of lines with comments (PLwC) [82], depth of
inheritance tree (DIT), and number of children (NOC) [22,108]. Second, we
consider a representative set of benchmarks, i.e., the 106 systems comprising
the Qualitas Corpus [110].

Moreover, apart from measuring the strength of the correlation between
the various aggregation techniques, we also investigate the nature of this
relation, and we study its evolution. Specifically, we address the following
questions:

1. Which and to what extent do the inequality indices agree? Which
and to what extent do the aggregation techniques rank distributions
of metrics values similarly?

2. What is the nature of the relation between the various aggregation
techniques, i.e., does the scatter plot of the relation exhibit a clear
shape (e.g., linear or exponential)?

3. How does the relation between the various aggregation techniques
change with different metrics?

4. How does the relation between the various aggregation techniques
change in time, i.e., how does the correlation coefficient change as
the systems evolve?

72



6.2 Methodology

To perform empirical evaluation of different aggregation techniques we con-
ducted two series of experiments. In the first set of experiments (Section 6.3)
we investigated relation between pairs of aggregation techniques, i.e., we ad-
dressed Questions 1 and 2. As case studies we chose the 106 open-source Java
systems comprising the Qualitas Corpus version 20101126r (Section 6.2.1).
For each case study we determined the metrics data (SLOC, LOC, NOSt,
PBS, PLwC, DIT, NOC) and aggregated it from class level to package level
using all pairs of aggregation techniques. As with the pilot studies, we stress
that statistical correlations are not transitive [62], i.e., we have to consider
all pairs of aggregation techniques. By considering different metrics we ad-
dress Question 3.

An obvious threat to validity for such a study is the representativeness of
the versions considered. In order to reduce this threat and to address Ques-
tion 4, we performed a second set of experiments (Section 6.4), in which we
investigated the evolution of the correlation between similar pairs of metrics
data sets, again aggregated from class to package level using all combina-
tions of aggregation techniques. As case studies we chose 12 open-source
Java systems with more than 10 versions, which are part of the Qualitas
Corpus version 20101126e (Section 6.2.1).

6.2.1 Qualitas Corpus Dataset

The Qualitas Corpus [110] is a curated collection of open-source Java soft-
ware systems, intended to be used for empirical studies of code artifacts.

We consider the Corpus version 201011261, which comes in two main
distributions. For our first study (Section 6.3) we consider the “r” (recent)
variant, which contains the most recent versions available at the time of re-
lease, from 106 systems ranging from FitJava v1.1 (2 packages, 2240 SLOC)
to NetBeans v6.9.1 (3373 packages, 1890536 SLOC). The largest three sys-
tems (in terms of number of packages) are NetBeans v6.9.1 (3373 packages,
1890536 SLOC), Eclipse SDK v3.6 (1313 packages, 2282511 SLOC), and
JRE v1.6.0 (1144 packages, 914867 SLOC). Similarly, the smallest three
systems are Squirrel SQL v3.1.2 (3 packages, 6944 SLOC), Trove v2.1.0 (3
packages, 2196 SLOC), and FitJava v1.1 (2 packages, 2240 SLOC).

Our second study uses the “e” (evolution) variant of the Qualitas Cor-
pus 20101126, which contains all versions from 13 systems (out of the 106
systems) with 10 or more versions available, totaling 414 versions. We have
excluded Eclipse SDK (represented by 35 versions) from the consideration,
because for 34 out of the 35 versions there is only bytecode available, while
we focus on source code metrics (e.g., SLOC). All other systems had the

1Qualitas Research Group, Qualitas Corpus Version 20101126,
http://qualitascorpus.com. The University of Auckland, February 2009.

73

http://qualitascorpus.com


source code available for all versions. Hereafter we refer to the remaining
twelve systems as the Evolution Corpus.

The most covered systems of the Evolution Corpus in terms of number of
versions available are Hibernate (86 versions), Azureus/Vuze (51 versions),
and Weka (49 versions), while the least covered three systems are ArgoUML
(10 versions), ANTLR (18 versions), and JMeter (18 versions). In terms of
size (in terms of number of packages), the Evolution Corpus ranges between
634 packages in Hibernate v3.6.0-beta4 and 6 packages in Ant v1.1.

6.2.2 Data collection

For both the single snapshot study, as well as the evolutionary study, the
source code for each version of each system was automatically processed,
then the package structure (i.e., the list of packages and the classes contained
in each package) and the metrics data were extracted. Metrics data for
LOC could have also been extracted from the Qualitas Corpus metadata.
However, we preferred to extract all metrics data using our own tooling as it
was reported in the release notes of the 20101126 version of the Corpus [109]
that some of the previous metadata files contained incorrectly-computed
values.

An important note is the distinction between source code of the actual
system, and source code of third-party libraries. It is possible that some
systems distribute original source code of third-party libraries (in a previ-
ous release of the Corpus [110] it was reported that, e.g., Compiere v250
distributes a copy of the source code of the Apache Element Construction
Set), while others provide their own implementations of such libraries, i.e.,
they distribute modified versions of third-party libraries together with their
own source code.

We focus on source code of the actual systems and we exclude libraries.
The decision regarding what is identified as actual source code of a version,
and what is considered third-party is documented and provided as metadata
alongside the Corpus, i.e., a space-separated list of prefixes of packages of
Java types which are considered as developed for the system. For example,
for ArgoUML all packages with names prefixed by org.argouml are con-
sidered as source packages (e.g., org.argouml.model), while all others are
considered as externals (e.g., org.apache.xerces).

For all pairs of aggregation techniques compared, we considered pack-
ages containing at least 2 classes. This is motivated by the fact that, when
applied to packages containing only one class, most of the traditional ag-
gregation techniques (standard deviation, variance, skewness, and kurtosis)
are undefined, and all inequality indices are equal to 0. For Qualitas Cor-
pus 20101126r, the most affected systems by this filtering were some of the
small ones, namely IvataGroupware v0.11.3 (lost 34 out of 81 packages),
Sandmark v3.4 (lost 45 out of 123 packages), and Quilt v0.6-a-5 (lost 5 out

74



of 14 packages). Across the entire Corpus 20101126r, 86.7% of all systems
lost less than 20% of their packages.

For each package in each version of each system (in both studies), we
aggregate the metrics values (SLOC, LOC, NOSt, PBS, PLwC, DIT, NOC)
of all the classes directly contained in that package, in turn, using each of
the aggregation techniques considered. Recall from Section 5.2.1 that we
say that a class C is directly contained in a package P if there exists no
subpackage P ′ of P different from P such that C is contained in P ′.

6.2.3 Data analysis

As discussed in the data analysis methodology of the pilot studies (Sec-
tion 5.2.2), we opt for Kendall’s rank correlation coefficient τ [57] to mea-
sure correlation between values aggregated using different techniques. All
computations were performed using R [92].

Next we describe the two series of experiments performed.

6.3 Studying the correlation between aggregation
techniques

In the first series of experiments we study correlation between the aggrega-
tion techniques on a single snapshot of each system in the Corpus, and we
answer Questions 1, 2, and 3.

6.3.1 Which and how much do aggregation techniques agree?

Agreement between inequality indices

We start by measuring the Kendall correlation between metrics values aggre-
gated using the inequality indices (Figures 6.1-6.3) across the entire Corpus.
Note that the percentage of the systems in the Corpus for which the corre-
lation value is statistically significant using the common threshold of 0.05 is
displayed between parentheses below each boxplot, the metric is displayed
on the left, and the name of each aggregation technique is abbreviated to its
first three letters. Moreover, we display horizontal dotted lines to indicate
the median for each of the boxplots. To simplify comparison of different
plots, we opt for the same scale in all figures.

We observe high and statistically significant correlation between ITheil,
IMLD, IGini, IAtkinson, and IHoover in more than 90% of the Corpus for all
metrics, i.e., aggregation values obtained using these techniques convey the
same information. This confirms our observation in the pilot studies in
Chapter 5 and answers the first part of Question 1 from Section 6.1: IGini,
ITheil, IMLD, IHoover and IAtkinson agree regardless of the metric, i.e., they

75



rank distributions of metrics values similarly (there is high and statistically
significant correlation between them).

Correlation between IKolm and the other indices (Figure 6.3) is aver-
age at best (0.4–0.5), and significant for approximately 70% of the Corpus
for all metrics except NOC and PBS. For NOC and PBS, the correlation
between IKolm and the other inequality indices is negative, and much less
statistically significant, i.e., approximately 20% of the Corpus for NOC, and
approximately 40% of the Corpus for PBS.

Agreement between other aggregation techniques

Next we study how the other aggregation techniques correlate to each other
and to the inequality indices. Since IKolm did not show high correlation with
any of the inequality indices, we also study whether and to which traditional
techniques IKolm correlates more. Recall that during the pilot studies in
Chapter 5 we observed high and statistically significant correlation between
IKolm and mean, standard deviation, and variance.

In Figures 6.4 and 6.5, mean shows low positive correlation (0.2–0.3) with
all the inequality indices except IKolm (significant in approximately 50% of
the Corpus), for SLOC, LOC, NOS, and NOSt, i.e., all the size metrics
considered. In contrast, mean shows low-average negative correlation (0.4–
0.5) with all the inequality indices except IKolm, for DIT, NOC, PBS, and
PLwC.

The correlation between mean and IKolm (Figure 6.4) is the highest (0.8)
among all other techniques (statistically significant for 92% of the systems),
again for SLOC, LOC, NOS, and NOSt, i.e., aggregates obtained using these
techniques convey the same information. The low-variance metrics provide
contradictory results (Figure 6.5), i.e., for NOC correlation between mean
and IKolm is the highest (0.8) among all other techniques, while for DIT
correlation between mean and median is the highest (0.8) among all other
techniques, with correlation between mean and IKolm dropping below aver-
age (0.4), and being statistically significant for only 51% of the Corpus. For
the limited range metrics, i.e., PBS and PLwC, correlation between mean
and median is the highest (0.8) among all other techniques (statistically
significant for 90% of the Corpus).

Moreover, for the size metrics, mean shows positive high (0.7–0.8) and
statistically significant correlation for 80–90% of the Corpus with median,
standard deviation, and variance. In contrast, for the low-variance and
limited-range metrics, correlation between mean, median, standard devia-
tion, and variance is weaker and less statistically significant.

76



Correlation between IGini, ITheil, IMLD, IHoover, and IAtkinson
-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

S
LO
C

MLD-Hoo Gin-MLD The-MLD Gin-Hoo Atk-Hoo The-Hoo Gin-Atk MLD-Atk Gin-The The-Atk

(91%) (89%) (91%) (90%) (92%) (92%) (90%) (91%) (91%) (92%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

LO
C

MLD-Hoo Gin-MLD The-MLD Gin-Hoo Atk-Hoo The-Hoo Gin-Atk MLD-Atk Gin-The The-Atk

(92%) (91%) (92%) (91%) (92%) (92%) (91%) (92%) (91%) (92%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

N
O
S

MLD-Hoo Gin-MLD The-MLD Gin-Hoo Atk-Hoo MLD-Atk The-Hoo Gin-Atk The-Atk Gin-The

(90%) (90%) (90%) (90%) (92%) (91%) (92%) (90%) (92%) (90%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

N
O
S
t

MLD-Hoo Gin-MLD Gin-Hoo The-MLD Atk-Hoo The-Hoo Gin-Atk Gin-The MLD-Atk The-Atk

(91%) (90%) (90%) (92%) (91%) (92%) (90%) (90%) (92%) (92%)

Figure 6.1: All inequality indices except IKolm show high correlation with
each other for size metrics.

77



-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

D
IT

MLD-Hoo Atk-Hoo Gin-MLD The-Hoo Gin-Atk Gin-Hoo Gin-The The-MLD The-Atk MLD-Atk

(85%) (87%) (87%) (88%) (88%) (89%) (88%) (88%) (88%) (89%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

N
O
C

Gin-MLD Gin-Hoo The-MLD Gin-Atk The-Hoo MLD-Atk Gin-The The-Atk Atk-Hoo MLD-Hoo

(88%) (88%) (88%) (88%) (88%) (88%) (88%) (88%) (88%) (88%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

P
B
S

Gin-MLD MLD-Hoo Gin-Atk The-MLD Gin-Hoo Atk-Hoo Gin-The The-Hoo MLD-Atk The-Atk

(91%) (91%) (92%) (92%) (92%) (92%) (91%) (92%) (92%) (92%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

P
Lw
C

MLD-Hoo Atk-Hoo Gin-Hoo The-Hoo Gin-MLD Gin-Atk Gin-The The-MLD The-Atk MLD-Atk

(91%) (92%) (92%) (92%) (91%) (92%) (92%) (91%) (92%) (91%)

Figure 6.2: All inequality indices except IKolm show high correlation with
each other for low-variance metrics and limited-range metrics.

78



-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

S
LO

C

The-Kol Hoo-Kol Gin-Kol Atk-Kol MLD-Kol

(70%) (68%) (69%) (73%) (71%) -1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

LO
C

Hoo-Kol Atk-Kol The-Kol Gin-Kol MLD-Kol

(71%) (74%) (74%) (72%) (77%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

N
O
S

Hoo-Kol The-Kol MLD-Kol Atk-Kol Gin-Kol

(59%) (59%) (60%) (61%) (64%) -1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

N
O
S
t

Hoo-Kol The-Kol Gin-Kol Atk-Kol MLD-Kol

(71%) (75%) (74%) (76%) (78%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

D
IT

The-Kol Hoo-Kol Atk-Kol MLD-Kol Gin-Kol

(61%) (63%) (64%) (60%) (70%) -1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

N
O
C

Hoo-Kol MLD-Kol Atk-Kol The-Kol Gin-Kol

(24%) (28%) (22%) (20%) (17%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

P
B
S

The-Kol Hoo-Kol Atk-Kol Gin-Kol MLD-Kol

(40%) (40%) (41%) (40%) (42%) -1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

P
Lw
C

Hoo-Kol Gin-Kol The-Kol Atk-Kol MLD-Kol

(63%) (67%) (66%) (70%) (71%)

Figure 6.3: IKolm does not correlate with other inequality indices.

Closer inspection at IKolm (Figures 6.6) reveals high (0.8) and statis-
tically significant correlation in 90% of the Corpus with mean, standard
deviation, and variance for the size metrics. It is interesting to observe that
while mean shows high correlation with both median (0.7) and IKolm (0.8),
the correlation between median and IKolm is lower (0.5–0.6). For the low
variance metrics DIT and NOC (Figure 6.7), strong and statistically signifi-
cant correlation between IKolm and standard deviation and variance can also
be observed in 80–90% of the Corpus. However, mean is inconsistent: while
there high and statistically significant correlation between mean and IKolm

in 86% of the Corpus for NOC, the same correlation for DIT is below aver-
age (0.4), and is much less statistically significant (51% of the Corpus). For
the limited range metrics PBS and PLwC, standard deviation and variance
correlate the most with IKolm, while mean is again inconsistent.

79



Correlation between mean and other aggregation techniques
-1

.0
-0

.5
0.

0
0.

5
1.

0
-1

.0
-0

.5
0.

0
0.

5
1.

0

S
LO

C

mea-ske mea-kur mea-The mea-Gin mea-Hoo mea-Atk mea-MLD mea-sum mea-med mea-sd mea-var mea-Kol

(17%) (18%) (49%) (51%) (53%) (53%) (56%) (81%) (88%) (90%) (90%) (92%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

LO
C

mea-ske mea-kur mea-Atk mea-Hoo mea-The mea-MLD mea-Gin mea-sum mea-med mea-sd mea-var mea-Kol

(21%) (20%) (58%) (57%) (56%) (56%) (53%) (80%) (87%) (91%) (91%) (92%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

N
O

S

mea-ske mea-kur mea-Gin mea-Hoo mea-Atk mea-The mea-MLD mea-sum mea-med mea-sd mea-var mea-Kol

(19%) (16%) (40%) (38%) (40%) (38%) (32%) (81%) (88%) (89%) (89%) (91%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

N
O

S
t

mea-ske mea-kur mea-Gin mea-The mea-Atk mea-MLD mea-Hoo mea-sum mea-med mea-sd mea-var mea-Kol

(17%) (13%) (54%) (53%) (57%) (60%) (52%) (80%) (86%) (88%) (88%) (92%)

Figure 6.4: Mean shows high correlation with IKolm for size metrics.

80



-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

D
IT

mea-The mea-MLD mea-Atk mea-Hoo mea-Gin mea-ske mea-kur mea-sd mea-var mea-Kol mea-sum mea-med

(64%) (66%) (66%) (64%) (59%) (34%) (19%) (48%) (48%) (51%) (64%) (84%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

N
O

C

mea-MLD mea-Hoo mea-Atk mea-The mea-Gin mea-ske mea-kur mea-med mea-sum mea-sd mea-var mea-Kol

(53%) (54%) (49%) (42%) (38%) (13%) (7%) (50%) (81%) (82%) (82%) (86%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

P
B
S

mea-The mea-Gin mea-Atk mea-MLD mea-Hoo mea-ske mea-kur mea-sum mea-sd mea-var mea-Kol mea-med

(82%) (79%) (81%) (79%) (80%) (66%) (27%) (63%) (65%) (65%) (83%) (90%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

P
Lw

C

mea-Gin mea-The mea-Hoo mea-Atk mea-MLD mea-ske mea-kur mea-sd mea-var mea-sum mea-Kol mea-med

(59%) (60%) (57%) (57%) (56%) (48%) (17%) (38%) (38%) (50%) (47%) (90%)

Figure 6.5: Mean shows high correlation with either median or IKolm for
low-variance metrics and limited-range metrics.

81



Correlation between IKolm and other aggregation techniques
-1

.0
-0

.5
0.

0
0.

5
1.

0
-1

.0
-0

.5
0.

0
0.

5
1.

0

S
LO

C

ske-Kol kur-Kol The-Kol Hoo-Kol Gin-Kol Atk-Kol MLD-Kol med-Kol sum-Kol sd-Kol var-Kol mea-Kol

(35%) (37%) (70%) (68%) (69%) (73%) (71%) (80%) (85%) (91%) (91%) (92%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

LO
C

ske-Kol kur-Kol Hoo-Kol Atk-Kol The-Kol Gin-Kol MLD-Kol med-Kol sum-Kol mea-Kol sd-Kol var-Kol

(39%) (40%) (71%) (74%) (74%) (72%) (77%) (83%) (86%) (92%) (91%) (91%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

N
O

S

ske-Kol kur-Kol Hoo-Kol The-Kol MLD-Kol Atk-Kol Gin-Kol med-Kol sum-Kol sd-Kol var-Kol mea-Kol

(34%) (34%) (59%) (59%) (60%) (61%) (64%) (82%) (86%) (91%) (91%) (91%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

N
O

S
t

ske-Kol kur-Kol Hoo-Kol The-Kol Gin-Kol Atk-Kol MLD-Kol med-Kol sum-Kol sd-Kol var-Kol mea-Kol

(36%) (37%) (71%) (75%) (74%) (76%) (78%) (81%) (84%) (91%) (91%) (92%)

Figure 6.6: IKolm shows high correlation with mean, standard deviation, and
variance for size metrics.

82



-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

D
IT

kur-Kol ske-Kol sum-Kol med-Kol The-Kol mea-Kol Hoo-Kol Atk-Kol MLD-Kol Gin-Kol sd-Kol var-Kol

(20%) (22%) (53%) (45%) (61%) (51%) (63%) (64%) (60%) (70%) (89%) (89%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

N
O

C

Hoo-Kol MLD-Kol Atk-Kol The-Kol Gin-Kol ske-Kol kur-Kol med-Kol sum-Kol mea-Kol sd-Kol var-Kol

(24%) (28%) (22%) (20%) (17%) (19%) (20%) (24%) (85%) (86%) (87%) (87%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

P
B
S

The-Kol Hoo-Kol Atk-Kol Gin-Kol ske-Kol MLD-Kol kur-Kol sum-Kol med-Kol sd-Kol var-Kol mea-Kol

(40%) (40%) (41%) (40%) (47%) (42%) (24%) (79%) (75%) (86%) (86%) (83%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

P
Lw

C

ske-Kol kur-Kol med-Kol mea-Kol Hoo-Kol Gin-Kol sum-Kol The-Kol Atk-Kol MLD-Kol sd-Kol var-Kol

(35%) (40%) (47%) (47%) (63%) (67%) (77%) (66%) (70%) (71%) (85%) (85%)

Figure 6.7: IKolm shows high correlation with standard deviation and vari-
ance for low-variance metrics.

83



Correlation between sum and other aggregation techniques
-1

.0
-0

.5
0.

0
0.

5
1.

0
-1

.0
-0

.5
0.

0
0.

5
1.

0

S
LO

C

sum-Hoo sum-med sum-Atk sum-MLD sum-The sum-Gin sum-ske sum-kur mea-sum sum-sd sum-var sum-Kol

(66%) (60%) (71%) (70%) (73%) (74%) (80%) (80%) (81%) (84%) (84%) (85%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

LO
C

sum-med sum-Hoo sum-MLD sum-Atk sum-The sum-Gin sum-ske sum-kur mea-sum sum-sd sum-var sum-Kol

(61%) (64%) (73%) (71%) (73%) (74%) (78%) (80%) (80%) (85%) (85%) (86%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

N
O

S

sum-Hoo sum-MLD sum-Atk sum-The sum-med sum-Gin sum-ske sum-kur mea-sum sum-sd sum-var sum-Kol

(52%) (60%) (60%) (64%) (62%) (71%) (77%) (80%) (81%) (84%) (84%) (86%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

N
O

S
t

sum-Hoo sum-med sum-MLD sum-Atk sum-The sum-Gin sum-ske sum-kur mea-sum sum-sd sum-var sum-Kol

(64%) (60%) (74%) (74%) (72%) (75%) (77%) (82%) (80%) (85%) (85%) (84%)

Figure 6.8: Sum does not correlate to the other aggregation techniques for
size metrics.

84



-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

D
IT

sum-Hoo sum-Gin sum-Atk sum-The sum-MLD sum-ske sum-sd sum-var sum-Kol sum-kur mea-sum sum-med

(35%) (20%) (27%) (29%) (27%) (12%) (29%) (29%) (53%) (56%) (64%) (57%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

N
O

C

sum-MLD sum-Hoo sum-Atk sum-The sum-Gin sum-med sum-ske sum-kur mea-sum sum-Kol sum-sd sum-var

(18%) (14%) (13%) (13%) (18%) (12%) (52%) (60%) (81%) (85%) (83%) (83%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

P
B
S

sum-Hoo sum-Atk sum-The sum-MLD sum-Gin sum-ske sum-med sum-kur sum-sd sum-var mea-sum sum-Kol

(40%) (36%) (33%) (38%) (23%) (16%) (49%) (54%) (50%) (50%) (63%) (79%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

P
Lw

C

sum-Hoo sum-Gin sum-ske sum-Atk sum-MLD sum-The sum-sd sum-var sum-med mea-sum sum-kur sum-Kol

(18%) (29%) (16%) (24%) (27%) (22%) (42%) (42%) (48%) (50%) (79%) (77%)

Figure 6.9: Sum does not correlate to the other aggregation techniques for
low-variance metrics and limited-range metrics.

85



The results for sum are consistent for the size metrics (Figure 6.8), where
the correlation with IKolm is the strongest among the techniques considered
(0.5–0.6) for approximately 80% of the Corpus. For PBS and PLwC (Fig-
ure 6.9), the correlation between sum and IKolm is also the strongest among
the techniques considered, but it drops below average, while the results for
DIT and NOC (Figure 6.9) are inconsistent.

The correlation between standard deviation and variance is perfect (1),
since one is a monotonic transformation of the other, which does not influ-
ence the results of the Kendall rank correlation coefficient. Similarly, we
observe high correlation (0.8) between skewness and kurtosis for the size
metrics (Figure 6.10). In the other two cases (DIT and NOC on the one
hand, and PBS and PLwC on the other hand), skewness and kurtosis dis-
agree, i.e., the correlation coefficient is at most average (0.5) for DIT, PBS,
and PLwC, and it is very high (0.9) for NOC.

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

S
LO
C

sd-kur sd-ske ske-kur

(46%) (58%) (90%) -1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

LO
C

sd-kur sd-ske ske-kur

(51%) (60%) (91%) -1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

N
O
S

sd-kur sd-ske ske-kur

(45%) (54%) (91%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

N
O
S
t

sd-kur sd-ske ske-kur

(49%) (60%) (91%) -1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

D
IT

sd-kur ske-kur sd-ske

(27%) (26%) (20%) -1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

N
O
C

sd-kur sd-ske ske-kur

(40%) (39%) (87%)

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

P
B
S

sd-kur sd-ske ske-kur

(13%) (9%) (65%) -1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

P
Lw
C

sd-kur sd-ske ske-kur

(24%) (19%) (51%)

Figure 6.10: Correlation between standard deviation, skewness, and kurtosis.

86



Hence, to summarize our answer to Question 1, we note that:

• IGini, ITheil, IMLD, IHoover and IAtkinson show consistently high and
statistically significant correlation between them, i.e., the aggregates
obtained using these techniques convey the same information, regard-
less of the metric considered.

• The correlation between mean and IKolm is high and statistically sig-
nificant for the size metrics, again suggesting that aggregates obtained
using mean and IKolm convey the same information. Moreover, mean
shows high and statistically significant correlation with median, stan-
dard deviation, and variance for the LOC-based metrics. However,
mean is inconsistent for the low variance metrics and the limited range
metrics, i.e., the correlation between mean and the other techniques
depends on the choice of metric.

• Aggregated values obtained using standard deviation or variance con-
vey the same information for all metrics, while values obtained using
skewness and kurtosis convey the same information for the size met-
rics.

6.3.2 What is the nature of the relation between aggregation
techniques?

In order to study the nature of these relations, we draw scatter plots for
each pair of aggregation techniques and each system in the Corpus and we
analyze if the scatter plots exhibit a clear shape. In particular, we are
interested in observing linear, superlinear, or chaotic patterns, although the
Kendall rank correlation values previously computed are not sensitive to the
linearity of these relations. To illustrate the relation between metrics values
aggregated using different aggregation techniques we choose Compiere as a
representative example2.

Nature of relation between IGini, ITheil, IHoover, IAtkinson, and IKolm

To illustrate the relation between metrics values aggregated using the in-
equality indices for each metric considered we refer to Figures 6.11–6.18.
We distinguish a clear linear relation between ITheil and IAtkinson whenever
the maximal inequality is low, hence IAtkinson does not cover its entire pos-
sible range

[
0, 1− 1

n

]
, where n is the number of values being aggregated

(Figures 6.11–6.15, 6.18). In contrast, when IAtkinson ranges over the entire
interval

[
0, 1− 1

n

]
(Figures 6.16 and 6.17), we distinguish a superlinear rela-

tion between ITheil and IAtkinson. Regardless of the range of IAtkinson or the

2The other systems in the Corpus exhibit similar patterns. For complete results see
www.student.tue.nl/X/b.n.vasilescu/scatterPlots/scatter.html

87

www.student.tue.nl/X/b.n.vasilescu/scatterPlots/scatter.html


exact metric, correlation between ITheil and IAtkinson does not drop below
0.90 and is always statistically significant.

The also high measured correlation between ITheil and IGini, however,
corresponds to a clear relation which visually exhibits superlinear rather
than linear growth, regardless of the observed range of IGini. This observa-
tion agrees with the econometric-based distinction between different dimen-
sions of inequality [21], and the sensitivity of the different inequality indices
to different such dimensions, as discussed in Section 3.2. Our experiments
confirm the claim in [21] that ITheil is highly sensitive to inequality associ-
ated with the exceptionally rich, since the sharper increase in ITheil as IGini

increases, i.e., as the inequality between the “rich” and the “poor” increases,
is visible in the top right plots in Figures 6.11–6.18.

The high correlation values between ITheil and IHoover are also supported
by a relation similar to the one between ITheil and IGini, which appears
visually to be superlinear, although we observe more dispersion, i.e., dis-
agreement, towards the “rich”. On the other hand, the chaotic pattern is
observed between ITheil and IKolm (Figures 6.11–6.18).

Fitting general parametric distributions to model the relations between
the inequality indices goes beyond the scope of this thesis.

Nature of the relation between other aggregation techniques

Next we study the relation between IKolm and the two aggregation tech-
niques with which it showed high correlation, i.e., mean and median (Fig-
ures 6.19 and 6.20). We observe a linear relation between mean and IKolm for
the size metrics (Figure 6.19), and a much more chaotic relation for the low-
variance and limited-range metrics (e.g., see DIT and PLwC in Figure 6.20).
The relation between median and IKolm, albeit still visible, is more chaotic
both for the size metrics, as well as for low-variance and limited-range met-
rics.

Finally, the high and statistically significant correlation observed be-
tween skewness and kurtosis for the size metrics is witnessed by a superlin-
ear relation in Figure 6.21. In contrast, the relation between skewness and
kurtosis is more chaotic for the low-variance and limited-range metric, for
which the correlation is also very low (with the exception of NOC).

To summarize our answer to Question 2, we note that linear, superlinear,
as well as chaotic patterns can be observed in the scatter plots. However,
high correlation values do not always correspond to clear-shaped relations
(e.g., between ITheil and IHoover for DIT). We observe that linear or super-
linear relations always correspond to high correlation values, while chaotic
patterns correspond to both high and average/low correlation values.

88



Shape of the relation between IGini, ITheil, IHoover, IAtkinson, and IKolm

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

compiere: Theil-Atkinson. Kendall: 0.93, p-val: 0.00

Atkinson (SLOC)

T
he

il 
(S

LO
C

)

0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

compiere: Theil-Gini. Kendall: 0.94, p-val: 0.00

Gini (SLOC)

T
he

il 
(S

LO
C

)

0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

compiere: Theil-Hoover. Kendall: 0.86, p-val: 0.00

Hoover (SLOC)

T
he

il 
(S

LO
C

)

0 50 100 150 200 250 300 350

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

compiere: Theil-Kolm. Kendall: 0.25, p-val: 0.01

Kolm (SLOC)

T
he

il 
(S

LO
C

)

Figure 6.11: Shape of the relation between ITheil and each of IAtkinson, IGini,
IHoover, and IKolm for SLOC.

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

compiere: Theil-Atkinson. Kendall: 0.92, p-val: 0.00

Atkinson (LOC)

T
he

il 
(L

O
C

)

0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

compiere: Theil-Gini. Kendall: 0.93, p-val: 0.00

Gini (LOC)

T
he

il 
(L

O
C

)

0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

compiere: Theil-Hoover. Kendall: 0.87, p-val: 0.00

Hoover (LOC)

T
he

il 
(L

O
C

)

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

compiere: Theil-Kolm. Kendall: 0.24, p-val: 0.01

Kolm (LOC)

T
he

il 
(L

O
C

)

Figure 6.12: Shape of the relation between ITheil and each of IAtkinson, IGini,
IHoover, and IKolm for LOC.

89



0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
4

0.
8

1.
2

compiere: Theil-Atkinson. Kendall: 0.91, p-val: 0.00

Atkinson (NOS)

T
he

il 
(N

O
S

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
0

0.
4

0.
8

1.
2

compiere: Theil-Gini. Kendall: 0.91, p-val: 0.00

Gini (NOS)

T
he

il 
(N

O
S

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
0

0.
4

0.
8

1.
2

compiere: Theil-Hoover. Kendall: 0.85, p-val: 0.00

Hoover (NOS)

T
he

il 
(N

O
S

)

0 50 100 150 200

0.
0

0.
4

0.
8

1.
2

compiere: Theil-Kolm. Kendall: 0.13, p-val: 0.18

Kolm (NOS)

T
he

il 
(N

O
S

)

Figure 6.13: Shape of the relation between ITheil and each of IAtkinson, IGini,
IHoover, and IKolm for NOS.

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

compiere: Theil-Atkinson. Kendall: 0.91, p-val: 0.00

Atkinson (NOSt)

T
he

il 
(N

O
S

t)

0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

compiere: Theil-Gini. Kendall: 0.89, p-val: 0.00

Gini (NOSt)

T
he

il 
(N

O
S

t)

0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

compiere: Theil-Hoover. Kendall: 0.82, p-val: 0.00

Hoover (NOSt)

T
he

il 
(N

O
S

t)

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

compiere: Theil-Kolm. Kendall: 0.26, p-val: 0.01

Kolm (NOSt)

T
he

il 
(N

O
S

t)

Figure 6.14: Shape of the relation between ITheil and each of IAtkinson, IGini,
IHoover, and IKolm for NOSt.

90



0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.
05

0.
10

0.
15

compiere: Theil-Atkinson. Kendall: 0.90, p-val: 0.00

Atkinson (DIT)

T
he

il 
(D

IT
)

0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.
00

0.
10

0.
20

compiere: Theil-Gini. Kendall: 0.77, p-val: 0.00

Gini (DIT)

T
he

il 
(D

IT
)

0.05 0.10 0.15 0.20 0.25

0.
00

0.
10

0.
20

compiere: Theil-Hoover. Kendall: 0.72, p-val: 0.00

Hoover (DIT)

T
he

il 
(D

IT
)

0.2 0.4 0.6 0.8

0.
00

0.
10

0.
20

compiere: Theil-Kolm. Kendall: 0.56, p-val: 0.00

Kolm (DIT)

T
he

il 
(D

IT
)

Figure 6.15: Shape of the relation between ITheil and each of IAtkinson, IGini,
IHoover, and IKolm for DIT.

0.4 0.5 0.6 0.7 0.8 0.9 1.0

1
2

3
4

5

compiere: Theil-Atkinson. Kendall: 0.94, p-val: 0.00

Atkinson (NOC)

T
he

il 
(N

O
C

)

0.5 0.6 0.7 0.8 0.9 1.0

1
2

3
4

5

compiere: Theil-Gini. Kendall: 0.95, p-val: 0.00

Gini (NOC)

T
he

il 
(N

O
C

)

0.4 0.5 0.6 0.7 0.8 0.9 1.0

1
2

3
4

5

compiere: Theil-Hoover. Kendall: 0.92, p-val: 0.00

Hoover (NOC)

T
he

il 
(N

O
C

)

0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

5

compiere: Theil-Kolm. Kendall: 0.06, p-val: 0.65

Kolm (NOC)

T
he

il 
(N

O
C

)

Figure 6.16: Shape of the relation between ITheil and each of IAtkinson, IGini,
IHoover, and IKolm for NOC.

91



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

compiere: Theil-Atkinson. Kendall: 0.93, p-val: 0.00

Atkinson (PBS)

T
he

il 
(P

B
S

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

compiere: Theil-Gini. Kendall: 0.89, p-val: 0.00

Gini (PBS)

T
he

il 
(P

B
S

)

0.0 0.2 0.4 0.6 0.8

0.
0

1.
0

2.
0

3.
0

compiere: Theil-Hoover. Kendall: 0.87, p-val: 0.00

Hoover (PBS)

T
he

il 
(P

B
S

)

0 5 10 15

0.
0

1.
0

2.
0

3.
0

compiere: Theil-Kolm. Kendall: 0.21, p-val: 0.04

Kolm (PBS)

T
he

il 
(P

B
S

)

Figure 6.17: Shape of the relation between ITheil and each of IAtkinson, IGini,
IHoover, and IKolm for PBS.

0.00 0.02 0.04 0.06

0.
00

0.
05

0.
10

0.
15

compiere: Theil-Atkinson. Kendall: 0.96, p-val: 0.00

Atkinson (PLwC)

T
he

il 
(P

Lw
C

)

0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

compiere: Theil-Gini. Kendall: 0.93, p-val: 0.00

Gini (PLwC)

T
he

il 
(P

Lw
C

)

0.05 0.10 0.15 0.20 0.25

0.
00

0.
10

0.
20

compiere: Theil-Hoover. Kendall: 0.89, p-val: 0.00

Hoover (PLwC)

T
he

il 
(P

Lw
C

)

0 10 20 30 40

0.
00

0.
10

0.
20

compiere: Theil-Kolm. Kendall: 0.47, p-val: 0.00

Kolm (PLwC)

T
he

il 
(P

Lw
C

)

Figure 6.18: Shape of the relation between ITheil and each of IAtkinson, IGini,
IHoover, and IKolm for PLwC.

92



Shape of the relations mean–IKolm and median–IKolm

0 50 100 150 200 250 300 350

0
50

15
0

25
0

35
0

compiere: mean-Kolm. Kendall: 0.88, p-val: 0.00

Kolm (SLOC)

m
ea

n 
(S

LO
C

)

0 50 100 150 200 250 300 350

0
50

15
0

25
0

35
0

compiere: median-Kolm. Kendall: 0.57, p-val: 0.00

Kolm (SLOC)

m
ed

ia
n 

(S
LO

C
)

0 100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0

compiere: mean-Kolm. Kendall: 0.83, p-val: 0.00

Kolm (LOC)

m
ea

n 
(L

O
C

)

0 100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0

compiere: median-Kolm. Kendall: 0.54, p-val: 0.00

Kolm (LOC)

m
ed

ia
n 

(L
O

C
)

0 50 100 150 200

0
50

10
0

15
0

20
0

compiere: mean-Kolm. Kendall: 0.89, p-val: 0.00

Kolm (NOS)

m
ea

n 
(N

O
S

)

0 50 100 150 200

0
50

10
0

15
0

20
0

compiere: median-Kolm. Kendall: 0.60, p-val: 0.00

Kolm (NOS)

m
ed

ia
n 

(N
O

S
)

0 50 100 150 200 250

0
50

10
0

15
0

20
0

25
0

compiere: mean-Kolm. Kendall: 0.90, p-val: 0.00

Kolm (NOSt)

m
ea

n 
(N

O
S

t)

0 50 100 150 200 250

0
50

10
0

20
0

compiere: median-Kolm. Kendall: 0.66, p-val: 0.00

Kolm (NOSt)

m
ed

ia
n 

(N
O

S
t)

Figure 6.19: Relation between mean and IKolm, and between median and
IKolm, for size metrics.

93



0.0 0.2 0.4 0.6 0.8

0
1

2
3

compiere: mean-Kolm. Kendall: 0.36, p-val: 0.00

Kolm (DIT)

m
ea

n 
(D

IT
)

0.0 0.2 0.4 0.6 0.8

0
1

2
3

4

compiere: median-Kolm. Kendall: 0.38, p-val: 0.00

Kolm (DIT)

m
ed

ia
n 

(D
IT

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

compiere: mean-Kolm. Kendall: 0.79, p-val: 0.00

Kolm (NOC)

m
ea

n 
(N

O
C

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

compiere: median-Kolm. Kendall: 0.01, p-val: 1.00

Kolm (NOC)

m
ed

ia
n 

(N
O

C
)

0 5 10 15

0
5

10
15

20

compiere: mean-Kolm. Kendall: 0.40, p-val: 0.00

Kolm (PBS)

m
ea

n 
(P

B
S

)

0 5 10 15

0
5

10
15

20

compiere: median-Kolm. Kendall: 0.38, p-val: 0.00

Kolm (PBS)

m
ed

ia
n 

(P
B

S
)

0 10 20 30 40

10
20

30
40

50
60

70

compiere: mean-Kolm. Kendall: 0.08, p-val: 0.38

Kolm (PLwC)

m
ea

n 
(P

Lw
C

)

0 10 20 30 40

0
20

40
60

compiere: median-Kolm. Kendall: 0.13, p-val: 0.16

Kolm (PLwC)

m
ed

ia
n 

(P
Lw

C
)

Figure 6.20: Relation between mean and IKolm, and between median and
IKolm, for low-variance metrics and limited-range metrics.

94



Shape of the relation between skewness and kurtosis

0 1 2 3 4 5

0
10

20
30

40

compiere: kurtosis-skewness. Kendall: 0.82, p-val: 0.00

skewness (SLOC)

ku
rt

os
is

 (
S

LO
C

)

0 2 4 6

0
10

20
30

40
50

60

compiere: kurtosis-skewness. Kendall: 0.80, p-val: 0.00

skewness (LOC)

ku
rt

os
is

 (
LO

C
)

0 1 2 3 4 5 6

0
10

20
30

40
50

compiere: kurtosis-skewness. Kendall: 0.84, p-val: 0.00

skewness (NOS)

ku
rt

os
is

 (
N

O
S

)

0 1 2 3 4 5

0
10

20
30

40

compiere: kurtosis-skewness. Kendall: 0.82, p-val: 0.00

skewness (NOSt)

ku
rt

os
is

 (
N

O
S

t)

-4 -2 0 2

0
5

10
15

20
25

30

compiere: kurtosis-skewness. Kendall: 0.02, p-val: 0.86

skewness (DIT)

ku
rt

os
is

 (
D

IT
)

0 5 10 15

0
10

0
20

0
30

0

compiere: kurtosis-skewness. Kendall: 0.98, p-val: 0.00

skewness (NOC)

ku
rt

os
is

 (
N

O
C

)

-1 0 1 2 3 4 5

0
5

10
15

20
25

30

compiere: kurtosis-skewness. Kendall: -0.12, p-val: 0.22

skewness (PBS)

ku
rt

os
is

 (
P

B
S

)

-2 -1 0 1 2 3

2
4

6
8

10
12

compiere: kurtosis-skewness. Kendall: 0.27, p-val: 0.00

skewness (PLwC)

ku
rt

os
is

 (
P

Lw
C

)

Figure 6.21: Shape of the relation between skewness and kurtosis (left), and
standard deviation and variance (right).

95



To summarize our answer to Question 3, we note that the choice of met-
ric does not influence neither the correlation, nor the shape of the relation
between values aggregated using IGini, ITheil, IMLD, IHoover, and IAtkinson.
Apart from the perfect correlation between standard deviation and variance,
also invariant with respect to the metric, correlation between values aggre-
gated using IGini, ITheil, IMLD, IHoover, and IAtkinson is the highest observed
among the aggregation techniques considered.

In contrast, the choice of metric does influence the correlation between
mean and IKolm, which is consistently high and statistically significant only
for the size metrics, as well as the shape of the relation between them.

6.3.3 Which index to choose?

Answering Questions 1 and 2 allows us to provide a guideline when different
inequality indices should be used. It might seem that since IGini, ITheil,
IMLD, IHoover, and IAtkinson convey the same information, all these indices
are equally appropriate. However, this is not true since different indices have
different application domains, emphasize different dimensions of inequality
and possess different decomposability properties, as discussed in Section 3.2.

ITheil, IMLD and IAtkinson are not applicable to negative values, while
IGini and IHoover can be applied to any values as long as the mean of the
values being aggregated differs from 0. We stress, however, that the range
of IGini and IHoover becomes R in presence of negative values, challenging
interpretation of the aggregated values.

Finally, if the inequality index is intended to be used to explain the
inequality observed, the inequality index should be decomposable. ITheil

and IAtkinson are the only decomposable indices of the four, hence the only
ones that can be used to also explain inequality [99].

96



6.4 Studying the evolution of the correlation
between aggregation techniques

In the second series of experiments we study the evolution of the Kendall
correlation between the aggregation techniques on the Evolution Corpus,
and we answer Question 4 from Section 6.1. In order to better understand
the evolution of the correlation, we employ two thresholds for statistical
significance: we draw the correlation coefficients supported by two-sided
p-values at most equal to 0.01 as filled blue squares, those supported by
two-sided p-values between 0.01 and 0.05 as empty blue squares, and finally
those supported by two-sided p-values above 0.05 as empty blue triangles.
To illustrate the evolution of the correlation between different aggregation
techniques on the Evolution Corpus we choose Hibernate as a representative
example3.

In the previous section we have observed high and statistically signifi-
cant correlation between IGini, ITheil, IMLD, IHoover, and IAtkinson, regardless
of the metric considered. This observation is consolidated by analyzing the
evolution of the correlation between these inequality indices on the Evolu-
tion Corpus. For example, Figures 6.22 and 6.23 show the evolution of the
correlation between IGini and ITheil for the size, low-variance, and limited-
range metrics considered. We observe that the correlation coefficient does
not drop below 0.6 and is always statistically very significant for all metrics
except DIT and NOC, for which in version 0.8.1 Hibernate was too small
for the correlation to be high and statistically significant (69 files totaling
7837 SLOC).

However, the evolution is different between ITheil and IKolm (Figures 6.24
and 6.25). For the size metrics we observe that the correlation became sta-
tistically significant and, although still average (0.5), the correlation coeffi-
cient significantly increased (from 0.2–0.3) starting with version 3.0. Closer
inspection revealed that Hibernate underwent a significant increase in size
when moving from v2.1.8 (29 packages) to v3.0 (109 packages). The same
significant increase in size starting with version 3.0 has an effect on the cor-
relation between ITheil and IKolm for DIT, NOC, and PLwC as well. For
NOC, correlation between ITheil and IKolm switched from positive to neg-
ative, but remained very low and statistically insignificant. For DIT and
PLwC, correlation between ITheil and IKolm started increasing and became
statistically significant.

3The other systems in the Evolution Corpus exhibit similar patterns. For complete
results see www.student.tue.nl/X/b.n.vasilescu/evolution/evolution.html

97

www.student.tue.nl/X/b.n.vasilescu/evolution/evolution.html


Evolution of correlation between IGini and ITheil
-1

.0
-0

.5
0.

0
0.

5
1.

0

hibernate - Kendall(Gini(SLOC), Theil(SLOC)) (86 releases)

C
or

. c
oe

ff.
 G

in
i(S

LO
C

) 
- 

T
he

il(
S

LO
C

)

0.
8.

1
1.

0
1.

1
2.

0-
be

ta
-1

2.
0-

be
ta

-2
2.

0-
be

ta
-3

2.
0-

be
ta

-4
2.

0-
fin

al
2.

0-
rc

2
2.

0.
1

2.
0.

2
2.

0.
3

2.
1-

be
ta

-1
2.

1-
be

ta
-2

2.
1-

be
ta

-3
2.

1-
be

ta
-3

b
2.

1-
be

ta
-4

2.
1-

be
ta

-5
2.

1-
be

ta
-6

2.
1-

fin
al

2.
1-

rc
1

2.
1.

1
2.

1.
2

2.
1.

3
2.

1.
4

2.
1.

5
2.

1.
6

2.
1.

7
2.

1.
8

3.
0

3.
0-

al
ph

a
3.

0-
be

ta
1

3.
0-

be
ta

2
3.

0-
be

ta
3

3.
0-

be
ta

4
3.

0-
rc

1
3.

0.
1

3.
0.

2
3.

0.
3

3.
0.

4
3.

0.
5

3.
1

3.
1-

al
ph

a1
3.

1-
be

ta
1

3.
1-

be
ta

2
3.

1-
be

ta
3

3.
1-

rc
1

3.
1-

rc
2

3.
1-

rc
3

3.
1.

1
3.

1.
2

3.
1.

3
3.

2-
al

ph
a1

3.
2-

al
ph

a2
3.

2-
cr

1
3.

2-
cr

2
3.

2.
0-

cr
3

3.
2.

0-
cr

4
3.

2.
0-

cr
5

3.
2.

0.
ga

3.
2.

1-
ga

3.
2.

2-
ga

3.
2.

3-
ga

3.
2.

4-
ga

3.
2.

4-
sp

1
3.

2.
5-

ga
3.

2.
6-

ga
3.

2.
7-

ga
3.

3.
0-

cr
2

3.
3.

0-
ga

3.
3.

0-
sp

1
3.

3.
0.

cr
1

3.
3.

1-
ga

3.
3.

2-
ga

3.
5.

0-
be

ta
-1

3.
5.

0-
be

ta
-2

3.
5.

0-
be

ta
-3

3.
5.

0-
be

ta
-4

3.
5.

0-
cr

-1
3.

5.
0-

cr
-2

3.
5.

3-
fin

al
3.

5.
5-

fin
al

3.
6.

0-
be

ta
1

3.
6.

0-
be

ta
2

3.
6.

0-
be

ta
3

3.
6.

0-
be

ta
4

-1
.0

-0
.5

0.
0

0.
5

1.
0

hibernate - Kendall(Gini(LOC), Theil(LOC)) (86 releases)

C
or

. c
oe

ff.
 G

in
i(L

O
C

) 
- 

T
he

il(
LO

C
)

0.
8.

1
1.

0
1.

1
2.

0-
be

ta
-1

2.
0-

be
ta

-2
2.

0-
be

ta
-3

2.
0-

be
ta

-4
2.

0-
fin

al
2.

0-
rc

2
2.

0.
1

2.
0.

2
2.

0.
3

2.
1-

be
ta

-1
2.

1-
be

ta
-2

2.
1-

be
ta

-3
2.

1-
be

ta
-3

b
2.

1-
be

ta
-4

2.
1-

be
ta

-5
2.

1-
be

ta
-6

2.
1-

fin
al

2.
1-

rc
1

2.
1.

1
2.

1.
2

2.
1.

3
2.

1.
4

2.
1.

5
2.

1.
6

2.
1.

7
2.

1.
8

3.
0

3.
0-

al
ph

a
3.

0-
be

ta
1

3.
0-

be
ta

2
3.

0-
be

ta
3

3.
0-

be
ta

4
3.

0-
rc

1
3.

0.
1

3.
0.

2
3.

0.
3

3.
0.

4
3.

0.
5

3.
1

3.
1-

al
ph

a1
3.

1-
be

ta
1

3.
1-

be
ta

2
3.

1-
be

ta
3

3.
1-

rc
1

3.
1-

rc
2

3.
1-

rc
3

3.
1.

1
3.

1.
2

3.
1.

3
3.

2-
al

ph
a1

3.
2-

al
ph

a2
3.

2-
cr

1
3.

2-
cr

2
3.

2.
0-

cr
3

3.
2.

0-
cr

4
3.

2.
0-

cr
5

3.
2.

0.
ga

3.
2.

1-
ga

3.
2.

2-
ga

3.
2.

3-
ga

3.
2.

4-
ga

3.
2.

4-
sp

1
3.

2.
5-

ga
3.

2.
6-

ga
3.

2.
7-

ga
3.

3.
0-

cr
2

3.
3.

0-
ga

3.
3.

0-
sp

1
3.

3.
0.

cr
1

3.
3.

1-
ga

3.
3.

2-
ga

3.
5.

0-
be

ta
-1

3.
5.

0-
be

ta
-2

3.
5.

0-
be

ta
-3

3.
5.

0-
be

ta
-4

3.
5.

0-
cr

-1
3.

5.
0-

cr
-2

3.
5.

3-
fin

al
3.

5.
5-

fin
al

3.
6.

0-
be

ta
1

3.
6.

0-
be

ta
2

3.
6.

0-
be

ta
3

3.
6.

0-
be

ta
4

-1
.0

-0
.5

0.
0

0.
5

1.
0

hibernate - Kendall(Gini(NOS), Theil(NOS)) (86 releases)

C
or

. c
oe

ff.
 G

in
i(N

O
S

) 
- 

T
he

il(
N

O
S

)

0.
8.

1
1.

0
1.

1
2.

0-
be

ta
-1

2.
0-

be
ta

-2
2.

0-
be

ta
-3

2.
0-

be
ta

-4
2.

0-
fin

al
2.

0-
rc

2
2.

0.
1

2.
0.

2
2.

0.
3

2.
1-

be
ta

-1
2.

1-
be

ta
-2

2.
1-

be
ta

-3
2.

1-
be

ta
-3

b
2.

1-
be

ta
-4

2.
1-

be
ta

-5
2.

1-
be

ta
-6

2.
1-

fin
al

2.
1-

rc
1

2.
1.

1
2.

1.
2

2.
1.

3
2.

1.
4

2.
1.

5
2.

1.
6

2.
1.

7
2.

1.
8

3.
0

3.
0-

al
ph

a
3.

0-
be

ta
1

3.
0-

be
ta

2
3.

0-
be

ta
3

3.
0-

be
ta

4
3.

0-
rc

1
3.

0.
1

3.
0.

2
3.

0.
3

3.
0.

4
3.

0.
5

3.
1

3.
1-

al
ph

a1
3.

1-
be

ta
1

3.
1-

be
ta

2
3.

1-
be

ta
3

3.
1-

rc
1

3.
1-

rc
2

3.
1-

rc
3

3.
1.

1
3.

1.
2

3.
1.

3
3.

2-
al

ph
a1

3.
2-

al
ph

a2
3.

2-
cr

1
3.

2-
cr

2
3.

2.
0-

cr
3

3.
2.

0-
cr

4
3.

2.
0-

cr
5

3.
2.

0.
ga

3.
2.

1-
ga

3.
2.

2-
ga

3.
2.

3-
ga

3.
2.

4-
ga

3.
2.

4-
sp

1
3.

2.
5-

ga
3.

2.
6-

ga
3.

2.
7-

ga
3.

3.
0-

cr
2

3.
3.

0-
ga

3.
3.

0-
sp

1
3.

3.
0.

cr
1

3.
3.

1-
ga

3.
3.

2-
ga

3.
5.

0-
be

ta
-1

3.
5.

0-
be

ta
-2

3.
5.

0-
be

ta
-3

3.
5.

0-
be

ta
-4

3.
5.

0-
cr

-1
3.

5.
0-

cr
-2

3.
5.

3-
fin

al
3.

5.
5-

fin
al

3.
6.

0-
be

ta
1

3.
6.

0-
be

ta
2

3.
6.

0-
be

ta
3

3.
6.

0-
be

ta
4

-1
.0

-0
.5

0.
0

0.
5

1.
0

hibernate - Kendall(Gini(NOSt), Theil(NOSt)) (86 releases)

C
or

. c
oe

ff.
 G

in
i(N

O
S

t)
 -

 T
he

il(
N

O
S

t)

0.
8.

1
1.

0
1.

1
2.

0-
be

ta
-1

2.
0-

be
ta

-2
2.

0-
be

ta
-3

2.
0-

be
ta

-4
2.

0-
fin

al
2.

0-
rc

2
2.

0.
1

2.
0.

2
2.

0.
3

2.
1-

be
ta

-1
2.

1-
be

ta
-2

2.
1-

be
ta

-3
2.

1-
be

ta
-3

b
2.

1-
be

ta
-4

2.
1-

be
ta

-5
2.

1-
be

ta
-6

2.
1-

fin
al

2.
1-

rc
1

2.
1.

1
2.

1.
2

2.
1.

3
2.

1.
4

2.
1.

5
2.

1.
6

2.
1.

7
2.

1.
8

3.
0

3.
0-

al
ph

a
3.

0-
be

ta
1

3.
0-

be
ta

2
3.

0-
be

ta
3

3.
0-

be
ta

4
3.

0-
rc

1
3.

0.
1

3.
0.

2
3.

0.
3

3.
0.

4
3.

0.
5

3.
1

3.
1-

al
ph

a1
3.

1-
be

ta
1

3.
1-

be
ta

2
3.

1-
be

ta
3

3.
1-

rc
1

3.
1-

rc
2

3.
1-

rc
3

3.
1.

1
3.

1.
2

3.
1.

3
3.

2-
al

ph
a1

3.
2-

al
ph

a2
3.

2-
cr

1
3.

2-
cr

2
3.

2.
0-

cr
3

3.
2.

0-
cr

4
3.

2.
0-

cr
5

3.
2.

0.
ga

3.
2.

1-
ga

3.
2.

2-
ga

3.
2.

3-
ga

3.
2.

4-
ga

3.
2.

4-
sp

1
3.

2.
5-

ga
3.

2.
6-

ga
3.

2.
7-

ga
3.

3.
0-

cr
2

3.
3.

0-
ga

3.
3.

0-
sp

1
3.

3.
0.

cr
1

3.
3.

1-
ga

3.
3.

2-
ga

3.
5.

0-
be

ta
-1

3.
5.

0-
be

ta
-2

3.
5.

0-
be

ta
-3

3.
5.

0-
be

ta
-4

3.
5.

0-
cr

-1
3.

5.
0-

cr
-2

3.
5.

3-
fin

al
3.

5.
5-

fin
al

3.
6.

0-
be

ta
1

3.
6.

0-
be

ta
2

3.
6.

0-
be

ta
3

3.
6.

0-
be

ta
4

Figure 6.22: Correlation between ITheil and IGini is almost perfect for the
size metrics.

98



-1
.0

-0
.5

0.
0

0.
5

1.
0

hibernate - Kendall(Gini(DIT), Theil(DIT)) (86 releases)

C
or

. c
oe

ff.
 G

in
i(D

IT
) 

- 
T

he
il(

D
IT

)

0.
8.

1
1.

0
1.

1
2.

0-
be

ta
-1

2.
0-

be
ta

-2
2.

0-
be

ta
-3

2.
0-

be
ta

-4
2.

0-
fin

al
2.

0-
rc

2
2.

0.
1

2.
0.

2
2.

0.
3

2.
1-

be
ta

-1
2.

1-
be

ta
-2

2.
1-

be
ta

-3
2.

1-
be

ta
-3

b
2.

1-
be

ta
-4

2.
1-

be
ta

-5
2.

1-
be

ta
-6

2.
1-

fin
al

2.
1-

rc
1

2.
1.

1
2.

1.
2

2.
1.

3
2.

1.
4

2.
1.

5
2.

1.
6

2.
1.

7
2.

1.
8

3.
0

3.
0-

al
ph

a
3.

0-
be

ta
1

3.
0-

be
ta

2
3.

0-
be

ta
3

3.
0-

be
ta

4
3.

0-
rc

1
3.

0.
1

3.
0.

2
3.

0.
3

3.
0.

4
3.

0.
5

3.
1

3.
1-

al
ph

a1
3.

1-
be

ta
1

3.
1-

be
ta

2
3.

1-
be

ta
3

3.
1-

rc
1

3.
1-

rc
2

3.
1-

rc
3

3.
1.

1
3.

1.
2

3.
1.

3
3.

2-
al

ph
a1

3.
2-

al
ph

a2
3.

2-
cr

1
3.

2-
cr

2
3.

2.
0-

cr
3

3.
2.

0-
cr

4
3.

2.
0-

cr
5

3.
2.

0.
ga

3.
2.

1-
ga

3.
2.

2-
ga

3.
2.

3-
ga

3.
2.

4-
ga

3.
2.

4-
sp

1
3.

2.
5-

ga
3.

2.
6-

ga
3.

2.
7-

ga
3.

3.
0-

cr
2

3.
3.

0-
ga

3.
3.

0-
sp

1
3.

3.
0.

cr
1

3.
3.

1-
ga

3.
3.

2-
ga

3.
5.

0-
be

ta
-1

3.
5.

0-
be

ta
-2

3.
5.

0-
be

ta
-3

3.
5.

0-
be

ta
-4

3.
5.

0-
cr

-1
3.

5.
0-

cr
-2

3.
5.

3-
fin

al
3.

5.
5-

fin
al

3.
6.

0-
be

ta
1

3.
6.

0-
be

ta
2

3.
6.

0-
be

ta
3

3.
6.

0-
be

ta
4

-1
.0

-0
.5

0.
0

0.
5

1.
0

hibernate - Kendall(Gini(NOC), Theil(NOC)) (86 releases)

C
or

. c
oe

ff.
 G

in
i(N

O
C

) 
- 

T
he

il(
N

O
C

)

0.
8.

1
1.

0
1.

1
2.

0-
be

ta
-1

2.
0-

be
ta

-2
2.

0-
be

ta
-3

2.
0-

be
ta

-4
2.

0-
fin

al
2.

0-
rc

2
2.

0.
1

2.
0.

2
2.

0.
3

2.
1-

be
ta

-1
2.

1-
be

ta
-2

2.
1-

be
ta

-3
2.

1-
be

ta
-3

b
2.

1-
be

ta
-4

2.
1-

be
ta

-5
2.

1-
be

ta
-6

2.
1-

fin
al

2.
1-

rc
1

2.
1.

1
2.

1.
2

2.
1.

3
2.

1.
4

2.
1.

5
2.

1.
6

2.
1.

7
2.

1.
8

3.
0

3.
0-

al
ph

a
3.

0-
be

ta
1

3.
0-

be
ta

2
3.

0-
be

ta
3

3.
0-

be
ta

4
3.

0-
rc

1
3.

0.
1

3.
0.

2
3.

0.
3

3.
0.

4
3.

0.
5

3.
1

3.
1-

al
ph

a1
3.

1-
be

ta
1

3.
1-

be
ta

2
3.

1-
be

ta
3

3.
1-

rc
1

3.
1-

rc
2

3.
1-

rc
3

3.
1.

1
3.

1.
2

3.
1.

3
3.

2-
al

ph
a1

3.
2-

al
ph

a2
3.

2-
cr

1
3.

2-
cr

2
3.

2.
0-

cr
3

3.
2.

0-
cr

4
3.

2.
0-

cr
5

3.
2.

0.
ga

3.
2.

1-
ga

3.
2.

2-
ga

3.
2.

3-
ga

3.
2.

4-
ga

3.
2.

4-
sp

1
3.

2.
5-

ga
3.

2.
6-

ga
3.

2.
7-

ga
3.

3.
0-

cr
2

3.
3.

0-
ga

3.
3.

0-
sp

1
3.

3.
0.

cr
1

3.
3.

1-
ga

3.
3.

2-
ga

3.
5.

0-
be

ta
-1

3.
5.

0-
be

ta
-2

3.
5.

0-
be

ta
-3

3.
5.

0-
be

ta
-4

3.
5.

0-
cr

-1
3.

5.
0-

cr
-2

3.
5.

3-
fin

al
3.

5.
5-

fin
al

3.
6.

0-
be

ta
1

3.
6.

0-
be

ta
2

3.
6.

0-
be

ta
3

3.
6.

0-
be

ta
4

-1
.0

-0
.5

0.
0

0.
5

1.
0

hibernate - Kendall(Gini(PBS), Theil(PBS)) (86 releases)

C
or

. c
oe

ff.
 G

in
i(P

B
S

) 
- 

T
he

il(
P

B
S

)

0.
8.

1
1.

0
1.

1
2.

0-
be

ta
-1

2.
0-

be
ta

-2
2.

0-
be

ta
-3

2.
0-

be
ta

-4
2.

0-
fin

al
2.

0-
rc

2
2.

0.
1

2.
0.

2
2.

0.
3

2.
1-

be
ta

-1
2.

1-
be

ta
-2

2.
1-

be
ta

-3
2.

1-
be

ta
-3

b
2.

1-
be

ta
-4

2.
1-

be
ta

-5
2.

1-
be

ta
-6

2.
1-

fin
al

2.
1-

rc
1

2.
1.

1
2.

1.
2

2.
1.

3
2.

1.
4

2.
1.

5
2.

1.
6

2.
1.

7
2.

1.
8

3.
0

3.
0-

al
ph

a
3.

0-
be

ta
1

3.
0-

be
ta

2
3.

0-
be

ta
3

3.
0-

be
ta

4
3.

0-
rc

1
3.

0.
1

3.
0.

2
3.

0.
3

3.
0.

4
3.

0.
5

3.
1

3.
1-

al
ph

a1
3.

1-
be

ta
1

3.
1-

be
ta

2
3.

1-
be

ta
3

3.
1-

rc
1

3.
1-

rc
2

3.
1-

rc
3

3.
1.

1
3.

1.
2

3.
1.

3
3.

2-
al

ph
a1

3.
2-

al
ph

a2
3.

2-
cr

1
3.

2-
cr

2
3.

2.
0-

cr
3

3.
2.

0-
cr

4
3.

2.
0-

cr
5

3.
2.

0.
ga

3.
2.

1-
ga

3.
2.

2-
ga

3.
2.

3-
ga

3.
2.

4-
ga

3.
2.

4-
sp

1
3.

2.
5-

ga
3.

2.
6-

ga
3.

2.
7-

ga
3.

3.
0-

cr
2

3.
3.

0-
ga

3.
3.

0-
sp

1
3.

3.
0.

cr
1

3.
3.

1-
ga

3.
3.

2-
ga

3.
5.

0-
be

ta
-1

3.
5.

0-
be

ta
-2

3.
5.

0-
be

ta
-3

3.
5.

0-
be

ta
-4

3.
5.

0-
cr

-1
3.

5.
0-

cr
-2

3.
5.

3-
fin

al
3.

5.
5-

fin
al

3.
6.

0-
be

ta
1

3.
6.

0-
be

ta
2

3.
6.

0-
be

ta
3

3.
6.

0-
be

ta
4

-1
.0

-0
.5

0.
0

0.
5

1.
0

hibernate - Kendall(Gini(PLwC), Theil(PLwC)) (86 releases)

C
or

. c
oe

ff.
 G

in
i(P

Lw
C

) 
- 

T
he

il(
P

Lw
C

)

0.
8.

1
1.

0
1.

1
2.

0-
be

ta
-1

2.
0-

be
ta

-2
2.

0-
be

ta
-3

2.
0-

be
ta

-4
2.

0-
fin

al
2.

0-
rc

2
2.

0.
1

2.
0.

2
2.

0.
3

2.
1-

be
ta

-1
2.

1-
be

ta
-2

2.
1-

be
ta

-3
2.

1-
be

ta
-3

b
2.

1-
be

ta
-4

2.
1-

be
ta

-5
2.

1-
be

ta
-6

2.
1-

fin
al

2.
1-

rc
1

2.
1.

1
2.

1.
2

2.
1.

3
2.

1.
4

2.
1.

5
2.

1.
6

2.
1.

7
2.

1.
8

3.
0

3.
0-

al
ph

a
3.

0-
be

ta
1

3.
0-

be
ta

2
3.

0-
be

ta
3

3.
0-

be
ta

4
3.

0-
rc

1
3.

0.
1

3.
0.

2
3.

0.
3

3.
0.

4
3.

0.
5

3.
1

3.
1-

al
ph

a1
3.

1-
be

ta
1

3.
1-

be
ta

2
3.

1-
be

ta
3

3.
1-

rc
1

3.
1-

rc
2

3.
1-

rc
3

3.
1.

1
3.

1.
2

3.
1.

3
3.

2-
al

ph
a1

3.
2-

al
ph

a2
3.

2-
cr

1
3.

2-
cr

2
3.

2.
0-

cr
3

3.
2.

0-
cr

4
3.

2.
0-

cr
5

3.
2.

0.
ga

3.
2.

1-
ga

3.
2.

2-
ga

3.
2.

3-
ga

3.
2.

4-
ga

3.
2.

4-
sp

1
3.

2.
5-

ga
3.

2.
6-

ga
3.

2.
7-

ga
3.

3.
0-

cr
2

3.
3.

0-
ga

3.
3.

0-
sp

1
3.

3.
0.

cr
1

3.
3.

1-
ga

3.
3.

2-
ga

3.
5.

0-
be

ta
-1

3.
5.

0-
be

ta
-2

3.
5.

0-
be

ta
-3

3.
5.

0-
be

ta
-4

3.
5.

0-
cr

-1
3.

5.
0-

cr
-2

3.
5.

3-
fin

al
3.

5.
5-

fin
al

3.
6.

0-
be

ta
1

3.
6.

0-
be

ta
2

3.
6.

0-
be

ta
3

3.
6.

0-
be

ta
4

Figure 6.23: Correlation between ITheil and IGini is always high for the low-
variance metrics and the limited-range metrics.

99



Evolution of correlation between IKolm and ITheil
-1

.0
-0

.5
0.

0
0.

5
1.

0

hibernate - Kendall(Theil(SLOC), Kolm(SLOC)) (86 releases)

C
or

. c
oe

ff.
 T

he
il(

S
LO

C
) 

- 
K

ol
m

(S
LO

C
)

0.
8.

1
1.

0
1.

1
2.

0-
be

ta
-1

2.
0-

be
ta

-2
2.

0-
be

ta
-3

2.
0-

be
ta

-4
2.

0-
fin

al
2.

0-
rc

2
2.

0.
1

2.
0.

2
2.

0.
3

2.
1-

be
ta

-1
2.

1-
be

ta
-2

2.
1-

be
ta

-3
2.

1-
be

ta
-3

b
2.

1-
be

ta
-4

2.
1-

be
ta

-5
2.

1-
be

ta
-6

2.
1-

fin
al

2.
1-

rc
1

2.
1.

1
2.

1.
2

2.
1.

3
2.

1.
4

2.
1.

5
2.

1.
6

2.
1.

7
2.

1.
8

3.
0

3.
0-

al
ph

a
3.

0-
be

ta
1

3.
0-

be
ta

2
3.

0-
be

ta
3

3.
0-

be
ta

4
3.

0-
rc

1
3.

0.
1

3.
0.

2
3.

0.
3

3.
0.

4
3.

0.
5

3.
1

3.
1-

al
ph

a1
3.

1-
be

ta
1

3.
1-

be
ta

2
3.

1-
be

ta
3

3.
1-

rc
1

3.
1-

rc
2

3.
1-

rc
3

3.
1.

1
3.

1.
2

3.
1.

3
3.

2-
al

ph
a1

3.
2-

al
ph

a2
3.

2-
cr

1
3.

2-
cr

2
3.

2.
0-

cr
3

3.
2.

0-
cr

4
3.

2.
0-

cr
5

3.
2.

0.
ga

3.
2.

1-
ga

3.
2.

2-
ga

3.
2.

3-
ga

3.
2.

4-
ga

3.
2.

4-
sp

1
3.

2.
5-

ga
3.

2.
6-

ga
3.

2.
7-

ga
3.

3.
0-

cr
2

3.
3.

0-
ga

3.
3.

0-
sp

1
3.

3.
0.

cr
1

3.
3.

1-
ga

3.
3.

2-
ga

3.
5.

0-
be

ta
-1

3.
5.

0-
be

ta
-2

3.
5.

0-
be

ta
-3

3.
5.

0-
be

ta
-4

3.
5.

0-
cr

-1
3.

5.
0-

cr
-2

3.
5.

3-
fin

al
3.

5.
5-

fin
al

3.
6.

0-
be

ta
1

3.
6.

0-
be

ta
2

3.
6.

0-
be

ta
3

3.
6.

0-
be

ta
4

-1
.0

-0
.5

0.
0

0.
5

1.
0

hibernate - Kendall(Theil(LOC), Kolm(LOC)) (86 releases)

C
or

. c
oe

ff.
 T

he
il(

LO
C

) 
- 

K
ol

m
(L

O
C

)

0.
8.

1
1.

0
1.

1
2.

0-
be

ta
-1

2.
0-

be
ta

-2
2.

0-
be

ta
-3

2.
0-

be
ta

-4
2.

0-
fin

al
2.

0-
rc

2
2.

0.
1

2.
0.

2
2.

0.
3

2.
1-

be
ta

-1
2.

1-
be

ta
-2

2.
1-

be
ta

-3
2.

1-
be

ta
-3

b
2.

1-
be

ta
-4

2.
1-

be
ta

-5
2.

1-
be

ta
-6

2.
1-

fin
al

2.
1-

rc
1

2.
1.

1
2.

1.
2

2.
1.

3
2.

1.
4

2.
1.

5
2.

1.
6

2.
1.

7
2.

1.
8

3.
0

3.
0-

al
ph

a
3.

0-
be

ta
1

3.
0-

be
ta

2
3.

0-
be

ta
3

3.
0-

be
ta

4
3.

0-
rc

1
3.

0.
1

3.
0.

2
3.

0.
3

3.
0.

4
3.

0.
5

3.
1

3.
1-

al
ph

a1
3.

1-
be

ta
1

3.
1-

be
ta

2
3.

1-
be

ta
3

3.
1-

rc
1

3.
1-

rc
2

3.
1-

rc
3

3.
1.

1
3.

1.
2

3.
1.

3
3.

2-
al

ph
a1

3.
2-

al
ph

a2
3.

2-
cr

1
3.

2-
cr

2
3.

2.
0-

cr
3

3.
2.

0-
cr

4
3.

2.
0-

cr
5

3.
2.

0.
ga

3.
2.

1-
ga

3.
2.

2-
ga

3.
2.

3-
ga

3.
2.

4-
ga

3.
2.

4-
sp

1
3.

2.
5-

ga
3.

2.
6-

ga
3.

2.
7-

ga
3.

3.
0-

cr
2

3.
3.

0-
ga

3.
3.

0-
sp

1
3.

3.
0.

cr
1

3.
3.

1-
ga

3.
3.

2-
ga

3.
5.

0-
be

ta
-1

3.
5.

0-
be

ta
-2

3.
5.

0-
be

ta
-3

3.
5.

0-
be

ta
-4

3.
5.

0-
cr

-1
3.

5.
0-

cr
-2

3.
5.

3-
fin

al
3.

5.
5-

fin
al

3.
6.

0-
be

ta
1

3.
6.

0-
be

ta
2

3.
6.

0-
be

ta
3

3.
6.

0-
be

ta
4

-1
.0

-0
.5

0.
0

0.
5

1.
0

hibernate - Kendall(Theil(NOS), Kolm(NOS)) (86 releases)

C
or

. c
oe

ff.
 T

he
il(

N
O

S
) 

- 
K

ol
m

(N
O

S
)

0.
8.

1
1.

0
1.

1
2.

0-
be

ta
-1

2.
0-

be
ta

-2
2.

0-
be

ta
-3

2.
0-

be
ta

-4
2.

0-
fin

al
2.

0-
rc

2
2.

0.
1

2.
0.

2
2.

0.
3

2.
1-

be
ta

-1
2.

1-
be

ta
-2

2.
1-

be
ta

-3
2.

1-
be

ta
-3

b
2.

1-
be

ta
-4

2.
1-

be
ta

-5
2.

1-
be

ta
-6

2.
1-

fin
al

2.
1-

rc
1

2.
1.

1
2.

1.
2

2.
1.

3
2.

1.
4

2.
1.

5
2.

1.
6

2.
1.

7
2.

1.
8

3.
0

3.
0-

al
ph

a
3.

0-
be

ta
1

3.
0-

be
ta

2
3.

0-
be

ta
3

3.
0-

be
ta

4
3.

0-
rc

1
3.

0.
1

3.
0.

2
3.

0.
3

3.
0.

4
3.

0.
5

3.
1

3.
1-

al
ph

a1
3.

1-
be

ta
1

3.
1-

be
ta

2
3.

1-
be

ta
3

3.
1-

rc
1

3.
1-

rc
2

3.
1-

rc
3

3.
1.

1
3.

1.
2

3.
1.

3
3.

2-
al

ph
a1

3.
2-

al
ph

a2
3.

2-
cr

1
3.

2-
cr

2
3.

2.
0-

cr
3

3.
2.

0-
cr

4
3.

2.
0-

cr
5

3.
2.

0.
ga

3.
2.

1-
ga

3.
2.

2-
ga

3.
2.

3-
ga

3.
2.

4-
ga

3.
2.

4-
sp

1
3.

2.
5-

ga
3.

2.
6-

ga
3.

2.
7-

ga
3.

3.
0-

cr
2

3.
3.

0-
ga

3.
3.

0-
sp

1
3.

3.
0.

cr
1

3.
3.

1-
ga

3.
3.

2-
ga

3.
5.

0-
be

ta
-1

3.
5.

0-
be

ta
-2

3.
5.

0-
be

ta
-3

3.
5.

0-
be

ta
-4

3.
5.

0-
cr

-1
3.

5.
0-

cr
-2

3.
5.

3-
fin

al
3.

5.
5-

fin
al

3.
6.

0-
be

ta
1

3.
6.

0-
be

ta
2

3.
6.

0-
be

ta
3

3.
6.

0-
be

ta
4

-1
.0

-0
.5

0.
0

0.
5

1.
0

hibernate - Kendall(Theil(NOSt), Kolm(NOSt)) (86 releases)

C
or

. c
oe

ff.
 T

he
il(

N
O

S
t)

 -
 K

ol
m

(N
O

S
t)

0.
8.

1
1.

0
1.

1
2.

0-
be

ta
-1

2.
0-

be
ta

-2
2.

0-
be

ta
-3

2.
0-

be
ta

-4
2.

0-
fin

al
2.

0-
rc

2
2.

0.
1

2.
0.

2
2.

0.
3

2.
1-

be
ta

-1
2.

1-
be

ta
-2

2.
1-

be
ta

-3
2.

1-
be

ta
-3

b
2.

1-
be

ta
-4

2.
1-

be
ta

-5
2.

1-
be

ta
-6

2.
1-

fin
al

2.
1-

rc
1

2.
1.

1
2.

1.
2

2.
1.

3
2.

1.
4

2.
1.

5
2.

1.
6

2.
1.

7
2.

1.
8

3.
0

3.
0-

al
ph

a
3.

0-
be

ta
1

3.
0-

be
ta

2
3.

0-
be

ta
3

3.
0-

be
ta

4
3.

0-
rc

1
3.

0.
1

3.
0.

2
3.

0.
3

3.
0.

4
3.

0.
5

3.
1

3.
1-

al
ph

a1
3.

1-
be

ta
1

3.
1-

be
ta

2
3.

1-
be

ta
3

3.
1-

rc
1

3.
1-

rc
2

3.
1-

rc
3

3.
1.

1
3.

1.
2

3.
1.

3
3.

2-
al

ph
a1

3.
2-

al
ph

a2
3.

2-
cr

1
3.

2-
cr

2
3.

2.
0-

cr
3

3.
2.

0-
cr

4
3.

2.
0-

cr
5

3.
2.

0.
ga

3.
2.

1-
ga

3.
2.

2-
ga

3.
2.

3-
ga

3.
2.

4-
ga

3.
2.

4-
sp

1
3.

2.
5-

ga
3.

2.
6-

ga
3.

2.
7-

ga
3.

3.
0-

cr
2

3.
3.

0-
ga

3.
3.

0-
sp

1
3.

3.
0.

cr
1

3.
3.

1-
ga

3.
3.

2-
ga

3.
5.

0-
be

ta
-1

3.
5.

0-
be

ta
-2

3.
5.

0-
be

ta
-3

3.
5.

0-
be

ta
-4

3.
5.

0-
cr

-1
3.

5.
0-

cr
-2

3.
5.

3-
fin

al
3.

5.
5-

fin
al

3.
6.

0-
be

ta
1

3.
6.

0-
be

ta
2

3.
6.

0-
be

ta
3

3.
6.

0-
be

ta
4

Figure 6.24: Correlation between ITheil and IKolm for the size metrics became
statistically significant after Hibernate increased in size.

100



-1
.0

-0
.5

0.
0

0.
5

1.
0

hibernate - Kendall(Theil(DIT), Kolm(DIT)) (86 releases)

C
or

. c
oe

ff.
 T

he
il(

D
IT

) 
- 

K
ol

m
(D

IT
)

0.
8.

1
1.

0
1.

1
2.

0-
be

ta
-1

2.
0-

be
ta

-2
2.

0-
be

ta
-3

2.
0-

be
ta

-4
2.

0-
fin

al
2.

0-
rc

2
2.

0.
1

2.
0.

2
2.

0.
3

2.
1-

be
ta

-1
2.

1-
be

ta
-2

2.
1-

be
ta

-3
2.

1-
be

ta
-3

b
2.

1-
be

ta
-4

2.
1-

be
ta

-5
2.

1-
be

ta
-6

2.
1-

fin
al

2.
1-

rc
1

2.
1.

1
2.

1.
2

2.
1.

3
2.

1.
4

2.
1.

5
2.

1.
6

2.
1.

7
2.

1.
8

3.
0

3.
0-

al
ph

a
3.

0-
be

ta
1

3.
0-

be
ta

2
3.

0-
be

ta
3

3.
0-

be
ta

4
3.

0-
rc

1
3.

0.
1

3.
0.

2
3.

0.
3

3.
0.

4
3.

0.
5

3.
1

3.
1-

al
ph

a1
3.

1-
be

ta
1

3.
1-

be
ta

2
3.

1-
be

ta
3

3.
1-

rc
1

3.
1-

rc
2

3.
1-

rc
3

3.
1.

1
3.

1.
2

3.
1.

3
3.

2-
al

ph
a1

3.
2-

al
ph

a2
3.

2-
cr

1
3.

2-
cr

2
3.

2.
0-

cr
3

3.
2.

0-
cr

4
3.

2.
0-

cr
5

3.
2.

0.
ga

3.
2.

1-
ga

3.
2.

2-
ga

3.
2.

3-
ga

3.
2.

4-
ga

3.
2.

4-
sp

1
3.

2.
5-

ga
3.

2.
6-

ga
3.

2.
7-

ga
3.

3.
0-

cr
2

3.
3.

0-
ga

3.
3.

0-
sp

1
3.

3.
0.

cr
1

3.
3.

1-
ga

3.
3.

2-
ga

3.
5.

0-
be

ta
-1

3.
5.

0-
be

ta
-2

3.
5.

0-
be

ta
-3

3.
5.

0-
be

ta
-4

3.
5.

0-
cr

-1
3.

5.
0-

cr
-2

3.
5.

3-
fin

al
3.

5.
5-

fin
al

3.
6.

0-
be

ta
1

3.
6.

0-
be

ta
2

3.
6.

0-
be

ta
3

3.
6.

0-
be

ta
4

-1
.0

-0
.5

0.
0

0.
5

1.
0

hibernate - Kendall(Theil(NOC), Kolm(NOC)) (86 releases)

C
or

. c
oe

ff.
 T

he
il(

N
O

C
) 

- 
K

ol
m

(N
O

C
)

0.
8.

1
1.

0
1.

1
2.

0-
be

ta
-1

2.
0-

be
ta

-2
2.

0-
be

ta
-3

2.
0-

be
ta

-4
2.

0-
fin

al
2.

0-
rc

2
2.

0.
1

2.
0.

2
2.

0.
3

2.
1-

be
ta

-1
2.

1-
be

ta
-2

2.
1-

be
ta

-3
2.

1-
be

ta
-3

b
2.

1-
be

ta
-4

2.
1-

be
ta

-5
2.

1-
be

ta
-6

2.
1-

fin
al

2.
1-

rc
1

2.
1.

1
2.

1.
2

2.
1.

3
2.

1.
4

2.
1.

5
2.

1.
6

2.
1.

7
2.

1.
8

3.
0

3.
0-

al
ph

a
3.

0-
be

ta
1

3.
0-

be
ta

2
3.

0-
be

ta
3

3.
0-

be
ta

4
3.

0-
rc

1
3.

0.
1

3.
0.

2
3.

0.
3

3.
0.

4
3.

0.
5

3.
1

3.
1-

al
ph

a1
3.

1-
be

ta
1

3.
1-

be
ta

2
3.

1-
be

ta
3

3.
1-

rc
1

3.
1-

rc
2

3.
1-

rc
3

3.
1.

1
3.

1.
2

3.
1.

3
3.

2-
al

ph
a1

3.
2-

al
ph

a2
3.

2-
cr

1
3.

2-
cr

2
3.

2.
0-

cr
3

3.
2.

0-
cr

4
3.

2.
0-

cr
5

3.
2.

0.
ga

3.
2.

1-
ga

3.
2.

2-
ga

3.
2.

3-
ga

3.
2.

4-
ga

3.
2.

4-
sp

1
3.

2.
5-

ga
3.

2.
6-

ga
3.

2.
7-

ga
3.

3.
0-

cr
2

3.
3.

0-
ga

3.
3.

0-
sp

1
3.

3.
0.

cr
1

3.
3.

1-
ga

3.
3.

2-
ga

3.
5.

0-
be

ta
-1

3.
5.

0-
be

ta
-2

3.
5.

0-
be

ta
-3

3.
5.

0-
be

ta
-4

3.
5.

0-
cr

-1
3.

5.
0-

cr
-2

3.
5.

3-
fin

al
3.

5.
5-

fin
al

3.
6.

0-
be

ta
1

3.
6.

0-
be

ta
2

3.
6.

0-
be

ta
3

3.
6.

0-
be

ta
4

-1
.0

-0
.5

0.
0

0.
5

1.
0

hibernate - Kendall(Theil(PBS), Kolm(PBS)) (86 releases)

C
or

. c
oe

ff.
 T

he
il(

P
B

S
) 

- 
K

ol
m

(P
B

S
)

0.
8.

1
1.

0
1.

1
2.

0-
be

ta
-1

2.
0-

be
ta

-2
2.

0-
be

ta
-3

2.
0-

be
ta

-4
2.

0-
fin

al
2.

0-
rc

2
2.

0.
1

2.
0.

2
2.

0.
3

2.
1-

be
ta

-1
2.

1-
be

ta
-2

2.
1-

be
ta

-3
2.

1-
be

ta
-3

b
2.

1-
be

ta
-4

2.
1-

be
ta

-5
2.

1-
be

ta
-6

2.
1-

fin
al

2.
1-

rc
1

2.
1.

1
2.

1.
2

2.
1.

3
2.

1.
4

2.
1.

5
2.

1.
6

2.
1.

7
2.

1.
8

3.
0

3.
0-

al
ph

a
3.

0-
be

ta
1

3.
0-

be
ta

2
3.

0-
be

ta
3

3.
0-

be
ta

4
3.

0-
rc

1
3.

0.
1

3.
0.

2
3.

0.
3

3.
0.

4
3.

0.
5

3.
1

3.
1-

al
ph

a1
3.

1-
be

ta
1

3.
1-

be
ta

2
3.

1-
be

ta
3

3.
1-

rc
1

3.
1-

rc
2

3.
1-

rc
3

3.
1.

1
3.

1.
2

3.
1.

3
3.

2-
al

ph
a1

3.
2-

al
ph

a2
3.

2-
cr

1
3.

2-
cr

2
3.

2.
0-

cr
3

3.
2.

0-
cr

4
3.

2.
0-

cr
5

3.
2.

0.
ga

3.
2.

1-
ga

3.
2.

2-
ga

3.
2.

3-
ga

3.
2.

4-
ga

3.
2.

4-
sp

1
3.

2.
5-

ga
3.

2.
6-

ga
3.

2.
7-

ga
3.

3.
0-

cr
2

3.
3.

0-
ga

3.
3.

0-
sp

1
3.

3.
0.

cr
1

3.
3.

1-
ga

3.
3.

2-
ga

3.
5.

0-
be

ta
-1

3.
5.

0-
be

ta
-2

3.
5.

0-
be

ta
-3

3.
5.

0-
be

ta
-4

3.
5.

0-
cr

-1
3.

5.
0-

cr
-2

3.
5.

3-
fin

al
3.

5.
5-

fin
al

3.
6.

0-
be

ta
1

3.
6.

0-
be

ta
2

3.
6.

0-
be

ta
3

3.
6.

0-
be

ta
4

-1
.0

-0
.5

0.
0

0.
5

1.
0

hibernate - Kendall(Theil(PLwC), Kolm(PLwC)) (86 releases)

C
or

. c
oe

ff.
 T

he
il(

P
Lw

C
) 

- 
K

ol
m

(P
Lw

C
)

0.
8.

1
1.

0
1.

1
2.

0-
be

ta
-1

2.
0-

be
ta

-2
2.

0-
be

ta
-3

2.
0-

be
ta

-4
2.

0-
fin

al
2.

0-
rc

2
2.

0.
1

2.
0.

2
2.

0.
3

2.
1-

be
ta

-1
2.

1-
be

ta
-2

2.
1-

be
ta

-3
2.

1-
be

ta
-3

b
2.

1-
be

ta
-4

2.
1-

be
ta

-5
2.

1-
be

ta
-6

2.
1-

fin
al

2.
1-

rc
1

2.
1.

1
2.

1.
2

2.
1.

3
2.

1.
4

2.
1.

5
2.

1.
6

2.
1.

7
2.

1.
8

3.
0

3.
0-

al
ph

a
3.

0-
be

ta
1

3.
0-

be
ta

2
3.

0-
be

ta
3

3.
0-

be
ta

4
3.

0-
rc

1
3.

0.
1

3.
0.

2
3.

0.
3

3.
0.

4
3.

0.
5

3.
1

3.
1-

al
ph

a1
3.

1-
be

ta
1

3.
1-

be
ta

2
3.

1-
be

ta
3

3.
1-

rc
1

3.
1-

rc
2

3.
1-

rc
3

3.
1.

1
3.

1.
2

3.
1.

3
3.

2-
al

ph
a1

3.
2-

al
ph

a2
3.

2-
cr

1
3.

2-
cr

2
3.

2.
0-

cr
3

3.
2.

0-
cr

4
3.

2.
0-

cr
5

3.
2.

0.
ga

3.
2.

1-
ga

3.
2.

2-
ga

3.
2.

3-
ga

3.
2.

4-
ga

3.
2.

4-
sp

1
3.

2.
5-

ga
3.

2.
6-

ga
3.

2.
7-

ga
3.

3.
0-

cr
2

3.
3.

0-
ga

3.
3.

0-
sp

1
3.

3.
0.

cr
1

3.
3.

1-
ga

3.
3.

2-
ga

3.
5.

0-
be

ta
-1

3.
5.

0-
be

ta
-2

3.
5.

0-
be

ta
-3

3.
5.

0-
be

ta
-4

3.
5.

0-
cr

-1
3.

5.
0-

cr
-2

3.
5.

3-
fin

al
3.

5.
5-

fin
al

3.
6.

0-
be

ta
1

3.
6.

0-
be

ta
2

3.
6.

0-
be

ta
3

3.
6.

0-
be

ta
4

Figure 6.25: Correlation between ITheil and IKolm is inconsistent for the
low-variance metrics and the limited-range metrics.

101



An interesting case is the correlation between mean and IKolm, which we
previously observed to be high (0.8) and statistically significant in 90% of
the Corpus for the size metrics. On the other hand, in the Evolution Corpus,
there are significant variations in the correlation coefficient between differ-
ent versions of the system. We illustrate this in Figure 6.26 on Hibernate
and Weka for SLOC. While correlation between mean and IKolm seems to
fluctuate without clear relation to system size, “jumps” of the correlation
values in both graphs of Figure 6.26 show major releases such as 3.5.0 in
Hibernate and 3.6.0 in Weka.

-1
.0

-0
.5

0.
0

0.
5

1.
0

hibernate - Kendall(mean(SLOC), Kolm(SLOC)) (86 releases)

C
or

. c
oe

ff.
 m

ea
n(

S
LO

C
) 

- 
K

ol
m

(S
LO

C
)

0.
8.

1
1.

0
1.

1
2.

0-
be

ta
-1

2.
0-

be
ta

-2
2.

0-
be

ta
-3

2.
0-

be
ta

-4
2.

0-
fin

al
2.

0-
rc

2
2.

0.
1

2.
0.

2
2.

0.
3

2.
1-

be
ta

-1
2.

1-
be

ta
-2

2.
1-

be
ta

-3
2.

1-
be

ta
-3

b
2.

1-
be

ta
-4

2.
1-

be
ta

-5
2.

1-
be

ta
-6

2.
1-

fin
al

2.
1-

rc
1

2.
1.

1
2.

1.
2

2.
1.

3
2.

1.
4

2.
1.

5
2.

1.
6

2.
1.

7
2.

1.
8

3.
0

3.
0-

al
ph

a
3.

0-
be

ta
1

3.
0-

be
ta

2
3.

0-
be

ta
3

3.
0-

be
ta

4
3.

0-
rc

1
3.

0.
1

3.
0.

2
3.

0.
3

3.
0.

4
3.

0.
5

3.
1

3.
1-

al
ph

a1
3.

1-
be

ta
1

3.
1-

be
ta

2
3.

1-
be

ta
3

3.
1-

rc
1

3.
1-

rc
2

3.
1-

rc
3

3.
1.

1
3.

1.
2

3.
1.

3
3.

2-
al

ph
a1

3.
2-

al
ph

a2
3.

2-
cr

1
3.

2-
cr

2
3.

2.
0-

cr
3

3.
2.

0-
cr

4
3.

2.
0-

cr
5

3.
2.

0.
ga

3.
2.

1-
ga

3.
2.

2-
ga

3.
2.

3-
ga

3.
2.

4-
ga

3.
2.

4-
sp

1
3.

2.
5-

ga
3.

2.
6-

ga
3.

2.
7-

ga
3.

3.
0-

cr
2

3.
3.

0-
ga

3.
3.

0-
sp

1
3.

3.
0.

cr
1

3.
3.

1-
ga

3.
3.

2-
ga

3.
5.

0-
be

ta
-1

3.
5.

0-
be

ta
-2

3.
5.

0-
be

ta
-3

3.
5.

0-
be

ta
-4

3.
5.

0-
cr

-1
3.

5.
0-

cr
-2

3.
5.

3-
fin

al
3.

5.
5-

fin
al

3.
6.

0-
be

ta
1

3.
6.

0-
be

ta
2

3.
6.

0-
be

ta
3

3.
6.

0-
be

ta
4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

weka - Kendall(mean(SLOC), Kolm(SLOC)) (49 releases)

C
or

. c
oe

ff.
 m

ea
n(

S
LO

C
) 

- 
K

ol
m

(S
LO

C
)

3.
0.

1

3.
0.

2

3.
0.

3

3.
0.

4

3.
0.

5

3.
0.

6

3.
1.

7

3.
1.

8

3.
1.

9

3.
2

3.
2.

1

3.
2.

2

3.
2.

3

3.
3

3.
3.

1

3.
3.

2

3.
3.

3

3.
3.

4

3.
3.

5

3.
3.

6

3.
4

3.
4.

1

3.
4.

10

3.
4.

11

3.
4.

12

3.
4.

13

3.
4.

2

3.
4.

3

3.
4.

4

3.
4.

5

3.
4.

6

3.
4.

7

3.
4.

8

3.
4.

9

3.
5.

0

3.
5.

1

3.
5.

2

3.
5.

3

3.
5.

4

3.
5.

5

3.
5.

6

3.
5.

7

3.
5.

8

3.
6.

0

3.
6.

1

3.
6.

2

3.
7.

0

3.
7.

1

3.
7.

2

Figure 6.26: Correlation between mean and IKolm fluctuates without clear
relation to system size.

To summarize our answer to Question 4, we note that:

• Consistently high (> 0.8) and statistically significant correlation can
be observed between IGini, ITheil, IHoover, IMLD and IAtkinson across the
Evolution Corpus for all metrics.

• Correlation between ITheil and IKolm increases as the system size in-
creases for the size metrics, but has inconsistent behaviour for the
other metrics.

• Correlation between mean and IKolm fluctuates without clear relation
to system size.

102



6.5 Threats to validity

Although this correlation study addresses some of the threats to the validity
of the pilot studies on which it it founded (e.g., multiple metrics, representa-
tive set of benchmarks, representative set of versions), a number of threats
to validity should still be addressed in the future.

First, while the results for the size metrics agreed in all cases, we have ob-
served inconsistent results between the low-variance metrics DIT and NOC,
and between the limited-range metrics PBS and PLwC. Therefore, we intend
to furthermore extend the study by considering other software metrics.

Second, we have used default parameters for IAtkinson and IKolm, as dis-
cussed in Section 3.1. However, the choice of parameters influences the sen-
sitivity of the two indices to transfers between the “rich” and the “poor”,
thus potentially influencing the strength and the nature of the relation with
other aggregation techniques. Therefore, a more extensive evaluation using
different parameter values for IAtkinson and IKolm is desirable.

Third, we have used external tools to compute the chosen metrics, i.e.,
Understand4 and SourceMonitor5, for which we can neither guarantee the
correctness of the metrics’ definitions, nor the quality of the results. For
example, we have discovered incorrect values for the size metrics computed
using Understand in certain situations, and we have adjusted the results
accordingly. Therefore, an extensive validation of the metrics data is desir-
able.

6.6 Conclusions

This study represents an extension to the pilot studies in Chapter 5 along
three directions.

First, we have extended the pilot studies to a number of size metrics, i.e.,
number of source lines of code (SLOC), number of lines of code (LOC), num-
ber of semicolons (NOS), and number of statements (NOSt), limited-range
metrics, i.e., percentage of branching statements (PBS) and the percentage
of lines with comments (PLwC) [82], and low variance metrics, i.e., depth of
inheritance tree (DIT) and the number of children (NOC) [22,108]. Second,
we have extended the pilot studies to a representative set of benchmarks, i.e.,
the 106 open-source Java systems comprising the Qualitas Corpus. Third,
we have considered a representative set of versions for 13 systems (out of
the 106 systems in the Qualitas Corpus) with 10 or more versions available,
in the form of the Evolution Corpus.

As a result of the pilot studies we have observed (i) high correlation
between IGini, ITheil, IMLD, IHoover, and IAtkinson, and (ii) similarly between

4http://www.scitools.com/
5http://www.campwoodsw.com/sourcemonitor.html

103

http://www.scitools.com/
http://www.campwoodsw.com/sourcemonitor.html


IKolm, mean, standard deviation, and variance, suggesting that values ag-
gregated using these techniques convey the same information. Moreover, we
have observed (iii) high correlation between values aggregated using skew-
ness and kurtosis.

The current study confirms (i), since IGini, ITheil, IMLD, IHoover and
IAtkinson show consistently high and statistically significant correlation be-
tween them, i.e., the aggregates obtained using these techniques convey the
same information, regardless of the metric considered. In contrast, (ii) is
only partly confirmed, since the correlation between mean and IKolm is high
and statistically significant only for the size metrics, while the correlation
between IKolm and standard deviation or variance is lower and less statis-
tically significant for all metrics. Finally, the current study partly confirms
(iii), i.e., values aggregated using skewness and kurtosis convey the same
information for the size metrics.

Moreover, we have analyzed the influence of the specific version of a
system on the correlation between the various techniques by studying it in
an evolutionary setting, on the Evolution Corpus. We have observed con-
sistently high (> 0.8) and statistically significant correlation between IGini,
ITheil, IHoover, IMLD and IAtkinson, suggesting that values aggregated using
these techniques convey the same information regardless of the metric used
or version analyzed. Moreover, we have observed that correlation between
ITheil and IKolm increases as the system size increases for the size metrics, but
has inconsistent behaviour for the other metrics. Finally, we have observed
that correlation between mean and IKolm is inconsistent, and it fluctuates
without clear relation to system size.

104





Chapter 7

Threshold-based aggregation
techniques study

In both the pilot study in Chapter 5, as well as the extensive correlation
study in Chapter 6 we have aggregated metrics data from class to package
level and we have empirically evaluated the traditional and econometric
aggregation techniques discussed in Chapters 2 and 3, respectively.

In this chapter we extend the pilot study by aggregating metrics from
method to class level rather than from class to package level, thus enabling
the comparison with the threshold-based aggregation techniques discussed
in Chapter 4. For the purpose of illustration, we choose source lines of
code (SLOC) as metric. Note that both SIG and Squale can be applied to
aggregation of SLOC values measured per method since translation functions
(from metrics values to individual marks) and thresholds for SLOC per
method have been published in [5, 6, 76].

Specifically, we address the following questions:

1. To what extent do the SIG and Squale approaches agree, i.e., to what
extent do they rank distributions of metrics values similarly?

2. Which and to what extent do other aggregation techniques (traditional
or econometric) agree with the SIG or Squale approaches?

3. How does correlation between aggregation techniques change after
changing the aggregation level from class–package to method–class?

7.1 Methodology

In order to answer the previous research questions we aggregate source lines
of code (SLOC) values from method to class level and we investigate statis-
tical correlation between pairs of aggregation techniques.

106



As case studies we chose a representative subset of 20 open-source Java
systems from the Qualitas Corpus version 20101126r1, uniformly selected
such that all sizes are represented. Our subset ranges from Azureus, the
fifth-largest system in the Corpus (453433 SLOC), to FitJava, the second-
smallest system in the Corpus (2240 SLOC). The complete list of the systems
considered is given in Table 7.1. We chose to perform the evaluation on a

Table 7.1: Subset of the Qualitas Corpus considered in the study of
threshold-based aggregation techniques

Ant AspectJ Cayenne Columba DisplayTag
ANTLR Axion CheckStyle Compiere DrawSWF
Aoi Azureus Cobertura C JDBC DrJava
ArgoUML Castor Colt Derby FitJava

subset rather than the entire Corpus since method-level metrics data as
computed by Understand2 required manual postprocessing in order to be
accurately extracted from the result files. Specifically, classes with a name
starting with a lowercase letter would be ignored by our tooling, as well as
all the methods defined therein, unless classes would be (manually) renamed
to start with an uppercase letter. This data sanitization process does not
affect the validity of our results since it improves the quality of the data.

As with the pilot studies, we stress that statistical correlations are not
transitive [62], i.e., we have to consider all pairs of aggregation techniques.
As with the study in Chapter 6, we focus on source code of the actual
systems and we exclude libraries. Similarly, we use the Corpus metadata to
discern between what is identified as actual source code of a system, and
what is considered third-party.

For all pairs of aggregation techniques compared, we considered classes
containing at least 2 methods. This is motivated by the fact that, when
applied to classes containing only one method, most of the traditional ag-
gregation techniques (standard deviation, variance, skewness, and kurtosis)
are undefined, and all inequality indices are equal to 0. For each class in
each system, we aggregate the SLOC values of all the methods defined in
that class, in turn, using each of the aggregation techniques considered. We
implemented the SIG approach using the translation function from metrics
to individual marks described in [76] for the three weights typically used in
practice [76], i.e., 3, 9 and 30. For the SIG approach, we implemented the
discrete version, in which the rating is an integer number, as well as the
continuous version described in [5], in which the rating is a real number,
both in the range [1, 5], with the thresholds in [5, 6].

1Qualitas Research Group, Qualitas Corpus Version 20101126, The University of Auck-
land, February 2009. http://qualitascorpus.com.

2http://www.scitools.com/

107

http://qualitascorpus.com
http://www.scitools.com/


-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Squale(3) - Squale(9) (SLOC) (100%)
K

en
da

ll 
co

rr
el

at
io

n 
co

ef
fic

ie
nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Squale(3) - Squale(9) (SLOC) (100%)
K

en
da

ll 
co

rr
el

at
io

n 
co

ef
fic

ie
nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Squale(3) - Squale(30) (SLOC) (100%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Squale(3) - Squale(30) (SLOC) (100%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Squale(9) - Squale(30) (SLOC) (100%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Squale(9) - Squale(30) (SLOC) (100%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Squale(3) - SIGd (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Squale(3) - SIGd (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Squale(9) - SIGd (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Squale(9) - SIGd (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Squale(30) - SIGd (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Squale(30) - SIGd (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Squale(3) - SIGc (SLOC) (65%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Squale(3) - SIGc (SLOC) (65%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Squale(9) - SIGc (SLOC) (60%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Squale(9) - SIGc (SLOC) (60%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Squale(30) - SIGc (SLOC) (60%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Squale(30) - SIGc (SLOC) (60%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: SIGd - SIGc (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: SIGd - SIGc (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

Figure 7.1: Squale correlates with discrete SIG. Discrete SIG correlates with
continuous SIG. However, Squale does not correlate with continuous SIG.

108



As discussed in the data analysis methodology of the pilot and extensive
correlation studies, we opt for Kendall’s rank correlation coefficient τ [57]
to measure statistical correlation between values aggregated using different
techniques. All computations were performed using R [92].

7.2 Results

7.2.1 Do the SIG and Squale approaches agree?

We start by studying the correlation between the threshold-based aggrega-
tion techniques (Figure 7.1), and answer Question 1.

Note that the exact weights used for Squale, as well as the percentage of
the systems for which the correlation is statistically significant are displayed
in between parentheses in the boxplots.

We observe almost perfect correlation between values aggregated using
Squale with the three different weights, statistically significant for all systems
(Figure 7.1 first row), i.e., values aggregated with Squale using different
weights convey the same information.

Moreover, we observe above average correlation (0.5–0.6) between values
aggregated using Squale and the discrete version of SIG (Figure 7.1 second
row), statistically significant for 95% of the systems. Similarly, we observe
above average correlation (0.6–0.7) between values aggregated using the dis-
crete and continuous versions of SIG (Figure 7.1 last row), again statistically
significant for 95% of the systems. However, correlation between Squale and
the continuous version of SIG (Figure 7.1 third row) is another good exam-
ple of the non-transitivity of statistical correlations, since it is very low and
much less statistically significant.

7.2.2 Do other techniques agree with SIG or Squale?

Figures 7.2–7.4 display the results for Squale with weight 3, and the discrete
and continuous versions of SIG.

In order to answer Question 2, we start by observing that Squale (Fig-
ure 7.2) shows average negative correlation with the inequality indices and
mean, sum, standard deviation, and variance, statistically significant for 95%
of the systems. The correlation between Squale and other aggregation tech-
niques, albeit statistically significant for at least 90% of the systems, is much
lower.

In contrast, the discrete version of SIG (Figure 7.3) shows very low neg-
ative correlation with the other aggregation techniques, again statistically
significant for at least 90% of the systems. Finally, the continuous version
of SIG (Figure 7.4) does not correlate with any of the other aggregation
techniques.

109



Squale
-1

.0
-0

.5
0.

0
0.

5
1.

0

Kendall: mean - Squale(3) (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: mean - Squale(3) (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: median - Squale(3) (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: median - Squale(3) (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: sum - Squale(3) (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: sum - Squale(3) (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: sd - Squale(3) (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: sd - Squale(3) (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: var - Squale(3) (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: var - Squale(3) (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: skewness - Squale(3) (SLOC) (90%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: skewness - Squale(3) (SLOC) (90%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: kurtosis - Squale(3) (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: kurtosis - Squale(3) (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Gini - Squale(3) (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Gini - Squale(3) (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Theil - Squale(3) (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Theil - Squale(3) (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Hoover - Squale(3) (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Hoover - Squale(3) (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Atkinson - Squale(3) (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Atkinson - Squale(3) (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Kolm - Squale(3) (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Kolm - Squale(3) (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

Figure 7.2: Squale shows average negative correlation with the inequality
indices and mean, sum, standard deviation, and variance.

110



Discrete SIG
-1

.0
-0

.5
0.

0
0.

5
1.

0

Kendall: mean - SIGd (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: mean - SIGd (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: median - SIGd (SLOC) (90%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: median - SIGd (SLOC) (90%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: sum - SIGd (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: sum - SIGd (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: sd - SIGd (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: sd - SIGd (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: var - SIGd (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: var - SIGd (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: skewness - SIGd (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: skewness - SIGd (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: kurtosis - SIGd (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: kurtosis - SIGd (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Gini - SIGd (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Gini - SIGd (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Theil - SIGd (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Theil - SIGd (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Hoover - SIGd (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Hoover - SIGd (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Atkinson - SIGd (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Atkinson - SIGd (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Kolm - SIGd (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Kolm - SIGd (SLOC) (95%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

Figure 7.3: The discrete version of SIG shows very low negative correlation
with the other aggregation techniques.

111



Continuous SIG
-1

.0
-0

.5
0.

0
0.

5
1.

0

Kendall: mean - SIGc (SLOC) (55%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: mean - SIGc (SLOC) (55%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: median - SIGc (SLOC) (50%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: median - SIGc (SLOC) (50%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: sum - SIGc (SLOC) (55%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: sum - SIGc (SLOC) (55%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: sd - SIGc (SLOC) (55%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: sd - SIGc (SLOC) (55%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: var - SIGc (SLOC) (55%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: var - SIGc (SLOC) (55%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: skewness - SIGc (SLOC) (35%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: skewness - SIGc (SLOC) (35%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: kurtosis - SIGc (SLOC) (40%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: kurtosis - SIGc (SLOC) (40%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Gini - SIGc (SLOC) (55%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Gini - SIGc (SLOC) (55%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Theil - SIGc (SLOC) (50%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Theil - SIGc (SLOC) (50%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Hoover - SIGc (SLOC) (50%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Hoover - SIGc (SLOC) (50%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Atkinson - SIGc (SLOC) (50%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Atkinson - SIGc (SLOC) (50%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Kolm - SIGc (SLOC) (55%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Kolm - SIGc (SLOC) (55%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

Figure 7.4: The continuous version of SIG does not correlate with any of
the other aggregation techniques.

112



7.2.3 Does the aggregation level influence correlation?

In order to answer Question 3 we refer to Figure 7.5, depicting the correlation
coefficients for a number of pairs of inequality indices for which we previously
observed high and statistically significant correlation when aggregating from
class to package level.

Similarly, we now observe very high and statistically significant cor-
relation between values aggregated using IGini, ITheil, IMLD, IHoover, and
IAtkinson, while the correlation between IKolm and the other inequality in-
dices, albeit also statistically significant, is significantly lower and more
spread out.

7.3 Threats to validity

In addition to the threats to validity discussed in Sections 5.4 and 6.5, we
identify the following main threats to the validity of results presented in
this study. First, we have only considered a subset of the Corpus, and only
a single version from each system. Therefore, we need to consider a more
representative set of benchmarks, and a more representative set of their
versions.

Second, we have presented results for a single metric, i.e., number of
source lines of code. Subsequent studies should investigate whether the
results obtained can be generalized to additional metrics.

7.4 Conclusions

We presented the results of an extension to the pilot studies in Chapter 5,
in which we aggregated SLOC values from method to class level on a sub-
set of the Qualitas Corpus, and studied statistical correlation between all
aggregation techniques discussed in Chapters 2, 3, and 4.

We observed that the Squale and the discrete version of the SIG threshold-
based aggregation techniques show negative average correlation with other
aggregation techniques, and positive average correlation among themselves,
i.e., there is redundancy in the information conveyed by values aggregated
using Squale or discrete SIG, but both measure different characteristics than
any of the other aggregation techniques.

In addition, we observed that changing the aggregation level with respect
to the studies in Chapters 5 and 6 did not affect the correlation between the
inequality indices, as measured in Chapter 6.

113



Influence of aggregation level
-1

.0
-0

.5
0.

0
0.

5
1.

0

Kendall: Gini - Theil (SLOC) (100%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Gini - Theil (SLOC) (100%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Theil - Atkinson (SLOC) (100%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Theil - Atkinson (SLOC) (100%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Theil - MLD (SLOC) (100%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Theil - MLD (SLOC) (100%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Theil - Hoover (SLOC) (100%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Theil - Hoover (SLOC) (100%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Hoover - Atkinson (SLOC) (100%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Hoover - Atkinson (SLOC) (100%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Gini - Atkinson (SLOC) (100%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Gini - Atkinson (SLOC) (100%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Gini - Hoover (SLOC) (100%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Gini - Hoover (SLOC) (100%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Gini - MLD (SLOC) (100%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Gini - MLD (SLOC) (100%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Gini - Hoover (SLOC) (100%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Gini - Hoover (SLOC) (100%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Atkinson - Kolm (SLOC) (100%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Atkinson - Kolm (SLOC) (100%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Theil - Kolm (SLOC) (100%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Theil - Kolm (SLOC) (100%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Gini - Kolm (SLOC) (100%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

-1
.0

-0
.5

0.
0

0.
5

1.
0

Kendall: Gini - Kolm (SLOC) (100%)

K
en

da
ll 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

Figure 7.5: Aggregating from method to class level does not significantly
affect correlation between the inequality indices as measured in Chapter 6.

114





Chapter 8

Highlighting undesirable
values in the aggregate

The aggregation in Squale, as part of a software quality model, was designed
to highlight undesirable metrics values (and undesirable, i.e., low, individual
marks) in order to warn the software engineers in case of potential problems.
In contrast, it is not the goal of inequality indices to highlight lower values
(poorer people) over higher ones (richer people). However, different inequal-
ity indices are known to have different sensitivities to either poorer or richer
people, as discussed in Section 3.2.

However, ISquale and the inequality indices have never been empirically
compared before using software metrics data. In this section we compare
the reaction of ISquale to that of the inequality indices in the presence of
an increasing large number of low individual marks (IMs). Recall that the
aggregation in Squale is a two-step process, requiring that the values of
metrics are first translated to IMs, which are then aggregated to a global
mark using the approach in equation 4.3. Therefore, in order to enable the
comparison, we apply the inequality indices to aggregation of IMs rather
than raw metrics data as well.

8.1 Methodology

In our experiment we consider different variants of the same software system
inspired by Eclipse 2.0, and we aggregate the individual marks computed for
source lines of code measured per method. We consider ISquale with weights
3, 9, and 30, ITheil, IMLD, IGini, IKolm, IAtkinson, and IHoover (see Sections 4.2
and 3.1 for definitions, respectively).

Version 2.0 of Eclipse, selected for convenience reasons, has a total of
8612 methods, from which 8093 have an IM of 3 (perfect mark), and 519
have IMs lower than 3 according to the translation function in Figure 4.2
(i.e., SLOC > 36). Therefore, as base (“perfect”) case for the experiment

116



we consider that Eclipse 2.0 has only perfect IMs (i.e., 8612 methods with
SLOC ≤ 36). We then gradually “pollute” the data by replacing a number
of perfect IMs by imperfect IMs, selected from the 519 available imperfect
IMs extracted from Eclipse. For example, for the test with 10% imperfect
IMs, we have a random selection of 7751 perfect IMs and 861 imperfect ones.
When we need more imperfect IMs than Eclipse actually contains, we select
the same ones several times.

At each step we compute the aggregated value according to all the ag-
gregation techniques considered (i.e., the inequality indices and ISquale).

Therefore, we control two variables independently:

• Quantity of imperfect IMs: we perform experiments with the following
quantities of imperfect IMs: 0% (i.e., base case); 10%, 20%, . . . , 100%

• Value of the imperfect IMs: we perform different experiments with
IMs chosen successively in the intervals: [2, 3), [1, 2), [0.5, 1), [0.1, 0.5),
and [0, 0.1).

Because we select the imperfect IMs randomly, we repeat each experi-
ment 10 times and present the mean of the aggregated result.

8.2 Results

Figure 8.1 presents the results for the arithmetic mean. We observe that
even with 30% very bad marks (IMs in the range [0, 0.1)), the aggregated
result is still greater than 2, which would still indicate good quality according
to the Squale rating scale.

Arithmetic mean for different percentages of perfect IMs

Percentage of imperfect marks

A
ve

ra
ge

 A
rit

hm
et

ic
 m

ea
n

0 10 20 30 40 50 60 70 80 90 100

0.0

0.5

1.0

1.5

2.0

2.5

3.0

range [2, 3)
range [1, 2)
range [0.5, 1)
range [0.1, 0.5)
range (0, 0.1)

Figure 8.1: Results of experiments for arithmetic mean

The results of this first graph are repeated in all other graphs in the form
of a grey triangle in the background to ease comparison of all aggregation
techniques to the upper and lower bounds of the results for arithmetic mean.

117



The results for ISquale (Figure 8.2) show that it behaves as expected, with
the gradation of the different weighting (from soft λ = 3 to hard λ = 30).
Particularly, the hard weighting results in a low aggregated result even for
a small quantity (10%) of bad IMs.

For the econometric indices (Figures 8.3 and 8.4), one should recall that
they do not discern between all values being equal but high, and all values
being equal but low. Therefore, all inequality indices are zero when the
aggregated values are all equal (e.g., base case). Since this characteristic is
opposite to that of ISquale, which results in a perfect result (i.e., 3) when
all IMs are perfect (i.e., 3), to ease comparison with ISquale we inverted the
y-axis of the results for the inequality indices (i.e., on the left of the graphs;
the right y-axis is for the grey triangle referring to the arithmetic mean).

Moreover, for the same reason, we observe for all inequality indices that
inequality increases as long as the perfect IMs form the “majority”, and
then inequality starts decreasing (curve going up on our inverted axis) when
the imperfect IMs become the norm rather than the exception. However,
the inflexion point differs between the six inequality indices. For example,
for imperfect IMs selected in the range [0.1, 0.5), inequality measured using
IGini starts decreasing when 90% of the IMs are imperfect, while inequality
measured using IHoover starts decreasing when 80% of the IMs are imperfect,
and inequality measured using IKolm starts decreasing when only 30% of the
IMs are imperfect.

In comparison to ISquale, IKolm (Figure 8.4) is the inequality index that
best highlights bad results (i.e., low IMs), as long as there are not too many
of them (up to 30% or 40%, depending on the range of the imperfect IMs).

Although IKolm decreases when the proportion of bad results augments
beyond this threshold (since then there is less inequality), in practice IKolm

could still be used to highlight bad results, as one can hope that the majority
of components will have acceptable results (e.g., because software metrics are
usually positively skewed [14,46]). In contrast, our experiments suggest that
ITheil (Figure 8.3) is the inequality index that least highlights bad results
(i.e., low IMs), even less than the arithmetic mean.

More worrying for IKolm is the fact that an improvement of the quality
(e.g., from 60% to 50% imperfect IMs) will result in an augmentation of
inequality (from a majority of imperfect methods to less) and, therefore, a
worsening of the aggregated value.

Note that although it may appear in Figures 8.3 and 8.4 that, e.g., ITheil,
IMLD, and IAtkinson are constant when the range of imperfect marks is [2, 3)
for all percentages of imperfect marks, this fact is due to the relatively small
variations in these indices compared to the range (0, 0.1) of imperfect marks.

118



0.0

0.5

1.0

1.5

2.0

2.5

3.0

Squale (weight = 3) aggregate for different percentages of perfect IMs

A
ve

ra
ge

 S
qu

al
e 

(w
ei

gh
t =

 3
) 

m
ar

k

0 10 20 30 40 50 60 70 80 90 100

0.0

0.5

1.0

1.5

2.0

2.5

3.0

range [2, 3)
range [1, 2)
range [0.5, 1)
range [0.1, 0.5)
range (0, 0.1)

A
ve

ra
ge

 m
ea

n 
ra

ng
e

Percentage of imperfect marks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Squale (weight = 9) aggregate for different percentages of perfect IMs

A
ve

ra
ge

 S
qu

al
e 

(w
ei

gh
t =

 9
) 

m
ar

k

0 10 20 30 40 50 60 70 80 90 100

0.0

0.5

1.0

1.5

2.0

2.5

3.0

range [2, 3)
range [1, 2)
range [0.5, 1)
range [0.1, 0.5)
range (0, 0.1)

A
ve

ra
ge

 m
ea

n 
ra

ng
e

Percentage of imperfect marks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Squale (weight = 30) aggregate for different percentages of perfect IMs

A
ve

ra
ge

 S
qu

al
e 

(w
ei

gh
t =

 3
0)

 m
ar

k

0 10 20 30 40 50 60 70 80 90 100

0.0

0.5

1.0

1.5

2.0

2.5

3.0

range [2, 3)
range [1, 2)
range [0.5, 1)
range [0.1, 0.5)
range (0, 0.1)

A
ve

ra
ge

 m
ea

n 
ra

ng
e

Percentage of imperfect marks

Figure 8.2: Results of experiments for ISquale with different weights.

119



0.0

0.5

1.0

1.5

2.0

2.5

3.0

Theil aggregate for different percentages of perfect IMs

A
ve

ra
ge

 T
he

il 
ag

gr
eg

at
e

0 10 20 30 40 50 60 70 80 90 100

2.0

1.5

1.0

0.5

0.0

range [2, 3)
range [1, 2)
range [0.5, 1)
range [0.1, 0.5)
range (0, 0.1)

A
ve

ra
ge

 m
ea

n 
ra

ng
e

Percentage of imperfect marks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

MLD aggregate for different percentages of perfect IMs

A
ve

ra
ge

 M
LD

 a
gg

re
ga

te

0 10 20 30 40 50 60 70 80 90 100

5

4

3

2

1

0

range [2, 3)
range [1, 2)
range [0.5, 1)
range [0.1, 0.5)
range (0, 0.1)

A
ve

ra
ge

 m
ea

n 
ra

ng
e

Percentage of imperfect marks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Gini aggregate for different percentages of perfect IMs

A
ve

ra
ge

 G
in

i a
gg

re
ga

te

0 10 20 30 40 50 60 70 80 90 100

0.8

0.6

0.4

0.2

0.0

range [2, 3)
range [1, 2)
range [0.5, 1)
range [0.1, 0.5)
range (0, 0.1)

A
ve

ra
ge

 m
ea

n 
ra

ng
e

Percentage of imperfect marks

Figure 8.3: Results of experiments for ITheil, IMLD, and IGini.

120



0.0

0.5

1.0

1.5

2.0

2.5

3.0

Atkinson aggregate for different percentages of perfect IMs

A
ve

ra
ge

 A
tk

in
so

n 
ag

gr
eg

at
e

0 10 20 30 40 50 60 70 80 90 100

0.8

0.6

0.4

0.2

0.0

range [2, 3)
range [1, 2)
range [0.5, 1)
range [0.1, 0.5)
range (0, 0.1)

A
ve

ra
ge

 m
ea

n 
ra

ng
e

Percentage of imperfect marks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Hoover aggregate for different percentages of perfect IMs

A
ve

ra
ge

 H
oo

ve
r 

ag
gr

eg
at

e

0 10 20 30 40 50 60 70 80 90 100

0.8

0.6

0.4

0.2

0.0

range [2, 3)
range [1, 2)
range [0.5, 1)
range [0.1, 0.5)
range (0, 0.1)

A
ve

ra
ge

 m
ea

n 
ra

ng
e

Percentage of imperfect marks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Kolm aggregate for different percentages of perfect IMs

A
ve

ra
ge

 K
ol

m
 a

gg
re

ga
te

0 10 20 30 40 50 60 70 80 90 100

1.0

0.8

0.6

0.4

0.2

0.0

range [2, 3)
range [1, 2)
range [0.5, 1)
range [0.1, 0.5)
range (0, 0.1)

A
ve

ra
ge

 m
ea

n 
ra

ng
e

Percentage of imperfect marks

Figure 8.4: Results of experiments for IAtkinson, IHoover, and IKolm.

121



8.3 Threats to validity

The results presented above a subject to a number of threats to validity,
which should be addressed in the future.

With respect to data selection, in each experiment we are considering
artificial data with only a limited range of imperfect IMs (e.g., [0.5, 1)),
whereas in real projects the imperfect IMs would have more spread. This
aspect could potentially impact the results of the inequality indexes, which
would probably decrease since the increase in spread would imply a decrease
in inequality.

Moreover, there are only a limited total number of imperfect IMs (519),
hence an even more limited number of imperfect IMs in a certain range.
Since when we need more imperfect IMs than actually available we select
the same ones several times, inequality of IMs in our experiment may be
lower than that of IMs in real projects.

Furthermore, our separation of undesirable values into classes assumes
the thresholds 0.1, 0.5, 1, and 2 for the five ranges considered, and it is not
clear whether the results can be generalized to different separation criteria,
such as the separation into classes according to the actual values but using
different thresholds, and the separation into classes according to percentiles
rather than according to the actual values.

In addition, the aggregation is performed on IMs (i.e., SLOC values nor-
malized into the range [0, 3]) rather than raw metrics data, which limits the
total possible inequality, thus confining the possible results of the inequality
indexes.

With respect to method selection, we have used default parameters for
IAtkinson and IKolm, as discussed in Section 3.1. However, the choice of
parameters influences the sensitivity of the two indices to transfers between
the “rich” and the “poor”, e.g., polluting the data by replacing a number
of perfect IMs by the same number of imperfect IMs in a certain range.
Therefore, a more extensive evaluation using different parameter values for
IAtkinson and IKolm is desirable.

Finally, we have considered data from a single version of Eclipse, and
it is not clear whether the results can be generalized to different systems.
Therefore, we need to consider a representative set of benchmarks, and a
representative set of their versions.

122



8.4 Conclusions

One of the goals of software quality models is to warn software engineers
and managers about potential problems with the software project. In this
sense, the aggregation techniques for software metrics used in such quality
models should highlight undesirable (bad) values in the aggregated result.

In this section we have empirically evaluated the satisfaction of this
requirement of ISquale and the inequality indices. We have performed ex-
periments with data based on values of source lines of code measured per
method in Eclipse 2.0, and we have studied the reaction of ISquale and the in-
equality indices in the presence of an increasing large number of undesirable
metrics values.

We have observed that ISquale satisfies this requirement, and the choice
of parameter λ enables the adjustment of the tolerance of ISquale to such
undesirable metrics values, with λ = 30 ensuring that the value of ISquale

drops as soon as very few undesirable values are present.
Regarding the suitability of the inequality indices for highlighting un-

desirable values in the aggregated result, we have observed that IKolm is
the inequality index that best highlights bad results (i.e., low values), while
ITheil is the inequality index that least highlights bad results, even less than
the arithmetic mean.

However, although IKolm seems the better choice if one is interested in
highlighting undesirable values, it is also the inequality index least appro-
priate for this purpose whenever more than 30-40% undesirable values exist,
since afterwards inequality as measured by IKolm starts to decrease. In con-
trast, the same problem does not become apparent for IGini, ITheil, IMLD,
IHoover, and IAtkinson until the percentage of undesirable values exceeds 70%.
Therefore, the latter inequality indices become more interesting than IKolm

for the given purpose if the analyzed systems are assumed to have between
40-70% undesirable values.

All in all, inequality indices are generally inappropriate for highlighting
undesirable results unless assumptions about the number of bad values can
be made, since they do not discern between all values being equal but high,
and all values being equal but low. Nonetheless, given also the close relation
between ISquale and IKolm discussed in Section 3.2, it might be interesting
to study how the inequality indices can be better adapted to the needs of
software quality assessments.

123



Concluding remarks

In the previous five chapters we have presented the results of a series of
empirical studies of the main traditional, econometric, and threshold-based
aggregation techniques for code metrics.

In order to assess the feasibility of performing large-scale studies of ag-
gregation of code metrics, as well as to distil requirements for appropriate
tooling to facilitate such studies, we first performed pilot studies. In these
studies, discussed in Chapter 5, we aggregated SLOC values from class to
package level on ArgoUML, Adempiere, and Mogwai Java Tools, and stud-
ied statistical correlation between the aggregated values and the number of
defects per package, as well as statistical correlation between the various
aggregation techniques themselves.

As a result, we observed that the choice of aggregation technique influ-
ences the correlation between SLOC values measured per class and aggre-
gated to package level, and the number of defects per package. However,
bugs are typically underreported in the issue tracking systems [9], suggest-
ing that subsequent studies with the number of defects as validation metric
are unfeasible, unless data quality can be ensured. Moreover, we observed
high and statistically significant correlation between (i) IGini, ITheil, IMLD,
IHoover, and IAtkinson, and similarly between (ii) IKolm, mean, standard devi-
ation, and variance on the one hand, and (iii) skewness and kurtosis on the
other hand, suggesting that values aggregated using these techniques convey
the same information.

However, the pilot studies are subject to a number of significant threats
to validity, including the choice of metric, the representativeness of the
systems considered, and the representativeness of their versions. Conse-
quently, in order to alleviate these threats, we performed an extensive corre-
lation study of the traditional and econometric aggregation techniques for a
number of size (SLOC, LOC, NOS, NOSt), low-variance (DIT, NOC), and
limited-range (PBS, PLwC) code metrics on the 106 systems comprising the
Qualitas Corpus [110], and we presented the results thereof in Chapter 6.

In comparison to the results of the pilot studies, we now observed that (i)
holds for all metrics and all versions of the systems analyzed, i.e., the aggre-
gated values obtained using IGini, ITheil, IMLD, IHoover and IAtkinson always
convey the same information. In contrast, (ii) was only partly confirmed,

124



since the correlation between mean and IKolm was high and statistically sig-
nificant only for the size metrics, while the correlation between IKolm and
standard deviation or variance was lower and less statistically significant for
all metrics. Finally, (iii) was also only partly confirmed, i.e., values aggre-
gated using skewness and kurtosis convey the same information only for the
size metrics.

In addition, regarding the influence of the specific version of a system on
the correlation between the various techniques, we observed that correlation
between ITheil and IKolm increases as the system size increases for the size
metrics, but has inconsistent behaviour for the other metrics, while corre-
lation between mean and IKolm fluctuates without clear relation to system
size.

Later, in Chapter 7, we changed the aggregation level from class–package
to method–class in order to enable the comparison with the threshold-based
aggregation techniques, and we presented the results of a correlation study
of all three categories of aggregation techniques with focus on the threshold-
based ones, using SLOC as metric. We observed that Squale and the discrete
version of SIG show negative average correlation with other aggregation
techniques, and positive average correlation with each other. In other words,
there is redundancy in the information conveyed by values aggregated using
Squale or discrete SIG, but both measure different characteristics than any
of the other aggregation techniques. Moreover, we observed that changing
the aggregation level with respect to the antecedent studies does not affect
the correlation between the inequality indices, as measured in Chapter 6.

Finally, aggregation techniques which are part of software quality mod-
els (e.g., Squale) are usually designed to highlight undesirable metrics val-
ues in order to warn the software engineers in case of potential problems. In
Chapter 8 we empirically compared the inequality indices to the aggregation
technique in Squale in their ability to highlight undesirable values in the ag-
gregated result. We observed that inequality indices are generally much less
suited for highlighting undesirable values than Squale, unless assumptions
about the number of bad values can be made, since they do not discern
between all values being equal but high, and all values being equal but low.

125



Part III

Requirements

126





Chapter 9

Requirements for
aggregation of software
metrics

Based on insights derived from the theoretical (discussed in part I) and
empirical (discussed in part II) analyses of traditional, econometric, and
threshold-based aggregation techniques for code metrics, we propose re-
quirements for future aggregation techniques for code metrics. These re-
quirements will be categorized as “must”, “should” and “could” to illustrate
their varying importance (cf. [106]).

Note that we are still operating under the distinction between aggrega-
tion performed on values obtained by applying different metrics to the same
software artifacts (e.g., the Maintainability Index), and aggregation per-
formed on values obtained by applying the same metric to different software
artifacts (e.g., average number of lines of code). Since throughout this thesis
we focus on the latter, we also classify requirements as “must”, “should” or
“could” accordingly.

Must

• Aggregation: Must aggregate low level results of code metrics (from
the level of individual software components like classes or methods) at
a higher level (e.g., a subsystem or an entire project). All aggregation
techniques considered in this thesis satisfy aggregation.

• Symmetry : The final result must not be dependent on the order of the
elements being aggregated, i.e., it should be invariant to permutations
of the individual values. All aggregation techniques considered in this
thesis satisfy symmetry.

128



• Domain compatibility : The domain of the aggregation technique must
be compatible with the range of the metrics being aggregated. For ex-
ample, ITheil, IMLD, and IAtkinson cannot be applied to negative values.
Additionally, our experiments suggested that it is unfeasible to apply
ISquale to aggregation of large metrics values since the larger the value,
the smaller the influence it has on the aggregated results (ISquale is
nominally applied to individual marks, i.e., normalized metrics values
in the range [0, 3]).

• Robustness: Our experiments with existing aggregation techniques
have shown that their behaviour may depend on the metric being
aggregated, the system size, or the version of the system being ana-
lyzed (e.g., IKolm conveys the same information as the mean for size
metrics). Therefore, we require that aggregation techniques be robust
to different metrics, systems of different sizes, and different versions of
the same system.

Should

• Domain size: The domain of the aggregation technique should be as
big as possible to ensure compatibility with as many different metrics
as possible. Note that the weaker domain compatibility requirement
above does not necessarily guarantee compatibility with as many dif-
ferent metrics as possible if the range of the compatible metrics is
small.

• Highlight problems: Should be more sensitive to problematic values in
order to pinpoint them, and also to provide a stronger positive feed-
back when problems are corrected. For example, ISquale satisfies this
requirement, while the inequality indices only do so as long as assump-
tions about the number of undesirable values can be made (Chapter 8).

• Decomposability : An important question in interpreting the value ag-
gregated on a system level pertains to the extent to which the result
can be attributed to differences between system subcomponents: are
the low level quality results concentrated only in few subcomponents
or are they spread over the entire system? To answer this question
it should be possible to express the aggregated result computed at a
system level in terms of results computed for system subcomponents.
Decomposability enables root-cause analyses (using ITheil), as well as
measuring to what extent the aggregated value at the system level can
be explained by a specific partitioning of the system into subcompo-
nents [29,99] (e.g., with ITheil or IKolm), as discussed in Section 3.2.

• Reliable for skewed metrics: As the distribution of many interesting
code metrics is skewed [112], the interpretation of central tendency

129



measures (mean, median) becomes unreliable. The aggregation tech-
nique should be reliable under strongly-skewed distributions.

• Correlation with mean: Central tendency measures such as the mean
become unreliable for strongly-skewed distributions commonly encoun-
tered with code metrics. Therefore, an aggregation technique which is
reliable for skewed metrics should not statistically correlate with the
mean.

• Continuous aggregation range: The aggregated result should be in a
continuous range, to prevent thresholding (staircase) effects. In other
words, the aggregation technique should reflect minor changes in indi-
vidual values in order not to discouraging small, progressive improve-
ments in quality.

Could

• Normalized range: The aggregated result could be normalized to a fi-
nite range, independent from the number of elements to be aggregated,
in order to ease relative comparisons between different systems. For
example, ITheil ranges over [0, log n], where n is the number of elements
to be aggregated, while ISquale is normalized to the range [0, 3].

• Invariance with respect to addition: If the aggregation technique is
invariant with respect to addition (e.g., IKolm), then adding a constant
to all individual values does not change the aggregated result. For
example, the invariance with respect to addition allows to ignore, e.g.,
headers containing the licensing information and included in all source
files.

• Invariance with respect to multiplication: If the aggregation technique
is invariant with respect to multiplication (e.g., IGini), then multiplying
all individual values by a constant does not change the aggregated
result. For example, in case of aggregating source lines of code (SLOC)
values measured per file with a multiplication-invariant aggregation
technique, the results obtained are not affected if percentages of the
total SLOC are considered rather than the SLOC values themselves.

Note that the two invariance requirements are conflicting, thus cannot
be satisfied simultaneously. Depending on the intended application, a
choice must be made between one or the other.

• Translatability : means that adding a constant to all individual values
increases the aggregated result by the same constant. For example,
ISquale satisfies translatability. Translatability might be interesting,
e.g., for SLOC if the same header (containing licensing information)
is added to all classes.

130



• Transfers principle: If the aggregation technique satisfies the transfers
principle (e.g., IKolm, ITheil), then a strictly positive transfer from a
larger to a smaller individual value, without reversing their relative
ordering and with leaving all other values unchanged, should result
in a strictly positive reduction in the aggregated result. In contrast,
one can talk about the “anti-transfers” principle (satisfied by ISquale),
meaning that the above-mentioned transfer should result in a strictly
positive increase in the aggregated result.

For example, if source lines of code values measured per method are
considered undesirable when greater than 36, then a decrease in SLOC
of 20 for one method with SLOC 60 at the cost of an equivalent increase
in SLOC for another method with SLOC 20 would result in an increase
of the aggregated result of an aggregation technique satisfying the
“anti-transfers” principle (i.e., ISquale).

• Population principle: If the aggregation technique satisfies the popu-
lation principle, then the aggregated result is invariant with respect
to replications of the population of individual values a finite number
of times. ISquale, traditional aggregation techniques such as the mean,
and all inequality indices satisfy the population principle. It still has
to be a subject of a further study whether the population principle is
relevant for software metrics.

• Composition: The aggregation technique could be used on values ob-
tained by applying different metrics to the same software artifacts.
Note that with existing techniques, composition and aggregation of
metrics are not necessarily mutually exclusive, and often the former
encompasses the latter (e.g., the Maintainability Index). Therefore,
composition could be performed either as a part of the same aggrega-
tion technique, or as a separate aggregation technique complementary
to the first one.

• Correlation with Squale or SIG : Aggregation techniques that satisfy
the Highlight problems requirements could statistically correlate with
the Squale or SIG approaches, specifically designed to highlight poten-
tial problems in the aggregated result. For both Squale and SIG, our
experiments have suggested that there is redundancy between them,
but both measure different characteristics than any of the other ag-
gregation techniques.

• Correlation with ITheil, IMLD, or IAtkinson: These inequality indices
satisfy most requirements identified in this section (e.g., symmetry,
decomposability, transfers principle, population principle), therefore an
aggregation technique satisfying these requirements could statistically
correlate to ITheil, IMLD, or IAtkinson.

131



Chapter 10

Conclusions

A popular approach to assessing software maintainability and predicting
its evolution involves collecting and analyzing code metrics. As metrics are
usually defined on a micro-level, and should provide insights in the evolution
at the macro-level, the metrics values should be aggregated. Three main
groups of aggregation techniques can be found in the literature on software
metrics: traditional aggregation techniques such as the mean, median, or
sum, and more recent econometric aggregation techniques, such as the Gini,
Theil, Kolm, Atkinson, and Hoover inequality indices, and threshold-based
aggregation techniques, such as the Squale and SIG approaches. However, a
profound comparison of different aggregation techniques was, so far, missing.

In this thesis we focused on several main econometric and threshold-
based aggregation techniques for code metrics with the purpose of deriv-
ing requirements for future aggregation techniques for software metrics. In
this sense, we performed studies along two directions. In the first part we
performed a theoretical analysis and studied properties of these techniques
relevant to aggregation of code metrics. Our main contributions were proofs
showing that root-cause analyses can be performed efficiently using ITheil,
and that the aggregation technique in Squale shares common properties with
inequality indices, and has a formal relation to IKolm.

In the second part we presented the results of empirical studies of all
three categories of aggregation techniques considered (i.e., traditional, econo-
metric, and threshold-based) using different metrics and aggregation levels.
First, we performed pilot studies, analyzing statistical correlation between
the aggregation techniques and the number of defects, as well as between the
aggregation techniques themselves. As a result, we concluded that subse-
quent studies with the number of defects as validation metric are infeasible
unless data quality can be ensured. In addition, we proposed a methodology
to perform empirical studies of aggregation techniques for software metrics,
and appropriate tooling to support such studies.

132



Second, while concentrating on statistical correlation between the vari-
ous aggregation techniques, we observed consistently high and statistically
significant correlation between IGini, ITheil, IMLD, IAtkinson, and IHoover for
all metrics and all versions considered, i.e., aggregation values obtained using
these techniques always convey the same information.

Third, we investigated the nature of the relation between various aggre-
gation techniques. We noted that superlinear (e.g., between ITheil and IGini),
as well as chaotic (e.g., between ITheil and IKolm) patterns can be observed in
the scatter plots. This led to the observation that some indices may be more
appropriate than others depending on which dimension of inequality one is
interested in emphasizing, the choice of metric, or the intended application.

Fourth, we observed that changing the aggregation level to class level
does not affect the correlation between various aggregation techniques as
measured at package level. However, system size does influence the corre-
lation between aggregation techniques, e.g., correlation between ITheil and
IKolm, as well as between IAtkinson and IKolm increases as the system size in-
creases, while correlation between mean and IKolm fluctuates without clear
relation to system size.

Fifth, we observed redundancy in the information conveyed by values
aggregated using Squale or discrete SIG, although both measure different
characteristics than any of the other aggregation techniques considered.

Finally, we observed that inequality indices are generally inappropriate
for highlighting undesirable values in the aggregated result unless assump-
tions about the number of bad values can be made, since they do not discern
between all values being equal but high, and all values being equal but low.

As a consequence of both the theoretical and the empirical analyses per-
formed, in the third part we concluded the thesis by proposing requirements
for aggregation techniques for software metrics.

10.1 Future work

We consider a number of directions for future work, in addition to the ones
already identified in each chapter.

Empirical studies

The empirical presented in this thesis can be furthermore extended by con-
sidering additional software metrics. Specifically, we intend to investigate
the Chidamber and Kemerer suite [22] and the Lorenz and Kidd suite [65],
as well as metrics with negative values such as MI [83].

Additionally, it is not clear whether the results obtained can be general-
ized to other software metrics, and to non-software domains. Therefore, we
intend to replicate the studies to non-code metrics such as function points [2]
and work effort metrics [119].

133



New aggregation techniques

In this thesis we have studied several main aggregation techniques for code
metrics, i.e., the econometric inequality indices and the SIG and Squale
threshold-based aggregation techniques. However, both categories of ag-
gregation techniques lack desirable properties. For example, the inequality
indices are not well suited for highlighting undesirable values in the aggre-
gated results, while high ratings obtained with the threshold-based aggrega-
tion techniques are not necessarily an indication of good software engineering
practices. The work presented in this thesis and the requirements for aggre-
gation techniques for software metrics identified in Chapter 9 can serve as
basis for designing new aggregation techniques for software metrics.

Aggregation vs. combination

In this thesis we focused on aggregation performed on values obtained by
applying the same metric to different software artifacts (e.g., average num-
ber of lines of code) rather than aggregation performed on values obtained
by applying different metrics to the same software artifacts (e.g., the Main-
tainability Index).

However, single metrics are rarely enough to characterize the maintain-
ability of a software system. Therefore, metrics should often be combined.
Metrics combination could be performed at different levels, e.g., at low level
(for each component), or at a higher level (for the entire project), on al-
ready aggregated metrics. However, it is not clear which approach should
be preferred, although in practice it is probably more meaningful to combine
metrics at the lower level. For example, the comment rate quality evalua-
tion would already be less meaningful at the level of a class than at the
level of individual methods, since a class could have a very complex, poorly
commented method and a very simple, over-documented one, resulting in
an undesired, globally-good evaluation for the comment rate.

So far we have only applied inequality indices to aggregation of values
obtained by applying the same metric to different software artifacts. There-
fore, we intend to study the applicability of inequality indices to aggregation
of combined metrics data.

Root-cause analyses

First, in Section 3.2 we have shown that root-cause analyses are possible
using ITheil, and can be performed efficiently. However, IMLD, IAtkinson, and
IKolm are also decomposable, hence we intend to study their potential for
root-cause analyses as well. Second, an extensive empirical validation of
root-cause analyses using inequality indices is desirable. Therefore, we plan
to extend the tooling presented in Appendix A in order to incorporate root-
cause analyses, and perform empirical evaluation and validation studies.

134



Decomposability

Decomposability of ITheil, IMLD, IAtkinson, and IKolm assumes the existence
of a MECE partitioning of the system into subgroups, and allows computing
the value of the inequality index at system level in terms of the inequality
beween and within the subgroups.

Alternatively, one might be interested in determining a partitioning such
that a certain property is satisfied. For example, when selecting a represen-
tative set of benchmarks for a certain software system, two conflicting needs
should be satisfied, i.e., the collection should be restricted to be similar
enough to the given system, while being large enough to be representa-
tive. We intend to apply inequality indices to study the influence of differ-
ent characteristics of the systems on determining the set of representative
benchmarks.

Social organization of software projects

In addition to empirical studies of software artifacts, a deeper understanding
into open-source software evolution can be gained by also analyzing the so-
cial organization of software projects, i.e., the distribution of activity across
the different members, which was showed to satisfy the Pareto principle [84].
When looking for evidence of the Pareto principle in the social organization
of software projects or other areas of software engineering, inequality indices
have been shown to provide useful insights [46]. However, a more extensive
application of inequality indices to studying the interplay of software arti-
facts with the different project members that communicate and collaborate
in order to construct and evolve the software is desirable.

135



List of Figures

1.1 Software metrics (SLOC) and econometric variables (house-
hold income in the Ilocos region, the Philippines [121]) have
distributions with similar shapes. . . . . . . . . . . . . . . . . 12

2.1 Distribution of SLOC in Hibernate in release 3.6.0-beta4. . . 21

3.1 Lorenz curve for SLOC in Hibernate in release 3.6.0-beta4. . 23
3.2 Inequality of SLOC: population (classes) and income (SLOC)

shares for each package in JMoney release 0.4.4. . . . . . . . . 27
3.3 Distribution of SLOC for the packages in JMoney release

0.4.4. The colors match the ones used in Figure 3.2 . . . . . . 28
3.4 Lorenz curves for SLOC and PLwC in ArgoUML 0.30.2. . . . 32

4.1 Translation function from SLOC per method to IMs. . . . . . 49

5.1 Data sets of [7]: Pearson’s r is constant, while Kendall’s τ
and Spearman’s ρ decrease and reflect the nonlinearity of the
relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Distributions of the number of bugs per package. . . . . . . . 66

6.1 All inequality indices except IKolm show high correlation with
each other for size metrics. . . . . . . . . . . . . . . . . . . . . 77

6.2 All inequality indices except IKolm show high correlation with
each other for low-variance metrics and limited-range metrics. 78

6.3 IKolm does not correlate with other inequality indices. . . . . 79
6.4 Mean shows high correlation with IKolm for size metrics. . . . 80
6.5 Mean shows high correlation with either median or IKolm for

low-variance metrics and limited-range metrics. . . . . . . . . 81
6.6 IKolm shows high correlation with mean, standard deviation,

and variance for size metrics. . . . . . . . . . . . . . . . . . . 82
6.7 IKolm shows high correlation with standard deviation and

variance for low-variance metrics. . . . . . . . . . . . . . . . . 83
6.8 Sum does not correlate to the other aggregation techniques

for size metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

136



6.9 Sum does not correlate to the other aggregation techniques
for low-variance metrics and limited-range metrics. . . . . . . 85

6.10 Correlation between standard deviation, skewness, and kurtosis. 86
6.11 Shape of the relation between ITheil and each of IAtkinson,

IGini, IHoover, and IKolm for SLOC. . . . . . . . . . . . . . . . 89
6.12 Shape of the relation between ITheil and each of IAtkinson,

IGini, IHoover, and IKolm for LOC. . . . . . . . . . . . . . . . . 89
6.13 Shape of the relation between ITheil and each of IAtkinson,

IGini, IHoover, and IKolm for NOS. . . . . . . . . . . . . . . . . 90
6.14 Shape of the relation between ITheil and each of IAtkinson,

IGini, IHoover, and IKolm for NOSt. . . . . . . . . . . . . . . . 90
6.15 Shape of the relation between ITheil and each of IAtkinson,

IGini, IHoover, and IKolm for DIT. . . . . . . . . . . . . . . . . 91
6.16 Shape of the relation between ITheil and each of IAtkinson,

IGini, IHoover, and IKolm for NOC. . . . . . . . . . . . . . . . . 91
6.17 Shape of the relation between ITheil and each of IAtkinson,

IGini, IHoover, and IKolm for PBS. . . . . . . . . . . . . . . . . 92
6.18 Shape of the relation between ITheil and each of IAtkinson,

IGini, IHoover, and IKolm for PLwC. . . . . . . . . . . . . . . . 92
6.19 Relation between mean and IKolm, and between median and

IKolm, for size metrics. . . . . . . . . . . . . . . . . . . . . . . 93
6.20 Relation between mean and IKolm, and between median and

IKolm, for low-variance metrics and limited-range metrics. . . 94
6.21 Shape of the relation between skewness and kurtosis (left),

and standard deviation and variance (right). . . . . . . . . . . 95
6.22 Correlation between ITheil and IGini is almost perfect for the

size metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.23 Correlation between ITheil and IGini is always high for the

low-variance metrics and the limited-range metrics. . . . . . . 99
6.24 Correlation between ITheil and IKolm for the size metrics be-

came statistically significant after Hibernate increased in size. 100
6.25 Correlation between ITheil and IKolm is inconsistent for the

low-variance metrics and the limited-range metrics. . . . . . . 101
6.26 Correlation between mean and IKolm fluctuates without clear

relation to system size. . . . . . . . . . . . . . . . . . . . . . . 102

7.1 Squale correlates with discrete SIG. Discrete SIG correlates
with continuous SIG. However, Squale does not correlate with
continuous SIG. . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2 Squale shows average negative correlation with the inequality
indices and mean, sum, standard deviation, and variance. . . 110

7.3 The discrete version of SIG shows very low negative correla-
tion with the other aggregation techniques. . . . . . . . . . . 111

137



7.4 The continuous version of SIG does not correlate with any of
the other aggregation techniques. . . . . . . . . . . . . . . . . 112

7.5 Aggregating from method to class level does not significantly
affect correlation between the inequality indices as measured
in Chapter 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.1 Results of experiments for arithmetic mean . . . . . . . . . . 117
8.2 Results of experiments for ISquale with different weights. . . . 119
8.3 Results of experiments for ITheil, IMLD, and IGini. . . . . . . . 120
8.4 Results of experiments for IAtkinson, IHoover, and IKolm. . . . . 121

A.1 Example workflow for aggregation of software metrics that al-
lows extensions to the pilot studies in Chapter 5, as identified
in Section 5.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

138





List of Tables

2.1 SLOC values for four classes in two consecutive versions of a
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Computing IbetweenTheil for the four packages in JMoney 0.4.4. . . 27
3.2 Computing IwithinTheil for each of the four packages in JMoney

0.4.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Mathematical properties of the inequality indices considered. 41

5.1 Summary of the characteristics of the three cases. . . . . . . . 64
5.2 Correlation between aggregation techniques and defects . . . 67
5.3 Kendall correlation results between techniques, for ArgoUML. 68
5.4 Kendall correlation results between techniques, for Adempiere. 68
5.5 Kendall correlation results between techniques, for Mogwai. . 68

7.1 Subset of the Qualitas Corpus considered in the study of
threshold-based aggregation techniques . . . . . . . . . . . . . 107

140





Bibliography

[1] Takahiro Akita, Rizal Affandi Lukman, and Yukino Yamada. Inequal-
ity in the distribution of household expenditures in Indonesia: A Theil
decomposition analysis. Developing Economies, XXXVII(2):197–221,
June 1999.

[2] Allan J. Albrecht. Measuring Application Development Productivity.
In I. B. M. Press, editor, IBM Application Development Symp., pages
83–92, October 1979.

[3] Robert B. Allen and David Garlan. A formal approach to software ar-
chitectures. In Proceedings of the IFIP 12th World Computer Congress
on Algorithms, Software, Architecture - Information Processing, vol-
ume 1, pages 134–141, Amsterdam, The Netherlands, 1992. North-
Holland Publishing Co.

[4] Paul D. Allison. Measures of inequality. American Sociological Review,
43(6):865–880, 1978.

[5] Tiago L. Alves, José P. Correia, and Joost Visser. Benchmark-
based aggregation of metrics to ratings. Available online
at http://wiki.di.uminho.pt/twiki/pub/Personal/Tiago/

Publications/alves2011-draft.pdf (accessed June 2011), 2011.

[6] Tiago L. Alves, Christiaan Ypma, and Joost Visser. Deriving metric
thresholds from benchmark data. In Software Maintenance (ICSM),
2010 IEEE International Conference on, pages 1–10. IEEE, 2010.

[7] Francis John Anscombe. Graphs in statistical analysis. The American
Statistician, 27(1):17–21, 1973.

[8] Anthony Barnes Atkinson. On the measurement of inequality. Journal
of Economic Theory, 2(3):244–263, 1970.

[9] Adrian Bachmann, Christian Bird, Foyzur Rahman, Premkumar De-
vanbu, and Abraham Bernstein. The missing links: bugs and bug-fix
commits. In Proceedings of the eighteenth ACM SIGSOFT interna-
tional symposium on Foundations of software engineering, pages 97–
106. ACM, 2010.

142

http://wiki.di.uminho.pt/twiki/pub/Personal/Tiago/Publications/alves2011-draft.pdf
http://wiki.di.uminho.pt/twiki/pub/Personal/Tiago/Publications/alves2011-draft.pdf


[10] Françoise Balmas, Fabrice Bellingard, Simon Denier, Stéphane
Ducasse, Bertrand Franchet, Jannik Laval, Karine Mordal-Manet,
and Philippe Vaillergues. The Squale Quality Model. Modèle enrichi
d’agrégation des pratiques pour Java et C++. INRIA, 2010.

[11] Jagdish Bansiya and Carl G. Davis. A hierarchical model for object-
oriented design quality assessment. IEEE Transactions on Software
Engineering, pages 4–17, 2002.

[12] Henrike Barkmann, Rüdiiger Lincke, and Welf Löwe. Quantitative
evaluation of software quality metrics in open-source projects. In Ad-
vanced Information Networking and Applications (WAINA’09). Inter-
national Conference on, pages 1067–1072. IEEE, 2009.

[13] Victor R. Basili. Software modeling and measurement: the
Goal/Question/Metric paradigm. Technical report, College Park, MD,
USA, 1992.

[14] Gareth Baxter, Marcus Frean, James Noble, Mark Rickerby, Hayden
Smith, Matt Visser, Hayden Melton, and Ewan Tempero. Understand-
ing the shape of Java software. ACM SIGPLAN Notices, 41(10):397–
412, 2006.

[15] Ahmed Belderrar, Segla Kpodjedo, Yann-Gaël Guéhéneuc, Giulio An-
toniol, and Philippe Galinier. Sub-graph mining: Identifying micro-
architectures in evolving object oriented software. In CSMR 2011:
15th European Conference on Software Maintenance and Reengineer-
ing, pages 171–180. IEEE, 2011.

[16] Charles Blackorby, David Donaldson, and Maria Auersperg. A new
procedure for the measurement of inequality within and among pop-
ulation subgroups. The Canadian Journal of Economics/Revue cana-
dienne d’Economique, 14(4):665–685, 1981.

[17] Francois Bourguignon. Decomposable income inequality measures.
Econometrica, 47(4):901–20, July 1979.

[18] Lionel C. Briand, Jürgen Wüst, John W. Daly, and D. Victor Porter.
Exploring the relationships between design measures and software
quality in object-oriented systems. Journal of Systems and Software,
51(3):245–273, 2000.

[19] Frederick P. Brooks Jr. The mythical man-month: essays on software
engineering, volume 7. Addison-Wesley, 1995.

[20] Giacomo Bucci, Fabrizio Fioravanti, Paolo Nesi, and Sandro Perlini.
Metrics and tool for system assessment. In iceccs, page 0036. Published
by the IEEE Computer Society, 1998.

143



[21] David Gawen Champernowne. A comparison of measures of inequality
of income distribution. The Economic Journal, 84(336):787–816, 1974.

[22] Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object
oriented design. IEEE Trans. Softw. Eng., 20:476–493, June 1994.

[23] Giulio Concas, Michele Marchesi, Sandro Pinna, and Nicola Serra.
Power-laws in a large object-oriented software system. IEEE Trans.
Software Eng., 33(10):687–708, 2007.

[24] Pedro N. Conceicao and Pedro M. Ferreira. The Young Person’s Guide
to the Theil Index: Suggesting Intuitive Interpretations and Exploring
Analytical Applications. SSRN eLibrary, 2000.

[25] John D. Cooper and Matthew J. Fisher. Software quality management.
Petrocelli Books, 1979.

[26] Anna Corazza, Sergio Di Martino, Valerio Maggio, and Giuseppe Scan-
niello. Investigating the use of lexical information for software system
clustering. In CSMR 2011: 15th European Conference on Software
Maintenance and Reengineering, pages 35–44. IEEE, 2011.

[27] Jose Pedro Correia and Joost Visser. Certification of technical quality
of software products. In Proc. of the Int’l Workshop on Foundations
and Techniques for Open Source Software Certification, pages 35–51,
2008.

[28] Frank A. Cowell. Inequality decomposition: three bad measures. Bul-
letin of Economic Research, 40(4):309–312, 1988.

[29] Frank A. Cowell. Measurement of inequality. volume 1 of Handbook
of Income Distribution, pages 87 – 166. Elsevier, 2000.

[30] Frank A. Cowell and Stephen P. Jenkins. How much inequality can
we explain? A methodology and an application to the United States.
Economic Journal, 105(429):421–30, 1995.

[31] Frank A. Cowell and K. Kuga. Inequality measurement: An axiomatic
approach. Eur. Econ. Review, 15(3):287–305, 1981.

[32] Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model
transformation approaches. IBM Systems Journal, 45(3):621–645,
2006.

[33] Christian Damgaard and Jacob Weiner. Describing inequality in plant
size or fecundity. Ecology, 81(4):1139–1142, 2000.

144



[34] James Davies and Michael Hoy. Making inequality comparisons when
lorenz curves intersect. The American Economic Review, 85(4):980–
986, 1995.

[35] Jean-Yves Duclos. Social evaluation functions, economic isolation
and the suits index of progressivity. Journal of Public Economics,
69(1):103–121, 1998.

[36] Jean-Yves Duclos and Abdelkrim Araar. An Atkinson-Gini family of
social evaluation functions. Economics Bulletin, 3(19):1–16, 2003.

[37] Marc Eaddy, Thomas Zimmermann, Kaitlin D. Sherwood, Vibhav
Garg, Gail C. Murphy, Nachiappan Nagappan, and Alfred V. Aho.
Do crosscutting concerns cause defects? IEEE Trans. Softw. Eng.,
34:497–515, July 2008.

[38] Kalhed El Emam, Säıda Benlarbi, Nishith Goel, and Shesh N. Rai.
The confounding effect of class size on the validity of object-oriented
metrics. IEEE Trans. Softw. Eng., 27:630–650, 2001.

[39] Norman E. Fenton and Shari Lawrence Pfleeger. Software metrics: a
rigorous and practical approach. PWS Publishing Co., 1998.

[40] James E. Foster. An axiomatic characterization of the Theil measure
of income inequality. Journal of Economic Theory, 31(1):105–121,
1983.

[41] Mark Gabel and Zhendong Su. A study of the uniqueness of source
code. In Proceedings of the eighteenth ACM SIGSOFT international
symposium on Foundations of software engineering, pages 147–156.
ACM, 2010.

[42] Tom Gilb. Software metrics. Winthrop computer systems series.
Winthrop Publishers, 1977.

[43] Corrado Gini. Variabilitè e mutabilitè. Studi Econornico-Giuridici
della R. Universita de Cagliari, 1912.

[44] Nils Göde and Jan Harder. Clone stability. In CSMR 2011: 15th Eu-
ropean Conference on Software Maintenance and Reengineering, pages
65–74. IEEE, 2011.

[45] Bindu Goel and Yogesh Singh. Empirical investigation of metrics for
fault prediction on object-oriented software. Computer and Informa-
tion Science, pages 255–265, 2008.

[46] Mathieu Goeminne and Tom Mens. Evidence for the Pareto principle
in Open Source Software Activity. In Proc. Int’l Workshop SQM 2011.
CEUR-WS, 2011.

145



[47] Gregory A. Hall and John C. Munson. Software evolution: code delta
and code churn. Journal of Systems and Software, 54(2):111–118,
2000.

[48] Klaus Marius Hansen, Kristján Jónasson, and Helmut Neukirchen.
An empirical study of open source software architectures’ effect on
product quality. Technical Report VHI-01-2009, Engineering Research
Institute, University of Iceland, July 2009. http://www.hi.is/~kmh/
doc/vhi-01-2009.pdf.

[49] Petra Heck, Martijn Klabbers, and Marco van Eekelen. A software
product certification model. Software Quality Journal, 18(1):37–55,
2010.

[50] Ilja Heitlager, Tobias Kuipers, and Joost Visser. A practical model for
measuring maintainability. In Quality of Information and Communica-
tions Technology, 2007. QUATIC 2007. 6th International Conference
on the, pages 30 –39, 2007.

[51] Brian Henderson-Sellers. Object-oriented metrics: measures of com-
plexity. Prentice-Hall, 1996.

[52] Israel Herraiz. A statistical examination of the evolution and proper-
ties of libre software. In ICSM, pages 439–442. IEEE, 2009.

[53] Israel Herraiz, Jesus M. Gonzalez-Barahona, and Gregorio Robles.
Towards a theoretical model for software growth. In Proceedings of
the Fourth International Workshop on Mining Software Repositories,
page 21. IEEE, 2007.

[54] Edgar Malone Hoover Jr. The measurement of industrial localization.
The Review of Economic Statistics, 18(4):162–171, 1936.

[55] Darrell Huff. How to lie with statistics. WW Norton, New York, 1954.

[56] ISO/IEC. Iso/iec 9126-3 software engineering -product quality- part
3: Internal metrics, 2003.

[57] Maurice G. Kendall. A new measure of rank correlation. Biometrika,
30(1/2):81–93, 1938.

[58] Barbara A. Kitchenham, Lesley M. Pickard, Stephen G. MacDonell,
and Martin J. Shepperd. What accuracy statistics really measure [soft-
ware estimation]. In Software, IEE Proceedings-, volume 148, pages
81–85. IET, 2001.

[59] Serge-Christophe Kolm. The Optimal Production of Social Justice. In
Public Economics, pages 145–200. MacMillan, London, 1969.

146

http://www.hi.is/~kmh/doc/vhi-01-2009.pdf
http://www.hi.is/~kmh/doc/vhi-01-2009.pdf


[60] Serge-Christophe Kolm. Unequal inequalities I. Journal of Economic
Theory, 12(3):416–442, 1976.

[61] Robert G. Lanergan and Charles A. Grasso. Software engineering
with reusable designs and code. IEEE Trans. Softw. Eng., (5):498–
501, 1984.

[62] Eric Langford, Neil Schwertman, and Margaret Owens. Is the property
of being positively correlated transitive? The American Statistician,
55(4):322–325, 2001.

[63] Michele Lanza and Radu Marinescu. Object-oriented metrics in prac-
tice: using software metrics to characterize, evaluate, and improve the
design of object-oriented systems. Springer, 2006.

[64] Skylar Lei and Michael R. Smith. Evaluation of several nonparamet-
ric bootstrap methods to estimate confidence intervals for software
metrics. IEEE Trans. Softw. Eng., 29:996–1004, 2003.

[65] Mark Lorenz and Jeff Kidd. Object-oriented software metrics: a prac-
tical guide. Prentice-Hall, 1994.

[66] Max O. Lorenz. Methods of measuring the concentration of wealth.
Publications of the American Statistical Association, 9(70):209–219,
1905.

[67] Mark Lutz and David Ascher. Learning Python. O’Reilly Media, 2004.

[68] John H. Maindonald and John Braun. Data analysis and graphics
using R: an example-based approach, volume 10 of Cambridge Series
in Statistical and Probabilistic Mathematics. Cambridge University
Press, 2007.

[69] Spiros Mancoridis, Brian S. Mitchell, Yih-Farn Chen, and Emden R.
Gansner. Bunch: a clustering tool for the recovery and maintenance
of software system structures. In Int. Conf. on Softw. Maintenance,
pages 50–59, 1999.

[70] Radu Marinescu. Measurement and Quality in Object-Oriented De-
sign. PhD thesis, “Politehnica” University of Timisoara, Romania,
2002.

[71] Albert W. Marshall, Ingram Olkin, and Barry C. Arnold. Inequalities:
theory of majorization and its applications. Springer, 2005.

[72] Robert Martin. OO design quality met-
rics: An analysis of dependencies, 1994. Avail-
able at http://condor.depaul.edu/~dmumaugh/OOT/

147



Design-Principles/oodmetrc.pdf Consulted on January 11,
2009.

[73] Thomas J. McCabe. A complexity measure. IEEE Transactions on
software Engineering, pages 308–320, 1976.

[74] Thomas J. McCabe and Charles W. Butler. Design complexity mea-
surement and testing. Communications of the ACM, 32(12):1415–
1425, 1989.

[75] Jim A. McCall, Paul K. Richards, and Gene F. Walters. Factors in
Software Quality. NTIS Springfield, 1976.

[76] Karine Mordal-Manet, Jannik Laval, Stéphen Ducasse, Nicolas
Anquetil, Françoise Balmas, Fabrice Bellingard, Laurent Bouhier,
Philippe Vaillergues, and Thomas J. McCabe. An empirical model
for continuous and weighted metric aggregation. In 15th Eur. Conf.
Soft. Maintenance and Reeng., pages 141–150. IEEE, 2011.

[77] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A comparative
analysis of the efficiency of change metrics and static code attributes
for defect prediction. In Proceedings of the 30th international confer-
ence on Software engineering, pages 181–190. ACM, 2008.

[78] Paul Murrell. R graphics. Computer Science and Data Analysis Series.
CRC Press, 2006.

[79] Nachiappan Nagappan, Thomas Ball, and Andres Zeller. Mining met-
rics to predict component failures. In Proceedings of the 28th inter-
national conference on Software engineering, pages 452–461. ACM,
2006.

[80] Gottfried Emanuel Noether. Why Kendall tau? Teaching Statistics,
3(2):41–43, 1981.

[81] Hector M. Olague, Letha H. Etzkorn, Sampson Gholston, and Stephen
Quattlebaum. Empirical validation of three software metrics suites
to predict fault-proneness of object-oriented classes developed using
highly iterative or agile software development processes. IEEE Trans-
actions on software Engineering, pages 402–419, 2007.

[82] Paul Oman and Jack Hagemeister. Metrics for assessing a software
system’s maintainability. In Software Maintenance, 1992. Proceerd-
ings., Conference on, pages 337–344. IEEE, 1992.

[83] Paul Oman and Jack Hagemeister. Construction and testing of poly-
nomials predicting software maintainability. Journal of Systems and
Software, 24(3):251–266, 1994.

148



[84] Vilfredo Pareto. Manuale di economia politica. Societa Editrice, 1906.

[85] Simon C. Parker. The inequality of employment and self-employment
incomes: a decomposition analysis for the U.K. Review of Income and
Wealth, 45(2):263–274, 1999.

[86] Karl Pearson. Note on Regression and Inheritance in the Case of Two
Parents. Royal Society Proceedings, 58:240–242, 1895.

[87] Mikhail Perepletchikov, Caspar Ryan, Keith Frampton, and Zahir
Tari. Coupling metrics for predicting maintainability in service-
oriented designs. In 18th Australian Softw. Eng. Conf., pages 329–340,
April 2007.

[88] Shari Lawrence Pfleeger. Software metrics: Progress after 25 years?
Software, IEEE, 25(6):32–34, 2008.

[89] Shari Lawrence Pfleeger, Ross Jeffery, Bill Curtis, and Barbara A.
Kitchenham. Status report on software measurement. Software, IEEE,
14(2):33 –43, 1997.

[90] Boris A. Portnov and Daniel Felsenstein. Measures of regional inequal-
ity for small countries. In Boris A. Portnov and Daniel Felsenstein,
editors, Regional Disparities in Small Countries, chapter 4, pages 47–
62. Springer Verlag, College Station, Texas, 2005.

[91] William H. Press, Saul A. Teukolsky, William T. Vetterling, and
Brian P. Flannery. Numerical Recipes in C/C++: The Art of Sci-
entific Computing Code. Cambridge University Press, 2002.

[92] R Development Core Team. R: A language and environment for sta-
tistical computing. R Foundation for Statistical Computing, Vienna,
Austria, 2010.

[93] Paula Rooney. Microsoft’s ceo: 80-20 rule applies to bugs, not
just features. http://www.crn.com/news/security/18821726/

microsofts-ceo-80-20-rule-applies-to-bugs-not-just-features.

htm, retrieved June 2011, 2002.

[94] Xavier Sala-i-Martin. The world distribution of income: Falling
poverty and convergence, period. The Quarterly Journal of Eco-
nomics, 121(2):351–397, 2006.

[95] Ioannis Samoladas, Georgios Gousios, Diomidis Spinellis, and Ioan-
nis Stamelos. The sqo-oss quality model: Measurement based open
source software evaluation. Open Source Development, Communities
and Quality, pages 237–248, 2008.

149

http://www.crn.com/news/security/18821726/microsofts-ceo-80-20-rule-applies-to-bugs-not-just-features.htm
http://www.crn.com/news/security/18821726/microsofts-ceo-80-20-rule-applies-to-bugs-not-just-features.htm
http://www.crn.com/news/security/18821726/microsofts-ceo-80-20-rule-applies-to-bugs-not-just-features.htm


[96] Katherine V. Schinasi. Defense acquisitions: Stronger management
practices are needed to improve dod’s software-intensive weapon ac-
quisitions. Technical Report GAO-04-393, Government Accountability
Office Washington DC, 2004.

[97] Amartya K. Sen and James E. Foster. On economic inequality. Oxford
University Press, USA, 1973.

[98] Alexander Serebrenik, Serguei Roubtsov, and Mark G. J. van den
Brand. Dn-based architecture assessment of Java open source software
systems. In ICPC ’09: Proc. 17th Int. Conf. on Program Comprehen-
sion, 2009, pages 198–207. IEEE, 2009.

[99] Alexander Serebrenik and Mark G. J. van den Brand. Theil index
for aggregation of software metrics values. In Int. Conf. on Software
Maintenance, pages 1–9. IEEE, 2010.

[100] Martin Shepperd and Gada Kadoda. Using simulation to evaluate
prediction techniques [for software]. In Software Metrics Symposium,
2001. METRICS 2001. Proceedings. Seventh International, pages 349–
359. IEEE, 2001.

[101] Anthony F. Shorrocks. The class of additively decomposable inequality
measures. Econometrica, 48(3):613–625, 1980.

[102] Alberto Sillitti, Andrea Janes, Giancarlo Succi, and Tullio Vernazza.
Collecting, integrating and analyzing software metrics and personal
software process data. In 29th Euromicro Conference, pages 336–342,
September 2003.

[103] Luciana Silva, Klérisson Paix ao, Sandra de Amo, and Marcelo Maia.
On the use of execution trace alignment for driving perfective changes.
In CSMR 2011: 15th European Conference on Software Maintenance
and Reengineering, pages 221–230. IEEE, 2011.

[104] Charles Spearman. The proof and measurement of association between
two things. The American journal of psychology, pages 441–471, 1987.

[105] Murray R. Spiegel and Larry J. Stephens. Schaum’s outline of theory
and problems of statistics. Teach Yourself, 2008.

[106] Jennifer Stapleton. DSDM: Dynamic Systems Development Method.
In Proceedings of the Technology of Object-Oriented Languages and
Systems, page 406. IEEE Computer Society, 1999.

[107] Perdita Stevens. A landscape of bidirectional model transformations.
In Ralf Lämmel, Joost Visser, and João Saraiva, editors, GTTSE,
volume 5235 of Lecture Notes in Computer Science, pages 408–424.
Springer, 2007.

150



[108] Giancarlo Succi, Witold Pedrycz, Snezana Djokic, Paolo Zuliani, and
Barbara Russo. An empirical exploration of the distributions of the
Chidamber and Kemerer object-oriented metrics suite. Empirical
Softw. Eng., 10:81–104, January 2005.

[109] Ewan Tempero. Qualitas Corpus 20101126 release notes. http://

qualitascorpus.com/docs/history/20101126.html, 2010.

[110] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li,
Markus Lumpe, Hayden Melton, and James Noble. Qualitas corpus:
A curated collection of java code for empirical studies. In Asia Pacific
Software Engineering Conference, 2010.

[111] Henri Theil. Economics and Information Theory. North-Holland,
1967.

[112] Ivana Turnu, Giulio Concas, Michele Marchesi, Sandro Pinna, and
Roberto Tonelli. A modified Yule process to model the evolution of
some object-oriented system properties. Inf. Sci., 181:883–902, Febru-
ary 2011.

[113] Rajesh Vasa, Markus Lumpe, Philip Branch, and Oscar M. Nierstrasz.
Comparative analysis of evolving software systems using the Gini coef-
ficient. In Int. Conf. on Software Maintenance, pages 179–188. IEEE,
2009.

[114] Bogdan Vasilescu, Alexander Serebrenik, and Mark G. J. van den
Brand. Comparative study of software metrics’ aggregation tech-
niques. In 9th Belgian-Netherlands Softw. Evolution Seminar, pages
80–84, Lille, 2010.

[115] Bogdan Vasilescu, Alexander Serebrenik, and Mark G. J. van den
Brand. By no means: A study on aggregating software metrics. In
2nd International Workshop on Emerging Trends in Software Metrics,
Honolulu, Hawaii, USA, 2011.

[116] Bogdan Vasilescu, Alexander Serebrenik, and Mark G. J. van den
Brand. You can’t control the unfamiliar: A study on the relations
between aggregation techniques for software metrics. In Int. Conf. on
Software Maintenance. IEEE, 2011. accepted.

[117] Dieter Welzel and Hans-Ludwig Hausen. Practical concurrent soft-
ware evaluation for certification. Journal of Systems and Software,
38(1):71–83, 1997.

[118] Richard Wheeldon and Steve Counsell. Power law distributions in
class relationships. In Source Code Analysis and Manipulation, 2003.

151

http://qualitascorpus.com/docs/history/20101126.html
http://qualitascorpus.com/docs/history/20101126.html


Proceedings. Third IEEE International Workshop on, pages 45–54,
September 2003.

[119] Karl E. Wiegers. Lessons from software work effort metrics. Software
Development, page 46, 1994.

[120] Achim Zeileis. ineq: Measuring Inequality, Concentration, and
Poverty. R Foundation for Statistical Computing, 2009.

[121] Achim Zeileis. Package ‘ineq’ for R. Technical report, CRAN, 2009.

152





Appendix A

Proposed tooling

In order to meet the requirements defined in Section 5.5 and perform the
empirical evaluation of different aggregation techniques, we propose tooling
adhering to the pipes-and-filters architectural style [3], i.e., a sequence of
processing steps, each performing a specific function.

The motivation for the pipes-and-filters architectural style is twofold.
First, a pipes-and-filters architecture facilitates performing many transfor-
mations and being flexible in using them, without sacrificing robustness. In
this sense, filters (e.g., extracting new metrics or aggregating metrics using
new aggregation techniques) can be easily added, omitted, or rearranged
into a new sequence without having to change the filters themselves.

Second, by dividing the processing into simpler specialized transforma-
tions, the complexity of individual filters is lowered, making them easier to
implement and to test, and improving their reusability. Even though the
communication between processing steps increases, resulting in increased la-
tency and overhead, the benefits of reusing individual transformations out-
weighs the drawbacks.

Since the tooling is meant as a research prototype, thus only as a means
towards an end, we chose Python as the implementation language, due to the
speed of development in it [67]. The complete tooling totals approximately
3000 SLOC, distributed across 12 files. The development effort is estimated
to around 25 man-days.

The tooling consists of a number of Python modules, implementing spe-
cialized transformations (e.g., package name extractor, parser for Under-
stand metrics, boxplot generator), and a number of Python scripts, each
corresponding to one of the different experiments described in Chapters 5–
8, which assemble the different previously-developed modules into a series
of processing steps that together represent a certain experiment.

154



List of benchmarks

Scan target folder

Scan benchmark 

folders

List of versions per benchmark

Extract Java files

List of Java files per version

Extract Java 

packages

List of packages

List of Java files per package

Extract metrics

Understand extractor

SourceMonitor extractor

Export metrics

Tree structure

Export metrics per package

Export metrics per class

Aggregate metrics
Aggregation techniquesTraditional

Ineq. indices

Threshold-based

Aggregated metrics

Generate scatter 

plots

R

Package name 

extractor

Compute 

correlation

Generate boxplots

Correlation coefficients

SLOC, LOC, NOS

DIT, NOC

NOSt

PBS, PLwC

Correlation

R
Pearson

Kendall

Boxplot

Histogram

Scatter plot

Plot generator

R

Figure A.1: Example workflow for aggregation of software metrics that al-
lows extensions to the pilot studies in Chapter 5, as identified in Section 5.5.

155



A.1 Example workflow

We illustrate the proposed tooling with the example workflow in Figure A.1,
designed to easily accommodate extensions to the pilot studies in Chapter 5
along the directions identified in Section 5.5, i.e., metrics, representative sets
of benchmarks and their versions, and threshold-based aggregation tech-
niques.

The tooling is designed around the Qualitas Corpus [110], a curated
collection of open-source Java software systems, intended to be used for em-
pirical studies of code artifacts. The contents of the Corpus is organized into
a hierarchical structure, in which Systems is the top-level directory contain-
ing a subdirectory sysname for every system in the corpus. Then, each such
directory sysname contains only subdirectories sysname-version id corre-
sponding to each version of the system in the Corpus. For each version of
each system in the corpus, the source code is distributed in the src subdi-
rectory of sysname-version id.

The example workflow in Figure A.1 starts by scanning the target (in-
stallation) folder of the Corpus, determining which systems are present, and
extracting the list of Java files in each version. This list is then fed to Pack-
age name extractor which generates a list of Java packages per version of a
system, and a list of the Java classes directly contained in those packages.
Recall from Section 5.2.1 that we say that a class C is directly contained in
a package P if there exists no subpackage P ′ of P different from P such that
C is contained in P ′. Between two consecutive processing steps, the out-
put of the first step is exported to disk such that intermediate results could
be reused for different purposes if necessary, and steps could be skipped if
subsequent experiments would not affect their output.

Computing the actual metrics data is performed using third-party tools.
In the current version, our tooling implements two metrics data extractors
from the output files of Understand1 and SourceMonitor2, but additional
third-party tools can be easily supported by implementing the necessary
interfaces. Regardless of the exact extractor, the metrics data is stored in
an internal tree structure organized corresponding to the package structure,
which enables experimentation with different aggregation levels depending
on how the tree is traversed. For example, in the study presented in Chap-
ter 6 we aggregate metrics data from class to package level, while in the study
described in Chapter 7 we aggregate metrics data from method to class level.
To enable external processing, the tooling also implements export modules
for the internal metrics data to CSV format, at different aggregation lev-
els (e.g., class- or package-level). If one is interested in aggregation levels

1http://www.scitools.com
2http://www.campwoodsw.com/sourcemonitor.html

156

http://www.scitools.com
http://www.campwoodsw.com/sourcemonitor.html


that are orthogonal to the package structure, then she can use, e.g., model
transformations [32,107] to convert the tree to the desired form.

Aggregation of the metrics data is performed in a separate transforma-
tion, which uses wrappers for R [92] around each aggregation technique.
Integration with R is desirable since R provides good library support for
statistical computing (e.g., all traditional and econometric aggregation tech-
niques are readily available), and good visualizations [68,78] Extending the
tooling to include additional aggregation techniques is thus easily enabled
by providing a wrapper for an R implementation if available, or the actual
implementation otherwise. Several transformations can be performed on
the aggregated data. For example, statistical correlations can be computed
between pairs of metrics data values aggregated using different aggregation
techniques. Statistical correlation coefficients (e.g., Pearson, Kendall) are
computed using wrappers for R implementations, which can be easily ex-
tended. Alternatively, our tooling provides wrappers for various R plots
(e.g., histograms, boxplots, or scatter plots), which can be used during any
transformation step. The example workflow in Figure A.1 illustrates two
such uses of plot generation, i.e., scatter plots to study the nature of the
relation between various aggregation techniques (cf. Figure 6.11), and box-
plots to study how consistent correlation coefficients are across the entire
Corpus (cf. Figure 6.1).

A.2 Conclusions

In this chapter we have presented Python tooling conforming to the pipes-
and-filters architectural style, designed as a research prototype for the em-
pirical evaluation of different aggregation techniques. By adhering to the
pipes-and-filters architectural style, the proposed tooling facilitates separa-
tion of concerns, division of labor, specialization, and reuse. The proposed
tooling satisfies the requirements identified in Section 5.5, as follows:

• Flexibility: by decoupling extraction of metrics data, aggregation, and
analysis, and by using a tree structure for the representation of the
metrics data, the proposed tooling is easily extendible to new metrics
and aggregation techniques, enabling aggregation of metrics values at
different levels.

• Integration with metrics-extraction tools: the proposed tooling en-
ables the further processing of metrics-data previously extracted by
third-party tools. Currently two data extractors are implemented,
for Understand and SourceMonitor metrics. An effort of around 400
SLOC is expected when implementing an extractor for a different tool.

• Reuse of existing components: the proposed tooling uses R for com-
puting the aggregated values, as well as for generating different plots

157



with the results, e.g., histograms, boxplots, or scatter plots. Addi-
tionally, the proposed tooling uses Understand and SourceMonitor for
computing metrics.

• Scalability: the tooling was designed around the Qualitas Corpus, a
curated collection of open-source Java software systems, intended to
be used for empirical studies of code artifacts. The Corpus comes
in two main distributions, one containing the most recent versions
available at the time of release from 106 systems, the other containing
all versions from 13 systems (out of the 106 systems) with 10 or more
versions available, totaling 414 versions. The two distributions of the
Corpus total 434,771 files and 57,047,227 SLOC. The analysis time
for the workflow described in Figure A.1 is approximately 4 hours,
excluding the processing time of Understand and SourceMonitor, but
including the processing time of R.

• Export: the proposed tooling exports data in CSV format.

• Research prototype: the proposed tooling is a research prototype im-
plemented in Python, easily extendible due to the speed of develop-
ment in Python [67], and the choice of architectural style [3].

158


	Acknowledgements
	Abstract
	Contents
	1. Introduction
	Publications arising from this thesis

	I Theoretical analysis
	2. Traditional aggregation techniques
	3. Econometric aggregation techniques
	Inequality indices and software metrics
	Mathematical properties
	Domain
	Interpretation
	Invariance
	Symmetry
	Transfers principle
	Sensitivity to transfers
	Population principle
	Decomposability

	Discussion and summary

	4. Threshold-based aggregation techniques
	SIG star ratings
	Deriving thresholds on metrics
	Computing a risk profile
	Deriving thresholds on risk profiles
	Computing a star rating

	Squale global marks
	Mathematical properties

	Discussion and summary

	Concluding remarks

	II Empirical analysis
	Introduction
	5. Pilot studies
	Introduction
	Methodology
	Data collection
	Data analysis

	Results
	Correlation with bugs
	Correlation between different techniques

	Threats to validity
	Conclusions

	6. Extensive correlation study
	Introduction
	Methodology
	Qualitas Corpus Dataset
	Data collection
	Data analysis

	Studying the correlation between aggregation techniques
	Which and how much do aggregation techniques agree?
	What is the nature of the relation between aggregation techniques?
	Which index to choose?

	Studying the evolution of the correlation between aggregation techniques
	Threats to validity
	Conclusions

	7. Threshold-based aggregation techniques study
	Methodology
	Results
	Do the SIG and Squale approaches agree?
	Do other techniques agree with SIG or Squale?
	Does the aggregation level influence correlation?

	Threats to validity
	Conclusions

	8. Highlighting undesirable values in the aggregate
	Methodology
	Results
	Threats to validity
	Conclusions

	Concluding remarks

	III Requirements
	9, Requirements for aggregation of software metrics
	10. Conclusions
	Future work

	List of Figures
	List of Tables
	Appendix A
	Proposed tooling
	Example workflow
	Conclusions




