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Abstract

In this thesis we investigate the analytical treatment of optimal control problems gov-
erned by a class of elliptic variational inequalities of the first kind with unilateral and
bilateral constraints.

Since the control-to-state mapping u 7→ y is non-smooth and not Fréchet differentiable
which makes difficult to get sharp optimality conditions and solve the problem numer-
ically. To overcome this difficulty we used some smoothing (regularizing) technique to
get smooth mapping u 7→ yc where c→ ∞.

We considered a Moreau-Yosida approximation technique to reformulate the gov-
erning variational inequality of the first kind as an operator equation involving the
max−function. Therefore, solving the variational inequality is equivalent to solving
this regularized equation.

Regularized control problem is introduced and the convergence of the regularized op-
timal solutions towards a solution of the original control problem is verified. For each
regularized problem an existence of necessary optimality conditions is derived and an
optimality system for the original control problem is obtained as limit of the regular-
ized ones. Thanks to the structure of the proposed regularization, complementarity
relation between the variables involved are derived.
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Chapter 1

Introduction

1.1 Introductive sentences and overview

The theory of variational inequalities introduced by Stampacchia [6] in the early sixties
has played a vital role in the study of a wide class of problems arising in pure and
applied sciences including mechanics, optimization and optimal control, operations re-
search, game theory, mathematical economics and engineering sciences.

In many physical processes “obstacles” appear in a natural way having strong influence
on the character of the examined problem. A simple example of such a situation is
the study of contrast between a vibrating membrane and a vibrating membrane set
between obstacles. In the 1970’s there was considerable interest in the analysis of
obstacle problems. This was connected with the development of research on varia-
tional inequalities and has been studied by many authors. Although, in the words
of J.L. Lions [17], this “simple, beautiful and deep” problem is naturally associated
with partial differential equations of elliptic type, it arises in many other frameworks
and in different kinds of free boundary problems (see [4] or [5], and their references)
and it is related to variational inequalities. The variational formulations (also called
weak formulations) of many non-linear boundary value problems result in variational
inequalities rather than variational equations. Analogously to partial differential equa-
tions, variational inequalities can be of elliptic, parabolic, hyperbolic, etc. type.

The obstacle problem for elliptic partial differential equations appears classically in
elasticity as the equation that models the shape of an elastic membrane that is con-
strained to remain above or below an obstacle (which pushes the membrane from below
or respectively from above). Elliptic obstacle problems refer to find the equilibrium
position of an elastic membrane whose boundary is held fixed, and which is constrained
to lie above a given obstacle. It can be considered as a model problem for variational
inequalities (see, e.g, [4]), and it has found applications in a number of different fields
as elasticity and fluid dynamics. For example, applications include fluid filtration in
porous media, optimal control, and financial mathematics. Numerous important opti-
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CHAPTER 1. INTRODUCTION 2

mization problems arising in continuum mechanics, economy, transportation networks
etc. can be modeled as optimal control of variational inequalities or complementar-
ity problems. Optimal control problems for elliptic variational inequalities have been
much studied.

In this thesis we investigate the analytical treatment of optimal control problems gov-
erned by a class of elliptic variational inequalities of the first kind with unilateral and
bilateral constraints. Moreover, we consider constraints on both the control and the
state. These kind of problems have been extensively studied by many authors, as for
example K. Ito and K. Kunisch [1], [13], or more recently Karl Kunisch and Daniel
Wachsmuth [2],[3] ).

In the optimal control problem of a variational inequality the main difficulty comes
from the fact that the mapping between the control and the state (control-to-state
operator) is not differentiable but only Lipschitz-continuous and so it is not easy to
get first order optimality conditions. As a consequence of this, to get sharp optimality
conditions and build numerical algorithms are difficult tasks. To overcome this diffi-
culty different authors (see for example, K. Ito and K. Kunisch [1], [13], Karl Kunisch
and Daniel Wachsmuth [2],[3] and the references therein) considered a Moreau-Yosida
approximation technique to reformulate the governing variational inequality of the
first kind as an operator equation involving the max function. After that, optimality
conditions for the regularized problems are derived and an optimality system for the
original control problem is obtained as limit of the regularized optimality systems. But
the reformulation in terms of the max function in this case lead the authors to propose
an semi-smooth Newton methods, or equivalently the iterative primal-dual active set
strategy, for its numerical solution of the regularized control problem.

This thesis is primarily based on the results from the papers by Karl Kunisch and
Daniel Wachsmuth [2], K. Ito and K. Kunisch [1].

The purpose of this thesis is to investigate the analytical background of an optimal
control problem subject to elliptic variational inequalities of the first kind with uni-
lateral and bilateral obstacle problems and develop a regularization method (i.e. to
approximate the nondifferentiable ones depending on (c ≥ 0 c → ∞)) for solving
a nondifferentiable minimization problem. We also derive optimality conditions for
the regularized problems and first order necessary optimality system for the original
control problem is obtained as limit of the regularized optimality systems.

1.2 Outline of Thesis

Let us briefly outline the structure of the paper.
In chapter 2, we briefly mention some basic definitions and preliminaries of functional
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analysis tools which we are going to use in the subsequent chapters. We recall some
classical results and existence of solutions of Variational Inequalities of First Kind.

In chapter 3, we investigate optimal control problems governed by variational inequal-
ities and involving constraints on both the control and the state. The formulation of
the optimal control problem subject to unilateral obstacle problem is described, and
we present regularity assumptions that we use throughout this paper. A regularized
family of optimal control problems is introduced. The regularized problems are investi-
gated and convergence of the regularized optimal solutions to the associated solutions
of the obstacle problem is studied. Using a local smoothing of the max function, a
first order optimality system for each regularized problem is derived. We also analyze
properties of solutions of the regularized problem and their convergence as well as rate
of convergence.

In chapter 4, we focus on the formulation of the optimal control problem subject to
bilateral obstacle problem. A regularized family of optimal control problems is in-
troduced. The regularized problems are investigated , and feasibility, regularity and
convergence of the regularized optimal solutions is studied.

In chapter 5, we study an optimal control problem governed by semilinear elliptic
regularized equation. Existence of a sequence of solutions of the regularized problem
converging weakly and strongly to solutions of the original problem is studied. The
regularity of the adjoint state and the state constraint multiplier is also studied. A
sharp optimality system for the original control problem is obtained as limit of the
regularized optimality systems.

In chapter 6, we formulate the obstacle problems for which the solution algorithms
are developed. A regularized problem and iterative second-order algorithms for its
solution are analyzed in infinite dimensional function spaces. Motivated from the dual
formulation, a primal-dual active set strategy and a semismooth Newton method for
a regularized problem are presented and their close relation is analyzed.

In chapter 7, we give a summary and concluding remarks.

In the Appendix, some general definitions for normed linear space are listed.
At the end of the thesis the list of considered literature is listed.

1.3 What is an optimal control problem?

An optimal control problem has the goal to find a control function for a given system
such that a certain optimality criterion is achieved. The essential component of an
optimal control problem is firstly the objective functional, a function of state and con-
trol variables, which is to be minimized (maximized). Moreover the problem includes
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in general partial differential equations of the state y and the control function u as
constraints. In addition, further constraints on u and y may be given. The control
function is to be chosen in that way such that the objective functional is minimal.

There are a lot of applications of optimal control problems for example in aeronautics,
in robotic and in the control of chemical processes.

In this thesis, the constraint is not given by a partial differential equation, but by a
variational inequality (VI). This significantly complicates the discussion of the associ-
ated optimal control problem, since VIs provide a certain non-smooth character. The
finite dimensional counterpart of the optimal control problems with VIs are mathemat-
ical programs with equilibrium constraints (MPECs). As an example let us consider
the following optimal control problem in which the state y is formulated as a solution
of an elliptic variational inequality (cf. [7], page 2)

{

min J(y, u) over y ∈ K, u ∈ U,
s.t 〈Ay − g(u), v − y〉 ≥ 0 ∀v ∈ K

(1.1)

A is a second order linear elliptic partial differential operator and K denotes a closed
convex cone in a Banach space. Moreover g(·) denotes a source term. If one introduces
a slack variable ξ, the variational inequality can be formulated as a complementary
problem.

Ay − ξ = g(u), y ≥ 0 a.e. in Ω, 〈ξ, v − y〉 ≥ 0 ∀v ∈ K

⇔ Ay − ξ = g(u), y ≥ 0, ξ ≥ 0, 〈y, ξ〉 = 0

This arising problem is called a mathematical program with complementarity con-
straints (MPCC) in the function space, which is a special form of a MPEC. For this
form of an optimal control problem all classical constraint qualifications are violated.
Thus one can not apply the standard optimality theory, which is the essential difficulty
for this sort of optimization problems.

1.4 What is an obstacle problem?

In this master thesis we will concentrate on a special form of (1.1), where the VI is
given by the obstacle problem. The obstacle problem is a classical instance for VIs and
free boundary problems. It describes the problem to find the equilibrium position of
an elastic membrane. In classical elasticity theory a membrane is a thin plate offering
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no resistance to bending, but acting only in tension. The boundary of the observed
domain is held fixed and the membrane is constrained to lie above a given obstacle.
The problem is related to the study of minimal surfaces and the capacity of a set in
potential theory as well. To be more precise, we can formulate the obstacle problem
as the problem to find the minimizer of the Dirichlet energy functional

J(u) =

∫

D

1

2
|∇u|2dx, (1.2)

where the function u represent the vertical displacement of the membrane. We denote
by D a Lipschitz domain in R

n. Let a smooth function ϕ : D̄ → R be given, such that
ϕ|∂D ≤ 0. Moreover define the set K = {v ∈ H1

0 (D) : v|∂D = 0 and v ≥ ϕ}, which
is closed and convex. The membrane takes that form, which yields minimal potential
energy. Then the solution of the obstacle problem is the function, which minimizes
(1.2) overall functions v belonging to K. Since this is a convex optimization problem,
we can equivalently reformulate it by its first-order optimality conditions: Seeking the
energy minimizer in the set K it is equivalent to seek u ∈ K such that

∫

D

∇u · ∇(v − u)dx ≥ 0 ∀v ∈ K,

which is a VI of the same type as in (1.1).



Chapter 2

Notation, basic definitions and

theorems

In this chapter we briefly mention some basic definitions and preliminaries of functional
analysis tools which we are going to use in the subsequent chapters. We recall some
classical results and existence of solutions of Variational Inequalities of First Kind. In
the Appendix some basic facts about normed linear spaces are given.

2.1 Notation

We start with the introduction of some basic notation and with some assumptions on
the quantities involved.
Throughout the thesis we will use the following notation: Let Ω be an open, bounded
subset of R

N with smooth boundary ∂Ω = Γ. Throughout this thesis, unless specified,
the L2(Ω) inner product is defined by (·, ·). The duality pairing between H1

0 (Ω) and
its dual H1

0 (Ω)∗ = H−1 is often denoted by 〈·, ·〉. It is well known that H1
o (Ω) →֒

L2(Ω) →֒ H−1(Ω) with compact and dense injection.

2.2 Sobolev Spaces

Let Ω ∈ R
N be a bounded Lipschitz domain. We denote by |Ω| its N -dimensional

Lebesgue measure.

Definition 2.1. (Lp−space)
We consider by Lp(Ω), 1 ≤ p <∞, the space of all (equivalence classes of) measurable
functions y : Ω → R satisfying

∫

Ω

|y(x)|pdx <∞. (2.1)

6
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Lp(Ω) is equipped with the norm

‖y‖Lp(Ω) = (

∫

Ω

|y(x)|pdx)1/p. (2.2)

All functions, which are only different on sets of measure zero are seen to be equal.
They belong to the same equivalence class.

Definition 2.2. (L∞ − space)
By L∞(Ω) we denote the space of essentially bounded and measurable functions y :
Ω → R equipped with the norm

‖y‖L∞(Ω) = ess sup
x∈Ω

|y(x)|. (2.3)

For all p ∈ [1,∞] the spaces Lp(Ω) are Banach spaces. L2(Ω) is, when equipped, with
the scalar product (u, v)L2(Ω) =

∫

Ω
uvdx a Hilbert space.

Definition 2.3. (Weak derivative)
Let y ∈ L1

loc(Ω) be given and α = (α1, · · ·, αn) be a multi-index. If there exists a
function w ∈ L1

loc(Ω) fulfilling

∫

Ω

y(x)Dαv(x)dx = (−1)|α|
∫

Ω

w(x)v(x)dx ∀v ∈ C∞
0 (Ω), (2.4)

then we call w the weak derivative of y and the derivative is denoted by Dαy.
The set L1

loc(Ω) consists of all the functions g : Ω → R, which for every compact subset
K ⊂ Ω are Lebesgue-integrable, so being in L1(K).

Definition 2.4. (Sobolev Space)
Let 1 ≤ p < ∞, k ∈ N. We define by W k,p(Ω) the linear space of all y ∈ Lp(Ω), for
which all weak derivatives Dαy with |α| ≤ k exists and belong to Lp(Ω), equipped with
the norm

‖y‖W k,p(Ω) = (
∑

|α|≤k

∫

Ω

|Dαy(x)|pdx)1/p, (2.5)

Moreover, we introduce W k,∞(Ω) for p = ∞ whose norm is given by

‖y‖W k,∞(Ω) = max
|α|≤k

‖Dαy‖L∞(Ω). (2.6)

These spaces are called Sobolev spaces.
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All Sobolev spaces W k,p(Ω) are Banach spaces. Of special interest is the case p = 2,
where we put

Hk(Ω) := W k,2(Ω). (2.7)

In view of Definition (2.4) the space H1(Ω), which we often need in our later discussion
is defined

H1(Ω) := {y ∈ L2(Ω) : Diy ∈ L2(Ω) i = 1, 2, · · ·, n}, (2.8)

and equipped with the norm

‖y‖H1(Ω) = (

∫

Ω

(y2 + |∇y|2)dx)1/2. (2.9)

By introducing the scaler product

(u, v)H1(Ω) =

∫

Ω

uvdx+

∫

Ω

∇u · ∇vdx (2.10)

H1(Ω) becomes a Hilbert space.

Definition 2.5. (The Sobolev space W k,p
0 (Ω))

The closure of C∞
0 (Ω) in W k,p(Ω) is called W k,p

0 (Ω). This space is equipped with same
norm as W k,p(Ω) and it is a closed subspace of W k,p(Ω). In particular we define
Hk

0 (Ω) := W k,2
0 (Ω).

For more detailed information about Sobolev spaces see for instance Fredi Tröltzsch [8]

The usefulness of Sobolev spaces is to a large extent determined by embedding results
and trace theorems. We follow the standard text by Fredi Tröltzsch [8]

Theorem 2.6. (Sobolev Embedding).
Let Ω ⊂ R

N be a bounded Lipschitz domain. Moreover, let 1 < p <∞, and let m be a
nonnegative integer. Then the following embeddings exist and are continuous:

• for mp < N : Wm,p(Ω) →֒ Lq(Ω) if 1 ≤ q ≤ Np
N−mp

• for mp = N : Wm,p(Ω) →֒ Lq(Ω) if 1 ≤ q <∞

• for mp > N : Wm,p(Ω) →֒ C(Ω̄).

In particular, if Ω ⊂ R
2, then H1(Ω) = W 1,2(Ω) →֒ Lq(Ω) for all 1 ≤ q < ∞, and

if Ω ⊂ R
3, then H1(Ω) →֒ L6(Ω). The smoothness properties of boundary values are

described by the following result.

Theorem 2.7. Let m ∈ N with m > 0, and let the boundary Γ be a class Cm−1,1. Then
for mp < N the trace operator τ is continuous from Wm,p(Ω) into Lr(Γ), provided that

1 ≤ r ≤ (N−1)p
N−mp

. If mp = N, then τ is continuous for all 1 ≤ r <∞.
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Theorem 2.8. Suppose that Ω is a domain of class Cm, and let 1 < p <∞. Then the
trace operator τ is continuous from Wm,p(Ω) onto Wm−1/p,p(Γ).

In particular, the continuity of the mapping τ : H1(Ω) → H1/2(Γ) follows; τ is even
surjective.

Theorem 2.9. (Rellich). Suppose that Ω is a bounded Lipschitz domain, and let
1 ≤ p < ∞ and m ∈ N, with m > 0. Then every bounded set in Wm,p(Ω) is relatively
compact in Wm−1,p(Ω).

The above property is called a compact embedding. In particular, bounded subsets of
H1(Ω) are relatively compact in L2(Ω).

Lemma 2.10. (Lax-Milgram)
Let V be a real Hilbert space and a : V × V → R be a bilinear form with the following
properties:
There exists positive constants ν1 and ν2 such that for all y, v ∈ V the relations

|a(y, v)| ≤ Cb‖y‖V ‖v‖V (Boundedness)

a(y, y) ≥ Cc‖y‖2
V (V-Ellipticity or coercivity)

are fulfilled. Then the variational formulation

a(y, v) = ℓ(v) for all v ∈ V,

admits for every ℓ ∈ V ∗ exactly one solution y ∈ V and there exists a constant µ
independent of ℓ, such that the following inequality holds:

‖y‖V ≤ µ‖ℓ‖V ∗ .

By the Riesz identification theorem we can uniquely identify ℓ ∈ V ∗ with a f ∈ V so
that ℓ(v) = (f, v)V and ‖ℓ‖V ∗ = ‖f‖V .

Theorem 2.11. (Hölder inequality)
Let p, q ∈ [1,∞] with 1

p
+ 1

q
= 1 and let f ∈ Lp(Ω), g ∈ Lq(Ω), then it follows that

fg ∈ L1(Ω) and ‖fg‖L1(Ω) ≤ ‖f‖Lp(Ω)‖g‖Lq(Ω).

Lemma 2.12. (Young’s inequality)
Let a, b ≥ 0, p, q > 1, 1/p+ 1/q = 1. Then

ab ≤ ap

p
+
bq

q
.

Lemma 2.13. (Modified Young’s inequality)
Let a, b ≥ 0, ε > 0, p, q > 1, 1/p+ 1/q = 1. Then

ab ≤ εap

p
+
ε1−qbq

q
.
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Lemma 2.14. (Poincaré-Friedrichs inequality)
Let Ω be a bounded Lipschitz domain. Then there exist a constant cp, only depending
on Ω, such that

∫

Ω

|y|2dx ≤ cp

∫

Ω

|∇y|2dx

for all y ∈ H1
0 (Ω).

A semilinear PDE is a partial differential equation, whose main part of the differ-
ential operator is linear. An example for semilinear PDE is given by

−∆y + y3 = u in Ω

y = 0 = on Γ.

2.3 Basic convergence concepts

Definition 2.15. (strong convergence)
A sequence {xn}∞n=1 ⊂ X converges to x ∈ X,i.e. xn → x, if

lim
n→∞

‖xn − x‖ = 0. (2.11)

Definition 2.16. (Weak Convergence)
Let X be a Banach space. We say that a sequence (xn) converges weakly to x ∈ X,
written

xn ⇀ x, (2.12)

if
〈x∗, xn〉X∗,X → 〈x∗, x〉X∗,X as n→ ∞ ∀x∗ ∈ X∗ (2.13)

Definition 2.17. (Weakly continuous)
Let X, Y be reflexive Banach spaces. A function f : X → Y is called weakly continuous
if

xn ⇀ x in X =⇒ f(xn) ⇀ f(x) in Y (2.14)

Theorem 2.18. (Lower weakly Semicontinuity)
Let X be a Banach space. Then any continuous, convex functional f : X → R is
weakly lower semicontinuous, i.e.

xn ⇀ x =⇒ lim inf
n→∞

f(xn) ≥ f(x). (2.15)

Definition 2.19. (Radially unbounded)
A function f : X → R is called radially unbounded if for all sequences (xn) in X it
holds:

‖xn‖ → +∞ =⇒ f(xn) → +∞ (2.16)
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Theorem 2.20. Let H be a Hilbert space. Then it holds:

xn ⇀ x in H and ‖xn‖H → ‖x‖H for n→ ∞ =⇒ xn → x in H for n→ ∞. (2.17)

Definition 2.21. (Convexity of a Set)
A set C of a normed linear space X is called convex, if

x, y ∈ C ⇒ λx+ (1 − λ)y ∈ C ∀λ ∈ [0, 1].

Definition 2.22. (Convexity of a function)
A functional f : X → R in a normed linear space is called,

(i) convex, if
f(λx+ (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

for all x, y ∈ X and all λ ∈ [0, 1].

(ii) strict convex, if the strict inequality holds for all x 6= y and for all λ ∈ (0, 1).

2.4 Differentiability in Banach Spaces

In the following let X and Y be Banach spaces, U ⊂ X be an open set and f : X → Y
be a given function.

Definition 2.23. (Directional Derivative)
If for x ∈ X, h ∈ X the limit

δf(x, h) = lim
t↓0

f(x+ th) − f(x)

t

exists in Y , then f is directionally differentiable at x in direction h.

Definition 2.24. (Gâteaux Derivative)
Let f be directionally differentiable at x in all directions h ∈ X.
If there exists an operator A ∈ L(X, Y ) such that

δf(x, h) = Ah ∀h,

then f is said to be Gâteaux differentiable at x.

Definition 2.25. (Fréchet Derivative)
Let f be Gâteaux differentiable at x. If

lim
‖h‖X→0

‖f(x+ h) − f(x) − δf(x)h‖Y

‖h‖X
= 0,

then f is called Fréchet-differentiable at x.



CHAPTER 2. NOTATION, BASIC DEFINITIONS AND THEOREMS 12

Definition 2.26. (Newton Derivative)
If there is a mapping δf : U → Y such that

lim
‖h‖X→0

‖f(x+ h) − f(x) − δf(x+ h)h‖Y

‖h‖X
= 0,

then f is called Newton-differentiable in U .

Remark 2.27. If f is Fréchet differentiable and δf is Lipschitz on an open set U ⊂ X,
then f is Newton-differentiable on U .

2.5 Existence of solutions of Variational Inequalities

of First Kind

The obstacle problem is a classic motivating example in the mathematical study of
variational inequalities and free boundary problems. The problem is to find the equi-
librium position of an elastic membrane whose boundary is held fixed, and which is
constrained to lie below a given obstacle.

Before we formulate the Model problem, it will be convenient to recall and discuss
the following notations, definitions and theorems of the existence and uniqueness of
variational inequalities of First Kind. Now let us begin with the state-equation which
is a variational inequality. We denote the set of admissible controls by :

Uad = {u ∈ L2(Ω) : ua ≤ u ≤ ub}

be a nonempty, closed, convex subset of L2(Ω). For each u ∈ Uad we define y = y(u)
( the state function of the system) as the solution of the variational inequality of the
first kind:
Find y ∈ H1

0 (Ω) such that y is a solution of the problem

a(y, v − y) ≥ (u, v − y), ∀v ∈ K, y ∈ K (2.18)

where the set K is given by

K = {v ∈ H1
0 (Ω) : v ≤ ψ}

is a closed convex nonempty subset of H1
0 (Ω).

From the Riesz representation theorem for Hilbert spaces, there exists an operator
A ∈ L(H1

0(Ω), H−1(Ω)) such that

a(y, v) = 〈Ay, v〉, ∀y, v ∈ H1
0 (Ω).

The following results are taken from J.F.Rodrigues [4] and Roland Glowiniski [5]
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Theorem 2.28. (Lions-Stampacchia)
Let K ⊂ H1

0 (Ω) be a closed, nonempty, convex and A : K → H−1(Ω) a Lipschitz and
coercive operator (not necessarily linear),that is,

‖Ay − Av‖H−1 ≤ Cb‖y − v‖H1, ∀y, v ∈ K, (2.19)

〈Ay − Av, y − v〉 ≥ Cc‖y − v‖2
H1, ∀y, v ∈ K, (2.20)

for some constants Cb, Cc > 0. Then for each u ∈ H−1(Ω), there exists a unique
solution to the variational inequality

y ∈ K : 〈Ay − u, v − y〉 ≥ 0, ∀v ∈ K. (2.21)

Moreover the (nonlinear) solution mapping is Lipschitz continuous, that is, if uj ∈
H−1(Ω)
(j = 1, 2) and yj is the corresponding solution, then

‖y1 − y2‖H1 ≤ 1

Cc
‖u1 − u2‖H−1 . (2.22)

Remark 2.29. : In the case K = H1
0 (Ω) (or y is an interior point of K), (2.21)

reduces to the equation Ay − u = 0, since then the (v − y) ranges over a neighborhood
of the origin in H1

0 (Ω).

Corollary 2.30. (i) (Stampacchia theorem) [5]
Let K ⊂ H1

0 (Ω) be a closed, nonempty, convex set, u ∈ H−1(Ω) and a(·, ·) a
continuous and coercive bilinear form. Then there exists a unique solution to the
variational inequality

y ∈ K : a(y, v − y) ≥ 〈u, v − y〉, ∀v ∈ K. (2.23)

(ii) (Lax-Milgram theorem)
In the case K = H1

0 (Ω), (i) reduces to Lax-Milgram, one has unique solvability
of

y ∈ H1
0 (Ω) : a(y, v) = 〈u, v〉, ∀v ∈ H1

0 (Ω). (2.24)

Proposition 2.31. In H1
0 (Ω), the variational inequality

y ≤ ψ : 〈Ay − u, v − y〉 ≥ 0, ∀v ≤ ψ (2.25)

for any ψ ∈ H1(Ω), with ψ|∂Ω ≥ 0 is equivalent to the nonlinear complementarity
problem

y ≤ ψ, Ay − u ≥ 0 and 〈Ay − u, y − ψ〉 = 0. (2.26)

Remark 2.32. 1. Let φ : R → R, φ ∈ C0(R), nondecreasing with φ(0) = 0 and
u ∈ H−1(Ω).
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The nonlinear elliptic equation defined by:
Find y ∈ H1

0 (Ω) such that

{

a(y, v) + 〈φ(y), v〉 = 〈u, v〉, ∀v ∈ H1
0(Ω)

φ(y) ∈ L1(Ω) ∩H−1(Ω)
(2.27)

is equivalent to

Ay + φ(y) = u, y ∈ H1
0 (Ω), φ(y) ∈ L1(Ω) ∩H−1(Ω). (2.28)

2. (2.27) has a unique solution.



Chapter 3

Optimal control with unilateral

constraints

In this chapter we investigate the analytical treatment of optimal control problems
governed by a class of elliptic variational inequalities of the first kind with unilateral
constraints. Moreover, we consider constraints on the control.

In the optimal control problem of a variational inequality the main difficulty comes
from the fact that the mapping between the control and the state (control-to-state
operator) is not Gâteaux differentiable (the reason for this fact is that its derivative
is also a solution of a variational inequality in (P ) and therefore it is not linear with
respect to the direction) but only Lipschitz-continuous and so it is not easy to get first
order optimality conditions. As a consequence of this, to get sharp optimality condi-
tions and build numerical algorithms are difficult tasks. To overcome this difficulty
different authors (see for example, K. Ito and K. Kunisch [1], [13], Karl Kunisch and
Daniel Wachsmuth [2],[3] and the references therein) consider a Moreau-Yosida ap-
proximation technique to reformulate the governing variational inequality of the first
kind as an operator equation involving the max function.

Problems in robotics and biomechanics such as trajectory planning or resolution of
redundancy can be effectively solved using optimal control. Such systems are often
subject to unilateral constraints. Examples include tasks involving contacts (e.g.,
walking, running, multifingered or multiarm manipulation), and other tasks that may
not involve contacts but in which the system state or the inputs must satisfy inequality
conditions (e.g., limits on actuator forces), to read more see [20].

15
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3.1 Formulation of the optimal control problem in

the variational form

We start with the introduction of some basic notation and with some assumptions on
the quantities involved that we use in the forthcoming sections. In this section we
will discuss the regularization method by introducing a Lagrange multiplier for the
non-differentiable term (or we have approximate the variational inequality by a com-
plementarity constraint formulation) to overcome the difficulty associated with the
nondifferentiability of the functional J in (P ). The idea of the regularization method
is to approximate the non-differentiable term by a sequence of differentiable ones. Ap-
proximation of the unilateral obstacle problem to a certain semilinear elliptic equation
is shown.

Suppose that Ω is an open, and bounded subset of R
N(N ≤ 3) with Lipschitz-

continuous boundary Γ = ∂Ω.
For the definition of Sobolev spaces we refer the reader section 2.2.
We define the bilinear form a(·, ·) : H1

0 (Ω) ×H1
0 (Ω) → R by

a(y, v) =
N
∑

i,j=1

∫

Ω

aij
∂y

∂xi

∂v

∂xj

dx+
N
∑

i=1

∫

Ω

bi
∂y

∂xi

vdx+

∫

Ω

c0yvdx (3.1)

where aij , bi ,c0 belong to L∞(Ω). Moreover, we suppose that aij ∈ C0,1(Ω̄) (the space
of Lipschitz continuous function in Ω, where Ω̄ is the closure of Ω) and c0 ≥ 0, to
ensure a “good” regularity of the solution and satisfying the conditions aij = aji and

N
∑

i,j=1

aij(x)ξiξj ≥ δ0‖ξ‖2 a.e. on Ω ∀ξ ∈ R
N . (3.2)

By construction the bilinear form a(·, ·) is continuous on H1
0 (Ω) ×H1

0 (Ω):

∃Cb > 0, ∀(y, v) ∈ H1
0 (Ω) ×H1

0 (Ω) a(y, v) ≤ Cb‖y‖H1
0
‖v‖H1

0
(3.3)

and is coercive (H1-ellipticity):

∃Cc > 0, ∀y ∈ H1
0 (Ω) a(y, y) ≥ Cc‖y‖2

H1
0
(Ω) (3.4)

We call A : H1
0 → H−1 the linear (elliptic) operator associated to a(·, ·) such that

〈Ay, v〉 := a(y, v) ∀ y, v ∈ H1
0 (Ω). (3.5)

The operator A is an elliptic differential operator defined by

(Ay)(x) = −
N
∑

i,j=1

∂

∂xj

(aij(x)
∂

∂xi

y(x)) +
N
∑

i=1

bi
∂

∂xi

y(x) + c0(x)y(x) (3.6)
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We note that the coercivity assumption (3.4) on a implies that

∀y ∈ H1
0 (Ω) 〈Ay, y〉 ≥ Cc‖y‖2

H1
0
(Ω) (3.7)

Consider the following variational inequality

a(y, v − y) ≥ (u, v − y), ∀v ∈ K, u ∈ Uad (3.8)

where
K = {v ∈ H1

0 (Ω) : v ≤ ψ a.e. on Ω}
and the set of admissible controls

Uad = {u ∈ L2(Ω) : ua ≤ u ≤ ub}

are nonempty, closed, and convex subset of H1
0 (Ω) and L2(Ω) respectively.

The optimal control problems subject to variational inequality (obstacle problem) to
be studied in this chapter can be set in the following general form:

(P )







min J(y, u) = g(y) + j(u)
over y ∈ K, u ∈ Uad

s.t a(y, v − y) ≥ (u, v − y) ∀v ∈ K

Here we call variable y is the state and u is the control. The function ψ (obstacle)
denotes the bound constraint on the state, i.e., y ≤ ψ has to hold pointwise almost
everywhere (a.e.) in Ω. Note that the mapping control-to-state is not differentiable
(and even not continuous if we define it on the whole space H1

0 (Ω)).

It is well known that under the conditions that has been specified above on the co-
efficients of the bilinear form a and introducing a multiplier λ, the obstacle problem
(3.8) can be equivalently written as complementary condition as follows:















Ay + λ = u,
y ≤ ψ,
λ ≥ 0,
(λ, y − ψ) = 0

(3.9)

where λ ∈ H−1(Ω) is the associated Lagrange multiplier to the solution (P) and
ψ ∈ H1(Ω) with ψ|Γ ≥ 0.

In this way the optimal control of variational inequality (P ) is interpreted as opti-
mization with complementarity constraints. If λ has extra regularity in sense that
λ ∈ L2(Ω), the optimality system (3.9) can equivalently be expressed as







Ay + λ = u in L2(Ω)

λ = max(0, λ+ c(y − ψ))
(3.10)
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for any c > 0 and where max denotes the pointwise a.e. maximum operation. Since
this max−function is non-smooth, the variational inequality in (P ) makes the optimal
control problem (P ) non-smooth.
The optimal control problem (P ) therefore can be equivalently expressed as minimiz-
ing J(y, u) subject to (3.10).
Since x → max(0, x) is not C1 regular (not Gâteaux differentiable), to regular-
ize the max−function in (3.10) we are tempted to use the well known smoothing
(C1−approximation)

maxc(0, x) =











x, for x ≥ 1
2c

c
2
(x+ 1

2c
)2, for |x| ≤ 1

2c

0, for x ≤ − 1
2c
.

(3.11)

where c > 0. Then maxc(0, x) =
∫ x

−∞
sgnc(s)ds, where sgnc(x) is defined by

sgnc(x) =











1, for x ≥ 1
2c

c(x+ 1
2c

), for |x| ≤ 1
2c

0, for x ≤ − 1
2c
.

(3.12)

Equation (3.10), can be approximated by the following smooth semilinear equation

Ay + maxc(c
sλ̄+ c(y − ψ)) = u, (3.13)

where 0 < s < 1/2 and inf λ̄ > 0, λ̄ ∈ L∞(Ω), the max−operation was replaced
by a generalized Moreau-Yosida type regularization. Regularization refers to the fact
that the inequality involving the operator A is replaced by an equality by means of an
appropriate Lagrangian variable.
As a consequence the regularized control problems that we are interested are given by

(Pc)











min J(y, u) = g(y) + j(u)

over u ∈ Uad, subject to
Ay + maxc(c

sλ̄+ c(y − ψ)) = u, y ∈ H1
0 (Ω)

where 0 < s < 1/2 and inf λ̄ > 0, λ̄ ∈ L∞(Ω), is fixed during the regularization
process given, and maxc is a C1−approximation of x → max(0, x). If g and j are
C1−regular, then the first order optimality system for (Pc) is given by











Ayc + maxc(c
sλ̄+ c(yc − ψ)) = uc,

A∗pc + csgnc(c
sλ̄+ c(yc − ψ))pc + g′(yc) = 0,

(j′(uc) − pc, u− uc) ≥ 0, ∀u ∈ Uad

(3.14)
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where sgnc in (3.12) and expressions

λc = maxc(c
sλ̄ + c(yc − ψ)) and µc = csgnc(c

sλ̄+ c(yc − ψ))pc

in (3.14) tend to measure Lagrange multipliers as c→ ∞, here c is the regularization
and smoothing parameter.
We are now in position to state the following regularity assumptions that we use
throughout this thesis paper: (cf. [2])

Standing assumptions

Assumption 1. (i) The domain Ω ⊂ R
N , N ∈ {2, 3} is bounded, and its boundary

is of class C1,1.

(ii) The operator A is an elliptic differential operator defined by

(Ay)(x) = −
N
∑

i,j=1

∂

∂xj

(

aij(x)
∂

∂xi

y(x)

)

+
N
∑

i=1

bi
∂

∂xi

y(x) + c0(x)y(x)

with functions aij ∈ C0,1(Ω̄), bj , ∂
∂xj
bj , c0 ∈ L∞(Ω) satisfying the conditions

aij(x) = aji(x) and

N
∑

i,j=1

aij(x)ξiξj ≥ δ0‖ξ‖2 a.e. on Ω ∀ξ ∈ R
N .

with some δ0 > 0. Additionally, we require c0(x) ≥ δ1 ≥ 0 with δ1 sufficiently
large such that the bilinear form a(·, ·) induced by A fulfills the coercivity con-
dition (3.4).

(iii) The obstacle ψ fulfills ψ ∈ H1(Ω) ∩ L∞(Ω) with Aψ ∈ L∞(Ω) and ψ|Γ ≥ 0.

(iv) g : L2(Ω) → R is continuously Fréchet-differentiable and bounded from be-
low, moreover the restriction g : H1

0 (Ω) → R is twice continuously Fréchet-
differentiable.

(v) j : L2(Ω) → R is twice continuously Fréchet-differentiable and weakly lower semi-
continuous. Moreover, we assume j to be radially unbounded,i.e., j(un) → +∞
whenever ‖un‖L2(Ω) → ∞ with un ∈ L2(Ω).

Some results can be obtained under weaker requirements on g.
Let us introduce the adjoint operator A∗ to A by

(A∗p)(x) = −
N
∑

j=1

∂

∂xj

(

N
∑

i=1

aij(x)
∂

∂xi
p(x) + bj(x)p(x)

)

+ c0(x)p(x).
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3.2 Necessary Optimality Conditions for (P )

In this section we investigate first-order necessary optimality conditions for optimal
control problem (P ) of variational inequality. The derivation of necessary optimality
conditions is challenging due to the lack of Fréchet differentiability of the associated
control-to-state map. To overcome this difficulty many authors have used either ap-
proximation of the variational inequality by penalization, or the differentiability almost
everywhere for Lipschitz continuous mappings or the generalized gradient.
Let us briefly summarize known results about unique solvability of the underlying
variational inequality (3.9).

Lemma 3.1. (i) For each u ∈ H−1(Ω) the variational inequality (3.8) admits a
unique solution y∗ ∈ H1

0 (Ω),

(ii) if u ∈ H−1(Ω), then the mapping u 7→ y is Lipschitz continuous from u ∈ H−1(Ω)
to H1

0 (Ω).

(iii) if u ∈ L2(Ω), then the mapping u 7→ y is Lipschitz continuous from u ∈ L2(Ω)
to L∞(Ω).

Proof. (i) Suppose the contrary to our claim, that there exist two solutions y∗ and ỹ
of the variational inequality in (P ), i.e.,

a(y∗, v − y∗) ≥ 〈u, v − y∗〉 ∀v ∈ K, y∗ ∈ K (3.15)

a(ỹ, v − ỹ) ≥ 〈u, v − ỹ〉 ∀v ∈ K, ỹ ∈ K (3.16)

Now let us insert v = ỹ in (3.15) and v = y∗ in (3.16) and add the arising inequalities
(3.15) and (3.16), giving in turn

a(y∗ − ỹ, ỹ − y∗) ≥ 〈u− u, ỹ − y∗〉 = 0

⇔ a(y∗ − ỹ, y∗ − ỹ) ≤ 0.

Since one knows that a(y∗− ỹ, y∗− ỹ) ≥ 0, by the coercivity of a and the positivity of
norms, it follows that a(y∗ − ỹ, y∗ − ỹ) = 0. From this we conclude

‖y∗ − ỹ‖H1(Ω) = 0 ⇔ ỹ = y∗ a.e. in Ω

Hence y∗ ∈ K is the unique solution of the variational inequality in the original optimal
control problem (P ).
(ii) Our proof starts with the observation that

ym = y(um) ⇔ a(y(um), v − y(um)) ≥ 〈um, v − y(um)〉 ∀v ∈ K, y(um) ∈ K (3.17)

yn = y(un) ⇔ a(y(un), v − y(un)) ≥ 〈un, v − y(un)〉 ∀v ∈ K, y(un) ∈ K (3.18)
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where um, un ∈ H−1(Ω) are arbitrary. Inserting v = y(un) in (3.17) and v = y(um) in
(3.18) and adding the arising inequalities yield

a(y(um) − y(un), y(un) − y(um)) ≥ 〈um − un, y(un) − y(um)〉
⇔ a(y(um) − y(un), y(um) − y(un)) ≤ 〈um − un, y(um) − y(un)〉.

In the following step we use the coercivity of the bilinear form, therefore one receives

Cc‖y(um) − y(un)‖2
H1

0
(Ω) ≤ a(y(um) − y(un), y(um) − y(un)) ≤ 〈um − un, y(um) − y(un)〉

≤ |〈um − un, y(um) − y(un)〉| ≤ ‖um − un‖H−1(Ω)‖y(um) − y(un)‖H1
0
(Ω)

The last inequality follows from the definition of the operator norm ‖um − un‖H−1(Ω).
Thus we obtain

‖y(um) − y(un)‖H1
0
(Ω) ≤ L‖um − un‖H−1(Ω),

where L = 1
Cc

. For the proof of (iii) we refer the reader to see Lemma 2.2 in [2] on
page 6. This completes the proof.

Under the strong regularity assumptions (1) above we get the following result (cf. the
result can be found from Brezis and Stampacchia [19]).

Lemma 3.2. For u ∈ L2(Ω) the unique solution (y, λ) of (3.9) belongs to (H1
0 (Ω) ∩

H2(Ω))×L2(Ω). If in addition u ∈ Lp(Ω) and max(0, Aψ−u) ∈ Lp(Ω), for p ∈ [2,∞),
then (y, λ) ∈W 2,p(Ω) × Lp(Ω).

Now we prove that conditions (iv) and (v) of assumption 1 together with Lemma 3.1
imply the existence of at least one solution (y∗, u∗) with y∗ = y(u∗) to (P ).

Proposition 3.3. Let j : L2(Ω) → R be weakly lower semi-continuous. There exists
a solution (y∗, u∗) ∈ H1

0 (Ω) × L2(Ω) to (P ).

Proof. Since j is radially unbound and g is bounded below, every minimizing sequence
{(y(un), un)} to (P ) has a weakly convergent subsequence, denoted by the same sym-
bol, with weak limit u∗ ∈ L2(Ω) and (y∗, ψ∗) ∈ H1

0 ×Uad such that un → u∗ weakly in
L2 and yn → y∗ weakly in H1

0 . Moreover, it follows that yn → y∗ strongly in H1
0 and

that y∗ is the solution to (3.8) with u = u∗.
Due to weak lower semi-continuity of j and continuity of g : H1

0 (Ω) → R

J(y(u∗), u∗) ≤ lim
n→∞

inf J(y(un), un), (3.19)

and consequently (y∗, u∗) is a solution to (P ).

In [25], Anton Schiela and Daniel Wachsmuth had obtained the following optimality
condition system
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Theorem 3.4. Let (y∗, u∗) be a locally optimal pair for the optimal control problem (P )
with associated multiplier λ∗ ∈ L2(Ω). Then there exist adjoint states p∗ ∈ H1

0 (Ω) ∩
L∞(Ω) and µ∗ ∈ H−1(Ω) ∩ (L∞(Ω))∗ such that

A∗p∗ + µ∗ + g′(y∗) = 0 and p∗ ≥ 0 where y∗ = ψ, (3.20)

λ∗p∗ = 0 a.e. on Ω, and 〈µ∗, p∗〉 ≥ 0 (3.21)

〈µ∗, y∗ − ψ〉 = 0, (3.22)

〈µ∗, φ〉 ≥ 0 for all φ ∈ H1
0 (Ω) with 〈λ∗, φ〉 = 0 and φ ≥ 0 on {y∗ = ψ}, (3.23)

(j′(u∗) − p∗, u− u∗) ≥ 0 ∀u ∈ Uad (3.24)

Moreover, we have the following sign condition for µ∗ on the biactive set B = {λ =
0, y = ψ}:

〈µ∗, φ〉 ≥ 0 for all φ ∈ H1
0 (Ω), φ ≥ 0 on B, φ = 0 on Ω\B. (3.25)

This last condition (3.25) is true only if the admissible set Uad is the whole space
L2(Ω).

Note that conditions (3.20) to (3.24) is called C-stationary and the C-stationary to-
gether with the last condition is called strong stationary.

It is well known that in the case of nonlinear equations the first order conditions are
in general not sufficient for optimality. A second order sufficient optimality conditions
for a class of elliptic boundary control problems is derived in [2].

3.3 A semilinear elliptic regularized problem

The elliptic equation occurring in problem (3.13) is semilinear. In this and the next
two sections we will discuss existence, regularity and feasibility of the solution of the
semilinear elliptic regularized problem of (3.13) with homogenous Dirichlet boundary
value problem.

Ay + maxc(c
sλ̄+ c(y − ψ)) = u in Ω

y = 0 on Γ

}

(3.26)

The elliptic differential operator A is assumed to take the form (3.6), and the function
u will play the role of the controls. This class of elliptic problems exhibits the essential
difficulties associated with nonlinear equations.
We recall that problems in which the control occurs as a source term on the right-
hand side of the partial differential equation are termed distributed control problems.
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Now we give a review of some classical existence results for weak solutions to Dirichlet
problems concerning nonlinear elliptic operators (3.26). First of all, we refer to some
classical results involving the so-called monotone operators and then we show how
these results can be applied to Dirichlet problems for nonlinear elliptic operators.

Definition 3.5. A mapping B : K → H−1(Ω) is called

• monotone if
〈By −Bv, y − v〉 ≥ 0, ∀y, v ∈ H1

0 (Ω), (3.27)

• strictly monotone if it is monotone and

〈By − Bv, y − v〉 > 0, ∀y, v ∈ H1
0 (Ω), y 6= v, (3.28)

• hemicontinuous if

〈B(y1 + ty2), v〉 → 〈By1, v〉 as t→ 0+ , ∀y1, y2, v ∈ H1
0 (Ω). (3.29)

Obviously if A is a continuous operator, then A is also hemicontinuous, but the contrary
is not true in general. Nevertheless hemicontinuity plus monotonicity and boundedness
of an operator yields the continuity.
A bounded, hemicontinuous and monotone operator is not enough to get an existence
theorem. This result may be proved by assuming that the operator is coercive.

• coercive if

〈By, y〉
‖y‖H1

0

→ +∞ as ‖y‖H1
0
→ +∞ for any y ∈ K (3.30)

• strongly monotone if

〈By − Bv, y − v〉 ≥ β0‖y − v‖2
H1

0

, ∀y, v ∈ H1
0(Ω), (3.31)

To prove the existence of solutions of the regularized problem (3.26) we use the fol-
lowing theorem which is due to Browder and Minty (cf. Fredi Tröltzsch [8]).

Theorem 3.6. (Main Theorem on Monotone Operators)
Let V be a separable Hilbert space, and let a mapping B : V → V ∗ be monotone,
coercive, and hemicontinuous. Then the equation By = f has for every f ∈ V ∗(Ω)
a solution y ∈ V (Ω). The set of all solutions is bounded, closed and convex. If B is
strictly monotone, then y is uniquely determined. If B is moreover strongly monotone,
then the inverse B−1 : V ∗ → V is Lipschitz continuous mapping.
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Proof. Its proof can be found in, e.g., Eberhard Zeidler, Léo F. Boron [21].

We apply this theorem to problem (3.26) in the space V = H1
0 (Ω) and f = u. To do

this, we first have to define the notation of a weak solution to the nonlinear elliptic
boundary value problem (3.26). The idea is simple: we bring the nonlinear term
maxc(c

sλ̄ + c(y − ψ)) in (3.26) to the right-hand side of the equation, thus obtaining
a boundary value problem with the right-hand side ũ = u − maxc(c

sλ̄ + c(y − ψ))
and linear differential operators on the left-hand side. For this purpose , we use the
variational formulation for linear boundary value problem.

Definition 3.7. A function y ∈ H1
0 (Ω) is called a weak solution to problem (3.26) if

we have, for every v ∈ H1
0 (Ω),

a(y, v) +

∫

Ω

maxc(c
sλ̄+ c(y − ψ))vdx =

∫

Ω

uvdx. (3.32)

Assumption 2. Let Ω ⊂ R
N , N ≤ 3, is a bounded Lipschitz domain with boundary

Γ, and A is an elliptic differential operator of the form (3.6) with bounded and mea-
surable coefficient functions aij that satisfy the symmetry condition and the condition
(3.2) of uniform ellipticity.

Note that maxc(c
sλ̄+ c(y − ψ)) is bounded, since

|maxc(c
sλ̄+ c(y − ψ))| ≤ |csλ̄+ c(y − ψ)| + 1

2c
,

and it is monotone increasing with respect to y almost everywhere in Ω.

Theorem 3.8. Suppose that Assumption 2 hold. Then for each c > 0 and for every
right-hand side u ∈ L2(Ω) there exists a unique solution yc ∈ H1

0 (Ω) of the semilinear
elliptic equation (3.26). Moreover, there is some constant γ > 0 such that

‖yc‖H1(Ω) ≤ γ‖u‖L2(Ω). (3.33)

Proof. We apply the main theorem on monotone operators in V = H1
0 (Ω).

(i) Definition of a monotone operator B : H1
0 −→ H−1

It follows from section 3.1 that the bilinear form (3.1) generates a continuous
linear operator A : H1

0 −→ H−1 through the relation

〈Ayc, v〉 = a(yc, v).

This is the linear part of nonlinear operator B. The nonlinear part of B is
formally defined by the identity (A1yc)(x) := maxc(c

sλ̄+ c(yc(x)−ψ)). The sum
of the two operators yield the the operator B, i.e., B = A+ A1.
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(ii) Monotonicity
We show that the operators A and A1 are monotone so that this property then
also holds for B. First, A is monotone, since a(yc, yc) ≥ 0 for all yc ∈ H1

0 (Ω).
Next, we consider A1. Owing the monotonicity of maxc in yc, we have

(maxc(c
sλ̄+ c(yc,1(x) − ψ)) − maxc(c

sλ̄+ c(yc,2(x) − ψ)))(yc,1(x) − yc,2(x)) ≥ 0

for all yc,1, yc,2 ∈ H1
0 (Ω) and all x. Therefore, for all yc,1, yc,2 ∈ H1

0(Ω)

〈A1(yc,1) − A1(yc,2), yc,1 − yc,2〉

=

∫

Ω

(maxc(c
sλ̄+c(yc,1(x)−ψ))−maxc(c

sλ̄+c(yc,2(x)−ψ)))(yc,1(x)−yc,2(x))dx ≥ 0

Note that the boundedness condition for maxc guarantees that the function

x 7→ maxc(c
sλ̄+ c(yc,1(x) − ψ)) − maxc(c

sλ̄+ c(yc,2(x) − ψ))

is square integrable for yc,1, yc,2 ∈ L2(Ω), so that the above integral exists. In
conclusion, A1 is monotone.

(iii) Coercivity of B
A is coercive follows from (3.4) and (3.5),i.e.,

〈Ayc, yc〉 = a(yc, yc) ≥ Cc‖yc‖2
H1

0

∀yc ∈ H1
0 (Ω). (3.34)

For all yc ∈ H1
0 (Ω)

〈A1yc, yc〉 = 〈maxc(c
sλ̄+ c(yc − ψ)), yc〉

=

∫

Ω

[maxc(c
sλ̄+ c(yc − ψ)) − maxc(c

sλ̄)](yc − ψ)

+

∫

Ω

maxc(c
sλ̄+ c(yc − ψ))ψ +

∫

Ω

maxc(c
sλ̄)(yc − ψ)

By the monotonicity of maxc,
∫

Ω

[maxc(c
sλ̄+ c(yc − ψ)) − maxc(c

sλ̄)](yc − ψ) ≥ 0 (3.35)

and the last two integrals above can be estimated as

|
∫

Ω

maxc(c
sλ̄+ c(yc − ψ))ψ| ≤

∫

Ω

(csλ̄+ c|yc − ψ|)|ψ|

≤ (cs‖λ̄‖L∞ + c(‖yc‖H1 + ‖ψ‖L2))‖ψ‖L2(3.36)

|
∫

Ω

maxc(c
sλ̄)(yc − ψ)| ≤

∫

Ω

csλ̄|yc − ψ|

≤ cs‖λ̄‖L∞(‖yc‖H1
0

+ ‖ψ‖L2) (3.37)
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Using equations (3.34), (3.35), (3.36) and (3.37) one can show

〈Byc, yc〉
‖yc‖H1

0

=
〈Ayc + A1yc, yc〉

‖yc‖H1
0

→ +∞ as ‖yc‖H1
0
→ +∞ for any yc ∈ K (3.38)

Then this proves the claim that B = A + A1 is coercive.

(iv) Hemicontinuity of B
We show that the operators A and A1 are continuous so that this property then
also holds for B and follows the claim. Observe that for any fixed y ∈ H1

0 (Ω)
the linear mapping ay : H1

0 (Ω) → R, v 7→ a(y, v) is continuous on H1
0 (Ω). For

the linear operator A : H1
0 (Ω) → H−1(Ω), y 7→ ay we have

‖Ay‖H−1 = sup
‖v‖

H1
0

=1

|ay(v)| = sup
‖v‖

H1
0

=1

|a(y, v)|

≤ sup
‖v‖

H1
0

=1

Cb‖y‖H1
0
‖v‖H1

0
= Cb‖y‖H1

0
.

Clearly, this implies that ‖A‖ ≤ Cb. Hence, A is bounded and implies it is
continuous.
Referring section 4.3.3 in [8], one conclude that our Nemytskii operator A1 :
L2 → L2 is continuous. Applying the embedding property H1

0 →֒ L2 →֒ H−1 we
get

yc,n → yc in H1
0 (Ω) ⇒ yc,n → yc in L2(Ω)

⇒ A1(yc,n) → A1(yc) in L2(Ω)

⇒ A1(yc,n) → A1(yc) in H−1(Ω)

This proves that A1 : H1
0 → H−1 is continuous.

(v) Well-posedness of the solution
Existence and uniqueness of a weak solution yc ∈ H1

0(Ω) now follow directly
from the main theorem on monotone operators. Since B is obviously strongly
monotone, the asserted estimate also holds. Now to prove the estimate we take
yc itself as the test function to obtain

a(yc, yc) + 〈maxc(c
sλ̄+ c(yc − ψ)), yc〉 =

∫

Ω

uycdx.

a(yc, yc) =

∫

Ω

uycdx−
∫

Ω

maxc(c
sλ̄ + c(yc − ψ))ycdx

≤
∫

Ω

|uyc|dx+

∫

Ω

|csλ̄+ c(yc − ψ)||yc|dx

ν‖yc‖2
H1 ≤ ‖u‖L2‖yc‖L2 + [cs‖λ̄‖L∞ + c(‖yc‖L2 + ‖ψ‖L2)]‖yc‖L2

≤ ‖u‖L2‖yc‖H1 + [cs‖λ̄‖L∞ + c(‖yc‖H1 + ‖ψ‖L2)]‖yc‖H1

ν‖yc‖H1 ≤ ‖u‖L2 + cs‖λ̄‖L∞ + c‖yc‖H1 + c‖ψ‖L2
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absorbing the third term in the right hand side by the left hand side term then the
asserted estimate follows. This concludes the proof of the theorem.

3.4 Elliptic regularity and continuity of solutions of

regularized problems

In this section, we will prove the results concerning essential boundedness of the solu-
tion to the semilinear elliptic boundary value problem (3.26) in section 3.3.

Theorem 3.9. Suppose that Assumption 2 hold, and let r > N/2. Then for any pair
u ∈ Lr(Ω), we have yc ∈ L∞(Ω).

To prove this theorem we apply a method of Stampacchia. It makes use of the following
auxiliary result (cf. David Kinderlehrer, Guido Stampacchia [18]).

Lemma 3.10. Let k0 ∈ R, and suppose that ϕ is nonnegative and nonincreasing
function defined in [k0,∞) and having the following property: for every h > k ≥ k0,

ϕ(h) ≤ C

(h− k)a
ϕ(k)b

with constants C > 0, a > 0, and b > 1. Then ϕ(k0 + δ) = 0, where

δa = Cϕ(k0)
b−12

ab
b−1 .

Proof. of Theorem 3.9
The idea of proofs to the general theorems stated in this section were obtained from
Fredi Tröltzsch [8] for Neumann boundary conditions to deal with the present case.

(i) Preliminaries
To this end, we will test the solution yc to (3.26) in the variational formulation
with the part of yc that is larger than k > 0 in absolute value, and then show
that this part vanishes for sufficiently large k. Integrability property of u was
postulated in the statement of the theorem. Here, we denote the order of inte-
grability by r̃. We thus have u ∈ Lr̃(Ω), where r̃ > N/2.
We first assume N ≥ 3 and explain at the end of the proof which modifications
have to made for the case of N = 2. We fix some λ ∈ (1, N−1

N−2
) sufficiently close

to unity such that

r̃ > r :=
N

N − λ(N − 2)
.

Since N ≥ 3, and owing to the choice of λ, we obviously have r > 1. If we
succeed in proving the result for r, then it will be valid for all r̃ > r. The
conjugate exponent r′ for r is given by

1

r′
= 1 − 1

r
= λ

N − 2

N
, (3.39)
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Below, we will use the embedding estimate

‖v‖Lp(Ω) ≤ β‖v‖H1(Ω) for
1

p
=

1

2
− 1

N
=
N − 2

2N
=

1

2λr′
, (3.40)

Since 2r′ ≤ p, this implies that

‖v‖L2r′(Ω) ≤ β‖v‖H1(Ω) (3.41)

Next, we define for each k > 0 a function vk ∈ H1
0 (Ω), such that

vk(x) =







yc(x) − k, if yc(x) ≥ k
0, if |yc(x)| < k
yc(x) + k, if yc(x) ≤ −k.

(3.42)

We aim to show that vk vanishes almost everywhere for sufficiently large k,
which then implies the boundedness of yc. For the sake of brevity, we suppress
the subscript k, writing vk simply as v. We introduce the set

Ω(k) = {x ∈ Ω : |yc(x)| ≥ k}

(ii) Convergence of monotonicity
We claim that

∫

Ω

maxc(c
sλ̄+ c(yc − ψ))vdx ≥ 0 (3.43)

To see this, let
Ω+(k) := {x ∈ Ω : yc(x) > k}.

On the set Ω+(k) one can immediately observe that
∫

Ω+(k)

maxc(c
sλ̄+ c(yc − ψ))vdx =

∫

Ω+(k)

maxc(c
sλ̄+ c(yc − ψ))(yc − k)dx ≥ 0

(3.44)
On the set Ω−(k) := {x ∈ Ω : yc(x) < −k}; since maxc(c

sλ̄ + c(yc − ψ)) is
monotonic increasing with respect to yc, we have

maxc(c
sλ̄ + c(yc − ψ)) ≤ maxc(c

sλ̄+ c(−k − ψ))

≤ 0 if k is large enough.

This implies that
∫

Ω−(k)

maxc(c
sλ̄+ c(yc − ψ))vdx =

∫

Ω−(k)

maxc(c
sλ̄+ c(yc − ψ))(yc − k)dx ≥ 0

(3.45)
Then (3.44) and (3.45) prove (3.43).
From the variational formulation for yc, we infer that, with the bilinear form
a(yc, v) defined in (3.1),

a(yc, v) +

∫

Ω

maxc(c
sλ̄+ c(yc − ψ))vdx =

∫

Ω

uvdx
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hence from (3.43), we have

a(yc, v) ≤
∫

Ω

uvdx (3.46)

(iii) Estimation of ‖v‖H1(Ω)

We claim that
a(v, v) ≤ a(yc, v) (3.47)

Indeed, we obviously have ∂yc

∂xi
= ∂v

∂xi
in Ω(k) and v = 0 in Ω\Ω(k), hence it

follows that
∫

Ω

N
∑

i,j=1

aij
∂yc

∂xi

∂v

∂xj
dx =

∫

Ω

N
∑

i,j=1

aij
∂v

∂xi

∂v

∂xj
dx

∫

Ω

N
∑

i=1

bi
∂yc

∂xi

vdx =

∫

Ω

N
∑

i=1

bi
∂v

∂xi

vdx

Moreover, since yc −k > 0 in Ω+(k), yc +k < 0 in Ω−(k), and v = 0 in Ω\Ω(k),
∫

Ω

c0ycvdx =

∫

Ω+(k)

c0yc(yc − k)dx+

∫

Ω−(k)

c0yc(yc + k)dx

=

∫

Ω+(k)

c0[(yc − k)2 + (yc − k)k]dx+

∫

Ω−(k)

c0[(yc + k)2 − (yc + k)k]dx

≥
∫

Ω

c0v
2dx.

From (3.46) and (3.47) and the coercivity property of the elliptic boundary value
problem, we conclude that, with some θ > 0,

θ‖v‖2
H1(Ω) ≤

∫

Ω

uvdx. (3.48)

(iv) Estimation of both sides of (3.48)
Now recall the embedding inequality in (3.40) and Young’s inequality ab ≤ εa2 +
1
4ε
b2 for all a, b ∈ R and ε > 0. With some generic constant β > 0, and using

Hölder’s inequality, we can estimate the right-hand side as follows:

|
∫

Ω

uvdx| ≤ ‖u‖Lr(Ω)‖v‖Lr′(Ω)

≤ ‖u‖Lr(Ω)[(

∫

Ω(k)

|v|2r′dx)
1

2 (

∫

Ω(k)

1dx)
1

2 ]
1

r′

= ‖u‖Lr(Ω)‖v‖L2r′(Ω)|Ω(k)| 1

2r′

≤ β‖u‖Lr(Ω)‖v‖H1(Ω)|Ω(k)| 1

2r′

≤ β‖u‖2
Lr(Ω)|Ω(k)| 1

r′ + ε‖v‖2
H1(Ω)

= β‖u‖2
Lr(Ω)|Ω(k)|λ 2

p + ε‖v‖2
H1(Ω)
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The number ε > 0 is yet to be determined. Now, by choosing ε := θ/2, we may
absorb into the left-hand side of (3.48) the term ε‖v‖2

H1(Ω) occurring in the last
inequality.
Invoking (3.48) and the estimate given in (3.40), we find that

(

∫

Ω(k)

|v|pdx) 2

p ≤ β‖v‖2
H1(Ω),

hence, by the definition of v,

(

∫

Ω(k)

(|yc| − k)pdx)
2

p ≤ β‖v‖2
H1(Ω), (3.49)

(v) Application of Lemma 3.10
Suppose that h > k. Then Ω(h) ⊂ Ω(k), and thus |Ω(h)| ≤ |Ω(k)|. Therefore,

(

∫

Ω(k)

(|yc| − k)pdx)
2

p ≥ (

∫

Ω(h)

(|yc| − k)pdx)
2

p

≥ (

∫

Ω(h)

(h− k)pdx)
2

p

= (h− k)2|Ω(h)| 2

p .

Finally, we infer from (3.49) and (3.48) that

(h− k)2|Ω(h)| 2

p ≤ β‖u‖2
Lr(Ω)|Ω(k)|λ 2

p

= β‖u‖2
Lr(Ω)(|Ω(k)| 2

p )λ

Putting ϕ(h) := |Ω(h)| 2

p , we therefore obtain the inequality

(h− k)2ϕ(h) ≤ β‖u‖2
Lr(Ω)ϕ(k)λ,

for all h > k ≥ 0. We now apply Lemma 3.10 with the specifications

a = 2, b = λ > 1, k0 = 0, C = β‖u‖2
Lr(Ω).

We obtain δ2 = β̃‖u‖2
Lr(Ω), hence the assertion follows: in fact ϕ(δ) = 0 means

that |yc(x)| ≤ δ for almost every x ∈ Ω.

(vi) Modification for the case N=2

Let r > N
2

= 1 be the order of integrability of u assumed in the theorem. In
the case of N = 2, the embedding inequality (3.40) is valid for all p < ∞. We
therefore define p with λ > 1 by

1

p
=

1

2λr′
.

With this specification, all conclusions subsequent to (3.40) in the N ≥ 3 case
carry over to N = 2, resulting the validity of the assertion.
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This concludes the proof.

Remark 3.11. : In particular, if we consider the case where r = 2, then we have
r = 2 > N/2 which implies N ≤ 3. In the above theorem, we have already proved for
the case where N = 2 and N = 3. Therefore we conclude that if u ∈ L2(Ω), then the
weak solution yc ∈ H1

0 (Ω) is actually essentially bounded(regular), i.e., yc ∈ L∞(Ω).

3.5 Feasibility of solutions of regularized problem for

large c

For fixed λ̄ ≥ inf λ̄ > 0, 0 < s < 1/2 and for large c sufficiently large the optimal
states yc of (Pc) are feasible, i.e., yc ≤ ψ.
We modify a proof given in Lemma 3.10 of [2] to deal with our case. Let us first prove
an estimate on the norm of the violation of the constraint y ≤ ψ. Let us define for
solutions yc of the regularized equation.

φc := max(0, yc − ψ).

Then from the definition of the max we have φc ≥ 0 and φc ∈ H1
0(Ω). Furthermore,

we have the following Lemma.

Lemma 3.12. Let yc be a solution of the regularized equation (3.13) for a given right-
hand side u ∈ L2(Ω). Then the violation of yc ≤ ψ can be estimated by

‖φc‖2
H1 + c‖φc‖2

L2 ≤ Cc−1‖max(u−Aψ − csλ̄, 0)‖2
L2

with a constant C independent of c, λ̄, u, yc.
Furthermore, if c is chosen large enough in the above estimate, then the solutions yc

are feasible,i.e., yc ≤ ψ.

Proof. Testing the regularized equation

Ayc + maxc(c
sλ̄+ c(yc − ψ)) = u

with φc = max(0, yc − ψ) ≥ 0 and using the fact that maxc(x) ≥ max(0, x) we obtain

〈Ayc −Aψ, φc〉 + (max(0, csλ̄+ c(yc − ψ)), φc) ≤ 〈u− Aψ, φc〉

Since from the definition max(0, x) ≥ x and (yc − ψ, φc) = ‖φc‖2
L2 , it follows

(max(0, csλ̄+ c(yc − ψ)), φc) ≥ (csλ̄+ c(yc − ψ), φc)

= (csλ̄, φc) + c‖φc‖2
L2

This implies
〈Ayc − Aψ, φc〉 + (csλ̄, φc) + c‖φc‖2

L2 ≤ (u−Aψ, φc)
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and the claim follows with

〈Aφc, φc〉 + c‖φc‖2
L2 ≤ (u− Aψ − csλ̄, φc) (3.50)

≤ (max(u− Aψ − csλ̄, 0), φc)

≤ ‖max(u− Aψ − csλ̄, 0)‖L2‖φc‖L2

=

(

1√
c
‖max(u−Aψ − csλ̄, 0)‖L2

)

.
(√

c‖φc‖L2

)

≤ 1

2c
‖max(u− Aψ − csλ̄, 0)‖2

L2 +
c

2
‖φc‖2

L2

by the assumption on the elliptic operator A.

Proposition 3.13. Let ρ ≥ 0 and let yc ∈ H1
0 (Ω) denote the solution to

Ayc + maxc(c
sλ̄ + c(yc − ψ)) = u with u ∈ Bρ = {u : ‖u‖L∞

≤ ρ}. If csλ̄ ≥
max(0, ρ− Aψ) for any c > 0, then yc is feasible,i.e., yc ≤ ψ for each c > 0.

Proof. Let u ∈ Bρ. Due to the assumption on λ̄ we have since φc ≥ 0

(u−Aψ − csλ̄, φc) ≤ (ρ− Aψ − max(0, ρ− Aψ), φc) ≤ 0

Then the equation (3.50) implies φc = 0 and hence yc ≤ ψ.

3.6 Convergence Analysis of regularized Equations

In this section we study on the convergence properties of the solutions of the semilinear
elliptic regularized equation (3.13) as the regularization parameter c→ ∞:

Ay + maxc(c
sλ̄+ c(y − ψ)) = u,

and define
λc = maxc(c

sλ̄+ c(y − ψ)).

We will consider a sequence of solutions of the regularized problem converging weakly/strongly
to solutions of the original problem.
In the following section, we require that λ̄ ∈ L∞(Ω) and λ̄ ≥ inf λ̄ > 0, which is
fixed during the following process c → ∞. The following convergence result is the
modification of the Lemma in K. Ito and K. Kunisch [13] to our case.

Lemma 3.14. Let λ̄ ∈ L∞(Ω) be given. For u ∈ L2(Ω) let (yc, λc) ∈ H1
0 (Ω) × L2(Ω)

be the solution of the regularized problem (3.13). Then the solution (yc, λc) converges
to the solution (y, λ) of (3.9) in the sense that yc → y = y(u) strongly in H1

0 (Ω) and
λc → λ strongly in H−1(Ω) as c→ ∞.

Proof. For every c > 0 from (3.9) and (3.13), yc ∈ H1
0 (Ω) satisfy

a(yc, yc − y) + (λc, yc − y) = (u, yc − y)
λc = maxc(c

sλ̄+ c(yc − ψ))

}

(3.51)
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Since λc ≥ 0 and y ∈ K, i.e., ψ − y ≥ 0 we have

(λc, yc − y) = (λc,
λ̄

c1−s
+ yc − ψ + ψ − y − λ̄

c1−s
)

≥ 1

c
(λc, c

sλ̄+ c(yc − ψ)) − 1

c1−s
(λc, λ̄)

Note that for |x| ≤ 1
2c

where x := csλ̄+ c(yc − ψ) and λc := maxc(x), we have

x ≥ maxc(x) −
1

2c

⇒ maxc(x).x ≥ maxc(x)
2 − 1

2c
.maxc(x)

≥ maxc(x)
2 − 1

4c2
(since maxc(x) ≤

1

2c
)

and hence
(λc, yc − y) ≥ 1

c
‖λc‖2

L2 −
1

4c3
− 1

c1−s
(λc, λ̄) (3.52)

Using this inequality in equation (3.51) and employing Young’s inequality we get

a(yc, yc) +
1

c
‖λc‖2

L2 ≤ a(yc, y) + (u, yc − y) +
1

4c3
+

1

c1−s
(λc, λ̄)

≤ ν

4
‖yc‖2

H1 +
1

ν
‖y‖2

H1 − (u, y) +
ν

4
‖yc‖2

H1 +
1

ν
‖u‖2

L2

+
1

4c3
+

1

2c
‖λc‖2

L2 +
1

2c1−2s
‖λ̄‖2

L2

≤ ν

2
‖yc‖2

H1 +
1

ν
‖y‖2

H1 + ‖u‖L2‖y‖H1 +
1

ν
‖u‖2

L2 +
1

4c3

+
1

2c
‖λc‖2

L2 +
1

2c1−2s
‖λ̄‖2

L2

The terms ν
2
‖yc‖2

H1 and 1
2c
‖λc‖2

L2 are absorbed by the left hand side implies the right
hand side is independent of c. Since a is coercive, this implies that

ν‖yc‖2
H1 +

1

c
‖λc‖2

L2

is uniformly bounded with respect to c ≥ 1 and hence by (3.13) the family {λc}c≥1 is
bounded in H−1(Ω).
Consequently there exist (y∗, λ∗) ∈ H1

0 (Ω) ×H−1(Ω) and a sequence {(ycn
, λcn

)} with
lim cn = ∞ such that

(ycn
, λcn

) ⇀ (y∗, λ∗) in H1
0 (Ω) ×H−1(Ω).

Henceforth we drop the subscript n with cn. Implies that yc converges to y∗ a.e. in Ω
and therefore y∗ ≤ ψ since yc is feasible, i.e., yc ≤ ψ.
From (3.9) and (3.13) we also have

a(yc − y, yc − y) + 〈λc − λ, yc − y〉 = 0,
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By the Young’s inequality we have

1

c1−s
(λc, λ̄) =

(

1√
c
λc,

1

c1/2−s
λ̄

)

≤ 1

c
‖λc‖2

L2 +
1

4c1−2s
‖λ̄‖2

L2

and by (3.52)

(λc, yc − y) ≥ 1

c
‖λc‖2

L2 −
1

4c3
− 1

c
‖λc‖2

L2 −
1

4c1−2s
‖λ̄‖2

L2

implies

(λc, yc − y) ≥ − 1

4c3
− 1

4c1−2s
‖λ̄‖2

L2.

Hence
0 ≤ lim

c→∞
ν‖yc − y‖2

H1
0
≤ lim

c→∞
〈λ, yc − y〉 = 〈λ, y∗ − ψ〉 ≤ 0,

where we used the complementarity condition 〈λ, y − ψ〉 = 0 and y∗ ≤ ψ. It follows
that limc→∞yc = y in H1

0 (Ω) and hence y∗ = y. Taking the limit in

a(yc, v) + (λc, v) = (u, v) ∀v ∈ H1
0 (Ω),

we find
a(y, v) + 〈λ∗, v〉 = (u, v) ∀v ∈ H1

0 (Ω),

This equation is also satisfied with λ∗ replaced by λ and consequently λ = λ∗. Since
(y, λ) is the unique solution to (3.10) the whole family {(yc, λc)} converges in the sense
given in the statement of the theorem.

3.7 Convergence Rate of regularized Equations

In this section we derive the rate of convergence of the family {yc}c>0 to y in L∞(Ω).
The idea of proofs to the general theorems stated in this section were obtained from
[2].

Proposition 3.15. Let λ̄ ∈ L∞(Ω) be given. Let y and yc denote the correspond-
ing solutions of the variational inequality (3.8) and the regularized equation (3.13),
respectively. Then

‖yc − y‖L∞(Ω) ≤
‖λ̄‖L∞

c1−s
+

1

2c2
.

for c sufficiently large.

Proof. Let the test function be defined as

φk :=







y − yc − k, if y − yc > k
y − yc + k, if y − yc < −k
0, else
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where k ∈ R
+. Subtracting (3.13) from the first equation in (3.9) and testing with φk

gives
a(y − yc, φk) + 〈λ− maxc(c

sλ̄+ c(yc − ψ)), φk〉 = 0 (3.53)

Since max(φk, 0) and min(φk, 0) belong to H1
0 (Ω), we can split φk = max(φk, 0) +

min(φk, 0). Since λ ≥ 0 we get 〈λ,max(φk, 0)〉 ≥ 0. By feasibility of yc we find

0 ≥ min(φk, 0) = min(y − yc + k, 0) ≥ min(y − ψ + k, 0)

≥ min(y − ψ, 0) = y − ψ.

By the complementarity condition this implies

0 ≥ 〈λ,min(φk, 0)〉 ≥ 〈λ, y − ψ〉 = 0.

On the set {φk > 0} since y − yc > k ⇒ ψ − yc > k, we get

maxc(c
sλ̄+ c(yc − ψ)) ≤ maxc(c

sλ̄+ c(yc − y))

≤ maxc(c
sλ̄− ck) ≤ maxc(−

1

2c
) = 0, for k ≥ ‖λ̄‖L∞

c1−s
+

1

2c2
,

and hence
(maxc(c

sλ̄+ c(yc − ψ)),max(φk, 0)) = 0.

Since from the definition maxc(c
sλ̄+ c(yc − ψ)) ≥ 0, we have

−(maxc(c
sλ̄+ c(yc − ψ)),min(φk, 0)) ≥ 0.

Thus from (3.53), we get a(y − yc, φk) ≤ 0 for k ≥ ‖λ̄‖L∞

c1−s + 1
2c2

.
Due to properties of the bilinear form a and the definition of φk, we have a(y−yc, φk) ≥
a(φk, φk), which implies φk = 0.

Up to now, we studied convergence of solutions for fixed right-hand side u in (3.13). Let
us now turn to the case, where the right-hand side is a (possibly weakly) convergent
sequence. Due to the monotonicity of the maxc-function we obtain the following
Lipschitz continuity result for the solutions of the regularized equation.

Lemma 3.16. Let λ̄ ∈ L∞(Ω) be given. Let um, un ∈ H−1(Ω) be given. Then there
exists a constant L > 0 independent of c such that

‖yc(um) − yc(un)‖H1
0
≤ L‖um − un‖H−1 .

Proof. The proof is similar to the one of Lemma 3.1. The main idea again is to take

a(yc, v) + (maxc(c
sλ̄+ c(yc − ψ)), v) = (u, v)

with u = un and u = um. Then we insert v = yc(um)− yc(un) and v = yc(un)− yc(um)
in the arising equalities. The summation of both equations yields

0 = a(yc(un), yc(um) − yc(un)) − a(yc(um), yc(um) − yc(un))

+ (maxc(c
sλ̄+ c(yc(un) − ψ)) − maxc(c

sλ̄+ c(yc(um) − ψ)), yc(um) − yc(un))

+ 〈um − un, yc(um) − yc(un)〉
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⇔ 0 = a(yc(um), yc(um) − yc(un)) − a(yc(un), yc(um) − yc(un)) (3.54)
+ (maxc(c

sλ̄+ c(yc(um) − ψ)) − maxc(c
sλ̄+ c(yc(un) − ψ)), yc(um) − yc(un))

− 〈um − un, yc(um) − yc(un)〉

Because of the monotonicity of the max function it is obvious that

(maxc(c
sλ̄+ c(yc(um) − ψ)) − maxc(c

sλ̄+ c(yc(un) − ψ)), yc(um) − yc(un)) ≥ 0

According to the above equality (3.54), and with the coercivity of the bilinear form,
we have

0 ≥ a(yc(um), yc(um) − yc(un)) − a(yc(un), yc(um) − yc(un)) − 〈um − un, yc(um) − yc(un)〉
≥ a(yc(um) − yc(un), yc(um) − yc(un)) − ‖um − un‖H−1(Ω)‖yc(um) − yc(un)‖H1

0
(Ω)

≥ Cc‖yc(um) − yc(un)‖2
H1

0
(Ω) − ‖um − un‖H−1(Ω)‖yc(um) − yc(un)‖H1

0
(Ω)

⇒ ‖yc(um) − yc(un)‖H1
0
(Ω) ≤

1

Cc
‖um − un‖H−1(Ω) (3.55)

which establishes the case with L := 1
Cc

.

Lemma 3.17. Let λ̄ ∈ L∞(Ω) be given. Let uc ⇀ u in L2(Ω).
Then yc → y in H1

0 (Ω) strongly.

Proof. It holds

‖yc(uc) − y(u)‖H1 ≤ ‖yc(uc) − yc(u)‖H1 + ‖yc(u) − y(u)‖H1.

The first addend can be majorized by L‖uc − u‖H−1 due to Lemma 3.16. By compact
embeddings this term tends to zero for c → ∞. The second addend tends to zero
according to Lemma 3.14.



Chapter 4

Optimal control with bilateral

constraints

In this chapter we investigate the analytical treatment of optimal control problems
governed by a class of elliptic variational inequalities of the first kind with bilateral
constraints. Moreover, we consider constraints on the control.

Approximation of the bilateral obstacle problem to a certain semilinear elliptic equa-
tion is shown. The treatment of bilateral constraints gives rise to some additional
difficulties. Existence results are given and an optimality system is derived.

4.1 Formulation of the optimal control problem in

the variational form

In this section we formulate the optimal control problem governed by bilateral state
constraints. We consider approximation of the variational inequality by an equation
where the maximal monotone operator (which is in this case the subdifferential of
a Lipschitz function) is approached by a differentiable single-value mapping, with
Moreau-Yosida approximations techniques.

Let Ω be an open, bounded subset of R
N (N ≤ 3) with a smooth boundary Γ = ∂Ω.

The optimal control problems subject to bilateral obstacle problem to be studied in
this chapter can be set in the following general form:

(P ′)







min J(y, u) = g(y) + j(u)
over y ∈ K ′, u ∈ Uad

s.t a(y, v − y) ≥ (u, v − y) ∀v ∈ K ′

where ψa, ψb ∈ H1(Ω), ψa ≤ ψb are given functions.

K ′ = {v ∈ H1
0 (Ω) : ψa ≤ v ≤ ψb a.e. on Ω}

37
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and
Uad = {u ∈ L2(Ω) : ua ≤ u ≤ ub}

are nonempty, closed, and convex subset of H1
0 (Ω) and L2(Ω) respectively.

All the properties of the bilinear form a(·, ·) and its Riesz representative A are the
same as we defined in chapter 3.
Consider the following variational inequality in (P ′):

a(y, v − y) ≥ (u, v − y), ∀v ∈ K ′, (4.1)

where u belongs to Uad as a source term. Introducing multipliers λb and λa, the vari-
ational inequality in (P ′) can equivalently be expressed as complementary condition:















Ay + λb − λa = u,
ψa ≤ y ≤ ψb,
λb ≥ 0 and λa ≥ 0,
(λb, y − ψb) = (λa, y − ψa) = 0

(4.2)

where λb, λa ∈ H−1(Ω) are the associated Lagrange multipliers to the solution (P ′)
and ψa, ψb ∈ H1(Ω) and ψa|Γ ≤ 0 ≤ ψb|Γ.
In this way the optimal control of variational inequality (P ′) is interpreted as opti-
mization with complementarity constraints. If λb, λa has extra regularity in sense that
λb, λa ∈ L2(Ω), the optimality system (4.2) can equivalently be expressed as







Ay + λb − λa = u in L2(Ω)

λb − λa = max(0, λ+ c(y − ψb)) − max(0, λ+ c(ψa − y))
(4.3)

for any c > 0 and where max denotes the pointwise a.e. maximum operation. The
optimal control problem (P ′) therefore can be equivalently expressed as minimizing
J(y, u) subject to (4.3). This is the reason that the constraint (4.1) makes the optimal
control problem (P ′) non-smooth.
Since x → max(0, x) is not C1 regular(not Gâteaux differentiable), to regularize the
max−function in (4.3) we use the well known smoothing (C1−approximation), maxc.
Then the complementarity system (4.3) will be approximated by means of the regu-
larized state equation

Ay + maxc(c
sλ̄+ c(y − ψb)) − maxc(c

sλ̄+ c(ψa − y)) = u, (4.4)

where 0 < s < 1/2 and inf λ̄ > 0 , the max−operation was replaced by a generalized
Moreau-Yosida type regularization.
As a consequence the optimal control problem subject to regularized equation is given
by

(P ′
c)











min J(y, u) = g(y) + j(u)

over u ∈ Uad, subject to
Ay + maxc(c

sλ̄+ c(y − ψb)) − maxc(c
sλ̄+ c(ψa − y)) = u, y ∈ H1

0(Ω)

(4.5)
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where inf λ̄ > 0, λ̄ ∈ L∞(Ω), is fixed during the regularization process given, and
maxc is a C2−approximation of x → max(0, x). If g and j are C1−regular, then the
first order optimality system for (P ′

c) is given by










Ayc + maxc(c
sλ̄+ c(yc − ψb)) − maxc(c

sλ̄+ c(ψa − yc)) = uc,

A∗pc + c(sgnc(c
sλ̄+ c(yc − ψb)) + sgnc(c

sλ̄+ c(ψa − yc)))pc + g′(yc) = 0,

(j′(uc) − pc, u− uc) ≥ 0, ∀u ∈ Uad

(4.6)

where expressions

λb
c − λa

c = maxc(c
sλ̄+ c(yc − ψb)) − maxc(c

sλ̄+ c(ψa − yc))

and
µb

c + µa
c = c(sgnc(c

sλ̄+ c(yc − ψb)) + sgnc(c
sλ̄+ c(ψa − yc)))pc

in (4.6) tend to measure Lagrange multipliers as c→ ∞.

4.2 A semilinear elliptic regularized problem

The elliptic equation occurring in problem (4.4) is semilinear. In this and the next
two sections we will discuss existence, regularity and feasibility of the solution of the
regularized problem (4.4) with homogenous Dirichlet elliptic boundary value problem.

Ay + maxc(c
sλ̄+ c(y − ψb)) − maxc(c

sλ̄+ c(ψa − y)) = u in Ω
y = 0 on Γ

}

(4.7)

The elliptic differential operator A is assumed to take the form (3.6), and the function
u will play the role of the controls.

To prove the existence and uniqueness of solutions of the regularized problem (4.7), we
apply Main Theorem on Monotone Operators 3.6. We follow the same procedure as
in the proof of Theorem 3.8. To do this, we first have to define the notation of a weak
solution to the nonlinear elliptic boundary value problem (4.7). The idea is simple:
we bring the nonlinear term maxc(c

sλ̄ + c(y − ψb)) − maxc(c
sλ̄ + c(ψa − y)) in (4.7)

to the right-hand side of the equation, thus obtaining a boundary value problem with
the right-hand side ũ = u−maxc(c

sλ̄+ c(y − ψb)) + maxc(c
sλ̄+ c(ψa − y)) and linear

differential operators on the left-hand side. For this purpose , we use the variational
formulation for linear boundary value problem.

Definition 4.1. A function y ∈ H1
0 (Ω) is called a weak solution to problem (4.7) if

we have, for every v ∈ H1
0 (Ω),

a(y, v) +

∫

Ω

(maxc(c
sλ̄+ c(y − ψb)) − maxc(c

sλ̄+ c(ψa − y)))vdx =

∫

Ω

uvdx. (4.8)
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Note that maxc(c
sλ̄+ c(y − ψb)) − maxc(c

sλ̄+ c(ψa − y)) is bounded as,

|maxc(c
sλ̄+c(y−ψb))−maxc(c

sλ̄+c(ψa−y))| ≤ |csλ̄+c(y−ψb)|+|csλ̄+c(ψa−y)|+
1

2c
,

and monotone increasing almost everywhere in Ω.

Theorem 4.2. Suppose that Assumption 2 hold. Then the for each c > 0 and for
every right-hand side u ∈ L2(Ω) there exists a unique solution yc ∈ H1

0 (Ω) of the
semilinear elliptic equation (4.7). Moreover, there is some constant γ > 0 such that

‖yc‖H1(Ω) ≤ γ‖u‖L2(Ω). (4.9)

Proof. We apply the main theorem on monotone operators in V = H1
0 (Ω).

(i) Definition of a monotone operator B : H1
0 −→ H−1

It follows from section (3.1) that the bilinear form (3.1) generates a continuous
linear operator A : H1

0 −→ H−1 through the relation

〈Ayc, v〉 = a(yc, v).

This is the linear part of nonlinear operator B. The nonlinear part of B is for-
mally defined by the identity (A2y)(x) := maxc(c

sλ̄+c(yc(x)−ψb))−maxc(c
sλ̄+

c(ψa − yc(x))). The sum of the two operators yield the the operator B, i.e.,
B = A+ A2.

(ii) Monotonicity
We show that the operators A and A2 are monotone so that this property then
also holds for B. First, A is monotone, since a(yc, yc) ≥ 0 for all yc ∈ H1

0 (Ω).
Next, we consider A2. Owing the monotonicity of maxc in yc, we have

[(maxc(c
sλ̄+ c(yc,1(x) − ψb)) − maxc(c

sλ̄+ c(ψa − yc,1(x))))

−(maxc(c
sλ̄+c(yc,2(x)−ψb))−maxc(c

sλ̄+c(ψa−yc,2(x))))](yc,1(x)−yc,2(x)) ≥ 0

for all yc,1, yc,2 ∈ H1
0 (Ω) and all x. Therefore, for all yc,1, yc,2 ∈ H1

0(Ω)

〈A2(yc,1) − A2(yc,2), yc,1 − yc,2〉

=

∫

Ω

[(maxc(c
sλ̄+ c(yc,1(x) − ψb)) − maxc(c

sλ̄+ c(ψa − yc,1(x))))

−(maxc(c
sλ̄+c(yc,2(x)−ψb))−maxc(c

sλ̄+c(ψa−yc,2(x))))](yc,1(x)−yc,2(x))dx ≥ 0

Note that the boundedness condition for maxc guarantees that the function

x 7→ [(maxc(c
sλ̄+ c(yc,1(x) − ψb)) − maxc(c

sλ̄+ c(ψa − yc,1(x))))

−(maxc(c
sλ̄+ c(yc,2(x) − ψb)) − maxc(c

sλ̄+ c(ψa − yc,2(x))))]

is square integrable, so that the above integral exists. In conclusion, A2 is mono-
tone.
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(iii) Coercivity of B
A is coercive follows from (3.4) and (3.5),i.e.,

〈Ayc, yc〉 = a(yc, yc) ≥ Cc‖yc‖2
H1

0

∀yc ∈ H1
0 (Ω). (4.10)

For all yc ∈ H1
0 (Ω)

〈A2yc, yc〉 = 〈maxc(c
sλ̄+ c(yc − ψb)) − maxc(c

sλ̄+ c(ψa − yc)), yc〉

=

∫

Ω

[maxc(c
sλ̄+ c(yc − ψb)) − maxc(c

sλ̄)](yc − ψb)

+

∫

Ω

[−maxc(c
sλ̄+ c(ψa − yc)) − maxc(c

sλ̄)](yc − ψa)

+

∫

Ω

maxc(c
sλ̄+ c(yc − ψb))ψb +

∫

Ω

maxc(c
sλ̄)(yc − ψb)

−
∫

Ω

maxc(c
sλ̄+ c(ψa − yc))ψa +

∫

Ω

maxc(c
sλ̄)(yc − ψa)

By the monotonicity of maxc,
∫

Ω

[maxc(c
sλ̄+ c(yc − ψb)) − maxc(c

sλ̄)](yc − ψb) ≥ 0 (4.11)

∫

Ω

[−maxc(c
sλ̄+ c(ψa − yc)) − maxc(c

sλ̄)](yc − ψa) ≥ 0 (4.12)

and the estimation of the last four integrals above (following the same procedure
as we proved Theorem 3.8), applying these results we obtain

〈A2yc, yc〉
‖yc‖H1

0

→ +∞ as ‖yc‖H1
0
→ +∞ for any yc ∈ K ′.

This proves the claim that B = A + A2 is coercive.

(iv) Hemicontinuity of B
We show that the operators A and A2 are continuous so that this property then
also holds for B and follows the claim. The operator A is linear and continu-
ous and thus hemicontinuous. Referring section 4.3.3 in [8], one conclude that
our Nemytskii operator A2 : L2 → L2 is continuous. Applying the embedding
property H1

0 →֒ L2 →֒ H−1 we get

yc,n → yc in H1
0 (Ω) ⇒ yc,n → yc in L2(Ω)

⇒ A2(yc,n) → A2(yc) in L2(Ω)

⇒ A2(yc,n) → A2(yc) in H−1(Ω)

This proves that A2 : H1
0 → H−1 is continuous.
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(v) Well-posedness of the solution
Existence and uniqueness of a weak solution yc ∈ H1

0(Ω) now follow directly
from the main theorem on monotone operators. Since B is obviously strongly
monotone, the asserted estimate also holds. Now to prove the estimate we take
yc itself as the test function to obtain

a(yc, yc) + 〈maxc(c
sλ̄ + c(yc − ψb)) − maxc(c

sλ̄+ c(ψa − yc)), yc〉 =

∫

Ω

uycdx.

a(yc, yc) =

∫

Ω

uycdx−
∫

Ω

(maxc(c
sλ̄+ c(yc − ψb)) − maxc(c

sλ̄+ c(ψa − yc)))ycdx

≤
∫

Ω

|uyc|dx+

∫

Ω

(|csλ̄+ c(yc − ψb)| + |csλ̄+ c(ψa − yc)|)|yc|dx

ν‖yc‖2
H1 ≤ ‖u‖L2‖yc‖L2 + [cs‖λ̄‖L∞ + c(‖yc‖L2 + ‖ψb‖L2) + cs‖λ̄‖L∞

+ c(‖ψa‖L2 + ‖yc‖L2)]‖yc‖L2

≤ ‖u‖L2‖yc‖H1 + [cs‖λ̄‖L∞ + c(‖yc‖H1 + ‖ψb‖L2) + cs‖λ̄‖L∞

+ c(‖ψa‖L2 + ‖yc‖H1)]‖yc‖H1

ν‖yc‖H1 ≤ ‖u‖L2 + cs‖λ̄‖L∞ + c(‖yc‖H1 + ‖ψb‖L2) + cs‖λ̄‖L∞ + c(‖ψa‖L2 + ‖yc‖H1)

then the asserted estimate follows. This concludes the proof of the theorem.

4.3 Elliptic regularity and continuity of solutions of

regularized problems

In this section, we will prove the results concerning essential boundedness of the solu-
tion to the semilinear elliptic boundary value problem (4.7) in section 4.2.

Theorem 4.3. Suppose that Assumption 2 hold, and let r > N/2. Then for any pair
u ∈ Lr(Ω), we have yc ∈ L∞(Ω).

Proof. We follow the same technique as the proof of Theorem 3.9 for the unilateral
case.

(i) Preliminaries
To this end, we will test the solution yc to (4.7) in the variational formulation with
the part of yc that is larger than k > 0 in absolute value, and then show that this
part vanishes for sufficiently large k. Integrability property of u was postulated
in the statement of the theorem. Here, we denote the order of integrability by
r̃. We thus have u ∈ Lr̃(Ω), where r̃ > N/2.
We first assume N ≥ 3 and explain at the end of the proof which modifications
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have to made for the case of N = 2. We fix some λ ∈ (1, N−1
N−2

) sufficiently close
to unity such that

r̃ > r :=
N

N − λ(N − 2)
.

Since N ≥ 3, and owing to the choice of λ, we obviously have r > 1. If we
succeed in proving the result for r, then it will be valid for all r̃ > r. The
conjugate exponent r′ for r is given by

1

r′
= 1 − 1

r
= λ

N − 2

N
, (4.13)

Below, we will use the embedding estimate

‖v‖Lp(Ω) ≤ β‖v‖H1(Ω) for
1

p
=

1

2
− 1

N
=
N − 2

2N
=

1

2λr′
, (4.14)

Since 2r′ ≤ p, this implies that

‖v‖L2r′(Ω) ≤ β‖v‖H1(Ω) (4.15)

Next, we define for each k > 0 a function vk ∈ H1
0 (Ω), such that

vk(x) =







yc(x) − k, if yc(x) ≥ k
0, if |yc(x)| < k
yc(x) + k, if yc(x) ≤ −k.

(4.16)

We aim to show that vk vanishes almost everywhere for sufficiently large k,
which then implies the boundedness of yc. For the sake of brevity, we suppress
the subscript k, writing vk simply as v. We introduce the set

Ω(k) = {x ∈ Ω : |yc(x)| ≥ k}

(ii) Convergence of monotonicity
We claim that

∫

Ω

(maxc(c
sλ̄+ c(yc − ψb)) − maxc(c

sλ̄+ c(ψa − yc)))vdx ≥ 0 (4.17)

On the set Ω+(k) := {x ∈ Ω : yc(x) > k};
∫

Ω+(k)

maxc(c
sλ̄+ c(yc − ψb))vdx =

∫

Ω+(k)

maxc(c
sλ̄+ c(yc − ψb))(yc − k)dx ≥ 0.

(4.18)
Since −maxc(c

sλ̄+ c(ψa − yc)) is monotonic increasing with respect to yc, on the
set Ω+(k) we have

−maxc(c
sλ̄+ c(ψa − yc)) ≥ −maxc(c

sλ̄+ c(ψa − k))

= 0 if k is large enough.
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implies
∫

Ω+(k)

−maxc(c
sλ̄+ c(ψa − yc))vdx ≥ 0 (4.19)

From (4.18) and (4.19) it follows that
∫

Ω+(k)

(maxc(c
sλ̄+ c(yc − ψb)) − maxc(c

sλ̄+ c(ψa − yc)))vdx

=

∫

Ω+(k)

(maxc(c
sλ̄+ c(yc − ψb)) − maxc(c

sλ̄+ c(ψa − yc)))(yc − k)dx ≥ 0

On the set Ω−(k) := {x ∈ Ω : yc(x) < −k};
∫

Ω−(k)

−maxc(c
sλ̄+c(ψa−yc))vdx =

∫

Ω−(k)

−maxc(c
sλ̄+c(ψa−yc))(yc+k)dx ≥ 0.

(4.20)
Since maxc(c

sλ̄ + c(yc − ψb)) is monotonic increasing with respect to yc, on the
set Ω−(k) we have

maxc(c
sλ̄+ c(yc − ψb)) ≤ maxc(c

sλ̄+ c(−k − ψb))

≤ 0 if k is large enough.

implies
∫

Ω−(k)

maxc(c
sλ̄+ c(yc − ψb))vdx ≥ 0 (4.21)

From (4.20) and (4.21) it follows that
∫

Ω−(k)

(maxc(c
sλ̄+ c(yc − ψb)) − maxc(c

sλ̄+ c(ψa − yc)))vdx

=

∫

Ω−(k)

(maxc(c
sλ̄+ c(yc − ψb)) − maxc(c

sλ̄+ c(ψa − yc)))(yc + k)dx ≥ 0

This proves (4.17).
From the variational formulation for yc, we infer that, with the bilinear form
a(yc, v) defined in (3.1),

a(yc, v) +

∫

Ω

(maxc(c
sλ̄+ c(yc − ψb)) − maxc(c

sλ̄+ c(ψa − yc)))vdx =

∫

Ω

uvdx

hence from (4.17), we have

a(yc, v) ≤
∫

Ω

uvdx (4.22)
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(iii) Estimation of ‖v‖H1(Ω)

We claim that
a(v, v) ≤ a(yc, v) (4.23)

Indeed, we obviously have ∂yc

∂xi
= ∂v

∂xi
in Ω(k) and v = 0 in Ω\Ω(k), hence it

follows that
∫

Ω

N
∑

i,j=1

aij
∂yc

∂xi

∂v

∂xj
dx =

∫

Ω

N
∑

i,j=1

aij
∂v

∂xi

∂v

∂xj
dx

∫

Ω

N
∑

i,j=1

bi
∂yc

∂xi
vdx =

∫

Ω

N
∑

i,j=1

bi
∂v

∂xi
vdx

Moreover, since yc −k > 0 in Ω+(k), yc +k < 0 in Ω−(k), and v = 0 in Ω\Ω(k),
∫

Ω

c0ycvdx =

∫

Ω+(k)

c0yc(yc − k)dx+

∫

Ω−(k)

c0yc(yc + k)dx

=

∫

Ω+(k)

c0[(yc − k)2 + (yc − k)k]dx+

∫

Ω−(k)

c0[(yc + k)2 − (yc + k)k]dx

≥
∫

Ω

c0v
2dx.

From (4.22) and (4.23) and the coercivity property of the elliptic boundary value
problem, we conclude that, with some θ > 0,

θ‖v‖2
H1(Ω) ≤

∫

Ω

uvdx. (4.24)

(iv) Estimation of both sides of (4.24)
Now recall the embedding inequality in (4.14) and Young’s inequality ab ≤ εa2 +
1
4ε
b2 for all a, b ∈ R and ε > 0. With some generic constant β > 0, and using

Hölder’s inequality, we can estimate the right-hand side as follows:

|
∫

Ω

uvdx| ≤ ‖u‖Lr(Ω)‖v‖Lr′(Ω)

≤ ‖u‖Lr(Ω)[(

∫

Ω(k)

|v|2r′dx)
1

2 (

∫

Ω(k)

1dx)
1

2 ]
1

r′

= ‖u‖Lr(Ω)‖v‖L2r′(Ω)|Ω(k)| 1

2r′

≤ β‖u‖Lr(Ω)‖v‖H1(Ω)|Ω(k)| 1

2r′

≤ β‖u‖2
Lr(Ω)|Ω(k)| 1

r′ + ε‖v‖2
H1(Ω)

= β‖u‖2
Lr(Ω)|Ω(k)|λ 2

p + ε‖v‖2
H1(Ω)

The number ε > 0 is yet to be determined. Now, by choosing ε := θ/2, we may
absorb into the left-hand side of (4.24) the term ε‖v‖2

H1(Ω) occurring in the last
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inequality.
Invoking (4.24) and the estimate given in (4.14), we find that

(

∫

Ω(k)

|v|pdx) 2

p ≤ β‖v‖2
H1(Ω),

hence, by the definition of v,

(

∫

Ω(k)

(|yc| − k)pdx)
2

p ≤ β‖v‖2
H1(Ω), (4.25)

(v) Application of Lemma 3.10
Suppose that h > k. Then Ω(h) ⊂ Ω(k), and thus |Ω(h)| ≤ |Ω(k)|. Therefore,

(

∫

Ω(k)

(|yc| − k)pdx)
2

p ≥ (

∫

Ω(h)

(|yc| − k)pdx)
2

p

≥ (

∫

Ω(h)

(h− k)pdx)
2

p

= (h− k)2|Ω(h)| 2

p .

Finally, we infer from (4.25) and (4.24) that

(h− k)2|Ω(h)| 2

p ≤ β‖u‖2
Lr(Ω)|Ω(k)|λ 2

p

≤ β‖u‖2
Lr(Ω)(|Ω(k)| 2

p )λ

Putting ϕ(h) := |Ω(h)| 2

p , we therefore obtain the inequality

(h− k)2ϕ(h) ≤ β‖u‖2
Lr(Ω)ϕ(k)λ,

for all h > k ≥ 0. We now apply Lemma3.10 with the specifications

a = 2, b = λ > 1, k0 = 0, C = β‖u‖2
Lr(Ω).

We obtain δ2 = c̃‖u‖2
Lr(Ω), hence the assertion follows: in fact ϕ(δ) = 0 means

that |yc(x)| ≤ δ for almost every x ∈ Ω.

(vi) Modification for the case N=2

Let r > N
2

= 1 be the order of integrability of u assumed in the theorem. In
the case of N = 2, the embedding inequality (4.14) is valid for all p < ∞. We
therefore define p with λ > 1 by

1

p
=

1

2λr′
.

With this specification, all conclusions subsequent to (4.14) in the N ≥ 3 case
carry over to N = 2, resulting the validity of the assertion.
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This concludes the proof of the theorem.

Remark 4.4. : In particular, if we consider the case where r = 2, then we have
r = 2 > N/2 which implies N ≤ 3. In the above theorem, we have already proved for
the case where N = 2 and N = 3. Therefore we conclude that if u ∈ L2(Ω), then the
weak solution yc ∈ H1

0 (Ω) is actually essentially bounded(regular), i.e., yc ∈ L∞(Ω).

4.4 Feasibility of solutions of regularized problem for

large c

For fixed λ̄ ≥ inf λ̄ > 0, 0 < s < 1/2 and for large c sufficiently large the optimal
states yc of (P ′

c) are feasible, i.e., ψa ≤ yc ≤ ψb.

We follow the proof given for unilateral case in Lemma 3.12 to deal with our bilat-
eral case. Let us prove an estimate on the norm of the violation of the constraint
ψa ≤ y ≤ ψb. First of all let us define for solutions yc of the regularized equation:

φc := max(0, yc − ψb),

ξc := min(0, yc − ψa).

Then from the definition of the max we have φc ≥ 0 and φc ∈ H1
0 (Ω), and of min we

have ξc ≤ 0 and ξc ∈ H1
0 (Ω). Furthermore, we have the following Lemma.

Lemma 4.5. Let yc be a solution of the regularized equation (4.4) for a given right-
hand side u ∈ L2(Ω) and ψb − ψa ≥ σ > 0 a.e. for σ ∈ R. Then the violation of
ψa ≤ yc ≤ ψb can be estimated by

‖φc‖2
H1 + c‖φc‖2

L2 ≤ Cc−1‖max(u− Aψb − csλ̄, 0)‖2
L2, (4.26)

‖ξc‖2
H1 + c‖ξc‖2

L2 ≤ Cc−1‖max(Aψa − u− csλ̄, 0)‖2
L2 (4.27)

for c large enough, with a constant C independent of c, λ̄, u, yc.
Furthermore, if c is chosen large enough in the estimates (4.26) and (4.27), then the
solutions yc are feasible, i.e., ψa ≤ yc ≤ ψb.

Proof. From the definition of φc,

φc > 0 ⇔ yc > ψb > ψa

Since −maxc(c
sλ̄ + c(ψa − yc)) is monotonic increasing with respect to yc we obtain

on the set {φc > 0} and for large c > 0

−maxc(c
sλ̄+ c(ψa − yc)) ≥ −maxc(c

sλ̄+ c(ψa − ψb)) = 0 (4.28)
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Testing the regularized equation

Ayc + maxc(c
sλ̄+ c(yc − ψb)) − maxc(c

sλ̄+ c(ψa − yc)) = u

with φc = max(0, yc − ψb) ≥ 0 and using (4.28) we obtain

〈Ayc − Aψb, φc〉 + (maxc(c
sλ̄+ c(yc − ψb)), φc) ≤ 〈u− Aψb, φc〉

Now using the fact that maxc(x) ≥ max(0, x) and the second term on the left-hand
side of the above equation is positive, we get

〈Ayc −Aψb, φc〉 + (max(0, csλ̄+ c(yc − ψb)), φc) ≤ 〈u−Aψb, φc〉

Since from the definition max(0, x) ≥ x and (yc − ψb, φc) = ‖φc‖2
L2 , it follows

(max(0, csλ̄+ c(yc − ψb)), φc) ≥ (csλ̄+ c(yc − ψb), φc)

= (csλ̄, φc) + c‖φc‖2
L2

This implies

〈Ayc − Aψb, φc〉 + (csλ̄, φc) + c‖φc‖2
L2 ≤ (u−Aψb, φc)

and then (4.26) follows with

〈Aφc, φc〉 + c‖φc‖2
L2 ≤ (u− Aψb − csλ̄, φc) (4.29)

≤ (max(u− Aψb − csλ̄, 0), φc)

≤ ‖max(u− Aψb − csλ̄, 0)‖L2‖φc‖L2

=

(

1√
c
‖max(u− Aψb − csλ̄, 0)‖L2

)

.
(√

c‖φc‖L2

)

≤ 1

2c
‖max(u−Aψb − csλ̄, 0)‖2

L2 +
c

2
‖φc‖2

L2

by the assumption on the elliptic operator A.
To prove (4.27) we follow the same idea as the proof given above. From the definition
of ξc and ψb − ψa ≥ σ > 0 a.e. for σ ∈ R,

ξc < 0 ⇔ yc < ψa < ψb

Since maxc(c
sλ̄ + c(yc − ψb)) is monotonic increasing with respect to yc we obtain on

the set {ξc < 0} and for large c > 0

maxc(c
sλ̄+ c(yc − ψb)) ≤ maxc(c

sλ̄+ c(ψa − ψb)) = 0 (4.30)

Testing the regularized equation

Ayc + maxc(c
sλ̄+ c(yc − ψb)) − maxc(c

sλ̄+ c(ψa − yc)) = u
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with ξc = min(0, yc − ψa) ≤ 0 and using (4.30) we obtain

〈Ayc −Aψa, ξc〉 + (−maxc(c
sλ̄+ c(ψa − yc)), ξc) = 〈u− Aψa, ξc〉

Note that the second term on the left hand side of the above equation is positive. Thus
we rewrite it as

〈Ayc −Aψa, ξc〉 + (maxc(c
sλ̄+ c(ψa − yc)),−ξc) = 〈u− Aψa, ξc〉

Now using the fact that maxc(x) ≥ max(0, x) we get

〈Ayc −Aψa, ξc〉 + (max(0, csλ̄+ c(ψa − yc)),−ξc) ≤ 〈u− Aψa, ξc〉

Since from the definition max(0, x) ≥ x and (ψa − yc,−ξc) = ‖ξc‖2
L2, it follows

(max(0, csλ̄+ c(ψa − yc)),−ξc) ≥ (csλ̄+ c(ψa − yc),−ξc)
= (csλ̄,−ξc) + c‖ξc‖2

L2

This implies

〈Ayc −Aψa, ξc〉 + (csλ̄,−ξc) + c‖ξc‖2
L2 ≤ (Aψa − u,−ξc)

and then (4.27) follows with

〈Aξc, ξc〉 + c‖ξc‖2
L2 ≤ (Aψa − u− csλ̄,−ξc) (4.31)

≤ (max(Aψa − u− csλ̄, 0),−ξc)
≤ ‖max(Aψa − u− csλ̄, 0)‖L2‖ξc‖L2

=

(

1√
c
‖max(Aψa − u− csλ̄, 0)‖L2

)

.
(√

c‖ξc‖L2

)

≤ 1

2c
‖max(Aψa − u− csλ̄, 0)‖2

L2 +
c

2
‖ξc‖2

L2

by the assumption on the elliptic operator A.

4.5 Convergence Analysis of regularized Equations

In this section we study on the convergence properties of the solutions of the semilinear
elliptic regularized equation (4.4) and derive the rate of convergence of the family
{yc}c>0 to y in L∞(Ω) as the regularization parameter c→ ∞:

Ay + maxc(c
sλ̄+ c(y − ψb)) − maxc(c

sλ̄+ c(ψa − y)) = u,

and define

λb
c − λa

c = maxc(c
sλ̄+ c(y − ψb)) − maxc(c

sλ̄+ c(ψa − y)).

For the proof of the following Lemma we follow the same procedure as for proof of
Lemma 3.15.
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Proposition 4.6. Let λ̄ ∈ L∞(Ω) be given. Let y and yc denote the corresponding
solutions of the variational inequality (4.1) and the regularized equation (4.4), respec-
tively. Then

‖yc − y‖L∞(Ω) ≤
‖λ̄‖L∞

c1−s
+

1

2c2
.

for c large enough.

Proof. Let the test function be defined as

φk :=







y − yc − k, if y − yc > k
y − yc + k, if y − yc < −k
0, else

where k ∈ R
+. Subtracting (4.4) from the first equation in (4.2) and testing with φk

gives

a(y− yc, φk)+ 〈λb−maxc(c
sλ̄+ c(yc −ψb)), φk〉−〈λa −maxc(c

sλ̄+ c(ψa − yc)), φk〉 = 0
(4.32)

Since max(φk, 0) and min(φk, 0) belong to H1
0 (Ω), we can split φk = max(φk, 0) +

min(φk, 0). We rewrite (4.32) as

a(y−yc, φk)+ 〈λb,max(φk, 0)〉+ 〈λb,min(φk, 0)〉− (maxc(c
sλ̄+ c(yc−ψb)),max(φk, 0))

−(maxc(c
sλ̄+ c(yc − ψb)),min(φk, 0)) − 〈λa,max(φk, 0)〉 − 〈λa,min(φk, 0)〉

+(maxc(c
sλ̄+c(ψa−yc)),max(φk, 0))+(maxc(c

sλ̄+c(ψa−yc)),min(φk, 0)) = 0 (4.33)

Since λb, λa ≥ 0 we get 〈λb,max(φk, 0)〉 ≥ 0 and −〈λa,min(φk, 0)〉 ≥ 0. By feasibility
of yc, i.e., ψa ≤ yc ≤ ψb we find

0 ≥ min(φk, 0) = min(y − yc + k, 0) ≥ min(y − ψb + k, 0)

≥ min(y − ψb, 0) = y − ψb

and

0 ≤ max(φk, 0) = max(y − yc − k, 0) ≤ max(y − ψa − k, 0)

≤ max(y − ψa, 0) = y − ψa.

By the complementarity condition this implies

0 ≥ 〈λb,min(φk, 0)〉 ≥ 〈λb, y − ψb〉 = 0

and

0 ≤ 〈λa,max(φk, 0)〉 ≤ 〈λa, y − ψa〉 = 0
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On the set {φk > 0} since y − yc > k ⇒ ψb − yc > y − yc > k, we get

0 ≤ maxc(c
sλ̄+ c(yc − ψb))

≤ maxc(c
sλ̄+ c(−k)) = 0, for k ≥ ‖λ̄‖L∞

c1−s
+

1

2c2
,

and on the set {φk < 0} since y − yc < −k ⇒ ψa − yc < y − yc < −k, we get

0 ≤ maxc(c
sλ̄+ c(ψa − yc))

≤ maxc(c
sλ̄+ c(−k)) = 0, for k ≥ ‖λ̄‖L∞

c1−s
+

1

2c2
,

and hence
(maxc(c

sλ̄+ c(yc − ψb)),max(φk, 0)) = 0

and
(maxc(c

sλ̄+ c(ψa − yc)),min(φk, 0)) = 0

Since from the definition maxc(c
sλ̄+ c(yc − ψb)) ≥ 0 and maxc(c

sλ̄+ c(ψa − yc)) ≥ 0,
we have

−(maxc(c
sλ̄+ c(yc − ψb)),min(φk, 0)) ≥ 0.

and
(maxc(c

sλ̄+ c(ψa − yc)),max(φk, 0)) ≥ 0.

Thus substituting the above results into (4.33), we get a(y − yc, φk) ≤ 0 for k ≥
‖λ̄‖L∞

c1−s + 1
2c2

.
Due to properties of the bilinear form a and the definition of φk, we have a(y−yc, φk) ≥
a(φk, φk), which implies φk = 0.



Chapter 5

Optimal control of semilinear elliptic

regularized equation

In this chapter, we study an optimal control problem governed by elliptic semilinear
regularized equation. Existence of a sequence of solutions to the optimal control prob-
lem with regularized equation is proved and weakly or strongly convergence of (Pc) to
solutions of the original problem (P ) is studied. The regularity of the adjoint state
and the state constraint multiplier is also studied. A sharp optimality system for the
original control problem is obtained as limit of the regularized optimality systems.

For convenience we repeat the problem formulation:

(Pc)











min J(y, u) = g(y) + j(u)

over u ∈ Uad, subject to
Ay + maxc(c

sλ̄+ c(y − ψ)) = u, y ∈ H1
0 (Ω)

where the state y and the control u are coupled by the semilinear elliptic boundary
value problem.

5.1 Existence of solutions to (Pc)

Definition 5.1. (i) A control ū ∈ Uad is said to be optimal if it satisfies, together
with the associated optimal state ȳ = y(ū), the inequality

J(y(ū), ū) ≤ J(y(u), u) ∀u ∈ Uad.

(ii) A control ū ∈ Uad is said to be locally optimal in the sense of L2(Ω) if there
exists some ρ > 0 such that the above inequality holds for all u ∈ Uad such that
‖u− ū‖L2(Ω) ≤ ρ.

In this section we prove the existence of at least one solution (yc(uc), uc) with yc =
yc(uc) to (Pc).

52
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Proposition 5.2. Let j : L2(Ω) → R be weakly lower semi-continuous. For every
c > 0, there exists a solution (yc, uc) ∈ H1

0 (Ω) × L2(Ω) to (Pc).

Proof. Since j is radially unbound and g is bounded below, every minimizing sequence
{(yc(un), un)} to (Pc), i.e., J(yc(un), un) is monotonicity decreasing and

lim
n→∞

J(yc(un), un) = inf J(yc(uc), uc) subject to (3.13), (5.1)

has a weakly convergent subsequence, denoted by the same symbol, with weak limit
uc ∈ L2(Ω).
By Lemma 3.17 we find yc(un) → yc(uc) strongly in H1

0 (Ω). Weak lower semi-
continuity of j and continuity of g : H1

0 (Ω) → R imply that (yc(uc), uc) is a solution
to (Pc).

5.2 Necessary Optimality Conditions for (Pc)

Since the control problems governed by nonlinear equations are nonsmooth and non-
convex optimization problems, the standard methods for deriving necessary conditions
of optimality are inapplicable here. To cope with this problem, the idea is to approx-
imate the given problem (P ) by a family of smooth optimization problems (Pc), and
then to tend to the limit in the corresponding optimality equations [22].

Suppose g and j are C1−regular. Next a formal derivation of the first order necessary
optimality conditions for regularized optimal control problem (Pc) is given. Suppose
that there exists a Lagrange multiplier pc ∈ H1

0 (Ω) × L∞(Ω) (adjoint state) satisfies
the Lagrangian functional given by

L(yc, uc, pc) = g(yc) + j(uc) + 〈Ayc + maxc(c
sλ̄+ c(yc − ψ)) − uc, pc〉

We find






Lyc
= 0 : A∗pc + csgnc(c

sλ̄+ c(yc − ψ))pc + g′(yc) = 0
Luc

= 0 : j′(uc) − pc = 0
Lpc

= 0 : Ayc + maxc(c
sλ̄+ c(yc − ψ)) − uc = 0

Then we obtain formally the necessary optimality system for (Pc):

(OC)











Ayc + maxc(c
sλ̄+ c(yc − ψ)) = uc,

A∗pc + csgnc(c
sλ̄+ c(yc − ψ))pc + g′(yc) = 0,

(j′(uc) − pc, u− uc) ≥ 0

In the following proposition we will address convergence of the solutions of the regu-
larized optimal control problem (Pc) to those of the original problem (P ).
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Proposition 5.3. Let j : L2(Ω) → R be weakly lower semi-continuous.
For every subsequence of controls {ucn

} converging weakly in L2(Ω) to some u∗, the
corresponding states ycn

= y(ucn
) converge strongly in H1

0 (Ω) to y∗ = y(u∗), and
(y∗, u∗) is a global solution to (P ). Moreover
λcn

= maxc(c
sλ̄+ cn(ycn

− ψ)) ⇀ λ(u∗) weakly in H−1(Ω).

In addition, in the feasible case with ycn
≤ ψ for all n, {(pcn

, µcn
)} converge weakly

in H1
0 (Ω) and weakly star in L∞(Ω)∗ to (p∗, µ∗) ∈ H1

0 (Ω) × L∞(Ω)∗ satisfying (3.20)-
(3.24).

Proof. By proposition 5.2 we have a family of solutions {(yc, uc)} to (Pc).
Let yc(0) denote the solution to the equality constraint in (Pc) with u = 0, and note
that {yc(0)}c≥1 is bounded in H1

0 (Ω). Hence {g(yc(0))}c≥1 is bounded as well.
Then (yc(0), 0) is a feasible pair for (Pc) for every c > 0, and J(yc, uc) ≤ J(yc(0), 0).
Thus {j(uc)}c≥1 is bound and radial unboundedness of j implies that {uc}c≥1 is
bounded in L2(Ω). Since every bounded sequence in a reflexive Banach space con-
tains a weakly convergent subsequence, consequently there exists a weakly conver-
gent subsequence ucn

in L2(Ω) with weak limit u∗ ∈ L2(Ω). By Lemma 3.17 the
sequence ycn

= y(ucn
) → y(u∗) strongly in H1

0 (Ω). Moreover by Lemma 3.14 λcn
=

maxcn
(csλ̄+ cn(ycn

− ψ)) → λ(y∗) strongly in H−1(Ω), where Ay∗ + λ(y∗) = u∗. Now
passing to the limit in (Pcn

) as n → ∞ and obtain that (y∗, u∗) is a solution to (P ),
with associated Lagrange multiplier λ(y∗). By Theorem 3.4 there exists an associated
adjoint state p∗ ∈ H1

0 (Ω) and µ∗ ∈ H−1(Ω) ∩ L∞(Ω)∗ satisfying (3.20)-(3.24).
Taking the inner product of the second equation of (OC) by pc, we find

a(pc, pc) + c(sgnc(c
sλ̄+ c(yc − ψ))pc, pc) = −〈g′(yc), pc〉.

Since sgnc(c
sλ̄+ c(yc −ψ)) ≥ 0 and a is coercive on H1

0 (Ω), there exists a constant M1

independent of c ≥ 1 such that

‖pc‖2
H1

0
+ c(sgnc(c

sλ̄+ c(yc − ψ))pc, pc) ≤M1. (5.2)

Next, we show that µc = csgnc(c
sλ̄+ c(yc −ψ))pc is bounded in L1(Ω) uniformly with

respect to c ≥ 1. For ε > 0 define the function ρε by

ρε(x) =







1, x ≥ ε;
x
ε
, |x| ≤ ε;

−1, x ≤ −ε,
(5.3)

and note that 0 ≤ ρ′ε(x) ≤ 1
ε

on R. Taking the duality product of the second equation
in (OC) with ρε(pc) we obtain

〈A∗pc, ρε(pc)〉 + (csgnc(c
sλ̄+ c(yc − ψ))pc, ρε(pc)) = −〈g′(yc), ρε(pc)〉.

Since a(ρε(pc), pc) ≥ 0 , by the definitions of 5.3 and 3.1, we have

(csgnc(c
sλ̄+ c(yc − ψ))pc, ρε(pc)) ≤ ‖g′(yc)‖L1.



CHAPTER 5. OPTIMAL CONTROL OF SEMILINEAR ELLIPTIC REGULARIZED EQUATION

Moreover, ρε(pc)pc → |pc| a.e in Ω as ε→ 0 and sgnc(c
sλ̄+ c(yc − ψ))pc ≤ 1 and thus

by Lebesgue’s dominated convergence theorem ‖µc‖L1 ≤ ‖g′(yc)‖L1 .
Hence there exists a subsequence {cn} of {c} and p∗ ∈ H1

0 (Ω) and µ∗ ∈ (L∞(Ω))∗ such
that
pcn

→ p∗ weakly in H1
0 (Ω),

µcn
→ µ∗ weakly star in (L∞(Ω))∗.

5.3 Existence of approximating families

In this section we will introduce a family of regularized problems (Pc) which asymp-
totically approximate (P ) as c → ∞. Let (y∗, u∗) be strictly locally optimal pair for
(P ). Then by definition 5.1 there exists ρ > 0 such that

J(y∗, u∗) < J(y, u) ∀(y, u) satisfying (3.9) and 0 < ‖u− u∗‖L2 < ρ (5.4)

In the next theorem we will show that there is a family of local solutions (yc, uc) of
(Pc) for each strictly optimal pair (y∗, u∗) of the original problem (P ) that converges
strongly to (y∗, u∗) in H1

0 (Ω) × L2(Ω).

Theorem 5.4. Let j be weakly lower semi-continuous. Moreover, we require for j that

un ⇀ u in L2(Ω) , and j(un) → j(u) imply un → u in L2(Ω). (5.5)

Let (y∗, u∗) be a strictly locally optimal pair for (P ). Then there exists a family of local
solutions (yc, uc) of (Pc) that converges strongly to (y∗, u∗) in H1

0 (Ω) × L2(Ω).

Proof. Let ρ be given by (5.4) and take ρ′ with 0 < ρ′ < ρ. Consider the auxiliary
problem

(P ρ′

c )











min J(y, u) = g(y) + j(u)

over u ∈ Uad, with ‖u− u∗‖L2 ≤ ρ′ and subject to
Ay + maxc(c

sλ̄+ c(y − ψ)) = u.

Then by Proposition 5.2 the optimal control problem (P ρ′

c ) is solvable for every c > 0.
Let uc denote a global solution of (P ρ′

c ). By construction, the set {uc}c>0 is bounded,
which yields weak convergence of a subsequence ucn

⇀ ũ in L2(Ω) with ‖ũ−u∗‖L2 ≤ ρ′.
By Lemma 3.17 we find that ycn

→ ỹ strongly in H1
0 (Ω), where (ỹ, ũ) is a solution of

the original optimal control problem (P ) . In the assumption since (y∗, u∗) is a strictly
locally optimal pair for (P ), then it follows J(y∗, u∗) < J(ỹ, ũ).

Let yc(u
∗) denotes the solution of the regularized equation to the control u∗, we have

J(yc, uc) ≤ J(yc(u
∗), u∗). By Lemma 3.14, we have yc(u

∗) → y∗ in H1
0 (Ω) as c→ ∞.

By (5.4), the optimality and convergence properties above, we obtain

J(y∗, u∗) < J(ỹ, ũ)
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⇒ g(y∗) + j(u∗) ≤ g(ỹ) + j(ũ) ≤ lim g(ycn
) + lim inf j(ucn

)

≤ lim g(ycn
) + lim sup j(ucn

) (5.6)
≤ lim g(ycn

(u∗)) + j(u∗)

= g(y∗) + j(u∗).

Then follows J(y∗, u∗) = J(ỹ, ũ) and since (y∗, u∗) is strict local optimality of (P ),
then we get u∗ = ũ. Moreover, it follows that lim j(ucn

) = j(ũ) which yields ucn
→ u∗

in L2(Ω) by (5.5). Since u∗ is the unique local solution in the L2−neighborhood of u∗

of radius ρ′, the whole family uc converges u∗.
Convergence of uc → u∗ also implies the existence of c0 such that ‖uc − u∗‖L2 < ρ′ for
all c > c0. Consequently, if c > c0, then (yc, uc) is locally optimal for (Pc).

Now we show the convergence of adjoint and multipliers of (Pc) to (P ).

Corollary 5.5. Let (yc, uc) be a family of local solutions of (Pc) converging strongly
in H1

0 (Ω) × L2(Ω) to (y∗, u∗). Let (y∗, u∗) solve the variational inequality and sat-
isfy together with (λ∗, p∗, µ∗) the first-order optimality system (3.20)-(3.25) given by
Theorem 3.4. Then we have

λc → λ∗ and µc ⇀ µ∗ in H−1(Ω), pc ⇀ p∗ in H1
0 (Ω)

where (λc, pc, µc) are the corresponding multipliers and adjoint state for (Pc), see (OC).

Proof. Since yc, uc are strongly converge, the strong convergence of λc follow immedi-
ately

λc = uc − Ayc → u∗ −Ay∗ = λ∗ in H−1(Ω).

Testing the second equation in (OC) by pc gives

Cc‖pc‖2
H1 ≤ ‖g′(yc)‖L2‖pc‖L2,

which gives boundedness of {pc} in H1
0(Ω). Then, we get a subsequence {pcn

} which
converges weakly in H1

0 (Ω) and strongly in L2(Ω) to p̃. Hence, the last equation in
(OC) implies

j′(ucn
) = pcn

→ j′(u∗) = p̃,

which gives p̃ = p∗ by optimality condition (3.24). Since the adjoint state p∗ is uniquely
determined by (y∗, u∗), the whole family pc converges weakly in H1

0 (Ω) to p∗. Arguing
as above, we find for µc

µc = −A∗pc − g′(yc) ⇀ −A∗p∗ − g′(y∗) = µ∗ in H−1(Ω),

which finishes the proof.



Chapter 6

Obstacle problems

The study of variational inequalities occupies a central position in calculus of variations
and in the applied sciences [24]. Variational inequalities form an important family of
nonlinear problems. Some of the more complex physical processes are described by
variational inequalities.

The obstacle problem is typical of a class of inequality problems known as elliptic
variational inequalities (EVIs) of the first kind in our case (see for e.g., [5]). They
are of interest both for their intrinsic beauty and for the wide range of applications
they describe in subjects from physics to finance. Many important problems can be
formulated by transformation to an obstacle problem, e.g., the filtration dam problem,
the Stefan problem, the subsonic flow problem, American options pricing model, etc
(see Yongmin Zhang [12]).

In this chapter, we formulate the obstacle problems for which the solution algorithms
are developed in the forthcoming sections. A regularized problem and iterative second-
order algorithms for its solution are analyzed in infinite dimensional function spaces.
Motivated from the dual formulation, a primal-dual active set strategy and a semis-
mooth Newton method for a regularized problem are presented and their close relation
is analyzed.

6.1 Problem Formulation

Suppose the bilinear form a, a second order linear elliptic partial differential operator
A associated to a and the closed convex subset K of H1

0 (Ω) be the same as we defined
in chapter 3. We then consider the approximation of obstacle problems of the following
type:

{

Find y ∈ K such that
a(y, v − y) ≥ (u, v − y) ∀v ∈ K.

(6.1)
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It was shown by Lions and Stampacchia in [6] that, under slightly weaker conditions
(symmetry is not needed), there exists a unique solution to Problem 6.1. Furthermore,
(with symmetry) Problem 6.1 is equivalent to
Problem. Find y ∈ K such that

J (y) = inf
v∈K

J (v) (6.2)

with the closed, convex, and non-empty set K,

K = {v ∈ H1
0 (Ω)|v ≤ ψ a.e. in Ω}.

and the energy functional J ,

J (v) =
1

2
a(v, v) − (u, v), (6.3)

is induced by a symmetric, H-elliptic, bilinear form a(·, ·).
Concerning the existence and uniqueness of solutions of problem (6.2), we have the
following classical results from Stampacchia [6]:

Theorem 6.1. If the function v → J (v) satisfies

J (v) → +∞ when ‖v‖H1 → ∞, v ∈ K. (6.4)

then there exists a solution y of (6.2).

A sufficient condition for (6.4) to be satisfied is that
{

there exists Cc ≥ 0 such that
a(v, v) ≥ Cc‖v‖2

H1 ∀v ∈ K.
(6.5)

Theorem 6.2. If the function v → J (v) is strictly convex, then problem (6.2) admits
at most one solution.

Since the obstacle problem is nonlinear, the computation of approximate solutions can
be difficult and expensive. A major difficulty in solving the problem (6.1) numerically
is the treatment of the non-differentiable term. Semismooth Newton methods and
primal-dual active set methods are efficient methods for coping with nondifferentiable
functionals in infinite dimensional spaces; see, e.g., [2],[13], [14], [16].

We shall now study some constructive methods for the infinite dimensional approxi-
mation of the solution y of the obstacle problems (6.1).
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6.2 Infinite-dimensional Approximation Methods

An infinite dimensional analysis gives more insight into the problem, which is also
of significant practical importance since the performance of a numerical algorithm is
closely related to the infinite dimensional problem structure [6] .

A finite dimensional approach misses important features as, for example, the regularity
of Lagrange multipliers and its consequences as well as smoothing and uniform defi-
niteness properties of the involved operators. It is well accepted that these properties
significantly influence the behavior of numerical algorithms [4].

The approximate solution of obstacle problems is usually solved by variable projec-
tion method, for example, the relaxation method [5], multilevel projection method
[12], multigrid method [10], and projection method [23] for nonlinear complementarity
problems.
In the next subsections we will consider some approaches for the iterative solution of
obstacle problems ; see, for instance, [13], [14], [15] and the references given there.

6.2.1 Penalization Method

The method of penalization consists in substituting the obstacle problem by a family
of nonlinear boundary value problems and demonstrating that their solutions converge
to the solution of the obstacle problem. Penalty methods based on straightforward
regularization are popular in the field of engineering.

The idea of penalization consists of approximating (6.1) by equations in which the re-
lation appearing in (6.1), which expresses the fact that y belongs to K, is replaced by a
penalization term which becomes progressively larger as the solution moves awayfrom
K and thus forces the limit of the approximate solutions to belong to K.

Using this technique the obstacle problem is approximated by a series of nonlinear
boundary value problems. Specifically, we introduce a penalization operator π which
has the following properties [15]:







π is Lipschitz continuous,
Ker(π) = K
π is monotone,

(6.6)

the obstacle problem (6.1) can be approximated by the penalized equation

a(yε, v) +
1

ε
〈π(yε), v〉 = (u, v) ∀v ∈ H1

0 (Ω), (6.7)

with ε > 0 being the penalty parameter. Due to the monotonicity of the nonlinear
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operator π, equation (6.7) has a unique solution yε (see, e.g., [6]).

In [15], M. Hintermüller and I. Kopacka considered

π(v) := −max(0,−v) ∀v ∈ H1
0 (Ω)

as the penalty operator where the max−operation is to be understood point-wise. As
the max(0, ·)-function is not differentiable at the origin we introduce different regular-
izations yielding C2−approximations of max(0, ·).
The following result describes the approximation properties of the regularized penal-
ized equations (cf. Stampacchia [6]).

Theorem 6.3. As ε→ 0, yε → y in H1
0 (Ω), y being the solution of (6.1).

6.2.2 The primal-dual active set method

In this section a regularized problem and iterative second-order algorithms for its so-
lution are analyzed in infinite dimensional function spaces. Motivated from the dual
formulation, a primal-dual active set strategy for a regularized problem is presented.

This method is an efficient way to solve discrete obstacle problems which is given by
active set strategies [10]. Basic iteration of active set strategies consists of two steps.
In the first phase, the (mesh) domain is decomposed into active and inactive parts,
based on a criterion specifying a certain active set method. In the second phase, a
reduced linear system associated with the inactive set is solved.

Recall that in chapter 3 we approximated the obstacle problem (6.1) by a semilinear
equation (3.13): For convenience we repeat the problem formulation

{

a(y, v) + (λc, v) = (u, v) ∀v ∈ H1
0 (Ω)

λ = max(0, csλ̄+ c(y − ψ))
(6.8)

which is also equivalent to

Ay + max(0, csλ̄ + c(y − ψ)) = u (6.9)

where A ∈ L(H1
0 , H

−1) and 〈Ay, v〉 = a(y, v).
Note that for each c > 0

y → max(0, csλ̄+ c(y − ψ))

is Lipschitz continuous and monotone from H1
0 (Ω) to H1

0 (Ω). Thus by the monotone
theory we have proved the existence of a unique solution (yc, λc) ∈ H1

0 (Ω) × L2(Ω) to
(6.8).
The primal-dual active set strategy for (6.8) is given next. We introduce χAk+1

, the
characteristic function of the set Ak+1 ⊆ Ω.
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Primal-dual active set(PDAS) algorithm

(i) Choose c > 0, (y0, λ0); set k = 0.

(ii) Set Ak+1 = {x : (csλ̄+ c(yk − ψ))(x) > 0}, Ik+1 = Ω\Ak+1.

(iii) Solve for yk+1 ∈ H1
0 (Ω) :

a(yk+1, v) + (csλ̄+ c(yk+1 − ψ), χAk+1
v) = (u, v) ∀v ∈ H1

0 (Ω). (6.10)

(iv) Set

λk+1 =

{

0 on Ik+1,

csλ̄+ c(yk+1 − ψ) on Ak+1.

(v) Stop or k = k + 1, goto (ii).

The iterates λk+1 as assigned in step (iv) are not necessary for the algorithm but they
are useful in the convergence analysis.

Remark 6.4. 1. The primal-dual active set method discussed above is equivalent
to the semi-smooth Newton method (see; e.g., [14], [16])

2. For every c > 0 we have limk→∞(yk, λk) = (yc, λc) in H1
0 (Ω) × L2(Ω).

This guarantees global convergence of a semi-smooth Newton method, i.e., the
algorithm converges for any initial condition.

3. If λ0 ∈ L2(Ω) and ‖λ0 − λc‖L2(Ω) is sufficiently small, then (yk, λk) → (yc, λc)
super-linearly in H1

0 (Ω) × L2(Ω).

In chapter 4, we have seen that a class of optimization problems with bilateral con-
straints ψa ≤ y ≤ ψb can be expressed as







Ay + λ− u = 0,

λ = max(0, λ+ c(y − ψb)) − max(0, λ+ c(ψa − y))
(6.11)

The primal-dual active set strategy applied to (6.11) can be express as

Ayk+1 − u+ λk+1 = 0,

yk+1 = ψb in A+
k = {x : λk(x) + c(yk(x) − ψb(x)) > 0},

λk+1 = 0 in Ik = {x : λk(x) + c(yk(x) − ψa(x)) ≤ 0 ≤ λk(x) + c(yk(x) − ψb(x))},

yk+1 = ψa in A−
k = {x : λk(x) + c(yk(x) − ψa(x)) < 0}.



Chapter 7

Summary

In the optimal control problem of a variational inequality the main difficulty comes
from the fact that the mapping between the control and the state (control-to-state op-
erator) is not differentiable but only Lipschitz-continuous. As a consequence of this,
to get sharp optimality conditions and build numerical algorithms are difficult tasks,
overcoming this difficulty was a major motivation of our study.

In this dissertation we have investigated the analytical background of an optimal con-
trol problem subject to elliptic variational inequalities of the first kind with unilateral
and bilateral obstacle problems and studied a regularization method (i.e. to approx-
imate the nondifferentiable ones depending on (c ≥ 0 c → ∞)) for solving a nondif-
ferentiable minimization problem.

Convergence properties of the optimal solutions of the regularized problems (Pc) to-
wards the solution of the original problem (P ) are proven and an L∞− error estimate
for the convergence is obtained.

Using a local smoothing of the max function, we derived a first order optimality con-
ditions for the regularized problems and first order necessary optimality system for
the original control problem is obtained as limit of the regularized optimality systems,
i.e., the regularity of the adjoint state and the state constraint multipliers of the the
original control problem is obtained as limit of the regularized optimality systems.

A regularized problem and iterative second-order algorithms for its solution are ana-
lyzed in infinite dimensional function spaces. Motivated from the dual formulation,
a primal-dual active set strategy and a semismooth Newton method for a regularized
problem are presented and their close relation is analyzed.
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Appendix

Normed linear Spaces

Definition 7.1. (Norm-Banach space)
Let X be a real vector space.

(i) The mapping ‖ · ‖ : X → [0,∞) is called norm on X, if

a) ‖u‖ ≥ 0 ∀u ∈ X

b) ‖u‖ = 0 ⇔ u = 0

c) ‖λu‖ = |λ|‖u‖ ∀u ∈ X, λ ∈ R (positive homogeneity)

d) ‖u+ v‖ ≤ ‖u‖ + ‖v‖ ∀u, v ∈ X (triangle inequality)

Then {X, ‖ · ‖} is known as a real(normed) space.

(ii) A normed real vector space X is called Banach Space, if it is complete, i.e. if
every Cauchy-sequence converges in X, thus a limit u ∈ X exists.

Definition 7.2. (Inner product- Hilbert space)
Let H be a real vector space.

(i) A mapping (·, ·) : H ×H → R is called inner product on H, if

a) (u, v) = (v, u) ∀u, v ∈ H

b) For every v ∈ H the mapping u ∈ H 7→ (u, v)is linear

c) (u, u) ≥ 0 ∀u ∈ H and (u, u) = 0 ⇔ u = 0.

(ii) A vector space H with an inner product (·, ·) and a related norm

‖u‖ :=
√

(u, u)

is called Pre-Hilbert space.

(iii) A Pre-Hilbert space (H, (·, ·)) is called a Hilbert space, if it is complete with respect
to its norm ‖u‖ :=

√

(u, u).
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Theorem 7.3. (Cauchy-Schwarz-inequality)
Let H be a Pre-Hilbert space. Then the Cauchy-Schwarz-inequality

|(u, v)| ≤ ‖u‖‖v‖ ∀u, v ∈ H

holds. �

Definition 7.4. (Linear operator)
A mapping A : X → Y is called linear operator, if

A(x+ y) = Ax+ Ay ∀x, y ∈ X

A(λx) = λAx ∀x ∈ H and ∀λ ∈ R.

Definition 7.5. (Bounded linear operator)
A linear operator A : X → Y is called bounded, if there exists a c > 0 such that

‖Ax‖Y ≤ c‖x‖X ∀x ∈ X

Definition 7.6. (Linear functionals and dual space)

(i) Let X be a Banach space. A bounded (continuous) linear operator u∗ : X → R

denoted by u∗ ∈ L(X,R) is called a linear functional on X.

(ii) The space of the bounded (continuous) linear functionals on X is called the dual
space X∗ = L(X,R) of X.

(iii) For an application of a linear, continuous functional u∗ → X∗ to an element
x ∈ X we often write the expression

〈u∗, x〉X∗,X = 〈u∗, x〉 def
=

u∗(x).

We call the application u∗ on x dual pairing.

Definition 7.7. (Operator norm)
We denote by

‖A‖L(X,Y ) def
=

sup
‖x‖=1

‖Ax‖Y = sup
x 6=0

‖Ax‖Y

‖x‖X

the operator norm of A.

Definition 7.8. (Adjoint operator)
Let G and H be Hilbert spaces and B ∈ L(G,H). A mapping B∗ : H → G is called
the (Hilbert space)-adjoint operator associated to B, if

(Bg, h)H = (g, B∗h)G

for all g ∈ G and h ∈ H. In the case that G = H,B is called self-adjoint, if B∗ = B.
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Definition 7.9. (Bilinear form)
A bilinear form a(·, ·) on a linear space X is a mapping a : X×X → R such that each
of the maps v 7→ a(v, w) and w 7→ a(v, w) is a linear form.

(i) a is called bounded if, there exists Cb ≥ 0 such that

|a(v, w)| ≤ Cb‖v‖‖w‖ for each (v, w) ∈ X2.

(ii) a is called symmetric if, and only if,

a(v, w) = a(w, v) for each (v, w) ∈ X2.

(iii) a is called skew-symmetric or alternating if, and only if,

a(v, w) = −a(w, v) for each (v, w) ∈ X2.

(iv) a is called positive semidefinite if, and only if,

a(v, v) ≥ 0 for each v ∈ X.

(v) a is called positive definite if, and only if, a is positive semidefinite and

(a(v, v) = 0 ⇔ v = 0) for each v ∈ X.

(vi) a is called coercive or elliptic if, there exists Cc > 0 such that

a(v, v) ≥ Cc‖v‖2 for each v ∈ X.
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