EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

ROOMS
ROlap based Occupation Measurement System

Kemps, G.C.M.

Award date:
2011

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/04ce7608-db00-48cb-839f-87125d8c0582

ROOMS: ROlap based Occupation Measurement
System

by
GCM Kemps

Supervisor: dr. T.G.K Calders
Supervisor DIZ: M. Kuyck & S. van Zutphen

Master’s thesis

Technische Universiteit Eindhoven

Technische Universiteit Eindhoven
August 2011
Eindhoven The Netherlands

Abstract

As part of the Eindhoven University of Technology Campus 2020 project, the services
Dienst Interne Zaken (DIZ) and Dienst Huisvesting (DH) need data about the use of
lecture rooms. To obtain this data, they would like to start measuring the occupation and
utilization of lecture rooms during the academic year 2011-2012. They would like to know
which rooms are occupied and which rooms are empty during the lecture hours, as well as
how many seats there are used in occupied rooms.

In order to obtain this data, a web-based system is designed to store, process and analyze
this data. The system needs to be flexible and easy maintainable. At the core of the
design we have a relational database management system to store all the information. On
top of that we need a data warehouse to facilitate decision support. Reports generated
by multi-dimensional queries can be extracted from the system. The code framework is
based on the MVC design pattern.

The system is implemented in Java using the Struts framework. The model is constructed
using the Data Access Objects and Data Transfer Objects design patterns. The view
consists of JavaServer Pages. In the persistence layer MySQL is chosen as the relational
database with an open source 100% Java written OLAP server called Mondrian on top.
Measurement data obtained from previous projects was used to test and evaluate the

system and its design.

i

Acknowledgements

I would like to thank the following people without whom I would not have managed to
bring this project to a satisfying end:
First my gratitude goes to all my supervisors, Monique Kuyck, Sandy van Zutphen and

Toon Calders. For the opportunity to do my master thesis at DIZ, your value feedback,

suggestions and review of my work throughout the project.

Secondly all my colleagues at the DIZ departement for providing a pleasant and stimulating

work environment.

Next I would like to thank Frans Beerens, Ad Winkels, Bert Sprong, Richard Rhemrev and
Erwin Wolf for having me and proving me with their knowledge about room occupation

and utilization measuring.

Finally all my friends I have met during my time at the Eindhoven University of Technol-
ogy, my parents, family (in law) and girlfriend for giving all the support and motivation

to (finally) finish my master’s degree.

iii

List of Definitions

] Term \ Definition
CSvV Comma separated values
DAO Data Access Object
DH Real Estate Management
DIZ Internal Affairs
DTA Data Transfer Object
Fontys Eindhoven University of applied science in Eindhoven
FMIS Facility Management Information System

Global Viewer

HAN

JDBC

JSP

MDX

Microsoft Excel

ORM
Randstad Nederland BV
RDBMS
Rostar Eduflex
SSV

SQL

Syllabus Plus
TU Delft
TU/e
Occupation
Utilization
Untis

uvU

System to monitor and distantly control equipment college
rooms

University of applied science in Arnhem and Nijmegen
Java Database Connectivity

Java Server Pages

Multi Dimensional Expressions

Spreadsheet application written and distributed by Mi-
crosoft

Object Relational Mapping

Dutch temporary employment company

Relational Database Management System

Timetable administration system

Semicolon separated values

Structured Query Language

Software suite for timetabling used by TU Eindhoven
Delft University of Technology

Eindhoven University of Technology

The number/percentage of rooms that are occupied
that number/percentage of seats that are in use
Timetable administration system

University of Utrecht

iv

Table of Contents

Abstract ii
Acknowledgments iii
Definitions iv
Table of Contents vii
List of Tables viii
List of Figures X
1 Introduction 1
1.1 Background 1
1.2 Purpose of the project oo 2
1.2.1 Project goal 2

1.2.2 Project steps 2

1.3 Outline of thereport 3

2 Similar projects 4
2.1 Research 4
2.2 Technische Universiteit Eindhoven 5
2.2.1 Methodology 5

2.2.2 Results. o 5

2.3 Fontys Eindhoven 5
2.3.1 Methodology 6

2.3.2 Results. 7

2.4 TUDelft 7
2.4.1 Methodology 8

2.4.2 Results.o 8

2.5 Universiteit Utrecht 10
2.5.1 Methodology 10

2.5.2 Results. 11

2.6 HAN

2.6.1 Methodology
2.6.2 Results.
2.7 Comparison
2.8 Conclusion
Requirements
3.1 System description
3.1.1 User management
3.1.2 Period managemento
3.1.3 Room management
3.1.4 Reservation management 0L
3.1.5 Measurement management
3.1.6 Reports
3.2 Functional requirementso
3.3 Non-Functional requirements
3.4 Usecases i e e e e
34.1 UseCase A
342 UseCaseB
343 UseCase C e
Design
4.1 Relational database
4.2 ROLAP
4.3 Architecture
4.4 Dataimport
4.4.1 Roomsimport e
4.4.2 Timetable import
4.5 Environment e
Implementation
5.1 Strutso
52 ROOMS e
5.2.1 Controller
5.2.1.1 Forms
5.2.2 Model
5.2.2.1 Data Transfer Object
5.2.2.2 Data Access Object
5.2.2.3 Service.
523 View
5.2.3.1 JSP tag libraries

vi

14
14
15
15
15
16
16
17
17
17

18
18
19
20

23

23
25
29
32

33
33
34

5.3 MySQL . . . o
5.3.1 MyBatis
54 Mondrian Lo
5.4.1 Mondrian Schema Lo
5.4.2 Caching and Tuning
54.3 MDX
5.4.4 JPivoto
5.5 Deployment

Results

6.1 Tests e
6.2 Evaluation e
6.3 Future work

Appendices

A

B
C
D

&=

Functional Requirements
Package Diagram

Class Diagrams

Struts Config File
Deployment Descriptor File

Screenshots

MySQL Structure

Bibliography

vii

57
o7
o7
58

58

59

65

66

72

75

78

86

88

List of Tables

2.1

3.1

Al
A2
A3
A4
A5
A6
AT

Tabular comparison of occupation/utilization measurements between insti-

tutes L 13
Requirement priorities 17
General requirements oL oL Lo 59
User management requirements 60
Room management requirements 61
Timetable management requirements 62
Period management requirementso 62
Measurements requirements Lo 63
Reporting requirementso oL 64

viii

List of Figures

2.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
0.2
2.3
0.4
2.5

B.1

Ci1
C.2
C.3
C4
C.5

TU Delft report: occupation and utilization per week 9
ER model of the relational database 25
Cube Example 27
OLAP Drill Down/Up Example 28
OLAP Slice Example 28
OLAP Dice Example 29
Data Access Object 30
Data Access Object sequence diagram 31
Struts client request 36
Struts Architecture 37
Example Service Sequency: getCurrentDIZTime() 43
MyBatis Architectureo 47
Mondrian Architectureo 49
ROOMS UML Package Diagrams 65
UML Classes: Action package 67
UML Classes: DTO package 68
UML Classes: Service package 69
UML Classes: Form package 70
UML Classes: Persistence package 71

ix

F.1 ROOMSlogin 78
F.2 ROOMS Main menu 79
F.3 User management L 80
F.4 Room management o 80
F.5 ActionForm example 81
F.6 Period management L 81
F.7 Reservation management 82
F.8 Measurement management 83
F.9 Report selection 84
F.10 JPivot report example 85

Chapter 1

Introduction

1.1 Background

The number of lecture rooms available for education has been reduced by 40% since 1994.
With the Campus 2020 project! coming up, the expectation is that number of lecture
rooms will drop even more [1]. The Campus 2020 project is an extensive renewal plan
for realizing a compact campus for personal use of the Eindhoven University of Technol-
ogy. The compact campus is a place where the boundary between science and business is
blurred by the common and flexible use of rooms and buildings. More efficient use and
sharing of space means that unnecessary buildings can be disposed. The compact campus
should also accommodate the growing need for small study rooms and the flexible use of
lecture rooms.

In the meantime the number of students has only increased over the years. As a result, the
timetable scheduling became more and more complex. Even more because of an increase
of educational possibilities. In 2007 a new timetabling software system was introduced as
a result of the research of Bas Ligtenberg [1]. He advised to purchase Syllabus Plus as
the university wide timetabling software package. Before 2007, most faculty timetabling
coordinators constructed their timetables manually using Microsoft Excel. Because no
central system was used, a lot of information had to be entered in each separate system,
creating a lot of superfluous work. Every coordinator had his or her own way of construct-

ing timetables and these procedures were not well documented. Absent coordinators were

Thttp://www.tue.nl/universiteit /over-de-universiteit /tue-science-park /de-compacte-campus-campus-
2020/

therefor hard to replace.
Now that timetabling coordinators are able to tackle problems in a more structured and
user friendly way, it is time to investigate how the timetable is respected. How many of the

rooms are actually occupied? And if the rooms are occupied, how well are they utilized?

1.2 Purpose of the project

As part of the Campus 2020 project the services Internal Affairs and Real Estate Manage-
ment (DH) need data about the use of lecture rooms. They want to determine the total
amount of rooms required and its possible dimensions. To obtain this data, DIZ would
like to start measuring the occupation and utilization of lecture rooms during every second
week of a teaching period during the academic year 2011-2012. They would like to know
which rooms are occupied and which rooms are empty during the lecture hours, and how

many seats are used in occupied rooms.

1.2.1 Project goal

In order to obtain this data, a system has be designed to store, process and analyze this
data. Also, data has to be imported from the Syllabus Plus timetabling system. From
these data sets, reports can be generated from different points of view. These reports can

serve as decision support for the DIZ management.

1.2.2 Project steps

To design such a system, the following steps are to be followed:

1. Trace universities or high schools that have done a similar investigation on room
occupation and utilization. Find out why they performed such an investigation,
what were their measuring methods and what were the final results. There may also

be common problems that need extra attention.

2. Based on this investigation and stakeholder interviews, determine which data to

store in the database, what reports are desirable and other requirements.

3. Design, build and test the system based on these agreed requirements.

4. Test, evaluate and adjust the system where necessary.

1.3 Outline of the report

After this introduction we will start with a chapter on the findings of the investigation
among other educational institutes. Several universities and high schools were contacted
to ask if they have been investigating their room occupation or utilization. Almost all
of these institutes did, but the four most interesting cases were picked out for further
research.

Next we will describe the functionality of the system in an informal way and state the
agreed (non)-functional requirements. Subsequently three use cases are presented to fur-
ther illustrate the functionality of the system.

Based on the investigation and the requirements we will create a design for code, database
and data warehouse in Chapter 4. At the core of the design we need a relational database
to store all the information needed and gathered during the measurement periods. On
top of that we need data warehouse functionality to facilitate decision support. The data
warehouse must support on-line analytic processing (OLAP) which enables us to do multi-
dimensional analytic queries. We need this functionality to generate reports. Finally we
need a code framework to handle the requests, manage the data and generate the views.
Chapter 5 will elaborate on the implementation of the design. The code implementation
will be based on the Struts framework. Struts uses a MVC approach and makes it easier for
web developers to build web applications based on Java Servlets and Java Server Pages
(JSP). MySQL will be used as the relational database. MySQL has become the most
popular open source database of the world. Mondrian is a popular open source OLAP
solution. It is written in 100% Java, executes queries written in the MDX query language
and can read its data from a relational database.

Finally we will discuss the results of the project. We will analyse the system using data
obtained from previous measurements and currently available timetable data from Syl-

labus.

Chapter 2
Similar projects

The Eindhoven University of Technology (TU/e) is not the first to research room oc-
cupation and utilization. Based on previous cooperation, we already know that other
universities and high schools are trying to obtain, or have already obtained, some kind of
occupation and utilization analyses. It is a good idea to contact these parties and benefit

from their experience and learn from their approach.

2.1 Research

Several universities and high schools were contacted to ask if they have been investigating
their room occupation or utilization. Almost every of these institutes did and the four
most interesting cases were picked out for further research. Some key questions that were

asked during the meetings were:

e What were the goals of their research? What did they intend to find?

e What was measured during the research?

e How were the actual measurements prepared?

e How were the measurement carried out? What was the methodology used?
e What were the results of the research?

e What was the conclusion of the research? Were the results used in any way?

What problems occurred during the research? What would they do differently?

2.2 Technische Universiteit Eindhoven

A small scale project was already carried out a few years ago on a small sample of rooms.
In 2006 all rooms of the Auditorium were measured during 2 different periods of time. The
first period was during week 29, after a few weeks followed by the second period consisting
of weeks 43, 44, 45 and 46. In 2007 another period of 5 weeks (week 6 to week 11) was
added, but his time over all lecture rooms scheduled centrally by DIZ.

2.2.1 Methodology

The measurements were carried out by physically visiting the rooms during every lecture
hour. This was done by DIZ employees and invigilators. They wrote down their findings
on specially prepared lists. Afterwards this data was manually imported into Microsoft

Excel for analysis and reporting.

2.2.2 Results

Over all Auditorium rooms during the total of 10 weeks, the following results were ob-

tained:

e The average percentage of reserved rooms is 66% with a minimum of 59% and a

maximum of 71%

e The average percentage of occupied rooms is 55% (from all rooms) with a minimum

of 46% and a maximum of 65%

e The average percentage of seat utilization (occupied rooms only) is 33% with a

minimum of 26% and a maximum of 42%

2.3 Fontys Eindhoven

At the Fontys Eindhoven they have been measuring utilization of college rooms for 2 years
now. The measuring is performed per building and they have just finished their 15th
measurement. The primary reason Fontys started with this project is to get a better

insight in their utilization of rooms and buildings. The measurements mostly take place

5

in the first of four semesters. This is the only semester where there are no internships
planned for third or fourth year students. Therefor the first semester is the busiest period

of the year and is the limiting factor of the total capacity of Fontys Eindhoven.

2.3.1 Methodology

In preparation of the coming measurements, the so called counting lists are composed. The
lists are composed by Frans Beerens, facility manager at Fontys Eindhoven. These lists
are used by the counters to register their gathered data. The counting lists are composed
using the Facility Management Information System (FMIS). This system is used to register
which rooms are located in what building and who owns them. This information is placed
alongside the timetable and this results in the final counting lists. Several timetable
systems are used by Fontys, for example Untis and Rostar Eduflex. Research from Bas
Ligtenberg [1] shows that these systems are particulary suited for secondary and higher
education and not for university education. The educational structure these systems
support does not correspond to the TU/e structure. Untis and Rostal Eduflex are more
pointed towards scheduling different groups of students (minimize spare hours), while the
TU/e structure is more pointed towards activity scheduling. Meeting the requirements
for every activity is more important than students having spare hours in between classes.
The counting lists consist of a few columns including: room (roomlD), capacity, period,
date (day of the week), occupation (number) and scheduled (yes/no). The capacity of the
rooms is expressed in 3 categories, categorie A (< 20), category B (20 to 30) and category
C (> 30). Eventually, the column occupation will be filled in by the counters.

During the measurement periods, employees will walk past the lecture rooms. Every period
(lecture hour) a room is checked for its occupation and utilization. Most rooms have 10
periods a day, some have 12. One measurement period will last for exactly one week, from
Monday to Friday. Usually the third week of the semester is picked, because by then most
of the timetable errors are rectified and will no longer interfere with the measurement. All
measurements start 10 minutes after the start of the period and 10 minutes before the end
of it. Every employee is able to check 50 to 60 rooms within this half hour interval. He
or she simply counts every student present in the room. The counting lists are composed
and ordered in such a way, that every employee can go from room to room easily and only

has to write down a single number per room.

2.3.2 Results

The data obtained by the counters are to be returned to the facility manager. He enters
the data back into the digital counting lists using Microsoft Excel. One day worth of
data will take two days to process. No extra tables, graphs or aggregated data is derived
from the data. The interpretation of the data is directly done on the (sorted) Excel tables
themselves.

The interpretations of the results are discussed with the managers and the most striking
and problematic results are provided as feedback to the timetable makers. Since this
feedback is made possible, Fontys Eindhoven was able to increase their occupation with
10% or 15% to a total of 40%. Because of this, Fontys was able to push off some of their

buildings and therefor reduce cost.

The goal of Fontys Eindhoven is to further increase their utilization to about 60% or 70%.
According to Frans Beerens, the utilization percentage has been around 80% a few years
ago. But because of the switch to decentralized timetabling, this number has decreased
significantly. There is also the intention to facilitate every room with the same equipment.
Timetable makers should then only worry about the capacity instead of required facilities

such as beamer, sound system, etc.

2.4 TU Delft

During 2007 the departement FMVG (Facilitair Management & Vastgoed) of the TU Delft
has carried out a few measurements divided in two measuring periods. The first period
was at the end of the academic year 2006-2007 (10th of April to 8th of June) and the
second period at the start of the new academic year 2007-2008 (3rd of September to 19th
of October). The research focused on the 80 lecture rooms with a centralized timetable.
This resulted in 52.000 data entries. The research was started to give more insight in the
use of centrally timetabled lecture rooms. There was a persistent demand for more rooms
by the TU Delft board while there was a dominant feeling within the FMVG departement

that rooms are often empty [6].

2.4.1 Methodology

Similar to Fontys Eindhoven, FMVG prepared counting lists. For every single room there
was a list available with an eight row long table where every row represents a single period

(lecture hour). In every row the counters can write down their findings.

The research (actual measurements) was performed by Randstad Nederland BV. They
provided 20 counters each week. During the afore mentioned periods, counters (wearing
Randstad sweaters) entered the rooms during lectures and counted the students present .

The number (or percentage) of students present was written down on the counting lists.

The obtained data is then entered into a database at the end of every week. Meanwhile
the data is checked for (obvious) errors manually by the editors. MS Access has been used
as their database. With the help of the built-in MS Access report functionality the results

are exported from the database. Some definitions were made beforehand:

Number of periods room is not empt
D P 100%

Occupation =
p Total number of periods

Number of students present in room
P x 100%

Utilization =
Total number of seats in room

The different reports can be found in the report by Sprong and Winkels [6]. An example

of one of their reports can be found in Figure 2.1.

2.4.2 Results

The following results have come forward from the investigation described above:

e The average scheduled occupation (with respect to the timetable) is 64%
e The true average occupation of the lecture rooms is 49%

e The average utilization of occupied rooms is 32%

From all occupied rooms, only 3,4% of the rooms is 100% utilized

From all occupied rooms, only 14% of the rooms is > 70% utilized
Some environmental factors that were taken into account while interpreting the results:

e Number of registered students (per 1-09-2007): 14.281

8

Percentage

Bezetting / Benutting

100

80

&0

40 -

20 -

@ Benutting
m Bezetting

G- I L]) 1 L L] 1 1 T L] L) 1 L
151617 181920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 30 40 41 42

Weeknummer

Figure 2.1: TU Delft report: occupation and utilization per week

e Further differentiation in education forms. Smaller project- and work groups result
in a larger demand in rooms.
e The construction of the timetable plays an important part in increasing occupation.

Aspects that play a role:

— On time delivery of educational information to the timetable makers
— Delivery of the right educational information

— Determining the correct education form the teacher is going to use for his or

her subject such that appropriate rooms can be booked.

2.5 Universiteit Utrecht

The University of Utrecht also performed some measurements in the past. However, these
measurements were not very well structured and were carried out in an ad hoc fashion.
Different sample days were chosen and not all rooms and periods were covered. They had,
just as the other parties involved in this research, the feeling that rooms were more often
empty than expected. They felt that a measurement sample would be enough to confirm

their suspicion.

2.5.1 Methodology

From the timetabling system Syllabus Plus, counting list are exported that can be used
by students to perform the measurements. In every block of 10 weeks, 2 sample days are
picked to carry out these measurements. During those days students pass by lecture rooms
for the whole morning and part of the afternoon. As a result not all periods are covered

by the measurements.

Together with the exported list from Syllabus Plus, students walk past the lecture rooms.
Whenever the room is indeed occupied, also the utilization is measured. Only the rooms
present in the timetable are measured, unless it is clearly visible from the outside that the

room is occupied. This can of course lead to incomplete and inconsistent measurements.

10

2.5.2 Results

The obtained data is processed by the students themselves in Excel. This results are
then again compared with the timetable data and conclusions are drawn. Because the
measurements can be incomplete, the results are interpreted on a more abstract level.
Nevertheless, feedback from the measurements led to better timetabling insights which

then led to an increase of the utilization.

2.6 HAN

At the Hogeschool Arnhem Nijmegen (HAN) measurements were also taken. They were
curious to know about their room occupation and utilization and if some improvement
could be made there. During the academic year 2008-2009, in the third of five semesters,
only one building was measured. The building covered an area of 15.000m? which comes

down to 70 (also non-educational) rooms.

2.6.1 Methodology

No real preparation was done before the measurements. Invigilators that were already
employed by the HAN during the examination periods, were asked to execute the mea-

surements. Their timetabling system (Untis) was used to prepare the counting lists.

Similar to the methodologies described earlier, the invigilators walked passed the 70 rooms
in the building. Every room was checked every period. The results were processed in Excel

worksheets.

2.6.2 Results

The results obtained from the measurements show a significantly higher number then we
have seen so far. This could (partly) be explained by the fact that also non-educational

rooms were taken into account.

e The average occupation of the rooms in the building (> 70%)

e The average utilization of occupied rooms (> 40%)

11

Based on the results described above, HAN felt that there was room for improvement.
Starting in 2010, they implemented a real time occupation measurement system, Room
Management System (RMS) by Cofely [7]. Cofely RMS offers realtime insight into the ac-
tual use of space. Movement sensors detect whether someone is present. This information
is then stored in a database and presented via internet and touch screens. Information
on the usage of a building and current management information is easily available. Touch
screens in every hallway show a map of the current floor. Every room that is not in use
is colored green, occupied rooms are colored red. Touch screens can also be synchronized
with the timetabling system. Rooms that are reserved but not yet in use are then colored
orange. If the room is not used within 15 minutes from the start of the period, it will
become available and its screen will turn green. At the moment the RMS system can only
detect room occupation, but not the number of present persons. However, it is expected

that this functionality will be added soon.

2.7 Comparison

An overview of the comparison between the institutes discussed above can be found in
Table 2.1.

2.8 Conclusion

Every educational institute that was contacted for the sake of this research does (or did)
some kind of research on room occupation and/or utilization. These researches are started
because of the feeling of underutilization or the desire to increase these occupation and
utilization figures. Every party counts rooms by physically visiting them. Most of them
use simple Excel sheets to prepare lists and process data. Only the HAN uses specialized
software while the TU Delft uses a relational database system. Measurements were taken in
different intervals mostly at the beginning of the academic year but not in the first week(s).
According to the interviewees the most important part of the measurement process is the
preparation. Well prepared measurements give structure to the entire process, speed it up

and prevent errors.

12

SOINIISUL UPoMI9(STUOWLIILSEBIW QOE@NSSS\QOE@QﬂUUO Jo ngE@QEOU Ienqge], ‘1°¢ °19%lL

Sunedp} snqe[£g snqe[4g IRIS0Y /STIU) POZIRIIUOID(T ue)sAS a[qejell],
SINY/199xH IERC] SS90y IERC] [99X5] duisseooag
ou /sek sof S0k sok sk UOI)RZI[IIN WIOO0Y
sof sof soh soh soh uorjpedndd0 wooy
SyeaMm J, sAep g SYooM § X T T9)SOUIDS T J[OOM 5, & syoom ()T polisgq
porrad ' 9ou0 Aep e sowiry 9- porrad ' 9ou0 porad ® 9ouo porrad ® 9ou0 Aousanboaag
04 Auo panpeyog 08 18 99 swooy#
SI03e[ISTIAU] SJuapNIG ‘dwe Arerodwa, seakordugy s1oyefidiauy /-dury SIOIMNOIXH
OIRWOINY /SI9IUNO)) SIojuNo)) SI9JUNO0)) SI9jUNo)) SI9UNO)) POUIRIN
IT0¢-600¢ 8002 £00¢ 1T0¢-600¢ £00¢-900¢ de9X
NVH nn ¥ed NL sAyuogq °/NL |

13

Chapter 3
Requirements

In this chapter an informal description of the system is given. In the following section the
functional requirements will be addressed, which were agreed on by the DIZ supervisors.
These are followed by the non-functional requirements of the system. Finally we will
discuss three use cases which will sketch the functionality of the system together with its

user interaction.

3.1 System description

Let’s start with an informal description of the system. The system will be build as a web-
based system, for the sake of portability and maintainability. Different people need to
work with the system, either to monitor the measurements and its results, or to actually
enter the measurement into the system. When the web-based system is installed on a
central server, there is no need to install software on different computer systems except
for an internet browser. Maintainability is also important. Because the system will be used
for the first time starting September 2011, it might be adjusted based on user experience.
When the system provides good decision support, it might also be fit for further expansion

in functionality.

The system will be split up into six different parts:

e User management
e Period management

e Room management

14

e Reservation management
e Measurement management

e Reports

3.1.1 User management

The user management section will take care of the users of the system. Users can be either
Administrator or Counter. The exact rights of each user become clear in Section 3.2, but
basically the Administrator is allowed to add, edit or delete different items such as periods,
rooms or reservations. Counters are allowed to see all information, but are only allowed
to add or update measurement data.

The functionality of this part of the system, as well as most others, comes down to the
four basic persistent storage operations: create, read, update and delete (CRUD) users.
Every user has a username and a password to be able to log in. Administrators can assign
passwords, after logging in everybody can change his or her own password. Furthermore
every user has a full name, user type (as mentioned above) and an active flag. The active
flag can be used to (temporarily) deactivate a user. This can be useful when deleting a

user is not desirable, as there might be other objects referring to a user entry.

3.1.2 Period management

This section will manage the lecture hours or periods. Every university has a different
period timetable and they are often likely to change over time. The same CRUD operations

are provided. Periods have a rank, start time, end time and an active flag.

3.1.3 Room management

The measurements that are going to be taken, are about room utilization and occupation.
So we need a section that will administer the rooms we will be measuring. Again, the
CRUD operations will be necessary. Because the adding and updating of rooms will be a
cumbersome activity, there should also be an import function. Rooms are already stored
in the Syllabus timetable system after all. Syllabus provides an exporting mechanism
through spreadsheets or CSV/SSV text files. Importing these files should result in adding

missing rooms and updating existing ones.

15

Rooms are described by their name (full name and abbreviated short name), building,
size, capacity, type (‘Flat’” or ‘Amphitheater’), active and notebookReady flags. The size
will be represented by a character in the range of A-E. A being smallest category of rooms

and E being the largest. The exact definitions can be found in Table A.3 in Appendix A.

3.1.4 Reservation management

In order to relate our measurements to made reservations, we need functionality to import
data from Syllabus. Of course it is also possible to create, update and delete single reser-
vations, but taking into account that thousands of reservations are made every academic
year, most work should be done by automatic imports. As mentioned earlier, Syllabus
provides us with an exporting facility in its software. For every activity scheduled in Syl-
labus, we are able to export its module name or subjectID, the room it takes place in, its
date, start time, end time and responsible lecturer(s) and faculty. These are the attributes
we need to keep as well.

The reservations can be viewed in a tabular fashion. The end user can pick a date and
period and as a result a table will be shown with as many rows as there are active rooms.
For every room that has a reservation on this particular day and time, the above men-
tioned attributes will be shown on its row as well. Administrators will have the possibility

to update or remove these reservations, counters can only retrieve them.

3.1.5 Measurement management

This section is responsible for the most important data in our system: measurements. It
will have the same interface as reservation management, with a tabular overview of all
the rooms on a given day and period. In every row the number of occupied seats can
be entered. The capacity of the room is also present, to give an indication of its size. If
the room is reserved, the row is supplemented with reserving faculty, responsible teacher
and subjectID. If the room is not occupied (no seats are used), no action has to be taken.
Together with the occupied seats, also the measurement taker (logged in user) and the
timestamp of the measurement will be stored. The rows in the table will be sorted on
room names, with the reserved rooms first. The end user is able to change the sorting of

the table by clicking on the header of a column.

16

3.1.6 Reports

Now that all our data is stored and manageable, we are ready to generate some reports.
There are two types of reports. Reports about occupation, i.e. the number of occupied
rooms with respect to the reservations. The second type is about utilization, which means
the average number of used seats in occupied rooms. Both type of reports will be generated
directly, resulting in a 2 dimensional grid. On one axis we will find a time dimension
which is either scaled in weeks, weekdays or periods. On the other axis we will find a
room dimension, which will occur in the form of room buildings, room types, room sizes

or room names. This means that there will be 2 x 3 x 4 = 24 different reports.

3.2 Functional requirements

Now that we have seen an informal description of the system, we will try to capture
the system in a number of requirements next. The requirements were established during
interviews with stakeholders, mainly with the DIZ supervisors. The requirements are again
divided into 6 sections, the same sections as used in Section 3.1. The requirements can be
found in tabular fashion in Appendix A. The requirements can have different priorities

assigned. The priorities are explained in Table 3.1.

‘ Priorities
Priority 1 | Must be filled in

Priority 2 | Should be filed in

Priority 3 | Could be filled in

Priority 4 | Might be filled in

Table 3.1: Requirement priorities

3.3 Non-Functional requirements

The system will be web based. This makes it accessible from every system, regardless
of the operating system or other software installed. Only a web browser is needed. The
system has to be installed only once and the data can be stored at one single place. The
system should be available at all time from every work station with a web browser installed.

Maintainability and flexibility of the system are important for future use, evolution and

17

expansion. Additional software needed should preferably be open source, since there are
no or limited funds available for this project. Response time is not very important, but
you should be able to click through the system conveniently. Importing large data sets
and generating reports should take as little time as possible but may take several seconds

up to a minute depending on the size.

3.4 Use cases

To give more insight in how the system will be functioning and how it will interact with
its end-users, some use cases were set up to initially give the supervisors more insight in

their future system. Use cases A, B, and C are shown below.

3.4.1 Use Case A

1. Brief description

This use case will describe how an Administrator will add a user to the system
2. Actors
e Administrator
3. Pre-conditions
e An administrator is successfully logged in to the system
4. Basic flow of events

(
(

a) The use case starts with presenting the main menu of the system

b

The administrator clicks to enter User management section

d) The administrator clicks the add-new-user option

)
)
(¢) The system will show a list overview of present user records
(d)
(e) The system presents a blank form with following fields:

i. Username (required)
ii. Password (required)

iii. Re-enter password (required)

18

iv. Real name (optional)

v. User type (required, presented as dropdown box filled with user types)
(f) The administrator enters/selects the appropriate information into the fields
(g) The administrator clicks the save button
(h) The system will display a confirmation message

(i) The system returns to the user overview screen from step 3 (which now includes

the new user)
5. Alternative flows

e In step f of the basic flow, at least one of the fields is filled in incorrectly =>

— After step g, the system will display an error message indicating the actual

error

— The user solves the error and resumes at step f

6. Post-conditions

A user is added to the list and the list is shown on the screen.

3.4.2 Use Case B

1. Brief description
This use case will describe how to enter measurements of Monday 12 September
2011, 1% and 2"¢ period.

2. Actors

e Counter (or Administrator)
3. Pre-conditions

e A counter is successfully logged in to the system
4. Basic flow of events

(a) The use case starts with presenting the main menu of the system

(b) The counter clicks to enter Measurements section

19

(¢) The system will show the current day and period in a small form, followed by
a list of all rooms currently present in the database that are set to active. The
list is ordered by reservations first and ordered further by room ID. Every row

will show:

i. Room ID (read only)
ii. Room capacity (read only)
iii. Room occupation (optional, integer > 0, input field)
iv. Reserved? (read only)
v. Subject code (read only)
vi. Faculty (read only)

(d) The counter will select Monday 12 september from the date select box and
1%t period from the period select box. After pressing the ‘Get measurements’

button, the room list will be refreshed according to the new set timestamp.

(e) The counter enters the room occupation figures obtained from, for example

Global Viewer, in every row necessary.

(f) The counter confirms its contribution by clicking the save button.

(g) The system will save the measurements without error warnings.

(h) The counter will proceed with step d again (but now selecting the 2" period)
and finally exits the measurements section and returning to the main menu.

5. Alternative flows

e In step e of the basic flow, one of the occupation figures is not an integer =>

— After step f, the system will not save, but will show error message(s) indi-
cating something like ‘digits only’.

— The user resolves the error and retries the save button

6. Post-conditions

The measurements of the first two periods of the Monday are entered into the system

3.4.3 Use Case C

1. Brief description

This use case will describe how to generate the report described in REP-01: Show

20

average number/ percentage of reservations per week vs. average number/percentage

room occupation per week.

. Actors

e Counter (or Administrator)

. Pre-conditions

e A counter is successfully logged in to the system

. Basic flow of events

The use case starts with presenting the main menu of the system
The counter clicks to enter Reporting section

The system will provide a menu where the user can choose between 6 report
types:
i. Reservations vs. Occupation (per week)
ii. Reservations vs. Occupation (per weekday)
iii. Reservations vs. Occupation (per period)
iv. Seat Utilization (per week)
v. Seat Utilization (per weekday)
vi. Seat Utilization (per period)
The user will pick an option by clicking the appropriate button (in this case
option i)
In the next step the system will show the final step of the report selecting
procedure by presenting the following options:
i. Individual rooms
ii. Buildings
iii. Types
iv. Size
The user will pick an option by clicking the appropriate button (in this case

option i)

21

(g) The report will be generated with on top a form to adjust the time interval
(start and end week). The last 4 weeks is chosen as the standard interval. The

standard report is presented in a tabular fashion.

(h) If desired the graphical version can be generated

5. Alternative flows

No alternative flows

6. Post-conditions

A tabular and optionally graphical report is generated.

22

Chapter 4
Design

Given the requirements, the next step is to come up with a robust, flexible and easy to
maintain design. At the core of the design, we need a relational database to store all the
information needed and gathered during the measurement periods. On top of that we
need data warehouse functionality to facilitate the decision support. The data warehouse
should be maintained separately from the relational database. It must support on-line
analytic processing (OLAP) which enables us to do multi-dimensional analytic queries.
We need this functionality to generate our reports. Finally we need a code framework
which will combine all pieces. It will handle the requests, manage the data and generate

views.

4.1 Relational database

The relational database can be derived from the requirements almost directly. The ER-
model of the relational database can be found in Figure 4.1. Underlined attributes are
primary keys, while bold attributes are required for every entry. Every part of the system,

as described in Section 3.1, has its own table, except for the reports section.

The users table can be derived from the USER-01 requirement. An extra attribute active
has been added, to be able to (de)activate a user, instead of deleting and re-inserting. The
userlD attribute is the primary key, which should be a unique integer. The username and
fullName fields are strings, the userType field is either 1 (Administrator) or 2 (Counter)
and the active field can be either 1 (true) or 0 (false).

23

The periods table can be derived directly from the PER-01 requirement. The primary
key periodID represents the, obviously unique, lecture hour. The start and end field are

expressed in time format hh:mm:ss.

The rooms table can be derived from the ROOM-01 requirement. An extra attribute
shortName is necessary to be able to synchronize with the rooms available from Syllabus,
more on that later in Section 4.4. The fields shortName, fullName, building and type are
strings, size is a character between A-E according to requirement ROOM-03 and seats,
active and notebookReady are integers. Where active and notebookReady can be either 0

or 1.

The measurements table is where the actual measurements are stored. This table can be
derived from requirement MEAS-01. However, instead of date and period we will introduce
a timelD field, which is a foreign key to the time table. This table is necessary to be able to
make various aggregations in time. More on that in Section 4.2 about ROLAP. The fields
roomID and userID are also foreign keys to their corresponding tables, where roomID
points the room being measured and userID is the id of the logged in user carrying out
the measurement. Occplaces represents the number of occupied seats measured. Since
measurements only take place on occupied rooms, this field can not be empty. Finally
the date and time will be saved in the timeOfEntry field, to be able to trace back the

measurement.

To relate the measurements to the timetable, the reservations table is created. Similar to
the measurements table it is also related to time and place and has therefor foreign keys
timelD and roomID. The faculty that reserved the room, the subject that is given there
and the responsible lecturer(s) are stored in faculty, subjectID and teacher respectively.
The extra field added, with respect to requirement TIME-01, is yearID. This is the foreign
key inherited from the academicYear table. This enables us to connect every reservation
to a academic year. This makes the importing and emptying of reservations by academic

year possible and easier.

As mentioned above the academicYear table is introduced to distinguish reservations by
academic year. The description field should be used to indicate which academic year it
concerns (ie. 2010-2011), but can also be used to create a custom entry (ie. ‘planning’ or
‘congress’), which might be useful for testing or non-academic timetables. The start and
end fields indicate the time span of the record. The field locked indicates if the reservations

related to this record can be imported or erased.

24

As mentioned earlier, a special table time is created to store timestamps. If we model
time information as a hierarchical dimension, it is possible to analyze measurements by
year, month, week, weekday, period etc. All the attributes of the time table are stored
as integers, except weekday_label, which stores the day of the week (Monday, Tuesday,
etc.) as a string. The meaning of the year field is trivial, month represents the month of
the year (value between 1 and 12), week represents the week of the year (week 1 to 52),
weekday is the day of the week (1 is Monday and 7 is Sunday) and day is the day of the
month (value between 1 and 31). The periodID field is a foreign key pointing to the period
table.

reservations time periods
PK | reservationlD P PK | timelD PK | periodID
—
FK1 | roomlD year start
FK2 |timelD month end
faculty week active
teacher weekday
subjectiD weekday_label
FK3 |yearlD day
i FK1 |periodiD
academicYear rooms T users
PK |yearlD PK |roomID WRASUISTHERE PK | userlD
f—— PK measurementiD
description shortName username
startDate fullName FK1 | roomiD > password
endDate building FK2 | timelD fullName
locked size Fk2 | useriD usertype
seats timeOfEntry active
type occPlaces
active
notebockReady

Figure 4.1: ER model of the relational database

4.2 ROLAP

On top of the relational database described in the previous section, we need a data ware-
house with OLAP functionality to facilitate the report functionality of the system. Ac-

cording to Chaudhuri and Dayal [5], data warehousing is a collection of decision support

25

technologies, aimed at the knowledge worker (executive, manager, analyst) to make better
and faster decisions. The report section of ROOMS should also provide decision support
to the DIZ executives to make better and faster decisions with respect to timetabling and

room management.

Data warehouses are typically maintained separately from the relational database(s). It
supports on-line analytical processing (OLAP), while relational databases support on-line
transaction processing (OLTP). OLTP databases are characterized by short transactions
such as UPDATE, DELETE or INSERT. It focusses on the typical day-to-day operations in most
organizations. In OLAP on the other hand, historical, summarized or aggregated data is
more important than detailed, individual records. Therefor the size of an OLAP database
can become quite large. Accessing an OLAP database usually involves more complex
queries, up to millions of records and perform lots of joins. Because OLTP or relational
databases are designed and tuned to perform short transactions, trying to execute OLAP
queries against it would probably result in unacceptable performance. Other reasons to
separate these type of databases is that OLTP supporting databases only store current data
and OLAP databases require historical data. Finally, supporting OLAP functionality often
requires a special data organization which is not compatible with the data organization of
an OLTP targeted database.

To facilitate the complex analyses of OLAP, the data in a warehouse is modeled multi-
dimensionally. For example in a sales warehouse, time-of-sale, place-of-sale or sold prod-
ucts might be some interesting dimensions. Every dimension is described by a set of
attributes, these attributes can be hierarchical organized. A good example of a hierarchi-
cal dimension is time. As we have seen in the previous section, we have split up timestamps
in different attributes in the time table according to its hierarchy: year > month > week
> day. The time dimension is of particular significance to decision support, for example
in trend analysis. The multidimensional data structure of OLAP is often visualized as a

cube, as we can see in Figure 4.2.

Once we have our multidimensional model or cube, we need a set of numeric measures
that will be our object of analysis. In our previous example this might be the turnover,
revenue or inventory. All the dimensions together uniquely determine the measure, or in

other words, the measure is a value in the multidimensional space.

A distinctive feature and key operation of OLAP is the aggregation of measures by one or
more dimensions. For example the total turnover of a product, of a region or combination

of both. Comparing two measures is also possible, as long as they are aggregated over the

26

syonpoid

Figure 4.2: Cube Example

same dimension. So in our example you can, for example, calculate product revenue by

subtracting product cost from product turnover.

Another important feature or operation is pivoting. An analyst might want to view the
data, or ‘pivot’ the cube, in various ways. For example, if one wants to display all the
regions on one axis and all the products on the other. If the analyst wants a different view,
the cube can be re-oriented in the desired position. The resulting view is a grid where
each value with a (x,y) coordinate corresponds to the aggregated value of the measure,
where x is the value of the first dimension and y the value of the second. If we once again
use our example, we can use products on the one dimension and regions on the other. The

point (x,y) will then represent the aggregated sales of product x in region y.

Operators related to pivoting are roll-up and drill-down. The roll-up operation corresponds
to doing a (further) group by on one of the dimensions of the measure. Drill down (and
up) lets you go down in the hierarchy levels of a dimension. An example is shown in Figure
4.3. In this figure we see a cube with the sales figures of a large fruit company. The cube
has three dimensions, time, place and product. The drill down operation drills down the
hierarchy of the product dimension to another level. We now have a better understanding
of the sales figure of the apple product, since we now see the sales figures of the different
apple varieties. The drill up operation is the inverse of the drill down operation. Slice and
dice operations correspond to taking a projection of the data on a subset of dimensions for

selected values of the other dimensions. An example of the slice operation can be found

27

in Figure 4.4 and an example of the dice operation can be found in Figure 4.5. We see
that in Figure 4.4 the time dimension is restricted to a single year and in Figure 4.5 we

see that the product dimension is restricted to a subset.

2006

2005
2004 2006
2005
2004
Apples
Jonagold
Bananas
Golden Delicious
Oranges
N Granny Smith
Grapes >
UsA i
Melons ¢ bus iald
USA Eur Asia

Figure 4.3: OLAP Drill Down/Up Example

2006 d 2004 1

2005

2004
Apples

Apples
Bananas

Bananas
Oranges

Oranges
Grapes

Grapes
Melons
Melons V y

USA Eur Asia

Figure 4.4: OLAP Slice Example

Data warehouses implemented on top of standard relational databases, as we intend in
this project, are called Relational OLAP (ROLAP) servers. On the other side multidi-
mensional OLAP (MOLAP) servers, are servers that store multidimensional data in own
specialized data structures. ROLAP servers support extensions to SQL, while MOLAP

servers implements operations over its special data structures.

Now that we have seen the architecture of ROLAP, we can apply it to our own project.
Looking at requirements REP-01 to REP-06, we are going to need at least three measures.
First the occupation measure, which counts the number of occupied rooms. Second, the
utilization measure, which takes the average number of seats of the occupied rooms. Fi-

nally, we need to measure the amount of reserved rooms. All these measures will depend on

28

Apples

Bananas
Oranges
Oranges
Melons

Grapes >

UsA i
Melons @ Eur Asia

Y

USA Eur Asia

Figure 4.5: OLAP Dice Example

the dimensions time (requirement REP-01 to REP-06) and rooms (requirement REP-09).
The time dimension will be hierarchical and will have at least the attributes week, weekday
and period. The room dimension will consist of the non-hierarchical attributes room type,
room size, room building and room name. The time, room and measures dimension will

form a cube.

4.3 Architecture

Now that we have seen how we store our data in the fact tables in the relational database
with a data warehouse on top, we need to design a code framework to tie everything
together. As we have seen in Chapter 3 most of the workload of the code framework (ex-
cluding data warehouse) will involve CRUD operations. The Data Access Object (DAO)
design pattern [8] helps an application to perform various CRUD operations on databases.
DAO classes provide methods for inserting, deleting, updating and finding desired data
in the storage medium. The advantages of using DAO classes are the loose coupling and
less code repeating. Almost every part of the system needs to perform CRUD operations
on the relational database, this would lead to repeating the same code fragments. It is
needless to say that this repeated code fragments would not be easy to maintain if the

interaction with the database would change.

DAO was invented to overcome the problems mentioned above. The DAO pattern is
supposed to have a DAO interface, DAO class and DAO factory corresponding to each
table in the database. Loose coupling arises through the simple separation of business

logic and persistence logic. Business logic can still depend on the same DAO interface,

29

while changes in the persistence logic can take place in the DAO classes.

The DAO pattern is often used in combination with the DTO pattern [9]. Data Transfer
Objects, sometimes also called Value Objects, are used to transfer data between different
subsystems. Only one single method call is used to retrieve the object, instead of numerous
remote calls to retrieve single attribute values. Usually more than one attribute from an
object is required, so the number of remote calls can be significantly reduced in this way.
The business logic receives the complete Transfer Object and can then use its getter and
setter methods to retrieve its properties. A DTO does not have any extra behavior except
for storage and retrieval of its own data. They are transferred to the business logic by

value, so all calls to the instance are local.

BusinessObject j

-
-
-
-
~~ .. obtalinsimodifes
-

-

-
-
~

TransferCbject

|
:creme siuses
|
L)

Figure 4.6: Data Access Object

In Figure 4.6 we can see how the DAO and DTO design patterns relate to each other. In
Figure 4.7 we see a sequence diagram of a typical scenario of interaction between the DAO
and DTO design patterns. The controller wants to update a user by setting its new name
and address. First the controller creates a new user Data Access Object UserDAO (step 1).
The DAO is responsible for talking to the database and retrieves the specific user (step
2.1). Instead of returning the individual user attributes to the controller, a Data Transfer
Object (UserDTO) is created by the DAO (step 2.2). With this DTO the controller can set
or get every user attribute it wants (step 3 & 4), in this case the user’s name and address.
When finished, it sends the UserDT0 back to the UserDAO (step 5). The DAO now stores
the user data in the database (step 5.4) using the just adjusted UserDTO (step 5.1, 5.2 &
5.3).

Now that we have abstracted our data source form the business logic, we also need to ab-
stract the user interfaces from the underlying data. Here comes the Model View Controller
(MVC) design pattern into play [12].

e View: displays information to the user and provides a mechanism to interact with

the system. Should not check, process or calculate data.

30

Controfler UserDAD Database UserDTO

1: Creata

2 getUser()

2.1: SELECT query i

|
|
|
54 . 2.2:ICre:|te |
23! return Usa:
| g
[| I
| |
T 3: setName() I I
|.|_| I 4: setAddress I m
0 | | g
5: upd ateUser |
I pd o 1 5.1| getiD() FE]
5.2 getName() |
5.3: getaddress() E

5.4: UPDATE query

Figure 4.7: Data Access Object sequence diagram

e Controller: processes events caused by user interaction

e Model: part of the application that both contains the information shown by the
View and the logic that changes this information based on the events received. The
actual storage of data is done in the persistence layer of the application, in our case
a RDBMS. The persistence layer is not necessarily part of the MVC pattern. We
have already seen how to transport data from and to the Model using the DAO and
DTO patterns.

The MVC pattern makes its easier to develop and maintain the system. The look and feel
of the application can now change and evolve without having to make changes to data
structures or business logic. The application is also able to maintain several interfaces

such as multiple languages.

Because web-applications are interactive software systems, they can really benefit from

the MVC design pattern. A possible problem for using MVC in web-applications might

31

be that web-applications are partitioned by server and client by nature. The View is
always shown on the client side, but the Controller and Model can, theoretically, be
placed at either side. The developer is forced to make a partition, while the MVC design
pattern should be partition-independent, meaning Model, View and Controller should
reside in the same address space. Location dependent issues should not drive architecture
design or influence design decisions. However, since we really want to avoid partitioning
and portability being one of our important features, there is only one solution possible.
Controller and Model should reside on the server side, this is also known as the ‘thin client’
variant. This results in minimal customization on the client side. The downside is that
for every action a request to the server is needed, but this should not cause any problems
since the traffic to our system is expected to be rather limited. Only a few users will work

on the system at once.

4.4 Data import

Entering and managing data about rooms and timetables can be a cumbersome process.
Luckily, this data is already available from another system at DIZ, Syllabus Plus. Syl-
labus Plus is a worldwide used software package for planning, timetabling and resource
management in higher professional education. It is developed by Scientia and is used at
over 450 universities worldwide (dated 2006) [1]. The most important application of the
Syllabus Plus package is the Timetable application. With this application educational
timetables can be produced. Because multiple Timetable applications can be connected
with a central Scientia Database (SDB), different timetable coordinators can work at the
same time while keeping data consistent. The SDB hosts all data relevant to timetabling.
Think of teachers, faculties, rooms, courses, etc. From this Timetable application we can
extract all kinds of data from the SDB we need for ROOMS. Data we need is all the rooms

associated to DIZ and the timetable of all the activities taking place in these rooms [1].

Syllabus Plus allows to create templates for special reports and output files. To print a
data report, or save data to an output file in a certain way a printing template is used. It
goes beyond the scope of this report to describe in detail how to construct these templates.
But it is fair to say that is possible to extract available data in any format desired. Two

new templates have been constructed, one to extract rooms and one to extract timetables.

32

4.4.1 Rooms import

Ideally, we would like to fill our room table in the relational database completely from
Syllabus. Unfortunately, no building name, room type (Amphi or Flat) or notebook
readiness is currently available from Syllabus. That leaves us with the following remaining
attributes to import. Every bullet mentions a database field from the rooms table to be

imported, followed by the matching Syllabus field in brackets:

e shortName (Zalen.naam)
e fullname (Zalen.beschrijving)
e seats (Zalen.capaciteit)

e size (calculate from seats)

When importing rooms the remaining table fields (those not mentioned above) will be set
to their default value. The default room type value will be ‘Flat’. Imported rooms are also
set to active and notebook ready. Changes to these attributes can be made afterwards
manually. We will use shortName as a unique identifier (next to its primary key roomID).
If a room is imported with a shortName that already exists in the database, the attributes
fullname, seats and size are updated instead of added as a new row. The remaining

attributes of the updated row will be left untouched.

4.4.2 Timetable import

Luckily, the data we need to fill our reservation table is completely available from Syllabus.

We can make the following matching with the SDB:

e roomID (Activiteiten.Zalen.Naam)

e timelD (Activiteiten.activiteitsdatums + Activiteiten.Geroosterde begintijd + Ac-
tiviteiten.Geroosterde eindtijd)

e faculty (Activiteiten.Afdeling. Naam)

e teacher (Activiteiten.Docent.Naam)

e subjectID (Activiteiten.Module.Sleutelveld)

As we can see above we have to derive the roomID from Activiteiten.Zalen.Naam as we

did in the previous section. If the roomID can not be found in the rooms table based on

33

the data gathered from Syllabus, we will discard the activity altogether. We only want
the activities of the rooms we are interested in. So it is wise to first import the rooms
before importing the timetable. The timelD can be retrieved using the date, start and
end time of the activity in Syllabus. If we can not find the corresponding time entry, we
have to add it to our time table. In this way we only store the time entries we need. The

rest of the attributes can be copied one on one.

4.5 Environment

Finally we need to create an environment to support the architecture described in this
chapter. Since the software needs to be web-based, we will at least need a web server.
Since the implementation of the system cannot count on a high budget, we need to be as
creative as possible. The most limiting factor is finding the right software for our data
warehouse. There are a lot of commercial products available on the market, but most of
them are rather expensive. A popular and open source alternative is called Mondrian, also
known as Pentaho Analysis Services Community Edition [2].

Another popular and widely used implementation of RDBMS is MySQL. It is easy to
use, has a good performance and is reliable. MySQL runs on more than 20 platforms
including, Linux, Windows and MacOS. The world’s largest and fast growing companies
such as Google and Facebook use MySQL in many of their products [11].

Because Mondrian is written in 100% Java and requires a web container anyway, it seems
wise to also chose Java as our programming language. JavaServer Pages (JSP) technology
provides a simplified, fast way to create dynamic web content. JSP technology enables

rapid development of web-based applications that are server- and platform-independent

14].

34

Chapter 5
Implementation

Now that we have outlined our architectural foundation discussed in Chapter 4, we can
fill in the implementational details. First we will have a look at the code implementation
based on the Struts framework. The accompanying UML package diagram can be found in
Appendix B and UML Class diagrams of the individual packages can be found in Appendix
C. Next we will have a look at the implementation of our databases. MySQL is picked as

our relational databases, with Mondrian as open source OLAP server on top.

5.1 Struts

Jakarta Struts is an open source framework, which was designed to make it easier for web
developers to build web applications based on Java Servlets and Java Server Pages (JSP).
Developers can use this as a solid framework to base the rest of their design upon. They
can shift their focus more towards business logic design instead of infrastructure design.
The Struts framework is one of many well-known and successful Apache Jakarta projects.
It was created by Craig R. McClanahan and donated to the Apache Software Foundation
in 2000. The mission of the project nowadays is to provide a commercial-quality server

solutions in an open and cooperative fashion [4].

A Java Servlet is a Java class in Java EE that conforms to the Java Servlet API, a protocol
by which a Java class may respond to requests. Java Servlets provide a component-based,
platform-independent method for building web applications. Because they are written in
Java they are not bound to a platform or operating system. Java also comes with an entire

suite of application programming interfaces (APIs). As we have noticed in Section 4.5,

35

Far stalic documents fike HTUL e web The et sevver and serviel confalner
serva will sarice the regquest marmatly wse FLRAP to commumivale

Serviet container

Figure 5.1: Struts client request

servlets are not executed on the web server itself. They need a web container. In Figure

5.1 we see how the web server and the web container cooperate in handling client requests
[4].

One of the disadvantages of Servlets was the fact that adding HTML text to a Servlet
as the output of a request has some limitations. Java Server pages were introduced to
overcome these limitations. Java Server Pages are a natural extension to the Java Servlet
technology. JSP files (which have .jsp extension) are text files containing HTML mixed
with XML-like tags and scripts. The tags and scripts are the logic that generate the page
content. After preprocessing and Java compilation, the files can be executed by the Servlet

container. We will be using JavaServer Pages to create our user interface.

As we can see in Figure 5.2, the Struts architecture uses a MVC approach. There is a
clear separation of business logic, presentation and request processing. The views within
the MVC pattern typically consist of HTML and JSP pages. HT'ML is for static content,
JSP for dynamic and static content. Almost all of the dynamic content is generated in
the web tier with the exception of some client-side Javascript. Javascript is used to sort
tables on the client side or to generate warning and confirmation messages. The controller

in our MVC approach is a Java Servlet. It takes care of the following duties:

e Intercepts HTTP requests from a client

e Translates each request to business operations

e Helps to select the next view to display to the browser
e Returns the view to the browser

Because all traffic goes through the controller, we have a central point where we can control

the application. If we need to change or add functionality to the way client requests are

36

Servlet | fustantiates
................ - pcontrallery o,
User action fediect H
Y -..: e P - Data
<J5p= (model]
alls e raama s e r'IIIEl'i_I -
Syster
rEspanse
‘Web container

Figure 5.2: Struts Architecture

handled, we can do that at a single point instead of changing several or all JSP pages. We
already saw that the controller plays a crucial part in decoupling the presentation from

the business logic.

5.2 ROOMS

Now that we have studied the Struts framework the ROOMS application is based on, we
can have a look at the application itself. In Appendix B we can find a package diagram

of the application. The following packages are present:

e nl.tue.diz.rooms: Central package of the application.

e nl.tue.diz.rooms.action: Package which contains the controller servlets.

e nl.tue.diz.rooms.forms: Package with form beans for every form used in the ap-
plication. Most of the user interaction goes through forms.

e nl.tue.diz.rooms.DTO: Package with Data Transfer Objects for every table in the
database.

e nl.tue.diz.rooms.persistence: Package with Data Access Objects for every table
in the database.

e nl.tue.diz.rooms.constants: Contains single class where constants used across the

application are defined.

37

5.2.1 Controller

The controller is responsible for translating user input into actions to be performed by the
model. Based on this user input and the output of the model, the next view is determined.
The controller is implemented by a Java Servlet, the centralized point of control for the
application. The controller is implemented by the ActionServlet class. All incoming
requests are mapped to the central controller in the deployment descriptor. Java web
applications use a deployment descriptor file to determine how URLs map to Servlets.
This file is named web.zml and can be found in Appendix E. The following snippet is

responsible for mapping actions to the ActionServlet class:

<servlet>
<servlet-name>action</servlet-name>
<servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>action</servlet-name>
<url-pattern>*.do</url-pattern>

</servlet-mapping>

The servlet-mapping tag makes sure that all URLs with the pattern *.do, are mapped to
this ActionServlet. The class requestProcessor will further process the request. Once
it receives a request it delegates it to a helper class. In the Struts framework these helper
classes are (or descendants of) Action classes. They function as a bridge between user
actions and business operations. Next we need to create a one-to-one mapping from user
requests (URIs) to Action classes. This is done in the struts configuration file, struts-
config.xml. This file is included in Appendix D. Below you can find a single mapping to

illustrate how this works:

<action-mappings>
<action
path="/login"
name="loginForm"
type="nl.tue.diz.rooms.action.DIZLoginAction"

scope="request"

38

parameter="dispatch">
<forward name="success" path="/index.jsp" redirect="true" />
<forward name="failure" path="/login.jsp"/>

</action>

</action-mappings>

The above action mapping example illustrates the login functionality in ROOMS. If the
login form (called loginForm) is sent to the controller via the URL

http://rooms.diz.tue.nl/login.do the DIZLoginAction Action class is called as a helper
class to further process the request. This class will call the necessary business operations
from the model and determine if the user is authorized to log in or not. If he or she indeed
is, the forward action "success" is chosen by the controller and the client is redirected to
the main menu in the index.jsp view. Otherwise the user is directed back to the login
form i.e., login.jsp page, possibly with some error message indicating the authorization

problem.

Also notice that in the example above we also send an extra parameter dispatch along
with the request. This is because instead of the regular Action helper classes, the
DispatchAction class is used which is a standard built-in action that provides a mecha-
nism to collect related functionality in a single action. This way we don’t need to create
single independent actions for every function. The creation, update and deletion of a
user can then be captured in a single Action class, ie DIZUserAction. The collection of
Action classes used in the ROOMS application can be found in the action package shown
in Appendix B. The UML class diagram of the action package can be found in Appendix
C Figure C.1. The following Action classes are defined:

e DIZAcademicYearAction
e DIZLoginAction

e DIZMeasurementAction
e DIZPeriodAction

e DIZReportAction

e DIZReservationAction

e DIZRoomAction

e DIZUserAction

The names of the Action classes speak for themselves. Every Action class is responsible for

the request coming form its own section as described in Section 3.1. The DIZLoginAction

39

is an extra class to handle log in and log out requests, this also could have been inte-
grated in the DIZUserAction class but has its own class for separation of concerns. The

DIZAcademicYearAction is called to life for the reasons explained in Section 3.1.4.

5.2.1.1 Forms

Forms, or ActionForm objects are used in the Struts framework to pass data back and
forth from the user to the controller. The framework automatically collects the input from
the request and passes this data to an Action using a JavaBean. A JavaBean is used to
encapsulate many objects into a single object, so that they can be passed around as a
single bean object instead of multiple individual objects. To keep the presentation layer
decoupled from the business layer, we should not transfer the form bean to the business
layer, but we should create a DTO using the form data instead. For every form in the view
an ActionForm should be used. The same ActionForm can be used for multiple pages if
necessary, as long as the form fields and ActionForm properties match. The ActionForm
used in ROOMS can be found in the forms package. The forms package can be found in
Appendix C Figure C.4. An ActionForm class should have all the form fields as properties.
All properties must have type String. The properties can be retrieved or set using getter

and setter methods.

5.2.2 Model

Now that the controller is set up to process user requests into business operations, we
can have a look at how these business operations are implemented in the model. As we
have seen in Section 4.3, we are using the DAO and DTO design patterns to structure
our model. However, it is not ideal to connect the Action classes directly to the Data
Access Objects. DAOs are designed to perform atomic actions such as insert, update
and delete. There might be more complex business operations required. Therefor we
introduce an intermediate class between the Struts Action class and the persistence layer,
implemented by the Data Access Object. In this so called service class we do our business

logic before we hand off our Data Transfer Object to the persistence layer.

40

5.2.2.1 Data Transfer Object

Let us first have a look at the Data Transfer Object or Value Object since these are used
to transfer data (in)between the Controller and Model. Data Transfer Objects simply map
a Java class to a database table. For every field in the table, there is a (private) field in
the DTO class. Every field can have its own type, even the type of an other DTO. To set
and retrieve these fields, getter and setter methods are created for every field. This is the
only functionality a DTO class is allowed to have, no extra behavior is defined. As can be

seen in Appendix C the following DTOs are defined:

e DIZAcademicYear
e DIZMeasurement
e DIZPeriod

e DIZReservation

e DIZRoom
DIZTime
DIZUser

5.2.2.2 Data Access Object

Now that we have defined our DTOs, we can implement our DAOs, to retrieve and send
the data objects to and from the persistence layer. We have defined 7 DAO interfaces,

again one for each table.

e DIZAcademicYearDAO
DIZMeasurementDAO
DIZPeriodDAO
DIZReservationDAO
DIZRoomDAO
DIZTimeDAO
DIZUserDAO

These interfaces define the basic CRUD operations we need. Every interface is imple-
mented for our current storage medium MySQL. So for every interface DIZTableDAO we
have an implementing class DIZTableDAOMySQL. These implementing classes extend the
base class DIZBaseDAOMySQL. The base class starts a MySQL session, using an Object-
relation mapping (ORM) framework called MyBatis. We will have a closer look at MyBatis
in Section 5.3.1.

41

5.2.2.3 Service

To tie up loose ends, we need to create an extra layer between the Controllers’ Action
classes (Controller) and the Data Access Objects. This will be the Service layer. This layer
is intended to perform the more complex business operations in the model. The service
layer will break down the operations to simple CRUD operations and calls the DAO layer.
In the current status of our project, the operations in the service layer are not much more
complicated than the CRUD operations in the DAO layer. But for future reference it
might be a good idea to create an intermediate service layer for flexibility. If for example,
we need to immigrate the Controller layer to a completely different framework, we do not

need to refactor all the DAO calling code, since it can remain in the service layer.

We introduced 8 service interfaces, one for each part of the system and extra services for

academic years and security (log in and log out) for separation of concerns:

e DIZAcademicYearService
e DIZMeasurementService
e DIZPeriodService

e DIZReservationService

e DIZRoomService

e DIZSecurityService

e DIZTimeService

e DIZUserService

Every service interface DIZConcernService is implemented by the class DIZConcernServiceDAO.
This class codes the business logic with calls to other services and corresponding Data
Access Objects where appropriate. For example in Figure 5.3 we see an example of
a typical service sequence. In this example we see the implementation of the method
getCurrentDIZTime () from DIZTimeServiceDAO which is called from the controller. This
method requests the current time object (DIZTime DTO) corresponding to the current
timestamp. First the current period is requested from the period service. Next the date is
retrieved from the server. This date and period are than translated to a DIZTime object.
Then the time service calls the DIZTimeDAO to find the current time object in the database.
If not found (result == null) it will insert it using the DAO again and tries to retrieve
it again to obtain the DIZTime DTO including its unique primary key generated by the

database.

42

I
1: getCumrentDIZTime() |
o

: DIZTimeSeviceDAD period Service | DIZPeriodService

1.3: dateZ2DIZ Time(}

1.4: findDIZ Time{)

dao : DIZTimeDAO

date : Date

[opt]

[result == null]

1.5: inse tDIZ Tirme()

1.6: findDIZTima{)

"
"

Figure 5.3: Example Service Sequency: getCurrentDIZTime()

43

Both the service and the persistence package are written using interfaces. Interfaces define
a contract between two classes and only a contract, nothing more. It helps in making ex-
plicit how classes are coupled together. It also helps in separating out concerns. By writing
an interface for every concern before writing the implementing class, size and complexity
can be reduced. In the persistence package especially, if the storage medium is changed,
an alternative implementation for this medium can then easily be added or placed instead
of the old implementation while the contract remains the same. In general, programming

interfaces is low cost and have great advantages that go beyond polymorphism.

5.2.3 View

The last part of the MVC pattern we still have to address is the view. The components
we typical encounter in a Struts view are HTML, JavaServer Pages, DTOs and Struts
ActionForms. Screenshots of the various screens in ROOMS can be found in Appendix

F. An aspect of JSP pages worthwhile looking further into are JSP tag libraries.

5.2.3.1 JSP tag libraries

The Struts framework provides six core tag libraries that applications can use. Each one
has a different purpose and can be used individually or alongside others. You can also
create your own custom tags when additional functionality is required. The custom tag
libraries that are included with the framework are the HTML, Bean, Logic, Template,
Nested, and Tiles tag libraries. Only the first three are used by the ROOMS application.

Some examples of tasks that can be performed by custom tag actions include form process-
ing, accessing beans and using iterations over data sets. Before the availability of custom
actions, JavaBeans components in conjunction with scriptlets were the main mechanism
for performing such processing. The disadvantage of using this approach is that it makes
JSP pages more complex and difficult to maintain. JSP tag libraries declare modular
functionality so that any JSP page can reuse it. Tag libraries reduce the need to embed
large amounts of Java code in JSP pages by moving the functionality of the tags into tag

implementation classes.

You declare that a JSP page will use tags defined in a tag library by including a taglib

directive in the page before any custom tag is used:

<%@ taglib uri="/tlt" prefix="tlt" %>

44

The uri attribute refers to a URI that uniquely identifies the tag library. This URI can
be relative or absolute. The prefix attribute defines the prefix that distinguishes tags
provided by a given tag library from those provided by other tag libraries.

JSP custom actions are expressed using XML syntax. They have a start tag and end tag,

and possibly a body:

<tlt:tag>
body
</tlt:tag>

A tag with no body can be expressed as follows:

<tlt:tag />

5.3 MySQL

The MySQL relational database has become the most popular open source database of
the world. It is easy to use, has a good performance and is reliable. MySQL runs on more
than 20 platforms including, Linux, Windows and MacOS. Worlds largest and fast growing
companies as Google and Facebook use MySQL in many of their products. MySQL was
originally founded and developed in Sweden by two Swedes and a Finn: David Axmark,
Allan Larsson and Michael Widenius [11].

MySQL is written in C and C++4, but many of the programming languages include li-
braries for accessing MySQL databases. Since we are using Java, we will be using the
Java Database Connectivity (JDBC) interface. The translation of the ER Model given in
Section 4.1 is pretty straightforward. The MySQL structure dump file can be found in
Appendix G.

5.3.1 MyBatis

As we have seen, the persistence layer of the code framework (DAOs) talks to the actual
storage medium, the MySQL database. An easy way to facilitate this is by using an

Object-relation framework (ORM). MyBatis is one of the open source solutions of an (sort

45

of) ORM. Unlike most ORMs it does not map the object model to the relational database,
but it maps objects to SQL statements. It makes it easy to use relational databases with
object-oriented applications such as ROOMS. Simplicity is its biggest advantage. Often,

only one line is enough to execute a SQL statement. It saves time and prevents errors.

The architecture of the MyBatis framework is depicted in figure 5.4. SQL statements are
stored in XML files. An XML mapper file was created for every table (and therefor DAO).

Let’s look at an example, the measurement mapper measurementMapper.xml:

<resultMap id="measurements" type="DIZMeasurement">

<id property="measurementID" column="measurementID"/>

<result property="occPlaces" column="occPlaces"/>

<result property="timeOfEntry" column="timeOfEntry"/>

<association property="room" column="measRoomID" javaType="DIZRoom"
resultMap="rooms"/>

<association property="time" column="measTimeID" javaType="DIZTime"
resultMap="time"/>

<association property="user" column="measUserID" javaType="DIZUser"
resultMap="users"/>

<association property="reservation" javaType="DIZReservation"
resultMap="reservations"/>

</resultMap>

<select id="getMeasurement" parameterType="int" resultMap="measurements">
SELECT * FROM measurements AS m
LEFT JOIN (rooms as r, time as t, users as u) ON
(m.roomID = r.roomID AND m.timeID = t.timeID AND m.userID = u.userID)
WHERE m.measurementID = #{id} LIMIT 1
</select>

At the bottom of the example we see a simple select statement with an incoming param-
eter #{id} of type integer. The output is a result map of type measurements. This
result map is defined on top. There the DTO DIZMeasurement is mapped onto the query
result. Inside the resultMap we find an id element, explicitly identifying the id which
improves the overall performance. The result tags are normal results directly injected

into DTO properties. The association tags indicate complex type association with other

46

o e

Mapper Annotations SglMap.xml
SqglMapConfig.xmi

Mapper

I
Java/ NET Object

Primitive/Simple . II:'rimiti\.:'eISimpIe
{int, String, Date) {int, String, Date)

Figure 5.4: MyBatis Architecture

HashMap/Dictionary HashMap/Dictionary

Java/ NET Object

resultMaps. In this way DTOs containing other DTOs can be mapped to directly without

any supplementary code.

DAOs can call various SQL statements, using a MyBatis SQL Session, by its id ("get-
Measurements" in the example). The result of the queries will be, thanks to the result
mappers, DTOs which can then be transported direclty to the service layer. Not in every

case a DTO as output is desirable. MyBatis can also output basic Java types.

5.4 Mondrian

There are a lot of commercial software OLAP products on the market. Big names are
Microsoft SQL Server Analysis Services and Hyperion, which had more than half of the
market share together in 2006 !. Since there were not enough funds available to purchase a
commercial OLAP product and because there are good open source alternatives we chose

for the latter. Probably the most popular open source OLAP solution is Mondrian.

Mondrian, also known as Pentaho Analysis Services Community Edition is an OLAP server
written in 100% Java. It executes queries written in MDX query language, reads its data
from a relational database and presents it in a multidimensional format through a Java
API. The Mondrian OLAP system architecture, as we can see in Figure 5.4 consists of
four layers, these are: the presentation layer, the dimensional layer, the star layer, and the

storage layer.

The first one, the presentation layer determines what the end-user will eventually see on
his or her screen. There are many ways of presenting the multidimensional data that is re-
turned from the server. You can use pivot tables, charts, and more advanced visualization

tools such as JPivot. We will see more on JPivot in Section 5.4.4.

The second layer is the dimensional layer. The dimensional layer parses, validates and
executes MDX queries. We will have a closer look at MDX queries in Section 5.4.3. An
MDX query is evaluated in multiple phases. The axes are computed first, later the values

of the cells within the axes.

The third layer is the star layer, and is responsible for maintaining the aggregate cache.
An aggregation is a set of measure values, which are as we have seen in Section 4.2,
determined by a set of dimension values. The dimensional layer sends requests for sets of
cells. If the requested cells are not in the cache, or derivable by rolling up an aggregation

in the cache, the aggregation manager sends a request to the storage layer.

The final layer, the storage layer, is the relational database (RDBMS). It is responsible
for providing the aggregation data and for providing data about dimensions. Mondrian
uses RDBMS as its storage manager and aggregated data is read by submitting group by
queries to the RDBMS. If the relational database system supports materialized views and
these views are created for particular aggregations, Mondrian will use them explicitly. The

general idea is to delegate as much as possible to the database itself [2].

Thttp: //www.lkeydata.com/datawarehousing/olap-market-share.html

48

Schema Manager

Pentaho Analysis Services: TP ® u KT Jova
Mondrian Project
Architecture

f ResultSet Formatter

Session Manager

Schema
XML File

D | Manager P Function Table

Dimensional Layer

SQL Generator

JDBC

- Repeated Data Element
. Hon Mondrian Code

Figure 5.5: Mondrian Architecture

49

5.4.1 Mondrian Schema

A Mondrian schema defines a multi-dimensional database. It consists of two models, a
logical model and a mapping of this model onto a physical model. The logical model will
consist of cubes, dimensions, hierarchies, levels and members. The physical model is the
source of the data, in our case a star schema of the relations database as presented in
Figure 4.1.

Mondrian schemas are presented in XML. The most important components of a schema

are cubes, measures and dimensions:

e A cube is a collection of dimensions and measures in a particular subject area.

e A measure is a quantity that you are interested in measuring. (ie. unit sales of a
product)

e A dimension is an attribute, or set of attributes, by which you can divide measures

into sub-categories. (ie. color of the product)

A cube is a named collection of measures and dimensions. The fact table holds the columns
from which the measures are calculated and holds references to the tables of the dimen-
sions. A cube can have several measures. A measure has a column in the fact table and
an aggregator. The aggregator can be, among others, a summation, average, minimum or
maximum. For the sake of uniformity, a measure is a member of its own dimension called

‘Measures’.

Dimensions are also a set of hierarchies which discriminate on the same fact table attribute.
For example the day a measurement took place. A hierarchy is a set of members organized
in a structure for convenient analysis. For example a time hierarchy can consist of year,
quarter, month, week and day. These positions in the hierarchy are also called levels.
Members in a level have the same distance to the root of the hierarchy. A hierarchy allows
you to easily calculate subtotals. The total sales of a quarter, are the sum of the sales of

its months.

Now that we know the terms and definitions of the Mondrian schema, let us start with the
dimensions we need for our measures. As discussed in Section 4.2 we need two dimensions,
rooms and time. Let us start by defining the first dimension, rooms:

<Dimension type="StandardDimension" name="Rooms">

<Hierarchy name="types" hasAll="true" allMemberName="All types" primaryKey="roomID">

<Table name="active_rooms" alias="" />

50

<Level name="roomType" column="type" type="String" uniqueMembers="true" />
</Hierarchy>
<Hierarchy name="sizes" hasAll="true" allMemberName="All sizes" primaryKey="roomID">
<Table name="active_rooms" alias="" />
<Level name="roomSize" column="size" type="String" uniqueMembers="true" />
</Hierarchy>
<Hierarchy name="buildings" hasAll="true" allMemberName="All buildings" primaryKey="roomID">
<Table name="active_rooms" alias="" />
<Level name="roomBuilding" column="building" type="String" uniqueMembers="true" />
</Hierarchy>
<Hierarchy name="names" hasAll="true" allMemberName="All names" primaryKey="roomID">
<Table name="active_rooms" alias="" />
<Level name="roomName" column="shortname" type="String" uniqueMembers="true" />
</Hierarchy>
</Dimension>

The dimension is named "Rooms" and is of type StandardDimension. A dimension’s type
may be one of StandardDimension or TimeDimension. Inside the dimensions tag we see a
collection of hierarchies. The hierarchies are named, types, sizes, buildings and names. We
see that all members relate to the primary key roomID to identify its members. Also they
all have the hasAll attribute set to true. This means that every hierarchy is completed
by an extra element which represents the whole group, as a grand total. This element
is indicated by the name specified by the allMembername attribute. Inside the hierarchy
element we find a <table> element. This specifies the table where the hierarchy is build
on. The <level> tag specifies which column in the table holds the unique identifier of
this level. You can specify the type of the members inside the level and if they are all
unique or not. The members of the roomType level are either ‘Amphitheater’ or ‘Flat’. The
members of roomSize are in the region A-E. The roomBuilding level hosts all distinct
building names, while in the roomName level all rooms are distinguished by room name.
All the hierarchies specified here only have one level, so are not much of a hierarchy. We
will see more hierarchy in the time dimension:

<Dimension type="TimeDimension" name="Time">
<Hierarchy name="week" hasAll="true" allMemberName="All Time" primaryKey="timeID">
<Table name="active_time" alias="" />
<Level name="Year" column="year" uniqueMembers="true" levelType="TimeYears" />
<Level name="Week" column="week" uniqueMembers="false" levelType="TimeWeeks" />
<Level name="Day" column="day" uniqueMembers="false" levelType="TimeDays" />
<Level name="Period" column="periodID" uniqueMembers="false" levelType="TimeHours" />
</Hierarchy>
<Hierarchy name="weekday" hasAll="true" allMemberName="All Weekdays" primaryKey="timeID">
<Table name="active_time" alias="" />
<Level name="Weekday" column="weekday" ordinalColumn="weekday" nameColumn="weekday_label" uniqueMembers="true" levelType="TimeDays" />
<Level name="Period" column="periodID" uniqueMembers="false" levelType="TimeHours" />
</Hierarchy>
<Hierarchy name="period" hasAll="true" allMemberName="All Periods" primaryKey="timeID">
<Table name="active_time" alias="" />
<Level name="Period" column="periodID" uniqueMembers="true" levelType="TimeHours" />
</Hierarchy>
</Dimension>

This dimension is named "Time" and is of the type TimeDimension. This type will allow

the use of the MDX time functions. Inside this dimension, three hierarchies are specified,

51

the week hierarchy, the weekday hierarchy and the period hierarchy. We need these three
hierarchies to, be able to aggregate on these levels. We will see how this aggregation
works in the next section about MDX. Because of this dimension being a time dimension,
the levels can be specified as special time levels. You can indicate if a level is concerned
with Time Years, TimeMonths, TimeWeeks, etc. The nameColumn attribute lets you label

ordinal columns for the sake of readability of the results.

Now that we have got our dimensions specified, we can define our measures. We already
saw in Section 4.2 that the measures are uniquely determined by its dimensions. First we
will need the measurements for room utilization and occupation. These measures depend
on the two previous determined dimensions. We can then create our first cube in the

following way:

<Cube name="ROOMS_meas" cache="false">

<Table name="active_measurements" alias="" />

<DimensionUsage source="Time" name="Time" foreignKey="timeID" />

<DimensionUsage source="Rooms" name="Rooms" foreignKey="roomID" />

<Measure name="Utilization" column="occPlaces" aggregator="avg" visible="true" formatString="#,##"/>

<Measure name="Occupation" column="measurementID" aggregator="count" visible="true" />

<Measure name="MaxSeats" column="seats" aggregator="avg" visible="true" formatString="#,##"/>
</Cube>

The cube named ROOMS_meas is defined to not cache the fact table in Mondrian, since
the facts are likely to change often during measurement periods. The next element, the
<table> element defines the fact table where the cube is based on. The fact table here
is the active_measurements table which is a view in the MySQL database. The view is
actually a join on the measurements and rooms table and will discard measurements of
inactive rooms. What follows are the <DimensionUsage> tags that refer to our previously
defined dimension. The foreignKey attributes point towards the foreign key fields in the
fact table where the dimension should be matched on. Finally we can define our measures.
The Utilization measure is based on the field occPlaces and has the aggregator avg. This
means that when the cube is rolled up or drilled down/up, the result of the aggregated
measure is the average of the occPlace field entries. The Occupation measure will only
count the number of measurements, as it should count the number of occupied rooms.
The last measures take the average of the maximum amount of seats available. This we
will need to calculate the percentage of used seats with respect to the total amount of

seats.

Next we also need a measurement to calculate the number of reserved rooms. This is
stored in a different fact table, so we need to define a different cube for that. We find the

definition of this cube below:

52

<Cube name="ROOMS_res" cache="false">
<Table name="active_reservations" alias="" />
<DimensionUsage source="Time" name="Time" foreignKey="timeID" />
<DimensionUsage source="Rooms" name="Rooms" foreignKey="roomID" />
—n

<Measure name="Reserved" column=
</Cube>

reservationID" aggregator="count" visible="true" />

The definition of the ROOMS_res cube is analog to the first cube. The fact table
active_reservations is again a join on the reservation and rooms table where the reser-
vations made to inactive rooms are discarded. The same dimensions are used and the

measurement counts the number of reserved rooms in the fact table.

Now we have two cubes, but we still need to use them both for some reports. Since they
have the same dimensions, Mondrian provides us with the opportunity to define a virtual
cube to combine them. The definition of the virtual cube is as follows:
<VirtualCube name="ROOMS">
<CubeUsages>
<CubeUsage cubeName="ROOMS_meas"/>
<CubeUsage cubeName="ROOMS_res"/>
</CubeUsages>
<VirtualCubeDimension name="Time"/>
<VirtualCubeDimension name="Rooms"/>
<VirtualCubeMeasure cubeName="ROOMS_meas" name="[Measures].[Occupation]"/>
<VirtualCubeMeasure cubeName="ROOMS_meas" name="[Measures].[Utilization]"/>
<VirtualCubeMeasure cubeName="ROOMS_meas" name="[Measures].[MaxSeats]" />

<VirtualCubeMeasure cubeName="ROOMS_res" name="[Measures].[Reserved]"/>
</VirtualCube>

The above cube can now be seen as a 3-dimensional cube with Time, Rooms and Measures

as its dimensions.

5.4.2 Caching and Tuning

Mondrian’s cache ensures that once a multidimensional cell, for example the measurements
of room Auditorium 1 during September 2011, has been retrieved from the RDBMS using
an SQL query, it is held in memory for subsequent MDX calculations. That cell may
be used later during the execution of the same MDX query, and by future queries in the
same session and in other sessions. The cache is a major factor ensuring that Mondrian
is responsive for quick analysis. If the contents of the RDBMS change while Mondrian
is running, Mondrian’s implementation must overcome some challenges. The end-user
expects a quick query response time and an up to date view of the database. Response
time requires a cache, but this cache will become out of date as the database is modified.

Mondrian cannot deduce when the database is being modified, so an API is introduced

53

so that the container can tell Mondrian which parts of the cache are out of date. We
can tell Mondrian the cache is out of date when for example measurements are entered or

reservations imported.

The performance of Mondrian is determined by a combination of design, hardware, database
and other configuration tuning. For really large cubes, the performance issues are driven
more by the hardware, operating system and database tuning than anything Mondrian

can do. As part of database tuning process the following steps are advised by Mondrian:

e Indexes on primary and foreign keys
e Consider enabling foreign keys
e Ensure that columns are marked NOT NULL where possible

e If a table has a compound primary key, experiment with indexing subsets of the
columns with different leading edges. For example, for columns (a, b, ¢) create a

unique index on (a, b, ¢) and non-unique indexes on (b, ¢) and (c, a).

e Analyze tables, otherwise the cost-based optimizers will not be used

In MySQL, indexes are already defined on primary keys. In order to create indexes on
the foreign keys in the important fact tables measurements and reservations we define the
foreign key constraints on the fields roomID, timelD and userID. This should speed up the
joins necessary on these fact tables. Almost all fields in the database are set to not allow
NULL values. There are no compound primary keys in our design, so we can skip this tuning
step. Finally we can apply the Analyze operation on tables. This operation analyses and
stores the key distribution for the table. MySQL uses the stored key distribution to decide
the order in which tables should be joined when you perform a join on something other

than a constant.

5.4.3 MDX

MDX stands for multidimensional expressions. It is the query language in the Mondrian
OLAP database. MDX was introduced by Microsoft in 1998 with the launch of Microsoft
SQL Server OLAP Services. Microsoft proposed MDX as a standard and its adoption is

steadily increasing [2].

54

The syntax of MDX looks like the syntax of SQL, but the structure is quite different. A

basic MDX query is structured in a fashion similar to the following example:

SELECT [<axis_specification>
[, <axis_specification>...]]
FROM [<cube_specification>]
[WHERE [<slicer_specification>]]

This means that a basic MDX query contains a SELECT clause and a FROM clause with
an optional WHERE clause. The SELECT clause determines the axis dimensions of a
statement. Axis dimensions determine the edges of a multidimensional result set. Each
axis_specification value defines one axis dimension. The number of axes is equal to
the number of axis_specification values in the MDX query. A MDX query can support

up to 128 specified axes, but very few MDX queries will use more than 5 axes.
<axis_specification> ::= <set> ON <axis_name>
<axis_name> ::= COLUMNS | ROWS | PAGES | SECTIONS | CHAPTERS | AXIS(<index>)

Each axis dimension is associated with a number, the first 5 axis have aliases as can be
seen in the rule above. The FROM clause determines which multidimensional data source
(or Cube) is used to populate the result set of the MDX query. The WHERE clause
optionally determines which dimension or member to use as a slicer dimension. A slicer

dimension restricts the result set to a specific dimension or member.

We can take a query of one of the reports as an example. Let’s take a look at the query
that is responsible for generating the room occupation report for individual rooms per

period:

WITH
MEMBER Measures.R AS ‘Measures.Reserved’
MEMBER Measures.0 AS ‘Measures.Occupation’
MEMBER Measures.[%] AS ‘Measures.0 / Measures.R’, FORMAT_STRING = ‘#.#%’
SET [mySet] AS {Time.[${start_year}].[${start_week}]:Time.[${end_year}].[${end_week}1}
SELECT
Crossjoin({[Time.period] .Members}, {Measures.R, Measures.0, Measures.[%]}) ON COLUMNS,
[Rooms .names] .Members ON ROWS
FROM [ROOMS]
WHERE [mySet]

We see that the SELECT clause is preceded by a WITH clause. The WITH keyword
is used to define calculated members and calculated sets. We calculate the percentage of

occupied rooms with respect to the reservations. Furthermore we calculate the set of weeks

55

we need as our interval. The variables indicated by dollar signs, are filled in at runtime
by the JavaServer Pages. On the COLUMNS axis we create a Crossjoin between all the
members of the Time.period hierarchy and the 3 measures create in the WITH clause.
The Crossjoin return the cross product of the two sets. On the ROWS dimension we
find the members of the Rooms.names hierarchy. The FROM clause takes our main cube
ROOMS as the data source and the WHERE clause restricts the result set to the members

of the time dimension interval.

5.4.4 JPivot

JPivot is a JSP custom tag library that renders an OLAP table and let users perform
typical OLAP operations like slice and dice, drill down and roll up. It uses Mondrian as
its OLAP Server. It it used to visualize the queries that generate the reports. For every
report an MDX query is written. This query is fed to the JPivot custom tag to generate
the table. In Figure F.10 in Appendix F we can see output generated by JPivot for the
following MDX query. This query is responsible for the report that shows the occupation
of every single room versus the reservations of these rooms. The interval can be set using
the variables indicated by the dollar signs using an ActionForm.
<jp:mondrianQuery id="queryO1" jdbcDriver="com.mysql.jdbc.Driver" jdbcUrl="jdbc:mysql://localhost/rooms" catalogUri="/WEB-INF/queries/diz.xml">
WITH
MEMBER Measures.R AS ’Measures.Reserved’
MEMBER Measures.0 AS ’Measures.(Occupation’
MEMBER Measures. [%] AS ’Measures.0 / Measures.R’, FORMAT_STRING = ’#.#),’
SET [mySet] AS {Time.[${start_year}].[${start_week}]:Time. [${end_year}].[${end_week}]}
SELECT
Crossjoin(mySet, {Measures.R, Measures.0, Measures.[%]}) ON COLUMNS,
[Rooms .names] .Members ON ROWS

FROM [ROOMS]

</jp:mondrianQuery>

5.5 Deployment

After implementation, the application was deployed on a virtual web server hosted by XLS
Hosting. The virtual server runs on CentOS 5.6, has a 2.2 GHz processor and has 512 MB
RAM. Installed is Java 1.6.0_26, MySQL 5.5.10 and Mondrian version 3.2.1. Tomcat 5.5

was installed as the servlet container.

56

Chapter 6

Results

6.1 Tests

As described in Chapter 2 the Eindhoven University of Technology performed an occupa-
tion and utilization research 5 years ago. The data obtained from this research was used
to test the system. From the 2006-2007 measurements, data of the first period (week 43
to 46) was used because is was fine grained enough to populate the database. Data from

other weeks were only kept on an aggregated level.

When turning on SQL tracing in the relational database we observe that it is only queried
when running the reports for the first time. When requesting the same report on the same
interval, the data is retrieved from Mondrian cache. When the interval is extended, only
the weeks unknown from the cache are retrieved from the MySQL database. Because the
Mondrian cache is used when appropriate the response times will decrease. However, with
this data set and hardware this is hardly noticeable. The Mondrian cache will start to

pay off when the data set increases significantly.

6.2 Evaluation

During and after implementation of the system several evaluation sessions were held with
different stakeholders. Stakeholders consisted of DIZ management, potential system ad-
ministrators and counters. The earlier sessions were used to evaluate implemented func-

tionality and to gain new insights. The feedback received during these session was used to

57

adjust the specifications of the system where necessary. Most of the feedback concerned
user interface issues or issues where the requirements do not provide in.

All but a few requirements were implemented. Requirement MEAS-04 in Table A.6 was
adapted to the fact that the field occupied seats will not be left empty when the room is
not occupied, but will not be stored at all. Storing empty requirements is not needed,
because if no measurement exists for a given period and room, we will assume is was not
occupied. ROOM-07 in Table A.3 was not implemented.

6.3 Future work

The first measurement period will start in the second week of the first semester of the aca-
demic year 2011-2012. The measurements will be carried out by the Services department
of DIZ. They are already in the possession of the Global Viewer system which enables them
to monitor the different college rooms from distance. The Global Viewer system provides
real time video images of the college rooms. This makes it unnecessary to physically visit
the rooms. The measurements can be carried out from behind a desktop (or any other
device with a internet connection) using Global Viewer.

In preparation of this first measurement period, a test measurement period will take place
in the interim exam period starting from August 15th 2011. Based on the experience
gained and the feedback received from the service employees, adjustments can be made to

improve or to ease future measurements.

58

Appendix A

Functional Requirements

General requirements

Requirement ID ‘ Requirement Priority

GEN-01 The system will consist of 6 different subsections: 1

User management
Room management
Timetable management
Period management
Measurements
Reporting

GEN-02 Every user has to successfully login to use the system 1

GEN-03 There are 2 different user types: 1

e Administrators
e Counters

GEN-04 After successfully logging in the user will be presented with | 1
the main menu. The main menu represents the 6 sub-
sections from GEN-01. Only the authorized sections are
shown

Table A.1: General requirements

59

User management requirements

Requirement 1D \ Requirement Priority
USER-01 A user record consists of the following fields: 1
e User ID
e Username
e Password
e Real name (optional)
e User type
USER-02 Administrators can create, read, update and delete user | 1
records.
USER-03 Counters don’t have access to user management 1
USER-04 Users are shown in a simple table with in every row the | 1
fields described in USER-01. At the end of every row an
option to edit or delete the user is presented.
USER-05 Users can order the user overview on every column either | 3

ascending or descending.

Table A.2: User management requirements

60

Room management requirements

Requirement ID ‘ Requirement

Priority

ROOM-01

A room record consists of the following fields:

Room ID

Full room name
Building

Type

Size

Seats

Active
Notebook ready

1

ROOM-02

The type of the room can either be "amphitheater’ or flat’

ROOM-03

The size of the room is divided into 5 categories:

A: 20-40 persons
B: 40-70 persons
C: 70-120 persons
D: 120-250 persons
E: >250 persons

ROOM-04

The field Seats will indicate the exact number of seats avail-
able in the room. This is necessary for utilization calcula-
tions.

ROOM-05

Administrators can create, read, update and delete room
records

ROOM-06

Counters can only read room records

ROOM-07

Administrators can extract all room records to a Microsoft
Excel file.

ROOM-08

Administrators can import room records by uploading a
Microsoft Excel print-template exported by Syllabus

ROOM-09

Rooms are shown in a simple table with in every row the
fields described in ROOM-01. At the end of every row an
option to edit or delete the room is presented.

Table A.3: Room management requirements

61

Timetable management requirements

Requirement 1D ‘ Requirement Priority
TIME-01 A timetable record consists of the following fields: 1
e Record ID
e Date
e Period
e Room ID
e Faculty
e Course ID
e Lecturer
TIME-02 Administrators can create, read, update and delete | 1
timetable records.
TIME-03 Counters can only read timetable records 1
TIME-04 Administrators can import timetable records by uploading | 2
a Microsoft Excel print-template exported by Syllabus
TIME-05 Timetable is shown in a simple table with in every row the | 1
fields described in TIME-01. At the end of every row an
option to edit or delete the record is presented.
Table A.4: Timetable management requirements
Period management requirements
Requirement ID ‘ Requirement Priority
PER-01 A period record consists of the following fields: 1
e Period number
e Start time
e End time
e Active
PER-02 Administrators can create, read, update and delete period | 1
records.
PER-03 Counters can read period records 1
PER-04 Period records are shown in a simple table with in every | 1

row the fields described in PER-01. At the end of every
row an option to edit or delete the record is presented.

Table A.5: Period management requirements

62

Measurements requirements

Requirement ID \ Requirement

‘ Priority

MEAS-01

A measurement record consists of the following fields:

Record ID

Date

Period

Room ID

#Occupied places
User ID

Date + time of entry

1

MEAS-02

The date field must support all days of the week, so also
weekends and holidays.

MEAS-03

The period field should correspond to a period record in
the Period Management section.

MEAS-04

The number of occupied places will be empty if the room
is not occupied. Otherwise it will indicate how many seats
were indeed occupied.

MEAS-05

Given a start and end date, measurements within the given
period can be exported to a Microsoft Excel file

MEAS-06a

Measurement records are shown in a simple table with in
every row the fields described in PER-01.

MEAS-06b

The table described in MEAS-06a is shown for every single
period. So every table represents a period.

MEAS-06¢

Every row in the table described in MEAS-06a is extended
with its corresponding timetable record when applicable

Table A.6: Measurements requirements

63

Reporting requirements

Requirement ID ‘ Requirement ‘ Priority

REP-01 Show average number/ percentage of reservations per week | 1
vs. average number/percentage room occupation per week

REP-02 Show average number/percentage of reservation per week- | 1
day vs. average number/percentage room occupation per
weekday

REP-03 Show average number /percentage of reservations per pe- | 1
riod vs. average number/percentage of room occupation
per period.

REP-04 Show average number/percentage of seat utilization per | 1
week.

REP-05 Show average number/percentage of seat utilization per | 1
weekday.

REP-06 Show average number/percentage of seat utilization per | 1
period

REP-07 The requirements REP-01 to REP-06 should show numbers | 1
and percentages at the same time.

REP-08 The requirements REP-01 to REP-06 aggregate the mea- | 1
surements over a given period of time. Given by a start
and end date.

REP-09 The requirements REP-01 to REP-06 can be generated for | 1
5 different situations:

e Individual rooms

e Rooms in the same building
e Rooms of the same type

e Rooms in the same size range
e All rooms together

REP-10 REP-01 to REP-06 can be viewed in tabular modus and | 2
in graphical modus.

REP-11 Reports can be generated by both Administrators and | 1
Counters

REP-12 Beside the standard reports in REP-01 till REP-06, there | 2

can also be generated more flexible reports by dynamically
determining cube axis. A row axis, column axis and a filter
axis.

Table A.7: Reporting requirements

64

Appendix B

Package Diagram

——

Figure B.1: ROOMS UML Package Diagrams

65

Appendix C

Class Diagrams

66

Figure C.1: UML Classes: Action package

67

Figure C.2: UML Classes: DTO package

68

Figure C.3: UML Classes: Service package

69

Figure C.4: UML Classes: Form package

70

Figure C.5: UML Classes: Persistence package

71

Appendix D

Struts Config File

<struts-config
<form-beans>
<form-bean
<form-bean
<form-bean
<form-bean
<form-bean
<form-bean
<form-bean
<form-bean
<form-bean
<form-bean
<form-bean
<form-bean
<form-bean
<form-bean
<form-bean

</form-beans>

<action-mappi:
<action

path="/log

name="1ogi:

>

name="userForm" type="nl.tue.diz.rooms.form.DIZUserForm"/>

name="periodForm" type="nl.tue.diz.rooms.form.DIZPeriodForm"/>

name="roomForm" type="nl.tue.diz.rooms.form.DIZRoomForm"/>

name="reservationForm" type="nl.tue.diz.rooms.form.DIZReservationForm"/>
name="reservationDateTime" type="nl.tue.diz.rooms.form.DIZReservationDateTime"/>
name="reservationImportForm" type="nl.tue.diz.rooms.form.DIZReservationImportForm"/>
name="measurementIndexedForm" type="nl.tue.diz.rooms.form.DIZMeasurementIndexedForm" />
name="measurementForm" type="nl.tue.diz.rooms.form.DIZMeasurementForm" />

name="measurementDateTime" type="nl.tue.diz.rooms.form.DIZMeasurementDateTime" />

measurementsImport" typ

'nl.tue.diz.rooms.form.DIZUploadFileForm" />

reservationsImport" type="nl.tue.diz.rooms.form.DIZReservationImportForm" />
roomsImport" type="nl.tue.diz.rooms.form.DIZUploadFileForm" />

loginForm" type="nl.tue.diz.rooms.form.DIZLoginForm" />

academicYearForm" type="nl.tue.diz.rooms.form.DIZAcademicYearForm" />
name="reportForm" type="nl.tue.diz.rooms.form.DIZReportForm" />

ngs>

in"

nForm"

type="nl.tue.diz.rooms.action.DIZLoginAction"

scope="request"

parameter=

<forward n:

<forward n:
</action>

<action

scope=

"dispatch">
ame="success" path="/index.jsp" redirect="true" />

ame="failure" path="/login.jsp"/>

/academicYearSetUp"
academicYearForm"
nl.tue.diz.rooms.action.DIZAcademicYearAction"

"request"

parameter="dispatch">

<forward n
</action>
<action

path="

ame="success" path="/academicYearForm. jsp"/>

/academicYearProcess"

type="nl.tue.diz.rooms.action.DIZAcademicYearAction"

name="

scope=

academicYearForm"

"request"

parameter="dispatch">

<forward n:

ame="failure" path="/academicYearForm.jsp"/>

72

<forward name="success" path="/academicYears.jsp"/>
</action>

<action
path="/userSetUp"

name="

userForm"
type="nl.tue.diz.rooms.action.DIZUserAction"
scope="request"
parameter="dispatch">
<forward name="success" path="/userForm.jsp"/>
</action>
<action
path="/userProcess"
type="nl.tue.diz.rooms.action.DIZUserAction"
name="userForm"
scope="request"
parameter="dispatch">
<forward name="failure" path="/userForm.jsp"/>
<forward name="success" path="/users.jsp"/>
<forward name="redirect" path="/userSetUp.do"/>
<forward name="index" path="/index.jsp"/>
</action>

<action
path="/periodSetUp"
name="periodForm"
type="nl.tue.diz.rooms.action.DIZPeriodAction"
scope="request"
parameter="dispatch">
<forward name="success" path="/periodForm.jsp"/>
</action>
<action
path="/periodProcess"
type="nl.tue.diz.rooms.action.DIZPeriodAction"
name="periodForm"
scope="request"
parameter="dispatch">
<forward name="failure" path="/periodForm.jsp"/>
<forward name="success" path="/periods.jsp"/>
</action>

<action
path="/roomSetUp"
name="roomForm"
type=
scope="request"

nl.tue.diz.rooms.action.DIZRoomAction"

parameter="dispatch">
<forward name="success" path="/roomForm.jsp"/>
</action>
<action
path="/roomProcess"
typ
name="roomForm"

nl.tue.diz.rooms.action.DIZRoomAction"

scope="request"
parameter="dispatch">
<forward name="failure" path="/roomForm.jsp"/>
<forward name="success" path="/rooms.jsp"/>
</action>
<action
path="/roomsImport"

roomsImport"

nl.tue.diz.rooms.action.DIZRoomAction"
scope="request"
parameter="dispatch">
<forward name="redirect" path="/roomProcess.do?dispatch=getRooms"
</action>

<action

"/reservationSetUp"

reservationForm"

nl.tue.diz.rooms.action.DIZReservationAction"

redirect="true"/>

73

scope="request"
parameter="dispatch">

<forward name="success" path="/reservationForm.jsp"/>
</action>
<action
path="/reservationProcess"
type="nl.tue.diz.rooms.action.DIZReservationAction"
name="reservationForm"
scope="request"
parameter="dispatch">
<forward name="failure" path="/reservationForm.jsp"/>
<forward name="success" path="/reservations.jsp"/>

<forward name="redirect" path="/academicYearProcess.do?dispatch=getAcademicYears" redirect="true" />
</action>

<action
path="/reservationDateTime"
name="reservationDateTime"

type="nl.tue.diz.rooms.action.DIZReservationAction"

scope="session"
parameter="dispatch">

<forward name="success" path="/reservations.jsp"/>
</action>
<action
path="/reservationsImport"
name="reservationsImport"
type="nl.tue.diz.rooms.action.DIZReservationAction"
scope="request"
parameter="dispatch">
<forward name="success" path="/reservations_import.jsp"/>

<forward name="redirect" path="/academicYearProcess.do?dispatch=getAcademicYears" redirect="true" />
</action>

<action
path="/measurementProcess"

type="nl.tue.diz.rooms.action.DIZMeasurementAction"
name="measurementIndexedForm"

scope="request"

parameter="dispatch">
<forward name="failure" path="/measurements.jsp"/>
<forward name="success" path="/measurements.jsp"/>

<forward name="redirect" path="/measurementProcess.do?dispatch=getMeasurements" redirect="true"/>
</action>

<action
path="/measurementDateTime"
name="measurementDateTime"
type="nl.tue.diz.rooms.action.DIZMeasurementAction"
scope="session"
parameter="dispatch">
<forward name="success" path="/measurements.jsp"/>

<forward name="redirect" path="/measurementProcess.do?dispatch=getMeasurements" redirect="true"/>
</action>

<action
path="/reportsSetType"
type="nl.tue.diz.rooms.action.DIZReportAction"
name="reportForm"
scope="session"
parameter="dispatch">
<forward name="success" path="/reports_type.jsp"/>

<forward name="redirect" path="/jpivot_controller.jsp" redirect="true"/>
</action>

</action-mappings>

<message-resources parameter="nl.tue.diz.rooms.MessageResources" null="false"/>

</struts-config>

74

Appendix E

Deployment Descriptor File

<?xml version="1.0" encoding="UTF-8"7>

<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/j2

<filter>
<filter-name>JPivotController</filter-name>
<filter-class>com.tonbeller.wcf.controller.RequestFilter</filter-class>
<init-param>
<param-name>errorJSP</param-name>
<param-value>/error.jsp</param-value>
<description>URI of error page</description>
</init-param>
<init-param>
<param-name>busyJSP</param-name>
<param-value>/busy.jsp</param-value>
<description>This page is displayed if a the user clicks
on a query before the previous query has finished</description>
</init-param>
</filter>

<filter-mapping>
<filter-name>JPivotController</filter-name>
<url-pattern>/jpivot_controller. jsp</url-pattern>
</filter-mapping>

<!-- resources initializer -->

<listener>
<listener-class>com.tonbeller.tbutils.res.ResourcesFactoryContextListener</listener-class>

</listener>

<listener>
<listener-class>mondrian.web.taglib.Listener</listener-class>
</listener>

<servlet>
<servlet-name>MDXQueryServlet</servlet-name>
<servlet-class>mondrian.web.servlet.MdxQueryServlet</servlet-class>
<init-param>
<param-name>connectString</param-name>
<param-value>@mondrian.webapp.connectString@</param-value>
</init-param>
</servlet>

<servlet>
<servlet-name>MondrianXmlaServlet</servlet-name>
<servlet-class>mondrian.xmla.impl.DefaultXmlaServlet</servlet-class>
</servlet>

75

<!-- jfreechart provided servlet -->
<servlet>

<servlet-name>DisplayChart</servlet-name>

<servlet-class>org. jfree.chart.servlet.DisplayChart</servlet-class>
</servlet>

<!-- jfreechart provided servlet -—>
<servlet>
<servlet-name>GetChart</servlet-name>
<display-name>GetChart</display-name>
<description>Default configuration created for servlet.</description>
<servlet-class>com.tonbeller. jpivot.chart.GetChart</servlet-class>
</servlet>
<servlet>
<servlet-name>Print</servlet-name>
<display-name>Print</display-name>
<description>Default configuration created for servlet.</description>
<servlet-class>com.tonbeller. jpivot.print.PrintServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>DisplayChart</servlet-name>
<url-pattern>/DisplayChart</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>Print</servlet-name>
<url-pattern>/Print</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>GetChart</servlet-name>
<url-pattern>/GetChart</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>MDXQueryServlet</servlet-name>
<url-pattern>/mdxquery</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>MondrianXmlaServlet</servlet-name>
<url-pattern>/xmla</url-pattern>
</servlet-mapping>

<!-- optional? now in JPivot by default -->
<context-param>
<param-name>contextFactory</param-name>
<param-value>com.tonbeller.wcf.controller.RequestContextFactoryImpl</param-value>
</context-param>

<context-param>
<param-name>connectString</param-name>
<param-value>@mondrian.webapp.connectString@</param-value>

</context-param>

<taglib>
<taglib-uri>http://www.tonbeller.com/wcf</taglib-uri>
<taglib-location>/WEB-INF/wcf/wcf-tags.tld</taglib-location>
</taglib>

<taglib>
<taglib-uri>http://www.tonbeller.com/jpivot</taglib-uri>
<taglib-location>/WEB-INF/jpivot/jpivot-tags.t1ld</taglib-location>
</taglib>

<servlet>
<servlet-name>action</servlet-name>
<servlet-class>org.apache.struts.action.ActionServlet</servlet-class>

<init-param>

76

<param-name>config</param-name>
<param-value>/WEB-INF/struts-config.xml</param-value>
</init-param>
<init-param>
<param-name>debug</param-name>
<param-value>2</param-value>
</init-param>
<init-param>
<param-name>detail</param-name>
<param-value>2</param-value>
</init-param>
<load-on-startup>2</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>action</servlet-name>
<url-pattern>*.do</url-pattern>
</servlet-mapping>
<session-config>
<session-timeout>
30
</session-timeout>
</session-config>
<welcome-file-list>
<welcome-file>login.jsp</welcome-file>
</welcome-file-list>

<context-param>
<param-name>javax.servlet.jsp.jstl.fmt.localizationContext</param-name>

<param-value>MessageResources</param-value>

</context-param>

</web-app>

7

Appendix F

Screenshots

ROOMS

ROlap based Occupation Measurement System

Figure F.1: ROOMS login

78

Periods

Reservations

Measurements

Figure F.2: ROOMS Main menu

79

ROOMS

ROlap based Occupation Measurement System

eﬁddnewuser

||.|ser[D User name Full name Usertype Active?

e e

Figure F.3: User management

ROOMS

ROlap based Occupation Measurement System

eAddMewRoom

roum Short Notebook
Full name Building Size Seats Type Active? e

Figure F.4: Room management

80

ROOMS

ROlap based Occupation Measurement System

Figure F.5: ActionForm example

ROOMS

ROlap based Occupation Measurement System

Figure F.6: Period management

81

ROOMS

ROlap based Occupation Measurement System

05-09-2011 E period3 [v] [Getreserations|

|Reservation ID Room Faculty Teacher Subject ID [

Figure F.7: Reservation management

82

ROOMS

ROlap based Occupation Measurement System

Figure F.8: Measurement management

83

Occupation (week) Reports (1)

Please choose your desired report

type

Left colummn: Utilization
(numbers of
seats used)

Right column: Occupation
(occupied
rooms)

Occupation (week day) Seat Utilization (week da T pr

Middle row: per weekday
Bottom row: per period

Occupation (period)

Figure F.9: Report selection

84

From: | 2006 - week 43 [¥ | Untik | 2006 - week 46 [|

Occupation per week by individual room

Ol 4] EE| E| SIS] 2 0F- ol & il £

week

+43

+44

+45

+46

Measures

Measures

Measures

Measures

names

s R

» 0O

» %

= R

= 0

s %

s R

+ 0

s %

= R

= 0

s %

-All names

423

358

84.6%

424

360

84.9%

423

384

90.8%

423

308

72.8%

AUD.O1

24

20

83.3%

24

24

100.%

24

FLis

95.8%

24

23

95.8%

AUD.O02

33

21

63.6%

33

26

78.8%

33

29

87.9%

33

27

81.8%

AUD.O03

32

81

96.9%

32

34

106.3%

32

32

100.%

32

19

59.4%

AUD.O4

17

11

64.7%

17

8

47.1%

17

9

52.9%

17

10

58.8%

AUD.05

16

14

87.5%

16

17

106.3%

16

16

100.%

16

11

68.8%

AUD.O6

31

29

93.5%

31

24

77.4%

Shl

Sl

100.%

il

21

67.7%

AUD.O07

34

27

79.4%

34

27

79.4%

34

31

091.2%

34

26

76.5%

AUD.O8

27

23

85.2%

27

16

59.3%

27

20

74.1%

27

18

66.7%

AUD.09

36

28

77.8%

36

33

91.7%

36

36

100.%

36

28

77.8%

AUD.10

31

23

74.2%

31

18

28.1%

Shl

27

87.1%

il

21

67.7%

AUD.11

30

26

86.7%

30

27

90.%

30

30

100.%

30

21

70.%

AUD.12

22

26

118.2%

23

27

117.4%

22

14

63.6%

22

25

113.6%

AUD.13

28

S

110.7%

28

28

100.%

28

27

96.4%

28

23

82.1%

AUD.14

93

32

97.%

33

31

93.9%

S

31

93.9%

33

27

81.8%

AUD.15

29

16

33.2%

29

20

69.%

29

28

96.6%

29

27.6%

Figure F.10: JPivot report example

85

Appendix G

MySQL Structure

academic year

Field Type Extra
P id int (11) Auto Increment
description varchar (255)
start date
end date
locked int (1)
measurements
Field Type Extra
P measurementID int (11) Auto Increment
roomID int (11)
timeID int (11)
userID int (11)
occPlaces smallint (6)
timeOfEntry datetime
Index Fields Extra

meas_roomID roomID
meas_timeID timeID
meas_userID userID

periods
Field Type Extra

P periodID tinyint (1) Auto Increment
start time
end time

active tinyint (1)

reservations

Field Type Extra
P reservationID int (11) Auto Increment
roomID int (11)
timeID int (11)
faculty varchar (255)
teacher varchar (255)
subjectID varchar (255)
yearID int (11)
Index Fields Extra
roomID roomID
timeID timeID
rooms
Field Type Extra
P roomID int (11) Auto Increment
shortname varchar (10)
roomname varchar (255)
building varchar (100)
size varchar (255)
seats smallint (6)
type varchar (255)
active tinyint (4)
notebookReady tinyint (4)
Index Fields Extra
shortname shortname Unique
time
Field Type Extra
P timelID int (11) Auto Increment
year smallint (4)
month tinyint (2)
week smallint (2)
weekday tinyint (2)
weekday label varchar (255)
day smallint (2)
periodID int (11)
users
Field Type Extra
P userID int (6) Auto Increment
username varchar (255)
password varchar (100)
fullname varchar (100) Allow Null
usertype tinyint (1)
active tinyint (1)

87

Bibliography

(1]

(2]

(3]

[4]

5]

6]

[7]

8]

[9]

[10]

[11]

[12]

Bas Ligtenberg Geautomatiseerd Roosteren: een Verbetering van de Roostersystematiek op de Technische Universiteit Eindhoven, TU Eind-
hoven, 2007

Pentaho Pentaho Mondrian Project, Available at: http://mondrian.pentaho.com/
MyBatis MyBatis: new home of the world’s most popular SQL mapping framework., Available at: http://www.mybatis.org/
Chuck Cavaness Programming Jakarta Struts, OReilly Media, June 2004, Second Edition.

Surajit Chaudhuri and Umeshwar Dayal An Overview of Data Warehousing and OLAP Technology, ACM SIGMOD Record, March 1997,

Volume 26 Issue 1.

B.H.M. Winkels, G.J.M. Sprong Onderzoek Bezetting en Benutting van centraal geroosterde onderwijszalen, TU Delft, 25 januari 2008, Versie
3.0.

Cofely Optimaal en flexibel ruimtegebruik, Available at: http://www.cofely-gdfsuez.nl/nl/markten/gebouwen/ruimtemanagementsysteem.html

Sun Developer Network Core J2EE Patterns - Data Access Object, Available at: http://java.sun.com/blueprints/corej2eepatterns/Patterns/
DataAccessObject.html

Sun Developer Network Core J2EE Patterns - Transfer Object, Available at: http://java.sun.com/blueprints/corej2eepatterns/Patterns/
TransferObject.html

MySQL MySQL :: The world’s most popular open source database, Available at: http://www.mysql.com/
Microsoft MDX - SQL Server 2000, Available at: http://msdn.microsoft.com/en-us/library/Aa216767

Avraham Leff, James T. Rayfield Web-Application Development Using the ModelNiewlController Design Pattern, Enterprise Distributed
Object Computing Conference, 2001, p. 118 - 127

88

	Abstract
	Acknowledgements
	List of Definitions
	Table of Contents
	List of Tables
	List of Figures
	1. Introduction
	2. Similar projects
	3. Requirements
	4. Design
	5. Implementation
	6. Results
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G
	Bibliography

