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Abstract

As software systems are changed in order to add, remove or modify functionality, the quality of
the modular design of the code degrades. In order to improve the code structure again, the source
code needs to be reengineered. However, reengineering is labor intensive work, and thus it is
desirable to automate this process.

Currently available research on automated reengineering has at least one of three problems.
First, a lot of research only focusses on automating a single step of the reengineering process (that
is, problem detection, or finding an improved design). Secondly, existing approaches often change
the package structure, making it difficult for developers familiar with the original structure to
understand the new structure. Finally, the known techniques use metrics which have been shown
to have problems in the way they measure coupling and cohesion in another study.

To solve these problems, a new approach to automated reengineering is proposed. Other
studies have shown that evolutionary coupling is capable of detecting relations between code
entities, based on the change history of the code. Based on evolutionary coupling, we define
metrics capable of quantifying the modularization quality of a software system. A case study
shows that these metrics are successful in measuring the modularization quality.

Furthermore, an optimization technique is proposed, which uses a genetic algorithm to improve
the code structure by optimizing the evolutionary coupling metrics. The genetic algorithm uses
multi-objective optimization to simultaneously reduce the number of changes made to the code,
ensuring some form of code stability.

Experiments performed for validating the optimization strategy show promising results. The
proposed technique is capable of improving the code structure. Furthermore, the results show
that multi-objective optimization is preferable over single-objective optimization.

As care needs to be taken when reengineering software, in order to ensure the behavior is not
changed, further research into automated reengineering is required. For this purpose, a platform
is developed for conducting research into automated reengineering. This platform is also used to
execute the experiments of the validation studies performed in this thesis.
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1. Introduction

In object-oriented programming languages such as Java, the source code can be structured into
packages. These packages group related classes together, while the classes each implement a set
of related methods. A good package structure should realize a high cohesion among the classes
in the same package, and a low coupling between two separate packages [60]. Such a good code
structure is referred to as a good modularization of the code.

A good modularization is important, because it eases a number of issues related to software
engineering [12]. For example, when a developer needs to work on code not yet familiar to them,
they first have to understand the structure of the code. A good modularization helps the developer
in gaining this understanding. Furthermore, maintenance is easier to perform and testing of the
code also becomes less problematic.

Unfortunately, as software evolves, and functionality is added, removed or changed, the quality
of the modularization degrades [15]. Eventually, due to shifting responsibilities and changing
relations between classes, some classes might no longer be placed in an appropriate package [25].
To improve the modularization quality again, reengineering of the code becomes necessary.

The necessity of reengineering also follows from Lehman’s laws of software evolution [36].
Lehman formulated eight laws which he stated apply to all evolving software systems. The fol-
lowing two laws are applicable to show the need for software reengineering:

1. Systems must be continually adapted or they become progressively less satisfactory.

2. The complexity of an evolving system increases unless work is done to maintain or reduce
it.

The first law states that a software system needs to be modified by adding new features or
fixing bugs. If this is not done, the changing environment causes the system to become less
satisfactory. For example, if a competing software product does evolve, users might end up
preferring the other product, thus decreasing revenue. Alternatively, as computers become more
powerful, users expect more from software products. Thus, software systems need to evolve.

According to second law mentioned, an evolving software system becomes increasingly more
complex, unless this complexity is actively maintained or reduced. Thus, as new features are added
and bugs are fixed, the complexity of the software increases. Therefore, reengineering is important
in order to reduce this complexity again.

The main problem with reengineering, is that it is labor intensive. The existing relations
between classes and methods need to be identified in order to find problems in the modularization.
Next, a new and improved modularization needs to be designed, which ultimately needs to be
implemented. This entire process is hard to do manually [8], and therefore automating the
reengineering is desirable.

Research into automated reengineering has often focused on only a single step of the process.
That is, there are multiple studies on automating the detection of design problems [8, 9, 17, 61].
Furthermore, some research focusses on finding a good, modular design for a software system
[40, 44, 45, 48]. Finally, there is research available which studies the actual reengineering step,
modifying the source code to improve the code quality [7, 21, 43].
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Combining all the steps of the reengineering process into a single tool, capable of automating
the complete process, has also been researched in some studies [44, 46]. However, such studies
often change the package structure, aiming to find the best modularization for the existing code.
With this approach, it can become problematic for programmers who are familiar with the system
to understand the new modularization, and map the new situation back to what they know.

Furthermore, existing studies on automated reengineering frequently work with coupling and
cohesion metrics based on static analysis of the source code [1, 46]. That is, classes are considered
to be related when one class uses the other. However, problems with these metrics have been
identified by Anquetil and Laval [4].

There is, however, another technique which can be used to determine which classes are related.
Evolutionary coupling [61] is based on the change history of source code. Information from the
change history is used to determine which classes were often changed together in the past, in
which case they are said to co-evolve. Co-evolving classes are then considered to be related.

Evolutionary coupling has shown to be successful in detecting relations between classes and
other source code entities in a number of studies [61, 63]. Other studies have shown that evo-
lutionary coupling can detect relations between entities not detected using source code analysis
[32, 33]. That is, entities might co-evolve, even if no dependencies between the entities is de-
tected from source code analysis. One study even showed that evolutionary coupling performs
better than standard coupling measures, such as those based on call or use relationships [28].

In this thesis, we propose a technique for automated reengineering using evolutionary cou-
pling. For this purpose, a platform is developed for conducting empirical research into automated
reengineering. This platform is then used to investigate whether evolutionary coupling is indeed
suitable for use in automated reengineering. See Chapter 2 for a description of this platform.

Furthermore, metrics are defined, based on evolutionary coupling, in Chapter 3. These metrics
are capable of measuring the modularization quality of software. While such metrics are not
readily available in the literature, we do use and combine existing and proven techniques to define
our metrics. A tool is developed capable of validating these metrics. This tool is discussed in
Chapter 4. The metrics are then validated in Chapter 5, before they are used for automated
reengineering.

Software modularization is a graph clustering problem [49]. As the graph clustering problem
is NP-complete, finding a good modularization using a deterministic algorithm is infeasible [22].
Therefore, we use a genetic algorithm to solve the problem [29], which is presented in Chapter 6.
A discussion of the tool developed for automated reengineering is given in Chapter 7. Validation
of the proposed reengineering technique is then done by performing experiments, of which the
results are presented in Chapter 8.

Note that this thesis is limited to reengineering in the form of improving the modularization.
That is, other aspects of code quality, such as code duplication [34], are not considered.

Furthermore, modularization in general is not limited to moving classes into packages. Instead,
we can also imagine moving methods into classes, or even (sub)packages into packages. Therefore,
we use the term module to refer to those elements of the source code which can contain other
elements (like packages can contain classes, and classes can contain methods). Note that modules
can also contain other modules. Furthermore, we use the term entity to refer to code elements
which cannot contain other elements, and are thus considered the smallest type of element.

While we do use the general terms to indicate the presented techniques are also applicable for
other levels of granularity, we limit ourselves to moving classes into packages. The reason for this
is that evolutionary coupling is not suited for fine-grained analysis when the system under analysis
is unstable [63].
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2. Platform overview

This project is split into two parts. The first part is dedicated to defining metrics based on
evolutionary coupling. This also includes a validation study of the metrics to determine which
metrics are best suited for measuring the quality of the source code structure. The second part
then uses the most promising metrics to investigate if they can be used for automatically improving
the source code.

For both parts, a software tool is created which is capable of performing the necessary analyses.
That is, one tool is created which can validate the metrics on a case study, and another tool is
created for improving the quality of the structure of source code. In this chapter, an overview of
both these tools is given, which together form a platform for research into automated reengineering.

The scope of the platform is given in Section 2.1. Next, an overview of the design of the
complete platform is given in Section 2.2. Note that the information given in this chapter only
provides an overview. The details of the two tools, including specific requirements and an ar-
chitectural design, are discussed in Chapter 4 (metric calculation) and Chapter 7 (optimization
tool).

2.1 Scope

The platform consists of two tools: the metric validation tool and the restructuring tool. The
scope of the platform is depicted in Figure 2.1. Both of the tools take their input from the software
repository of the software project under investigation.

The software repository is a version control system such as Subversion (SVN), containing
historical data on the software project. From the software repository, the two necessary types of
information can be retrieved.

The first is the commit history, which is retrieved as a collection of commits. Each commit
contains a collection of entities which were modified in the respective commit. This information
is sufficient to determine the evolutionary coupling between entities, and thus to calculate the

Software
repository

Metric
validation

Restructuring

Validation
results

Restructuring
results

Figure 2.1: The scope of the platform. The shaded area indicates the platform, containing
the two tools. Both tools take their input from software repositories.
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2.2. DESIGN OVERVIEW

Metric
calculation

Metric
validation

Optimization Restructuring

Figure 2.2: An overview of the design of the two tools: the metric validation tool and the
restructuring tool. The metrics calculation package contains all code for calculating the
evolutionary coupling metric values. The optimization package contains additional code
necessary for the structure optimization process.

evolutionary coupling metrics defined in Chapter 3.
The second type of information retrieved from the repository, is the current source code struc-

ture. That is, a tree structure representing the source code of the software project is constructed
from information retrieved from the repository. The tree structure corresponds to the modular
structure of the code.

The metric validation tool is used to validate metrics. It does this by retrieving information
from a software repository for a software project that has undergone a successful restructuring
effort in the past. Metric values for a version of the code before and a version after the restructuring
are then calculated, and the results can be used for a validation study. More details on the metric
validation tool are given in Chapter 4.

The restructuring tool also uses the information from the software repository to calculate
metric values. However, this tool uses an optimization algorithm to find a code structure for
which the metric value is optimized. For the purpose of validating that the output is indeed better
structured, validation results are output. See Chapter 7 for more details on the optimization tool.

2.2 Design overview

As the two tools contain overlapping functionality, it is important that the tools are not developed
independently from each other. That is, both tools need to extract information from a software
repository and use that information to calculate metric values for the source code. Therefore, we
implement the functionality in a library, which both tools use. The tools then contain only the
code necessary to execute their task, using the library.

An overview of the design of the platform is shown in Figure 2.2. Here, we see that the
platform contains the two tools (Metric validation and Restructuring) and a library. The library
can be split into two parts. One part, Metric calculation, contains all the code needed to calculate
metric values, given a software repository. The other part, Optimization, contains the additional
code needed for the optimization process.

Note that the metric validation tool only depends on the first part of the library. That it, this
tool does not depend on the Optimization part, as no optimization is performed by this tool.
The restructuring tool, however, only directly depends on Optimization, while this part in turn
depends on Metric calculation.

4



3. Evolutionary coupling

The history of a software product as provided by a version control system such as Subversion
can be used to get information on the co-evolution of entities in the code. In general, we can
expect that two entities which co-evolved in the past to continue to co-evolve in the future. This
expectation is supported by studies in the field of software change prediction [32]. Co-evolving
entities are thus in a sense related to each other, and it can be said that they are coupled. This
coupling, which is based on the evolution of the code, is called evolutionary coupling.

In order to use evolutionary coupling for measuring the quality of the code, we need a metric
based on this historical data. In the past, evolutionary coupling has mostly been used in the form
of association rules, stating that a change in a certain entity often corresponds with a change in
another entity [32, 61]. This method can be used to identify individual problems in the architecture,
such as strongly coupled methods which are in different modules. However, such a technique does
not allow for quantifying the quality of the complete code base, which is what is needed as a
measure to optimize the quality. It is thus necessary to define a metric which provides us with a
number that corresponds to the code quality. Zimmermann et al. [61] did define such metrics,
the EDI and ECI. However, such existing metrics are not satisfactory for reasons explained in
Section 3.4.

A more extensive motivation for the use of historical data for determining coupling is given in
Section 3.1. This motivation includes a discussion on problems with other techniques for measuring
the coupling and why evolutionary coupling can be expected to give better results. Then, before
we can define a metric, some requirements have to be formulated which the metric should adhere
to. These requirements are presented in Section 3.2. Next, several definitions for a metric are
given and discussed in Section 3.3. In Section 3.4, the related work is discussed. This includes
a discussion of existing techniques and why these cannot be used to achieve our goals. Finally,
Section 3.5 discusses additional ideas for defining a metric and other future work. A validation of
the metrics is postponed to Chapter 5.

3.1 Motivation for evolutionary coupling

It has long been accepted in software development that code with a low coupling between different
modules is an indicator for good quality code, while high coupling usually implies that the code
is difficult to maintain [60]. When entities are tightly coupled, it means that the two entities
cannot be independently changed. That causes problems when maintenance is performed in the
code, because making a change in one location can cause code in another location to break. This
requires one to also change that code, which can easily be forgotten if the coupling between the
two parts is not obvious. Therefore, coupled entities should be placed close together, such as in
the same module, minimizing the coupling between modules.

It should be noted that not all relations between entities are bad. Often, it is necessary for
entities to be related in order to fulfill the requirements of the system. In fact, when entities are
grouped together in the same module, it is even desirable for the entities to be somehow related
to each other. Unrelated entities which appear in the same module can distract developers,
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3.1. MOTIVATION FOR EVOLUTIONARY COUPLING

drawing their attention to an unrelated part of the source code. Therefore, it is desirable for
relations between entities, that these entities are both in the same module. To measure these
desirable relations, we use the cohesion of a module. A well-structured software system has both
high cohesion (of the modules) and low coupling (between the modules), or more importantly, a
cohesion which is higher than the coupling.

Anquetil and Laval [4] studied several successful restructuring efforts, measuring several metrics
based on coupling and cohesion. The authors studied the evolution of the Eclipse platform between
successive versions. In two of the cases (the evolution from version 2.0.1 and 2.1, and from 2.1
to 3.0), the code was purposely restructured in order to solve modularization issues. That is,
the developers recognized problems with the architecture of the code and attempted to resolve
those problems during restructuring. As a third case, the evolution from version 3.0 to 3.1 is
studied in order to investigate whether issues detected after restructuring were fixed (this indicates
maturation of the structure). The authors argue that due to the continuing success of the Eclipse
platform, the restructurings can be considered effective, thus improving the modularization.

Furthermore, the effect of the restructuring on four metrics, which measure the coupling and
cohesion, is determined. This is done for the Bunch cohesion/coupling metrics [40] and for afferent
and efferent coupling [41]. For the Bunch metrics it is found that the coupling metric shows a
globally slightly decreasing trend, which is to be expected with an improved structure, but the
effect was not significant enough to state a clear improvement. Furthermore, it is expected that
with improved structure the cohesion increases, but a clearly opposite effect was detected. For
afferent and efferent coupling, it is found that both metrics show an increasing trend, while for a
better structure, it is expected for the coupling to be reduced.

As the results are contradictory to what was expected for successful restructurings, Anquetil
and Laval [4] conclude that the way coupling and cohesion are measured by the studied metrics
is flawed. The authors still argue that developers should aim for low coupling and high cohesion,
but add that no good metrics exist capable of measuring the kind of coupling and cohesion which
developers try to optimize. In the words of the authors: “One must consider that software
engineers work with higher level concepts that cannot be measured by the simple, existing,
cohesion/coupling metrics”. Thus, in order to obtain good metrics, we must find a way to
measure such higher level concepts.

The problem with existing coupling/cohesion metrics is that they are based on the assumption
that a syntactical dependency between two entities (that is, one entity uses the other) is the same
as a coupling between the two entities. However, when some form of API stability is guaranteed,
it is possible that an entity depends on another, while the two are still only loosely coupled. That
is, it is possible that the two entities can be independently changed, as long as the black-box
functionality of the entities remains the same.

Inversely, it is possible that two entities which are not considered related by techniques using
static analysis, are still coupled. An example of this is code for reading and writing settings from
and to a configuration file. In such a case, it is important that both parts (reading and writing)
use the same format for the settings, as stored in the file. Thus, if the format is changed in
which the settings are written, the code reading these settings must also be changed in order to
correspond with the changed format. While it is possible to detect that the two parts use the same
file and can thus be considered to be coupled, this is more complicated than detecting syntactical
coupling and is therefore not done in practice.

In order to provide a better technique for measuring the coupling of a software product, we
propose to look at the development history of the source code. We can expect that two entities
which have co-evolved in the past are coupled and thus expected to continue to co-evolve in
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CHAPTER 3. EVOLUTIONARY COUPLING

the future. This expectation comes from work done in the field of software change prediction,
where evolutionary coupling has been successfully used in order to predict which entities should
be changed, given an initial change [61, 63]. That is, studies in this field have shown that
co-evolution in the past is indeed a good predictor for co-evolution in the future. Therefore,
evolutionary coupling actually can be expected to perform better at identifying dependencies in
the code which are truly there in practice. That is, it should be successful in detecting relations
between entities, where a change in one entity frequently requires a change in the other entity.

We can thus say that evolutionary coupling is based on historical evidence, rather than on
a possible dependency. This means that it is expected that evolutionary coupling will perform
better in measuring the code quality, and indeed that improved code quality will be reflected by
decreased evolutionary coupling.

3.2 Requirements for the metric

Before we can formulate a definition for a metric based on evolutionary coupling, we must first
consider what requirements there are on the metric. In general, we want the metric to measure
the quality of the code structure. That is, we want to quantify how well the entities are distributed
over multiple modules. Therefore, we want the metric to increase as the code structure improves
(or, it is also acceptable if the metric is inversely correlated with code structure, thus if it decreases
as the structure improves). However, there are some other properties which the metric should
have. These requirements for the metric are given in the remainder of this section.

1. The metric should be normalized
To make it possible and meaningful to compare the quality of two different source code
trees (two different versions of the same software product), the metric values should be
comparable. If the possible range of values is in some way dependent on the source code
(for example, if it is at most equal to the total number of modules), it does not make
sense to compare the values for different code. Additionally, to make it easier to interpret
the metric value as a quality measure, it is desirable for the metric to have a well-defined
constant range. This also means the metric values can be compared in a meaningful way,
and it is possible to quickly get an idea on how good (or bad) the code quality is.

2. The metric should not be biased towards a specific module organization
It is also important that the metric should not favor a lot of smaller modules over a single
large module, or other differences in module organization. For example, although coupling
between two entities which are in two different modules is considered bad, the metric should
not give an optimal value when all entities are in the same module (and there are thus
no inter-module dependencies). In most cases, it is better to have some inter-module
dependencies as having all entities in the same module.

3. The metric should not be dependent on the length of the history
Obviously, using a longer history can uncover more (or other) relations than using a shorter
history. Also, it is of course important to choose an appropriate history length. When the
history is too short, not enough information will be available, while when it is too long, there
will be too much noise (old changes which have no impact on the current version of the
code). However, the metric should somehow be robust for varying history lengths, which
means that when we look back into the past twice as far, we should detect approximately
the same number of relations (as opposed to, for example, twice as many).
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4. The metric should work on multiple granularity levels
In order to make it possible to apply the presented techniques on multiple granularity levels,
it is important that the metric does not depend on a specific granularity level. That is, while
we currently consider entities to be files and modules to be directories, the metric definition
should not depend on this. It should, for example, be possible to take methods as entities
and classes as modules and still use the same metric definition without modification.

5. The metric should take hierarchical module structures into account
In Java, packages are given a name consisting of possibly multiple identifiers separated by
dots. Although not necessary, programmers usually use packages in a hierarchical manner.
That is, a package named pkgA.pkgB is usually considered to reside in package pkgA.
The metric should take such hierarchical structures into account and consider pkgA.pkgB
to be a program element in module pkgA.

3.3 Quantifying evolutionary coupling by defining metrics

Now the requirements for the metric are known, we can give a definition. Multiple definitions are
possible, which all have their advantages and disadvantages. As it is not a priori known whether
a given definition will work well in practice, we define several alternative metrics. The reasoning
behind these definitions is discussed in this section. In order to provide stronger evidence for the
applicability of the different definitions, a validation study is presented in the next chapter. This
validation compares how the definitions perform in practice and allows us to discuss whether the
metrics are appropriate for quantifying the code quality.

In order to satisfy Requirements 1 and 2, we look at an existing metric which combines coupling
and cohesion into a single value. This metric has in the past been applied for standard coupling
(that is, non-evolutionary coupling) [13, 40]. The idea is that the coupling between entities
in different modules should be small, while the cohesion among the entities in a single module
should be large. This technique is discussed first in Section 3.3.1. In the remaining sections some
problems with the basic definition of this technique are discussed.

3.3.1 Modularization quality

Doval et al. [13] used a measure called Modularization Quality (MQ) in order to combine coupling
and cohesion in a single metric, measuring the quality of a clustering of modules in subsystems.
The MQ is also used in this thesis, adapted to suit our specific needs. MQ consists of two parts:
a measure for the cohesion of modules and a measure for the coupling between modules. The MQ
then measures the quality of a modularization, such as the modularization shown in Figure 3.1.

The first part of MQ is inter-connectivity, which measures the connectivity between two
modules, or the coupling between two modules, and a low value means low coupling, which thus
indicates good modularization.

Definition 1 (Inter-connectivity). For modules i and j (i 6= j), let Ni and Nj denote the number
of elements in the modules i and j respectively. Furthermore, let εi,j be the number of relations
between an element from module i and an element from module j. The inter-connectivity Ei,j

between the modules i and j is then defined as

Ei,j =
εi,j
NiNj
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1

2

3

Figure 3.1: An example modularization of 9 entities, divided over 3 modules. An edge
between two nodes denotes a relation between two entities.

Thus, Ei,j is equal to the number of inter-relations (εi,j), divided by the maximum number
of possible inter-relations (NiNj). The value of Ei,j is equal to 0 when the two modules are
completely unrelated, and equal to 1 when all elements from module i are related to all elements
from module j.

As an example, consider Figure 3.1. Here, the inter-connectivity between modules 1 and 2 is
equal to

E1,2 =
ε1,2
N1N2

=
1

3 · 4 =
1

12

Similarly, we have E1,3 = 0 and E2,3 = 1/8.
The main goal is to minimize the inter-connectivity. However, using only the inter-connectivity

is not enough, as then the metric would be optimized whenever all entities are in the same module.
To solve this problem, we define intra-connectivity, which is a measure of the density of relations
between elements in the same module, thus the cohesion of a module. A high value corresponds
to high cohesion and therefore is an indicator for a good modularization.

Definition 2 (Intra-connectivity). For a module i, let Ni denote the number of elements in this
module and µi the number of relations between two elements both in module i. Then, the
intra-connectivity Ai of module i is defined as

Ai =
2µi

Ni(Ni − 1)

Ai is thus the number of intra-relations (µi), divided by the maximum number of possible
intra-relations (Ni(Ni− 1)/2). Note that this definition assumes that an entity cannot be related
to itself. This is because entities are considered to be related whenever they co-evolve, and it is
not possible for an entity to co-evolve with itself (or alternatively, all entities could be considered
to co-evolve with itself, in which case the inverse is not possible). The value of Ai ranges from 0,
when no relations exist inside the module, to 1, when all elements in the module are connected
to each other.

Consider Figure 3.1 for an example. The intra-connectivity of module 1 is equal to

A1 =
2µ1

N1(N1 − 1)
=

2 · 2
3 · 2 =

2

3

For modules 2 and 3, we get A2 = 2/3 and A3 = 1.
Besides minimizing the inter-connectivity, we now also want to maximize the intra-connectivity.

Note, however, that in fact a large number of intra-relations is not necessarily a good thing. In
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general, it is actually a good thing to have as few relations as possible, including intra-relations.
For our purpose, though, we have a given set of relations, and it is better to have these relations
contribute to the intra-connectivity than to the inter-connectivity. That is, adding more intra-
relations does not improve the quality. However, when a constant set of relations is given and
entities are moved, code quality does increase if more relations become intra-relations.

MQ can now be defined by combining the intra-connectivity and the inter-connectivity in
a single value. As the intra-connectivity should be high while the inter-connectivity is low, we
subtract the latter from the former. For both parts, we use the average over all modules.

Definition 3 (Modularization quality). Let k be the total number of modules. The modularization
quality MQ is then defined as

MQ =
1

k

k∑
i=1

Ai −
2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

Ei,j

MQ thus rewards a high intra-connectivity and punishes a high inter-connectivity. The value
is bound to the range [−1, 1], where −1 means no cohesion and maximum coupling, and 1 corre-
sponds to maximum cohesion and no coupling. This fixed range also ensures that Requirement 1
is satisfied.

For an example, consider again Figure 3.1. We know the inter-connectivity of all pairs of
modules and the intra-connectivity of each module. Furthermore, with k = 3, we get the following
value for the MQ :

MQ =
1

3

3∑
i=1

Ai −
2

3(3− 1)

3−1∑
i=1

3∑
j=i+1

Ei,j

=
1

3

(
2

3
+

2

3
+ 1

)
− 1

3

(
1

12
+ 0 +

1

8

)
=

7

9
− 5

72

=
51

72
≈ 0.71

As this value is larger than 0, the intra-connectivity is larger than the inter-connectivity, which is
a good sign. Furthermore, the value is actually quite near to 1, indicating that the modularization
is good.

Note that the definition of MQ used differs from the definition as used by Doval et al. [13].
The original MQ uses directional dependencies, effectively doubling the maximum number of
possible relations. However, we use undirected relations, and thus the definitions were adapted
accordingly.

The definition for MQ as it is now, is still lacking in several ways. First of all, we need to
know the values for all µi and εi,j , which means that we need a way to determine which elements
are considered to be related to each other. Furthermore, the current definition considers only a
set of entities grouped into modules. That is, the hierarchical structure of modules is not taken
into account, thus violating Requirement 5. We need a way to support the case where a module
can itself contain (sub)modules.
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A

B

C
Time →

Figure 3.2: Visualization of the evolution of three entities. A dot represents a change
in the entity at the given time. Vertical alignment of two dots means that the two corre-
sponding entities were changed together (in the same commit), and thus co-evolve.

In Section 3.3.2 we look at techniques for detecting whether two entities are related or not.
In Section 3.3.3, this is taken further up in the hierarchy by investigating techniques which can
be used to detect relations between modules (or a module and an entity). Finally, we discuss
aggregating multiple MQ values into a single metric value in Section 3.3.4.

3.3.2 Detecting relations between entities

In order to count the number of relations, we must first be able to determine whether two entities
are related. To do this, we use the history of the source code as stored in a version control system
such as Subversion. From this, we can determine which entities co-evolved. Using techniques
from association rule mining [2], we determine if evidence of a relation between two entities is
strong enough to consider those entities to be related.

The history of source code can be seen as a series of commits, where each commit changes
one or more entities. For a version control system which uses file versions as opposed to product
versions, such as CVS, preprocessing is needed to group commits together first [62].

A short sample of such a history for three artificial entities is depicted in Figure 3.2. When
two entities are changed at the same time (in the same commit), they co-evolve. In general,
such co-evolution is an indicator for a relation between the two entities. However, whether the
entities should really be considered to be related, depends on the strength of the co-evolution.
That is, if they co-evolve almost in every case, evidence for a relation is strong. However, when
co-evolution is rare, then it may be considered coincidental and no relation between the entities
exists. In Figure 3.2, one would probably consider A and B to be related, because they are often
changed together. On the other hand, while there is one occurrence where both A and C are
changed, they are more often changed independently. Thus, A and C should not be considered
to be related.

There are several measures which can be used in order to quantify the strength of the co-
evolution between two entities. The simplest method is to count how often the entities co-evolve
and check if this number is above a certain threshold. This value is called the support.

Definition 4 (Support). Consider two entities: e1 and e2. The support of entity e1 is denoted
by supp(e1) and is defined as the number of commits in which e1 is changed. The support of
the entities e1 and e2 together, denoted by supp(e1, e2), is defined as the number of commits in
which both e1 and e2 are changed.

Support is very simple and also very effective at removing potential relations between two
entities when those entities only co-evolve infrequently. However, the problem is that when the
support is used, an entity which is often changed is much more likely to become related to
other entities than one which is almost never changed, even when those co-evolutions are purely
coincidental. Therefore, we use the confidence of a relation. This confidence value is in principle
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the same as the confidence of association rules, with the difference that in our case a relation
is undirected while an association rule is directed. To make the confidence independent of a
direction, the two directed confidences are combined into a single value.

Definition 5 (Confidence). The confidence of a relation between the two entities e1 and e2,
denoted by conf(e1, e2) is defined as

conf(e1, e2) = combine

(
supp(e1, e2)

supp(e1)
,
supp(e1, e2)

supp(e2)

)
This definition is the combination of the confidence of the association rule e1 ⇒ e2 and

the rule e2 ⇒ e1, where the confidence of an association rule corresponds to the probability
of the right-hand side occurring, given that the left-hand side occurs. Since relations between
entities are undirected, the two values are combined using a combination function. Three different
combination functions are used: maximum, minimum and average.

The maximum is used in order to consider a relations between two entities to be strong
whenever the association rule in one of the directions is strong. This ensures that a relation is
detected even if one of the entities is changed much more frequently than the other. When we
want both association rules to be strong, we can use the minimum, which ensures that relations
which are unidirectional are not considered. This is mostly important in order to prevent a lot
of relations from showing up between two layers of a layered architecture. The average is an
intermediate form, where a weaker rule can be compensated by a stronger rule.

Now, by giving a minimum support value minSupp and and minimum confidence value
minConf, we can check whether two entities are related. If both the support and the confi-
dence are large enough, the entities are considered to be related. There is however one small
problem with giving a minimum support value. If a longer history is used, the support values also
become larger. Therefore, we actually use the minimum support parameter as a fraction of the
total number of commits, making the relations less dependent on the length of the history, and
thus satisfying Requirement 3.

Definition 6 (Confidence-based relation). Given two entities e1 and e2, parameters minSupp and
minConf and the total number of commits n, we consider the entities related if the predicate
Rc(e1, e2) is true, where Rc(e1, e2) is defined as

Rc(e1, e2) = supp(e1, e2) ≥ n ·minSupp ∧ conf(e1, e2) ≥ minConf

The confidence-based technique uses the confidence as a way to check the strength of co-
evolution. However, it is possible for an entity e1 to be changed in 95% of the commits, but only
in 90% of the commits in which entity e2 was changed. In this case, the presence of e2 actually
reduces the chance of e1 being changed in the same commit. But since the confidence of e1 and
e2 is still very high (0.9), a relation will be detected between the entities, even though they are
actually negatively related. To solve this problem, we can use the lift [37].

Definition 7 (Lift). Given entities e1 and e2, lift(e1, e2) is defined as

lift(e1, e2) =
supp(e1, e2)/n

(supp(e1)/n)(supp(e2)/n)
=

n · supp(e1, e2)
supp(e1)supp(e2)

This value is larger than one whenever the two entities co-evolve more often than what would
be expected by chance. On the other hand, when they co-evolve less frequently than expected,
the lift is smaller than one.
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H0: lift(e1, e2) = 1
HA: lift(e1, e2) > 1

Table 3.1: Hypothesis test. The null-
hypothesis is rejected (and the alternative
accepted) when the probability of the ob-
served result, under the assumption that H0

is true, is smaller than the a priori chosen
significance level.

e1 ¬e1 Totals
e2 a b n2
¬e2 c d n− n2

Totals n1 n− n1 n

Table 3.2: Contingency table summarizing the num-
ber of commits for each possible combination of pres-
ence of the entities e1 and e2. Here, n denotes the to-
tal number of commits, and ni = supp(ei) for i = 1, 2.

However, there is still a possibility of the lift being larger than one even if the entities are
unrelated. In fact, it is unlikely for unrelated entities to have a lift which is exactly equal to one.
Therefore, we want to check whether the lift is large enough in order to consider it sufficient
evidence that the entities are indeed related. Instead of using a simple — but rather difficult to
interpret — minimum lift value, we use a hypothesis test [18] as shown in Table 3.1.

When we look at the definition of lift, we can see that the alternative hypothesis (and in a
similar way, the null-hypothesis) can be reformulated as

supp(e1, e2)/n > (supp(e1)/n)(supp(e2)/n)

Considering the support of the separate entities as fixed, we are thus interested in whether the
support of both entities together is large enough. We can represent this problem as a contingency
table [56], as shown in Table 3.2. This table summarizes the number of commits according to
the presence (or absence) of two entities. In this table, we have a = supp(e1, e2), and we are
thus interested in checking whether a is large enough such that the observed values are unlikely
in case e1 and e2 would be unrelated. Furthermore, we use n1 = supp(e1) and n2 = supp(e2) as
abbreviations.

In other words, we reject the null-hypothesis when the probability of a result at least as
extreme as the one observed, under the assumption that the null-hypothesis is true, is below a
certain threshold (supplied as a parameter). In order to do this, we find the p-value using Fisher’s
exact test [19] and compare this value with the supplied threshold.

Fisher’s exact test is capable of finding the exact p-value for contingency tables. It is based
on the fact that the listed totals are all constant, while the four numbers inside the table can
vary based on correlations and chance. Fisher proved that for the contingency table as shown in
Table 3.2, the probability of this specific table occurring by random chance alone (that is, the
entities are not related) can be expressed as

n1!(n− n1)!n2!(n− n2)!
a!b!c!d!n!

To get the probability of a result at least as extreme as the observed result, Fisher showed
that we must sum the probabilities of all tables at least as extreme. That is, since we are looking
to verify whether the two entities co-evolved often enough, we need to sum the probabilities of
all tables with at least the given number of commits containing both entities. In other words, we
need to sum the probabilities of all tables with at least the observed value of a.

Definition 8 (Fisher’s exact test). Given an observed contingency table with values as shown
in Table 3.2, and the maximum possible value for a equal to s = min(supp(e1), supp(e2)), the

13



3.3. QUANTIFYING EVOLUTIONARY COUPLING BY DEFINING METRICS

p-value is equal to

p =
s−a∑
i=0

n1!(n− n1)!n2!(n− n2)!
(a+ i)!(b− i)!(c− i)!(d+ i)!n!

We can then use Fisher’s exact test for the hypothesis test as shown in Table 3.1. To do this,
we find the p-value of the test and based on a parameter we decide whether the null-hypothesis
is accepted or rejected. If it is rejected, the two entities are considered to be related, as there is
good evidence that the entities are indeed related.

Definition 9 (Lift-based relation). Given two entities e1 and e2, parameters minSupp and maxP,
the total number of commits n and the p-value of Fisher’s exact test p, we consider the entities
related if the predicate Rl(e1, e2) is true, where Rl(e1, e2) is defined as

Rl(e1, e2) = supp(e1, e2) ≥ n ·minSupp ∧ p ≤ maxP

Note that the support is still used in this definition. This is done for two reasons. The first
is that it can be useful to ignore any relations which do not occur enough, because while it
may indeed be true that the relation exists, it is not of sufficient interest to consider the entities
coupled. Secondly, it immediately takes care of the problem that for a support of zero, a division
by zero occurs in the lift calculation. However, for this purpose, a minimum of support of one is
sufficient, so the first reason is most important for the use of a minimum support.

3.3.3 Detecting relations between modules

Using the above described techniques, we can decide whether two entities are related or not.
However, while these techniques work on entities, it is also possible for modules to contain other
modules. In such cases, we must also be able to determine whether there is a relation between
two modules (or a module and an entity). A straightforward way of deciding this, is by considering
a module to be related to another element if there is an entity in the module which is related to
that element. This method is related to single-link clustering [42], in that a single link between
two clusters is sufficient to consider them related.

Definition 10 (Child-based relation). A module M and an element e are related according to a
relation R exactly when R(M, e) is true, which is defined as

R(M, e) = R(e,M) = ∃e′∈MR(e, e′)

A likely problem with this approach, however, is that the top-level modules are much more
likely to be related to each other than bottom-level entities. Top-level modules contain a large
number of entities in their hierarchy, which results in a situation where some entity from those
modules is changed in a large number of commits. This means that the support of the relations
of course also becomes larger, but the confidence and lift are influenced by other factors as well.
It is thus expected that this technique is not very useful.

Another technique is to consider a module changed in a commit whenever an entity in that
module was changed in the commit. This way, the modules can then be treated in the same way
as entities. This is the technique used for generalized association rules [54], where our module
structure is the taxonomy. Besides just considering it changed in a commit, we can even look at
how often a module was changed in a commit. That is, we can count a commit two times when
two entities from that module are changed in the commit.
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Definition 11 (Set-based relation). If C(e) denotes the set of commits in which element e was
changed, then the set of commits in which module M was changed is defined as

C(M) =
⋃
e∈M

C(e)

A module M and an element e are then related according to a relation R exactly when R(M, e)
is true, which is now defined for modules in the same way as for entities.

Definition 12 (Multiset-based relation). If MC (e) denotes the multiset of commits in which
element e was changed, then the multiset of commits in which module M was changed is defined
as

MC (M) =
⊎
e∈M

MC (e)

A module M and an element e are then related according to a relation R exactly when R(M, e)
is true, which is now defined for modules in the same way as for entities.

These two techniques allow for two modules to be related even if no entities in the modules
are related to each other. Inversely, it is possible for two modules to be unrelated even if entities
in the modules are related. These techniques thus are independent from any relations in lower
levels of the hierarchy, which means that relations in the higher levels of the hierarchy are more
meaningful in the sense that it is more likely for modules to be unrelated as is the case when using
child-based relations.

The multiset-based technique does have one practical problem. Because it is possible for a
module to be “modified” multiple times in the same commit, it is also possible for the support
of a module to be larger than the total number of transactions. Since this then also occurs
for the support of the relations, the confidence is still sensible. However, there is no natural
interpretation anymore, potentially weakening the statistics. Therefore, it is expected that this
module-level technique is problematic.

Furthermore, because the lift-based technique uses contingency tables, it does not make sense
to combine it with the multiset-based relations, because the number of commits which do not
contain the module is then not properly defined. While it is possible to use a different definition
for support in the case of multisets, this is awkward and it is uncertain how this definition should
best be modified in this case. Therefore, the multiset-based technique is only combined with the
confidence-based relations, while the other techniques discussed in this section can be combined
with both confidence and lift-based relations.

3.3.4 Aggregating over all modules

Two techniques for detecting relations between entities and three techniques for detecting rela-
tions between modules have been defined. These definitions make it possible to calculate MQ
for all modules which contain modules. That is, the relations can be determined between all pro-
gram elements, including modules. This makes it possible to calculate both intra-connectivity of
modules, and inter-connectivity between modules. Thus, for a group of modules, we can calculate
MQ .

However, while it is the case that we can calculate MQ for the system, which is just a group
of modules, this is not enough. Each of these modules can itself contain modules, which means
MQ is also defined for those modules. We thus need one final step in order to combine all the
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MQ values into a single value. For this purpose, since the MQ itself is already based on averages,
we simply take the average value of all calculated MQ values.

Definition 13 (Average MQ). Let S denote the set of all modules for which MQ is defined,
and let MQ(M) denote the MQ value for module M . The MQ of the complete system is then
defined as

MQ =
∑
M∈S

MQ(M)

|S|

Note that other techniques for combining the MQ values into a single value are possible, such
as the median or minimum/maximum, or inequality measures [23, 57]. However, the average is the
simplest which is useful for our purpose. Minimum and maximum are too local (that is, only one
module matters), and techniques for measuring the inequality of the values are more complicated
and are not immediately correlated with code quality (which is what we want to measure).

3.3.5 Summary

The metrics defined consist of four basic parts. The first is the MQ , which is the actual function
that is used to calculate metric values. The second is one of the entity-level relations detec-
tion techniques discussed (confidence-based or lift-based). The third is one of the module-level
techniques discussed (child-based, set-based or multiset-based). Finally, the fourth part is the
aggregation technique (only the average MQ). This section discusses how these parts together
satisfy the requirements identified in Section 3.2.

1. The metric should be normalized
The MQ function always results in a value in the range [−1, 1], where a higher value indicates
a better modularization quality.

2. The metric should not be biased towards a specific module organization
The MQ function defines a trade-off between inter-connectivity and intra-connectivity.
While inter-connectivity is biased to having all entities in a single module, intra-connectivity
is biased to splitting all entities, with only a single entity per module. The MQ , combining
both these concepts, is then optimized when a good trade-off is achieved, indicating a good
overall modular quality. MQ has been successfully used for the purpose of measuring the
modular quality of code without any problems indicating a bias [13].

3. The metric should not be dependent on the length of the history
The history is used for the entity-level techniques (confidence-based and set-based). Both
techniques require a minimum support parameter, which indicates the fraction of the com-
mits that should support a relation, as opposed to the actual number of commits. This way,
a longer history does not increase this measure (in fact, the fraction can even decrease).
Otherwise, a longer history would necessarily increase the support of a relation, thus making
the metric detect more relations. However, using the fraction of commits for minimum
support ensures the metrics are not dependent on the length of the history.

4. The metric should work on multiple granularity levels
The metrics are defined without making any assumptions on the granularity level. That is,
for another granularity level, such as method-level, we only need to redefine what we mean
with the words entity and module. The metric definitions given in this chapter are then
applicable on another granularity level.
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5. The metric should take hierarchical module structures into account
The MQ is calculated for all modules for which it is defined, and we then aggregate the
results by taking the average. Furthermore, we also defined how relations between modules
(or a module and an entity) can be detected. These concepts together are based on the
hierarchical module structure of the code.

3.4 Related work

Evolutionary coupling is not new, as it has been used in multiple studies in the past. The difference
with this study, however, is for what purpose it is used. Most studies calculated association rules
from the source code history, and used those rules directly for different purposes. These rules have
been used for software change prediction, and for finding architectural problems in the code.

The studies which did define metrics based on these association rules, did so for quantifying
the code quality of a single version of the code. That is, the defined metrics are not useful for
optimization in order to improve the code structure. The reasons for this are given in this section,
along with an overview of other related literature.

3.4.1 Change impact analysis

Most of the research into evolutionary coupling is in the field of change impact analysis or software
change prediction [28, 32, 63]. When a change needs to be made to source code (for example to
fix a bug or introduce a new feature), this often means that multiple entities need to be changed
due to relations between the entities. For this purpose, it is interesting to investigate if it is
possible to predict the impact such a change has. For this, evolutionary coupling has been used
by returning a list of entities which often co-evolved with a supplied entity containing the initial
change.

Kagdi et al. [32] propose a combination of conceptual and evolutionary coupling in order to
improve the accuracy for change impact analysis. Conceptual coupling is determined from a single
version of the source code, while evolutionary coupling is computed from the history leading up to
that version by using item set mining. The lists of entities found using these two techniques are
combined into a new list using two techniques: conjunctive (selecting those entities which are in
both lists) and disjunctive (selecting those entities which are in at least one list). Both techniques
are validated by comparing the results obtained with a test set with the results of the two distinct
techniques. It is observed that conceptual coupling and evolutionary coupling indeed find different
sets of entities related to an initial entity. Furthermore, the disjunctive combination provides the
best performance, which is determined to be statistically significant.

Zimmermann et al. [63] also use evolutionary coupling in order to predict further change
locations, given an initial change. A plug-in for ECLIPSE was developed, which would give a
programmer real-time advice on which entities should also be considered to change. This provides
information in the form “programmers who changed this function, also changed . . . ” in order to
help programmers. Association rules with high confidence are suggested first. If a user tries to
commit his changes when there are still rules with high confidence that suggest further changes,
the user is warned. The evaluation of the tool shows that it can suggest further change locations
in its topmost three suggestions with a likelihood of 64%. Furthermore, it proves to be useful for
detecting missing change locations and warning the user about this.

Hassan and Holt [28] compare four different techniques of predicting entities which should be
changed. The results show that evolutionary coupling performs better than syntactical coupling
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(where entities are related based on a Call, Use or Define relation). Syntactical coupling has both
smaller recall (that is, misses more correct suggestions) and smaller precision (that is, makes more
incorrect suggestions) as evolutionary coupling. A third technique, based on the assumption that
a developer only works on a single subsystem and thus suggesting entities the current developer
has changed before, also does not perform very well. Finally, the fourth technique suggests all
entities defined in the file that was changed. This technique shows the best performance, but of
course when restructuring is necessary, the performance of this technique degrades.

This shows that evolutionary coupling indeed proves to be useful in detecting relations between
entities in the source code. By using the change history of the software, other relations can be
detected which are not found when conceptual coupling is used. Additionally, the relations found
by evolutionary coupling perform better in predicting software change locations based on an initial
change [28].

In these studies, only association rules consisting of a pair of entities (one antecedent and one
consequent) are considered. When a single change location is given, the impact of that change
is determined. For evolutionary coupling, this means that all rules with the given entity as the
antecedent are selected and sorted on the confidence and support. The consequents then form
an ordered set of entities which are expected to be impacted by the initial change. The above
studies do not define any numerical metric for quantifying the code quality, by using evolutionary
coupling.

3.4.2 Evolution radar

For reverse engineering of source code, it is also important to get an insight in the coupling between
entities. D’Ambros and Lanza [9] proposed an approach where evolutionary coupling is calculated
and then visualized using an Evolution Radar. This approach makes it possible to look at both the
architecture level (modules) to get a global view of the system, and at finer-grained entities (files)
to learn which files are responsible for the coupling. The user can interact with the visualization
by moving through time (that is, change the time window from which the investigated commits
are taken), tracking specific files over multiple time windows, and spawning a new radar based on
a set of files to determine which files are responsible for the coupling. The approach is validated
on ArgoUML, and several design problems could be identified this way, showing the success of
the technique.

While the technique has shown that using evolutionary coupling is useful for detecting design
problems, it is only a tool to assist in the process. The detection of design problems is not
automated, only a visualization is provided which can be used to find such problems. A software
engineer is still required to investigate the results, interpret the visualizations and find problem
locations in the source code which should be considered for reengineering. Once these locations
are identified, the reengineering has to be performed manually, as well.

The techniques used in the study are again not useable for automatic optimization of the code
quality. No metric is defined which can be used for quantifying the code quality. Evolutionary
coupling is only used for creating a visualization, which can be used for finding individual problems.
Note, however, that some metric is defined in order to determine the distance between two entities
in order to draw the visualization. For this, the support is used, but this only measures the distance
between two entities and cannot measure the quality of the complete system. The visualization,
however, does have an advantage over a metric in some cases. A metric gives no insight on where
the problems are, while the Evolution Radar makes this much more easy.
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3.4.3 ROSE

Zimmermann et al. [61] used evolutionary coupling extracted from CVS archives in their tool
called ROSE. Besides computing association rules and their respective support and confidence
values, two numerical metrics were introduced, EDI and ECI, which can quantify the evolutionary
coupling for a system. The association rules are considered to be relations between entities when
the support and confidence of the rule exceed a certain threshold. The EDI is defined as the
number of actual relations, divided by the number of possible relations. The ECI is defined
as the ratio between inter-relations and intra-relations. High values of these indices point to
design problems, while smaller values are better (with an optimum at 0 for both indices). The
evolutionary coupling information is then used to analyze several open source systems, including
the GNU Compiler Collection (GCC) and the DDD Debugger. The data is compared with the
actual architecture of the software. GCC turns out to be well-structured with relatively few
dependencies between entities. On the other hand, DDD is not so well-structured, with relatively
more dependencies between entities.

While both metrics make it possible to measure the code quality, neither is appropriate as
an objective function for optimization of the code quality. The EDI is only dependent on the
number of relations and the number of entities. When entities are moved to other modules, the
structure of the code changes, but both the number of relations and the number of entities remain
constant. Thus, the EDI also remains constant as the entities are moved. The ECI, however,
does change as entities are moved, as it relates inter-relations to intra-relations. But the problem
with this metric is the same as when we would only use inter-connectivity: the metric is optimized
when all entities are in the same module. In that case, no inter-relations exist and the metric
value becomes 0.

The ROSE tool was extended and implemented as an ECLIPSE plug-in by Zimmermann
et al. [63]. This tool provides a programmer with information on the evolutionary coupling in the
form of “Programmers who changed this function, also changed . . . ”. It is concluded that for
stable systems (such as GCC), ROSE works very well with fine-grained analysis (on method level,
that is, when entities are methods). But for more rapidly evolving systems (such as KOffice),
it is more useful to use a file level granularity for suggesting further changes.

ROSE turns out to be a useful tool for suggesting further change locations given an initial
change. When in the past changing a method in one class always coincided with changing a
method in another class, or maybe even in a completely different package, ROSE will suggest
this additional location to the programmer. This can prevent errors resulting from incomplete
modifications, because a dependency was missed by the programmer.

By using evolutionary coupling to guide the reengineering process, we can attempt to solve
the actual underlying problem of a bad design. In a good design, two methods which are strongly
related should be placed in the same class, and ROSE would only suggest change locations in
the same class as the initial change. With such a design, a programmer is much less likely to miss
a dependency and a tool such as ROSE, although still useful, is not as important.

3.5 Future work

In this chapter, a number of techniques for defining metrics to measure the code quality have
been discussed. It should be noted, though, that more techniques for achieving the same goal
exist. Additionally, while the presented techniques are evaluated and compared in Chapter 5,
other techniques are not evaluated. Therefore, future research can focus on investigating if
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other techniques are also useful for measuring code quality. This section discusses some of these
possibilities.

Alternatives for MQ In this thesis, all defined metrics are based on the Modularization Quality
(MQ). This is done because using only coupling has the problem of being optimized when all
entities are in the same module, which is not a good code structure. To solve this problem, a
combination of inter-connectivity (coupling) and intra-connectivity (cohesion) is used.

The problem with this, however, is that it is actually desirable that even the number of relations
between entities in the same module is minimized. Of course, it is better to have many relations
within a module and only a few between modules, but the code would be structured even better
if there are also few relations within a module.

In order to solve the problem that coupling between the modules alone is not enough, some
other metric can be considered. For example, it is possible to use the average number of entities
per module, which should be minimized. This metric achieves its maximal value when all entities
are in the same module, and is optimal when all entities are in their own module. Therefore, it is
also capable of correcting the problem of using only the inter-connectivity.

When this metric is used, though, it should be noted that the range of this metric is not
compatible with the range of inter-connectivity. The former ranges over the integers from 1 to
N , where N is the number of entities, while the latter ranges over the real numbers from 0 to
1. Therefore, simply using a subtraction is not an option, because then the average number of
entities per package dominates the other metric. It might be possible to solve this by dividing the
average number of entities by N , but research is required to investigate if this is indeed a good
technique for calculating a metric.

Directed relations Relations are considered to be undirected in the metrics defined in this thesis.
This makes sense, since we consider that two related entities should be in the same module. It is
not possible for two entities to be in the same module in one direction, but in different modules
in the other direction. However, it is possible to consider two entities to have a stronger relation
between them when the corresponding association rules are strong enough in both directions.

In other words, instead of combining the confidence values of the two association rules into a
single value, it is possible to consider the association rules separately. If the rule e1 ⇒ e2 has a
sufficiently large confidence (and support), a relation from e1 to e2 exists. Similarly, if the rule in
the other direction has a large enough confidence, a relation in the corresponding direction exists.

This can also be seen a bit differently. Instead of considering the relations to have actual
directions, we can also assign a weight to the relations. For a pair of entities, if neither of the two
association rules is strong enough, there is no relation between the entities. If both association
rules are strong enough, there does exist a relation between the entities. And if only one of the
rules is strong enough, while the other is not, the relation is present with a weight of 0.5, thus as
half a relation. This is effectively the same as using directed relations.

Weighted relations We can even take this weighting scheme a bit further. Currently, a relation is
considered to be present or absent, based on whether or not the evidence for the relation is strong
enough. However, we can also use the strength of the evidence as the weight for the relation.
That is, if the association rules for a pair of entities is very strong, the relation is given a large
weight. If the rules are weak, though, the relation is given a small weight.
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For the weight of relations, we can for example use the confidence of the association rules. A
confidence of 1 means that if the antecedent is changed, the consequent is also always changed,
so the relation is strong (maximal). A confidence of 0.6 could then be used for a relation with a
weight of 0.6. This way, no minimum confidence value needs to be set (which is not an intuitive
task), yet the strength of the rules is still taken into consideration.

For lift-based relations, it is less obvious what measure to use as the relation weight. However,
it is possible to use lift (and support) in order to select whether a rule is strong enough, and use
the confidence for the weight of the relation.

Negative relations Besides assigning a weight to a relation between 0 and 1, it is also possible
to use negative weights when there is a negative relation between two entities. The lift of two
entities, as defined in Definition 7, is larger than one when there is a positive relation, and smaller
than one when there is a negative relation. Currently, a negative relation is considered to be the
same as no relation, but it is also possible to assign a negative weight to this relation. That way,
entities which co-evolve less frequently than expected should be placed in different modules.

Statistical covariance and correlation In statistics, the covariance and correlation are standard
techniques for measuring how much two variables are related. These techniques can also be used
for measuring how much two entities are related. However, the covariance and correlation require
a number of real-valued observations for each random variable, while we only have a number of
boolean-valued observations. That is, instead of checking whether an entity is changed in a given
commit, it is necessary to know how much that entity changed in a commit.

For this, we need a way to determine how much an entity changes in a certain commit. We
can use a simple measure such as the percentage of lines of code in the entity which actually
changed. A problem with this is that a small change on a line has the same weight as a complete
rewrite of a line. Also, some changes might appear to be small, but in fact completely change the
functionality of the code, while other changes seem like a complete rewrite of the code, where the
functionality remains completely the same (for example implementing a faster sorting algorithm).

However, if a good measure for the extent of the changes of entities is defined, it is a nice
idea to use this in order to calculate the covariance or correlation of the entities. These values can
then be used to determine whether two entities are related (or negatively related). The advantage
of this, is that small changes are also treated differently as large changes in an entity.

Aging of commits It is also interesting to consider the aging of commits. For the metric definitions
used in this thesis, all commits contribute equally towards deciding whether two entities are related.
A problem with this approach is that the source code evolved with every commit. The most recent
commit resulted in the current version of the source code, but older commits changed older versions
of the code. As a consequence, the co-evolution of two entities in an old commit might be based
on an equally old version of the code, where the two entities were indeed coupled. This, however,
does not mean that the entities are still coupled in the current version. Because of this, more
recent commits contain more reliable information, and are thus more important than the older
commits.

This problem was partially solved by only considering a limited number of commits instead
of the complete history. It is however still the case that the older commits carry less important
information as the most recent. Also, this requires a user to set the range of commits to use, which
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is not easy to decide on. Using more commits gives more information, but this extra information
might not be reliable (based on an old version of the code).

A better solution for this problem is to assign a smaller weight to older commits. This way,
the more recent commits contribute more than the old commits to deciding whether entities are
related. Different aging schemes can be considered. A linear aging scheme, for example, assigns
a weight of 1 to the most recent commit and 0 to the oldest commit, and for the intermediate
commits the weight changes linearly. However, this scheme is likely to still give too large weights
to old commits, so a better aging scheme is likely required.

It is probably better to consider an exponential aging scheme. With such a scheme, the weight
of the commit decreases exponentially as the age increases. For example, for commit i of a total
of n commits, the weight 1/en−i can be assigned to the commit. This ensures that the most
recent commits have a large contribution, while slightly older commits are already considered to
be much less important.

The weights of the commits can then be used for determining the support of item sets. That
is, instead of counting the number of commits in which a pair of entities is both changed, the
weights of these commits are summed. As the other definitions (confidence and lift) are based on
the support, these change accordingly.

Relations between modules While the relations between entities are relatively easy to determine,
there are more possibilities for deciding whether two modules are related. For two entities, we
check how often they co-evolve and how often they evolve independently of each other. If certain
requirements are met, the entities are considered to be related. A similar approach is possible for
modules, where again a module can change in a commit, or does not change.

However, for modules there are also other possibilities. Definition 12 considered the possibility
that modules are changed multiple times in the same commit, based on how many of its con-
taining elements are changed. That is, if in a certain commit three entities in the module were
changed, then the module is considered to have changed three times in that commit. Alternatively,
Definition 10 considers two modules related whenever children of the modules are related.

Thus, there are different techniques for determining whether two modules are related. Besides
the ones mentioned in this thesis, there may be other techniques. Specifically, the multiset-based
relations of Definition 12 is not defined in combination with lift-based relations, because the lift
cannot be calculated when the support can become larger than the total number of entities. To
solve this, it might be possible to modify the definitions of support and lift such that this is
possible, and multiset-based relations can be combined with lift-based relations.

Aggregating over modules The structure of source code is often hierarchical, where modules may
contain submodules. But because the MQ assumes a flat structure, with entities grouped into
modules, there is no single MQ value on the system level. The MQ is calculated for each module
on which it is defined, and all these values are then aggregated by taking the average. However,
there are other aggregation techniques available besides the average. A simple alternative is, for
example, the median.

Especially when the distribution of individual MQ values is skewed, though, more sophisticated
aggregation techniques might be required. For example, one could look at the Gini index [23]
or the Theil index [57], which are both used to measure economical inequality. While the MQ
should be maximized in all modules, it is also desirable for all modules to have an approximately
equal MQ value, as opposed to some modules with a very good structure and others with a
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relatively bad structure. For this, inequality measures such as the Gini and Theil index might
indeed prove to be successful alternatives to measuring quality directly. The problem, however,
is that some inequality is usually better than bad quality, which should be overcome. A study
on which aggregation technique is most useful for our purposes, has not been committed. It is
important for future research to investigate this issue, because the average might indeed not be
the best choice.

Finally, aggregation is currently performed by taking the average over all modules, regardless
of the location of these modules in the hierarchy. Another option is to take the average at each
level of the hierarchy separately, and then further aggregating these results. More specifically,
the average MQ of all modules which are grouped together in the same (super-)module can be
calculated, with the resulting value being used for aggregation of the MQ value one level higher
in the hierarchy.
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4. Metric calculation tool

The metric validation tool has one purpose: validating the metrics. As stated in Chapter 2, the
tool is split into two components. The first is part of the library, which is shared by this tool and
the optimization tool. This component contains all classes necessary for retrieving information
from a software repository (both the commit history and the source code), and for calculating
metric values for a given version of the code based on the commit history. The second component
uses these classes for calculating the metric values of different versions of the source code, in order
to compare these values of a version before and a version after restructuring. Both components
are discussed in the chapter.

This chapter first discusses the requirements of the metric validation tool in Section 4.1.
Next, the design is presented in Section 4.2. Finally, some implementation details are discussed
in Section 4.3.

4.1 Requirements

Before we discuss the design of the tool, we first formulate the requirements. Obviously, the
main requirement is that the tool should use data from a software repository for automatically
validating the metrics. To do this, the tool needs to be able to retrieve information from a software
repository, and it needs to be able to calculate metric values using this information.

The specific requirements are discussed in the remainder of this section. Note that we only
provide an overview of the requirements. That is, detailed requirements of atomic features are
not provided. The requirements listed here are used as guidance for the design discussed in the
next section.

Flexible design We require the design to be flexible, in the sense that module-level (child-based,
set-based or multiset-based) and entity-level (confidence-based or lift-based) techniques can be
combined to form metrics. Similarly, metrics can be based on the information from any version
control system, without depending on the version control system directly.

1. A module-level technique and an entity-level technique can be combined to form a metric.
2. There should be no direct dependencies between a metric and a repository/version control

system.
In the future, it should be easy to add new metrics or new module-level and entity-level techniques,
without requiring too many changes to other parts of the code (such as the code which actually
performs the validation). The same applies for software repositories: it should be easy to add
support for other version control systems.

3. Adding a new metric should be easy, requiring only well-defined changes.
4. Adding support for a new version control system should be easy, requiring only well-defined

changes.
With “well-defined changes”, we mean that it is clear how to modify the source code to add the
new functionality. That is, obviously, the implementation of the new functionality needs to be
added. However, the existing code should not have to be changed to accommodate for the new
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functionality, other than well-defined extension points informing the tool of the newly available
functionality.

Subversion support The tool is required to support Subversion repositories. Both the commit
history and the source code (in tree representation) need to be retrieved directly from a Subversion
server. This way, users are not required to perform a complete checkout of the repository to validate
the metrics.

5. Subversion repositories should be supported.
6. The commit history can be retrieved from the repository, based on a revision range.
7. The code structure can be retrieved from the repository, given a revision number.
8. All information can be retrieved directly from the Subversion server over an internet con-

nection. That is, no checkout of the repository is required.

Information cache As retrieving data from a version control system over the internet can be
slow, or even fails completely when no internet connection is available, all retrieved data needs
to be cached locally. By caching the data locally, new validation experiments are faster (as the
information does not need to be downloaded from the internet) and can even be performed without
the need to have an internet connection (of course only if the data that is required is present in
the cache).

9. All information retrieved from the repository should be cached locally.
The cache should be incremental. That is, all required information in the cache is retrieved from
the cache, and only the data not available in the cache is retrieved from the repository. The newly
retrieved data is then added to the cache for future use.

10. Data available in the cache is always loaded from the cache.
11. Newly retrieved data is added to the cache.

File-level granularity Currently, only analysis is performed where entities are files. Therefore, the
tool only needs to support analysis at this granularity. However, in the design, the possibility of
adding support for another granularity needs to be considered.

12. File-level entities need to be supported.
13. Possibility for adding support of another granularity needs to be considered in the design.

For this last requirement, it is important to decouple the entity granularity from other parts of
the code. However, since the data that needs to be retrieved from a repository depends on the
granularity, some coupling between these two parts of the code cannot be prevented.

Simplicity The metric validation tool is intended as a simple tool which can be used to validate
metrics. It is therefore not important to have features such as a Graphical User Interface (GUI)
or a configuration system. Specifically, the tool is not required to contain any elaborate features
other than the ones listed in this section, but simplicity is preferred.

14. Simplicity is preferred over functionality not otherwise required by the listed requirements.

4.2 Design

A class diagram of the tool is shown in Figure 4.1. For readability reasons, only the classes are
shown without any fields or methods. The diagram can roughly be divided into two parts: a part
for retrieving information from a software repository and a part for calculating metric values.
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Figure 4.1: Class diagram of the metric validation tool. For readability reasons, only the
classes are shown without any fields or methods.

Figure 4.1 only shows the classes which are present in a shared library (see Chapter 2). Besides
this library, there is also a small and relatively simple executable which uses this library in order to
perform metric validation. The design of the library is discussed in Section 4.2.1 and Section 4.2.2.
The executable is discussed in Section 4.2.3.

4.2.1 Software repository

The interface IHistProv defines the functionality for a history provider. It defines two methods
which should be implemented by all classes inheriting from it. To add support for a version control
system (Requirement 4), this interface needs to be implemented.

The first method is getTransactions(), which should return a collection of Transac-
tions to satisfy Requirement 6. A transaction contains information for a single commit in the
version control system. Retrieving this information is, especially for a version control system such
as CVS (which only tracks file versions instead of product versions), non-trivial. This topic has
been studied by Zimmermann and Weissgerber [62] and Vanya et al. [58], and some considerations
are discussed in Section 4.3.1.

The second method defined by IHistProv, satisfying Requirement 7, is getTree(), which
returns a Tree representing the code structure at a specified revision. This revision is always the
last revision in the revision range used to retrieve the commit history, thus returning the structure
of the most recent version of the code.

The abstract class CachedProv provides the caching of transactions and the tree, and sat-
isfies Requirements 9, 10 and 11. Any provider inheriting from this class automatically contains
the caching functionality. CachedProv, however, does not have support for retrieving any in-
formation from a software repository. It only retrieves data from the cache, or if it is not in the
cache, forwards the request to the subclass. The cache is stored in an SQLite database [52]. For
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more details on the cache, see Section 4.3.2.

The class SvnProv, finally, has support for retrieving all the needed information from a
Subversion repository (Requirement 5). What data should be retrieved, is passed to this class
on construction (that is, the range of commits which should be retrieved). Since this class
inherits from CachedProv, caching of the data is handled automatically. For communication
with the Subversion server (Requirement 8), the open-source library SVNKit [55] is used. See
Section 4.3.1 for more information on how the data is retrieved from Subversion.

The class SvnProv uses the class FileEntity for entities at the file-level granularity (Re-
quirement 12). This class inherits from the abstract class Entity. To add support for another
granularity level (such as method-level entities), a subclass of Entity needs to be created, and
SvnProv needs to be modified to add the functionality for retrieving data at this granularity
(Requirement 13). Note that the code to retrieve the necessary data is dependent on the ver-
sion control system used. Therefore, support for another granularity needs to be implemented in
SvnProv, requiring changes to that class.

4.2.2 Metrics

The interface IMetric is the core of the metrics calculation part of the code. All metrics need
to implement this interface, which defines a single method: getValue(Tree). This method is
responsible for calculating the metric value for the given tree. Adding support for a new metric,
as required by Requirement 3, is thus a matter of implementing this interface. Any dependencies
a metric has, need to be supplied to the constructor.

There is only one class implementing the IMetric interface, which is EvolMq. This class
implements the MQ function as described in Chapter 3. It is composed of two other classes,
which help it do this.

The first class contained in EvolMq is DataMiner. This class contains all the code for
performing item set mining on the collection of transactions retrieved from the software repository.
The algorithm used for the item set mining is discussed in Section 4.3.3.

The other class contained in EvolMq is ModRel. This is an abstract class responsible for
detecting relations. This class only contains code for detecting relations between modules. For
detecting relations between entities, the abstract class EntRel is used.

The class ModRel has two subclasses, ChildRel implementing relation detection using the
child-based technique, and SetRel implementing relation detection using the set- or multiset-
based techniques. These last two techniques are implemented in the same class due to the fact
that they are very similar. Which of the two techniques is used, is determined by a boolean
parameter supplied to the constructor of SetRel.

The classes ConfRel and LiftRel implement the two entity-level techniques (confidence-
based and lift-based respectively). The parameters of the techniques are supplied as arguments to
the constructor of the corresponding class. The class LiftRel contains the class FishersTest
for performing the statistical test required for the lift-based technique. The implementation of
this statistical test is discussed in Section 4.3.4.

The use of the abstract classes ModRel and EntRel make it possible to combine a module-
level technique and an entity-level technique, to form a single metric. This part of the design thus
satisfies Requirement 1.

Note that there is no direct dependency between a history provider and a metric. That is, the
metric depends on the transactions and the tree, which are both retrieved by a history provider.
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However, there is no dependency of a metric on how or from where this information is retrieved,
thus satisfying Requirement 2.

4.2.3 Metric validation

Note that Figure 4.1 does not show any classes which perform the validation of the metrics. These
classes are omitted for readability reasons. The validation of the metrics is mostly implemented
in a single class, MetricValidation. This class requires two instances of IHistProv,
one containing the tree and transactions from before a successful restructuring effort, and one
containing the tree and transactions from after the restructuring.

Furthermore, the class MetricValidation needs to be informed of how to create instances
of IMetric. This is done by supplying the class with an array of factories, capable of creating
instances of IMetric. These factories are used to create the metrics. Finally, a list of parameters
for the metrics is provided, giving MetricValidation sufficient information to construct all
metrics which should be validated, and performing the validation.

The validation is thus performed in the class MetricValidation. All required information
is passed to this class (two history providers, an array of metric factories, and metric parameters)
upon construction. The configuration settings (used to specify which metrics to test, for which
parameters, and on which repository) are given in another class as constants. The configuration is
thus not stored in a file, not can it be set through any interface (GUI or command line). Changing
configuration settings (such as changing which metrics to validate) thus requires recompilation of
the tool (not the library). This results in the code of the tool itself to be as simple as possible
(Requirement 14), by not containing an elaborate configuration system.

4.3 Implementation

The metric validation tool is implemented using Java. The tool does not have any GUI, nor is it
possible to configure it from the command line or configuration files. The metric validation tool
is kept as simple as possible, and as a result the configuration (specifying which metrics should
be validated and on what project) is therefore handled in the code.

This section continues with discussing the implementation of parts of the tool, for which
certain considerations need to be made. The implementation of these parts is discussed here,
because decisions need to be made, or the implementation is otherwise interesting to discuss.
The Subversion provider is discussed in Section 4.3.1. This section includes a discussion on the
preprocessing performed on the SVN log. The cache system is described next, in Section 4.3.2.
Section 4.3.3 then discusses the mining algorithm used for item set mining. Finally, Section 4.3.4
discusses how Fisher’s exact test is implemented.

4.3.1 Subversion

When retrieving information from an SVN repository, it is worth thinking about any required
preprocessing. That is, it is important to realize whether the data is immediately usable, or if it
needs to be processed before it can be used.

For version control systems using file versions instead of product versions, such as CVS,
preprocessing is required to group commits together [62]. While this is not necessary for SVN
(as SVN already uses product versions), it is in some cases still a good idea to consider grouping
related commits to accommodate for “micro-committing”. Micro-committing is when developers

29



4.3. IMPLEMENTATION

Transaction

location
revision
transaction

Transaction cache

location
startRev
endRev

Tree

location
revision
tree

Figure 4.2: The three database tables used by the cache system.

make multiple, subsequent commits for a single change, for example committing once for each
file changed.

However, no attempt is being made to group commits together in the SvnProv class. The
reason for this, is that many projects have a “don’t break the build” policy, which requires de-
velopers to test their changes before they commit them [31]. This implies that, in theory, each
commit should contain a complete set of related changes. Therefore, it is, at least for our purpose,
considered unnecessary to aggregate subsequent commits.

Another problem which can occur in the retrieved transactions, is commits which only update
irrelevant files, such as license files or other non-source code files. As we are only interested in
how different parts of the code co-evolve, transactions containing only such irrelevant files can be
considered noise. Therefore, all such transactions are filtered out, ensuring that only source code
files are included in the analysis.

This preprocessing is implemented by ignoring all files which do not end with .java. This
is true both for the transactions and the source code tree. Furthermore, any transactions which
become empty due to the filtering of non-source code files are ignored. This way, only Java
source code files are considered in the analysis.

4.3.2 Cache

For caching the information retrieved from a software repository, a simple caching system is used.
Both the transactions and the source tree are stored in an SQLite database [52]. See Figure 4.2
for an overview of the database tables and fields used by the cache system. Note that there are
no foreign key relations between the tables.

Each transaction is identified by a location and a revision. The location is a string containing
the URL to the software repository and the revision identifies a single commit. The transaction
itself is stored by serializing the Java object.

The source code tree is also identified by a location and a revision. The tree itself is again stored
by serializing the object in memory. Note that while serialization is not an efficient operation, it
does make the cache system easier, especially for the tree, since we can now retrieve it with a
single, simple SQL query. Also note that storing the tree using serialization does limit the size of
the serialized object to 1GB [53]. This limit is not expected to cause a problem in practice, as
experiments have not found a tree larger than 1MB. However, if this does become a problem, the
caching system needs to be modified.

Due to preprocessing of the SVN log (see Section 4.3.1), it is possible that a range of trans-
actions contains “gaps”. That is, it is possible that a transaction for revision 1 and a transaction
for revision 3 exist, but no relevant transaction exists for revision 2. In order to check whether
a transaction not present in the cache has never been retrieved, or simply is irrelevant, extra
meta-data is stored. This meta-data contains information on the ranges of revisions for which it
is known that all transactions within that range are present in the cache. That is, any absent
transaction with a revision within that range is absent because the transaction is irrelevant.
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4.3.3 Item set mining

For mining frequent item sets or association rules, a number of algorithms are available, such
as the Apriori algorithm [3] and FP-Growth [26]. However, these algorithms are much more
general than what we need. While these algorithms perform well in finding all frequent item sets
of arbitrary length, we only require item sets consisting of a pair of entities.

The generalized algorithms achieve their good performance by pruning the search space. That
is, when it is known that the item set containing items a and b is not frequent, than any superset
of this item set is also infrequent and thus does not have to be considered. However, if only item
sets of size 2 are required, this pruning does not offer much improvement in performance, as all
item sets of size 3 or more are already ignored. Therefore, a simpler algorithm is used for frequent
item set mining, which is shown in Algorithm 4.1. This algorithm is the same as implemented
by the open-course Java Data Mining Package (JDMP) [30]. JDMP was not used, as
the algorithm is simple to implement. This saves us from depending on an external library for a
single algorithm. Furthermore, it removes the need for an intermediate data structure required for
JDMP, as the algorithm can use our Transaction type directly.

Algorithm 4.1 The item set mining algorithm used for calculating metrics based on evolutionary
coupling.

Input: A list of transactions T
Output: A mapping from item set to transactions S
S(s) = ∅ for all item sets s
for each t ∈ T do

for each e1 ∈ t do
S({e1})← S({e1}) ∪ t
for each e2 ∈ t do
S({e1, e2})← S({e1, e2}) ∪ t

end for
end for

end for
return S

The used algorithm simply loops over all transactions. For each entity in the transaction,
the transaction is added to the set of transactions in which the entity occurs. Also, for each
pair of entities in the transaction, the transaction is added to the corresponding set. Note that
Algorithm 4.1 uses sets, which means that {e1, e2} = {e2, e1}, and thus S({e1, e2}) = S({e2, e1}).
Also, this means that a transaction cannot occur twice for the same item set. Therefore, although
the algorithm might appear to count transactions double for item sets of size 2, it is important to
note that this is not the case.

Note that the algorithm results in a mapping for both single entities and pairs of entities. The
reason for this is that both are needed in order to calculate the confidence and lift of a pair of
entities. Furthermore, the set-based and multiset-based module-level techniques need the set of
transactions for each entity.

4.3.4 Fisher’s exact test

For lift-based relations, the p-value of a hypothesis test is calculated to determine whether two
entities are related or not (see Chapter 3). For this purpose, Fisher’s exact test is used. This

31



4.3. IMPLEMENTATION

statistical test requires the calculation of terms of the following form:

p =
n1!(n− n1)!n2!(n− n2)!

a!b!c!d!n!

The meaning of the variables (n1, n2, a, b, c, d and n) are discussed in Chapter 3, and are not
important for the discussion here.

The problem with this, is that the factorials in this term quickly become larger than the size
of a Java integer (13! > 6 · 109). This would mean that a library for big integers is needed for
those calculations. Furthermore, factorials are defined inductively (that is, n! = n · (n − 1)!), so
calculating n! has a time complexity linear in the size of n.

This last problem can be solved by caching all calculated values. The largest factorial we need
is n!, where n is the number of transactions. We can thus create an cache which never exceeds
a size of n, with the value at index i equal to i!. This way, each time we need the value of a
factorial, we only need to use a cache lookup.

As for the problem of the values getting too large to fit in a 32-bit integer (or a standard
floating point data type), we can work with logarithms. Instead of calculating factorials, we can
calculate “log-factorials” [59], which are defined as

lfac(n) = ln(n!) = ln(n) + lfac(n− 1)

Log-factorials grow much slower than factorials, with even lfac(106) easily fitting in a 32-bit
integer.

Now, because we have p = eln(p), we can first calculate ln(p) and then get our p back
by taking the exponent. Calculating ln(p) can be done using log-factorials and the equality
ln(a · b) = ln(a) + ln(b).

ln(p) = lfac(n1) + lfac(n− n1) + lfac(n2) + lfac(n− n2)
− lfac(a)− lfac(b)− lfac(c)− lfac(d)− lfac(n)

Note, though, that this technique causes rounding errors to accumulate. Therefore, the calculated
p-value is not exact. This implies that when the actual p-value is close to the maximal p-value, a
relation between two entities might be wrongfully accepted or rejected. However, when evidence
for a relation (or a lack of a relation) is strong, it is less likely for this to cause a problem. Due to
the accumulation of rounding errors, even for strong evidence the result can be wrong. However,
thus use of log-factorials is still considered one of the better solutions [59]. As this problem is
non-trivial to solve, the maximal p-value parameter should be taken as a guideline rather than an
absolute threshold. Investigating to what extent this becomes a problem in practice, should be
considered for future research.

Also note that p is a probability, and thus lies in the range [0, 1]. This means that after taking
the exponent, we do not get the same problem that the value is too large to fit in a 32-bit integer.
Also, when p is close to 0, ln(p) becomes a very small negative number. However, since lfac grows
so slowly, ln(p) does not become so small to cause an underflow in practice, as even a million
transactions is not enough to cause this effect. Therefore, the above calculation can be done using
only floating point arithmetic and we do not need any special libraries for handling large number.
The log-factorials are still cached once calculated for the first time to speed up the calculation.
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5. Metric validation

In order to investigate whether the metrics as defined in Chapter 3 are indeed capable of measuring
the quality of the software structure, the metrics are validated on a case study. As the case study,
we choose a large restructuring effort of the Spring Framework. This restructuring effort is
considered to have been successful [51]. The metrics as defined in Chapter 3 are calculated for
the code structure both on the code as it was before the restructuring, and on the code after
the restructuring. The values are then compared, and are expected to show an increase in metric
value, since the code structuring quality has supposedly improved.

The case study on which the validation is performed is first discussed in Section 5.1. Next,
the methodology used for the validation is discussed in Section 5.2. This discussion includes an
overview on what metrics are validated and for which choices of the metric parameters. Section 5.3
presents the results of the validation. Finally, the conclusion in Section 5.4 includes a discussion on
which metrics give the most promising results, and are thus selected for the reengineering process.

5.1 Case

Validation is performed on spring-webflow, a subproject of the Spring Framework. Dur-
ing development of version 1.0, the Spring Framework was successfully restructured in order
to reduce the component dependencies [51]:

Restructuring effort successfully reduced project average component dependency from
48 to 27 (45%), largely by isolating and encapsulating the complexity of the Spring
Web Flow engine implementation.

The final restructured version is version 1.0 RC4, and was released on October 4th, 2006. The
previous version (1.0 RC3) was released on June 23rd, 2006. The validation is performed on the
subproject spring-webflow, because the change log indicates that most of the improvement
of code quality comes from this component.

In order to validate the metrics, we need to calculate the metric values both on a version of
the code before the restructuring, and on a version after the restructuring. To do this, we need
a part of the history which can be used for analysis. Since between the two version the code
structure was changed, we actually need two parts of the history, because the history before the

1649 2652 3029 4669 5636 12391

Before Unstable Restructure Unstable After

RC3 RC4

Figure 5.1: The commit history for the Spring Framework. Immediately before and
after the restructuring, the source code tree was unstable for a limited time (more restruc-
turing or moving the complete source tree). Therefore, the selected parts of the history
could not be chosen immediately adjacent to versions 1.0 RC3 and 1.0 RC4.
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restructuring contains changes to entities which might no longer exist after restructuring, and vice
versa. Furthermore, for this same reason, it is important that neither part of the history contains
any major restructurings.

For a visualization of the commit history, see Figure 5.1. Some restructuring was also performed
before June 23rd, and some after October 4th. Therefore, the parts of the history selected for
analysis do not end and start on these dates, ensuring that no major restructuring was performed
within the selected ranges. That is, while the version before the restructuring (1.0 RC3) coincides
with commit 3029, the code structure was unstable between commit 2652 and 3029. Therefore,
the history must end no later than commit 2652. Similarly, the history after the restructuring was
also first unstable, so it must start no sooner than commit 5636.

Stability of the commit history depends on the changes made to the code. During the unstable
periods, files were moved, or a large number of files were deleted and added, with relatively few files
being modified in a single commit. Furthermore, commit message were checked if they indicated
large changes. In the stable periods, there were no strong indicators detected for restructuring.
That is, the commits in the stable periods contained mostly file modifications (instead of deletions
and additions) and the commit messages do not indicate any restructuring either. During the
unstable periods, the maximum number of commits without restructuring was at most 100.

As for the length of the selected parts of the history, we again note the stability of the code
structure. Before commit 1649, there are a few commits which significantly change the code
structure (renaming and moving multiple entities). Therefore, the history before the restructuring
is limited to the range 1649–2652. Within this range, there are approximately 500 relevant commits
(commits in which the code of the spring-webflow project was modified). As a larger history
provides us with more information (as long as it does not contain any restructuring), we select
this entire range for analysis.

For the part after restructuring, the length of the history is not as constrained. After commit
5636, the code structure remains stable for more than 500 commits. However, since we want to
ensure there is no bias towards either version, we choose to take the selected history before and
after the restructuring to be the same length. This leads us to using the range 5636–12391, which
again contains approximately 500 relevant commits.

For some statistics on the system used for the case study, we note that version 1.0 of
spring-webflow contains 31 packages, which together contain a total of 242 classes. The
depth of the package hierarchy is 3 (that is, the code is divided into packages, which may con-
tain subpackages, and those subpackages can contain subsubpackages, which all contain classes).
There are 11 packages at the highest level.

5.2 Methodology

Chapter 3 defines the techniques for quantifying the quality of the code structure. In order to
get a metric, we need to combine an entity-level technique (confidence-based or lift-based), and
a module-level technique (child-based, set-based or multiset-based). For the confidence-based
technique, we also need to select a confidence combination technique (maximum, minimum or
average). Finally, the entity-level techniques require parameters as input (that is, the minimum
support, and minimum confidence or maximum p-value).

In order to keep the validation compact, not all combinations of a module-level technique
and confidence combination technique, for confidence-based relations, are validated. Instead, the
validation is split into three series of experiments. The first series investigates which module-level
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# Entity Combiner Module Support Confidence
1 Confidence Maximum Child {0.002, 0.005, {0, 0.25,
2 Set 0.01, 0.02, 0.05} 0.5, 0.75}
3 Multiset

4 Confidence Minimum Set {0.002, 0.005, {0, 0.25,
5 Average 0.01, 0.02, 0.05} 0.5, 0.75}
6 Maximum

# Entity Module Support p-value
7 Lift Child {0.002, 0.005, {0.01, 0.02,
8 Set 0.01, 0.02, 0.05} 0.05, 0.1}

Table 5.1: An overview of the different metrics which are validated, along with the sets
of parameters used for the metrics.

technique gives the best results for confidence-based relations, for a range of minimum support and
minimum confidence values. In this part, only the maximum is used as the confidence combination
technique. The next series compares the three different confidence combination techniques, and
only the set-based module-level technique is used. Finally, a comparison is made between the
different module-level techniques for the lift-based relations. The results of all experiments are
compared and discussed in the conclusion in Section 5.4. An overview of all metrics used in the
validation, along with parameter values, is shown in Table 5.1.

The best value for the parameter values (especially minimum support and confidence) is not a
priori known [2]. Depending on the data set (commit history), different values for these parameters
might be more appropriate. Therefore, a set of different parameter values is used and compared.

The parameter values listed in Table 5.1 are chosen in such a way that they are neither too
small nor too large. That is, the minimum support should correspond to at least one commit. For
a history length of 500 commits, this implies that the minimum support should be at least 0.002
(as 0.002 · 500 = 1). The other values are chosen to be the same as used by Agrawal et al. [2],
excluding 0.001, as this is too small for our history length. Also, experiments showed that hardly
any relations satisfy the constraint that the support should be at least 0.05 (results are discussed
in Section 5.3), implying that this value is sufficiently large for the validation. Therefore, we do
not need to consider any larger values for the minimum support.

The minimum confidence should always be in the range [0, 1]. Again, the values are chosen
such that we can detect how the MQ value is affected by the confidence. A minimum confidence
of 1, however, is not used, because this means association rules need to have a confidence of 1
for a relation to be detected. But association rules this strong are expected to be rare, and a
minimum confidence of 1 is thus considered to be too large. In fact, the results in Section 5.3
show that even a minimum confidence of 0.75 is so large, that not many relations are detected.
Therefore, the largest minimum confidence used in the analysis is 0.75. The smallest value used
is 0, which means that confidence is ignored.

Finally, the maximum p-values are chosen based on popular values as used in other literature.
Often, a significance of 90%, 95% or 99% is used in order to determine whether a hypothesis is
accepted or rejected [5, 6].

Note that the parameter values used are not the only valid choice. It is impossible to know
a priori which parameter values are best. Therefore, a selection of different values is chosen with
the goal that the validation study gives us more information on which ranges for the parameters
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are acceptable in the sense that these values give meaningful results. It is thus important to note
that the validation study does not give us the perfect parameter values, but rather a range of
acceptable values.

5.2.1 Confidence-based module-level comparison

The first part of the validation uses the confidence-based relations as defined in Definition 6. In
order to combine the two confidence values of the association rules, we take the maximum of both
values. The module-level technique is varied in this part of the validation, which gives us three
different metrics: using child-based, set-based and multiset-based relations. These three metrics
are shown in Table 5.1 as metrics 1–3.

For confidence-based relations, we need to supply two parameters: the minimum support and
the minimum confidence. For each of the three metrics, we use the same set of parameter values.
For the minimum support, we need the smallest value to correspond to at least one commit, as
this ensures that the confidence value is always properly defined. For the minimum confidence
there are no such strict requirements. Therefore, we opt for values evenly spread over the range
[0, 1). The parameter values are shown in Table 5.1.

5.2.2 Confidence-based combination comparison

The second series of experiments also focusses on confidence-based relations, but this time the
confidence combination technique is varied and the module-level technique is always the set-based
relations. This again gives us three metrics, shown in Table 5.1 with the numbers 4–6. The same
parameters for minimum support and minimum confidence are used as for metrics 1–3.

5.2.3 Lift-based module-level comparison

Finally, the metrics using the lift-based technique, as defined in Definition 9, for detecting relations
on the entity-level are investigated. For these metrics, there is no need to combine two values.
Therefore, we only have the module-level technique which we can vary. Additionally, note that the
multiset-based relations do not make sense in combination with the lift-based technique, because
multisets produce a support value larger than the total number of commits. While this is not so
much a problem for the confidence, the lift is not properly defined in that case. Hence, only the
child-based and set-based techniques are compared.

For the lift-based technique, we need to supply two parameters. Again, we need to provide
the minimum support, which is mostly important to ensure no division by zero occurs when
calculating the lift. For the minimum support, we use the same values as for the validation of the
confidence-based technique. The second parameter is the maximal allowed value for the p-value
of the hypothesis test. Four popular significance levels for hypothesis testing are chosen. The
metrics 7–8 in Table 5.1 show the parameter values used for the metrics.

5.3 Results

The results of the validation experiment are presented in three sections. First, the results for the
confidence-based relations are given, where the module-level relations are determined using the
three different techniques. Second, the module-level technique is kept constant and the confidence
combination technique is varied. Finally, the results for the lift-based relations are presented.
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Figure 5.2: Metric 1: A combination of low support (0.002) and low confidence (at most
0.5) shows a decrease in MQ value. For a high support (0.05), hardly any relations are
detected. A support of 0.01 gives unexpected results.

Note that for each set of results, there is a single figure for each technique. For each com-
bination of parameter values (support and confidence, or support and p-value), a pair of bars is
shown: one bar for the metric value before restructuring and one for the value after restructuring.
The height of the bars indicates the metric value.

A discussion of all results and a comparison on which metrics are most promising for use in
the reengineering process is given in Section 5.4. This section is only intended for presenting the
results and making some basic observations.

5.3.1 Confidence-based module-level comparison

The first set of results is for the confidence-based technique. Here, we compare the three different
module-level techniques with each other. Thus, we always combine the confidence values using
the same technique, specifically by taking the maximum. The results for the child-based, set-based
and multiset-based techniques are shown in Figures 5.2, 5.3 and 5.4, respectively.

The results show that the MQ value after the restructuring increases for some parameter
values, while it actually decreases for other parameter values. Such a decrease appears for low
support and confidence values. In other words, this happens when too many files are considered
to be related to each other. Indeed, on closer inspection, we see that in these cases both the
coupling and cohesion increase, where the coupling increases more than the cohesion. This effect
can in these cases be explained by the fact that so many pairs of entities are considered to be
related, that the cohesion is already near its maximum value of 1. Indeed, in the cases where the
MQ value decreases, the cohesion shows a typical change from 0.72 to 0.80, while the coupling is
increased from 0.38 to 0.51 (example values taken from Metric 1 for support 0.002 and confidence
0.5).
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Figure 5.3: Metric 2: A combination of low support (0.002) and low confidence (at most
0.5) shows a decrease in MQ value. For a high support (0.05), hardly any relations are
detected.
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Figure 5.4: Metric 3: A combination of low support (0.002) and a confidence of 0.25
shows a decrease in MQ value. For a high support (0.05), hardly any relations are
detected. A support of 0.01 gives unexpected results.
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Furthermore, we see that for a minimum support of 0.05, the resulting values are (almost)
the same for all minimum confidence values and all metrics. This is because hardly any relations
are detected in these cases, which is especially true for the coupling. This means that a minimum
support value of 0.05 (which for the tested 500 commits corresponds to 0.05·500 = 25 commits) is
too large to give meaningful results: hardly any files were modified that often. Even for a support
value of 0.02 (10 commits), the results show that not a lot of relations will be detected due to the
high support value. It is important that at least some relations are still detected, because without
any relations, the MQ value is always equal to zero. That is, we cannot compare the quality of
two code structures if there are no relations. Even with a small number of relations, the difference
in quality becomes hard to measure.

In general, we see that a high confidence value corresponds to the more significant increases
in MQ value. Obviously, when a too high minimum confidence value is chosen, results will go to
0 as no relations will be able to meet the requirement. In particular, this is why the MQ value
with the multiset-based technique before restructuring is close to zero for a minimum confidence
of 0.75.

As the minimum confidence is increases from 0 to 0.5, we see that the MQ value also increases.
A larger minimum confidence means that fewer relations are detected, and in this case more inter-
package relations are omitted than intra-package relations. However, for a minimum confidence of
0.75, the MQ value is actually decreased. This is most apparent for the values before restructuring.
In this case, it turns out that the coupling is already approaching its minimum value and the
cohesion thus decreases more than the coupling. This suggests that a minimum confidence of
0.75 is likely too high (too few relations are detected).

When we compare the results of the three experiments (the three module-level techniques), we
see that the results of using the child-based technique and those for using the set-based technique
are fairly similar. The largest difference is when a minimum support of 0.01 (5 commits) is used.
For small confidences, the child-based technique does not show any significant changes in the MQ
value. On the other hand, the set-based technique does show some improvement in MQ value,
although it is not a large difference.

The multiset-based technique, however, does show significant differences. For a high confi-
dence value (0.75), a large increase in MQ value is shown, while for a smaller minimum confidence,
there is a much smaller increase or even a decrease in MQ . Because of this, we might be tempted
to think that multisets in combination with a high minimum confidence is a good metric. How-
ever, the metric value before restructuring is in this case close to zero, with both the coupling
and cohesion component smaller than 0.1. This indicates that before the restructuring, there are
not many relations detected, so a minimum confidence of 0.75 is actually too large to detect suf-
ficient relations. Indeed, the metric values after restructuring decrease more when the minimum
confidence is increased from 0.5 to 0.75 than is the case for the other two metrics.

A particular interesting and unexpected part of the results occurs for a minimum support of
0.01. Here, especially for the child-based and multiset-based metrics, we see that the restructuring
did not result in a large increase in MQ (or even a decrease). This does not correspond with what
one would expect from the results for a support of 0.005 and 0.02, where this decrease is not
seen. The exact reason for these strange results is unknown, but it is possible that the minimum
support is already getting too large here, starting to cause problems.

Thus, the choice of parameters and module-level technique is important. A minimum support
which is too small gives unstable results, as too many relations are detected. That is, it becomes
much more important to choose a correct value for the minimum confidence in order to limit
the number of relations. By selecting a larger minimum confidence value, this can thus be
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compensated somewhat. A support which is too large is equally bad, because this eliminates too
many relations. A minimum support of 0.005 seems optimal for this case. Of course this might
be different depending on the project, but it should be larger than 1 commit, and smaller than
0.02.

As for the confidence, again it should be large enough, but not too large. Here, a value of
0.5 seems acceptable. Smaller than 0.5 means too many relations are detected, increasing the
coupling while the cohesion is already almost maximal. Larger than 0.5 appears to reduce the
number of relations too much.

Finally, with the correct choice of minimum support and confidence, all three module-level
techniques do a good job. However, for the multiset-based and child-based techniques, it is more
important to make the right choices for the parameter values than for the set-based technique.
The set-based technique only shows a decrease in MQ for a minimum support of 0.002, and other
problems (too few relations detected) only occur with a minimum support larger than 0.02. For the
other two techniques, there are more unexpected or problematic results. Therefore, the set-based
approach shows to be the most promising module-level technique, especially when combined with
a minimum support of approximately 0.005 and a minimum confidence of 0.5.

5.3.2 Confidence-based combination comparison

Secondly, we look at the effect of choosing a different confidence combination technique. Here,
the module-level technique is kept constant, specifically set-based relations are used. The results
for using the minimum, average and maximum for combining the two confidence values are shown
in Figures 5.5, 5.6 and 5.7, respectively. Note that Figure 5.7 is the same as Figure 5.3, which
is repeated here to provide a more complete picture on the effect of using a different confidence
combination technique.

The first thing we note is that for the results for minimum and average, the values of coupling
and cohesion are both decreased, as obviously there are fewer relations for which the condition
is true. It is, however, more interesting to investigate how the confidence combining technique
influences the difference between coupling and cohesion, so how it influences the MQ value.

For minimum and average, we can see that a large value for the minimum confidence gives a
negative value of the MQ before the restructuring. This means that the coupling is larger than
the cohesion. With these alternative combination techniques for such high confidence values, a
relation is only considered to exist when the evidence for such a relation is very strong.

Furthermore, we see the same trend in all three figures, in that a decrease in MQ value is
detected for small support and confidence. However, for a support of 0.002, a minimum confidence
of 0.5 is sufficient to show an increase for minimum and average, while for maximum a minimum
confidence of 0.75 is required for that. It is still the case, though, that for all three, a larger
confidence value causes the MQ value before restructuring to drop faster than the MQ value
after restructuring.

Regardless of the confidence combination technique, it is still useful to select a large value for
the minimum confidence. It is still a good idea to use a minimum confidence of 0.5. Any smaller
does not give the cohesion enough room to grow, and any larger does not allow the coupling to
decrease.

As to which of the three techniques is the best, this is not immediately clear from these
results. The fact is that they show a similar trend between the code quality before and after
the restructuring. The only major difference is that using the minimum or average combination
technique makes it possible to use a small minimum support. That is, a minimum support of
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Figure 5.5: Metric 4: A combination of low support (0.002) and low confidence (at most
0.25) shows a decrease in MQ value. For a high support (0.05), hardly any relations are
detected.
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Figure 5.6: Metric 5: A combination of low support (0.002) and low confidence (at most
0.25) shows a decrease in MQ value. For a high support (0.05), hardly any relations are
detected.
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Figure 5.7: Metric 6: A combination of low support (0.002) and low confidence (at most
0.5) shows a decrease in MQ value. For a high support (0.05), hardly any relations are
detected.

0.002 (1 commit) is acceptable with a minimum confidence of 0.5. This is because when taking
the minimum or average, the confidence is capable of filtering out sufficient potential relations,
while when the maximum is taken, too many relations are found.

5.3.3 Lift-based module-level comparison

Finally, we present the results for using the lift-based technique for detecting relations on the entity
level. For lift-based relations, there are only two applicable module-level techniques. The results
for using child-based relations are shown in Figure 5.8, and the results for set-based relations are
shown in Figure 5.9.

One thing we can see from these results, is that for a minimum support of 0.002 (1 commit),
the MQ value before restructuring clearly increases as the the maximum p-value increases, while
the metric value after restructuring shows a decreasing trend. For a large maximum p-value, more
relations are detected in total. This combined with a too small minimum support again means
that too many relations are detected for the metric to give a sensible value: almost all entities are
related to each other.

For different values for the minimum support, a different p-value does not seem to have much
effect. With only the p-value changing, the MQ value remains more or less constant, as the same
entities are considered to be related. Therefore, as long as a proper value for minimum support is
chosen (again, approximately 0.005 seems a good choice), the choice of p-value is less important,
with anything in the range 0.01–0.1 being acceptable. However, a small p-value can somewhat
compensate for a too small minimum support.

We see unexpected results for the child-based metric with a minimum support of 0.01, which
also occurred with the confidence-based metrics. Again, it is unknown what causes this, but it does
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Figure 5.8: Metric 7: A combination of low support (0.002) and high p-value (at least
0.05) shows a decrease in MQ value. For a high support (0.05), hardly any relations are
detected. Results for a support of 0.01 are unexpected.
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Figure 5.9: Metric 8: A combination of low support (0.002) and high p-value (at least
0.05) shows a decrease in MQ value. For a high support (0.05), hardly any relations are
detected.
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suggest that a minimum confidence of 0.01 might already be too large. However, this problem
does not occur to such a large extent for the set-based metrics, indicating that this module-level
technique is indeed the best choice.

Comparing the child-based technique with the set-based technique, we see something similar
as for the confidence-based relations. Both work well when a correct minimum support value is
chosen, but the set-based technique makes the choice for the minimum support less important.
Therefore, also considering the strange results for a support of 0.01, the set-based technique is
likely a better choice.

5.4 Conclusion

Considering all the results, we can conclude that the set-based technique shows to be the most
promising. While its results are not all that different from the other module-level techniques, it
does have the advantage that the choice of the parameter values seems to be less important.
More precisely, more minimum support values are acceptable when the set-based approach is used
than with another technique.

Besides more promising results, the set-based approach also has another advantage. The
multiset-based technique has the problem of the support values of modules potentially getting
larger than the total number of commits, which means it is not an intuitive technique. This is
also the reason it cannot be used in a lift-based metric. Therefore, the restructuring of the code
will only be done using the set-based technique.

The results for the different techniques for combining the two confidences of an association rule
into a single value, do not indicate a clear preference for a specific technique. The main difference
is again that using the minimum or average makes the requirements on the minimum support
less strict as when using the maximum. However, the most important reason for comparing the
different techniques, is to prevent unidirectional relations (relations which are strong in only one
direction and weak in the other direction) from causing too many entities to be moved. Therefore,
it is meaningful to compare these techniques when performing restructuring experiments.

When comparing the confidence-based metrics with the lift-based metrics, we see that there is
not a very clear difference indicating which is better. However, the confidence does have theoretical
problems as discussed in Chapter 3. While this problem did not present itself in the results of the
validation, it is possible that it becomes more apparent on other cases.

Also, the confidence-based metrics require several parameters to be precisely chosen. Besides
choosing a minimum support, which is also required for the lift-based metric, we also need to
select a minimum confidence and a confidence combination technique. The meaning of these
parameters is not very intuitive, and this makes it difficult to choose the correct values. In fact,
the optimal values for these parameters likely depend on the specific project on which the metric
values will be calculated.

On the other hand, for the lift-based metric, we only need to select a p-value. This p-value is
easier to understand intuitively and thus makes it easier for a user to make a reasonable choice.
The p-value can be considered roughly equivalent to the probability of a false relation being
detected. That is, the probability a relation is detected even though it is not a true relation, can
be limited by the p-value.

The restructuring experiments in Chapter 8 are performed with the most promising metrics.
Based on the results presented in this chapter, this means all metrics use set-based relations.
Furthermore, the lift-based technique and the confidence-based technique are both compared,
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where for the confidence-based approach all three confidence combination techniques are used. A
minimum support of 0.005 showed to give the most promising results, as did a minimum confidence
of 0.5 and a maximum p-value of 0.01.

5.4.1 Threats to validity

While the validation of the different metrics is performed such that the results are correct and
meaningful, the validity of the results can be threatened by a number of issues. The main problem
is that only a single case study was considered. It is thus possible that on another system, the
results will be different. For example, another case study might expose the problem that confidence
has, where the confidence is high only because the support is high.

As the confidence can be high only because the support is high, even when the association
rule is not significant, it is possible that the confidence-based metrics are unreliable. That is, it
is possible that relations are detected between entities which should not be related. In order to
prevent this from becoming an actual problem, the results were compared with the results of the
lift-based metrics. As the lift does not have this theoretical weakness, and results are similar for
all metrics, we can thus conclude that this problem likely did not have a significant impact on the
results.

Another problem is that there is no guarantee that the structure of the code indeed improved.
While the developers who performed the restructuring of the Spring Framework do claim that
the structure is improved [51], this could not be independently verified. It is also not feasible to
verify this, because no metric can be fully trusted and manual inspection is labor intensive, difficult
and error prone. However, the developers do report decreased dependencies between components.
Therefore, it is reasonable to assume that the restructuring effort was indeed successful.

Finally, there is a risk of “over-validation”. A lot of metrics with parameter values are validated,
all on the same case. Because of this large number of different metrics, but only a single case,
it is possible that for some values the metric shows promising results by chance. However, since
several fundamentally different techniques were used and they all showed a similar trend, this is
unlikely to have occurred here. That is, if the positive results are the result of random chance,
then it would not be expected that the results would show a similar trend for all the different
techniques and parameters used.
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6. Search-based software engineering

Many problems in the domain of software engineering are related to optimizing potentially con-
flicting goals. A good example of such a problem, is finding a good architectural design. This
problem consists of trade-offs between conflicting goals [46]. Finding a perfect solution to such a
problem is often infeasible, as defining an algorithm to solve the problem can be problematic [27].
Search-based Software Engineering (SBSE) attempts to solve these problems by applying meta-
heuristic search-based optimization techniques, such as a genetic algorithm. These techniques
attempt to optimize specified objectives in order to find near-optimal solutions.

The problem of automated reengineering studied in this thesis is an optimization problem.
Here, we try to improve the structure or modularization of our source code by optimizing one
of the metrics defined in Chapter 3. However, rearranging entities in modules also carries the
undesirable effect of all knowledge about the structure of source code by the developers becoming
obsolete.

Attempting to reduce the impact of this problem, Abdeen et al. [1] suggest not changing the
module structure, but only moving entities into other, existing modules. This way, the module
structure of the code remains constant, and the developers are not confronted with a completely
changed module structure.

However, moving a large number of entities still causes developers to have trouble finding those
entities later. Therefore, we in fact want to improve the structure of the source code without
moving too many entities. That is, while maximizing the MQ metric, we also want to minimize
the changes made. This chapter discusses the use of a genetic algorithm for optimizing these two
conflicting objectives.

A more extensive motivation for the use of a genetic algorithm is given in Section 6.1. Next,
we discuss our solution to the problem in more detail in Section 6.2, specifically by presenting
how the problem of automated reengineering is solved using a genetic algorithm. Here, we limit
ourselves to optimizing only the structure of the code. In Section 6.3, we investigate how we
can optimize multiple objectives simultaneously, thus minimizing the number of changes made.
Section 6.4 then discusses some related work, which includes a discussion on existing approaches
for automated reengineering. Finally, Section 6.5 discusses the open problems and other ideas
which are interesting for future research.

6.1 Motivation for a genetic algorithm

Using a genetic algorithm for solving an optimization problem is not an immediately obvious
choice. After all, using a genetic algorithm offers no guarantee that the optimal solution is found,
or even a solution which is guaranteed to not be far from optimal [29]. While a genetic algorithm
finds increasingly better solutions the longer it runs, it is impossible to say whether it is already
close to an optimal solution, or the optimum is still a long way to go.

Other optimization techniques might indeed be better in some cases. If an algorithm can be
devised which can find the optimum in a reasonable time, then indeed a genetic algorithm is a
bad choice. Furthermore, approximation algorithms or greedy algorithms might be able to find
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better solutions in less time, and give guarantees on how optimal the found solution is. However,
for the case of automated reengineering, or more specifically, software restructuring, we can argue
that a genetic algorithm is in fact a reasonable choice.

Source code restructuring is concerned about grouping related entities into modules. This
problem is basically a graph clustering problem, where vertices in a graph are grouped together in
clusters, such that vertices in the same cluster are similar or connected [49]. The graph clustering
problem has been shown to be NP-complete for a number of objective functions [50], implying
that it cannot be solved in polynomial-time, unless P=NP [22].

It should be noted that the NP-completeness of graph clustering does depend on the objective
function used for optimization. That is, the use of a different objective function changes the
problem, potentially making it easier to find an optimal solution. Š́ıma and Schaeffer [50] showed
for a number of objective functions that the problem is indeed NP-complete, including when
optimizing only the intra-connectivity of our MQ (thus ignoring the inter-connectivity). NP-
completeness of the clustering problem with the use of MQ as the objective function, has not
been proven. However, while a formal proof remains an open problem, it is expected that the
general clustering problem is indeed NP-complete [44].

It is uncertain whether source code restructuring using MQ is NP-complete, or not. However,
it is generally accepted that it is indeed likely to be an NP-complete problem [45]. It is thus
unlikely that a polynomial-time algorithm exists which exactly solves our problem.

Furthermore, in our problem, we are not looking to optimize the source code structure on MQ
alone. By changing the structure of the code, the modularization might indeed improve, but it
does also have a downside. When a developer has worked a long time with the source code of a
system, he eventually knows how the code is structured. By changing this structure, the developer
might get into trouble finding the piece of code he is looking for: it is not where he remembered
it to be.

To solve this problem, we want to minimize the number of changes made to the code structure.
At the same time, we also want to optimize the structure of the code. More precisely, we want
to achieve a good modularization with the fewest changes possible. Clearly these two objectives
are conflicting, as improving the structure of the code necessarily means changing the structure
of the code.

Optimizing multiple conflicting objectives can be difficult to achieve, but a genetic algorithm
can be used for optimizing multiple, conflicting objectives at the same time [10]. This way, we
can find a code structure with better modularization, such that as few changes as possible to the
code are made to achieve this structure. The details of multi-objective optimization are discussed
in Section 6.3.

Thus, as it is unlikely for an efficient algorithm to exist which can solve our problem, the use
of a genetic algorithm is reasonable. Furthermore, a genetic algorithm has the added advantage
that multiple conflicting objectives can be optimized simultaneously. For other techniques, the
optimization of multiple objectives is problematic [10].

6.2 Genetic algorithm

A genetic algorithm [29] is an iterative algorithm. That is, the algorithm executes a predefined
number of iterations. Each iteration starts with a population of individuals. An individual is
a candidate solution for the problem (that is, a valid solution, but not necessarily the optimal
solution). This population of individuals is evolved into a new population in a number of steps to
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Figure 6.1: An overview of the steps in a genetic algorithm.

complete a single iteration. This process is then repeated until some stopping criterion is reached.
A schematic overview of the steps in a genetic algorithm is shown in Figure 6.1.

When the genetic algorithm starts executing, it first generates an initial population. This
population is often generated randomly. When the initial population is generated, the first iteration
starts. In each iteration, we first evaluate all individuals in the population by calculating their
objective values. Next, the best individuals are selected for the crossover operation. This operation
takes two “parent”-individuals and recombines them to generate two “children”. These children
are then randomly mutated, resulting in a new population for the next iteration. The algorithm
stops when some stopping criterion is reached, often when a predefined maximum running time
or number of iterations is exceeded.

The details of a genetic algorithm are not discussed here. The implementation of the steps
for our problem of restructuring is discussed in the remainder of this section.

In our case, the population is initialized with the current tree structure of the source code.
That is, the individuals are not randomly generated. This is done because we want to change the
existing code structure. If we would initialize the population with randomly generated individuals,
we might be able to find a better structure due to the larger solution space explored. However,
this would come with a cost of individuals which require more changes to the existing structure.

Since we want to minimize the number of changes required, it makes sense to start with the
existing structure, as parts of the solution space unreachable from this initial population contain
only individuals which require a large number of changes, and are thus undesirable solutions. By
using only the existing structure in the initial population, we in fact evolve more individuals in
the desirable part of the solution space (that is, in the part of the solution space containing the
individuals which require few changes to the existing structure).

Evaluation of the individuals is done by calculating the objectives. That is, we calculate the
metric value for each individual. Then, we can compare two individuals to determine which one
is better. The best solutions are then selected to become parents in the crossover step.

The crossover recombines two individuals, the parents, to generate two new individuals, the
children. This is done by taking part of the first parent and part of the second parent, which
together form a child. These parts are generally parts of a list, combining a sublist of the first
parent with a sublist of the second parent. Figure 6.2 shows how crossover works for lists.

The main problem here is that individuals in our case are trees instead of lists. We thus need a
way to define the crossover operation on our tree. Since the only changes made to the tree in our
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a1 b1 c1 d1 a2 b2 c2 d2

a1 b1 c2 d2 a2 b2 c1 d1

Figure 6.2: The crossover operation on lists. The first part of the first parent and the
second part of the second parent are recombined to form one child. The other child consists
of the first part of the second parent and the second part of the first parent.

case is moving entities to other modules (as suggested by Abdeen et al. [1] to reduce the problem
of developers not understanding the new structure), we can represent each individual as a list. In
this list, each entity corresponds to an index in the list, and the value at that index corresponds
to the module this entity is in. That is, the entity ei in module M means that the value in our
list at index i corresponds to module M .

The final step in an iteration of a genetic algorithm is mutation. In this step, the children
resulting from the crossover operation are mutated. That is, the list is randomly changed in some
positions. In our case, that means some entities are randomly moved to another module.

6.3 Multiple objectives

With metrics defined to quantify the modularization quality of a code structure, and an opti-
mization problem optimizing such a metric, we have all the ingredients we need for optimizing
the code structure. However, this code structure can be completely different from the original
structure, with every entity moved to another module. This is undesirable, because it can be
difficult for developers to understand this new structure, if they were already familiar with the old
one. Therefore, we need a way to minimize the changes we make to the code structure.

In this section, we investigate how we can optimize the code structure, but at the same
time minimize the changes made to the code in the process. First, we investigate how we can
quantify change in Section 6.3.1. Here, we define two metrics capable of measuring how much
the original code structure was changed to get the new one. In Section 6.3.2, we discuss multi-
objective optimization and how we can use it to optimize our two objectives. Finally, Section 6.3.3
discusses how we select the best solution based on the trade-off between the two objectives.

6.3.1 Quantifying change

To measure how much one structure needs to be changed to get another, we can use several
techniques. Abdeen et al. [1] count the number of entities they move, and use the resulting value
to quantify change. However, the problem with this simple technique for our case, is that this
does not take the hierarchy of the module structure into account.

For example, consider a code structure as shown in Figure 6.3. Now, consider we move entity
e1 to another module. Since e1 is in module M11, which is part of module M1, we can say that
e1 is also (indirectly) part of module M1. Therefore, moving e1 to M2 can be considered to have
more impact on the structure than moving it to M1 or M12.

Taking this hierarchical structure into account, we define two metrics which measure the extent
of a set of changes. But first, we need to define a function which returns all modules on the path
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Figure 6.3: Tree representation of a code structure consisting of modules M1, M11, M12

and M2 and entities ei for 1 ≤ i ≤ 6.

from the root to a given module. That is, a function returning all ancestor modules, including the
given module.

Definition 14 (Ancestor modules). Let M be a module and let parent(M) denote the parent of
M (that is, the module directly containing M). The function anc is then recursively defined as
follows.

anc(M) =

{
{M} if M is the root

{M} ∪ anc(parent(M)) otherwise

Using this definition, we can define the first metric for quantifying change. This first metric
counts the number of edges in the tree each entity has to traverse to reach its new position. That
is, for each entity, the metric is defined as follows.

Definition 15 (Move penalty). Let e be an entity which was moved from module M to module
M ′. Furthermore, let A = anc(M) ∩ anc(M ′) be the common ancestors of M and M ′. The
penalty for entity e is then defined as

penalty(e) = |anc(M)|+ |anc(M ′)| − 2|A|

In the example tree structure in Figure 6.3, this means we have a penalty of 1 when e1 is
moved to M1. When e1 is moved to M12, the penalty is 2. Finally, we have a penalty of 3 when
it is moved to M2.

The second metric for measuring the extent of a change assigns a weight to each edge according
to an exponential scheme. That is, edges from the root are given a weight of 1/2, edges one level
further down in the tree a weight of 1/4, and so on. In general, the weight of the edges on level
i of the tree, where i = 1 for edges coming from the root, have weight 1/2i. Note that instead
of 1/2, we can take any value smaller than 1.

Definition 16 (Exponential move penalty). Let e be an entity which was moved from module M
to module M ′. Furthermore, let A = anc(M) ∩ anc(M ′) be the common ancestors of M and
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Figure 6.4: A plot of the solution space containing the feasible solutions for optimizing
MQ and CP simultaneously. Four Pareto-optimal solutions are marked.

M ′. The penalty for entity e, with 0 < r < 1, is then defined as

penalty(e) =

|anc(M)|−1∑
i=1

ri −
|A|−1∑
i=1

ri +

|anc(M ′)|−1∑
i=1

ri −
|A|−1∑
i=1

ri

=
2r|A| − r|anc(M)| − r|anc(M ′)|

1− r

For the example tree in Figure 6.3 and r = 1/2, we have a penalty of 1/4 when e1 is moved
to M1. Moving e1 to M12 results in a penalty of 1/2, and moving it to M2 gives us a penalty of
5/4.

The actual metric for measuring how much a series of changes affects the code structure, is
referred to as the Change Penalties (CP). This value is obtained by adding the penalties for
each entity together. That is, the metric value for a system containing the entities E is equal to

CP =
∑
e∈E

penalty(e)

Here, penalty(e) is the function from Definition 15 or from Definition 16.

6.3.2 Multi-objective optimization

We now have two objectives we want to optimize simultaneously. The first is one of the metrics
defined in Chapter 3, and the second is one of the metrics defined in Section 6.3.1. As these
metrics are conflicting, we want to find a solution with a good trade-off between the two metrics.

A genetic algorithm has support for multi-objective optimization [10]. With multi-objective
optimization, we place all the objectives in a vector, and we then optimize the value of this vector.
That is, our objective becomes optimizing a vector v = (v1, . . . , vk), where v1, . . . , vk are the
values of the k objectives we want to optimize.
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For this, consider our case where we want to optimize two objectives. The solutions found
can be plotted in a graph, where the x-axis contains the CP value and the y-axis the MQ value
of the solution. See Figure 6.4 for an example of such a plot.

When optimizing two objectives simultaneously, there are multiple solutions with a trade-off
between the objectives. Some solutions are better than others. When all objectives in the vector
v are more optimal than the ones in vector v′, then v is better in total. We than say that v
dominates v′. However, when one of the objectives is better for v and the other is better for
v′, then neither vector is strictly more optimal than the other, and neither vector dominates the
other.

Because of this, multi-objective optimization returns multiple optimal solutions. Each such
solution is said to be Pareto-optimal. A Pareto-optimal solution is optimal in the sense that,
although it might still be possible to improve an objective, this necessarily comes with the cost
of degrading another objective. Multi-objective optimization thus returns multiple solutions, each
with a different (optimal) trade-off between the objectives. The best solution can then be selected
from a limited set of Pareto-optimal solutions.

6.3.3 Selecting the best solution

A way to select the best solution, is taking a look at the plot of all Pareto-optimal solutions. These
solutions generally form a curve as shown in Figure 6.4 [10]. In this plot, we can see that the first
few changes contribute more to the increase in MQ , while the later changes are increasingly less
helpful. Note, however, that the curve can also take other forms, as long as they are monotonically
increasing [10].

A curve as shown in Figure 6.4 suggests that it might be worthwhile to make some changes
to improve the MQ , but not opt for the best MQ . That is, the solution marked with v4 is likely
not the best choice, because although it has a higher MQ than v3, this comes at a relatively high
cost in CP . Similarly, v1 has a smaller CP , but it comes at a cost of a relatively low MQ . The
solutions marked v2 and v3 show a better trade-off between MQ and CP .

Deb and Sundar [11] proposed an approach to selecting one (or more) solutions from the set
of Pareto-optimal solutions. To do this, they calculate the normalized distance of each solution
to a reference point. The distance d of a solution x to the reference point z is calculated as

d =

√√√√ k∑
i=1

(
fi(x)− zi
fmax
i − fmin

i

)2

Here, fi(x) denotes the value of objective i for solution x, and fmax and fmin denote the maximal
and minimal value objective i takes, respectively. The reference point is a vector containing
objective values based on a posteriori knowledge. Originally, the reference point is selected by a
human. However, we can also use the optimal values of all objectives (that is, fmin for minimized
objectives and fmax for maximized objectives) [16].

Now, we select the solution which is closest to the reference point. Using this selection
technique makes it possible to completely automate the restructuring process, even when multiple
objectives are used. Note that the selection process uses a posteriori knowledge on the shape
of the solution space. That is, it is not possible to use the distance d as an objective in the
optimization process, as z, fmax and fmin are not known at that time.
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6.4 Related work

The use of genetic algorithms or other meta-heuristic search techniques for improving the code
structure is not new. Several other studies have been performed in this area. This section discusses
these studies and compares them to the current work. The two main differences between this thesis
and other research, are the use of evolutionary coupling and the use of multi-objective optimization.

6.4.1 Clustering software systems

Large and complex software systems are often difficult to understand. In order to help developers
understand the structure of a software system, clustering algorithms have been used to auto-
matically detect subsystems. Studies which used clustering algorithms to identify subsystems in
software are discussed in this section.

Doval et al. [13] note that module dependency graphs (which show the dependencies between
modules as edges between nodes) are often large and complex. Therefore, it is not always easy
to understand such graphs. Partitioning the graph in clusters, or subsystems, of highly related
modules can, however, help in understanding the graph. To automatically generate a partitioning
of a module dependency graph into clusters, they use a genetic algorithm. For this, they use the
MQ as their objective function. Results of a case study show that their technique is successful in
finding a good clustering.

No code is actually restructured in the study by Doval et al. [13]. They only partition an existing
module dependency graph into clusters in order to aid in the understanding of the structure of
code. Furthermore, no relation detection techniques are required, because they start with a module
dependency graph containing all the relations between the modules. Therefore, their approach is
similar to other graph clustering studies [49, 50], with the exception that an objective function is
used which measures software modularization quality.

Mitchell [44] also looks at the problem of clustering software systems to identify subsystems.
The main difference is that now the module dependencies are not known beforehand. These
dependencies are automatically determined by analyzing the source code. A modified version of
MQ is used as the objective function.

Praditwong et al. [48] again use a modified version of MQ for automatically clustering software
systems. However, they also use other objectives which are optimized simultaneously using multi-
objective optimization. Other metrics used are the number of inter-edges and intra-edges, the
number of clusters and metrics related to the size of clusters. They show that single-objective
optimization of MQ outperforms multi-objective optimization using MQ in combination with the
other metrics. However, when the concepts of coupling and cohesion, which together make up
MQ , are considered separately, the multi-objective approach gives better results. That is, the
multi-objective approach finds solutions with higher cohesion than the single-objective approach,
and solutions with lower coupling. Finally, it is noted that while multi-objective optimization is
able to produce better solutions, this comes at a cost of increased computational cost.

Research on clustering software systems often uses meta-heuristic search techniques, such as
genetic algorithms, for identifying subsystems. The choice for these search techniques is attributed
to the NP-complexity of the problem, making these algorithms a good choice. The main difference
with research in this area as compared to this thesis, is that no code structure is actually modified.
The algorithms are intended to discover code structure.

In this thesis, however, we already have a code structure, and the goal is to improve this
structure. This comes with the additional problem that while we do want to improve the structure,
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we also want to keep the changes to a minimum. This is because developers are already familiar
with the existing structure, and learning the new structures takes valuable time. Therefore, we
have to take measures to prevent this from becoming an actual problem.

6.4.2 Search-based software maintenance

An approach to automated reengineering which is guided by optimizing the values of software
quality metrics is proposed by O’Keeffe and Cinnéide [46]. Three quality functions (flexibility,
reusability and understandability) are defined as a linear combination of eleven metrics, which all
measure the quality of some aspect of the source code. By using multiple metrics, the authors argue
that the approach is not limited to a single aspect, but can cope with the trade-offs in object-
oriented design. The design of the source code is then optimized using search-based software
engineering, where the three quality functions are used as an objective for the optimization. To
determine which refactorings can legally be applied without changing program behavior, pre-
condition checking was used. The refactorings are performed by modifying the abstract syntax
tree of the Java code, thus effectively modifying the code. Results show that understandability,
and to a lesser extent flexibility, are suited as quality functions for this purpose.

O’Keeffe and Cinnéide [46] do not consider the fact that changing the code can be problematic
for developers who are familiar with the existing code structure. Furthermore, multiple objectives
are optimized in the sense that multiple metrics are used, but these metrics are combined into
three functions (flexibility, reusability and understandability) using a weighted sum. That is,
the optimization process is a single-objective optimization, using one of the three functions as
objective. Finally, the three functions used measure a different aspect of code quality than the
metrics used in this thesis. That is, they do not look at the modularization of the code, but only
consider the class hierarchies. Methods and fields are moved only to superclasses or subclasses,
and are not allowed to move to any class in the system. Classes are not grouped into packages.

6.5 Future work

In this chapter, we discussed an optimization technique which can be used for automatically
restructuring source code. However, other techniques for solving this problem are also available.
This section discusses some possible future work in the area of automated software reengineering.
Furthermore, open problems are identified and discussed.

Meta-heuristic search Because of the difficulty of the problem, we concluded that using a meta-
heuristic search technique is a good approach for solving the restructuring problem. For this,
we used a genetic algorithm. There are, however, also other meta-heuristic search techniques
available. Examples are hill-climbing [47] and simulated annealing [35].

An especially interesting possibility for future research, is to implement multiple search tech-
niques and run experiments with all of them. This way, the results can be compared, and state-
ments can be made on which technique is most appropriate for solving the problem.

Multi-objective optimization We already used multi-objective optimization for the purpose of achiev-
ing the highest increase in MQ at the lowest cost in CP . However, other objectives can be iden-
tified which might be worth using in the optimization process. Most significantly, it is interesting
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to investigate whether splitting inter-connectivity and intra-connectivity (which together make up
MQ) into two competing objectives gives better results than when they are combined in the MQ .

Furthermore, we can identify other objectives which we might want to optimize. For example,
we can use metrics which are determined from source code analysis, such as the number of classes
per package. It is thus interesting to check whether these additional metrics help in getting better
results.

Solution selection In this chapter, we discussed a technique which is used to get a single solution
from a set of Pareto-optimal solutions. However, this is not the only existing technique for
selecting a solution [16]. Therefore, future research can try using other techniques and comparing
the results. This way, it could be possible to make claims on which technique for selecting a single
solution performs best for the specific problem of software restructuring.

NP-completeness As noted in Section 6.1, the problem of restructuring is NP-complete at least
for some objective functions. However, NP-completeness has not been shown in general (that
is, unrelated to the objective function). In specific, it has not been shown to be NP-complete
when the MQ is used as objective function. However, it is expected that this problem is also
NP-complete.

Therefore, future research can focus on finding an NP-completeness proof for the specific
problem of restructuring using MQ , or even for the general problem of restructuring using any
objective function. Obviously, alternatively it is also possible to show that the problem can, in
fact, be solved in polynomial time. However, this result is not expected.
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For the restructuring of source code, the restructuring tool is developed. This tool implements an
optimization algorithm which modifies the structure of source code such that the value of a metric
is optimized. Thus, this tool needs to be able to calculate the values of the evolutionary coupling
metrics discussed in Chapter 3. For this task, the same classes are used as the metric validation
tool uses, which are discussed in Chapter 4. This is achieved by means of using a shared library,
as discussed in Chapter 2.

The restructuring tool is implemented using the Java optimization framework Opt4J [39].
This framework already takes care of a large part of the functionality. That is, it already provides
us with optimization algorithms and a GUI. Therefore, we only need to implement a library which
is loaded by Opt4J, providing the classes specific to the problem of restructuring. As Opt4J
uses Google Guice [24] to handle dependency injection, our classes also use Google Guice
for the same purpose.

This chapter discusses how the library is extended for the added functionality required by the
restructuring tool, and how the library is used by the restructuring tool. The requirements of this
tool are first discussed in Section 7.1. Then, we give an overview of the design of Opt4J and
how the required functionality is implemented in the library in Section 7.2. Finally, we discuss the
use of dependency injection and Google Guice in Section 7.3.

7.1 Requirements

The main purpose of the restructuring tool is that it optimizes the structure of source code,
based on evolutionary coupling metrics. For our purposes, the tool is only used for research into
automated restructuring, so it should provide us with validation results instead of just an improved
structure. These results are used in Chapter 8 for investigating whether the proposed evolutionary
coupling metrics are well-suited for automated restructuring.

The specific requirements are discussed in the remainder of this section. Note that we only
provide an overview of the requirements, used as guidance for the design discussed in the next
section. Furthermore, all requirements as discussed in Chapter 4 also apply for the optimization
tool. Here, only the additional requirements are listed.

Flexible GUI The restructuring tool is required to have a graphical user interface. This interface
should be flexible, in the sense that the user can select which metrics to use, and which history
provider to use (currently, only a provider for SVN repositories is supported). Furthermore, the GUI
should allow the user to change the parameters of the metrics and other configuration settings.
Finally, the GUI should provide means to track the progress of the optimization process with
graphs showing the current optimal values of the metrics.

1. The restructuring tool should have a GUI.
2. The GUI should allow to select which components to use (metrics and history provider).
3. The GUI should allow the user to change metric parameters and other configuration settings.
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4. The GUI should provide graphs showing the current optimal metric value to track the
progress of the optimization process.

Multi-objective optimization The tool should provide support for multi-objective optimization.
That is, it should be possible for the user to select multiple metrics, which are then optimized
simultaneously using true multi-objective optimization.

5. Multi-objective optimization should be supported.
Multi-objective optimization results in multiple Pareto-optimal solutions (see Chapter 6), of which
the best one is selected when optimization finishes. While currently only one technique for selecting
the best solution is implemented (see Chapter 6), it should be possible to add other techniques
later.

6. Of multiple Pareto-optimal solutions, one solution should be selected.
7. Adding a new solution selection technique should be easy, requiring only well-defined changes.

With “well-defined changes”, we mean that it is clear how to modify the source code to add the
new functionality. That is, obviously, the implementation of the new functionality needs to be
added. However, the existing code should not have to be changed to accommodate for the new
functionality, other than well-defined extension points informing the tool of the newly available
functionality.

Validation Support for validating the optimization process should be present. For validation, it is
important that multiple runs of the optimization process can be executed automatically, removing
the need for a user to manually start each run. Furthermore, the results of all runs should be
accumulated and written to disk at the end of the validation process.

8. A specified number of runs of the algorithm (using the same settings) can be executed
automatically.

9. The results of all runs are written to a file on disk after all runs are completed.
Finally, validation should include independent analysis of the results, by also calculating the metric
values afterwards using an independent part of the history. For more details on the validation
methodology, see Chapter 8.

10. An independent part of the history is used to calculate MQ values for both the original and
improved structure, after the optimization process is finished.

Genetic algorithm The tool should use a genetic algorithm for the optimization of the code
structure. However, it should also be considered that other optimization algorithms can be added
in the future. Therefore, the user should be able to select the optimization algorithm which should
be used from the GUI.

11. The user can select which optimization algorithm to use, in the GUI.
12. A genetic algorithm should be available to use as optimization algorithm.

7.2 Opt4J

For the restructuring tool, the optimization framework Opt4J [39] is used. This framework is
used, because it already takes care of most of the requirements, namely requirements 1, 2, 3,
4, 5, 11 and 12. Only one other framework, jMetal [14], could be found which comes with
a complete GUI and support for multi-objective optimization, but for this framework, satisfying
Requirement 2 requires more work.
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As discussed in Chapter 2, the restructuring tool is split into an executable and a library.
The executable is actually completely provided by the used optimization framework Opt4J. The
library is shared between the restructuring tool and the metric validation tool. As Chapter 4
already discussed the design of the part of the library used by the metric validation tool, this is not
repeated here. Instead, only the extensions made for the restructuring tool (that is, code required
for the optimization) are discussed here.

The Opt4J framework defines a number of interfaces which can be implemented. Which
implementation of an interface is used, is defined in Modules. All classes only depend on in-
terfaces, and the dependency injection framework Google Guice is used to inject the correct
implementations (as defined in the Modules). Google Guice and the Modules are discussed
in Section 7.3. This section only discusses the interfaces implemented in the restructuring tool, for
a complete overview of the architecture of Opt4J, see the official Opt4J documentation [38].

It is important not to confuse a Google Guice Module (defining type bindings) with a
module in the code structure (containing entities). To make this distinction clear, the former will
always be capitalized, while the latter is not.

In order for the optimization process to work, we need to implement at least five interfaces:
Phenotype, Genotype, Creator, Decoder and Evaluator. Furthermore, for the valida-
tion of the results, we need to implement the OptimizerStateListener interface.

Phenotype and Genotype A solution in Opt4J is represented in two ways, both as a phenotype
and as a genotype. A genotype is the genetic representation of a solution, and all operators of
the optimization process are applied on it. That is, for a genetic algorithm, the crossover and
mutate operators are applied on the genotype. A phenotype is the decoded representation of the
genotype. That is, it is the direct representation of a solution.

The phenotype in our case is a tree representing the structure of source code. More specifically,
it is the directory tree, indicating in which directory each file resides. It represents the hierarchical
structure of directories containing (sub)directories and files. Thus, the class Tree presented in
Chapter 4 implements the interface Phenotype. This interface in fact does not define any
methods, it is only a marker interface.

The genotype is the genetic representation of a tree. It should be simple in the sense that
crossover and mutate operations can be performed on it efficiently. As these operations are already
defined by Opt4J for the predefined genotype classes, we extend the genotype SelectMap-
Genotype with the class TreeGenotype. This genotype defines a mapping, in our case a
mapping from entities to modules. Note that the structure of the modules is kept constant, only
entities can be moved to other modules. For more details on the genotype, see Chapter 6.

Creator, Decoder and Evaluator The Creator, Decoder and Evaluator classes define how
new solutions (genotypes) are created, how genotypes can be decoded into phenotypes and how
to calculate the objective values of phenotypes, respectively.

Creating new genotypes is a process which is only performed at the start of the optimization,
and it is intended to get an initial population of solutions. In our case, we want to start with the
current tree structure. Therefore, we implement the interface Creator with the class Data-
Loader. This class contains the initial tree structure and encodes this structure into a genotype
representation in its only method create().

Decoding a genotype is the process of transforming a genotype into a phenotype representing
the same solution. Thus, the Decoder interface is implemented by a class TreeDecoder,
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DataLoader TreeDecoder TreeEvaluator
TreeGenotype Tree Objectives

Tree Map<Objective,IMetric>

Figure 7.1: Overview of the implementations of the main interfaces defined by Opt4J.
Constructor arguments are drawn above a class. Methods arguments are drawn as hori-
zontal incoming arrows, and return values are horizontal outgoing arrows.

which decodes the TreeGenotype into a Tree. This is done in the method decode().
Finally, we need to implement the interface Evaluator for evaluating a solution. This is

done with the class TreeEvaluator, which contains a set of metrics (classes implementing
IMetric, see Chapter 4). When this class needs to evaluate a tree, it calculates the metric value
for the tree, for all required metrics. These metric values are then returned as a vector by the
method evaluate().

An overview of the process from creation to evaluation is shown in Figure 7.1. This shows that
the creator contains a tree and encodes it in a genotype whenever a new genotype is required.
Each time a genotype needs to be decoded into a phenotype, the decoder performs its task.
Finally, the evaluator contains a set of metrics and calculates and returns the metric values of a
tree when a tree needs to be evaluated.

Note that Figure 7.1 contains two types which were not yet discussed. Objective describes
a single objective which is to be optimized. This includes a name of the objective and a direction
(maximize or minimize). The type Objectives contains all the objectives used in the optimiza-
tion, and assigns a value to each one. Finally, the set of metrics contained in the evaluator is
represented as a map from Objective to IMetric. This is done such that the metric values
can be calculated and correctly assigned to objectives in the type Objectives.

Optimizer state listener With the five interfaces mentioned above all implemented, the optimiza-
tion process can be executed. However, this does not yet include any functionality to validate
the restructuring process. For this, we need to implement two interfaces: OptimizerState-
Listener and OptimizerIterationListener. In fact, both interfaces are implemented
by the same class: ValidationListener.

The validation listener contains two classes which actually implement the tasks that need to
performed for validation: selecting the best solution in case multi-objective optimization returns
multiple solutions (implemented by SolutionSelector, satisfying Requirement 6) and per-
forming the actual validation (SolutionValidator, Requirement 10). Furthermore, this class
resets the optimization process when a single run is completed, so the next run is performed
automatically (Requirement 8). The results are written at the end of the validation process, as
required by Requirement 9.

Creating a new solution selection technique is a matter of creating a subclass of Solution-
Selector and implementing the new technique. All that needs to be done to change the
solution selector used, is providing the validation listener with the newly added class, thus satisfying
Requirement 7.

The state listener of ValidationListener gets notified just before optimization starts and
right after optimization stops. At the start of the optimization process, we initialize Solution-
Validator, opening the file in which the results will be written. When optimization stops, this
file is closed.
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ReengineeringModule

Figure 7.2: An overview of all Modules as used for dependency injection by Google
Guice.

The iteration listener actually contains all the code for validation. If the current run is com-
pleted (that is, only after the last iteration of the run validation is performed), we first get the (best)
solution from SolutionSelector. This solution is then passed to SolutionValidator
which performs the validation. For more details on the validation process, see Chapter 8.

Additional metrics Finally, it should be noted that two additional metrics are defined in Chapter 6.
These two metrics are not intended to measure the quality of the code structure, but rather for
penalizing each move of an entity to another module. These metrics are just like the evolutionary
coupling metrics in the sense that they both implement the interface IMetric, and can thus be
added to the optimization process just like the other metrics.

7.3 Google Guice

Dependency injection [20] is a programming technique where dependencies of a class are passed
to that class, instead of the class creating instances of its dependencies itself. More specifically,
when a class C1 depends on another class C2 to do its job, an instance of C2 is given to (injected
into) C1, instead of having C1 request an instance of C2. Often, dependencies are injected into
the constructor upon creation of an object. This way, it is not necessary for a class to depend
on any specific implementation of its dependency. Any class implementing the functionality C1

depends on, can be injected.

Opt4J uses the dependency injection framework Google Guice [24] for resolving object
dependencies. Therefore, the library is designed such that Google Guice is also used for the
dependencies internal in the library. That is, all classes are implemented such that Google
Guice can resolve the dependencies automatically and inject them into the constructor. Because
of this, there are two requirements on the code.

1. The constructor of each class Google Guice should use, needs to be annotated with
@Inject.

2. Module classes need to be added, which tell Google Guice how to resolve dependencies
by binding an abstract type to a concrete type.

Note that Google Guice requires all Modules to inherit from the class AbstractModule.
Opt4J extends this class with a class Opt4JModule. Figure 7.2 shows all defined Modules
for the restructuring tool (part of the library), which are used to bind types. The Module classes
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Module Abstract type Concrete type
ReengineeringModule Creator DataLoader

Decoder TreeDecoder
Evaluator TreeEvaluator
OptimizerStateListener ValidationListener
OptimizerIterationListener ValidationListener

HistoryModule See discussion Section 7.3

SvnModule IHistProv SvnProv
MetricsModule See discussion Section 7.3

EvolMqModule Map<Objective,IMetric> EvolMq
IMetric EvolMq

ConfChildModule ModRel ChildRel
EntRel ConfRel

ConfSetModule ModRel SetRel
EntRel ConfRel

LiftChildModule ModRel ChildRel
EntRel LiftRel

LiftSetModule ModRel SetRel
EntRel LiftRel

MovePenaltiesModule Map<Objective,IMetric> MovePenalties
ExpMovePenaltiesModule Map<Objective,IMetric> ExpMovePenalties

Table 7.1: The modules, along with the type bindings they define.

HistoryModule, MetricsModule and ReengineeringModule in Figure 7.2 inherit from
Opt4JModule, which is not shown for readability reasons.

Table 7.1 shows a list of all the Modules and the type bindings they define. In general, each
implementation class of an interface also has a corresponding Module class. This Module then
binds the interface to the implementation class. Furthermore, the Module can contain a number
of parameters which are required by the class. For example, the metrics require a minimum support
value.

A special note needs to be made for a few Modules, though. First of all, Table 7.1 suggests
that metric Modules bind a Map to a subtype of IMetric. This, however, is misleading, because
in fact it adds a binding to the map. That is, each module loaded adds a binding, which results
in a map containing multiple metrics. This then makes it possible to load multiple metrics for the
purpose of multi-objective optimization.

Secondly, HistoryModule and MetricsModule are abstract classes, serving as a category
to group the other Modules. Additionally, they define methods bindHistory() and bind-
Metric() respectively, easing the binding for sub-Modules (that is, sub-Modules only need to
supply the concrete class, and for metrics also the name and optimization direction).

Finally, EvolMqModule defines two bindings for EvolMq. The first binding adds the metric
to the map of all metrics which should be used for optimization. The second binding binds EvolMq
directly to IMetric. This binding is for the validation. It binds a different, independent instance
of the metric which is used for the validation process. See Chapter 8 for details on the validation.

The Modules present in the library are automatically discovered by Opt4J, as long as they
inherit from Opt4JModule. Modules can then be loaded from the GUI, effectively binding
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interfaces to classes. For each Module, the parameter values can be modified in the GUI as well.
There is one Module which should always be loaded, ReengineeringModule. This

Module binds all types required by Opt4J. These types are discussed in Section 7.2. This
Module also attaches the validation listener, enabling the validation.

The Google Guice injector is constructed by supplying a list of Modules. Creating an
object is then done by requesting an instance of a class from the injector. The appropriate con-
structor (annotated with @Inject) is then called, with all dependencies automatically resolved.
Resolving the dependencies is based on the bindings in the loaded Modules. Adding a depen-
dency is then only a matter of accepting the dependency in the constructor, and the rest is handled
automatically.

Opt4J creates the Google Guice injector, loading those Modules the user selected in the
GUI. Furthermore, only the Opt4J framework ever uses the injector to create objects. Our library
only lets Google Guice inject dependencies in the constructors whenever an instance of the
class is required by Opt4J or as a dependency to another class.
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8. Experimental results

Several experiments are performed using the optimization technique discussed in Chapter 6. These
experiments are performed on the same case study as used in Chapter 5, Spring Framework.
However, this time we are not investigating a large restructuring effort, but instead we are restruc-
turing the source code using the techniques discussed in this thesis.

The case study is first briefly discussed in Section 8.1. Then, the methodology of the experi-
ments is presented in Section 8.2. This includes a list of the metrics used and an overview of the
experiments performed. Section 8.3 then presents the results of the experiments and a conclusion
is finally given in Section 8.4.

8.1 Case

Again, the spring-webflow subproject of the Spring Framework is selected as a case study
for the experiments. However, this time we are not interested in investigating a restructuring effort
from the past. Instead, we now take the most recent version of the source code of this project
and attempt to restructure the code using the optimization technique from Chapter 6.

The most recent commit to the project at the time of the experiments is commit 14496.
We need a commit history which does not contain any major restructurings, because otherwise
commits might include changes to entities which no longer exist. As this is undesirable, we also
note the oldest commit which can safely be used, which is commit 5636. In the range 5636–14496,
there are almost 600 usable commits.

8.2 Methodology

In Chapter 5, we validated multiple different metrics, each with a set of possible parameter values.
From the results of this validation study, we selected four metrics which are used in the experiments
in the current chapter. These metrics are all based on MQ with the set-based technique for
module-level relations (see Chapter 3 for the metric definitions). Furthermore, three metrics use
the confidence-based technique for entity-level relations, while the fourth metric uses the lift-
based technique. For the confidence-based metrics, the three different techniques for combining
confidence values are used (maximum, average and minimum). An overview of the metrics used
for the experiments in this chapter, including the parameter values, is given in Table 8.1.

Furthermore, Chapter 6 defined two additional metrics, the normal CP (Definition 15) and
the exponential CP (Definition 16). These two metrics are intended to be combined with an
MQ metric for multi-objective optimization. Therefore, for each MQ metric, we perform three
experiments:

1. Single-objective, using only the MQ metric as an objective.

2. Multi-objective, optimizing both MQ and the normal CP metrics.

3. Multi-objective, optimizing both MQ and the exponential CP metrics.
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Entity-level Confidence combiner Support Confidence
Confidence Maximum 0.005 0.5

Average
Minimum

Entity-level Support p-value
Lift 0.005 0.01

Table 8.1: An overview of the four metrics used in the experiments. All metrics use the
set-based module-level technique. The choice of these metrics is based on the results of
the metric validation study in Chapter 5.

Because our optimization technique, the genetic algorithm, is non-deterministic, we repeat all
experiments multiple times. From these runs, we can calculate the average and a 95% confidence
interval. This allows us to make claims on the typical results, instead of just on a single value.
All experiments are therefore performed by executing 10 runs of the algorithm.

For validating the success of the algorithm, we can opt for consulting an expert to check
whether the returned structure is indeed better than the original structure. However, using an
expert to validate results is not very precise, and the use of a more formal validation technique is
preferable [44]. Experts can only give their “opinion” about how well the two structures match
their mental model. Furthermore, experts might be biased (for example, developers on the source
code are expected to prefer the original structure, as that is what they are familiar with).

Note that statistical techniques can only be used for conclusions on values measured by our
metrics, and cannot ensure improvement of the modular quality based on aspects not measured
by the metrics. A validation study based on expert opinions, however, needs to be executed with
great care. That is, to make the results more objective (instead of a subjective opinion), multiple
experts are needed. Furthermore, these experts should be free of any bias, and thus cannot be
familiar with the original code structure. The experts need time to investigate both structures
(original and improved) to form their opinion. As all of this takes time (both to execute the
experiment, and time for the experts to form their opinions), it is a good idea to first validate
the results using statistical techniques. If there are theoretical problems with the approach, there
is no need to spend time on finding practical problems as well. Therefore, we now use statistical
techniques to validate the results, and a validation study based on expert opinion is left for future
research.

In order to measure the performance of the genetic algorithm, the commit history is split into
two parts: a training set and a test set. The training set is used by the MQ metric which is
optimized. The test set contains other commits than the training set and is used at the end of the
optimization process to calculate the metric value on the improved structure. The commits in the
test set are thus not considered during the optimization process, but are only used for validation.

In other words, the commit history is split into a training set and a test set. The training set
is used for metric calculation during the optimization process. Therefore, the metric value based
on this set is expected to increase significantly. However, this increase in metric value might be
the result of a structure based on relations supported by the training set, while these relations
are not supported by the test set. The test set is thus used to validate that the metric value
even increases when a different set of commits is considered. For the optimization process to be
successful, we thus also expect a significant increase in metric value based on the test set.

To minimize the risk that the split into training and test set is not fair, in the sense that the
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Figure 8.1: The evolution of the MQ value during the execution of the genetic algorithm.
A total of 2000 iterations with the corresponding maximum metric value at that iteration
are shown, together with 95% confidence intervals after every 50 iterations. We see that
the metric value is already fairly stable after 1000 iteration.

metric values are influenced by the properties of the two sets, we choose to make the training set
and the test set the same size. This way, we eliminate the risk that the metrics are sensitive to
the size of the history.

Furthermore, the commit history is not split on a given time, with all commits before that time
in the training set and the commits after that time in the test set. The problem with splitting
this way, is that older commits might lead to the discovery of relations which were later removed,
or miss the relations which were later added. Therefore, both the training set and the test set
span the complete, analyzed history. That is, if all commits are numbered sequentially, the even
numbered commits are used in the training set and the odd numbered commits in the test set.
Note that this numbering does not correspond to the revision numbers, because some revisions
might be missing.

By using the above described technique of splitting the commit history in a training set and a
test set, we can investigate whether an increase in MQ value really corresponds to an improvement
in code structure quality. That is, while it is obvious the optimization process will find structures
with a higher MQ value on the training set, we can validate whether this increase also occurs
when the metric is calculated on the independent test set.

Additionally, we investigate multi-objective optimization in a bit more detail. For the two CP
metrics, we plot the found solutions of all runs in order to compare if approximately the same set
of Pareto-optimal solutions is found. Furthermore, we check which of those solutions are selected
to be returned by the algorithm.

One more parameter needs to be selected for all experiments, and this is the number of
iterations the genetic algorithm will perform during each run. For this, we choose to use 1000
iterations. The reason for this is shown in Figure 8.1. This figure shows how the MQ value
increases during the execution of the genetic algorithm. Initially, a relatively large increase per
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iteration is detected, but after about 1000 iterations, the MQ value hardly increases anymore.

Furthermore, the 95% confidence intervals shown after every 50 iterations also show that
the metric value varies more during the earlier iterations, and becomes more stable at about 1000
iterations. That is, the confidence intervals becomes smaller. Therefore, we conclude that running
the genetic algorithm for more than 1000 iterations neither helps much to get higher MQ values,
nor does it give more stable results over multiple runs. Therefore, we decide to use 1000 iterations
for all experiments.

8.3 Results

This section presents the results of the experiments. First, the results for single-objective opti-
mization are discussed in Section 8.3.1. Next, the results for multi-objective optimization (for
both CP metrics) are discussed in Section 8.3.2. Furthermore, we investigate the shape of the
Pareto-front in Section 8.3.3. Finally, the performance in terms of execution time of the techniques
is compared in Section 8.3.4.

The results discussed in this section all use a 95% confidence interval. Furthermore, the
statistical significance of observations of the results is tested using a significance level of 5% (that
is, a p-value of 0.05).

8.3.1 Single-objective optimization

The results of the experiments with single-objective optimization are shown in Figure 8.2. Here,
we can see a large increase in MQ for all four metrics, for the training set. An increase is of
course expected, since the best solution found is returned, which is always at least as good as the
original structure.

However, an increase from 0.2 to 0.8 is detected, which means the objective function could
be significantly improved. As the maximal value the MQ can take is 1, a solution quite close to
the optimum is found. Note that even the best structure might not have an MQ value of 1, so it
is indeed a good result.

When we look at the results of the test set, however, there is a much smaller increase in MQ .
It is indeed to be expected that for the test set the improvement is smaller, because the commits
in the test set are not considered during optimization. That means that any relations apparent in
the test set, but not in the training set, are not detected during optimization, and vice versa.

Of course, this independence of the test set with respect to the training set is exactly what
we want. Now, we can see that the improved structure indeed also shows an improvement when
other commits are considered. Thus, entities which co-evolve in the training set must also have
co-evolved in the test set, causing similar relations to be detected. The fact that the relations
detected from the training set and the test set are similar, explains why the metric value was
also increased on the test set. This already suggests that the presented automated reengineering
technique is indeed capable of improving the code structure.

Comparing the four MQ metrics, we notice that, for the training set, a difference in MQ value
before restructuring corresponds with a similar difference after restructuring. That is, the MQ
value for the confidence-based metric with minimum confidence combiner is smaller than the MQ
value for the other metrics, but this is true both before and after restructuring.

On the test set, however, this is not always true. For example, the MQ value before restructur-
ing is lower when using the average as confidence combination technique when compared to using
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Figure 8.2: Results of the experiments for single-objective optimization, for 10 runs. 95%
confidence intervals are shown for the metric values of the code structure after restruc-
turing. Both the results for the training set and the test set are shown. On the training
set, there is a large increase in MQ shown for all metrics, but even on the test set a
statistically significant increase in MQ is detected for all metrics.

the maximum. But after restructuring, the MQ value is higher for average. A similar observation
is made between using the maximum and the minimum for the confidence-based metrics.

This suggests that using the maximum to combine two confidence values is not the best
option, as the average and the minimum appear to perform better. However, the difference in
MQ value after restructuring is not statistically significant and the difference in MQ value before
restructuring is based on only a single measurement. Therefore, we cannot make a strong claim
on this difference, but it does appear to show that the average and minimum are better techniques
for combining two confidence values, than taking the maximum.

8.3.2 Multi-objective optimization

Figure 8.3 shows the results for the experiments with multi-objective optimization for the four MQ
metrics, combined with the normal CP . We can see similar results as with the single-objective
optimization. That is, a large increase in MQ is found for the training set, and a smaller but still
statistically significant increase on the test set.

One important difference we should note, is that the measured MQ values after the restruc-
turing are significantly lower for the multi-objective optimization than for the single-objective
optimization. That is, on the training set, the MQ value of the best solution found is only about
0.35, while for single-objective optimization values of 0.8 were reached. It should be noted, how-
ever, that the shown MQ values are not the maximal MQ values found, but the MQ values of
the selected, best solution (according to the selection technique as described in Chapter 6). The
individual solutions (and thus also the one with highest MQ) are discussed in Section 8.3.3.
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Figure 8.3: Results of the experiments for multi-objective optimization using the normal
CP. 95% confidence intervals are shown for the metric values of the code structure after
restructuring. For both the training set and the test set, an increase in MQ is detected
for all metrics. The increase for the test set, however, is smaller than for the training
set.

When we look at the results on the test set, we again note that the measured MQ values are
smaller than for single-objective optimization. However, in this case, the difference is not as large
as on the training set. Where single-objective optimization showed MQ values around 0.3, the
multi-objective approach shows values around 0.2.

In other words, using multi-objective optimization (as opposed to single-objective optimization)
results in MQ values which are significantly smaller on the training set, but only slightly smaller on
the test set. This increased stability between training and test set suggests that the restructurings
performed by the multi-objective genetic algorithm are more limited to those restructurings which
truly contribute to a better code quality. That is, single-objective optimization made more changes,
but many of them do not contribute much to an improved structure.

Comparing the four MQ metrics, we again make the same observation as for single-objective
optimization. On the training set, a larger MQ before restructuring corresponds with a larger
MQ after restructuring. For the test set, this is however not true when comparing the maximum
and average as techniques for combining confidence values. This time, minimum does behave the
same on the test set as on the training set.

This again suggests that taking the average is better than taking the maximum of two con-
fidence values. However, again the differences after restructuring are not statistically significant.
Therefore, we cannot make any strong claims, and can only suggest that the average might
perform slightly better than the maximum.

Figure 8.4 shows the results for the experiments using the exponential CP as the second
objective. These results look remarkably similar to the results for multi-objective optimization
with the normal CP . Indeed, there are no statistically significant differences between the results.
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Figure 8.4: Results of the experiments for multi-objective optimization using the exponen-
tial CP. For the code structure after restructuring, 95% confidence intervals are shown.
For both training and test set, an increase in MQ is detected for all metrics. The increase
for the test set, however, is smaller than for the training set.

Thus, there does not seem to be any real difference between the two CP metrics, when comparing
the quality of the returned code structure.

The change penalty values for both CP metrics are shown in Figure 8.5. Here, we immediately
notice the difference for the confidence-based MQ with the minimum confidence combiner. For
the normal CP , the measured values are clearly the smallest of all metrics, while for the exponential
CP the largest change is measured.

It is, however, an interesting difference which we observe. The results for CP and for MQ
come from the same set of 10 runs. This is interesting, because although the results for MQ are
extremely similar for the two CP metrics, the results for CP are observably different.

However, one should not be fooled by the observed differences in the results for CP . The
confidence intervals in these results are also fairly large, and indeed, no statistically significant
difference between the CP values is detected. Therefore, we cannot make any strong claims on
the differences in CP between the metrics. As a result, we must conclude that no clear difference
is detected between the normal CP and the exponential CP .

8.3.3 Pareto-front

A plot of all the Pareto-optimal solutions found (all 10 runs aggregated) by the multi-objective
optimization using the normal CP is shown in Figure 8.6. Note that each run only returns those
solutions which are Pareto-optimal with respect to all solutions found during that run. However,
it is possible that a run of the optimization algorithm finds solutions which dominate the Pareto-
optimal solutions of another run.
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Figure 8.5: The CP values as measured during the experiments for multi-objective opti-
mization, including 95% confidence intervals. One immediately obvious difference is that
the confidence-based technique with the minimum confidence combiner shows the least
number of changes for the normal CP, but the largest value for the exponential CP.

Figure 8.6 thus distinguishes between solutions which are Pareto-optimal with respect to all
solutions found by all 10 runs together, and those solutions which are Pareto-optimal with respect
to the solutions found in the same run, but not for all solutions found. Furthermore, the solutions
selected as the best solution in each run is also marked.

The first thing we note is that the Pareto-front indeed shows a shape similar to the one
discussed in Chapter 6. That is, the first few changes result in a relatively large increase in MQ ,
while later changes result in a smaller increase in MQ . Also, the shape of the Pareto-front for the
individual runs are fairly consistent, in the sense that they approach the same values.

However, a large number of solutions turn out to be no longer Pareto-optimal when the
solutions of all 10 runs are aggregated. This is to be expected, because only a limited number
of Pareto-optimal solutions can exist. Since the normal CP is always an integer value, and the
CP value of the found solutions is always smaller than 60, there can be no more than 60 Pareto-
optimal solutions. Since the 10 runs combined have more than 200 solutions, it is obvious that
the majority of those solutions is no longer Pareto-optimal.

The next thing we notice is that the selected solutions are all located near the same part
of the Pareto-front. This again shows some consistency between the runs, with a similar result
returned each time. Also, we note that these solutions are located there where the increase in
MQ becomes relatively smaller compared to the increase in CP . That is, the selected solutions
are exactly where we expect them to be.

Finally, we note that the solutions are closer together at a low CP and MQ , while they are
further apart for higher CP and MQ . This is explained by the fact that each run finds the same
minimum MQ and CP , namely those corresponding to the original structure of the code. As more
changes are made to the code structure, the runs start deviating more. This is especially true for
those solutions with a higher CP than the selected solution.

Comparing the results for the four MQ metrics, there are not many differences. All have a
similarly shaped Pareto-front and even the differences in maximal and minimal MQ and CP values
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Figure 8.6: Plots of the solutions found during all 10 runs using normal CP. Pareto-
optimal solutions which were selected are denoted with , and those not selected with .
Solutions which are dominated by solutions from another run are denoted with when
they were selected and with when they were not selected. The Pareto-front has a similar
shape for all runs, with the selected solution always at approximately the same part of the
Pareto-front. However, the selected solutions are frequently dominated by solutions from
another run.

found is similar, with only the same differences as detected in the average values for MQ .

Figure 8.7 shows a plot of all Pareto-optimal solutions of the 10 runs aggregated, for the
exponential CP . The results here are similar to the results for the normal CP , with a few notable
differences.

The first difference is that the Pareto-front shows a much steeper increase in MQ at the start,
and a smaller increase at the end, for the exponential CP . This is most likely because of the
exponential nature of this CP . That is, the penalty of a single move is exponential with respect
to the distance over which it is moved, while this penalty is linear for the normal CP . Therefore,
for small CP (and thus few changes), this exponential nature causes a more rapid increase in
MQ , while for large CP (and thus many changes), the summation of all the penalties suppresses
the effect of the exponentiations, causing a slower increase in MQ .

The second notable difference is the larger number of solutions. The exponential CP returns
a total of more than 400 solutions, which is twice as many as the normal CP . This difference
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Figure 8.7: Plots of the solutions found during all 10 runs using exponential CP. Pareto-
optimal solutions which were selected are denoted with , and those not selected with .
Solutions which are dominated by solutions from another run are denoted with when
they were selected and with when they were not selected. The Pareto-front has a similar
shape for all runs, with the selected solution always at approximately the same part of the
Pareto-front. However, the selected solutions are frequently dominated by solutions from
another run.

comes from the fact that the exponential CP can theoretically grow in arbitrarily small steps. In
practice, for code with a module depth of 3 (which is true for the Spring Framework), the
exponential CP can grow in steps of 1/23 = 1/8. So for the measured range for the CP of 15,
this means 15 · 8 = 120 possible CP values. This is twice that for normal CP , so having twice as
many solutions found is to be expected.

While there are differences between the two CP metrics, the differences are not of such a
nature that we can say one is better than the other. We must thus again conclude that the two
metrics are similar, and perform equally well in measuring the changes.

8.3.4 Execution time

The execution times as measured during the experiments are shown in Figure 8.8. The execution
times are measured per run (1000 iterations), and the results of the 10 runs are then aggregated
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Figure 8.8: Average execution times per run (1000 iterations) of the genetic algorithm.
Single-objective optimization is the fastest, while multi-objective shows similar perfor-
mance for both CP metrics. The confidence-based metrics show better performance than
the lift-based metric.

to get an average and 95% confidence interval.

The first thing we note is that single-objective optimization is the fastest for each MQ metric.
This is to be expected, because the multi-objective optimization requires the evaluation of two
metrics each time the fitness of a solution needs to be calculated. This causes a 20% increase in
execution time for multi-objective optimization, as compared to using only a single objective.

Furthermore, for multi-objective optimization, no significant difference between the perfor-
mance of the normal CP and the exponential CP is detected. It could be expected that the
exponential CP would be slower than the normal CP , because the normal CP only requires inte-
ger addition to calculate, while the exponential CP requires the exponentiation of floating point
number. However, the results show that exponential CP is even slightly faster, but this difference
is not statistically significant.

Finally, the confidence-based metrics are faster than the lift-based metric, both for single-
objective and multi-objective optimization. This is to be expected, because calculating the con-
fidence is computationally inexpensive. For the lift-based metric, a statistical test needs to be
performed, which is a more expensive operation. The execution time for the lift-based metric is
therefore approximately 10% longer.

No clear difference can be detected between the execution times of the three confidence-based
metrics. While the average execution time is lowest when the minimum is used, and highest when
the maximum is used to combine two confidence values, this result is not statistically significant.
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8.4 Conclusion

The experiments performed in this chapter compared four MQ metrics and three optimization
techniques for the problem of automated restructuring. The results for all experiments indicate
that a significant increase in MQ value can be achieved using these techniques. Therefore, we
can conclude that the proposed approach is indeed capable of improving the structure of source
code.

While single-objective optimization results in a larger increase in MQ value, this comes at a
cost of large changes to the code structure. As it is desirable to keep the code structure stable,
multi-objective optimization is a good approach to minimize the number of changes required to
achieve an increase in MQ .

Besides limiting the number of changes to the code structure, multi-objective optimization also
showed more stable results on the test set. That is, while the MQ value after restructuring on the
training set was significantly smaller for multi-objective optimization than for a single objective,
the MQ value on the test set was more similar to the results for single-objective optimization.
This stability for multiple objectives indicates that single-objective optimization causes too many
changes to the code structure, which then only result in a further degradation of MQ on another
set of commits.

Nonetheless, even for single-objective optimization, the results are promising. An increase in
MQ value is detected, even on the test set. This indicates that the proposed technique does not
restructure the code only to match what is learned from the given set of commits. Instead, the
technique restructures the code by grouping entities together which also co-evolve in the commits
not considered during the optimization process. In other words, it groups entities together which
are in fact related to each other.

Multi-objective optimization does come with a downside, however. The execution time required
for 1000 iterations is longer for multi-objective than for single-objective optimization. Using
multiple objectives is 20% slower than using only MQ as the single objective. But the advantages
of multi-objective optimization are worth this increase in execution time, because it prevents
unnecessary changes being made to the code structure (that is, changes which do not improve
the MQ value).

Comparing the two multi-objective approaches (that is, the two metrics normal CP and expo-
nential CP), we see that there is no real difference. Both find solutions of the same quality, and
both are equally capable of finding a good approximation to the Pareto-front. Furthermore, both
result in approximately the same execution time for 1000 iterations. Therefore, on the basis of
the performed experiments, we cannot detect any significant difference between the two metrics.

When we compare the four MQ metrics, we see that all of these metrics perform well. That
is, they are all capable of improving the code structure. There are, however, some differences
between the metrics.

First of all, for the three confidence-based metrics, the one taking the maximum to combine
two confidence values shows a slightly worse performance than the other two. This is based on
the fact that on the training set, a higher MQ value before restructuring corresponds to a higher
MQ value after restructuring. However, on the test set, the metric using the maximum shows a
higher MQ value before, but a lower MQ value after restructuring. This thus indicates that too
many relations are detected due to a high confidence in one direction, while they turn out not to
be related when the test set is considered.

Secondly, the lift-based technique does not appear to show much difference to the confidence-
based techniques. One difference is that it appears to be slightly worse than the confidence-
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based techniques for single-objective optimization, while it appears to be slightly better for
multi-objective optimization. Therefore, as multi-objective optimization is favorable over single-
objective, the use of the lift-based technique might be a good choice. However, it should be noted
that neither difference is truly significant.

A clearer difference between the lift-based and confidence-based techniques, is when we com-
pare the execution times. The lift-based metric shows a 10% slower execution of the 1000 it-
erations than the confidence-based metrics (which are all equally fast). Therefore, the use of
confidence-based metrics seems to be preferred over the use of the lift-based metric.

However, it should be noted that the confidence-based metrics have a theoretical problem (see
Chapter 3), so according to the theory, the lift-based metric is preferred. The results presented in
this chapter, however, do not indicate that this is a problem in practice.

8.4.1 Threats to validity

The experiments in this chapter were designed and performed in such a way, that the results are
meaningful and valid. However, some issues can threaten the validity of the results, and thus the
validity of the conclusion.

The main issue is that the experiments are all performed on only one case study. While
the results are positive on this case study, things might not look so nice on another case study.
Therefore, it is important for future research to focus on validating the obtained results on multiple
case studies. Besides validating the results, such research might also be capable to show clearer
differences between the proposed metrics.

Another issue is the non-determinism of the algorithm. As the genetic algorithm makes random
decisions, the results are influenced a great deal by chance. To prevent this issue from becoming
a problem, multiple runs of the algorithm were performed. The results of these runs were then
aggregated, and 95% confidence intervals calculated. However, even the use of confidence intervals
does not provide us with absolute accuracy.

Furthermore, the commit history was split into a training set and a test set, in order to prevent
the problem that an increase in MQ is a result of “over-fitting” the history by our improved code
structure. As the test set is not used during the optimization process, it shows how the MQ value
changes on another set of commits. Here, we noticed an increase in MQ even on the test set.
For single-objective optimization, however, this increase was much smaller than on the training
set, thus indicating that over-fitting indeed occurred there. For multi-objective optimization, this
was not so much a problem.
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As software systems evolve, the quality of the modularization of the code degrades. Entities might
no longer be placed in appropriate modules, making the system difficult to maintain, and the struc-
ture hard to understand. To solve these problems, it is important to improve the modularization
quality by reengineering the code.

Since reengineering code manually is labor intensive work, it is interesting to find techniques
for automating this process. Therefore, a platform was developed which can be used for empir-
ical research into automated reengineering. This platform was also used to validate a proposed
approach to automated reengineering.

A number of metrics based on evolutionary coupling have been defined which are capable
of quantifying the the quality of a modularization of the code. These metrics use the change
history of the source code to detect relations between entities. A metric value is then calculated
based on the fact that related entities should be part of the same module. A hierarchical module
structure is supported by the metrics, as opposed to just a flat module structure, as this is closer
to modularization of real systems.

All metrics were validated on a case study of a successful reengineering effort. That is, metric
values were calculated for two versions of a system: one version before and one version after a
successful reengineering effort. The results indicated that some of the proposed metrics indeed
measured an increase in modularization quality. For the module-level techniques of detecting
relations (see Chapter 3), the set-based technique performed best, while the other module-level
techniques appeared to have some problems. Therefore, we can conclude that for detecting
relations on the module-level, it is best to use the set-based technique. On the entity-level, things
were less clear. All entity-level techniques showed promising results, and all appeared to be capable
of quantifying the modularization quality.

Furthermore, a technique was proposed for automated reengineering. This technique uses a
genetic algorithm in order to optimize the code structure. The search for an improved structure
is guided by the defined evolutionary coupling metrics. Additionally, the genetic algorithm uses
multi-objective optimization in order to minimize the number of changes which are made to a code
structure. That is, while the optimization process attempts to find a structure which maximizes
the modularization quality, it simultaneously attempts to minimize the number of changes. This
way, the code structure is not changed so much that programmers have difficulty understanding
the new structure, when they are already familiar with the old structure.

The proposed optimization algorithm was validated using a series of experiments. For this,
a system was considered, of which the structure was automatically improved using the proposed
techniques. The results showed that the improved structure indeed showed signs of a better
modularization, indicating the success of the algorithm. Especially the multi-objective approach,
which simultaneously minimized the number of changes, was successful as compared to optimizing
only the modularization quality metric. However, these are results for only a single case study, so
further validation is required.
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9.1 Future work

While the proposed techniques used for automated reengineering showed potential, it is not yet
ready for use. Further research into automated reengineering is required to both validate the
proposed techniques, and possibly propose more, better techniques. The platform developed
for the research into automated reengineering can be used for that purpose. New metrics and
optimization strategies can be added to the platform, and tools for validation are already provided.

Ideas for future research into automated reengineering have already been proposed in Chapter 3
and Chapter 6. These include possible improvements on the proposed evolutionary coupling
metrics. For example, with evolutionary coupling, it is possible to measure the strength of a
relation between two entities. This can then be used to make relations for which there is strong
evidence more important than relations with weak evidence. This also removes the need of setting
a threshold value for when the evidence is considered strong enough to decide there is a relation.
For more suggestions of future work with respect to the metrics, see Section 3.5.

For the optimization, there are possibilities of using different optimization algorithms. It would
then be especially interesting to compare the performance of multiple algorithms. This then makes
it possible to decide whether one algorithm is better than another for this specific problem. See
Section 6.5 for more ideas on future work for the optimization strategy.

The current implementation of Fisher’s exact test, which is used to perform the statistical test
for detecting lift-based relations, uses log-factorials to prevent integer overflows. However, this
implementation accumulates rounding errors resulting in wrong p-values. This can potentially lead
to wrong decisions on whether two entities are related. Therefore, it is important to investigate
to what extent this is a problem in practice, or to investigate other techniques for performing the
calculations without the problem of accumulating rounding errors.

Furthermore, future research can focus on performing a more thorough validation of both the
metrics and the optimization technique proposed in this thesis. Validation has only been performed
on a single case study, which means the results might be specific to that system. Therefore, it
is important that validation is performed on other systems, such that conclusions on the general
performance of the proposed technique can be given.

Additionally, the validation performed only used statistical techniques to draw conclusions
from the results. Such an approach to validation, however, does not validate that the improved
structure is indeed a better structure, which should be preferred. It is only a first step towards
validation. Once the approach has proven to be promising using such a theoretical approach to
validation, it is important to perform a more practical validation study by consulting experts.

Finally, the current implementation of the platform does not actually perform any changes to
the code. Only the structure of the code is changed in a representation of the code structure
stored in internal memory, without modifying the actual code. This functionality is sufficient as
long as it is only used for research, such as done in this thesis. However, modifying the code is of
course a necessary part of reengineering, and should thus eventually be implemented.
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