EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Automated reengineering using evolutionary coupling

Hermans, F.

Award date:
2011

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/c3d61a26-d104-4d20-bf8e-4efbc7768ddd

Eindhoven University of Technology
Department of Mathematics and Computer Science
Software Engineering and Technology Group

Master's thesis
Automated Reengineering using
Evolutionary Coupling

Frank Hermans

August 2011

Supervisor:
dr. A. Serebrenik

Abstract

As software systems are changed in order to add, remove or modify functionality, the quality of
the modular design of the code degrades. In order to improve the code structure again, the source
code needs to be reengineered. However, reengineering is labor intensive work, and thus it is
desirable to automate this process.

Currently available research on automated reengineering has at least one of three problems.
First, a lot of research only focusses on automating a single step of the reengineering process (that
is, problem detection, or finding an improved design). Secondly, existing approaches often change
the package structure, making it difficult for developers familiar with the original structure to
understand the new structure. Finally, the known techniques use metrics which have been shown
to have problems in the way they measure coupling and cohesion in another study.

To solve these problems, a new approach to automated reengineering is proposed. Other
studies have shown that evolutionary coupling is capable of detecting relations between code
entities, based on the change history of the code. Based on evolutionary coupling, we define
metrics capable of quantifying the modularization quality of a software system. A case study
shows that these metrics are successful in measuring the modularization quality.

Furthermore, an optimization technique is proposed, which uses a genetic algorithm to improve
the code structure by optimizing the evolutionary coupling metrics. The genetic algorithm uses
multi-objective optimization to simultaneously reduce the number of changes made to the code,
ensuring some form of code stability.

Experiments performed for validating the optimization strategy show promising results. The
proposed technique is capable of improving the code structure. Furthermore, the results show
that multi-objective optimization is preferable over single-objective optimization.

As care needs to be taken when reengineering software, in order to ensure the behavior is not
changed, further research into automated reengineering is required. For this purpose, a platform
is developed for conducting research into automated reengineering. This platform is also used to
execute the experiments of the validation studies performed in this thesis.

Acknowledgements

This thesis is the result of my master project, which concludes my Computer Science and Engi-
neering program at the Eindhoven University of Technology. The project was carried out internally
at the Software Engineering and Technology group, department of Mathematics and Computer
Science.

| would like to take this opportunity to thank a few people for their support during my project.
First of all, | would like to thank my supervisor, Alexander Serebrenik, for his support and guidance
during my project, and before the start of the project in defining the project goal.

Furthermore, | would like to thank Toon Calders for his advice on association rule mining, and
Serguei Roubtsov for his feedback on the design of the developed tool.

Finally, thanks go out to my friends and family for their support and understanding during my
project.

Contents

1__Introductioni 1
2 Platform overview| 3
.. 3
2.2 Design overview| 4

3 Evolutionary coupling| 5
[3.1 Motivation for evolutionary coupling| 5
3.2 Requirements for the metricf. 7
[3.3 Quantifying evolutionary coupling by defining metrics| 8
[3.3.1 Modularization quality] 8

[3.3.2 Detecting relations between entities| 11

[3.3.3 Detecting relations between modules| 14

13.3.4 Aggregating over all modules| 000 15

[3.3.5 Summary] 16

34 Related workl 17
[3.4.1 Change impact analysis| 17

B.42 Evolutionradad 18

3.43 ROSEl 19

35 Futureworkl 19
4__Metric calculation tool 25
4.1 Requirements| 25
4.2 Design| 26
[4.2.1 Software repositoryl 27

422 Metrics|. 28

423 Metric validationl 29

4.3 Implementation| 29
431 Subversionl 29

M32 Cachd 30

[4.3.3 ltemset miningl 31

434 Fisher'sexacttest|. 31

5 Wetri lidation 33
BICasel o 33
5.2 Methodology|. 34
[5.2.1 Confidence-based module-level comparison|. 36

[5.2.2 Confidence-based combination comparison| 36

[5.2.3 Lift-based module-level comparison|. 36

B3 Results o 36

vii

CONTENTS

[5.3.1 Confidence-based module-level comparison|.
[5.3.2 Confidence-based combination comparison|
[5.3.3 Lift-based module-level comparison|.

b.4.1 Threatstovalidity|.

6 Search-based software engineering|
|6.1 Motivation for a genetic algorithm|o
6.2 Genetic algorithm|
6.3 Multiple objectives|.
[6.3.1 Quantifying change|
[6.3.2 Multi-objective optimization|
16.3.3 Selecting the best solution|

[6.4.1 Clustering software systems|

{7 Optimization tool|
[7.1 Requirements|

[7.3 Google Guice|.

8 Experimental results|
8.1 Casel
8.2 Methodology|.
8.3 Results
[8.3.1 Single-objective optimization|
[8.3.2 Multi-objective optimization| L.

viii

47
47
48
50
50
52
53
54
54
55
55

57
57
58
61

65
65
65
68
68
69
71
74
76
77

79

1. Introduction

In object-oriented programming languages such as JAVA, the source code can be structured into
packages. These packages group related classes together, while the classes each implement a set
of related methods. A good package structure should realize a high cohesion among the classes
in the same package, and a low coupling between two separate packages [60]. Such a good code
structure is referred to as a good modularization of the code.

A good modularization is important, because it eases a number of issues related to software
engineering [12]. For example, when a developer needs to work on code not yet familiar to them,
they first have to understand the structure of the code. A good modularization helps the developer
in gaining this understanding. Furthermore, maintenance is easier to perform and testing of the
code also becomes less problematic.

Unfortunately, as software evolves, and functionality is added, removed or changed, the quality
of the modularization degrades [15]. Eventually, due to shifting responsibilities and changing
relations between classes, some classes might no longer be placed in an appropriate package [25].
To improve the modularization quality again, reengineering of the code becomes necessary.

The necessity of reengineering also follows from Lehman's laws of software evolution [36].
Lehman formulated eight laws which he stated apply to all evolving software systems. The fol-
lowing two laws are applicable to show the need for software reengineering:

1. Systems must be continually adapted or they become progressively less satisfactory.

2. The complexity of an evolving system increases unless work is done to maintain or reduce
it.

The first law states that a software system needs to be modified by adding new features or
fixing bugs. If this is not done, the changing environment causes the system to become less
satisfactory. For example, if a competing software product does evolve, users might end up
preferring the other product, thus decreasing revenue. Alternatively, as computers become more
powerful, users expect more from software products. Thus, software systems need to evolve.

According to second law mentioned, an evolving software system becomes increasingly more
complex, unless this complexity is actively maintained or reduced. Thus, as new features are added
and bugs are fixed, the complexity of the software increases. Therefore, reengineering is important
in order to reduce this complexity again.

The main problem with reengineering, is that it is labor intensive. The existing relations
between classes and methods need to be identified in order to find problems in the modularization.
Next, a new and improved modularization needs to be designed, which ultimately needs to be
implemented. This entire process is hard to do manually [8], and therefore automating the
reengineering is desirable.

Research into automated reengineering has often focused on only a single step of the process.
That is, there are multiple studies on automating the detection of design problems [8, 9, [17] [61].
Furthermore, some research focusses on finding a good, modular design for a software system
[40, 44, 45, [48]. Finally, there is research available which studies the actual reengineering step,
modifying the source code to improve the code quality [7, 21}, 43].

Combining all the steps of the reengineering process into a single tool, capable of automating
the complete process, has also been researched in some studies [44] [46]. However, such studies
often change the package structure, aiming to find the best modularization for the existing code.
With this approach, it can become problematic for programmers who are familiar with the system
to understand the new modularization, and map the new situation back to what they know.

Furthermore, existing studies on automated reengineering frequently work with coupling and
cohesion metrics based on static analysis of the source code [1},/46]. That is, classes are considered
to be related when one class uses the other. However, problems with these metrics have been
identified by Anquetil and Laval [4].

There is, however, another technique which can be used to determine which classes are related.
Evolutionary coupling [61] is based on the change history of source code. Information from the
change history is used to determine which classes were often changed together in the past, in
which case they are said to co-evolve. Co-evolving classes are then considered to be related.

Evolutionary coupling has shown to be successful in detecting relations between classes and
other source code entities in a number of studies [61, 63]. Other studies have shown that evo-
lutionary coupling can detect relations between entities not detected using source code analysis
[32, 33]. That is, entities might co-evolve, even if no dependencies between the entities is de-
tected from source code analysis. One study even showed that evolutionary coupling performs
better than standard coupling measures, such as those based on call or use relationships [28].

In this thesis, we propose a technique for automated reengineering using evolutionary cou-
pling. For this purpose, a platform is developed for conducting empirical research into automated
reengineering. This platform is then used to investigate whether evolutionary coupling is indeed
suitable for use in automated reengineering. See for a description of this platform.

Furthermore, metrics are defined, based on evolutionary coupling, in[Chapter 3] These metrics
are capable of measuring the modularization quality of software. While such metrics are not
readily available in the literature, we do use and combine existing and proven techniques to define
our metrics. A tool is developed capable of validating these metrics. This tool is discussed in
[Chapter 4 The metrics are then validated in [Chapter 5, before they are used for automated
reengineering.

Software modularization is a graph clustering problem [49]. As the graph clustering problem
is NP-complete, finding a good modularization using a deterministic algorithm is infeasible [22].
Therefore, we use a genetic algorithm to solve the problem [29], which is presented in [Chapter 6]
A discussion of the tool developed for automated reengineering is given in [Chapter 7] Validation
of the proposed reengineering technique is then done by performing experiments, of which the
results are presented in [Chapter 8|

Note that this thesis is limited to reengineering in the form of improving the modularization.
That is, other aspects of code quality, such as code duplication [34], are not considered.

Furthermore, modularization in general is not limited to moving classes into packages. Instead,
we can also imagine moving methods into classes, or even (sub)packages into packages. Therefore,
we use the term module to refer to those elements of the source code which can contain other
elements (like packages can contain classes, and classes can contain methods). Note that modules
can also contain other modules. Furthermore, we use the term entity to refer to code elements
which cannot contain other elements, and are thus considered the smallest type of element.

While we do use the general terms to indicate the presented techniques are also applicable for
other levels of granularity, we limit ourselves to moving classes into packages. The reason for this
is that evolutionary coupling is not suited for fine-grained analysis when the system under analysis
is unstable [63].

2. Platform overview

This project is split into two parts. The first part is dedicated to defining metrics based on
evolutionary coupling. This also includes a validation study of the metrics to determine which
metrics are best suited for measuring the quality of the source code structure. The second part
then uses the most promising metrics to investigate if they can be used for automatically improving
the source code.

For both parts, a software tool is created which is capable of performing the necessary analyses.
That is, one tool is created which can validate the metrics on a case study, and another tool is
created for improving the quality of the structure of source code. In this chapter, an overview of
both these tools is given, which together form a platform for research into automated reengineering.

The scope of the platform is given in Next, an overview of the design of the
complete platform is given in [Section 2.2l Note that the information given in this chapter only
provides an overview. The details of the two tools, including specific requirements and an ar-

chitectural design, are discussed in [Chapter 4| (metric calculation) and |[Chapter 7| (optimization

tool).

2.1 Scope

The platform consists of two tools: the metric validation tool and the restructuring tool. The
scope of the platform is depicted in Both of the tools take their input from the software
repository of the software project under investigation.

The software repository is a version control system such as Subversion (SVN), containing
historical data on the software project. From the software repository, the two necessary types of
information can be retrieved.

The first is the commit history, which is retrieved as a collection of commits. Each commit
contains a collection of entities which were modified in the respective commit. This information
is sufficient to determine the evolutionary coupling between entities, and thus to calculate the

N 0
Metric | Validation

validation] results
Software — —
repository —— —_——

+ Restructuring ,| Restructuring

results

-~ @@/ -~ @@

Figure 2.1: The scope of the platform. The shaded area indicates the platform, containing
the two tools. Both tools take their input from software repositories.

2.2. DESIGN OVERVIEW

N

Metric _ Metric

calculation validation

-~/
A

S EEE—

A

Optimization Restructuring

-~/

Figure 2.2: An overview of the design of the two tools: the metric validation tool and the
restructuring tool. The metrics calculation package contains all code for calculating the
evolutionary coupling metric values. The optimization package contains additional code
necessary for the structure optimization process.

evolutionary coupling metrics defined in

The second type of information retrieved from the repository, is the current source code struc-
ture. That is, a tree structure representing the source code of the software project is constructed
from information retrieved from the repository. The tree structure corresponds to the modular
structure of the code.

The metric validation tool is used to validate metrics. It does this by retrieving information
from a software repository for a software project that has undergone a successful restructuring
effort in the past. Metric values for a version of the code before and a version after the restructuring
are then calculated, and the results can be used for a validation study. More details on the metric
validation tool are given in [Chapter 4]

The restructuring tool also uses the information from the software repository to calculate
metric values. However, this tool uses an optimization algorithm to find a code structure for
which the metric value is optimized. For the purpose of validating that the output is indeed better
structured, validation results are output. See for more details on the optimization tool.

2.2 Design overview

As the two tools contain overlapping functionality, it is important that the tools are not developed
independently from each other. That is, both tools need to extract information from a software
repository and use that information to calculate metric values for the source code. Therefore, we
implement the functionality in a library, which both tools use. The tools then contain only the
code necessary to execute their task, using the library.

An overview of the design of the platform is shown in [Figure 2.2] Here, we see that the
platform contains the two tools (Metric validation and Restructuring) and a library. The library
can be split into two parts. One part, Metric calculation, contains all the code needed to calculate
metric values, given a software repository. The other part, Optimization, contains the additional
code needed for the optimization process.

Note that the metric validation tool only depends on the first part of the library. That it, this
tool does not depend on the Optimization part, as no optimization is performed by this tool.
The restructuring tool, however, only directly depends on Optimization, while this part in turn
depends on Metric calculation.

3. Evolutionary coupling

The history of a software product as provided by a version control system such as Subversion
can be used to get information on the co-evolution of entities in the code. In general, we can
expect that two entities which co-evolved in the past to continue to co-evolve in the future. This
expectation is supported by studies in the field of software change prediction [32]. Co-evolving
entities are thus in a sense related to each other, and it can be said that they are coupled. This
coupling, which is based on the evolution of the code, is called evolutionary coupling.

In order to use evolutionary coupling for measuring the quality of the code, we need a metric
based on this historical data. In the past, evolutionary coupling has mostly been used in the form
of association rules, stating that a change in a certain entity often corresponds with a change in
another entity [32,61]. This method can be used to identify individual problems in the architecture,
such as strongly coupled methods which are in different modules. However, such a technique does
not allow for quantifying the quality of the complete code base, which is what is needed as a
measure to optimize the quality. It is thus necessary to define a metric which provides us with a
number that corresponds to the code quality. Zimmermann et al. [61] did define such metrics,
the EDI and ECI. However, such existing metrics are not satisfactory for reasons explained in
Section 3.41

A more extensive motivation for the use of historical data for determining coupling is given in
[Section 3.1] This motivation includes a discussion on problems with other techniques for measuring
the coupling and why evolutionary coupling can be expected to give better results. Then, before
we can define a metric, some requirements have to be formulated which the metric should adhere
to. These requirements are presented in Next, several definitions for a metric are
given and discussed in [Section 3.3] In [Section 3.4} the related work is discussed. This includes
a discussion of existing techniques and why these cannot be used to achieve our goals. Finally,
discusses additional ideas for defining a metric and other future work. A validation of

the metrics is postponed to [Chapter 5]

3.1 Motivation for evolutionary coupling

It has long been accepted in software development that code with a low coupling between different
modules is an indicator for good quality code, while high coupling usually implies that the code
is difficult to maintain [60]. When entities are tightly coupled, it means that the two entities
cannot be independently changed. That causes problems when maintenance is performed in the
code, because making a change in one location can cause code in another location to break. This
requires one to also change that code, which can easily be forgotten if the coupling between the
two parts is not obvious. Therefore, coupled entities should be placed close together, such as in
the same module, minimizing the coupling between modules.

It should be noted that not all relations between entities are bad. Often, it is necessary for
entities to be related in order to fulfill the requirements of the system. In fact, when entities are
grouped together in the same module, it is even desirable for the entities to be somehow related
to each other. Unrelated entities which appear in the same module can distract developers,

3.1. MOTIVATION FOR EVOLUTIONARY COUPLING

drawing their attention to an unrelated part of the source code. Therefore, it is desirable for
relations between entities, that these entities are both in the same module. To measure these
desirable relations, we use the cohesion of a module. A well-structured software system has both
high cohesion (of the modules) and low coupling (between the modules), or more importantly, a
cohesion which is higher than the coupling.

Anquetil and Laval [4] studied several successful restructuring efforts, measuring several metrics
based on coupling and cohesion. The authors studied the evolution of the Eclipse platform between
successive versions. In two of the cases (the evolution from version 2.0.1 and 2.1, and from 2.1
to 3.0), the code was purposely restructured in order to solve modularization issues. That is,
the developers recognized problems with the architecture of the code and attempted to resolve
those problems during restructuring. As a third case, the evolution from version 3.0 to 3.1 is
studied in order to investigate whether issues detected after restructuring were fixed (this indicates
maturation of the structure). The authors argue that due to the continuing success of the Eclipse
platform, the restructurings can be considered effective, thus improving the modularization.

Furthermore, the effect of the restructuring on four metrics, which measure the coupling and
cohesion, is determined. This is done for the Bunch cohesion/coupling metrics [40] and for afferent
and efferent coupling [41]. For the Bunch metrics it is found that the coupling metric shows a
globally slightly decreasing trend, which is to be expected with an improved structure, but the
effect was not significant enough to state a clear improvement. Furthermore, it is expected that
with improved structure the cohesion increases, but a clearly opposite effect was detected. For
afferent and efferent coupling, it is found that both metrics show an increasing trend, while for a
better structure, it is expected for the coupling to be reduced.

As the results are contradictory to what was expected for successful restructurings, Anquetil
and Laval [4] conclude that the way coupling and cohesion are measured by the studied metrics
is flawed. The authors still argue that developers should aim for low coupling and high cohesion,
but add that no good metrics exist capable of measuring the kind of coupling and cohesion which
developers try to optimize. In the words of the authors: “One must consider that software
engineers work with higher level concepts that cannot be measured by the simple, existing,
cohesion/coupling metrics”. Thus, in order to obtain good metrics, we must find a way to
measure such higher level concepts.

The problem with existing coupling/cohesion metrics is that they are based on the assumption
that a syntactical dependency between two entities (that is, one entity uses the other) is the same
as a coupling between the two entities. However, when some form of API stability is guaranteed,
it is possible that an entity depends on another, while the two are still only loosely coupled. That
is, it is possible that the two entities can be independently changed, as long as the black-box
functionality of the entities remains the same.

Inversely, it is possible that two entities which are not considered related by techniques using
static analysis, are still coupled. An example of this is code for reading and writing settings from
and to a configuration file. In such a case, it is important that both parts (reading and writing)
use the same format for the settings, as stored in the file. Thus, if the format is changed in
which the settings are written, the code reading these settings must also be changed in order to
correspond with the changed format. While it is possible to detect that the two parts use the same
file and can thus be considered to be coupled, this is more complicated than detecting syntactical
coupling and is therefore not done in practice.

In order to provide a better technique for measuring the coupling of a software product, we
propose to look at the development history of the source code. We can expect that two entities
which have co-evolved in the past are coupled and thus expected to continue to co-evolve in

6

CHAPTER 3. EVOLUTIONARY COUPLING

the future. This expectation comes from work done in the field of software change prediction,
where evolutionary coupling has been successfully used in order to predict which entities should
be changed, given an initial change [61] [63]. That is, studies in this field have shown that
co-evolution in the past is indeed a good predictor for co-evolution in the future. Therefore,
evolutionary coupling actually can be expected to perform better at identifying dependencies in
the code which are truly there in practice. That is, it should be successful in detecting relations
between entities, where a change in one entity frequently requires a change in the other entity.

We can thus say that evolutionary coupling is based on historical evidence, rather than on
a possible dependency. This means that it is expected that evolutionary coupling will perform
better in measuring the code quality, and indeed that improved code quality will be reflected by
decreased evolutionary coupling.

3.2 Requirements for the metric

Before we can formulate a definition for a metric based on evolutionary coupling, we must first
consider what requirements there are on the metric. In general, we want the metric to measure
the quality of the code structure. That is, we want to quantify how well the entities are distributed
over multiple modules. Therefore, we want the metric to increase as the code structure improves
(or, it is also acceptable if the metric is inversely correlated with code structure, thus if it decreases
as the structure improves). However, there are some other properties which the metric should
have. These requirements for the metric are given in the remainder of this section.

1. The metric should be normalized

To make it possible and meaningful to compare the quality of two different source code
trees (two different versions of the same software product), the metric values should be
comparable. If the possible range of values is in some way dependent on the source code
(for example, if it is at most equal to the total number of modules), it does not make
sense to compare the values for different code. Additionally, to make it easier to interpret
the metric value as a quality measure, it is desirable for the metric to have a well-defined
constant range. This also means the metric values can be compared in a meaningful way,
and it is possible to quickly get an idea on how good (or bad) the code quality is.

2. The metric should not be biased towards a specific module organization
It is also important that the metric should not favor a lot of smaller modules over a single
large module, or other differences in module organization. For example, although coupling
between two entities which are in two different modules is considered bad, the metric should
not give an optimal value when all entities are in the same module (and there are thus
no inter-module dependencies). In most cases, it is better to have some inter-module
dependencies as having all entities in the same module.

3. The metric should not be dependent on the length of the history

Obviously, using a longer history can uncover more (or other) relations than using a shorter
history. Also, it is of course important to choose an appropriate history length. When the
history is too short, not enough information will be available, while when it is too long, there
will be too much noise (old changes which have no impact on the current version of the
code). However, the metric should somehow be robust for varying history lengths, which
means that when we look back into the past twice as far, we should detect approximately
the same number of relations (as opposed to, for example, twice as many).

7

3.3. QUANTIFYING EVOLUTIONARY COUPLING BY DEFINING METRICS

4. The metric should work on multiple granularity levels
In order to make it possible to apply the presented techniques on multiple granularity levels,
it is important that the metric does not depend on a specific granularity level. That is, while
we currently consider entities to be files and modules to be directories, the metric definition
should not depend on this. It should, for example, be possible to take methods as entities
and classes as modules and still use the same metric definition without modification.

5. The metric should take hierarchical module structures into account
In Java, packages are given a name consisting of possibly multiple identifiers separated by
dots. Although not necessary, programmers usually use packages in a hierarchical manner.
That is, a package named pkgA.pkgB is usually considered to reside in package pkgA.
The metric should take such hierarchical structures into account and consider pkga . pkgB
to be a program element in module pkgA.

3.3 Quantifying evolutionary coupling by defining metrics

Now the requirements for the metric are known, we can give a definition. Multiple definitions are
possible, which all have their advantages and disadvantages. As it is not a priori known whether
a given definition will work well in practice, we define several alternative metrics. The reasoning
behind these definitions is discussed in this section. In order to provide stronger evidence for the
applicability of the different definitions, a validation study is presented in the next chapter. This
validation compares how the definitions perform in practice and allows us to discuss whether the
metrics are appropriate for quantifying the code quality.

In order to satisfy Requirements[I]and[2] we look at an existing metric which combines coupling
and cohesion into a single value. This metric has in the past been applied for standard coupling
(that is, non-evolutionary coupling) [13| 40]. The idea is that the coupling between entities
in different modules should be small, while the cohesion among the entities in a single module
should be large. This technique is discussed first in In the remaining sections some
problems with the basic definition of this technique are discussed.

3.3.1 Modularization quality

Doval et al. [13] used a measure called Modularization Quality (M@) in order to combine coupling
and cohesion in a single metric, measuring the quality of a clustering of modules in subsystems.
The MQ is also used in this thesis, adapted to suit our specific needs. M() consists of two parts:
a measure for the cohesion of modules and a measure for the coupling between modules. The M@
then measures the quality of a modularization, such as the modularization shown in [Figure 3.1]

The first part of M(Q is inter-connectivity, which measures the connectivity between two
modules, or the coupling between two modules, and a low value means low coupling, which thus
indicates good modularization.

Definition 1 (Inter-connectivity). For modules i and j (i # j), let N; and N; denote the number
of elements in the modules 7 and j respectively. Furthermore, let €; ; be the number of relations
between an element from module ¢ and an element from module j. The inter-connectivity F; ;
between the modules ¢ and j is then defined as

B~ S
,]
7 N;N;

CHAPTER 3. EVOLUTIONARY COUPLING

P
O

O 2 T

Figure 3.1: An example modularization of 9 entities, divided over 3 modules. An edge
between two nodes denotes a relation between two entities.

Thus, E; ; is equal to the number of inter-relations (e; ;), divided by the maximum number
of possible inter-relations (N;N;). The value of E;; is equal to 0 when the two modules are
completely unrelated, and equal to 1 when all elements from module i are related to all elements
from module j.

As an example, consider [Figure 3.1 Here, the inter-connectivity between modules 1 and 2 is
equal to

Similarly, we have Ey 3 =0 and Ep3 = 1/8.

The main goal is to minimize the inter-connectivity. However, using only the inter-connectivity
is not enough, as then the metric would be optimized whenever all entities are in the same module.
To solve this problem, we define intra-connectivity, which is a measure of the density of relations
between elements in the same module, thus the cohesion of a module. A high value corresponds
to high cohesion and therefore is an indicator for a good modularization.

Definition 2 (Intra-connectivity). For a module 4, let N; denote the number of elements in this
module and p; the number of relations between two elements both in module ¢. Then, the
intra-connectivity A; of module 7 is defined as

20
A= —————
N;(N; — 1)

A; is thus the number of intra-relations (u;), divided by the maximum number of possible
intra-relations (IV;(IV; — 1)/2). Note that this definition assumes that an entity cannot be related
to itself. This is because entities are considered to be related whenever they co-evolve, and it is
not possible for an entity to co-evolve with itself (or alternatively, all entities could be considered
to co-evolve with itself, in which case the inverse is not possible). The value of A; ranges from 0,
when no relations exist inside the module, to 1, when all elements in the module are connected
to each other.

Consider [Figure 3.1] for an example. The intra-connectivity of module 1 is equal to

2411 2.2 2

Ay = e
'“N(Ni—1) 3.2 3

For modules 2 and 3, we get Ap =2/3 and A3 = 1.
Besides minimizing the inter-connectivity, we now also want to maximize the intra-connectivity.
Note, however, that in fact a large number of intra-relations is not necessarily a good thing. In

9

3.3. QUANTIFYING EVOLUTIONARY COUPLING BY DEFINING METRICS

general, it is actually a good thing to have as few relations as possible, including intra-relations.
For our purpose, though, we have a given set of relations, and it is better to have these relations
contribute to the intra-connectivity than to the inter-connectivity. That is, adding more intra-
relations does not improve the quality. However, when a constant set of relations is given and
entities are moved, code quality does increase if more relations become intra-relations.

M@ can now be defined by combining the intra-connectivity and the inter-connectivity in
a single value. As the intra-connectivity should be high while the inter-connectivity is low, we
subtract the latter from the former. For both parts, we use the average over all modules.

Definition 3 (Modularization quality). Let & be the total number of modules. The modularization
quality M@ is then defined as

k

(2 B

T
L

MQ) thus rewards a high intra-connectivity and punishes a high inter-connectivity. The value
is bound to the range [—1, 1], where —1 means no cohesion and maximum coupling, and 1 corre-
sponds to maximum cohesion and no coupling. This fixed range also ensures that
is satisfied.

For an example, consider again We know the inter-connectivity of all pairs of
modules and the intra-connectivity of each module. Furthermore, with k£ = 3, we get the following
value for the MQ:

||M

w\}—n

1 9 3-1 3
M@ = ; — E
< 322 3(3-1) “ Z J
=1 =1 j=i+1
1 2+2+1 L 1—1—0—1—1
3\3 3 3\ 12 8
_7 5
9 72
51
= —=0.71
2

As this value is larger than 0, the intra-connectivity is larger than the inter-connectivity, which is
a good sign. Furthermore, the value is actually quite near to 1, indicating that the modularization
is good.

Note that the definition of M@ used differs from the definition as used by Doval et al. [13].
The original M@ uses directional dependencies, effectively doubling the maximum number of
possible relations. However, we use undirected relations, and thus the definitions were adapted
accordingly.

The definition for M@ as it is now, is still lacking in several ways. First of all, we need to
know the values for all p; and ¢; j, which means that we need a way to determine which elements
are considered to be related to each other. Furthermore, the current definition considers only a
set of entities grouped into modules. That is, the hierarchical structure of modules is not taken
into account, thus violating [Requirement 5 We need a way to support the case where a module
can itself contain (sub)modules.

10

CHAPTER 3. EVOLUTIONARY COUPLING

A o oo ® oo ® ®

B o ® P oo P ® ®

C S S S S ° oo -
Time —

Figure 3.2: Visualization of the evolution of three entities. A dot represents a change
in the entity at the given time. Vertical alignment of two dots means that the two corre-
sponding entities were changed together (in the same commit), and thus co-evolve.

In [Section 3.3.2] we look at techniques for detecting whether two entities are related or not.

In [Section 3.3.3] this is taken further up in the hierarchy by investigating techniques which can
be used to detect relations between modules (or a module and an entity). Finally, we discuss

aggregating multiple M() values into a single metric value in |Section 3.3.4]

3.3.2 Detecting relations between entities

In order to count the number of relations, we must first be able to determine whether two entities
are related. To do this, we use the history of the source code as stored in a version control system
such as Subversion. From this, we can determine which entities co-evolved. Using techniques
from association rule mining [2], we determine if evidence of a relation between two entities is
strong enough to consider those entities to be related.

The history of source code can be seen as a series of commits, where each commit changes
one or more entities. For a version control system which uses file versions as opposed to product
versions, such as CVS, preprocessing is needed to group commits together first [62].

A short sample of such a history for three artificial entities is depicted in [Figure 3.2l When
two entities are changed at the same time (in the same commit), they co-evolve. In general,
such co-evolution is an indicator for a relation between the two entities. However, whether the
entities should really be considered to be related, depends on the strength of the co-evolution.
That is, if they co-evolve almost in every case, evidence for a relation is strong. However, when
co-evolution is rare, then it may be considered coincidental and no relation between the entities
exists. In one would probably consider A and B to be related, because they are often
changed together. On the other hand, while there is one occurrence where both A and C are
changed, they are more often changed independently. Thus, A and C should not be considered
to be related.

There are several measures which can be used in order to quantify the strength of the co-
evolution between two entities. The simplest method is to count how often the entities co-evolve
and check if this number is above a certain threshold. This value is called the support.

Definition 4 (Support). Consider two entities: e; and es. The support of entity e; is denoted
by supp(e1) and is defined as the number of commits in which e; is changed. The support of
the entities e; and ey together, denoted by supp(ey, e2), is defined as the number of commits in
which both e; and es are changed.

Support is very simple and also very effective at removing potential relations between two
entities when those entities only co-evolve infrequently. However, the problem is that when the
support is used, an entity which is often changed is much more likely to become related to
other entities than one which is almost never changed, even when those co-evolutions are purely
coincidental. Therefore, we use the confidence of a relation. This confidence value is in principle

11

3.3. QUANTIFYING EVOLUTIONARY COUPLING BY DEFINING METRICS

the same as the confidence of association rules, with the difference that in our case a relation
is undirected while an association rule is directed. To make the confidence independent of a
direction, the two directed confidences are combined into a single value.

Definition 5 (Confidence). The confidence of a relation between the two entities e; and eq,
denoted by conf(ey, e2) is defined as

conf(eq, e3) = combine (Supp(el’ e2) supp(et, 62))

supp(e1) ~ supp(ez)

This definition is the combination of the confidence of the association rule e; = es and
the rule es = €1, where the confidence of an association rule corresponds to the probability
of the right-hand side occurring, given that the left-hand side occurs. Since relations between
entities are undirected, the two values are combined using a combination function. Three different
combination functions are used: maximum, minimum and average.

The maximum is used in order to consider a relations between two entities to be strong
whenever the association rule in one of the directions is strong. This ensures that a relation is
detected even if one of the entities is changed much more frequently than the other. When we
want both association rules to be strong, we can use the minimum, which ensures that relations
which are unidirectional are not considered. This is mostly important in order to prevent a lot
of relations from showing up between two layers of a layered architecture. The average is an
intermediate form, where a weaker rule can be compensated by a stronger rule.

Now, by giving a minimum support value minSupp and and minimum confidence value
minConf, we can check whether two entities are related. If both the support and the confi-
dence are large enough, the entities are considered to be related. There is however one small
problem with giving a minimum support value. If a longer history is used, the support values also
become larger. Therefore, we actually use the minimum support parameter as a fraction of the
total number of commits, making the relations less dependent on the length of the history, and

thus satisfying [Requirement 3]

Definition 6 (Confidence-based relation). Given two entities e; and ey, parameters minSupp and
minConf and the total number of commits n, we consider the entities related if the predicate
Rc(e1,e2) is true, where R.(eq, e2) is defined as

R.(e1,e2) = supp(er, e2) > n - minSupp A conf(ey, e2) > minConf

The confidence-based technique uses the confidence as a way to check the strength of co-
evolution. However, it is possible for an entity e; to be changed in 95% of the commits, but only
in 90% of the commits in which entity e; was changed. In this case, the presence of es actually
reduces the chance of e; being changed in the same commit. But since the confidence of e; and
eq is still very high (0.9), a relation will be detected between the entities, even though they are
actually negatively related. To solve this problem, we can use the lift [37].

Definition 7 (Lift). Given entities e; and eq, lift(e, e2) is defined as

supp(e1, e2)/n _n supp(e1, €2)

lift(e1, e2) = (supp(e1)/n)(supp(e2)/n) supp(e1)supp(ez)

This value is larger than one whenever the two entities co-evolve more often than what would
be expected by chance. On the other hand, when they co-evolve less frequently than expected,
the lift is smaller than one.

12

CHAPTER 3. EVOLUTIONARY COUPLING

Hy: lift(ey, 62) =1 €1 ey Totals
Hy: lift(eg,e2) > 1 €2 a b N9
—e2 c d n —ng
Table 3.1: Hypothesis test. The null- Totals | n;y n—ny n

hypothesis is rejected (and the alternative
accepted) when the probability of the ob- Table 3.2: Contingency table summarizing the num-

served result, under the assumption that Hy ber of commits for each possible combination of pres-
is true, s smaller than the a priori chosen ence of the entities ey and es. Here, n denotes the to-
significance level. tal number of commits, and n; = supp(e;) fori=1,2.

However, there is still a possibility of the lift being larger than one even if the entities are
unrelated. In fact, it is unlikely for unrelated entities to have a lift which is exactly equal to one.
Therefore, we want to check whether the lift is large enough in order to consider it sufficient
evidence that the entities are indeed related. Instead of using a simple — but rather difficult to
interpret — minimum lift value, we use a hypothesis test [18] as shown in

When we look at the definition of lift, we can see that the alternative hypothesis (and in a
similar way, the null-hypothesis) can be reformulated as

supp(e1, e2)/n > (supp(e1)/n)(supp(ez)/n)

Considering the support of the separate entities as fixed, we are thus interested in whether the
support of both entities together is large enough. We can represent this problem as a contingency
table [56], as shown in [Table 3.2l This table summarizes the number of commits according to
the presence (or absence) of two entities. In this table, we have a = supp(e1,e2), and we are
thus interested in checking whether a is large enough such that the observed values are unlikely
in case e; and ez would be unrelated. Furthermore, we use n; = supp(e1) and ny = supp(e2) as
abbreviations.

In other words, we reject the null-hypothesis when the probability of a result at least as
extreme as the one observed, under the assumption that the null-hypothesis is true, is below a
certain threshold (supplied as a parameter). In order to do this, we find the p-value using Fisher’s
exact test [19] and compare this value with the supplied threshold.

Fisher's exact test is capable of finding the exact p-value for contingency tables. It is based
on the fact that the listed totals are all constant, while the four numbers inside the table can
vary based on correlations and chance. Fisher proved that for the contingency table as shown in
, the probability of this specific table occurring by random chance alone (that is, the
entities are not related) can be expressed as

ni!(n — n1)ng!(n — ng)!
albleld!n!

To get the probability of a result at least as extreme as the observed result, Fisher showed
that we must sum the probabilities of all tables at least as extreme. That is, since we are looking
to verify whether the two entities co-evolved often enough, we need to sum the probabilities of
all tables with at least the given number of commits containing both entities. In other words, we
need to sum the probabilities of all tables with at least the observed value of a.

Definition 8 (Fisher's exact test). Given an observed contingency table with values as shown
in [Table 3.2] and the maximum possible value for a equal to s = min(supp(e;),supp(e2)), the

13

3.3. QUANTIFYING EVOLUTIONARY COUPLING BY DEFINING METRICS

p-value is equal to

— nyq! n—nl)'ng'(n—ng)'
b= Z (a+)l(b—1i)l(c—19)(d+i)n!

=

We can then use Fisher's exact test for the hypothesis test as shown in[Table 3.1] To do this,
we find the p-value of the test and based on a parameter we decide whether the null-hypothesis
is accepted or rejected. If it is rejected, the two entities are considered to be related, as there is
good evidence that the entities are indeed related.

Definition 9 (Lift-based relation). Given two entities e; and ez, parameters minSupp and maxP,
the total number of commits n and the p-value of Fisher's exact test p, we consider the entities
related if the predicate R;(eq, e2) is true, where Rj(eq, e2) is defined as

Ry(e1,e2) = supp(e1, e2) > n - minSupp A p < maxP

Note that the support is still used in this definition. This is done for two reasons. The first
is that it can be useful to ignore any relations which do not occur enough, because while it
may indeed be true that the relation exists, it is not of sufficient interest to consider the entities
coupled. Secondly, it immediately takes care of the problem that for a support of zero, a division
by zero occurs in the lift calculation. However, for this purpose, a minimum of support of one is
sufficient, so the first reason is most important for the use of a minimum support.

3.3.3 Detecting relations between modules

Using the above described techniques, we can decide whether two entities are related or not.
However, while these techniques work on entities, it is also possible for modules to contain other
modules. In such cases, we must also be able to determine whether there is a relation between
two modules (or a module and an entity). A straightforward way of deciding this, is by considering
a module to be related to another element if there is an entity in the module which is related to
that element. This method is related to single-link clustering [42], in that a single link between
two clusters is sufficient to consider them related.

Definition 10 (Child-based relation). A module M and an element e are related according to a
relation R exactly when R(M,e) is true, which is defined as

R(M,e) = R(e, M) = JereprR(e, €)

A likely problem with this approach, however, is that the top-level modules are much more
likely to be related to each other than bottom-level entities. Top-level modules contain a large
number of entities in their hierarchy, which results in a situation where some entity from those
modules is changed in a large number of commits. This means that the support of the relations
of course also becomes larger, but the confidence and lift are influenced by other factors as well.
It is thus expected that this technique is not very useful.

Another technique is to consider a module changed in a commit whenever an entity in that
module was changed in the commit. This way, the modules can then be treated in the same way
as entities. This is the technique used for generalized association rules [54], where our module
structure is the taxonomy. Besides just considering it changed in a commit, we can even look at
how often a module was changed in a commit. That is, we can count a commit two times when
two entities from that module are changed in the commit.

14

CHAPTER 3. EVOLUTIONARY COUPLING

Definition 11 (Set-based relation). If C'(e) denotes the set of commits in which element e was
changed, then the set of commits in which module M was changed is defined as

c(M)= | Cle)

eeM

A module M and an element e are then related according to a relation R exactly when R(M, e)
is true, which is now defined for modules in the same way as for entities.

Definition 12 (Multiset-based relation). If MC(e) denotes the multiset of commits in which
element e was changed, then the multiset of commits in which module M was changed is defined
as
MC(M) = |H MC(e)
eeM

A module M and an element e are then related according to a relation R exactly when R(M, e)
is true, which is now defined for modules in the same way as for entities.

These two techniques allow for two modules to be related even if no entities in the modules
are related to each other. Inversely, it is possible for two modules to be unrelated even if entities
in the modules are related. These techniques thus are independent from any relations in lower
levels of the hierarchy, which means that relations in the higher levels of the hierarchy are more
meaningful in the sense that it is more likely for modules to be unrelated as is the case when using
child-based relations.

The multiset-based technique does have one practical problem. Because it is possible for a
module to be “modified” multiple times in the same commit, it is also possible for the support
of a module to be larger than the total number of transactions. Since this then also occurs
for the support of the relations, the confidence is still sensible. However, there is no natural
interpretation anymore, potentially weakening the statistics. Therefore, it is expected that this
module-level technique is problematic.

Furthermore, because the lift-based technique uses contingency tables, it does not make sense
to combine it with the multiset-based relations, because the number of commits which do not
contain the module is then not properly defined. While it is possible to use a different definition
for support in the case of multisets, this is awkward and it is uncertain how this definition should
best be modified in this case. Therefore, the multiset-based technique is only combined with the
confidence-based relations, while the other techniques discussed in this section can be combined
with both confidence and lift-based relations.

3.3.4 Aggregating over all modules

Two techniques for detecting relations between entities and three techniques for detecting rela-
tions between modules have been defined. These definitions make it possible to calculate MQ
for all modules which contain modules. That is, the relations can be determined between all pro-
gram elements, including modules. This makes it possible to calculate both intra-connectivity of
modules, and inter-connectivity between modules. Thus, for a group of modules, we can calculate
MQ.

However, while it is the case that we can calculate M@ for the system, which is just a group
of modules, this is not enough. Each of these modules can itself contain modules, which means
MQ@ is also defined for those modules. We thus need one final step in order to combine all the

15

3.3. QUANTIFYING EVOLUTIONARY COUPLING BY DEFINING METRICS

M@ values into a single value. For this purpose, since the M@ itself is already based on averages,
we simply take the average value of all calculated M@ values.

Definition 13 (Average M(@). Let S denote the set of all modules for which M(Q) is defined,
and let MQ(M) denote the M@ value for module M. The M@ of the complete system is then
defined as MO(M)
Me=2 s
MeS

Note that other techniques for combining the M@ values into a single value are possible, such
as the median or minimum/maximum, or inequality measures [23, 57]. However, the average is the
simplest which is useful for our purpose. Minimum and maximum are too local (that is, only one
module matters), and techniques for measuring the inequality of the values are more complicated
and are not immediately correlated with code quality (which is what we want to measure).

3.3.5 Summary

The metrics defined consist of four basic parts. The first is the M (), which is the actual function
that is used to calculate metric values. The second is one of the entity-level relations detec-
tion techniques discussed (confidence-based or lift-based). The third is one of the module-level
techniques discussed (child-based, set-based or multiset-based). Finally, the fourth part is the
aggregation technique (only the average M@). This section discusses how these parts together

satisfy the requirements identified in [Section 3.2

1. The metric should be normalized
The M@ function always results in a value in the range [—1, 1], where a higher value indicates
a better modularization quality.

2. The metric should not be biased towards a specific module organization
The M@ function defines a trade-off between inter-connectivity and intra-connectivity.
While inter-connectivity is biased to having all entities in a single module, intra-connectivity
is biased to splitting all entities, with only a single entity per module. The M), combining
both these concepts, is then optimized when a good trade-off is achieved, indicating a good
overall modular quality. M@ has been successfully used for the purpose of measuring the
modular quality of code without any problems indicating a bias [13].

3. The metric should not be dependent on the length of the history

The history is used for the entity-level techniques (confidence-based and set-based). Both
techniques require a minimum support parameter, which indicates the fraction of the com-
mits that should support a relation, as opposed to the actual number of commits. This way,
a longer history does not increase this measure (in fact, the fraction can even decrease).
Otherwise, a longer history would necessarily increase the support of a relation, thus making
the metric detect more relations. However, using the fraction of commits for minimum
support ensures the metrics are not dependent on the length of the history.

4. The metric should work on multiple granularity levels
The metrics are defined without making any assumptions on the granularity level. That is,
for another granularity level, such as method-level, we only need to redefine what we mean
with the words entity and module. The metric definitions given in this chapter are then
applicable on another granularity level.

16

CHAPTER 3. EVOLUTIONARY COUPLING

5. The metric should take hierarchical module structures into account
The M@ is calculated for all modules for which it is defined, and we then aggregate the
results by taking the average. Furthermore, we also defined how relations between modules
(or a module and an entity) can be detected. These concepts together are based on the
hierarchical module structure of the code.

3.4 Related work

Evolutionary coupling is not new, as it has been used in multiple studies in the past. The difference
with this study, however, is for what purpose it is used. Most studies calculated association rules
from the source code history, and used those rules directly for different purposes. These rules have
been used for software change prediction, and for finding architectural problems in the code.

The studies which did define metrics based on these association rules, did so for quantifying
the code quality of a single version of the code. That is, the defined metrics are not useful for
optimization in order to improve the code structure. The reasons for this are given in this section,
along with an overview of other related literature.

3.4.1 Change impact analysis

Most of the research into evolutionary coupling is in the field of change impact analysis or software
change prediction [28, [32] [63]. When a change needs to be made to source code (for example to
fix a bug or introduce a new feature), this often means that multiple entities need to be changed
due to relations between the entities. For this purpose, it is interesting to investigate if it is
possible to predict the impact such a change has. For this, evolutionary coupling has been used
by returning a list of entities which often co-evolved with a supplied entity containing the initial
change.

Kagdi et al. [32] propose a combination of conceptual and evolutionary coupling in order to
improve the accuracy for change impact analysis. Conceptual coupling is determined from a single
version of the source code, while evolutionary coupling is computed from the history leading up to
that version by using item set mining. The lists of entities found using these two techniques are
combined into a new list using two techniques: conjunctive (selecting those entities which are in
both lists) and disjunctive (selecting those entities which are in at least one list). Both techniques
are validated by comparing the results obtained with a test set with the results of the two distinct
techniques. It is observed that conceptual coupling and evolutionary coupling indeed find different
sets of entities related to an initial entity. Furthermore, the disjunctive combination provides the
best performance, which is determined to be statistically significant.

Zimmermann et al. [63] also use evolutionary coupling in order to predict further change
locations, given an initial change. A plug-in for ECLIPSE was developed, which would give a
programmer real-time advice on which entities should also be considered to change. This provides
information in the form “programmers who changed this function, also changed ..." in order to
help programmers. Association rules with high confidence are suggested first. If a user tries to
commit his changes when there are still rules with high confidence that suggest further changes,
the user is warned. The evaluation of the tool shows that it can suggest further change locations
in its topmost three suggestions with a likelihood of 64%. Furthermore, it proves to be useful for
detecting missing change locations and warning the user about this.

Hassan and Holt [28] compare four different techniques of predicting entities which should be
changed. The results show that evolutionary coupling performs better than syntactical coupling

17

3.4. RELATED WORK

(where entities are related based on a Call, Use or Define relation). Syntactical coupling has both
smaller recall (that is, misses more correct suggestions) and smaller precision (that is, makes more
incorrect suggestions) as evolutionary coupling. A third technique, based on the assumption that
a developer only works on a single subsystem and thus suggesting entities the current developer
has changed before, also does not perform very well. Finally, the fourth technique suggests all
entities defined in the file that was changed. This technique shows the best performance, but of
course when restructuring is necessary, the performance of this technique degrades.

This shows that evolutionary coupling indeed proves to be useful in detecting relations between
entities in the source code. By using the change history of the software, other relations can be
detected which are not found when conceptual coupling is used. Additionally, the relations found
by evolutionary coupling perform better in predicting software change locations based on an initial
change [28].

In these studies, only association rules consisting of a pair of entities (one antecedent and one
consequent) are considered. When a single change location is given, the impact of that change
is determined. For evolutionary coupling, this means that all rules with the given entity as the
antecedent are selected and sorted on the confidence and support. The consequents then form
an ordered set of entities which are expected to be impacted by the initial change. The above
studies do not define any numerical metric for quantifying the code quality, by using evolutionary
coupling.

3.4.2 Evolution radar

For reverse engineering of source code, it is also important to get an insight in the coupling between
entities. D'Ambros and Lanza [9] proposed an approach where evolutionary coupling is calculated
and then visualized using an Evolution Radar. This approach makes it possible to look at both the
architecture level (modules) to get a global view of the system, and at finer-grained entities (files)
to learn which files are responsible for the coupling. The user can interact with the visualization
by moving through time (that is, change the time window from which the investigated commits
are taken), tracking specific files over multiple time windows, and spawning a new radar based on
a set of files to determine which files are responsible for the coupling. The approach is validated
on ARGOUML, and several design problems could be identified this way, showing the success of
the technique.

While the technique has shown that using evolutionary coupling is useful for detecting design
problems, it is only a tool to assist in the process. The detection of design problems is not
automated, only a visualization is provided which can be used to find such problems. A software
engineer is still required to investigate the results, interpret the visualizations and find problem
locations in the source code which should be considered for reengineering. Once these locations
are identified, the reengineering has to be performed manually, as well.

The techniques used in the study are again not useable for automatic optimization of the code
quality. No metric is defined which can be used for quantifying the code quality. Evolutionary
coupling is only used for creating a visualization, which can be used for finding individual problems.
Note, however, that some metric is defined in order to determine the distance between two entities
in order to draw the visualization. For this, the support is used, but this only measures the distance
between two entities and cannot measure the quality of the complete system. The visualization,
however, does have an advantage over a metric in some cases. A metric gives no insight on where
the problems are, while the Evolution Radar makes this much more easy.

18

CHAPTER 3. EVOLUTIONARY COUPLING

3.4.3 ROSE

Zimmermann et al. [61] used evolutionary coupling extracted from CVS archives in their tool
called ROSE. Besides computing association rules and their respective support and confidence
values, two numerical metrics were introduced, EDI and ECI, which can quantify the evolutionary
coupling for a system. The association rules are considered to be relations between entities when
the support and confidence of the rule exceed a certain threshold. The EDI is defined as the
number of actual relations, divided by the number of possible relations. The ECI is defined
as the ratio between inter-relations and intra-relations. High values of these indices point to
design problems, while smaller values are better (with an optimum at O for both indices). The
evolutionary coupling information is then used to analyze several open source systems, including
the GNU Compiler Collection (GCC) and the DDD Debugger. The data is compared with the
actual architecture of the software. GCC turns out to be well-structured with relatively few
dependencies between entities. On the other hand, DDD is not so well-structured, with relatively
more dependencies between entities.

While both metrics make it possible to measure the code quality, neither is appropriate as
an objective function for optimization of the code quality. The EDI is only dependent on the
number of relations and the number of entities. When entities are moved to other modules, the
structure of the code changes, but both the number of relations and the number of entities remain
constant. Thus, the EDI also remains constant as the entities are moved. The ECI, however,
does change as entities are moved, as it relates inter-relations to intra-relations. But the problem
with this metric is the same as when we would only use inter-connectivity: the metric is optimized
when all entities are in the same module. In that case, no inter-relations exist and the metric
value becomes 0.

The ROSE tool was extended and implemented as an ECLIPSE plug-in by Zimmermann
et al. [63]. This tool provides a programmer with information on the evolutionary coupling in the
form of “Programmers who changed this function, also changed ..."”. It is concluded that for
stable systems (such as GCC), ROSE works very well with fine-grained analysis (on method level,
that is, when entities are methods). But for more rapidly evolving systems (such as KOFFICE),
it is more useful to use a file level granularity for suggesting further changes.

ROSE turns out to be a useful tool for suggesting further change locations given an initial
change. When in the past changing a method in one class always coincided with changing a
method in another class, or maybe even in a completely different package, ROSE will suggest
this additional location to the programmer. This can prevent errors resulting from incomplete
modifications, because a dependency was missed by the programmer.

By using evolutionary coupling to guide the reengineering process, we can attempt to solve
the actual underlying problem of a bad design. In a good design, two methods which are strongly
related should be placed in the same class, and ROSE would only suggest change locations in
the same class as the initial change. With such a design, a programmer is much less likely to miss
a dependency and a tool such as ROSE, although still useful, is not as important.

3.5 Future work

In this chapter, a number of techniques for defining metrics to measure the code quality have
been discussed. It should be noted, though, that more techniques for achieving the same goal
exist. Additionally, while the presented techniques are evaluated and compared in [Chapter 5|
other techniques are not evaluated. Therefore, future research can focus on investigating if

19

3.5. FUTURE WORK

other techniques are also useful for measuring code quality. This section discusses some of these
possibilities.

Alternatives for MQ In this thesis, all defined metrics are based on the Modularization Quality
(MQ). This is done because using only coupling has the problem of being optimized when all
entities are in the same module, which is not a good code structure. To solve this problem, a
combination of inter-connectivity (coupling) and intra-connectivity (cohesion) is used.

The problem with this, however, is that it is actually desirable that even the number of relations
between entities in the same module is minimized. Of course, it is better to have many relations
within a module and only a few between modules, but the code would be structured even better
if there are also few relations within a module.

In order to solve the problem that coupling between the modules alone is not enough, some
other metric can be considered. For example, it is possible to use the average number of entities
per module, which should be minimized. This metric achieves its maximal value when all entities
are in the same module, and is optimal when all entities are in their own module. Therefore, it is
also capable of correcting the problem of using only the inter-connectivity.

When this metric is used, though, it should be noted that the range of this metric is not
compatible with the range of inter-connectivity. The former ranges over the integers from 1 to
N, where N is the number of entities, while the latter ranges over the real numbers from 0 to
1. Therefore, simply using a subtraction is not an option, because then the average number of
entities per package dominates the other metric. It might be possible to solve this by dividing the
average number of entities by N, but research is required to investigate if this is indeed a good
technique for calculating a metric.

Directed relations Relations are considered to be undirected in the metrics defined in this thesis.
This makes sense, since we consider that two related entities should be in the same module. It is
not possible for two entities to be in the same module in one direction, but in different modules
in the other direction. However, it is possible to consider two entities to have a stronger relation
between them when the corresponding association rules are strong enough in both directions.

In other words, instead of combining the confidence values of the two association rules into a
single value, it is possible to consider the association rules separately. If the rule e; = ey has a
sufficiently large confidence (and support), a relation from e; to eg exists. Similarly, if the rule in
the other direction has a large enough confidence, a relation in the corresponding direction exists.

This can also be seen a bit differently. Instead of considering the relations to have actual
directions, we can also assign a weight to the relations. For a pair of entities, if neither of the two
association rules is strong enough, there is no relation between the entities. If both association
rules are strong enough, there does exist a relation between the entities. And if only one of the
rules is strong enough, while the other is not, the relation is present with a weight of 0.5, thus as
half a relation. This is effectively the same as using directed relations.

Weighted relations We can even take this weighting scheme a bit further. Currently, a relation is
considered to be present or absent, based on whether or not the evidence for the relation is strong
enough. However, we can also use the strength of the evidence as the weight for the relation.
That is, if the association rules for a pair of entities is very strong, the relation is given a large
weight. If the rules are weak, though, the relation is given a small weight.

20

CHAPTER 3. EVOLUTIONARY COUPLING

For the weight of relations, we can for example use the confidence of the association rules. A
confidence of 1 means that if the antecedent is changed, the consequent is also always changed,
so the relation is strong (maximal). A confidence of 0.6 could then be used for a relation with a
weight of 0.6. This way, no minimum confidence value needs to be set (which is not an intuitive
task), yet the strength of the rules is still taken into consideration.

For lift-based relations, it is less obvious what measure to use as the relation weight. However,
it is possible to use lift (and support) in order to select whether a rule is strong enough, and use
the confidence for the weight of the relation.

Negative relations Besides assigning a weight to a relation between 0 and 1, it is also possible
to use negative weights when there is a negative relation between two entities. The lift of two
entities, as defined in Definition 7] is larger than one when there is a positive relation, and smaller
than one when there is a negative relation. Currently, a negative relation is considered to be the
same as no relation, but it is also possible to assign a negative weight to this relation. That way,
entities which co-evolve less frequently than expected should be placed in different modules.

Statistical covariance and correlation In statistics, the covariance and correlation are standard
techniques for measuring how much two variables are related. These techniques can also be used
for measuring how much two entities are related. However, the covariance and correlation require
a number of real-valued observations for each random variable, while we only have a number of
boolean-valued observations. That is, instead of checking whether an entity is changed in a given
commit, it is necessary to know how much that entity changed in a commit.

For this, we need a way to determine how much an entity changes in a certain commit. We
can use a simple measure such as the percentage of lines of code in the entity which actually
changed. A problem with this is that a small change on a line has the same weight as a complete
rewrite of a line. Also, some changes might appear to be small, but in fact completely change the
functionality of the code, while other changes seem like a complete rewrite of the code, where the
functionality remains completely the same (for example implementing a faster sorting algorithm).

However, if a good measure for the extent of the changes of entities is defined, it is a nice
idea to use this in order to calculate the covariance or correlation of the entities. These values can
then be used to determine whether two entities are related (or negatively related). The advantage
of this, is that small changes are also treated differently as large changes in an entity.

Aging of commits It is also interesting to consider the aging of commits. For the metric definitions
used in this thesis, all commits contribute equally towards deciding whether two entities are related.
A problem with this approach is that the source code evolved with every commit. The most recent
commit resulted in the current version of the source code, but older commits changed older versions
of the code. As a consequence, the co-evolution of two entities in an old commit might be based
on an equally old version of the code, where the two entities were indeed coupled. This, however,
does not mean that the entities are still coupled in the current version. Because of this, more
recent commits contain more reliable information, and are thus more important than the older
commits.

This problem was partially solved by only considering a limited number of commits instead
of the complete history. It is however still the case that the older commits carry less important
information as the most recent. Also, this requires a user to set the range of commits to use, which

21

3.5. FUTURE WORK

is not easy to decide on. Using more commits gives more information, but this extra information
might not be reliable (based on an old version of the code).

A better solution for this problem is to assign a smaller weight to older commits. This way,
the more recent commits contribute more than the old commits to deciding whether entities are
related. Different aging schemes can be considered. A linear aging scheme, for example, assigns
a weight of 1 to the most recent commit and 0 to the oldest commit, and for the intermediate
commits the weight changes linearly. However, this scheme is likely to still give too large weights
to old commits, so a better aging scheme is likely required.

It is probably better to consider an exponential aging scheme. With such a scheme, the weight
of the commit decreases exponentially as the age increases. For example, for commit i of a total
of n commits, the weight 1/e"~% can be assigned to the commit. This ensures that the most
recent commits have a large contribution, while slightly older commits are already considered to
be much less important.

The weights of the commits can then be used for determining the support of item sets. That
is, instead of counting the number of commits in which a pair of entities is both changed, the
weights of these commits are summed. As the other definitions (confidence and lift) are based on
the support, these change accordingly.

Relations between modules While the relations between entities are relatively easy to determine,
there are more possibilities for deciding whether two modules are related. For two entities, we
check how often they co-evolve and how often they evolve independently of each other. If certain
requirements are met, the entities are considered to be related. A similar approach is possible for
modules, where again a module can change in a commit, or does not change.

However, for modules there are also other possibilities. [Definition 12] considered the possibility
that modules are changed multiple times in the same commit, based on how many of its con-
taining elements are changed. That is, if in a certain commit three entities in the module were
changed, then the module is considered to have changed three times in that commit. Alternatively,
[Definition 10l considers two modules related whenever children of the modules are related.

Thus, there are different techniques for determining whether two modules are related. Besides
the ones mentioned in this thesis, there may be other techniques. Specifically, the multiset-based
relations of [Definition 12| is not defined in combination with lift-based relations, because the lift
cannot be calculated when the support can become larger than the total number of entities. To
solve this, it might be possible to modify the definitions of support and lift such that this is
possible, and multiset-based relations can be combined with lift-based relations.

Aggregating over modules The structure of source code is often hierarchical, where modules may
contain submodules. But because the M@ assumes a flat structure, with entities grouped into
modules, there is no single M (@) value on the system level. The M@ is calculated for each module
on which it is defined, and all these values are then aggregated by taking the average. However,
there are other aggregation techniques available besides the average. A simple alternative is, for
example, the median.

Especially when the distribution of individual M@ values is skewed, though, more sophisticated
aggregation techniques might be required. For example, one could look at the Gini index [23]
or the Theil index [57], which are both used to measure economical inequality. While the M@
should be maximized in all modules, it is also desirable for all modules to have an approximately
equal M@ value, as opposed to some modules with a very good structure and others with a

22

CHAPTER 3. EVOLUTIONARY COUPLING

relatively bad structure. For this, inequality measures such as the Gini and Theil index might
indeed prove to be successful alternatives to measuring quality directly. The problem, however,
is that some inequality is usually better than bad quality, which should be overcome. A study
on which aggregation technique is most useful for our purposes, has not been committed. It is
important for future research to investigate this issue, because the average might indeed not be
the best choice.

Finally, aggregation is currently performed by taking the average over all modules, regardless
of the location of these modules in the hierarchy. Another option is to take the average at each
level of the hierarchy separately, and then further aggregating these results. More specifically,
the average M@ of all modules which are grouped together in the same (super-)module can be
calculated, with the resulting value being used for aggregation of the M) value one level higher
in the hierarchy.

23

4. Metric calculation tool

The metric validation tool has one purpose: validating the metrics. As stated in [Chapter 2] the
tool is split into two components. The first is part of the library, which is shared by this tool and
the optimization tool. This component contains all classes necessary for retrieving information
from a software repository (both the commit history and the source code), and for calculating
metric values for a given version of the code based on the commit history. The second component
uses these classes for calculating the metric values of different versions of the source code, in order
to compare these values of a version before and a version after restructuring. Both components
are discussed in the chapter.

This chapter first discusses the requirements of the metric validation tool in [Section 4.1|
Next, the design is presented in [Section 4.2] Finally, some implementation details are discussed
in [Section 4.3

4.1 Requirements

Before we discuss the design of the tool, we first formulate the requirements. Obviously, the
main requirement is that the tool should use data from a software repository for automatically
validating the metrics. To do this, the tool needs to be able to retrieve information from a software
repository, and it needs to be able to calculate metric values using this information.

The specific requirements are discussed in the remainder of this section. Note that we only
provide an overview of the requirements. That is, detailed requirements of atomic features are
not provided. The requirements listed here are used as guidance for the design discussed in the
next section.

Flexible design \We require the design to be flexible, in the sense that module-level (child-based,
set-based or multiset-based) and entity-level (confidence-based or lift-based) techniques can be
combined to form metrics. Similarly, metrics can be based on the information from any version
control system, without depending on the version control system directly.
1. A module-level technique and an entity-level technique can be combined to form a metric.
2. There should be no direct dependencies between a metric and a repository/version control
system.
In the future, it should be easy to add new metrics or new module-level and entity-level techniques,
without requiring too many changes to other parts of the code (such as the code which actually
performs the validation). The same applies for software repositories: it should be easy to add
support for other version control systems.
3. Adding a new metric should be easy, requiring only well-defined changes.
4. Adding support for a new version control system should be easy, requiring only well-defined
changes.
With “well-defined changes”, we mean that it is clear how to modify the source code to add the
new functionality. That is, obviously, the implementation of the new functionality needs to be
added. However, the existing code should not have to be changed to accommodate for the new

25

4.2. DESIGN

functionality, other than well-defined extension points informing the tool of the newly available
functionality.

Subversion support The tool is required to support Subversion repositories. Both the commit
history and the source code (in tree representation) need to be retrieved directly from a Subversion
server. This way, users are not required to perform a complete checkout of the repository to validate
the metrics.

Subversion repositories should be supported.

The commit history can be retrieved from the repository, based on a revision range.

The code structure can be retrieved from the repository, given a revision number.

All information can be retrieved directly from the Subversion server over an internet con-
nection. That is, no checkout of the repository is required.

e

Information cache As retrieving data from a version control system over the internet can be
slow, or even fails completely when no internet connection is available, all retrieved data needs
to be cached locally. By caching the data locally, new validation experiments are faster (as the
information does not need to be downloaded from the internet) and can even be performed without
the need to have an internet connection (of course only if the data that is required is present in
the cache).
9. All information retrieved from the repository should be cached locally.

The cache should be incremental. That is, all required information in the cache is retrieved from
the cache, and only the data not available in the cache is retrieved from the repository. The newly
retrieved data is then added to the cache for future use.

10. Data available in the cache is always loaded from the cache.

11. Newly retrieved data is added to the cache.

File-level granularity Currently, only analysis is performed where entities are files. Therefore, the
tool only needs to support analysis at this granularity. However, in the design, the possibility of
adding support for another granularity needs to be considered.

12. File-level entities need to be supported.

13. Possibility for adding support of another granularity needs to be considered in the design.
For this last requirement, it is important to decouple the entity granularity from other parts of
the code. However, since the data that needs to be retrieved from a repository depends on the
granularity, some coupling between these two parts of the code cannot be prevented.

Simplicity The metric validation tool is intended as a simple tool which can be used to validate
metrics. It is therefore not important to have features such as a Graphical User Interface (GUI)
or a configuration system. Specifically, the tool is not required to contain any elaborate features
other than the ones listed in this section, but simplicity is preferred.

14. Simplicity is preferred over functionality not otherwise required by the listed requirements.

4.2 Design

A class diagram of the tool is shown in [Figure 4.I] For readability reasons, only the classes are
shown without any fields or methods. The diagram can roughly be divided into two parts: a part
for retrieving information from a software repository and a part for calculating metric values.

26

CHAPTER 4. METRIC CALCULATION TOOL

0
(IMetric) DataMiner |----------
A 1
’ Evoﬁ\/lq Moleel ’0—{ Entll%el
Transaction ’ \\\ ChildRel ’ E ’ ConfRel
SetRel | [LiftRel
[IHistProv] \\ :
i *’ Tree ’<-*I
CachedProv [[FishersTest |

T ’ Entity ’
’ SvnProv ’~ . T‘

FileEntity y

Figure 4.1: Class diagram of the metric validation tool. For readability reasons, only the
classes are shown without any fields or methods.

Figure 4.1{only shows the classes which are present in a shared library (see|Chapter 2)). Besides

this library, there is also a small and relatively simple executable which uses this library in order to
perform metric validation. The design of the library is discussed in[Section 4.2.1|and [Section 4.2.2]
The executable is discussed in

4.2.1 Software repository

The interface THistProv defines the functionality for a history provider. It defines two methods
which should be implemented by all classes inheriting from it. To add support for a version control
system (Requirement 4)), this interface needs to be implemented.

The first method is get Transactions (), which should return a collection of Transac-
tions to satisfy [Requirement 6] A transaction contains information for a single commit in the
version control system. Retrieving this information is, especially for a version control system such
as CVS (which only tracks file versions instead of product versions), non-trivial. This topic has
been studied by Zimmermann and Weissgerber [62] and Vanya et al. [58], and some considerations
are discussed in [Section 4.3.1]

The second method defined by IHistProv, satisfying[Requirement 7} is get Tree (), which
returns a Tree representing the code structure at a specified revision. This revision is always the
last revision in the revision range used to retrieve the commit history, thus returning the structure
of the most recent version of the code.

The abstract class CachedProv provides the caching of transactions and the tree, and sat-
isfies Requirements [9 [10] and [II} Any provider inheriting from this class automatically contains
the caching functionality. CachedProv, however, does not have support for retrieving any in-
formation from a software repository. It only retrieves data from the cache, or if it is not in the
cache, forwards the request to the subclass. The cache is stored in an SQLite database [52]. For

27

4.2. DESIGN

more details on the cache, see [Section 4.3.2]

The class SvnProv, finally, has support for retrieving all the needed information from a
Subversion repository ([Requirement 5)). What data should be retrieved, is passed to this class
on construction (that is, the range of commits which should be retrieved). Since this class
inherits from CachedProv, caching of the data is handled automatically. For communication
with the Subversion server (Requirement 8)), the open-source library SVNKIT [55] is used. See
for more information on how the data is retrieved from Subversion.

The class SvnProv uses the class FileEntity for entities at the file-level granularity
. This class inherits from the abstract class Entity. To add support for another
granularity level (such as method-level entities), a subclass of Entity needs to be created, and
SvnProv needs to be modified to add the functionality for retrieving data at this granularity
(Requirement 13]). Note that the code to retrieve the necessary data is dependent on the ver-
sion control system used. Therefore, support for another granularity needs to be implemented in
SvnProv, requiring changes to that class.

4.2.2 Metrics

The interface IMetric is the core of the metrics calculation part of the code. All metrics need
to implement this interface, which defines a single method: getValue (Tree). This method is
responsible for calculating the metric value for the given tree. Adding support for a new metric,
as required by is thus a matter of implementing this interface. Any dependencies
a metric has, need to be supplied to the constructor.

There is only one class implementing the IMetric interface, which is EvolMqg. This class
implements the M@ function as described in It is composed of two other classes,
which help it do this.

The first class contained in EvolMq is DataMiner. This class contains all the code for
performing item set mining on the collection of transactions retrieved from the software repository.
The algorithm used for the item set mining is discussed in

The other class contained in EvolMqg is ModRel. This is an abstract class responsible for
detecting relations. This cla