
 Eindhoven University of Technology

MASTER

Bisimulation partitioning and partition maintenance
on very large directed acyclic graphs

Hellings, J.A.J.

Award date:
2011

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/98496f07-e5cb-458c-9daa-87a5b4f748c1

Bisimulation partitioning and partition
maintenance

Jelle Hellings

July 2011

Bisimulation partitioning and partition maintenance

on very large directed acyclic graphs

MASTER’S THESIS

Jelle Hellings • exbisim@jhellings.nl

July 24, 2011

Department of Mathematics and Computer Science
Eindhoven University of Technology

Supervisor
dr. G. H. L. Fletcher

Committee members
prof. dr. P.M.E. de Bra

dr. G. H. L. Fletcher
dr. H. J. Haverkort

mailto:exbisim@jhellings.nl

ABSTRACT

The combination of graphs and node bisimulation is widely used within and outside of computer sci-
ence. One example of this combination is constructing indices for speeding up queries on XML docu-
ments. Thereby XML documents can be represented by trees and many index types for indexing XML
documents utilize the notion of bisimulation. Thereby the notion of bisimulation is used to relate nodes
that have equivalent behavior with respect to queries performed on the XML documents. By replacing
these bisimilar nodes one can reduce the size of the XML document and as such speed up queries. The
objective of this thesis is to develop techniques for constructing and maintaining bisimulation parti-
tions. Thereby a bisimulation partition groups nodes based on bisimilarity. In this thesis we primarily
focus on very large directed acyclic graphs. The results in this thesis can for example be used to index
very large XML documents.

Our first goal is the development of external memory bisimulation partition algorithms. Bisimu-
lation partitioning is already well studied for small graphs; this work is however hard to extend to an
external memory environment. Therefore we develop a new algorithm; this algorithm has an expected
IO complexity of O(SORT(|N |) + SORT(|E |) + PQ(|E |)). Thereby |N | is the number of nodes in the input
graph and |E | is the number of nodes in the input graph. The notation SORT(n) indicates the cost of
external memory sorting a list with n fixed size elements; the notation PQ(n) is used to indicate the
cost of an external memory priority queue whereon at most n elements are stored. The behavior of this
external memory bisimulation partitioning algorithm is also studied experimentally. This experiment
shows that the algorithm is fast in practice; it can easily handle XML documents with a size of 55.8GB
and directed acyclic graphs with at least a billion nodes and more than three billion edges.

The second goal is the investigation of partition maintenance in an external memory setting.
Thereby we look at how a bisimulation partition can be kept up to date when the underlying graph
is updated. Within a theoretical framework we proof that edge updates to a graph can change the entire
bisimulation partition; subgraph updates however only affect the subgraph nodes in the bisimulation
partition. We also provide an upper bound on the cost of partition maintenance by providing a naive
algorithm for partition maintenance. For performing subgraph updates and edge updates we provide
several sketches that can be of practical use; none of these sketches can however generally outperform
the naive approach.

Lastly we focus on a practical application of bisimulation partitioning and partition maintenance;
namely indexing XML documents for an XML database. Working with XML documents gives us
the opportunity to utilize the simple structure of XML documents to optimize algorithms. In this
setting we present an IO efficient 1-index construction algorithm with worst case IO complexity of
O(SORT(|N |) +PQ(|N |)) and an IO efficient A(k)-index construction algorithm with worst case IO com-
plexity of O(SCAN(k + |N |) + SORT(k |N |)). We also provide a sketch for an F&B-index construction algo-
rithm.

ACKNOWLEDGEMENTS

This thesis is the result of six months of research performed for my Master Thesis project. This project
completes my master Computer Science & Engineering at the Eindhoven University of Technology. The
project was performed internally at the Databases and Hypermedia group of the department of Math-
ematics and Computer Science; this under the daily supervision of dr. George Fletcher.

I would like to thank dr. George Fletcher for his daily guidance and support throughout the project.
I also would like to thank him for introducing me to the topic during the Database Technology course
and for fostering the development of my own research topic.

I also thank dr. Herman Haverkort for his expert knowledge on external memory algorithms and for
his support throughout the project.

Jelle Hellings

CONTENTS

1. Introduction . 1
1.1 A small example: the 1-index . 2
1.2 Problem statement . 4
1.3 Overview . 4

2. Preliminaries . 5
2.1 Directed graphs . 5
2.2 Node and graph bisimulation . 7
2.3 Partitions and partition refinement . 9
2.4 Graph index . 12
2.5 External memory algorithms . 13

2.5.1 Memory model . 13
2.5.2 Complexity . 13

3. Bisimulation partitioning . 15
3.1 Online bisimulation partitioning . 15

3.1.1 Decision structures . 16
3.1.2 Online bisimulation . 19

3.2 Introducing time-forward processing . 21
3.2.1 The time-forward processing technique . 21
3.2.2 Time-forward processing online bisimulation partitioning algorithm 22

3.3 On partition decision structures . 23
3.3.1 External memory search structures . 23
3.3.2 Query patterns . 24
3.3.3 Structural summary partition . 26
3.3.4 Using structural summaries for bisimulation partitioning 28

3.4 External memory bisimulation partitioning . 30
3.5 Constructing maximum bisimulation graphs and graph indices 34
3.6 Final notes . 35

3.6.1 Limitations on the external memory bisimulation partitioning algorithm 35
3.6.2 Implementing external memory bisimulation . 36

4. Bisimulation partition maintenance . 38
4.1 Naive updating . 38
4.2 Maintenance complexity . 39

4.2.1 Update complexity for subgraph additions . 40
4.2.2 Update complexity for edge additions . 40

4.3 External memory algorithms for maintenance . 42
4.3.1 Adding subgraphs . 42
4.3.2 Removing subgraphs . 47
4.3.3 Edge updates . 48

4.4 Final notes . 50

5. Indexing XML documents . 52
5.1 Preliminaries . 52

5.1.1 The Extensible Markup Language . 53
5.1.2 Variants on node bisimulation . 54

5.2 External memory index construction for XML documents . 57
5.2.1 Constructing the 1-index . 58
5.2.2 Constructing the F&B-index . 60
5.2.3 Constructing the A(k)-index . 61

5.3 Partition maintenance for XML documents . 63
5.3.1 Updating the 1-index . 63
5.3.2 Updating the F&B-index . 63
5.3.3 Updating the A(k)-index . 63

5.4 Final notes . 64

6. Experimental verification . 65
6.1 Implementation overview . 65

6.1.1 Low-level details . 66
6.1.2 System specifications . 67

6.2 Experiment description . 68
6.3 Results . 70
6.4 Conclusions . 73

7. Conclusion . 75
7.1 Overview . 75
7.2 Future work . 76

7.2.1 Practical implementations and verification . 76
7.2.2 Practical partition maintenance . 77
7.2.3 Internal memory bisimulation . 78
7.2.4 Generalizing bisimulation partitioning . 78
7.2.5 Generalizing index construction . 79

iv

Chapter 1

INTRODUCTION

Graphs provide an abstract model for describing elements and the relations between these elements.
In practice graph-based models are used to describe many forms of data. An example of the usage
of graphs in everyday life is the family tree. Also all kinds of networks are often portrayed as graphs;
including public transportation networks, the Internet and social networks. Within computer science
the usage of graphs is widespread. Some usages include representing data, systems and the behavior
of systems. Obvious examples of the graph model being used to represent data are storing data in XML
documents and storing data in RDF documents.

Leeuwarden

Groningen

Zwolle

Hoorn
Alkmaar

Haarlem

Leiden

Den Haag

Rotterdam

Roosendaal

Breda

Dordrecht

Eindhoven

Den Bosch

Utrecht

Gouda

Venlo

Maastricht

Schiphol

Amsterdam

Hilversum

Amersfoort

Nijmegen

Arnhem
Zutphen

Deventer

Almelo

Hengelo

Enschede

Heerlen

Figure 1.1: A common example of a graph used in everyday life: a map of the railroad network in the
Netherlands. In this ‘graph’ the nodes represent stations; the edges between nodes represent
railways connecting the stations. This image is taken from Wikimedia Commons.

http://commons.wikimedia.org/wiki/File:Baankvaksnelheden.svg

The cost of computations performed on graphs typically depends on the size of the graph. Querying
an XML document is a good example. To answer a query for some information on an XML document
it is often necessary to traverse the entire document. This cost isn’t a big issue when one query is per-
formed. But when XML documents are used or stored in an XML database then one often queries these
documents many times in a row.

We thus want to reduce the size of graphs as much as possible; such that later operations on the
graph can be performed more efficiently. Here is where node bisimilarity comes into play. Node bisim-
ilarity is an equivalence relation between nodes that is often used to reduce the size of graphs. Thereby
bisimulation reduces the size of graphs by grouping all bisimilar equivalent nodes; after grouping each
group of nodes is replaced by a single node. This approach works whenever the operations performed
on the graph cannot distinguish between bisimilar nodes. This is the case for many query operations
on graph databases; other operations include modal logic operators used in model checking.

The problem of grouping all bisimilar equivalent nodes is known as bisimulation partitioning. Due
to its widespread application for optimizing performance of graph querying and model checking this
problem is already studied in great detail in the past decades. Efficient internal memory solutions ex-
ist for general graphs, directed acyclic graphs, and also for the many variants of the node bisimilarity
notion used for graph querying.

Internal memory solutions are however heavily restricted with respect to the size of the input graph.
A possible solution for this size restriction is using external memory (for example hard disk drives). To
make this solution feasible we however need algorithms optimized for external memory. The main goal
of our investigation is to construct efficient external memory algorithms for bisimulation partitioning.

In our investigation we can focus on several classes of graphs. We have the very restricted class of
trees and forests. The class of trees and forests is already heavily used to represent data; XML documents
are one example of data described as trees. A less restricted class is the class of directed acyclic graphs;
wherein general hierarchical relations can be described. An even less restricted class is the class of
directed graphs; wherein any relation between data elements can be described. Due to the many usage
scenarios wherein trees and directed acyclic graphs are used we have chosen to primarily focus on
algorithms for performing bisimulation partitioning on these two classes.

We shall also look briefly at a second problem; namely partition maintenance. One can expect
that graphs are subject of change over time. At these times one needs to recalculate the bisimulation
partition for the changed graphs. This can be done by removing the old bisimulation partition of the
graph and computing a new bisimulation partition from scratch. Such an approach might be costly
when dealing with very large graphs. We thus also take a look at the problem on how a bisimulation
partition can be kept up to date when the underlying graph changes.

1.1 A small example: the 1-index

The 1-index is a structural index for indexing XML documents and other graph-like data. This index
can be used to speed up certain forms of path queries on these graphs; therefore the 1-index uses node
bisimilarity1 to reduce the size of the input document. Consider the XML document from figure 1.2a.

1 More precise, the 1-index uses backward node bisimilarity. This is a variant of node bisimilarity, the basic change is that
1-index considers all edges in reverse. We shall have a closer look at the 1-index in Chapter 5.

2

<root>
<a>

<a>

 <c/>

<a>

<c/> <c/>

</root>

(a)

root

a a a

b b b c c c

(b)

Figure 1.2: A very small example XML document. Figure 1.2a represents the XML document in plain
text. This plain text document can also be represented by a tree as shown in Figure 1.2b.

We shall try to answer two types of queries on this graph; namely (1) Can we reach some path X in
the document; starting from the root? and (2) Return all elements found when following some path X;
starting from the root. The following two queries provide examples for these types of queries:

QUERY 1: is the path root/a/b reachable?
(answer: yes).

QUERY 2: give all nodes reachable by path root/a/b.
(answer: the three elements in the document).

The queries we have mentioned are easily answered by traversing all possible paths in the entire
tree; starting from the root. Due to the size of the document one can directly see the answer to both
queries; traversing the tree thus is perfectly fine. But for larger graphs we can imagine that traversing
the entire graph is not such a good idea. Now consider Figure 1.3; this figure shows the tree that we
obtain when grouping all nodes that are backward bisimilar equivalent1.

root

a

b c

Figure 1.3: The indexed tree representation of the XML document from Figure 1.2. In this tree every
group of backward bisimilar equivalent nodes has been replaced by a single node.

We can easily see how we can answer the first type of queries using the tree shown in Figure 1.3:
simply traverse the graph. But answering the second type of queries is impossible on this graph as there
is no relation to the nodes in the original graph. For answering the second type of queries one thus
should maintain a mapping between groups of nodes from the source graph and the single node rep-
resenting this group in the graph wherein every group of backward bisimilar nodes has been replaced
by a single node. Such a mapping, together with the two graphs where between nodes are mapped, is
called a structural index or 1-index. The structural index of the XML document from Figure 1.2 is shown
in Figure 1.4.

3

root

a

b c

root

a a a

b b b c c c

Figure 1.4: The structural index on the tree representation of the XML document from Figure 1.2.

1.2 Problem statement

The main goal of our work is to construct external memory algorithms and supporting data structures
for performing bisimulation partitioning on directed acyclic graphs. The secondary goal of our work is
to investigate partition maintenance in an external memory setting. To the best of our knowledge this
work is the first contribution for the development of fully external memory bisimulation partitioning
algorithms and partition maintenance algorithms.

1.3 Overview

This chapter serves as an introduction to the studied problems; namely bisimulation partitioning and
partition maintenance for very large directed acyclic graphs. The next chapter, Chapter 2, shall intro-
duce common theory and notation whereon the remainder of this work depends. With this common
theory in mind we work on a solution for calculating the bisimulation partition of very large directed
acyclic graphs; this solution is presented in Chapter 3. In Chapter 4 we take a look at partition mainte-
nance.

After all this theoretical work we shift our attention to a practical application of the theory. We shall
look at how bisimulation partitioning and partition maintenance can be used on XML documents in
Chapter 5. Thereby we introduce algorithms for the construction of the 1-index, the F&B-index, and
the A(k)-index of XML documents. We also look at what role partition maintenance has when updates
are applied to XML documents. In Chapter 6 we present the results of a small scale implementation
of the main algorithms introduced in this work, thereby we try to verify the efficiency claims made in
previous chapters. In the last chapter, Chapter 7, we shall reflect on our findings and we present some
topics for future investigations.

4

Chapter 2

PRELIMINARIES

In this chapter we introduce basic concepts and definitions whereon the contributions in this work de-
pend. Section 2.1 introduces directed node-labeled graphs, Section 2.2 introduces node bisimulation
and graph bisimulation, Section 2.3 introduces partitions and partition refinement, and Section 2.4
introduces graph indices. The last section, Section 2.5, presents an overview on external memory algo-
rithms. Thereby some relevant concepts, data structures, and operations are presented for constructing
efficient external memory (graph) algorithms.

2.1 Directed graphs

Central in this work is the notion of a directed acyclic node-labeled graph. Directed acyclic node-
labeled graphs are a subset of directed node-labeled graphs. We shall use a very simple and general
formalization for these directed node-labeled graphs. In a directed node-labeled graph every node has
a label. This label represents the information represented by the elements in the graph. The edges in
a directed node-labeled graph are directed; meaning that an edge from a node n to a node m does not
imply that there is an edge from node m to node n . Edges represent relations between elements of
information; the nodes. Thereby edges don’t have any label or other information associated with them.

Definition 2.1. A graph is defined as a triple GD = 〈N , E , l 〉; thereby N is a set of nodes, E ⊆ N ×N is
a directed edge relation and l : N →D is a label function relating every node n ∈ N with a label from
some set D. We shall refer to D as the label domain.

If we have nodes n ∈N , m ∈N with (n , m)∈ E then n has an outgoing edge to node m and node m
has an incoming edge from node n . We define E (n) = {m ∈N : (n , m)∈ E } as the set of nodes that have
an incoming edge from node n . We define E ′(n) = {m ∈N : (m , n) ∈ E } as the set of nodes that have an
outgoing edge to node n .

Node m ∈N is a child of node n ∈N if m ∈ E (n), node n i nN is a parent of node m ∈N if n ∈ E ′(m).
A node n is a root if it does not have parents; thus when E ′(n) = ;. A node n is a leaf is it does not have
children; thus when E (n) = ;.

In the remainder of this chapter we shall simply use graphs to refer to node-labeled graphs. We also
directly simplify the notation and terminology used in Definition 2.1. We abstract from any details on
the label domain D. In the remainder we shall in general omit the label domain D altogether. We do
however make some general assumptions on the label domain.

Assumption 2.2. We assume that there is a equivalence relation= relating all equivalent labels from the
label domain D. We also assume that there is a total ordering on the labels from the label domain D.
When analyzing algorithms wherein labels are used we assume that every label can be stored in a fixed
amount of storage.

Directed acyclic node-labeled graphs are a subset of directed node-labeled graphs. The subset of
directed acyclic graphs can be easily defined in terms of paths between nodes; so we first introduce the
notion of a path between nodes.

Definition 2.3. Let G = 〈N , E , l 〉be a graph, let n 1 ∈N , . . . , n i ∈N ; 1≤ i be nodes. The sequence n 1, . . . , n i

is a path from node n 1 to node n i if and only if for every pair of nodes (n j , n j+1); 1≤ j < i in the sequence

we have (n j , n j+1) ∈ E . If there is a path n 1, . . . , n i then node n 1 has an (outgoing) path to node n i and
node n i has a (incoming) path from node n 1.

With the notion of a path we can define the ancestors and descendants of a node. The ancestors of
a node n are those nodes that have an outgoing path to node n . The descendants are those nodes that
have an incoming path from node n .

Definition 2.4. Let G = 〈N , E , l 〉 be a graph, let n ∈ N be a node. The ancestors of node n are
all nodes m ∈ N such that there is a path from m to n . The descendants of node n are all nodes
m ∈ N such that there is a path from n to m . We define the ancestors function A : N → ℘(N)
as A(n) = {m ∈ N : there is a path from m to n} and the descendants function D : N → ℘(N) as
D(n) = {m ∈N : there is a path from n to m }.

Example 2.5. An example graph is shown in Figure 2.1a. In this graph the nodes a, b and c are roots.
The nodes g and h are leafs. Node e has node b and i as parents and node f and h as children. In Figure
2.1b the ancestors of node e are highlighted; in Figure 2.1c the descendants of node e are highlighted.
The path [b,e,f,i,e,h] is one of the many paths from node b to node h.

a b c

d e f

g h i

(a)

a b c

d e f

g h i

(b)

a b c

d e f

g h i

(c)

Figure 2.1: A directed node labeled graph; the text on each node represents the label of the node.

By using the definition of a path we can define the directed acyclic graphs as a subset of directed
graphs.

Definition 2.6. A graph G = 〈N , E , l 〉 is a directed acyclic graph if and only if there are no cycles in the
graph. A node n ∈N is part of a cycle if and only if there is a path n , . . . , n from node n to node n . The
graph G has cycles if there are nodes n ∈N that are part of a cycle.

In the following chapters in this work we shall generally use graph to refer to directed acyclic graphs;
unless stated otherwise.

Example 2.7. The graph in Figure 2.1a has a path from node e to node e; and thus the graph has a cycle.
As such this graph is not a directed acyclic graph. By removing an edge we can turn the graph into a
directed acyclic graph; one of the candidates for removal is the edge (e,f).

By placing further restrictions on directed acyclic graphs we get trees. Trees form a frequently used
subset of directed acyclic graphs. Among the applications of trees is information representation; XML
documents are among the many data sources that can be fully represented by trees.

Definition 2.8. A graph G = 〈N , E , l 〉 is a tree if and only if it is a directed acyclic graph wherein every
node has at most one parent and exactly one node has no parents. This single node without any parents
is called the root of the tree.

Collections of graphs can also be represented by a single graph. Thereby each individual graph in
the collection is represented by a subgraph in the single graph.

Definition 2.9. Let G = 〈N , E , l 〉 be a graph, let Gs = 〈Ns , Es , l s 〉 be a graph. Graph Gs is a subgraph of
graph G if and only if Ns ⊆N and:

(1) For every node n ∈Ns and every incoming edge (m , n)∈ E we have m ∈Ns and (m , n)∈ Es , and

(2) For every node n ∈Ns and every outgoing edge (n , m)∈ E we have m ∈Ns and (n , m)∈ Es .

6

In terms of subgraphs we can define a last class of graphs; namely forests.

Definition 2.10. A graph G = 〈N , E , l 〉 is a forest if and only if every subgraph of graph G is a tree.

Note that every tree is a forest and every forest is a directed acyclic graph. Trees can be used to
represent XML documents; forests are nothing more than a collection of trees. As such a forest can
represent a collection of XML documents whereby each subgraph represents a single XML document.

Trees form a very restricted set of graphs; as such many problems can easier be solved on trees then
on directed acyclic graphs. The same holds for directed acyclic graphs and directed graphs; whereby
most problems become harder to solve efficiently (especially in external memory) when cycles are in-
troduced. The restrictions on trees, forests and directed acyclic graphs also have their effects on the
maximum number of edges as a function of the number of nodes.

Proposition 2.11. A directed graph G = 〈N , E , l 〉 has at most |N |2 edges. A directed acyclic graph G =
〈N , E , l 〉 has at most |N |(|N |−1)

2
edges. A forest G = 〈N , E , l 〉 has at most |N | − 1 edges. A tree G = 〈N , E , l 〉

has exactly |N | −1 edges.

For all directed acyclic graphs, forests, and trees we can topological order the nodes such that every
parent node appears before all of its children. We can also reverse-topological order the nodes such
that every parent node appears after all of its children.

Definition 2.12. Let G = 〈N , E , l 〉 be a graph, let L be a list representation of all nodes N , let node n i be
the node at position i in list L. The list L is reverse-topological ordered if and only if every child node
n j ∈ E (n i) of node n i has position j < i in list L.

The reverse-topological ordering is particular useful whenever some computation of a property p
for a node depends on the property p of the children of the node. We have a guarantee that the property
p is already computed for all children of a node n before we start computing the property p for node
n itself when we compute the property on all nodes in reverse-topological order. Thereby a reverse-
topological order can be of help for achieving good performance.

Example 2.13. An example graph is shown in Figure 2.2. In this graph the nodes Ns = {a,b,c} are part
of the same subgraph and the list L = [c,b,a,f,e,d] provides a reverse-topological order on the nodes
of the graph.

a

b c

d e

f

Figure 2.2: A directed acyclic node labeled graph; the text on each node represents the label of the node.
The graph consists of two subgraphs; nodes belonging to the same subgraph have the same
color.

2.2 Node and graph bisimulation

The second central notion in this work is node bisimilarity. Node bisimilarity is frequently used as an
equivalence relation relating nodes that ‘behave the same’ from the perspective of some operation1. We
first recall the definition of an equivalence relation.

Definition 2.14. Let R be a relation relating elements from some set U. Relation R is an equivalence
relation if and only if:

(1) R is reflexive; thus for all e ∈U we have e Re ,

(2) R is symmetric; thus for all e1 ∈U, e2 ∈U with e1Re2 we have e2Re1, and

1 In this work we primarily investigate bisimulation partitioning related to indexing graph databases. The notion of bisimu-
lation is however used in many other fields; including fields outside of computer science. For a general in-depth overview on
bisimulation, its history, and its usages we refer to [San09].

7

(3) R is transitive; thus for all e1 ∈U, e2 ∈U, e3 ∈U with e1Re2 and e2Re3 we have e1Re3.

As said node bisimilarity is used to relate nodes that behave the same from the perspective of some
operation. Thereby behaving the same means that the result of applying the operation on a node n will
always give the same result as applying the operation on any other node that is bisimilar equivalent
to node n . Examples of operations that cannot distinguish between bisimilar equivalent nodes are
operations used in modal logic. Also several types of path queries cannot distinguish between nodes
that are (backward) bisimilar equivalent

Definition 2.15. Let G1 = 〈N1, E1, l 1〉,G2 = 〈N2, E2, l 2〉 be graphs. Node n ∈N1 bisimulates node m ∈N2;
denoted as n ≈m ; if and only if:

(1) The nodes have the same label; l 1(n) = l 2(m),

(2) For every node n ′ ∈ E1(n) there is a node m ′ ∈ E2(m)with n ′ ≈m ′, and

(3) For every node m ′ ∈ E2(m) there is a node n ′ ∈ E1(n)with n ′ ≈m ′.

Proposition 2.16. Node bisimulation is an equivalence relation; thus node bisimulation is reflexive,
symmetric and transitive.

Note that nothing in Definition 2.15 prohibits nodes from the same graph to be bisimilar equivalent.
To the contrary, in the largest part of this document we shall only focus on node bisimilarity between
nodes in a single graph; most theory is thus also presented for single graphs.

Based on node bisimilarity we can also introduce an equivalence relation between graphs; relating
graphs that behave the same from the perspective of some operation.

Definition 2.17. Let G1 = 〈N1, E1, l 1〉,G2 = 〈N2, E2, l 2〉 be graphs. Graph G1 bisimulates graph G2; de-
noted as G1 ≈G G2; if and only if:

(1) For every node n ∈N1 there is a node m ∈N2 such that n ≈m , and

(2) For every node m ∈N2 there is a node n ∈N1 such that n ≈m .

Proposition 2.18. Graph bisimulation is an equivalence relation; thus graph bisimulation is reflexive,
symmetric and transitive.

Example 2.19. Two graphs are shown in Figure 2.3a and Figure 2.3b; these graphs are bisimulation
equivalent. The proof has been provided in Figure 2.3c wherein we show how nodes from the first
graph are bisimulated by nodes in the second graph.

a

b b

c c

(a)

a

b

c

(b)

a

b b

c c

a

b

c

(c)

Figure 2.3: Figure 2.3a and Figure 2.3b both show a directed acyclic graph; in these graphs the text
on each node represents the label of the node. In Figure 2.3c we show a relation between
bisimilar equivalent nodes from the graph shown in Figure 2.3a with nodes from the graph
shown in Figure 2.3b.

For the graph shown in Figure 2.3a we have that all nodes with label a bisimulate each other. We
also have that all nodes with label b bisimulate each other.

8

With node and graph bisimilarity we can relate nodes and graphs that behave the same from the
perspective of some operation. If this operation is expensive then it would be wise to execute it on
a graph that is as small as possible; while staying bisimilar equivalent with the input. The smallest
possible graph that bisimulates a graph G is called the maximum bisimulation graph of graph G .

Definition 2.20. Let G = 〈N , E , l 〉 be a graph. Graph G↓ = 〈N↓, E↓, l ↓〉 is a maximum bisimulation graph
of graph G if and only if:

(1) Graph G and G↓ are bisimilar equivalent; G ≈G G↓, and

(2) For every other graph G ′ = 〈N ′, E ′, l ′〉with G ′ ≈G G it holds that |N↓| ≤ |N ′|.

Let n ∈ N be a node that bisimulates a maximum bisimulation graph node n ↓. We define E↓(n) =
E↓(n ↓), n ↓ ∈ N↓, n ↓ ≈ n as the set of nodes that have an incoming edge from node n ↓ bisimulated by
node n . We define E ′↓(n) = E ′↓(n ↓), n ↓ ∈N↓, n ↓ ≈ n as the set of nodes that have an outgoing edge to node
n ↓ bisimulated by node n .

Example 2.21. The graph in Figure 2.3b is a maximum bisimulation graph of itself. The graph in Figure
2.3b is also a maximum bisimulation graph of the graph in Figure 2.3a.

Proposition 2.22. Let G = 〈N , E , l 〉 be a graph, let G↓ = 〈N↓, E↓, l ↓〉 be the maximum bisimulation graph
for graph G . The maximum bisimulation graph G↓ is unique; any other maximum bisimulation graph
for graph G ′ is isomorphic to G↓.

2.3 Partitions and partition refinement

The construction of a maximum bisimulation graph is not the only way to reduce the amount of ex-
pensive operations. We can also use the node bisimilarity equivalence relation to divide all nodes into
equivalence classes.

Definition 2.23. Let R be an equivalence relation relating elements from some set U, let e ∈U be an ele-
ment. The set [e] = {u ∈U : u Re } is the equivalence class of element e . The relation R is an equivalence
relation; thus for every element e ′ ∈ [e]we have that the equivalence class [e ′] is equivalent to [e].

When we have placed all nodes in corresponding equivalence classes based on node bisimilarity;
then we only have to execute the expensive operation on a single node per equivalence class. The
result of this operation can then be shared by all nodes in the equivalence class. The set of all node
bisimulation equivalence classes is usually called a bisimulation partition; which is a special form of a
partition.

Definition 2.24. Let G = 〈N , E , l 〉 be a graph. A partition block is a non-empty set of nodes; thereby a
partition block of N is a subset of N . A partition of N is a set of partition blocks whereby for every node
n ∈N there is exactly one partition block p ∈ P such that n ∈ p .

Example 2.25. Let G = 〈N , E , l 〉 be a graph. The set {N } is a partition of N with a single partition block
equal to the set N .

Based on Definition 2.24 we can define the bisimulation partition of a set of nodes as the set of all
node bisimilarity equivalence classes with respect to the set of nodes.

Definition 2.26. Let G = 〈N , E , l 〉 be a graph, let P be a partition of N . The partition P is a bisimulation
partition if and only if every partition block p ∈ P is equivalent to the node bisimulation equivalence
class for all nodes n ∈ p . Stated otherwise; the following two conditions should hold for every node
n ∈N placed in partition block p ∈ P :

(1) Every node m ∈N bisimulated by n is also placed in partition block p , and

(2) No node m ∈N not bisimulated by n is placed in partition block p .

Blocks in a bisimulation partition are called bisimulation partition blocks.

9

Any algorithm that computes the bisimulation partition of a set of nodes is called a bisimulation
partition algorithm. For performance reasons we see that many bisimulation partition algorithms first
calculate some easy computable partition and then refine this partition into the bisimulation partition.
These algorithms do so by splitting the partition blocks from the easy computable partition until the
resulting partition blocks are bisimulation partition blocks. This however only works if the bisimulation
partition is a refinement of the easy computable partition.

Definition 2.27. Let G = 〈N , E , l 〉 be a graph, let P1, P2 be partitions of N . Partition P1 is a refinement of
partition P2 if and only if for every p ∈ P1 there is exactly one p ′ ∈ P2 with p ⊆ p ′.

We can use functions to map nodes to a value; an example is the label function l relating every node
with a label. These resulting node values can be used to create partitions wherein nodes are grouped
on equivalent values; whereby each such group of nodes is placed in a separate partition block.

Definition 2.28. Let G = 〈N , E , l 〉 be a graph, let F : N →U be a function mapping nodes to some value.
The partition PF is a node-value partition for function F and nodes N whenever it meets the following
two conditions for every node n ∈N placed in partition block p ∈ P :

(1) Every node m ∈N with F(n) =F(m) is also placed in partition block p , and

(2) No node m ∈N with F(n) 6=F(m) is placed in partition block p .

Based on Definition 2.28 we can easily define the label partition as the node value partition using
the label function.

Definition 2.29. Let G = 〈N , E , l 〉 be a graph. The label partition Pl of N is defined as the node-value
partition for function l .

Example 2.30. An example graph is shown in Figure 2.4. The label partition of this graph contains three
partition blocks; namely partition block {a,a,a}, partition block {b,b} and partition block {c}.

a

a b

b a

c

Figure 2.4: A directed acyclic node labeled graph; the text on each node represents the label of the node.

We shall provide a generic theorem that is useful to proof if the bisimulation partition is a refinement
of a value-based partition for some function F.

Theorem 2.31. Let G = 〈N , E , l 〉 be a graph, let F : N →U be a function mapping nodes to some value,
let PF be a node-value partition for function F and nodes N . If we have n ≈ m implies F(n) = F(m)
then the bisimulation partition P is a refinement of PF.

Proof. Assume P is not a refinement of PF; there thus must be a partition block p ∈ P such that there
is no p ′ ∈ PF with p ⊆ p ′. Let n be a node in partition block p , let p ′ ∈ PF be the partition block
wherein all nodes with the value F(n) are placed. We have n ∈ p ′. From n ≈m implies F(n) = F(m)
we can conclude that every node in p has the same value. We thus have p ⊆ p ′, thereby leading to a
contradiction.

Corollary 2.32. Let G = 〈N , E , l 〉 be a graph. The bisimulation partition P of N is a refinement of the
label partition Pl of N .

The rank of a node is another node-value that is used in fast bisimulation partitioning algorithms
for directed acyclic graphs. The rank of a node is the length of the longest path starting at the node and
ending in a leaf node.

Definition 2.33. Let G = 〈N , E , l 〉 be a graph. The rank of a node n ∈ N is defined as the length of the
longest path starting at node n to any leaf node m ∈ N . The function rank maps nodes to their rank;
this function is defined as:

10

rank(n) =

¨

0 n is a leaf
1+maxm∈E (n) rank(m) otherwise

Definition 2.34. Let G = 〈N , E , l 〉 be a graph. The rank partition Prank of N is defined as the node-value
partition for function rank.

Example 2.35. An example graph is shown in Figure 2.5. The rank partition of this graph contains three
partition blocks; namely partition block {b0,c0}, partition block {a1,a1,b1}, and partition block {a2}.

a2

a1 b0

b1 a1

c0

Figure 2.5: A directed acyclic node labeled graph; the text on each node represents the label of the node.
The superscript on each node represents the rank of the node.

We shall first show that bisimilar nodes have the same rank; such that we can use Theorem 2.31 to
proof that the bisimulation partition is a refinement of the rank partition.

Theorem 2.36. Let G = 〈N , E , l 〉 be a graph, let n ∈ N , m ∈ N be nodes. We have n ≈ m implies
rank(n) = rank(m).

Proof. The proof is by induction on the rank of nodes.

BASE CASE: Let n be a node with rank 0, let node m be a node with n ≈m . According to Definition 2.33
node n does not have children. If node m would have children; then the third requirement in
Definition 2.15 is violated. As such node m cannot have children and thus also has rank 0.

INDUCTION HYPOTHESIS: Let n be a node with rank up to r . For every node m with n ≈m it holds that
rank(m) = rank(n).

INDUCTION STEP: Let node n be a node with rank r +1, let node m be a node with n ≈m . We shall show
(1) that rank(m)≥ r +1 and (2) that rank(m)≤ r +1.

(1) Assume rank(m)< r +1. According to Definition 2.33 there must be a child node n ′ of node
n with rank(n ′) = r . According to Definition 2.15 there must be a child node m ′ of node m
with n ′ ≈m ′. According to the induction hypotheses this node m ′ must have rank r ; using
Definition 2.33 we can conclude that rank(m) < r + 1 cannot hold. Thus by contradiction
we have proven rank(m)≥ r +1.

(2) Assume rank(m) > r + 1. According to Definition 2.33 there must be a child node m ′ of
node m with rank(m ′)≥ r +1. According to Definition 2.15 there must thus be a child node
n ′ of node n with n ′ ≈ m ′. From Definition 2.33 we can derive that rank(n ′) ≤ r . Using
the induction hypothesis we can conclude r + 1 ≤ rank(m ′) = rank(n ′) ≤ r . This leads to a
contradiction; thereby proving rank(m)≤ r +1.

Combining (1) and (2) we can only conclude rank(m) = r +1.

Corollary 2.37. Let G = 〈N , E , l 〉 be a graph. The bisimulation partition P of N is a refinement of the
rank partition Prank of N .

Example 2.38. Let G = 〈N , E , l 〉 be the graph shown in Figure 2.6.

11

a4
1

a3
2 a3

3

b2
4 b2

5

b3
6

c1
7

c0
8

c1
9

Figure 2.6: A directed acyclic node labeled graph; the text on each node represents the label of the node.
The subscript on each node represents a unique identifier and the superscript on each node
represents the rank of the node.

The set PN = {N } is a partition of N containing a single partition block N . The set Pl = {{a4
1,a3

2,a3
3},

{b2
4,b2

5,b3
6},{c1

7,c0
8,c1

9}} is a partition of N where nodes are grouped on equivalent label. The set Prank =
{{a4

1},{a
3
2,a3

3,b3
6},{b2

4,b2
5},{c1

7,c1
9},{c

0
8}} is a partition of N where nodes are grouped on equivalent rank.

The set P = {{a4
1},{a

3
2,a3

3},{b2
4,b2

5},{b3
6},{c1

7,c1
9},{c

0
8}} is the bisimulation partition of N .

The partition PN is refined by all other partitions. The bisimulation partition P is a refinement of
partition Prank and also of partition Pl .

The bisimulation partition and the maximum bisimulation graph are defined in terms of the same
notion; namely node bisimilarity. As such it is not a surprise that there is a clear relation between the
bisimulation partition and the maximum bisimulation graph of the same graph.

Proposition 2.39. Let G = 〈N , E , l 〉 be a graph, let G↓ = 〈N↓, E↓, l ↓〉 be the maximum bisimulation graph
of graph G , let P be the bisimulation partition of graph G . There is a bijection relating every partition
block p ∈ P with a maximum bisimulation graph node n ↓ ∈N↓.

2.4 Graph index

We have described that maximum bisimulation graphs and bisimulation partitions can be used to op-
timize performance. For practical purposes; these two separate notions are not always sufficient. The
maximum bisimulation graph misses any relation with the nodes in the original graph and the bisimu-
lation partition misses information on how partition blocks are related by the edges between nodes. To
overcome these restrictions we introduce the graph index as a combination of the maximum bisimula-
tion graph and the bisimulation partition.

Definition 2.40. Let G = 〈N , E , l 〉 be a graph, let G↓ = 〈N↓, E↓, l ↓〉 be the maximum bisimulation graph of
graph G . A directed node-labeled graph index for graph G is defined as a quadruple I = 〈N↓, E↓, l ↓, p 〉.
Thereby p : N↓→℘(N) is a bisimulation partition function relating maximum bisimulation graph nodes
n ↓ with the bisimulation partition block containing the nodes in the original graph bisimulated by n ↓;
we thus define p (n ↓) by p (n ↓) = {n ∈N : n ↓ ≈ n}.

The maximum bisimulation graph is directly represented in the graph index. Without too much
work we can also derive the bisimulation partition from a graph index.

Proposition 2.41. Let G = 〈N , E , l 〉 be a graph, let I = 〈N↓, E↓, l ↓, p 〉 be the graph index of graph G . The
set P = {p (n ↓) : n ↓ ∈N↓} is the bisimulation partition of nodes N .

The other way is also possible; given a bisimulation partition we can easily construct a maximum
bisimulation graph; and thus also the index. In Remark 2.42 we shall informally describe a procedure
to achieve this.

Remark 2.42. Let G = 〈N , E , l 〉 be a graph, let P be the bisimulation partition. The maximum bisimula-
tion graph G↓ = 〈N↓, E↓, l ↓〉 can be constructed in terms of graph G and bisimulation partition P .

12

Let p ∈ P be any partition block with node n ∈ p being a node in this partition block. Introduce a
single maximum bisimulation graph node n ↓ for ever partition block p ; this node n ↓ has label l (n).

After creating all maximum bisimulation graph nodes one can create the maximum bisimulation
graph edges. Let p ∈ P be any partition block represented by maximum bisimulation graph node n ↓, let
p ′ ∈ P be any partition block represented by maximum bisimulation graph node n ′↓. Introduce a single
maximum bisimulation graph edge (n ↓, n ′↓) if and only if there are nodes n ∈ p , n ′ ∈ p ′ with (n , n ′)∈ E .

2.5 External memory algorithms

We investigate algorithm operating on data that does not fit in main memory. Therefore we need to
use secondary memory. In general secondary memory is slow, the performance of algorithms using
secondary memory are thus often dominated by the access patterns for secondary memory. Traditional
computational and complexity models do not take these access patterns into account; as these models
are mainly used to analyze the number of operations executed (by some processing unit).

Traditional computational and complexity models are as such not sufficient for analyzing the per-
formance of algorithm utilizing secondary memory. In this section we introduce a computational
and complexity model that does take the memory hierarchy into account; this model is much better
equipped to analyze performance of algorithms that utilize secondary memory.

We only give a small overview; our overview is in no way complete. For a more in-depth look into al-
gorithms in an hierarchical memory model we refer to [MSS03]. For graph algorithms in an hierarchical
memory model we refer to [Zeh02].

2.5.1 Memory model

We utilize a two level memory model. Therein the first memory level consists of fast memory with
a limited size. The second memory level is slow but has a practically unlimited size. In general the
first memory level represents internal memory and the second memory level represents storage space
available on hard disk drives or other forms of slow external storage. As such algorithms utilizing this
secondary memory level during their operations are called external memory algorithms.

Assumption 2.43. The internal memory can store a total of M units of data.

During operation of an external memory algorithm data needs to be transferred between internal
and external memory. For hard disk drives the duration of each transfer is determined by the latency
and the transfer time. Thereby the latency is the time it takes to move the read and write head of the
hard disk drive into the position where data needs to be transferred to or transferred from. The transfer
time is the time it takes to transfer all data once the read and write head is into position.

For hard disk drives the duration of transfers of small amounts of data is dominated by the latencies.
Hard disk drives utilize several mechanics to keep transfer times for adjacent blocks of data low. As
such efficient external memory algorithms transfer data in larger blocks instead of transferring small
amounts of data. Thereby all transferred data should be useful, just wrapping every tiny transfer into a
transfer of a larger block of useless data will not make an algorithm efficient.

Definition 2.44. Let B be (a close to) optimal unit of data to transfer during a single transfer between
internal and external memory. A disk block is a chunk of data of size B ; B is called the block size.

The duration of a data transfer of B units of data should be dominated by the transfer times. In gen-
eral the optimal value for B depends on specific details of the hard disk drives, hardware and software
caches, and details of the file system and operating system.

Definition 2.45. Any transfer of data between internal and external memory is called an IO operation.

2.5.2 Complexity

Performance of algorithms utilizing external memory is restricted by the speed of external memory.
During analysis of external memory algorithms we thus not only need to take the number of operations
executed by a processing unit into account, but also the number of IO operations performed.

13

Definition 2.46. The IO complexity of an algorithm is the (asymptotic) number of IOs performed by an
algorithm.

Many IO efficient algorithms utilize scanning and sorting of data as basic operations.

Proposition 2.47. Scanning represents reading data from external memory in the order it is stored or
writing data to external memory in the order it will be stored. The IO complexity of scanning N units of
data is Θ(SCAN(N)) =Θ(N

B
) IOs.

Proposition 2.48. Data stored in external memory can be sorted with respect to some total ordering.
The IO complexity of sorting N units of data is Θ(SORT(N)) =Θ(N

B
log M

B
(N

B
)) IOs.

Besides the algorithmic complexity for scanning and sorting the IO cost for IO efficient algorithms
is determined by the data structures used. A crucial data structure used by many IO efficient external
memory directed acyclic graph algorithms is the priority queue.

Proposition 2.49. A priority queue is a data structure serving as a container for data elements. Data
elements can be added to the container in any order using the ADD operation. The data element with
the highest priority in the queue can be retrieved efficiently without performing any IOs; this by using
the TOP operation. The queue also allows one to remove the data element with the highest priority by
using the POP operation. The total IO cost associated with adding and removing N elements to the
priority queue is Θ(PQ(N)) =Θ(N

B
log M

B
(N

B
)) IOs.

14

Chapter 3

BISIMULATION PARTITIONING

Bisimulation partitioning a graph is a well studied problem wherefore several good internal memory
solutions exist. A well known solution is the partitioning algorithm by Robert Paige and Robert E. Tarjan
[PT87]. This algorithm has a worst case runtime complexity of O(|E | log(|N |)) and a memory usage of
O(|N |+ |E |). For directed acyclic graphs several refinements of the algorithm by Paige and Tarjan exists
[DPP01, GBH10]. These refinements improve the worst case runtime complexity for directed acyclic
graphs to O(|N |+ |E |).

The existence of fast internal memory algorithms does not directly imply the existence of fast and
IO efficient external memory algorithms. Adapting the algorithms based on the work by Paige and
Tarjan seems problematic as these algorithms require direct access to nodes and their children. There
have however been attempts to implement the algorithm by Paige and Tarjan in an external memory
environment. The work by [HDFJ10] is an example; they implement the algorithm on top of a relational
database and show that this solution works for not-too-large directed graphs.

Due to the problematic nature of adapting internal memory algorithms we have chosen to investi-
gate an alternative approach. Our approach tries to minimize access to parts of the graph that are not
expected to be in main memory. We do so by reading the graph sequentially and place each sequentially
read node in the right partition block with only the information we have available locally. Thereby we
have restricted ourselves to directed acyclic graphs with a reverse-topological ordering on their nodes.
These restrictions give us access to several useful external memory graph algorithm techniques.

A sketch of this approach is presented in Section 3.1. The missing details of the sketch are intro-
duced in Section 3.2 and Section 3.3. The resulting IO efficient bisimulation partitioning algorithm is
presented in Section 3.4. Details on how the IO efficient bisimulation partition algorithm can be utilized
to construct maximum bisimulation graphs and graph indices are presented in Section 3.5. In Section
3.6 we conclude our findings by discussing some practical considerations when using the bisimulation
partitioning algorithm.

3.1 Online bisimulation partitioning

The main principle of an online algorithm is that it makes decisions based only on the information it
has already seen. We shall try to adhere to an even stronger principle; namely that decisions made by
the algorithm are based only on the information the algorithm is currently investigating. This without
looking to information it has already investigated. Such an algorithm adhering to the strong online
principle is likely to need to maintain some data structures for supporting making the right decisions.
Online algorithms are excellent candidates for external memory algorithms; as a one-way sequential
read over the input can be performed IO efficient. Thereby the algorithm must however only rely on
supporting data structures that have a bounded size or can be implemented IO efficient.

Applying the strong principle of online algorithms on bisimulation partitioning results in an algo-
rithm that can decide for each node n to which partition block this node n belongs; this by only in-
specting the node n and some supporting data structures. The following algorithm provides a sketch of
an online bisimulation partitioning algorithm operating on reverse-topological ordered graphs.

Algorithm 3.1 Online bisimulation partitioning algorithm (outline)

Require: Directed acyclic graph G = 〈N , E , l 〉.
Ensure: The output is a pair (n , p) for every n ∈ N ; with p an identifier for the bisimulation partition

block whereto n belongs.
1: P is a decision structure
2: for all n ∈N , in reverse-topological order do
3: print (QUERY(P, KEY(n)), n)

In the sketched algorithm we use a supporting data structure that decides, for every node n , to
which bisimulation partition block it belongs. This data structure is queried with a key derived from
node n ; this query returns a bisimulation partition block. When this data structure works correctly;
then the given algorithm will trivially calculate a valid bisimulation partitioning.

3.1.1 Decision structures

The outline suggests a decision structure based on a mapping between a search key (derived from the
node) and bisimulation partition blocks. Our first objective is thus to find a suitable key. Therefore we
shall introduce the node-bisimilarity value.

Definition 3.1. Let G = 〈N , E , l 〉 be a directed acyclic graph, let n ∈ N be a node. We define the node-
bisimilarity value v≈(n) of node n as v≈(n) = (l (n),{v≈(n ′) : n ′ ∈ E (n)}).

The node-bisimilarity value of a node is defined inductively in terms of the node-bisimilarity val-
ues of children. Thereby it closely resembles bisimilarity as defined in Definition 2.15. The node-
bisimilarity value is only useful as a search key if we can derive the same node-bisimilarity value from
two nodes if and only if these nodes are bisimilar equivalent.

Theorem 3.2. Let G = 〈N , E , l 〉 be a directed acyclic graph, let n ∈N , m ∈N be nodes. We have v≈(n) =
v≈(m) if and only if n ≈m .

Proof. The proof is by induction on the rank of the nodes.

BASE CASE: Let node n be a node with rank(n) = 0. We have v≈(n) = (l (n),;). We shall proof (1) that
v≈(n) = v≈(m) holds for nodes m with n ≈m and (2) that v≈(n) 6= v≈(m) holds for nodes m with
n 6≈m .

(1) Let m be a node with m ≈ n . We have v≈(m) = (l (m),;); according to Definition 2.15 we
have l (n) = l (m) and thus v≈(n) = v≈(m).

(2) Let m be a node with m 6≈ n and v≈(n) = v≈(m). We thus have l (m) = l (n) and node m
does not have children. According to Definition 2.15 this implies n ≈m , contradicting our
assumptions. By contradiction we have v≈(n) 6= v≈(m) for m 6≈ n .

INDUCTION HYPOTHESIS: Let n be a node with rank up to r . We have v≈(n) = v≈(m) if and only if n ≈m
for every node m .

INDUCTION STEP: Let node n be a node with rank(n) = r + 1. We have v≈(n) = (l (n),Sn). We shall proof
(1) that v≈(n) = v≈(m) holds for nodes m with n ≈m and (2) that v≈(n) 6= v≈(m) holds for nodes
m with n 6≈m .

(1) Let m be a node with m ≈ n . We have v≈(m) = (l (m),Sm) and according to Definition 2.15
we have l (n) = l (m). Definition 2.15 guarantees that for every node n ′ ∈ E (n) there is a node
m ′ ∈ E (m) with n ′ ≈m ′. These nodes n ′ have rank(n ′)≤ r ; thus according to the induction
hypothesis we have v≈(n ′) = v≈(m ′). Therefrom we can conclude Sn ⊆ Sm . In the same way
we can prove Sn ⊇Sm ; thereby proving Sn =Sm and thus v≈(n) = v≈(m).

16

(2) Let m be a node with m 6≈ n and v≈(n) = v≈(m). We thus have l (m) = l (n), proving that
Definition 2.15, condition (1) holds. We also have Sn = {v≈(m ′) : m ′ ∈ E (m)}. For each node
n ′ ∈ E (n) there thus is a node m ′ ∈ E (m) with v≈(n ′) = v≈(m ′). We have rank(n ′) ≤ r ; thus
according to the induction hypothesis n ′ ≈ m ′ holds for each n ′, proving that Definition
2.15, condition (2) holds. In the same way we can prove that Definition 2.15, condition (3)
holds; thereby proving n ≈m . By contradiction we have v≈(n) 6= v≈(m) for m 6≈ n .

In Theorem 3.2 we see that the node-bisimilarity value as defined in Definition 3.1 can fill in the role
of a search key. On top of this search key we shall define a first decision structure.

Definition 3.3. Let pdsv≈ be a partition decision structure using node-bisimilarity values as search keys.
We represent pdsv≈ as a list of node-bisimilarity values. This list is empty when newly constructed. The
position of a node-bisimilarity value in pdsv≈ serves as a unique bisimulation partition block identifier.

The KEY operation is defined as KEY(n) = v≈(n). The QUERY operation searches the list and if the
node-bisimilarity value is found; then the position in the list is returned. If the node-bisimilarity value
is not found; then a new entry is added to the end of the list and the position of this entry is returned.

The partition decision structure pdsv≈ provided the functionality required by the outline in Algo-
rithm 3.1. This partition decision structure thus can be used in combination with the outline in Al-
gorithm 3.1 to produce a working bisimulation partitioning algorithm. This will however result in a
non-optimal algorithm due to the usage of an unordered list as a search structure.

There are more efficient data structures for storing and searching (key, value)-pairs. We shall how-
ever stick to the unordered list for the moment; as it is a very simple structure to analyze the underlying
properties of any partition decision structure. The first property we take a look at is the cumulative
storage needed to store all the keys (the node-bisimilarity values). For this storage analysis we first
introduce a size measurement for node-bisimilarity values.

Definition 3.4. Let G = 〈N , E , l 〉 be a graph, let n ∈N be a node with v≈(n) = (l (n),S). The size of v≈(n)
is given by |v≈(n)|= 1+

∑

v∈S |s |.

Proposition 3.5. Let G = 〈N , E , l 〉 be a graph, let n ∈N be a node. If node labels can be stored in a fixed
amount of storage; then the storage needed for the node-bisimilarity value v≈(n) of node n isΘ(|v≈(n)|).

Using the size defined for node-bisimilarity values we can prove worst case lower bounds on the
size of node-bisimilarity values.

Theorem 3.6. Let G = 〈N , E , l 〉 be a graph, let G↓ = 〈N↓, E↓, l ↓〉 be the maximum bisimulation graph for
graph G , let n ∈N be a node. The worst case lower bound on |v≈(n)| is given by 2|N↓ |−1.

Proof. Let G = 〈N , E , l 〉 be the transitive closure graph defined as N = {n 1, . . . , n |N |}, E = {(n j , n i) : 1 ≤
i < j ≤ |N |}. In Figure 3.1 we show a transitive closure graph containing 4 nodes.

n1 n2 n3 n4

Figure 3.1: A transitive closure graph with 4 nodes.

Note that the transitive closure graph is already a maximum bisimulation graph; every node thus
has a unique node-bisimilarity value. By induction we shall proof that |v≈(n i)|= 2i−1.

BASE CASE: Node n 1 has node value v≈(n 1) = (l (n 1),;) and thus |v≈(n 1)|= 1= 20.

INDUCTION HYPOTHESIS: For nodes n 1, . . . , n j we have |v≈(n j)|= 2j−1.

17

INDUCTION STEP: Node n j+1 has edges to every node n 1, . . . , n j . The node-bisimilarity value for node
n j+1 is thus given by v≈(n j+1) = (l (n j),{v≈(n 1), . . . , v≈(n j)}). The size of this node-bisimilarity
value is given by |v≈(n j+1)|= 1+

∑

1≤i≤j |v≈(n i)|; using the induction hypothesis we get |v≈(n j+1)|=
1+
∑

1≤i≤j 2i−1 = 2j

The worst case lower bound on the size of node-bisimilarity values shows that using node-
bisimilarity values for search keys in any decision structure will not result in a fast structure. We can
however use the partition decision structure pdsv≈ to reduce the size of node-bisimilarity values.

In the partition decision structure pdsv≈ each node-bisimilarity value is mapped one-to-one to a
unique integer; namely the position of the node-bisimilarity value in the decision structure. If we have
a node-bisimilarity value (l (n),S) for node n then we can replace each node-bisimilarity value v ∈S by
the position of v in the partition decision structure. Based on this idea we introduce the node-decision
value.

Definition 3.7. Let GD = 〈N , E , l 〉 be a graph, let n ∈N be a node. The node-decision value vpds(n) is a
tuple vpds(n)∈ (D×℘(N)).

Let pds be a partition decision structure using node-decision values as search keys. We represent
pds as a list of node-decision values. This list is empty when newly constructed. The position of a
node-decision value in list pds serves as a unique bisimulation partition block identifier.

The QUERY operation searches the list and if the node-decision value is found; then the position in
the list is returned. If the node-decision value is not found; then a new entry is added to the end of the
list and the position of this entry is returned.

We define the node-decision value vpds(n) of node n with respect to a partition decision structure
pds as vpds(n) = (l (n),{QUERY(pds, vpds(m)) : m ∈ E (n)}).

We shall refer to partition decision structures using node-decision values as search keys as partition
decision structures. The definition of node-decision values directly imposes a limitation on the usage
of partition decision structures: the node-decision value of a node n can only be determined when the
node-decision values of the children of node n are already evaluated. This limitation is not problematic
for our applications as we assume that nodes are processed in a reverse-topological order. Before we
analyze the properties of the partition decision structure we shall proof that node-decision values can
be used as valid search keys for nodes.

Theorem 3.8. Let G = 〈N , E , l 〉 be a directed acyclic graph, let n ∈ N , m ∈ N be nodes, let pds be a
partition decision structure. When we query nodes in reverse-topological order and only determine the
node-decision value of a node when needed for querying; then we have vpds(n) = vpds(m) if and only if
n ≈m and n ≈m if and only if QUERY(pds, vpds(n)) =QUERY(pds, vpds(m)).

Proof (sketch). The proof is by induction on the rank of the nodes; and is similar to the proof for The-
orem 3.2. Thereby utilize that the first time the node-decision value for node n is evaluated, is when
node n is queried. Also utilize that the children of node n are queried before node n ; and thus the
node-decision values of the children of n are present in the partition decision structure. Both proper-
ties follow from the reverse-topological ordering wherein nodes are queried.

We have introduced the node-decision value as an alternative to the node-bisimilarity value
whereby we have tried to reduce the storage needed for partition decision structures. We shall now
analyze the exact storage needs for partition decision structures; therefore we first introduce a size mea-
surement for node-decision values.

Definition 3.9. Let G = 〈N , E , l 〉 be a graph, let pds be a partition decision structure, let n ∈N be a node
with vpds(n) = (l (n),S). The size of vpds(n) is given by |vpds(n)|= 1+ |S|.

Proposition 3.10. Let G = 〈N , E , l 〉 be a graph, let n ∈N be a node. If node labels and positions in the
partition decision structure can be stored in a fixed amount of storage; then the storage needed for the
node-decision value vpds(n) of node n is Θ(|vpds(n)|).

18

Using the size defined for node-decision values we can prove strong bounds on the size of the node-
decision value and on the partition decision structure.

Theorem 3.11. Let G = 〈N , E , l 〉 be a graph, let G↓ = 〈N↓, E↓, l ↓〉 be the maximum bisimulation graph of
graph G , let pds be a partition decision structure, let n ∈ N be a node. The size of vpds(n) is given by
|vpds(n)|= 1+ |E↓(n)|.

Proof. Let vpds(n) = (l (n),S). According to Theorem 3.8 all bisimilar equivalent child nodes of node n
will have the same node-decision value and querying the pds with these values will result in the same
partition block identifier. The set S thus contains one node-decision value per group of bisimilar equiv-
alent child nodes of n . The node n ↓ ≈ n , n ↓ ∈ N↓ will have one child per group of bisimilar equivalent
child nodes of n ; thus |E↓(n)|= |S|.

Theorem 3.11 proves a strict bound on the size of individual node-decision values. Based on this
result we can easily proof a strict lower bound on the size of any (implementation of a) partition decision
structure.

Theorem 3.12. Let G = 〈N , E , l 〉 be a graph, let G↓ = 〈N↓, E↓, l ↓〉 be the maximum bisimulation graph of
graph G . The size of the partition decision structure for graph G is |N↓|+ |E↓|.

Proof. According to Theorem 3.8 all bisimilar equivalent nodes will have the same node-decision value.
The partition decision structure thus contains one entry for every group of bisimilar equivalent nodes.
Each group of bisimilar equivalent nodes is represented by a single node n ↓ ∈ N↓. According to The-
orem 3.11 the size for the entry for node n ↓ is 1+ |E↓(n ↓)|. Summarizing over every group of bisimilar
equivalent nodes in graph G gives a total size of |N↓|+ |E↓|.

The size of the partition decision structure as proven by Theorem 3.12 does not stand in the way of
an efficient bisimulation partition algorithm. Using the node-decision value as search key in a partition
decision structure is thus a viable approach.

Theorem 3.12 also hints at a correlation between the partition decision structure of a graph and the
maximum bisimulation graph of the same graph. We end our investigation of decision structures by
taking a closer look at this correlation.

Theorem 3.13. Let G = 〈N , E , l 〉 be a graph, let pds be the partition decision structure obtained after
running the online bisimulation algorithm. The partition decision structure pds is a list representation
of the maximum bisimulation graph G↓ = 〈N↓, E↓, l ↓〉 of graph G .

Proof (sketch). Let (l (n),S) be the i -th element in the partition decision structure. This i -th entry cor-
responds to the maximum bisimulation graph node with node identifier i and label l (n). In this repre-
sentation set S contains the node identifiers of children of the maximum bisimulation graph node with
node identifier i .

From Theorem 3.13 it follows that the combination of the outline in Algorithm 3.1 and a partition
decision structure calculates not only a bisimulation partition but also a maximum bisimulation graph.
Thereby the algorithm calculates all the components for constructing a graph index.

3.1.2 Online bisimulation

With the partition decision structure we have introduced a decision structure that can be combined
with the outline in Algorithm 3.1; resulting in a functional online bisimulation partitioning algorithm.
This online bisimulation partitioning algorithm is presented in Algorithm 3.2.

19

Algorithm 3.2 Online bisimulation partitioning algorithm

Require: Directed acyclic graph G = 〈N , E , l 〉.
Ensure: The output is the pair (n , p) for every n ∈N ; with p an identifier for the bisimulation partition

block whereto n belongs.
1: pds is an empty (key, value) mapping
2: for all n ∈N , in reverse-topological order do
3: (∗ vpds(n)←KEY(n) ∗)
4: vpds(n)← (l (n),{pds[vpds(m)] : m ∈ E (n)})

5: (∗ p ←QUERY(pds, KEY(n)) ∗)
6: if pds does not contain the key vpds(n) then
7: pds[vpds(n)]← |pds|
8: p ← pds[vpds(n)]
9: print (p , n)

We have already mentioned that the unordered list is not the most efficient data structure for storing
and searching (key, value)-pairs. Therefore we shall assume that we use a more suitable data structure.

Assumption 3.14. Let the partition decision structure be implemented by some efficient data structure.
Each query (lookups, insertions) on this data structure has an amortized cost of O(L).

With Assumption 3.14 we can study runtime complexity and memory usage of Algorithm 3.2.

Theorem 3.15. The worst case runtime complexity of Algorithm 3.2 is O((|N |+ |E |)(1+ L)).

Proof. The main loop of the algorithm is executed |N | times. For calculating the node-decision value of
a node n we visit all outgoing edges of node n ; thereby visiting every edge once during the execution
of the algorithm. The partition decision structure is queried once for every node; and once for every
edge.

According to Theorem 3.12 the memory usage of Algorithm 3.2 is lower bounded by O(|N↓|+ |E↓|);
but exact values depend on the used data structure.

Remark 3.16. In Algorithm 3.2 the pds is queried for every outgoing edge of every node n when de-
termining the node-decision value of node n . These edge queries can be eliminated by maintaining a
mapping between nodes n and the partition block identifier of the partition block wherein node n is
placed.

One way of implementing this mapping is by annotating each node n with the value q [n]← p (after
line 8 in Algorithm 3.2). The partition decision structure of a node n ′ can then be retrieved by replacing
line 4 with vpds(n ′)← (l (n ′),{q [m ′] : m ′ ∈ E (n ′)}). The worst case runtime complexity for this alternative
is O(|N |(1+ L)+ |E |). This alternative does however increase memory usage to O(|N |+ |E↓|).

Algorithm 3.2 and the alternative described in Remark 3.16 can both be considered runtime effi-
cient when appropriate data structures are used to implement the partition decision structure. We are
however primarily interested in the IO efficiency of the algorithms. There are two important reasons
why Algorithm 3.2 and the alternative from Remark 3.16 are not IO efficient.

The first reason is the partition decision structure; we haven’t yet introduced an IO efficient imple-
mentation for this partition decision structure. The second reason is the way wherein node-decision
values are calculated; during calculation of the node-decision value of node n we visit the outgoing
edges of node n ; this counteracts the whole benefit of online processing of the input.

In Section 3.2 we shall introduce additional techniques for removing the need to visit any edge in the
graph; thereby making the entire algorithm online according to the strong principle. In Section 3.3 we
take a look at how we can circumvent the IO efficiency problems introduced by the partition decision
structure.

20

3.2 Introducing time-forward processing

In Algorithm 3.2 and the alternative described in Remark 3.16 we traverse the outgoing edges of node
n during the calculation of the node-decision value of node n . When we remove these explicit edge
traversals we can improve the locality of the algorithm; as such making it easier to implement the algo-
rithm in an IO efficient way.

We can remove these explicit edge traversals by introducing a supporting structure that can be used
to send information from child to parent. We thereby send the value q [m] as described in Remark
3.16 from node m to parent node n . The idea of sending node information from children to parents
in a directed acyclic graph is a variant of the technique called time-forward processing. A detailed
general description of time-forward processing can be found in [Zeh02] and [MSS03]. We shall only
describe how we use time-forward processing for eliminating edge traversals in our online bisimulation
algorithm.

3.2.1 The time-forward processing technique

Central for time-forward processing is using an IO efficient priority queue to send information from
one node to another node in the graph. Time-forward processing can be used when nodes have unique
ordered node identifiers and whereby nodes have access to all the node identifiers of their parents. We
shall first introduce a formal graph representation for directed acyclic graph based on these constraints.

Definition 3.17. Let G = 〈N , E , l 〉 be a directed acyclic graph. Graph G can be represented by list repre-
sentation L. In list representation L every node n ∈N is represented by a list element e = (i , l (n), E ′(n))
where

(1) i is the node identifier of node n ; corresponding to the position of element e in the list,

(2) l (n) is the label of the node, and

(3) E ′(n) is the list of parent nodes of n ; every parent node represented by its node identifier.

Additional we require that the nodes in a graph represented in list representation L are reverse-
topological ordered. For a list element e = (i , l (n), E ′(n)) and parent node identifier m ∈ E ′(n) we thus
have i <m .

Example 3.18. Let G = 〈N , E , l 〉 be the graph shown in Figure 3.2.

c2 c4

b1 b3

a0

Figure 3.2: A directed acyclic node labeled graph; the subscript on each node represents a unique node
identifier.

The list [(0, a , [1, 3]), (1,b , [2, 4]), (2, c , []), (3,b , [4]), (4, c , [])] represents this graph in L representation.

Assume we have a graph represented by list L in list representation L and a value v calculated on
node n i with node identifier i . This value should be send to a parent node n j with identifier j , i < j . We
can put the value v on a priority queue Q with priority j .

Also assume we process all nodes in order of their position in list L; and each node only placed
values on the priority queue for its parents. We also assume that each node n i removes all values with
priority i from the top of the queue (if any of these values are on top of the queue). Under these condi-
tions the top of the queue can only contain values with a priority of at least i during the processing of
node n i ; thus the top will contain all messages intended for node n i (if any are present).

21

In this setting we thus can use an IO efficient priority queue to send information from nodes n to all
parent nodes of node n in an IO efficient way.

3.2.2 Time-forward processing online bisimulation partitioning algorithm

We can combine time-forward processing with Algorithm 3.2. Thereby we shall also incorporate the
ideas described in Remark 3.16. This results in the algorithm presented in Algorithm 3.3.

Algorithm 3.3 Online bisimulation partitioning algorithm (using time-forward processing)

Require: Directed acyclic graph G = 〈N , E , l 〉 in list representation L.
Ensure: The output is the pair (n , p) for every n ∈N ; with p an identifier for the bisimulation partition

block whereto n belongs.
1: pds is an empty (key, value) mapping
2: Q is an empty priority queue
3: for all (n , l (n), E ′(n))∈G , in order of node identifier do
4: S is an empty set
5: for all TOP(Q) = (n , p) for some p ∈N do
6: S←S ∪{p}
7: POP(Q)
8: vpds(n)← (l (n),S)

9: if pds does not contain the key vpds(n) then
10: pds[vpds(n)]← |pds|
11: p ← pds[vpds(n)]

12: (∗ Send p to parents of n ∗)
13: for all m ∈ E ′(n) do
14: ADD(Q , (m , p))
15: print (p , n)

We shall first take a look at the correctness of Algorithm 3.3. The correctness of the algorithm fol-
lows from the correctness of the alternative for Algorithm 3.2 described in Remark 3.16 and from the
correctness of the used time-forward processing technique. Before we can analyze the runtime and
IO complexity of Algorithm 3.3 we need to take a look at how the set S can be constructed efficiently
(starting at line 4).

In the way we have introduced time-forward processing we have assumed that the ordering on node
identifier determines the priority for any (node identifier, partition block identifier)-pair placed on the
priority queue. In such setting all the partition block identifiers for a node are placed unordered on
the priority queue. This complicates the insertion of partition block identifier p into set S (line 6) as
we need to take care of duplicates; thereby introducing the need for a complex set data structures or
expensive duplicate checks on S.

We can however change the ordering used by the priority queue for determining priorities to guar-
antee that for each node the partition block identifiers are retrieved in order. Let the lexicographical or-
dering of the (node identifier, partition block identifier)-pairs determine the priority of elements placed
on the priority queue. Now any pair (i , p) only has the same priority as other pairs (i ′, p ′)whenever these
pairs are equivalent; this only happens when a partition block identifier is send to the same node sev-
eral times. The priority queue utilizing a lexicographical ordering for determining node priority thus
guarantees that partition block identifiers are added to set S in an ordered way.

Assumption 3.19. The priority queue Q in Algorithm 3.3 uses a lexicographical ordering of the (node
identifier, partition block identifier)-pairs. The set S is implemented as a list. Due to the ordering guar-
anteed by the priority queue we only have to check if the last partition block identifier added to set S is
equivalent to the one stored on top of the queue; only then do we have a duplicate. We thus only add
new elements to list S when the top of the priority queue is different from the last element in list S.

22

With this implementation of set S we can perform the runtime and IO complexity analysis of Algo-
rithm 3.3. Thereby we shall use Assumption 3.14 for the runtime cost on querying the partition decision
structure.

Theorem 3.20. The worst case runtime complexity of Algorithm 3.3 is O(|N |(1+ L)+ |E |+PQ(|E |)).

Proof (sketch). In total |E | elements are added and removed from the priority queue; this introduces an
additional runtime cost of O(PQ(|E |)) to the cost of the alternative for Algorithm 3.2.

The runtime complexity does not have to be equivalent to the IO complexity. As a last step we shall
analyze the IO complexity. We have not yet discussed any details on the partition decision structure. As
such we can only analyze the IO cost of the algorithm without any operation involving the pds.

Theorem 3.21. The worst case IO complexity of Algorithm 3.3 is O(SCAN(|N |+ |E |) +PQ(|E |)) when ex-
cluding any operation wherein the partition decision structure is involved.

Proof. Algorithm 3.3 reads the entire graph in list representation L sequentially; reading the input thus
costs O(SCAN(|N |+ |E |)) IOs. The accumulative size of data structure S; when implemented as described
in Assumption 3.19; is |E |. The total IO cost for the data structure S thus is O(SCAN(|E |)). The algorithm
will add an element to the priority queue for every edge; only these elements are removed. Thereby the
total IO cost for the priority queues is O(PQ(|E |)) IOs.

With Algorithm 3.3 we have presented an algorithm that adheres to the strong online principle.
This algorithm can however not yet be considered to be an IO efficient external memory algorithm; the
algorithm is missing details on how the partition decision structure should be implemented. In the next
section we shall try to fill in these missing details.

3.3 On partition decision structures

The efficiency of Algorithm 3.3 still relies on the efficiency of the partition decision structure. In this
section we shall investigate if and how we can implement an IO efficient partition decision structure.
Therefore we shall first make a practical assumption on the node-decision values.

Assumption 3.22. Let n be a node with node-decision value (l (n),S). We assume that set S is represented
by an ordered list. Assumption 3.19 describes how this can be achieved by utilizing Algorithm 3.3.

Assumption 3.22 simplifies any implementation of the partition decision structures. The assumed
ordering on node-decision values simplifies comparison and hashing of node-decision values as every
node-decision value has only a single ordered representation. Thereby Assumption 3.22 makes it easier
to analyze the usage of data structures for implementing the partition decision structure.

We shall start our investigation for a partition decision structure with a small survey of useful data
structures. These data structures will show practical limits on the efficiency of the partition decision
structure. We then take a look at possible query patterns on the partition decision structure and how
we can optimizing the query patterns to reduce the total IO cost for any implementation of the partition
decision structure.

3.3.1 External memory search structures

The partition decision structure is nothing more than a one-to-one mapping between node-decision
values and unique numeric identifiers. There are many data structures developed for storing and query-
ing (key, value)-pairs. These data structures include lists, B+ trees and hash tables.

Theorem 3.11 already proves that node-decision values have a variable size. The size of a node-
decision value is upper bounded by the number of outgoing edges the node has. Thus the (key, value)-
pairs stored in the partition decision structure have a non-fixed size. Moreover the search key can be
arbitrary large; even larger than the block size B . This property of the search key rules out the usage
of B+ trees. We can however use a variant of the balanced search trees; namely string B-trees [FG99,
MSS03]. We do so by representing the ordered node-decision value (l ,{s1, . . . , sn }) as a string l s1 . . . sn .

23

For all mentioned data structures the IO cost to read entries from external memory is at least a
single IO. In the case that every query needs to be served from external memory we thus have a total
worst case IO cost that is lower bounded by Ω(|N |). The total IO cost might be even higher due to the
cost associated with querying large node-decision values.

3.3.2 Query patterns

For a partition decision structure implemented by any of the mentioned data structures we have seen
that the worst case lower bound on the number of IOs is Ω(|N |) when every query to the partition de-
cision structure is served from external memory. We shall analyze the possible query patterns to see of
this worst case lower bound can occur in practice. Therefore we make some assumptions on the query
cost.

Assumption 3.23. Let the partition decision structure be implemented by some efficient data structure.
Each query (lookups, insertions) on this data structure has an amortized IO cost of O(L).

We also make an assumption on the memory usage for the partition decision structure.

Assumption 3.24. The partition decision structure can keep one (key, value)-pair in main memory. We
thereby assume that the result of the last query is kept in main memory.

Note that Assumption 3.24 can only hold when the node-decision keys are bounded in size; as such
the assumption does not reflect the worst possible situation whereby node-decision keys are so large
that they don’t fit in main memory. Under Assumption 3.24 we only have to pay the IO cost O(L) once
for consecutive queries with the same node-decision value.

Example 3.25. Let G = 〈N , E , l 〉 be the graph containing j identical chains of length i . The nodes in this
graph are defined as N = {n 1

1, . . . , n 1
i , . . . , n j

1 . . . n j
i }, the edges are defined as E = {(n m

k+1, n m
k) : (1 ≤ k <

i)∧ (1≤m ≤ j)}, and all nodes have the same label. This graph is shown in Figure 3.3.

n1
i

n1
2

n1
1

n2
i

n2
2

n2
1

. . .

. . .

. . .

nj
i

nj
2

nj
1

Figure 3.3: A graph containing j chains of length i . The subscript on each node represents the unique
identifier of a node within its chain. The superscript on each node indicates the chain
whereto the node belongs.

For fixed values k , 1 ≤ k ≤ i we have that all nodes n m
k , 1 ≤m ≤ j are bisimilar equivalent to each

other. The maximum bisimulation graph of graph G thus is a single chain. The bisimulation partition
P of nodes N is given by P = {sk : sk = {n m

k : 1≤m ≤ j }∧ (1≤ k ≤ i)}.
Now assume that we have a list L representing graph G in list representation L. This list L must

represent all nodes in a valid reverse-topological order. One possible reverse-topological order can be
achieved when all nodes n m

k are lexicographically ordered on (m , k).
This reverse-topological ordering guarantees that every query will be a query with a different search

key as the previous query. Thus for each query, and for each node, we need to pay an IO cost of O(L).
The total IO cost will thus be O(L|N |).

The list, hash table and string B-trees all have L ≤ 1 in the worst case. Combining this with Example
3.25 proves that in the worst case we would haveΩ(|N |) IOs for querying the partition decision structure.
We shall now look at a query pattern for the same graph that causes much less IOs than this worst case.

Example 3.26. Once again consider the graph presented in Example 3.25, now with another reverse-
topological order on the nodes of the graph. The new reverse-topological order is achieved by ordering

24

all nodes n m
k lexicographically on (k , m). Now the queries are grouped in i groups containing j queries

with the same key per group. As such a total of |N↓| queries need to be served from disk with an IO cost
of O(L|N↓|).

When we take a closer look at Example 3.26 then we can conclude that any IO cost for the exam-
ple is unnecessary. The used reverse-topological ordering already groups all bisimilar equivalent nodes
together; so all queries with the same node-decision value are performed consecutive. The partition
decision structure thus doesn’t need to keep any entry in the partition decision structure after the algo-
rithm has queried the entire group of bisimilar equivalent nodes. As such there is no need to write any
entry to external memory.

Example 3.26 is however an artificial example wherein the nodes provided as input are ordered on
their bisimulation partition block. We thus cannot expect an equivalent situation for all graphs; as
this would remove the need for any complex bisimulation partitioning algorithm. We can however
generalize the idea applicable to Example 3.26 for reducing the need to keep partition decision structure
entries.

If the nodes of the input graph are grouped such that for any two bisimilar equivalent nodes in the
graph we have that they are placed in the same group. Then we only need to maintain the partition
decision entries related to these nodes as long as we are processing the group. When all nodes in the
group are processed; then we can discard all partition decision structure entries created for the group
of nodes. We can formalize the conditions for this generalization by stating that the nodes in the input
graph should be partitioned into some partition Pi ; such that the maximum bisimulation partition P is
a refinement of Pi .

Definition 3.27. Let G = 〈N , E , l 〉 be a graph, let Pi be a partition of N such that the bisimulation par-
tition P of N is a refinement of Pi . If the nodes N in the graph are grouped with respect to partition Pi

then Pi is the initial partition of graph G . We refer to partition blocks p i ∈ Pi as initial partition blocks.

We shall first proof that any initial partition of a graph meets the condition that any two bisimilar
equivalent nodes in the graph are placed in the same partition.

Theorem 3.28. Let G = 〈N , E , l 〉 be a graph, let Pi be an initial partition of graph G , let n ∈N be a node
and p ∈ Pi be the partition block with n ∈ p , let m ∈N be a node. We have n ≈m implies m ∈ p .

Proof. Assume n ≈m holds; due to Definition 2.26 we can conclude that there is a partition block p ′ ∈ P
with n ∈ p ′ and m ∈ p ′. According to Definition 2.27 there must be a partition block p ′′ ∈ Pi with p ′ ⊆ p ′′

and thus n ∈ p ′′ and m ∈ p ′′. Definition 2.24 guarantees that only a single partition block in Pi contains
node n ; we thus have p ′′ = p and m ∈ p .

The online bisimulation algorithms we have been working on only work when the nodes in the
input graph are reverse-topological ordered. Thus when we want to process nodes based on the order
imposed by an initial partition; then it must be possible that the partition blocks in the initial partition
can be ordered such that all nodes are reverse-topological ordered. A candidate initial partition that
meets this condition is the rank partition defined in Definition 2.34; whereby we can simply order the
partition blocks on increasing rank of the nodes in each partition block.

Theorem 3.29. Let G = 〈N , E , l 〉 be a graph, let Pi be an initial partition of graph G wherein the partition
blocks can be ordered such that the nodes N are reverse-topological ordered. When the initial partition
blocks are processed based on this reverse-topological order; then the partition decision structure only
has to keep (key, value)-pairs for node-decision values of nodes that are part of the initial partition block
that is currently being processed.

Proof. Let n ∈N be a node placed in initial partition block p i ∈ Pi . According to Theorem 3.28 all nodes
m ∈ N , n ≈ m are also placed in partition block p i . Only these nodes m will have the same node-
decision value as node n . As such the partition decision entry (vpds(n), value) for node n is only needed
when processing the nodes in partition block p i .

Theorem 3.29 shows that using initial partitions other then {N } can improve the performance of
Algorithm 3.3 quite a bit; this by optimizing the pattern wherein the partition decision structure is
queried.

25

3.3.3 Structural summary partition

To maximize the improvement gained from optimizing the query patterns one wants to find an easy-
computable initial partition wherein each partition block is as small as possible. Many internal memory
algorithms use some initial partition. The algorithms based on the work by Robert Paige and Robert E.
Tarjan often use label partitions. For directed acyclic graphs rank partitions are used. From Corollary
2.32 and Corollary 2.37 we can conclude that the label partition and the rank partition both are initial
partitions.

Label equivalence or rank equivalence does in no way guarantee a close to optimal initial partition
wherein partition blocks are as small as possible. A way to get an optimal initial partition is by grouping
nodes on node-bisimilarity values. This approach is however impractical due to the storage needed
for the node-bisimilarity value. We have solved this problem before by using the one-to-one mapping
between node-bisimilarity values and partition block identifiers. This resulted in the node-decision
value of Definition 3.7; we however need a partition decision structure for this approach to work.

In the definition of node-decision values we use the partition decision structure as a function map-
ping other node-decision values to numeric identifiers. We can replace this partition decision structure
function by other functions; thereby defining other types of node values.

Definition 3.30. Let GD = 〈N , E , l 〉 be a graph, let F be a set, let F :D×℘(F)→F be a function. We define
the node-value vF(n) of node n with respect to this function F as vF(n) =F(l (n),{vF(m) : m ∈ E (n)}).

Note the resemblance between Definition 3.30 and the node-decision value. Just as with the node-
decision value this definition of the node-value vF implies that the node-value of a node n can only be
determined when the node-value of the children of node n are already evaluated. We have proven a
strong relation between node bisimulation and node-decision values; we shall now look at the relation
between node bisimulation and node-decision values.

Theorem 3.31. Let G = 〈N , E , l 〉 be a directed acyclic graph, let n ∈ N , m ∈ N be nodes in this graph.
We have n ≈m implies vF(n) = vF(m).

Proof. The proof is by induction on the rank of the nodes.

BASE CASE: Let node n be a node with rank(n) = 0. We have vF(n) = F(l (n),;). Let m be a node with
m ≈ n . We have vF(m) = F(l (m),;). According to Definition 2.15 we have l (n) = l (m) and thus
vF(n) = vF(m).

INDUCTION HYPOTHESIS: Let n be a node with rank up to r . We have n ≈m implies vF(n) = vF(m) for
every node m .

INDUCTION STEP: Let node n be a node with rank(n) = r+1. We have vF(n) = (l (n),Sn). Let m be a node
with m ≈ n . We have vF(m) = (l (m),Sm) and according to Definition 2.15 we have l (n) = l (m).
Definition 2.15 guarantees that for every node n ′ ∈ E (n) there is a node m ′ ∈ E (m) with n ′ ≈m ′.
These nodes n ′ have rank(n ′) ≤ r ; thus according to the induction hypothesis we have vF(n ′) =
vF(m ′). Therefrom we can conclude Sn ⊆ Sm . In the same way we can prove Sn ⊇ Sm ; thereby
proving Sn =Sm and thus vF(n) = vF(m).

For any node-value vF with respect to any function F we can define an initial partition by grouping
nodes on equivalent node-value. We can pick good functions F based on particular properties of the
(expected) input graphs. This approach is however limited to graphs wherefore such properties are
known. For a more general approach we can use a hash function as function F.

Definition 3.32. Let H be a finite set. The function H : U→ H is called a hash function; it maps keys
drawn from some domain U to a hash value. The hash function is typically a many-to-one function.
Thereby it is unavoidable that there are collisions. We speak of a collision if we have a pair of unequal
values u 1 ∈U, u 2 ∈U, u 1 6= u 2 that have the same hash value; thus H(u 1) =H(u 2).

26

Using the hash function we can calculate a node-value for every node. On these node-values we
can define an initial partition by grouping nodes with equivalent node-values. To guarantee that the
partition blocks in such an initial partition can be ordered such that the nodes are reverse-topological
ordered we not only group on equivalent node-value but also on equivalent rank. We can also include
grouping of nodes on equivalent label; this removes the need to check on labels later on during bisim-
ulation partitioning. We refer to the resulting partition as the structural summary partition.

Definition 3.33. Let G = 〈N , E , l 〉 be a graph, let H : D×℘(H)→ H be a hash function. The structural
summary S(n) of a node n is defined as S(n) = (rank(n), l (n), vH(n)). The structural summary partition
PS is defined as the node-value partition for function S. The node-value vH(n) is called the node-hash
value of node n .

Theorem 3.34. Let G = 〈N , E , l 〉 be a graph, let PS be the structural summary partition of nodes N . The
bisimulation partition P is a refinement of the structural summary partition PS.

Proof. Node bisimulation equivalence implies rank equivalence, label equivalence and equivalence on
the node-hash value. As such node bisimulation equivalence implies structural summary equivalence.
Using Theorem 2.31 we can conclude that P is a refinement of PS.

With a good hash function H the structural summary partition is expected to be close to the bisim-
ulation partition. Thereby a good hash function distributes the hash values of a set of inputs uniformly
over the domain H. Furthermore a good hash function distributes the hash values of a set of inputs
randomly; whereby any correlations between the values in the set of inputs are not reflected in the dis-
tribution of the hash values. Any hash function can however have collisions whereby non-equivalent
input values results in equivalent node-hashes. Structural summaries thus do not remove the need for
a bisimulation partitioning algorithm to further refine the input to a bisimulation partition.

In most applications whereby a hash function (with collisions) is used these collisions don’t have a
great effect. In these applications the collisions are localized; we shall however show that this is not the
case for node-hash values.

Example 3.35. Let G = 〈N , E , l 〉 be the graph shown in Figure 3.4.

2a 2a

1b 1b

3c 4d 5e6f

Figure 3.4: A graph wherein each node is annotated with a node-hash value. This node-hash value is
placed as a subscript on the left of the node label. For calculating the node-hash value of
each node we have mapped the node labels to integers i by mapping each letter from the
alphabet to its position in the alphabet (thus a → 1, . . . , z → 26). The node-hash value of a
node n is then calculated as vH(n) = (i +

∑

v∈{vH(m):m∈E (n)} v) mod 10.

We see that the nodes with label b are not bisimilar equivalent; these nodes have children with
completely different labels. Due to a collision the nodes with label b do have the same node-hash
value. The nodes with label a only have edges to these nodes b; the nodes with label a thus get the same
node-hash value. The collision for the node-hash value of the nodes with label b thus has propagated
to the nodes with label a.

Collision propagation on node-hash values as described in Example 3.35 increases the probability
for collisions on node-hash values. In the worst case collision propagation will have a cumulative effect.
On the other hand the effect of collisions is reduced by including rank and label equivalence in the
structural summary partition. As such we expect that the structural summary partition will turn out
to be a good initial partition; with almost as much partition blocks as the bisimulation partition. The

27

definition of the structural summary partition at least guarantees that the structural summary partition
is at least as good as partitions based on label and/or rank equivalence.

3.3.4 Using structural summaries for bisimulation partitioning

We have introduced structural summary partitions and we have shown that the usage of such an initial
partition as input for Algorithm 3.3 is expected to greatly reduce the cost for every query on the partition
decision structure. This improvement is achieved by reducing the number of entries maintained by the
partition decision structure at any given time. For this approach to work we do however need a way
to convert arbitrary graphs in list representation L into some initial structural summary partition. We
shall thus introduce a formal graph representation for directed acyclic graphs wherein we can express
structural summary partitions.

Definition 3.36. Let G = 〈N , E , l 〉 be a graph, let PS be the structural summary partition of N . Graph
G can be represented by list representation LS. In list representation LS every partition block p ∈ P is
represented by a list element (l ′, L)where

(1) l ′ is the common label of the nodes in L, and

(2) L is a list whereby each node n ∈ L is represented by a list element e = (i , E ′(n))where

(a) i is the node identifier of node n , and

(b) E ′(n) is the list of parent nodes of n ; every node represented by its node identifier.

Additional the partition blocks (as represented by list elements) are lexicographically ordered on
increasing structural summary.

The node identifier i is defined with respect to its overall position in the list representation LS of a
graph. When we read a graph in list representation LS sequentially, thereby reading each list of nodes
in each element (l ′, L) sequentially; then the i -th node list element we read will have node identifier i .

Example 3.37. Let G = 〈N , E , l 〉 be the graph shown in Figure 3.5.

c3 c4

b1 b2

a0

Figure 3.5: A directed acyclic node labeled graph; the subscript on each node represents a unique node
identifier.

The list [(a , [(0, [1, 2])]), (b , [(1, [3, 4]), (2, [4])]), (c , [(3, []), (4, [])])] represents this graph in LS represen-
tation.

With this representation LS we can introduce an algorithm that takes a graph in list representation
L and produces the same graph in list representation LS. Such an algorithm needs to calculate ranks
and node-hash values for each node; the definition of rank and node-hash value hint at the application
of time-forward processing. This approach leads to Algorithm 3.4.

Algorithm 3.4 introduces a shorthand notation for reading and removing elements from the priority
queue; we first introduce this shorthand notation before looking at the details of the algorithm.

Remark 3.38. Let Q be a priority queue. The expression (n , c) = TOP(Q) checks if the top element on
queue Q is intended for node n ; if this is the case then the value c is returned and the top element is
popped. If the top element is not intended for node n , then no additional values are read from the
queue.

28

Algorithm 3.4 Converting graphs in L representation into graph in LS representation

Require: Directed acyclic graph G = 〈N , E , l 〉 in list representation L.
Ensure: List L is a directed acyclic graph G = 〈N , E , l 〉 in list representation LS.

1: N ′, E ′, L are empty lists
2: Qrank,QH are empty priority queues
3: for all (n , l (n), E ′(n))∈G , in order of node identifier do
4: rank(n)←max({r +1 : (n , r) = TOP(Qrank)}∪ {0})
5: vH(n)←H(l (n),{s : (n , s) = TOP(QH)})
6: ADD(N ′, (rank(n), l (n), vH(n), n))
7: for all m ∈ E ′(n) do
8: ADD(E ′, (m , n))
9: ADD(Qrank, (m , rank(n)))

10: ADD(QH, (m , vH(n)))

11: SORT(N ′) on lexicographical order
12: Give nodes new identifiers based on the new position in N ′

13: Change identifiers for edges E ′ based on new node identifiers
14: SORT(E ′) on (child node identifier, parent node identifier)

15: for all structural summaries (r, l ′, vH), lexicographical ordered do
16: L p is an empty list
17: for all node n , (r, l ′, vH, n)∈N ′, in order of node identifier do
18: ADD(L p , (n ,{m : (m , n)∈ E ′}))
19: ADD(L, L p)

Algorithm 3.4 gives little details on how the node identifiers in list E ′ and list N ′ can be updated IO
efficient (line 11–14). We shall first provide some details on how to achieve this before we take a look at
the correctness and the IO complexity of the algorithm

Remark 3.39. We can renumber the nodes in N ′ by sequentially updating the list, replacing each old
node identifier by the new position in the list. During this update process we can construct a renumber
list R containing (old node identifier, new node identifier)-pairs.

For updating the node identifiers in edge list E ′ we use the renumber list R . Sort this list R on old
node identifier. To update the child node identifiers in the edge list we sort the edge list on child node
identifiers; we then sequentially read list R and at the same time sequentially update the child node
identifiers in the edge list. To update the parent node identifiers in the edge list we sort the edge list on
parent node identifier; we then sequentially read list R and at the same time sequentially update the
parent node identifiers in the edge list.

The correctness of Algorithm 3.4 follows from Remark 3.39, the correctness of the time-forward
processing technique and from Definitions 2.33, 3.33 and 3.36. We shall now show that Algorithm 3.4
performs the conversion in an IO efficient way.

Theorem 3.40. The worst case IO complexity of Algorithm 3.4 is O(SORT(|N |)+SORT(|E |)+PQ(|E |)).

Proof. We shall proof the IO complexity for the three parts of the algorithm separately.

LINES 4–10: The graph is read sequentially; lists E ′ and N ′ are written sequentially. These reads and
writes cost O(SCAN(|N |+ |E |)) in total. The algorithm will also add an element to both priority
queues for every edge; these elements are later removed. Thereby the total IO cost for this part of
the algorithm is O(SCAN(|N |+ |E |)+PQ(|E |)) IOs.

LINES 11–14: Using Remark 3.39 these operations can be achieved by sequentially reading and updating
lists N ′, E ′ and reading and constructing list R . The lists N ′, E ′ and R are also sorted; thereby the
total IO cost for this part of the algorithm is O(SORT(|N |)+SORT(|E |)).

29

LINES 15–19: The ordering of lists N ′ and E ′ achieved in the previous part of the algorithm guarantees
that during this part of the algorithm both lists can be read sequentially. The list L is sequentially
written. The list L p is sequentially written and then copied to list L; the size of list L p will accumu-
latively be O(|N |+ |E |). Thereby the total IO cost for this part of the algorithm is O(SCAN(|N |+ |E |)).

We can easily adapt Algorithm 3.3 such that it can operate on graphs in list representation LS. This
adaption of Algorithm 3.3 leads to Algorithm 3.5; which we shall only briefly analyze.

Algorithm 3.5 Online bisimulation partitioning algorithm (on graphs in list representation LS)

Require: Directed acyclic graph G = 〈N , E , l 〉 in list representation LS.
Ensure: The output is the pair (n , p) for every n ∈N ; with p an identifier for the bisimulation partition

block whereto n belongs.
1: i ← 0
2: Q is an empty priority queue
3: for all (l ′, L)∈G , in order of the list representation G do
4: pdsL is an empty (key, value) mapping
5: for all (i , E ′(n))∈ L, in order of node identifier do
6: vpds(n)← (l ′,{p : (n , p) = TOP(Q)})
7: if pdsL does not contain the key vpds(n) then
8: pdsL[vpds(n)], i ← i , i +1
9: p ← pdsL[vpds(n)]

10: for all m ∈ E ′(n) do
11: ADD(Q , (m , p))
12: print (p , n)

Algorithm 3.5 also uses the notation introduced in Remark 3.38 for reading values from the priority
queue. Correctness of Algorithm 3.5 follows directly from correctness of Algorithm 3.3. The runtime
and IO complexity analysis for Algorithm 3.5 is also along the same lines as the analysis for Algorithm
3.3; resulting in the same runtime and IO complexity.

The localized partition decision structures pdsL used in Algorithm 3.5 are only of the same size as
the partition decision structure pds used in Algorithm 3.3 when an input graph only has nodes with the
same label and rank. In all other cases the localized partition decision structures pdsL is always smaller
then the partition decision structure pds. When we assume that the cost of querying the partition de-
cision structure depends on the size of the partition decision structure; then the queries performed by
Algorithm 3.5 are in total cheaper as those performed by Algorithm 3.3. As such we expect Algorithm
3.5 to be faster as Algorithm 3.3. Thereby we however note that Algorithm 3.5 introduces a considerable
cost for running Algorithm 3.4.

3.4 External memory bisimulation partitioning

Algorithm 3.5 is expected to give good performance in many cases. There is however always a proba-
bility on collision and collision propagation. We need additional processing on the partition blocks in
the structural summary partition to reduce the probability on collisions and remove any probability on
collision propagation.

We are in the best position for this additional processing on the partition block p in the structural
summary partition when we start partitioning the nodes in partition block p (line 5 in Algorithm 3.5).
At this moment all child nodes of the nodes in partition block p are placed in bisimulation partition
blocks. The priority queue will thus contain all information to construct the node-decision values for
all nodes in partition block p .

When we calculate these node-decision values; then we can sort the nodes in partition block p
on their node-decision values. Sorting might be a bit tricky as the size of node-decision values is not

30

fixed. We can however use the same approach as used for the node-hash value: use a hash function to
compress the node-decision values to a fixed size.

Definition 3.41. Let G = 〈N , E , l 〉 be a graph, letH be a finite set and HL :℘(N)→H be a hash function,
let n ∈N be a node with node-decision value vpds(n) = (l (n),S), let P be the initial partition, let p ∈ P be
the structural summary partition block wherein node n is placed. The local structural summary SL(n) of
node n is defined as SL(n) = (|S|,HL(S)). The local structural summary partition of nodes p is defined as
the node-value partition of p for function SL. The value HL(S) for node n is called the local node-hash
value of node n .

Proposition 3.42. Let G = 〈N , E , l 〉 be a directed acyclic graph, let n ∈ N , m ∈ N be nodes, let pds be
a partition decision structure. When we query nodes in reverse-topological order and only determine
the node-decision value of a node when needed for querying; then we have vpds(n) = vpds(m) implies
SL(n) = SL(m) and thus n ≈m implies SL(n) = SL(m).

We can use the local structural summary to refine the single initial partition block into several local
structural summary partition blocks. Property 3.42 together with Theorem 2.31 guarantees that these
local structural summary partition block can be refined to bisimulation partition blocks.

The local structural summary depends directly on the node-decision values. Thereby several nodes
with different node-decision values can locally end up with the same local structural summary due
to local collisions. Propagation of these collisions is however not possible. We expect that the total
number of bisimulation partition blocks that share the same rank, label, node-hash and local structural
summary is very small when using a good local hash function HL. With a good local hash function
HL we thus expect that in each local structural summary partition block the number of entries for a
localized partition decision structure is upper bounded by some constant.

We can enhance Algorithm 3.5 by including local refinement of initial partition blocks into local
structural summary partitions. This results in Algorithm 3.6.

Algorithm 3.6 External memory online bisimulation partitioning algorithm

Require: Directed acyclic graph G = 〈N , E , l 〉 in list representation LS.
Ensure: The output is the pair (n , p) for every n ∈N ; with p an identifier for the bisimulation partition

block whereto n belongs.
1: i ← 0
2: Q is an empty priority queue
3: for all (l ′, L)∈G , in order of the list representation G do
4: N ′ is an empty list
5: for all (i , E ′(n))∈ L, in order of node identifier do
6: S←{p : (n , p) = TOP(Q)}
7: vpds(n)← (l ′,S)
8: ADD(N ′, (|S|,HL(vpds(n)), i , E ′(n),S))
9: SORT(N ′) on lexicographical order

10: for all local summary (c , vL
H), lexicographical ordered do

11: pdsL is an empty (key, value) mapping
12: for all node n with ((c , vL

H), i , E ′(n),S)∈N ′, in order of the list N ′ do
13: if pdsL does not contain the key (l ,S) then
14: pdsL[(l ′,S)], i ← i , i +1
15: p ← pdsL[(l ′,S)]
16: for all m ∈ E ′(n) do
17: ADD(Q , (m , p))
18: print (p , n)

Before we can analyze Algorithm 3.6 we need to take a look at some of the details of the algorithm.
First is the list N ′; storing and sorting this list seems hard as it is storing variable sized entries. This was
the exact problem we tried to circumvent by introducing local structural summaries. Therefore we give
a description on how this list N ′ can be implemented in an IO efficient way.

31

Remark 3.43. The list N ′ contains entries (c , vL
H, i , E ′(n),S); these entries have a variable size. We can

however move the variable sized values E ′(n) and S to separate data structures; thereby fixing the size of
each entry in list N ′. We do so by placing a representation of E ′(n) in its own list L E ′ and a representation
of S in its own list LS . Thereby for every m ∈ E ′(n) list L E ′ will contain an entry (c , vL

H, i , m) and for every
vpds ∈S list LS will contain an entry (c , vL

H, i , vpds).
The result is N ′ represented by three separate lists, the entries in each list have a fixed size. These

lists can be sorted on lexicographical order. The sequential read of list N ′ starting at line 10 can then
be implemented by sequentially reading the three lists at the same time. The accumulative size of this
implementation of list N ′ is O(|N |). The accumulative size of list L E ′ and list LS is O(|E |).

We also have to give details on how the partition decision structure will be implemented.

Remark 3.44. We assume that the number of collisions within a single local structural summary parti-
tion block is upper bounded by some constant hc . Let p be such a local structural summary partition
block wherein every node shares the same local structural summary (c , vL

H). From Theorem 3.11 it fol-
lows that for every node n ∈ p the size of the node-decision value vpds(n) is given by |vpds(n)|= c +1.

Under this conditions we can implement the local partition decision structure as a list of (node-
decision value, partition block identifier)-pairs. This structure will contain at most hc entries; and each
entry will have size Θ(c). The total cost of a single lookup is then upper bounded by O(SCAN(c hc)) =
O(SCAN(c)).

Note that we can freely drop the node label from the partition decision structure and from the re-
mainder of Algorithm 3.6. Label equivalence for nodes in the same initial partition is guaranteed as the
initial partition is based on structural summaries.

We shall first look at the correctness of Algorithm 3.6; we then analyze the IO complexity for Algo-
rithm 3.6.

Theorem 3.45. Algorithm 3.6 calculates the bisimulation partition.

Proof (sketch). Correctness of Algorithm 3.6 follows from its construction as described in this chapter.
Thereby we use that the input of the algorithm is a structural summary partition. Theorem 3.34 proofs
that this structural summary partition can be refined to the bisimulation partition. Each partition block
in the structural summary partition is refined to the local structural summary partition.

According to Proposition 3.42 all nodes with the same node-decision value must be placed in the
same local structural summary partition block. Using partition decision structures nodes are then as-
signed an identifier; thereby nodes are assigned the same identifier if and only if they have the same
node-decision value. These identifiers provide a grouping on node-decision value. Theorem 3.31 proofs
that this grouping on node-decision value is a bisimulation partition.

We shall first take a look at the expected IO complexity of the algorithm. After this analysis we shall
look at the worst case IO complexity of the algorithm.

Theorem 3.46. The expected IO complexity of Algorithm 3.6 is O(SORT(|N |)+SORT(|E |)+PQ(|E |)).

Proof. We assume the implementations described in Remark 3.43 and Remark 3.44. Using the imple-
mentation of list N ′ will result in an IO cost of O(SORT(|N |) + SORT(|E |) for reading the input graph;
refining each initial partition block and then reading the refined partition blocks. Further the algorithm
will add an element to the priority queue for every edge; these elements are later removed; thereby
introducing an IO cost of O(PQ(|E |)).

Each local partition decision structure can be seen as a single bucket in a virtual hash table with the
node-decision value as the hash key. We thus can expect at most a constant hc different node-decision
values being stored in each local partition decision structure. Thereby we have forced that all entry in a
single local decision structure have the same size. A query for an entry vpds(n) thus is expected to cost at
most SCAN(hc |vpds(n)|). The accumulative cost of queries on local partition decision structures is thus
given by O(
∑

n∈N SCAN(hc |vpds(n)|))≤O(SCAN(hc |E |)) =O(SCAN(|E |)).

Nothing guarantees the expected complexity of Algorithm 3.6. Therefore we shall also analyze the
worst case complexity of Algorithm 3.6.

32

Theorem 3.47. The worst case IO complexity of Algorithm 3.6 is O(SORT(|N |) + SORT(|E |) + PQ(|E |) +
SCAN(|N ||E↓|)).

Proof. We assume the implementations described in Remark 3.43 and Remark 3.44. Let G = 〈N , E , l 〉 be
a graph, let G↓ = 〈N↓, E↓, l ↓〉 be the maximum bisimulation graph of graph G , let p be a local structural
summary partition block wherein every node has local structural summary (c , vL

H). We shall consider
the case where c = 0 and the case where c 6= 0 separately.

CASE c = 0: The partition block p only contains leaf nodes; each leaf node having the same label. Ac-
cording to Definition 2.15 all leaf nodes with the same label are bisimilar equivalent. As such the
local partition decision structure for partition block p will contain at most a single entry. Accord-
ing to Remark 3.44 this single entry has a fixed size of Θ(c +1) = Θ(1). We thus can conclude that
the local partition decision structure for partition block p can be maintained in internal memory;
thereby not leading to any IO cost.

CASE c 6= 0: According to Theorem 3.29 all bisimilar nodes are placed in the same local structural sum-
mary partition block p ′. As such only the local partition decision structure for partition block
p ′ will contain an entry for these nodes. For every node n ↓ ∈ N↓ there will thus be a single local
partition decision structure wherein an entry for node n ↓ is created. We assume the worst case
wherein all these entries are placed in the same partition decision structure pds.

From c 6= 0 we can conclude that only for nodes n ↓ ∈ N↓ with |E↓(n ↓)| 6= 0 there will be an en-
try in the partition decision structure pds. According to Remark 3.44 the entry for node n ↓ has
size Θ(|E↓(n ↓)|). Therefore the total size for the partition decision structure is upper bounded by
O(
∑

n↓∈N↓
|E↓(n ↓)|) =O(|E↓|).

In the worst case the partition decision structure pds is queried |N | times, once for every node in
the graph. This results in a worst case upper bound on the IO cost for performing all queries on
local partition decision structures of O(SCAN(|N ||E↓|)).

If one is truly concerned about worst case behavior; then picking the list as a data structure for
implementing the local partition decision structures is not recommended. The usage of a hash table
doesn’t make much sense either; each local partition decision structure can be seen as a hash table
bucket in a virtual hash table. The only remaining data structure mentioned in Subsection 3.3.1 is the
string B-tree.

Proposition 3.48. Let G = 〈N , E , l 〉 be a graph, let G↓ = 〈N↓, E↓, l ↓〉 be the maximum bisimulation graph
of graph G , let pds be a partition decision structure implemented as a string B-tree. The partition de-
cision structure pds can answer queries (lookups of existing entries and insertions of new entries) for
node-decision values vpds in O(SCAN(|vpds|)+ logB (|N↓|)) IOs.

The worst case analysis for Algorithm 3.6 utilizing a string B-tree for implementing the partition
decision structures differs from the worst case analysis provided in Theorem 3.47. As such we shall
provide a separate worst case analysis for Algorithm 3.6 utilizing a string B-tree for implementing the
partition decision structures.

Theorem 3.49. The worst case IO complexity of Algorithm 3.6 is O(SORT(|N |) + SORT(|E |) + PQ(|E |) +
|N | logB (|N↓|)).

Proof. We assume the implementations described in Remark 3.43 while using a string B-tree imple-
mentation for the partition decision structures. Let G = 〈N , E , l 〉 be a graph, let G↓ = 〈N↓, E↓, l ↓〉 be the
maximum bisimulation graph of graph G , let p be a local structural summary partition block wherein
every node has local structural summary (c , vL

H). We shall reconsider the case where c 6= 0; see Theorem
3.47 for the case c = 0.

33

CASE c 6= 0: Based on Theorem 3.47 we assume that the upper bound on the size of the partition deci-
sion structure is |E↓|. We also assume there is at most a single insert for every n ↓ ∈N↓ and a single
query for every node n ∈N .

The upper bound on the total cost for all inserts is given by
∑

n↓∈N↓
(SCAN(|vpds|) + logB (|N↓|)) =

O(SCAN(|E↓|) + |N↓| logB (|N↓|)). The upper bound on the total cost for all queries is given by
∑

n∈N (SCAN(|vpds|) + logB (|N↓|)) = O(SCAN(|E |) + |N | logB (|N↓|)). This results in a worst case up-
per bound on the IO cost for performing all queries on local partition decision structures imple-
mented as string B-trees of O(SCAN(|E |)+ |N | logB (|N↓|)).

For worst cases one can expect that the list implementation of the local partition decision structures
is outperformed by the string B-tree implementation of the partition decision structures. According
to Theorem 3.47 and Theorem 3.49 the provided implementations of Algorithm 3.6 are, in the worst
case, not IO efficient. With decent hash functions one can however expect an IO efficient algorithm; as
proven by Theorem 3.46.

3.5 Constructing maximum bisimulation graphs and graph indices

The result of running Algorithm 3.6 on a graph is a list of (partition block identifiers, node identifiers).
Thereby the node identifiers do not correspond to the node identifiers used in the original graph; this
due to the assignment of new node identifiers to nodes in Algorithm 3.4. This reassignment was nec-
essary for constructing a structural summary partition. In this section we shall discuss how we can
post-process the results of Algorithm 3.6 for constructing the maximum bisimulation graph and/or the
graph index of the original input graph.

According to Theorem 3.13 the maximum bisimulation graph can be represented by a partition de-
cision structure. Algorithm 3.6 can easily be adapted such that it maintains the entire partition decision
structure. We can simply add a statement to the algorithm such that every new local partition decision
structure entry is also appended to a global list pds. This global list pds represents the entire partition
decision structure; and thereby list pds is a list representation of the maximum bisimulation graph. By
construction Algorithm 3.6 places a specific order on the nodes in list pds.

Proposition 3.50. Let G = 〈N , E , l 〉 be a graph, let G↓ = 〈N↓, E↓, l ↓〉 be the maximum bisimulation graph
of graph G in partition decision structure representation pds calculated by Algorithm 3.6, let (l (n),S)
be an entry in list pds representing a maximum bisimulation graph node. The maximum bisimulation
graph nodes in list pds are lexicographically ordered on (rank, label, node-hash, |S|, HL(l (n),S)).

In several algorithms we have seen that every node needs access to the set of parents of the node;
the time-forward processing depends on these sets. The partition decision structure representation of
maximum bisimulation graphs does not provide these sets of parents of a node; instead every node
has access to the set of children of the node. We can however trivially convert the partition decision
structure representation of a maximum bisimulation graph into a list representation L of a maximum
bisimulation graph. Algorithm 3.7 provides an outline for this conversion.

34

Algorithm 3.7 Converting maximum bisimulation graphs from pds representation to L representation

Require: Maximum bisimulation graph G↓ = 〈N↓, E↓, l ↓〉 in pds representation.
Ensure: List L is the maximum bisimulation graph G↓ = 〈N↓, E↓, l ↓〉 in list representation L.

1: i ← 0
2: N ′, E ′, L are empty lists
3: for all (l ,S)∈G , in order of the list representation G do
4: ADD(N ′, (i , l))
5: for all m ∈S do
6: ADD(E ′, (i , m))
7: i ← i +1
8: SORT(E ′) on (child node identifier, parent node identifier)

9: for all (i , l)∈N ′, in order of the list N ′ do
10: ADD(L, (i , l ,{m : (i , m)∈ E ′}))

Algorithm 3.7 has an IO complexity of O(SCAN(|N↓|) + SORT(|E↓|)). We shall not provide any correct-
ness or IO complexity proofs for Algorithm 3.7 as these follow directly from the algorithm.

For constructing the graph index we probably need a bisimulation partition wherein the node iden-
tifiers correspond to the node identifiers used in the original graph. The bisimulation partition P pro-
duced by Algorithm 3.6 does not contain the original node identifiers; as these are replaced during the
construction of the structural summary partition. We can however utilize the temporary list R pro-
posed in Remark 3.39. List R provides a mapping between the node identifiers used in P and the node
identifiers used in the original graph. After sorting lists R and P on the new node identifier one can
sequentially read list R and at the same time sequentially update list P .

After updating the node identifiers in list P one can sort the list on partition block identifier. When
the list P is sorted on partition block identifier; then it is easy to merge list P and the maximum bisimula-
tion graph (either represented by a partition decision structure pds or represented in list representation
L) into a single representation of a graph index. The exact details of the index constriction are left open
as these details depend completely on the future purpose of the graph index.

3.6 Final notes

In this chapter we have developed an IO efficient external memory bisimulation partitioning algorithm.
We have also presented theory to support the development of this algorithm. In Subsection 3.6.1 we
discuss the limitations on the developed algorithm. Subsection 3.6.2 concludes this chapter with useful
details and considerations for implementing the algorithm.

3.6.1 Limitations on the external memory bisimulation partitioning algorithm

Algorithm 3.6; and all other related algorithms are restricted in two ways in the input they can accept.
We have (1) the input should be a directed acyclic graph and (2) the directed acyclic graph should be
reverse-topological sorted. Both restrictions are not easy to overcome.

First we take a look at the second restriction. To the best of our knowledge there are no truly IO effi-
cient algorithms for topological sorting a directed acyclic graph. The (asymptotically) fastest algorithms
use depth-first search; the worst case IO complexity for the best known depth-first search algorithm is
O((|N |+SCAN(|E |)) log(|N |)) [BGVW00]. There are however a number of heuristic approaches that seem
to perform acceptable [ACLZ11]. One can however expect that including topological sorting before run-
ning any of the bisimulation partitioning algorithms will greatly increase runtime and IO complexity.

This leaves us with the question if we can develop IO efficient bisimulation partitioning algorithms
for directed graphs and/or for non-ordered directed acyclic graphs. Bisimulation partitioning ap-
proaches are likely to include some form of edge traversal; this stems directly from Definition 2.15.
With dropping reverse-topological ordering we cannot make assumptions on the order of these edge
traversals.

35

Breadth-first search and depth-first search are algorithms that primarily perform edge traversals;
for these algorithms fast internal memory algorithms are known. There are however no IO efficient
external memory algorithms for these problems; even though efficient ‘edge traversal’ internal memory
solutions exist. This makes it very unlikely that an IO efficient bisimulation partitioning algorithm for
general directed graphs and/or for non-ordered directed acyclic graphs is easily constructible.

Therefore one is more likely to develop acceptable performing general bisimulation partitioning
algorithms by using heuristic approaches. Developing heuristic approaches is basically the same ap-
proach as currently investigated for other ‘edge traversal’ problems; such as topological sorting.

3.6.2 Implementing external memory bisimulation

Algorithm 3.6 is not optimized for any particular (expected) type of input and any particular type of
output. When implementing an external memory bisimulation partitioning such as Algorithm 3.6 it is
in generally a good idea to utilize the properties of the (expected) type of input and the type of output
to improve (expected) performance. Therefore we shall give some brief ideas that can be used. Some of
these ideas are applicable when calculating indices for XML documents; this specific case is handled in
more depth in Chapter 5.

(1) The bisimulation partitioning algorithms are presented as if they are incrementally providing
more details. One can however utilize another view; namely that the presented algorithms are
increasingly less dependent on internal memory for storing the partition decision structure. This
reduction on memory dependence is paid with an increase in IO complexity.

When we implement the partition decision structure by using efficient internal memory string B-
trees (see Subsection 3.3.1 for some details) then we get a hierarchy of algorithms. In this hierar-
chy Algorithm 3.3 is the fastest algorithm, but it can only handle graphs whose partition decision
structure fits entirely in internal memory. This is the case for well-structured data. Algorithm 3.6
is the slowest algorithm; but it can handle all reverse-topological ordered directed acyclic graphs.

When one expects input to be well-structured; and thus resulting in a small partition decision
structure; then it is a good idea to pick Algorithm 3.3 over the more expensive combination of
Algorithm 3.4 and Algorithm 3.6.

(2) Even when the partition decision structure does not fit entirely in internal memory we can work
with the assumption that a local partition decision structure for an initial partition block fits in
internal memory. With this assumption we can utilize Algorithm 3.5 over Algorithm 3.6; saving
the work for locally refining initial partition blocks.

If we cannot assume that every local partition decision structures for every initial partition block
fits in internal memory, then we can still work with the assumption that most local partition deci-
sion structures will fit in internal memory. In these cases we don’t need to locally refine the initial
partition block. This assumption can be implemented by reserving a fixed amount of memory
for a local partition decision structure. If this fixed amount of memory is used; then the nodes
having node-decision values that are not present in the partition decision structure are stored in
list N ′ for further local refinement. Thereby the total size of list N ′ and the number of nodes in
the locally refined partition blocks is expected to be strongly reduced.

(3) For processing local structural summary partition blocks in Algorithm 3.6 (lines 10–18) we can
primarily depend on an internal memory partition decision structure; whose size is bounded by
some constant. We should only store elements in external memory when this internal memory
partition decision structure is full.

(4) The choice of hash functions in Algorithm 3.4 and Algorithm 3.6 is important. When the used
hash functions result in many collisions then the node-hash and local node-hash values are bad
indicators for node bisimilarity. This increases the probability on worst-case behavior.

Furthermore a hash function resulting in bad node-hash values will result in an initial partition
containing very large partition blocks; reducing the probability that initial partition blocks can be

36

completely processed in internal memory (see 2). Likewise a hash function resulting in bad local
node-hash values reduces the probability that local partition blocks can be processed completely
in internal memory (see 3).

(5) When some (easily) computable node-value is a strong indicator for node bisimilarity; then this
indicator can be included in the structural summary or in the local structural summary. This
leads to the same improvements as seen in 4.

(6) Algorithm 3.4 is a very expensive algorithm; especially assigning new identifiers to every node
and edge (lines 11–14); as described in Remark 3.39; will cost multiple sort and scan operations.
We shall now look at an alternative approach.

Assume that Algorithm 3.4 results in initial partition P . Each partition block p ∈ P will have a
unique key as its identifier; namely the structural summary shared by all nodes in the partition
block. Now assume we can maintain a mapping entry (unique key, partition block identifier,
count) for every partition block. The total size of this mapping is upper bounded by O(|N↓|).

We can utilize this mapping to assign composite identifiers (rank, partition block identifier,
count) to every node n . For every node n being placed in some initial partition block p we look up
the current count in the mapping. This count is assigned to node n as the unique node identifier
of node n with respect to the other nodes in the same initial partition block. After assigning the
count we increment it by one. This composite identifier can directly be assigned to the nodes in
list N and to the child node identifiers stored in list E . When we use these composite identifiers;
then only the node identifiers of parent nodes stored in list E needs to be updated.

For efficiency one would require that the mapping (unique key, partition block identifier, count)
fits in main memory. For reducing the size of this mapping one can choose to sacrifice the quality
of the resulting initial partition by restricting the initial partition to the rank partition or the rank,
label partition. The exact savings for such an approach depends on the specifics of each case.
Measurements can be of help to decide if the reduction of the cost for executing Algorithm 3.4
outweighs the increase in cost for Algorithm 3.6.

(7) Algorithm 3.4 can be skipped altogether if it is guaranteed that the nodes in the input graph are
already ordered on rank. With this ordering on rank we already have an initial partition that allows
us to use localized partition decision structures (see Theorem 3.29). With such a rank-ordered
input graph we can simply utilize Algorithm 3.5 or Algorithm 3.6 directly on the provided input.

Locally refining an initial partition block as performed by Algorithm 3.6 costs less IOs then com-
puting a structural summary as performed by Algorithm 3.4. The decrease in IO cost by removing
Algorithm 3.4 thus more than compensates for the possible increase in IO cost for using a less
optimal initial partition as input for Algorithm 3.6.

(8) When the fan out of nodes is bounded; then the node-decision values have a fixed size. In this
case we can skip using local refinement and using partition decision structures altogether. In
Algorithm 3.6 we simply sort list N ′ on the exact node-decision value. After sorting list N ′ one
can process the nodes in list N ′ per node-decision value. Thereby each distinct node-decision
value indicates a distinct bisimulation partition block. For this specific case the worst case upper
bound on Algorithm 3.6 is O(SORT(|N |)+SORT(|E |)+PQ(|E |)).

37

Chapter 4

BISIMULATION PARTITION MAINTENANCE

In Chapter 3 we have introduced an algorithm for bisimulation partitioning directed acyclic graphs; this
in an IO efficient way. We have also indicated how the introduced algorithm can be utilized to create the
graph index of the input graph during its operations. We shall now look at how we can keep this graph
index up to date when small changes are made to the input graph. This as an alternative to recalculating
the entire index from scratch every time a small change is made to the input graph.

There has been some research on partition maintenance in internal memory. Work on exact updates
on bisimulation partitions has been presented in [Sah07, DCXB11]; these approaches seem to have
a worst case runtime complexity that is not lower then recalculating the entire index from scratch. In
[KBNS02] algorithms are presented for maintaining the partition in an inexact way; thereby the updated
partition is a refinement of the bisimulation partition. Such an inexact update will result in suboptimal
results, but the resulting partition can still be used. In practical cases the results of these inexact updates
are however expected to be close to optimal.

For the presented algorithms in this chapter we shall only consider exact updates to directed
acyclic graphs stored in external memory. Thereby we keep the assumption that all nodes are reverse-
topological sorted. The theory in this chapter is however applicable to cyclic and acyclic directed
graphs. In Section 4.1 we shall present a native approach to partition maintenance during graph up-
dates. This will give a useful upper bound; which will be used as a point of comparison for alternative
algorithms. In Section 4.2 we introduce a complexity model for partition maintenance. In this com-
plexity model we shall study lower bounds on the performance of all possible partition maintenance
algorithms.

We shall take a look at practical approaches for performing partition maintenance in Section 4.3.
The updates we look at are the addition of subgraphs and the addition of edges. We also briefly look
at removal of subgraphs and removal of edges. These updates provide the basic operations wherein
any graph-changing operation can be expressed. In Section 4.4 we make some final notes on partition
maintenance.‘

4.1 Naive updating

Many operations can be considered to update graphs; we shall only focus on operations that add or
remove subgraphs and edges. Any other update on graphs can easily be constructed as a sequence of
these basic operations.

Definition 4.1. Let G = 〈N , E , l 〉 be a directed graph, let G↓ = 〈N↓, E↓, l ↓〉 be the maximum bisimulation
graph of graph G , let I = 〈N↓, E↓, l ↓, p 〉 be the graph index of graph G , let P be the bisimulation partition
of N , let M be an operation on graph G . The operation M is a graph update operation if and only if:

(1) The operation adds or removes a subgraph, or

(2) The operation adds or removes an edge between two nodes already part of graph G .

The update operation M applied on graph G results in the directed graph GM = 〈NM, EM, l M〉. The
maximum bisimulation graph of graph GM is given by GM = 〈NM, EM, l M〉, the graph index of graph
GM is given by I M = 〈NM

↓ , EM
↓ , l M↓ , pM〉, and the bisimulation partition of NM is given by PM.

A naive way to update an index is by computing it from scratch, for example by running Algorithm
3.6 on the updated graph. We shall refer to this approach as the naive updating.

Theorem 4.2. Let G = 〈N , E , l 〉 be a directed graph, let I = 〈N↓, E↓, l ↓, p 〉 be the graph index of graph G ,
let M be an update operation on graph G and GM = 〈NM, EM, l M〉 be the updated graph. Updating
the graph index I using the naive approach has expected IO complexity of O(SORT(|NM|)+SORT(|EM|)+
PQ(|EM|)).

Proof. Apply Algorithm 3.6 on graph GM.

4.2 Maintenance complexity

Naive updating gives us an upper bound on the complexity of updating bisimulation partitions. We
shall now establish lower bounds for updating. The actual lower bound for updating depends on the
representations of the graph and the cost for maintaining any auxiliary data structures. For analyzing
the lower bound we abstract from all these (implementation specific) details; therefore we introduce
update complexity.

Definition 4.3. Let G = 〈N , E , l 〉 be a directed graph with graph index I = 〈N↓, I↓, l ↓, p 〉, let M

be an update operation, let GM = 〈NM, EM, l M〉 be the updated graph with graph index I M =
〈NM
↓ , EM

↓ , l M↓ , pM〉. The update complexity for update M is given by the minimum number of changes

needed to change the partition p into pM. Thereby we count the number of nodes that are added to or
removed from partition blocks.

Analyzing updates on graphs in terms of update complexity gives theoretical lower bounds on all
possible update algorithms. The update complexity does not take changes to the graph index into
account. For purely updating the bisimulation partition this is acceptable. When index updates are
studied; then we also need to include the cost of changes to the remainder of the index.

Definition 4.4. Let G = 〈N , E , l 〉 be a directed graph with graph index I = 〈N↓, I↓, l ↓, p 〉, let M

be an update operation, let GM = 〈NM, EM, l M〉 be the updated graph with graph index I M =
〈NM
↓ , EM

↓ , l M↓ , pM〉. The index update complexity for update M is given by the minimum number of

changes needed to change I into I M. Thereby we count the number of index nodes, index edges and
partition blocks that are added to the graph index; the number of index nodes, index edges and partition
blocks that are removed from the graph index; and the number of nodes that are added to or removed
from partition blocks.

The main benefit of index update complexity over update complexity is that it provides better lower
bounds for updating graph indices and maximum bisimulation graphs. It is reasonable to claim that the
index update complexity provides a practical lower bound for any update algorithm. One can expect
to need some auxiliary structure describing relations between bisimulation partitions when only these
partitions need to be kept up to date. The graph index is an example of a structure describing relations
between bisimulation partitions.

Therefore our main focus shall be on proving lower bounds for index update complexity. We can
however easily derive the update complexity from the index update complexity as update complexity
of an operation is included in the index update complexity of the operation.

Remark 4.5. Update complexity and index update complexity do not take the cost for performing the
update operations on the underlying graph into account. This cost does not play any role in creating
an up to date bisimulation partition or graph index. The cost of updating the graph itself can however
place practical limitations on graph updates.

We shall only investigate the index update complexity for adding subgraphs and adding edges.
The index update complexity of removing a subgraph is equivalent to the index update complexity for
adding the same subgraph. This follows from the observation that removing a subgraph only undoes
any changes made while adding the same subgraph. The same observation can be made for edge addi-
tions and edge removals.

39

4.2.1 Update complexity for subgraph additions

We shall first study the index update complexity for adding subgraphs. Thereby we first take a look at
the best case index update complexity.

Theorem 4.6. Let G = 〈N , E , l 〉 be a directed graph with graph index I = 〈N↓, E↓, l ↓, p 〉, let Gs =
〈Ns , Es , l s 〉 be a graph, let M be the update operation adding graph Gs to graph G . In the best case
the index update complexity for this update is Ω(|Ns |).

Proof. In the best case we can assume that for every subgraph node n s ∈Ns there is a pre-existing index
node n ↓ ∈N↓ with n s ≈ n ↓. In this case we only have to add every node n s to the partition block p (n ↓).
Thereby a total of |Ns | updates have been made to the partition blocks in the graph index.

The best case index update complexity only holds when the structure of the added subgraph is
already present in the original graph. In the worst case we need to add this entire structure to the graph
index.

Theorem 4.7. Let G = 〈N , E , l 〉 be a directed graph with graph index I = 〈N↓, E↓, l ↓, p 〉, let Gs =
〈Ns , Es , l s 〉 be a graph with maximum bisimulation graph Gs↓ = 〈Ns↓, Es↓, l s↓〉, let M be the update oper-
ation adding subgraph Gs to graph G . In the worst case the index update complexity for this update is
O(|Ns |+ |Es↓|).

Proof. Consider the maximum bisimulation graph node n s↓ ∈ Ns↓ such that no index node n ↓ ∈ N↓
exists with n s↓ ≈ n ↓. There thus is no partition block wherein nodes n s ∈ Ns , n s ≈ n s↓ can be placed.
For this node n s↓ we need to create an index node with an accompanying partition block in the graph
index. Thereby we also need to introduce a representation for every outgoing edge of n s↓.

After assuring that for every maximum bisimulation graph node n s↓ ∈ Ns↓ there is an index node
n ↓ ∈N↓ with n s↓ ≈ n ↓ one can place all nodes Ns of subgraph Gs into the appropriate partition blocks in
the graph index. Thereby a total of |Ns |+2|Ns↓|+ |Es↓| updates have been made to the graph index.

Corollary 4.8. Let G = 〈N , E , l 〉 be a directed graph with graph index I = 〈N↓, E↓, l ↓, p 〉, let Gs =
〈Ns , Es , l s 〉 be a graph, let M be the update operation adding subgraph Gs to graph G . The update
complexity for this update is Θ(|Ns |).

4.2.2 Update complexity for edge additions

We shall now study the index update complexity for adding edges. Thereby we shall first take a look at
the best case index update complexity.

Theorem 4.9. Let G = 〈N , E , l 〉 be a directed graph with graph index I = 〈N↓, E↓, l ↓, p 〉, let n ∈N , m ∈N
be nodes, let M be a graph update operation adding edge (n , m) to E . In the best case the index update
complexity for this update is Ω(0).

Proof. Let m ′ ∈ E (n) with m ′ ≈m . We have v≈(n) = (l (n),S) with v≈(m ′) ∈S. Adding edge (n , m) to the
graph will not change this node-bisimilarity value as v≈(m) = v≈(m ′). As such node n keeps the same
node-bisimilarity value and according to Theorem 3.2 it stays bisimilar equivalent to the same nodes.
Therefore no changes are needed to the graph index to keep the graph index up to date.

Example 4.10. In this example we shall shown an example of an edge update on a graph that does
not have any effect on the graph index. An example graph is shown in Figure 4.1a; together with the
maximum bisimulation graph and the bisimulation partition. In Figure 4.1b the resulting graph after
an edge addition is shown; also together with the maximum bisimulation graph and the bisimulation
partition.

40

a

b b

c c

a

b

c

(a)

a

b b

c c

a

b

c

(b)

Figure 4.1: Two graphs are shown together with their maximum bisimulation graph (highlighted) and
a relation relating nodes from the graph with bisimilar equivalent nodes in the maximum
bisimulation graph. The newly added edge in graph Figure 4.1b is given a lighter gray color.

As one can see the edge addition does not have an effect on the bisimulation partition or the maxi-
mum bisimulation graph. The edge change shown in Figure 4.1 thus has a total index update complexity
of 0.

An edge change can change the bisimulation partition block wherein nodes should be placed. The
index update complexity for an edge change depends on the maximum number of nodes that need to
be moved to other bisimulation partition blocks after the edge change. We shall first take a look at this
maximum number.

Theorem 4.11. Let G = 〈N , E , l 〉 be a directed graph with graph index I = 〈N↓, E↓, l ↓, p 〉, let n ∈N , m ∈N
be nodes, let M be a graph update operation adding edge (n , m) to E . Only the node-bisimilarity value
for the ancestors A(n) of node n can change by the edge addition.

Proof (sketch). When m is not bisimilar equivalent to any child node m ′ ∈ E (n) then the node-
bisimilarity value of node n is changed. When the node-bisimilarity value of node n is changed; then
for every parent node p ∈ E ′(n) of node n the node-bisimilarity value can change. This can propagate
up to all ancestors of node n .

The results form Theorem 4.11 suggests that in the worst case almost all nodes in the graphs can be
moved to other bisimulation partition blocks. Every node that is moved to another partition block can
result in the creation or removal of partition blocks, graph index nodes and graph index edges. Thus in
the worst case an edge change can have an effect on the entire graph index.

Theorem 4.12. Let G = 〈N , E , l 〉 be a directed graph with graph index I = 〈N↓, E↓, l ↓, p 〉, let n ∈N , m ∈N
be nodes, letM be a graph update operation adding edge (n , m) to E . In the worst case the index update
complexity for this update is O(|N |+ |E |).

Proof (sketch). According to Theorem 4.11 the node-bisimilarity value for the nodes A(n) can change.
This can cause all these nodes to be placed in their own partition block. For the graph index we need
to introduce new index nodes related to the new partition blocks and index edges for connecting these
new index nodes to the other index edges. The node n can have O(|N |) ancestors, these ancestors nodes
have at most O(|E |) outgoing edges.

Example 4.13. In this example we shall shown an example of an edge update on a graph that has a
worst case effect on the graph index. Let G = 〈N , E , l 〉 be the graph shown in Figure 4.2a. This graph is
shown together with the maximum bisimulation graph and the bisimulation partition. In Figure 4.2b
the resulting graph after an edge addition is shown; also together with the maximum bisimulation graph
and the bisimulation partition.

41

ni

n2

n1

ni

n2

n1

ni

n2

n1

(a)

ni

n2

n1

ni

n2

n1

ni

n2

n1

ni

n2

n1

(b)

Figure 4.2: Two graphs are shown together with their maximum bisimulation graph (highlighted) and
a relation relating nodes from the graph with bisimilar equivalent nodes in the maximum
bisimulation graph. The newly added edge in graph Figure 4.2b is given a lighter gray color.

As one can see the edge addition doubles the size of the graph index and doubles the amount of
partition blocks. Thereby half of the nodes in these partitions are moved to these new partition blocks.
The edge change shown in Figure 4.2 thus has a total index update complexity of O(|N |+|E |) and update
complexity of O(|N |).

We can easily provide worst cases examples for graphs with |N | nodes and O(|N |2) edges. In the
above example we can simply replace the chains by transitive closure chains, and the edge addition
would still exhibit the worst case index update complexity.

Corollary 4.14. Let G = 〈N , E , l 〉 be a directed graph with graph index I = 〈N↓, E↓, l ↓, p 〉, let n ∈N , m ∈N
be nodes, letM be a graph update operation adding edge (n , m) to E . The worst case update complexity
for this update is O(|N |).

4.3 External memory algorithms for maintenance

The naive approach already provides a general purpose algorithm for updating bisimulation partitions
and graph indices. We shall now investigate alternative approaches; for these approaches we shall see
if and when they outperform the naive approach. We thereby focus on updating graph indices; from
the solutions for updating graph indices one can easily derive solutions for updating bisimulation par-
titions. In Subsection 4.3.1 we shall look at several algorithms for adding subgraphs to existing graph
indices. Some considerations on subgraph removal are presented in Subsection 4.3.2. The last subsec-
tion, Subsection 4.3.3, shall primarily look at the challenges one faces when performing edge updates
on graph indices.

4.3.1 Adding subgraphs

Assume we have a graph G = 〈N , E , l 〉 and a graph Gs = 〈Ns , Es , l s 〉. The graph G has graph index I =
〈N↓, E↓, l ↓, p 〉 represented by partition decision structure pds and bisimulation partition P . The graph Gs

has graph index Is↓ = 〈Ns↓, Es↓, l s↓, p 〉 represented by partition decision structure pdss and bisimulation
partition Ps . We are going to add graph Gs to graph G ; resulting in graph GM = 〈NM, EM, l M〉. After
this update we want to update the graph index I into the graph index I M = 〈NM

↓ , EM
↓ , l M↓ , pM〉.

Without any loss of generality we can assume that the graph G is much larger than the graph Gs , we
thus should avoid working on graph G directly. The graph index I of graph G can however be used to
relate new nodes from graph Gs with existing nodes in graph G . We shall formalize this idea with the
notion of maximum-merge graphs.

Definition 4.15. Let G = 〈N , E , l 〉,Gs = 〈Ns , Es , l s 〉 be directed graphs, let G↓ = 〈N↓, E↓, l ↓〉,Gs↓ =
〈Ns↓, Es↓, l s↓〉 be the maximum bisimulation graphs for graph G and graph Gs . The graph G ′ = 〈N↓ ∪

42

Ns↓, E↓ ∪ Es↓, l ↓ ∪ l s↓〉 is called the maximum-merge graph of graphs G and Gs . The bisimulation parti-
tion P ′ of graph G ′ is called the maximum-merge partition of graphs G and Gs . The partition blocks
p ′ ∈ P ′ are called maximum-merge partition blocks.

The maximum-merge graph G ′ of the graphs G and Gs is a graph containing two subgraphs; namely
the maximum bisimulation graphs of graph G and graph Gs . Thereby the maximum-merge partition of
graph G ′ relates bisimilar equivalent nodes from the indices of graph G and graph Gs . Before putting
the maximum-merge partition to use we shall further analyze it.

Theorem 4.16. Let G = 〈N , E , l 〉,Gs = 〈Ns , Es , l s 〉 be directed graphs, let G ′ = 〈N↓ ∪Ns↓, E↓ ∪ Es↓, l ↓ ∪ l s↓〉
be the maximum-merge graph of graphs G and Gs , let P ′ be the index-merge partition of graphs G and
Gs . Every partition block p ′ ∈ P ′ will contain at most two nodes; namely at most a single node n ↓ ∈N↓
and at most a single node n s↓ ∈Ns↓.

Proof. Assume we have a maximum-merge partition block p ′ ∈ P ′ containing two distinct maximum
bisimulation graph nodes n , m originating from the same maximum bisimulation graph. We have n ≈
m , thus the size of the maximum bisimulation graph can be reduced by merging nodes n and m to a
single maximum bisimulation graph node; leading to a contradiction.

Example 4.17. Figure 4.3 shows the process of creating a maximum-merge graph. Figure 4.3a and Fig-
ure 4.3b show two different graphs together with their graph indices. These graph indices are taken and
put in a separate graph; the maximum-merge graph. The resulting maximum-merge graph, together
with its graph index; is shown in Figure 4.3c.

a a

b

c

a

b

c

(a)

a

b b

c d

a

b

cd

(b)

a

b

c

a

b

c d

a

b

ccd

(c)

Figure 4.3: Three graphs are shown together with their maximum bisimulation graphs (highlighted)
and a relation relating nodes from each graph with bisimilar equivalent nodes in their max-
imum bisimulation graph.

In Figure 4.3c the nodes in the same maximum-merge partition block are related to the same graph
index node. One can easily see that each maximum-merge graph index node is related to at most two
nodes. Furthermore each maximum-merge graph index node is only related to at most a single node
from the original graph indices of the graphs from Figure 4.3a and Figure 4.3b.

A partition block in a valid partitioning cannot be empty; Theorem 4.16 thus allows three possible
compositions for each maximum-merge partition block. We shall now look at an interpretation of these
compositions.

Corollary 4.18. Let G = 〈N , E , l 〉,Gs = 〈Ns , Es , l s 〉 be directed graphs, let I = 〈N↓, E↓, l ↓, p 〉, Is =
〈Ns↓, Es↓, l s↓, ps 〉 be the graph indices for graph G and graph Gs , let G ′ = 〈N↓∪Ns↓, E↓∪Es↓, l ↓∪ l s↓〉 be the
maximum-merge graph of graphs G and Gs , let P ′ be the maximum-merge partition of graphs G and
Gs , let p ′ ∈ P ′ be a maximum-merge partition block. The partition block p ′ can have the following three
compositions:

CASE (1) p ′ = {n ↓, n s↓} FOR NODES n ↓ ∈N↓, n s↓ ∈Ns↓: This composition indicates that every node in par-
tition block p (n ↓) is bisimilar equivalent to every node in partition block ps (n s↓). For updating we
thus only need to merge the nodes in partition block ps (n s↓) into partition block p (n ↓).

43

CASE (2) p ′ = {n ↓} FOR A NODE n ↓ ∈N↓: This composition indicates that there is no node in graph Gs that
is bisimilar equivalent to the nodes in partition block p (n ↓). As such no updates are needed to
keep the partition block p (n ↓) and the index node n ↓ up to date.

CASE (3) p ′ = {n s↓} FOR A NODE n s↓ ∈Ns↓: This composition indicates that there is no node in graph G
that is bisimilar equivalent to the nodes in partition block ps (n s↓). For keeping the graph index I
of graph G up to date we thus need to add a new index node representing partition block ps (n s↓).
Together with this new index node we need to add a representation for every edge Es↓(n s↓) to the
graph index I .

Example 4.19. We have taken the graphs shown in Figure 4.3a and Figure 4.3b; and combined them to
a single graph. We have combined these graphs with the graph index of the maximum-merge graph
shown in Figure 4.3c.

a a

b

c

a

b b

c d

a

b

ccd

Figure 4.4: A graph consisting of two subgraphs is shown together with the maximum bisimulation
graph (highlighted); also the relation relating index nodes with bisimilar equivalent graph
nodes is shown.

As one can see the maximum-merge graph index is also a valid graph index on the combined graph
of the two graphs shown in Figure 4.3a and Figure 4.3b. A closer look shows that we can use transitivity
of the relation relating bisimilar nodes to connect the maximum-merge index with the nodes in the
combined graph.

We can easily generalize the presented theory; including Corollary 4.18; to the case where we don’t
have an index on the graph Gs . One can replace the maximum bisimulation graph of graph Gs in the
maximum-merge graph G ′ by graph Gs itself.

Case 1 from Corollary 4.18 can then be translated to a maximum-merge partition block p ′ ∈ P ′

composed of a single node n ↓ ∈N↓ and many nodes from Ns . Case 2 can be translated to a maximum-
merge partition block p ′ ∈ P ′ composed of only a single node n ↓ ∈ N↓. Case 3 can be translated to a
maximum-merge partition block p ′ ∈ P ′ composed of nodes only from Ns .

Example 4.20. We have taken the graph index from Figure 4.3a and the graph from Figure 4.3b; the
graph index and the graph are combined in a single graph. The result is shown in Figure 4.5.

a

b

c

a

b

ccd

a

b b

c d

Figure 4.5: A graph consisting of two subgraphs is shown together with the maximum bisimulation
graph (highlighted); also the relation relating index nodes with bisimilar equivalent graph
nodes is shown.

44

As one can see the maximum-merge graph index stays the valid graph index on the combined graph.
A closer look shows that at most one node from the graph index of Figure 4.3a is related to a single index
node.

Corollary 4.18 already hints at a high level informal description on how to keep graph index I up to
date when graphs are added to graph G . We shall further work out this high level description.

General outline

For the general outline we first describe the process of updating graph index I to graph index I M by
translating the features in pdss and in Ps . Therefore we assume there is a way to calculate a partition
block identifier update list LU . The partition block identifier update lists consists of entries (old par-
tition block identifier, new partition block identifier). Thereby the old partition block identifiers are
partition block identifiers used in graph index Is . The new partition block identifiers are the partition
block identifiers used in graph index I .

We assume that the bisimulation partitions P and Ps are represented by lists of (node identifier,
partition block identifier)-pairs as produced by Algorithm 3.6. For the partition decision structure pds
we assume that it is either implemented as a list or as string B-trees. For the partition decision structure
pdss we assume that it is implemented as a list. After describing the general approach for subgraph
addition we shall provide two approaches to calculating this partition block identifier update list.

STEP 1: Calculate a partition block identifier update list LU .

STEP 2: Translate the bisimulation partition Ps and add Ps to bisimulation partition P .

Recall that the bisimulation partitions P and Ps are represented by lists consisting of (node identi-
fier, partition block identifiers) entries. Before we append list Ps to list P we need to update the node
identifiers and the partition block identifiers. For updating the partition block identifiers we can uti-
lized the partition block identifier update list LU . Sort LU on old partition block identifier and Ps on
partition block identifier; then sequentially read the sorted list LU and sequentially update list Ps .

For updating the node identifiers in Ps we need to establish how node identifiers are represented in
graph G . A simple approach would be to increment every node identifier in Ps by a constant c , whereby
c is larger than any node identifier used for nodes already in graph G . This approach guarantees unique
node identifiers, but it introduces additional work on updating the edges Es . Another possibility would
be to create a graph identifier for graph Gs and giving every node from graph Gs a composite node iden-
tifier (graph identifier, node identifier). Thereby the graph Gs stays easily recognizable as a subgraph in
graph G and no changes to the edges Es are needed. When the second approach is used for updating
the node identifiers, then the IO complexity of this step is O(SORT(|Ns |)+SORT(|Ns↓)|).

STEP 3: Translate the partition decision structure pdss and add new entries to partition decision struc-
ture pds.

We can turn partition decision structure pdss into a list of maximum bisimulation graph nodes N ′

and a list of maximum bisimulation graph edges E ′ by utilizing the first part of Algorithm 3.7. Note that
all node identifier used in N ′ and E ′ are partition block identifiers valid only in pdss . These partition
block identifiers need to be translated to the partition block identifiers used in pds. After this translation
we reconstruct the entries from N ′; entries not yet placed in pds are appended to list pds.

For updating the partition block identifiers we can utilized the partition block identifier update list
LU . Lists N ′ and E ′ can be updated by first sorting them on the field that needs to be updated, and
then sequentially reading list LU and at the same time sequentially updating the field that needs to be
updated.

The IO complexity for translating pdss is at most O(SORT(|Ns↓|) + SORT(|Es↓|)). The IO complexity
for adding the translated pdss to a list implementation of pds is at most O(SCAN(|Ns↓|) + SCAN(|Es↓|)).
The IO complexity for adding the translated pdss to a string B-tree implementation of pds is at most
O(SCAN(|Es↓|)+ |Ns↓| logB (N

M
↓)).

45

Maximum-merge partition block identifier update list

The first approach to calculate the partition block identifier update list is by calculating the maximum-
merge partition and using this partition as a template to construct an update list.

STEP A: Create the maximum-merge graph for graphs G and Gs .

Take the partition decision structure pdss and increment all partition block identifiers used in pdss

by c , whereby c is a constant larger than the maximum partition block identifier used in pds. We can
utilize Algorithm 3.7 to construct the maximum-merge graph in L representation from the constructed
partition decision structure. The total IO complexity for this step is O(SORT(|N↓|+ |Ns↓|) + SORT(|E↓|+
|Es↓|))when the partition decision structures are implemented as lists.

STEP B: Calculate the maximum-merge partition.

Perform Algorithm 3.6. The total expected IO complexity for this step is O(SORT(|N↓| + |Ns↓|) +
SORT(|E↓|+ |Es↓|)+PQ(|E↓|+ |Es↓|)).

STEP C: Translate maximum-merge partition into partition block identifier update list.

According to Corollary 4.18 the maximum-merge partition has three types of partition blocks. For
case (1) partition blocks an entry (partition block identifier of n ↓, partition block identifier of n s↓) is
added to the partition block identifier update list. Case (2) partition blocks do not introduce changes to
the graph index, and thus can be ignored. For Case (3) partition blocks an entry (fresh partition block
identifier, partition block identifier of n s↓) is added to the partition block identifier update list. Thereby
the fresh partition block identifier is a fresh partition block identifier not yet used in pds. When one
wants to maintain the relation between partition block identifier and position in the partition decision
structure; then one should pick incremental values starting with |N↓|. The IO complexity for this step is
O(SCAN(|N↓|+ |Ns↓|)).

Partition decision structure partition block identifier update list

The second approach to calculate the partition block identifier update list is by external memory bisim-
ulation partitioning of the graph index Is while using the partition decision structure pds. For support-
ing efficient queries on pds we assume that the partition decision structure pds is implemented by a
string B-tree.

STEP A: Perform online bisimulation partitioning on the graph index Is as performed in Algorithm 3.3.
Thereby use a copy of the partition decision structure pds as the partition decision structure. This re-
sults in a bisimulation partition P ′s of the nodes Ns↓.

The resulting bisimulation partition P ′s is a partition block identifier update list. The total cost of this
step is O(SCAN(|Ns↓|)+SCAN(|Es↓|)+PQ(|Es↓|)+|Ns↓| logB (|NM

↓ |)). Note that by using the partition decision
structure pds directly we have incorporated step 3 from the outline into this step.

Complexity for subgraph addition

The total IO complexity for graph addition using maximum-merge partition block identifier update
lists is O(SORT(|Ns |) + SORT(|N↓|+ |Ns↓|) + SORT(|E↓|+ |Es↓|) +PQ(|E↓|+ |Es↓)). This makes this approach
especially useful when graphs have small indices; this is the case when graphs are well structured.

The total IO complexity for graph addition using partition decision structure partition block iden-
tifier update list is O(SORT(|Ns |) + SORT(|Es↓|) + PQ(|Es↓|) + |Ns↓| logB (|NM

↓ |)). This makes this approach
faster when the graph Gs or its index Is are very small; even when the graph index I is very large. This
makes this approach especially useful when individual graphs are small or have small indices; even
when the resulting graph G has a complicated and large index.

46

4.3.2 Removing subgraphs

Assume we have a graph G = 〈N , E , l 〉 and a subgraph Gs = 〈Ns , Es , l s 〉 whereby Ns ⊆ N , Es ⊆ E , and
l s ⊆ l . The graph G has index I = 〈N↓, E↓, l ↓, p 〉, the subgraph Gs has maximum bisimulation graph
Gs↓ = 〈Ns↓, Es↓, l s↓〉. We are going to remove the subgraph Gs from graph G resulting in graph GM. After
removal of subgraph Gs we want to update the graph index I to the graph index I M of graph GM. We
shall present a general approach for performing this update.

STEP 1: Remove every subgraph node n s ∈Ns from its partition block; remove empty partition blocks.

For analyzing this step we need to make an assumption on the implementation of the partition
blocks. Let us start with the assumption that partition blocks are stored in a bisimulation partition
P represented by a list of (node identifier, partition block identifier)-pairs. This representation is the
output produced by Algorithm 3.6. Thereby we assume that this bisimulation partition is ordered on
node identifier; which is the case for the output of Algorithm 3.6.

When the set of nodes Ns is ordered on node identifier; then an easy approach would be to read
the set Ns sequentially and at the same time sequentially remove matching nodes from list P . For sup-
porting removals in the list we need to use an external memory version of a linked list data structure.
Thereby this step has total IO complexity of O(SORT(|Ns |) + SCAN(|N |)). An alternative approach would
be to use binary search on the list to find each element from set Ns in list P . This would result in an IO
complexity of O(|Ns | logB (|N |)). Both approaches will be very costly when graph G is large.

We can restrict the removal of subgraphs; only allowing the removal of previously added graphs.
This restriction allows for more efficient approaches. Let us assume that in this restricted setting each
node identifier is a composite identifier (graph identifier, node identifier); see also Step 2 in the general
outline described for subgraph addition in Subsection 4.3.1. Now we only have to remove the nodes
with the same graph identifier. When we maintain the order (node identifier, partition block) on the
bisimulation partition, then we can remove all nodes by finding the first node with the specified graph
identifier and then sequentially remove all nodes with the specified graph identifier. Thereby the IO
complexity is O(SCAN(|Ns |)+ logB (|N |)).

Note however that a bisimulation partition ordered on (node identifier, partition block identifier)
does not allow fast lookups for all nodes placed in a single partition block. These lookups can be sped
up by ordering the bisimulation partition on (partition block identifier, composite node identifier). In
this setting we can use a separate mapping (graph identifier, partition block identifiers) for facilitating a
fast removal of the nodes Ns from their partition block. This mapping (graph identifier, partition block
identifiers) relates a subgraph with all partition blocks wherein nodes from this subgraph are placed.

In this setting we can remove all nodes n s ∈Ns by utilizing the mapping (graph identifier, partition
block identifiers). For every partition block in the mapping we utilize binary search to look up the first
entry with the specified graph identifier. We can then sequentially remove all nodes in the partition
block with the specified graph identifier The total IO complexity for this approach is O(SCAN(|Ns |) +
|Ns↓| logB (|N |)).

For supporting the last two approaches we also need to change the way wherein graphs are added to
a graph. Thereby both the ordering in the bisimulation partition must be maintained and (optionally)
a mapping (graph identifier, partition block identifiers) must be maintained. For implementation of an
ordered bisimulation partition we can use specialized data structures such as the B+ tree. Thereby the
cost for inserting a set of nodes during graph addition is basically the same as the cost for removing
these nodes.

Partition blocks can become empty during the process of node removal from partition blocks. These
partition blocks are no longer present in the implementations described above; for other implementa-
tions one should make sure to remove any representation of empty partition blocks.

STEP 2: Remove index nodes and index edges related to removed partition blocks.

If a partition block p (n ↓) becomes empty during the execution of the previous step then the index
node n ↓ related to this partition block needs to be removed from the graph index. Also the incoming
and outgoing index edges for the index node n ↓ need to be removed from the index edge. If the graph

47

index is represented by a partition decision structure; then this can be achieved by removing entry i for
every empty partition block with partition block identifier i .

Theorem 4.21. Let G = 〈N , E , l 〉 be a graph, let G↓ = 〈N↓, E↓, l ↓〉 be the maximum bisimulation graph of
graph G , let Gs = 〈Ns , Es , l s 〉 be a subgraph of graph G , let Gs↓ = 〈Ns↓, Es↓, l s↓〉 be the maximum bisimu-
lation graph of graph Gs↓. We remove subgraph Gs from graph G resulting in graph GM with maximum
bisimulation graph GM

↓ . If we have node n ↓ ∈ N↓, n 6∈ NM
↓ , then for any parent node m↓ ∈ E ′↓(n ↓) we

have m↓ 6∈NM
↓ .

Proof. Assume we have m↓ ∈ E ′↓(n ↓), m↓ ∈NM
↓ . This can only happen when node m↓ is bisimulated by

a node m ∈N , m 6∈Ns . There must be a child node n ∈NM of node m ; else node m↓ cannot have node
n ↓ as a child. There thus is a child node n ∈N , n 6∈Ns of node m with n ≈ n ↓. This contradicts that node
n ↓ is only bisimulated by nodes in Ns .

In a partition decision structure each entry stores a node together with all its outgoing edges. The-
orem 4.21 thus proofs that removing entries from the partition decision structure will also remove all
index edges that need to be removed.

Example 4.22. In Figure 4.6 we show the graph and graph index from Figure 4.4; now after the removal
of an entire subgraph from the graph. As one sees the graph index now contains a node not longer
connected to any graph node. This index node, together with its outgoing edges, should be removed
during index maintenance.

a

b b

c d

a

b

ccd

Figure 4.6: A graph is shown together with the maximum bisimulation graphs (highlighted) and a rela-
tion relating nodes from the graph with bisimilar equivalent nodes in the maximum bisim-
ulation graph.

Removal of entries from the partition decision structure invalidates the relation between the par-
tition block identifier of partition block p (n ↓) and the position of the entry for node n ↓ in the par-
tition decision structure. This can be resolved by utilizing a (partition block identifier, partition de-
cision structure entry) mapping to represent the partition decision structure. The B+ tree is a data
structure that can be used for implementing such a mapping. Note that in the worst case at most
|Ns↓| entries are removed from the partition decision structure. These entries have a total size of
O(|Ns↓|+ |Es↓|). The IO complexity in a setting whereby a B+ tree is used to find and remove entries
is at most O(SCAN(|Es↓|)+ |Ns↓| logB (|N↓|)).

Total IO complexity for removing a subgraph is largely dependent on the exact representation of the
graph index. From the complexities described in the two steps one can easily derive the cost for any
described presentation.

4.3.3 Edge updates

Assume we have a graph G = 〈N , E , l 〉 and nodes n ∈N , m ∈N . The graph G has index I = 〈N↓, E↓, l ↓, p 〉.
We are going to add or remove the edge (n , m) from graph G resulting in graph GM. After this update
we want to update the graph index I to the graph index I M of graph GM. We shall first analyze the
practical complexity of this problem, and then we shall analyze a propagation based approach for edge
addition.

48

Practical complexity of edge changes

From Theorem 4.12 we can conclude that in the worst case the entire graph index will be restructured
after an edge change. As such it is safe to assume that no approach will be asymptotically faster than
recalculating the entire index with a fast bisimulation partitioning algorithm. The naive approach is
thus already the best solution for general cases. But even this naive approach is hard to implement.

For external memory graph algorithms the existence of an ordering on the graph nodes is crucial
to guarantee good performance and/or low memory overhead. Edge additions can break the existing
reverse-topological ordering on the nodes, thereby making it impossible to run the naive approach. As
such the first problem to solve is an efficient reestablishment of the reverse-topological order.

Assumption 4.23. Let G = 〈N , E , l 〉 be a graph. Function ID : N →N gives the unique node identifier of a
graph node. Let n i ∈N be the node with ID(n i) = i , let n j ∈N be the node with ID(n j) = j . We assume
i < j if and only if node n i is ordered before n j in the reverse-topological order used in graph G .

Assume edge (n , m) is added to graph G . Two possible cases are possible, namely ID(n)< ID(m) and
ID(n) > ID(m). In the case ID(n) < ID(m) the reverse-topological order used in graph G is invalidated.
We thus need to assign a new node identifier to node n ; such that ID(n)> ID(m) holds. Along the same
line as Theorem 4.11 one can prove that in the worst case an update to the node identifier of node n
can propagate to all ancestors A(n) of node n . Consider for example the case wherein for every ancestor
node n ′ ∈ A(n) of node n we have ID(n ′)< ID(m).

Based on this analysis we can also conclude that the naive approach performs to much work, we
only need to update the nodes A(n). A more optimized approach would only update the nodes A(n).
Such an optimized approach can be much faster than the naive approach; especially when the set A(n)
is relatively small. We shall now present a simple approach for edge additions; this approach can easily
be adapted to cover edge removals.

Edge update propagation

The addition of edge (n , m) can break the overall reverse-topological order. We however see that the
reverse-topological ordering between nodes remains valid for the nodes in set A(n). Also the reverse-
topological order on the nodes in N −A(n) remains valid. We can thus still perform time-forward pro-
cessing on the set of nodes A(n).

Let Q ID and Q be priority queues. The priority queue Q ID is used to send node identifiers of children
to parents. If a node n receives a node identifier i with i > ID(n) then the node identifier of node n needs
to be updated. The initial value for priority queue Q ID is a message ID(m) send to node n . The priority
queue Q is used to send (old partition block identifier, new partition block identifier) messages from
children to parents. Thereby a message indicates that a child node is moved from the partition block
with the old partition block identifier to the partition block with the new partition block identifier. The
initial value for priority queue Q is a message (−, partition block identifier of node m) send to node n ;
whereby − indicates that a new partition block identifier should be included in the calculation of the
node-decision value of node n .

We shall also maintain lists L ID and L E , list L ID contains (old node identifier, new node identifier)-
pairs and list L E contains the outgoing edges of every node A(n). These lists are used to update the
outgoing edges of nodes A(n) after updating the node identifiers of nodes A(n). In our analysis we use
the notation |E (S)|=

∑

n∈S |E (s)| and |E ′(S)|=
∑

n∈S |E ′(s)| to indicate the total number of outgoing edges
and the total number of incoming edges for a set of nodes S.

We shall now look at the steps taken to process a single node m ∈ A(n); thereby we assume that the
nodes A(n) are processed in reverse-topological order. The cost of accessing individual nodes m ∈ A(n)
is analyzed after we have presented and analyzed the steps for processing the node m ∈ A(n).

STEP 1: Give node m a valid node identifier; send the new node identifier to the parents of m .

Read all the changed node identifiers for children of node m from the priority queue Q ID. If a node
identifier i is send to node m with i > ID(m) then an unused node identifier j larger than any node
identifier send to m is picked and assigned to node m . When a new node identifier is assigned to node

49

m , then this new node identifier is send to the parents of node m . The total IO complexity for this step
is O(PQ(|E ′(A(n))|)).

STEP 2: Add incoming edges of node m to list L E , add (old node identifier m , new node identifier m) to
list L ID when the node identifier of node m changed.

The total cost for this step is O(SCAN(|E ′(A(n))|)+SCAN(|A(n)|)).

STEP 3: Recalculate the node-decision value for node m .

This step can be implemented efficiently if every node has access to the partition block identifiers
of children. This can be implemented by storing a list L m that contains, for every node m , all the parti-
tion block identifiers it received during bisimulation partitioning (all the values send to node m during
Algorithm 3.6). Thereby we assume that this list L m is strictly ordered, as described in Assumption 3.19
Algorithm 3.6 can guarantee a strict ordering on list L m .

We can update list L m by sequentially reading the list and updating the entry found at the top of
queue Q . The ordering on queue Q guarantees that we can update all entries in a single sequential
read. At the same time we can recalculate the node-decision value of node m . Thereby the total IO
complexity for this step is O(SCAN(|E (A(n))|)+PQ(|E ′(A(n))|)).

STEP 4: Assign node m to the partition block belonging to the recalculated node-decision value of m .

For this step we utilize a partition decision structure that can be queried efficiently; we shall assume
we have a string B-tree implementation of the partition decision structure. When the partition block
whereto node m is assigned changes; then we need to remove node m from the old partition block and
we need to send a message (old partition block, new partition block) to every parent of node m using
queue Q .

For removing nodes from a partition block we refer to the first step performed for subgraph removal.
The total IO complexity for this step will be O(SCAN(|E (A(n))|)+ |A(n)| logB (|N |)+PQ(|E ′(A(n))|)).

STEP 5 (AFTER PROCESSING ALL NODES m): Update the incoming edges of every node m ∈ A(n).

Sort list L ID on old node identifier and use this list to update the edges in L E . Do so by sequential
reading list L ID and sequential updating list L E . After updating the edge list L E the edges of each node
m ∈ A(n) can be reassigned. The IO complexity for this step is O(SORT(|A(n)|) + SORT(|E ′(A(n))|) when
we exclude the cost for finding the incoming edge list of every node m .

Complexity of edge addition propagation

The total IO complexity for edge addition propagation is given by the cost for performing each step for
each node. There is however also a cost related to finding each node m ∈ A(n), the list of incoming edges
E ′(m) and the list L m containing the partition block identifiers of children of the node m . Therefore we
need a B+ tree or a similar search structure. Including the cost for finding nodes in this search structure
results in the total IO complexity of O(|A(n)| log(|N |)+SORT(|A(n)|)+SORT(|E ′(A(n))|)+SCAN(|E (A(n))|)+
PQ(|E ′(A(n))|)) for edge addition propagation.

The update propagation approach for edge addition can easily be adapted for edge removal.
Thereby all work performed to maintain a reverse-topological ordering is unnecessary as the topologi-
cal order cannot break by removing an edge.

4.4 Final notes

In this chapter we have investigated partition maintenance. Thereby we have provided upper bounds
on the cost of partition maintenance by presenting a naive method for partition maintenance after
graph updates. We have also provided lower bounds on the cost of any partition maintenance ap-
proach. On top of these results we have presented approaches for performing partition maintenance

50

after subgraph addition, subgraph removal, edge addition and edge removal. We shall conclude with a
brief investigation on the limitations of partition maintenance.

In our analysis on the lower bound cost for partition maintenance we have only looked at the
amount of changes made to the index. Our analysis does not consider the consequences of these
changes on the runtime or IO complexity of any practical algorithms. This does not pose big problems
for edge updates. We have seen that for edge updates a worst case update will affect the entire graph.
As such one cannot expect to find a method to perform general edge updates that is always faster than
the naive approach of calculating a new bisimulation partition for the updated graph.

For subgraph updates we have seen that the lower bound cost only depends on the size of the sub-
graph. We have only presented approaches that depend on the size of the entire graph (or are not IO
efficient). We thus might question if there are any subgraph update approaches that are IO efficient
and whose complexity only depends on the size of the subgraph. We can however present an informal
argument why such an efficient approach is not expected to exist.

Thereby we shall first take a look at subgraph removal. Let Gs = 〈Ns , Es , l s 〉 be a subgraph that is
removed from a graph G . Thereby we assume we have |N↓| ≥ B |Ns↓|; whereby B is the block size. In this
case it is easy to image that each index node n s↓ ∈Ns↓ and/or each partition block related to index node
n s↓ is placed in its own disk block. Therefore we need at least |Ns↓| IOs to update these index nodes
and/or partition blocks during subgraph removal. In the worst case we have |Ns↓| = |Ns |. As such it is
not expected that a general subgraph removal algorithm would be IO efficient and only dependent on
the size of the subgraph for any form of input.

We shall now look at subgraph addition. When the result of partition maintenance after subgraph
addition is some structured bisimulation partition (for example to allow subgraph removal); then we
can rerun the argument for subgraph removal. To maintain a structured bisimulation partition we need
to access and update individual (possibly pre-existing) partition blocks, according to the argument for
subgraph removal we can’t force these accesses to be IO efficient. The same reasoning also rules out the
existence of a fully IO efficient version of a subgraph addition algorithm that uses a lookup structure
(such as a partition decision structure).

We can also rule out any variant of the maximum-merge approach that uses the graph index of the
graph; as these approaches all depend on the size of the remainder of the graph (or graph index). What
is left is the possible existence of an IO efficient subgraph addition algorithm that does not perform
lookups, does not use the graph index, and does not provide any structured way of storing the bisimu-
lation partition.

Let assume we have such an IO efficient subgraph addition algorithm. This algorithm must be able
to relate nodes from the subgraph with bisimilar equivalent nodes in another graph in an IO efficient
way. We have however prohibited the algorithm to have any knowledge of this other graph. Such an
IO efficient subgraph addition algorithm thus can be utilized for easy bisimulation partitioning. The
subgraph addition algorithm can easily relate every node from a subgraph with bisimilar equivalent
nodes in the maximum bisimulation graph of the subgraph. We don’t even need to construct this maxi-
mum bisimulation graph; as the subgraph addition algorithm cannot have knowledge of this maximum
bisimulation graph. As such the subgraph addition algorithm would provide an easy way to perform
bisimulation partitioning. Therefore the existence of such a general IO efficient subgraph addition al-
gorithm is not very likely.

A last note on the approaches on partition maintenance after graph updates is in place. None of the
approaches we presented could generally outperform the naive approach of recalculating the entire
bisimulation partition of a graph. In this section we have even argued that more efficient approaches
are not very likely to exist. Furthermore the approaches we presented did make assumptions on the data
structures used to represent the maximum bisimulation graph and bisimulation partition. For practical
applications other data structures can be needed to represent the maximum bisimulation graph and
bisimulation partition. In these cases further attention is needed for updating these data structures;
this can further complicate partition maintenance.

51

Chapter 5

INDEXING XML DOCUMENTS

With the rise of the World Wide Web hierarchical tree-like data formats have taken a major role for
representing and exchanging information. Well known examples of these hierarchical tree-like data
formats are HTML1 and XML2. Together with the development of these data formats there is a consid-
erable development of query languages for extracting information from data stored in XML or HTML
documents.

Query languages such as XQuery3 rely heavily on path queries. A path query on an XML document
only retrieves those nodes in a tree representation of the XML document that are part of a specified
path. XQuery depends on the path query language XPath4. Also other XML-related technologies for
processing XML documents utilize XPath, one example is the family of document transformation tech-
niques XSL5. Path queries thus have a central role in XML related technologies. Therefore several index
types have been developed to speed up these path queries.

We have already seen one of these index types; namely the 1-index [MS99]. In Section 1.1 we have
shown how the 1-index can be utilized to answer simple path queries on XML documents. The 1-
index utilizes backward node bisimulation to group nodes with equivalent incoming paths. As such
the 1-index does not look at outgoing paths. Thereby the 1-index cannot be utilized to answer all path
queries. A more general index is the F&B-index [ABS00]; this index looks at incoming and outgoing
paths. Thereby the F&B-index can cover all twig queries. A twig query matches only those nodes whose
relations to other nodes can be described by a twig (pattern represented by a tree). The F&B-index not
only covers twig queries, it is also the smallest index to cover these twig queries [KBNK02].

The 1-index and F&B-index both group nodes based on their relations with the remainder of the
document. Thereby these indices can be utilized to answer many different types of queries; the draw-
back is that these indices can be very large. Therefore a large group of indices have been developed that
only look at paths of limited length. A general representative of this group of limited path length indices
is the A(k)-index [KSBG02]; the A(k)-index groups nodes with equivalent incoming paths of length at
most k . For an overview of many other indices used on XML documents we refer to [GC07].

In this chapter we shall focus on the 1-index, the F&B-index and the A(k)-index; thereby we have
picked three general representatives of the many bisimulation-based indices used for indexing XML
documents. In Section 5.1 we introduce the XML data format, the three index types and related theory.
Section 5.2 presents efficient index construction algorithms for XML documents. We then take a look at
how the format of XML documents can be utilized for updating indexed XML documents; the resulting
approaches are presented in Section 5.3. We conclude our findings in Section 5.4 by discussing some
limitations on the investigated approaches.

5.1 Preliminaries

In this section we introduce terminology and theory used in the remainder of the chapter. We shall first
take a look at the format of XML documents; and how this format relates to trees. We then introduce

1 See http://www.w3c.org/HTML/.
2 See http://www.w3c.org/XML/.
3 See http://www.w3c.org/XQuery/.
4 See http://www.w3c.org/XPath/.
5 See http://www.w3c.org/XSL/.

http://www.w3c.org/HTML/
http://www.w3c.org/XML/
http://www.w3c.org/XQuery/
http://www.w3c.org/XPath/
http://www.w3c.org/XSL/
http://www.w3c.org/HTML/
http://www.w3c.org/XML/
http://www.w3c.org/XQuery/
http://www.w3c.org/XPath/
http://www.w3c.org/XSL/

the bisimulation notions used by the 1-index, F&B-index and the A(k)-index.

5.1.1 The Extensible Markup Language

We shall utilize the terminology introduced by the W3C6 whenever possible. We provide a brief intro-
duction to the format of XML documents; for more in-depth information on the format of XML docu-
ments and on XML-related technologies we refer to the resources mentioned in the footnotes.

XML documents can be used to store and exchange data. XML documents are often represented by
trees. In such an XML tree the tree nodes are representations of XML elements and attributes. In XML
documents an XML element starts with a start-tag and ends with an end-tag. The start- and end-tag
contain the name of the XML element; this name serves as the label of the tree nodes represented by
XML elements. Start-tags can have attributes; each attribute consists of a name and a value. Generally
attributes are represented by a distinct type of nodes in the tree representation of the XML document.

The XML data format allows variants on this idea; nodes without any content nested in them can be
represented by an empty element. For empty elements the start- and end-tag is combined in a single
empty-element tag. Within the start- and end-tag for an XML element child elements and textual con-
tent is nested. In the examples and algorithms in this chapter we shall assume that only XML elements
and attributes are included in the indexed data tree. One can however easily generalize the examples,
theory and algorithms presented in this chapter to include all features of the XML document in the
indexed data tree.

Example 5.1. In Figure 5.1a we show the plain-text representation of an XML document. The docu-
ment starts with the processing instruction <?xml encoding=’UTF-8’?>. A processing instruction
does not represent information; it is an instruction to applications describing how these applications
should interpret this XML document. This particular instruction describes which character set is used
for representing the plain text characters in the document.

<?xml encoding=’UTF-8’?>
<root>

<![CDATA[this <d> is </d> just text]]>
<c/>
<!-- A piece of comment -->

<c a="b" c="0" />
Another piece of text

</root>

(a)

root

a

b b c

a

c b b c

a c

(b)

Figure 5.1: An example XML document. Figure 5.1a represents the XML document in plain text. This
plain text document can also be represented by a tree as shown in Figure 5.1b; thereby we
have highlighted the tree nodes representing attributes.

The first XML element starts with the start-tag <root>; this start-tag begins the XML element with
name root. The content of this element ends with the end-tag </root>. Another XML element starts
with the start-tag ; this tag is nested directly within the <root> tag. As such the XML el-
ement started by is a direct child of the XML element with name root. The start-tag also has a single attribute b="0"; this attribute has name b and value 0. The element <c/> is
the first empty-element tag representing a node without any children.

The document also contains some other features; including two different pieces of textual content.
The first one is<![CDATA[this <d> is </d> just text]]>, this represents the piece of textthis
<d> is </d> just text. By wrapping the text within <![CDATA[and]]> we express that <d> and
</d> should not be interpreted as start- and end-tags but as normal text. A simpler piece of textual con-
tent is Another piece of text, this piece does not contain any special characters. The last feature

6 See http://www.w3c.org/standards/xml/.

53

http://www.w3c.org/standards/xml/
http://www.w3c.org/standards/xml/

in the document is a comment. The element <!-- A piece of comment --> is enclosed within
<!-- and -->; indicating that the content A piece of comment can safely be ignored during further
processing.

In Figure 5.1b we show the tree-representation of the structure of the XML document. In this repre-
sentation we have only included XML elements and attributes; other features are not included.

Any part of an XML document that can be inserted as a child of an XML element is called a document
fragment. A document fragment can be a single attribute, a piece of text, an entire XML element or
even multiple XML elements. A document fragment can be represented by a forest containing zero or
more trees. When the document fragment represented by some forest is added to some XML element
represented by tree node e ; then the roots of the trees in the forest representation of the document
fragment will become direct children of tree node e .

Example 5.2. In Figure 5.1a we show the plain-text representation of an XML document. The part
 is an example of a document fragment. In this case the document fragment can be represented
by two trees; both having a single node (namely b).

The standardized interface for reading and constructing XML documents is the Document Object
Model7. Due to the many constructs used in XML documents this interface is not the ideal way to
presenting abstract algorithms on XML documents. Therefore we introduce an abstract interface for
reading XML documents.

Assumption 5.3. We have a function NEXT for reading XML documents. This function reads XML docu-
ments sequentially and returns the next start-tag or end-tag. For simplicity we assume that this function
presents all relevant features (elements, empty elements, attributes) of the XML document by explicit
start and end-tags. Lastly we assume that start-tags have a name. A representation of this name has
been used as a label; which can be looked up by the function l .

The function NEXT can been seen as a very-abstracted representation of common XML reader inter-
faces8. These interfaces are intended to provide a simple interface for fast sequential reading of XML
documents; this with a low memory footprint. Thereby these XML reader interfaces are well suited for
allowing IO efficient processing of very large XML documents.

Due to the highly-structured format of XML documents the combination of the NEXT function and
XML documents provide both a topological order and a reverse-topological order on the nodes repre-
sented by XML elements and attributes.

Theorem 5.4. Let D be an XML document. If we order the nodes represented by the XML document in
the order wherein the function NEXT reads the start-tags of these nodes; then this order is a topological
order on these nodes. If we order the nodes in the XML document in the order wherein the function
NEXT reads the end-tags of these nodes; then this order is a reverse-topological order on these nodes.

Proof. Start- and end-tags are nested; whereby child nodes are placed between the start- and end-tag
of its parent node. As such a start-tag of a child node is always read after the start-tag of its parent node;
we thus have a topological order. The end-tag of a child node is always read before the end-tag of its
parent node; we thus have a reverse-topological order.

XML documents are often automatically generated and/or used by a formal protocol for (automatic)
information exchange. Thereby many documents conform to a predefined structural description, for
example the structural description defined by a XML Schema9 or by a Document Type Definition10. As a
result many XML documents are highly structured and thus are expected to have relative small indices.

5.1.2 Variants on node bisimulation

The graph index defined in Definition 2.40 uses node bisimulation; thereby nodes are grouped based
on the structure of their descendants. The path queries shown in Section 1.1 return nodes based on

7 See http:/www.w3c.org/DOM/.
8 See for example the interface XmlReader used in the .NET Framework and the libxml2 XMLReader interface.
9 See http://www.w3c.org/standards/xml/schema.

10 See http://www.w3c.org/TR/REC-xml/#dt-doctype.

54

http:/www.w3c.org/DOM/
http:/www.w3c.org/DOM/
http://www.w3c.org/standards/xml/schema
http://www.w3c.org/TR/REC-xml/#dt-doctype
http:/www.w3c.org/DOM/
http://msdn.microsoft.com/en-us/library/system.xml.xmlreader.aspx
http://xmlsoft.org/html/libxml-xmlreader.html
http://www.w3c.org/standards/xml/schema
http://www.w3c.org/TR/REC-xml/#dt-doctype

the structure of their ancestors. The graph index thus is not a good index to help answering these path
queries. A better suited index type that can answer these queries is the 1-index; the 1-index utilizes
backward node bisimilarity.

Definition 5.5. Let G1 = 〈N1, E1, l 1〉,G2 = 〈N2, E2, l 2〉 be graphs. Node n ∈N1 backward bisimulates node
m ∈N2; denoted as n ≈B m ; if and only if:

(1) The nodes have the same label; l 1(n) = l 2(m),

(2) For every node n ′ ∈ E ′1(n) there is a node m ′ ∈ E ′2(m)with n ′ ≈B m ′, and

(3) For every node m ′ ∈ E ′2(m) there is a node n ′ ∈ E ′1(n)with n ′ ≈B m ′.

In this chapter we shall refer to the normal node bisimilarity as defined in Definition 2.15 as for-
ward node bisimilarity. The only difference between forward node bisimilarity and backward node
bisimilarity is that forward node bisimilarity looks at the structure of descendants and backward node
bisimilarity looks at the structure of ancestors.

In previous chapters we extensively used theory derived from forward node bisimilarity in com-
bination with properties of directed acyclic graphs to construct IO efficient algorithms. Forward and
backward node bisimilarity are defined and used in similar ways. As such a large part of the theory
developed for forward node bisimilarity can be adapted such that this theory is applicable to backward
node bisimilarity.

Proposition 5.6. Let G = 〈N , E , l 〉 be a graph, let G ′ = 〈N ′, E ′, l ′〉 be the graph obtained from graph G
by reversing every edge; thus with N ′ = N , E ′ = {(n , m) : (m , n) ∈ E }, and l ′ = l , let P be the forward
bisimulation partition of N and let P ′ be the backward bisimulation partition of N ′. We have P = P ′

Proposition 5.6 hints at a general approach for adapting theory developed for forward node bisimi-
larity to theory applicable to backward node bisimilarity. One only has to reverse the edges used in the
theory developed for forward node bisimilarity. Using this approach we shall introduce the backward
rank of a node.

Definition 5.7. Let G = 〈N , E , l 〉 be a graph. The backward rank of a node n ∈N is defined as the length
of the longest path from any root node m to node n ∈N . The function rankB maps nodes to their rank;
this function is defined as:

rankB (n) =

¨

0 n is a root
1+maxm∈E ′(n) rankB (m) otherwise

In this chapter we shall refer to the rank defined in Definition 2.33 as forward rank.

Example 5.8. In Figure 5.2 we have taken the tree from Figure 5.1b and annotated each node in the tree
with its backward and forward rank.

0root3

1a1

2b0 2b0 2c0

1a2

2c0 2b0 2b0 2c1

3a0 3c0

Figure 5.2: Tree representation of the XML document from Example 5.1. Thereby we have highlighted
the tree nodes representing attributes and we have annotated each node with its forward
rank (superscript on the right) and its backward rank (superscript on the left).

55

The relation that exists between forward node bisimulation and the forward rank also exists between
backward node bisimulation and the backward rank. For backward bisimulation we can also introduce
the backward node-bisimilarity value and the backward node-decision value; this in the same way same
way as we have introduced backward rank.

There are a lot of queries that cannot be answered directly by using the 1-index. Examples are more
complex twig queries; these not only look to the structure of ancestors of node, but also to the structure
of descendants. A query can for example result in nodes having particular attributes; while also meeting
some path query. For this type of queries we need a more complex index; an index that can answer these
twig queries is the F&B-index. The F&B-index utilizes F&B bisimilarity to group nodes.

Definition 5.9. Let G1 = 〈N1, E1, l 1〉,G2 = 〈N2, E2, l 2〉 be graphs. Node n ∈ N1 F&B bisimulates node
m ∈N2; denoted as n ≈F&B m ; if and only if:

(1) The nodes have the same label; l 1(n) = l 2(m),

(2) For every node n ′ ∈ E1(n) there is a node m ′ ∈ E2(m)with n ′ ≈F&B m ′,

(3) For every node m ′ ∈ E2(m) there is a node n ′ ∈ E1(n)with n ′ ≈F&B m ′,

(4) For every node n ′ ∈ E ′1(n) there is a node m ′ ∈ E ′2(m)with n ′ ≈F&B m ′, and

(5) For every node m ′ ∈ E ′2(m) there is a node n ′ ∈ E ′1(n)with n ′ ≈F&B m ′.

The naive way for constructing the F&B-index starts with calculating the F&B bisimulation parti-
tion using repeated refinement of an initial partition P . First refine this partition P using forward node
bisimilarity; then refine the resulting partition using backward node bisimilarity. Repeat these refine-
ment steps until no changes are made during refinement; the resulting partition is the F&B bisimulation
partition.

For the F&B-index on trees we only need one such refinement step. We only need to refine the initial
partition once on forward node bisimilarity and refine the result once on backward node bisimilarity.
The resulting partition is called the F+B-partition and can be used to construct the F+B-index. For
trees this F+B-index is equivalent to the F&B-index [GBH10].

Example 5.10. In Figure 5.3 we show the graph index, the 1-index, and the F&B index of the tree repre-
sentation of the XML document presented in Example 5.1.

root

a

b c

a

b c

a c

(a) Graph index

root

a

b c b c

a c

(b) 1-index

root

a

b c

a

b cc

a c

(c) F&B-index

Figure 5.3: Three indices on the XML document tree presented in Figure 5.1b.

The three indices are all different; as such it is easy to see that the three indices all capture different
aspects of the original XML document.

We have shown examples of the 1-index and the F&B-index in Example 5.10. One immediately sees
that these indices can be big. The size of indices can be reduced; one way to reduce the size of an index
is by limiting the structure one looks at when grouping nodes. For a node n we can restrict ourselves
to the structure made by those ancestor nodes m ∈ A(n) that have a path to node n with a length of
at most k . There is a large class of graph indices that use this idea in some form or another; thereby

56

providing indices that are often much smaller than the 1-index or F&B-index. From this large class we
shall look at a general representative; namely the A(k)-index.

The A(k)-index utilizes backward node k -bisimulation. Backward node k -bisimulation is a variant
of backward node bisimulation. Thereby backward node k -bisimulation groups nodes n based on only
the ancestors nodes that have an outgoing path of length at most k to node n .

Definition 5.11. Let G1 = 〈N1, E1, l 1〉,G2 = 〈N2, E2, l 2〉 be graphs, let n ∈N1, m ∈N2 be nodes. Backward
k -bisimilarity is defined inductively.

BASE CASE: Node n and node m are backward 0-bisimilar equivalent, denoted as n ≈0 m , if and only if
node n and node m have the same label; thus l 1(n) = l 2(m).

INDUCTIVE DEFINITION: Node n and node m are backward k -bisimilar equivalent, denoted as n ≈k m ,
if and only if:

(1) The nodes are backward k -1-bisimilar equivalent; thus n ≈k -1 m ,

(2) For every node n ′ ∈ E ′1(n) there is a node m ′ ∈ E ′2(m)with n ′ ≈k -1 m ′, and

(3) For every node m ′ ∈ E ′2(m) there is a node n ′ ∈ E ′1(n)with n ′ ≈k -1 m ′.

The A(k)-index, with small values for k , will in general give smaller indices as the 1-index. Note
however that when the length of every path is less then k ; then the 1-index and the A(k)-index are
equivalent. The reduction in the size of the index provided by the A(k)-index does not come for free. The
cost of the smaller index is a reduction in the number of queries the A(k)-index can answer (directly).

Example 5.12. Consider the tree in Figure 5.4. From the tree in Figure 5.4 we can create several different
A(k)-indices.

a1

b2 e3

b6c4 d5

c7 d8

Figure 5.4: A tree graph; the text on each node represents the label of the node. The subscript on each
node represents a unique identifier.

First we give the backward 0-bisimulation partition of the nodes in this graph; given by {{a1},{b2,
b6},{c4,c7},{d5,d8},{e3}}. The backward 1-bisimulation partition is given by {{a1},{b2},{b6},{c4,c7},
{d5,d8},{e3}}. The last partition we look at is the backward 2-bisimilarity partition. This partition is
given by {{a1},{b2},{e3},{b6},{c4},{d5},{c7},{d8}}.

Note that backward k -bisimulation partitions on this graph; with k > 2; are all equivalent to the
backward 2-bisimulation partition. Also the backward bisimulation partition of this graph is equivalent
to the backward 2-bisimulation partition.

5.2 External memory index construction for XML documents

With the theory presented in the previous section we are ready to work out specialized external mem-
ory algorithms for constructing indices on XML documents. Thereby we not only provide index con-
struction algorithms; we shall also show how the properties of XML documents can be utilized in the
construction of IO efficient algorithms.

57

5.2.1 Constructing the 1-index

In Subsection 3.6.2 we have outlined several ideas that can be used to implement a fast version of ex-
ternal memory bisimulation partitioning. The structure of XML documents provides several ways to
utilize these ideas. We shall start with idea 6; we shall show that we can efficiently create a composite
node identifier based on backward rank.

Proposition 5.13. Let D be an XML document, let t be the start-tag read with function NEXT for an XML
element or attribute represented by node n . The backward rank of node n is given by the difference
between the number of start-tags that are read and the number of end-tags that are read before reading
tag t .

We can utilize Proposition 5.13 to efficiently evaluate the backward rank of each node; this by main-
taining a counter that is incremented when reading a start-tag and decremented when reading an end-
tag. By extending this idea we can easily assign a unique composite node identifier (backward rank,
unique identifier with respect to the nodes having this backward rank) to each node.

Assumption 5.14. We assume that each node in an XML document is assigned a composite node iden-
tifier (backward rank, unique identifier with respect to the nodes having this backward rank).

Assumption 5.14 can only be used if there is a way to efficiently calculate these composite node
identifiers. Remark 5.15 sketches how the composite node identifiers can be constructed.

Remark 5.15. Assume we have a counter r and a list R . The counter r maintains the backward rank
for the node represented by the next start-tag. The list R is a mapping between backward rank and the
number of nodes that are already assigned this backward rank; thus R[i] = j indicates that we have
already read j nodes with backward rank i . We maintain a pointer to the r -th element in this list R . The
list R is an empty list on initialization, counter r is initialized to 0.

Now when we read a start-tag representing a node n during the processing of an XML document;
then this node is assigned backward rank r . Now we read the value R[r] using the pointer; when no
value is present at R[r] then this value is initialized by 0. The value R[r] gives the number of nodes read
before node n that also have backward rank r . We use this value as the unique identifier with respect to
the nodes having backward rank r . We then increment the value R[r], we increment r by one and move
the pointer to the next element in the list R . When an end-tag is read; then we only have to maintain
r and the pointer to R[r]. We do so by decrementing r by one and moving the pointer to the previous
element in list R .

The approach in Remark 5.15 makes it easy to determine the composite node identifier for any node
n . We can also utilize this approach to determine the composite node identifier of any parent of node
n ; Remark 5.16 sketches how the composite node identifier of a parent can be constructed.

Remark 5.16. The backward node rank of node m is given by rankB (n)− 1. The unique identifier with
respect to the nodes having backward rank rankB (m) can be found by reading the value R[rankB (m)].
When node n is read, then node m must be the last node that is read with rank rankB (m); the value
(rankB (m), R[rankB (m)]−1) thus is the composite node identifier of node m .

The value of R[rankB (m)] can easily be determined by using the pointer to R[r] when we are pro-
cessing node n . Before constructing the composite node identifier of node n we have r = rankB (m)+1;
after construction of the composite node identifier of node n we have r = rankB (m) + 2. We thus can
retrieve the value R[rankB (m)] by performing a constant amount of move operations on the pointer to
list R .

Remark 5.15 can be utilized to easily partition all nodes on rank; Remark 5.16 can be utilized to
easily represent all edges in the XML document tree as composite node identifier pairs. Thereby there
is no need for the expensive renumbering operations performed by Algorithm 3.4. One can however
expect that this results in a very bad initial partition. We shall now see that this is not a problem when
processing XML documents. Therefore we shall show how idea 5 and idea 8 from Subsection 3.6.2 can
be utilized to eliminate the need for a partition decision structure.

In a tree the fan-in is upper bounded by 1 incoming edge; according to idea 8 we thus have node-
decision values whose size is upper bounded. During local refinement we thus can replace the local

58

node-hash value by the actual node-decision value of each node. Thereby local refinement by sorting
produces a bisimulation partition of the initial partition blocks; this without using any partition deci-
sion structure. Using the sketched ideas results in Algorithm 5.1.

Algorithm 5.1 Online backward bisimulation partitioning algorithm for XML documents

Require: XML document D.
Ensure: The output is the pair ((rankB (n), i), p) with (rankB (n), i) the composite node identifier for

node n and p an identifier for the backward bisimulation partition block whereto n belongs.
1: r ← 0
2: N , E , R are empty lists
3: for all e ←NEXT(D) do
4: if e is a start-tag then
5: if |R |= r then
6: ADD(R , 0)
7: if r 6= 0 then
8: ADD(E , ((r −1, R[r −1]−1), (r, R[r])))
9: ADD(N , ((r, R[r]), l (e))

10: R[r], r ←R[r]+1, r +1
11: else if e is a end-tag then
12: r ← r −1

13: SORT(N) on lexicographically order
14: SORT(E) on lexicographically order

15: i ← 0
16: Q is a priority queue
17: for all rank r in list N do
18: N ′, E ′ are empty lists
19: for all elements ((r, c), l)∈N do
20: p ←{p : ((r, c), p) = TOP(Q)}
21: ADD(N ′, (l , p , c))
22: for all elements ((r, c), (r +1, c ′))∈ E do
23: ADD(E ′, (l , p , c , c ′))
24: SORT(N ′) on lexicographically order
25: SORT(E ′) on lexicographically order
26: for all label l , partition block identifier p in list N ′ do
27: for all elements (l , p , c)∈N ′ do
28: print ((r, c), i)
29: for all elements (l , p , c , c ′)∈ E ′ do
30: ADD(Q , ((r +1, c ′), i))
31: i ← i +1

Algorithm 5.1 is a combination of Algorithm 3.4 and Algorithm 3.6 optimized by the optimizations
described in this subsection. The correctness of Algorithm 5.1 thus follows by construction. Due to the
optimizations and the use of XML documents we can provide a strict worst case upper bound on the IO
complexity of Algorithm 5.1.

Theorem 5.17. The worst case IO complexity of Algorithm 5.1 is O(SORT(|N |)+PQ(|N |)).

Proof. The algorithm constructs lists N , E , N ′, E ′; these lists have accumulative size of O(|N |). These
lists are sequentially written; sorted and then sequentially read. The total IO cost for these lists thus is
O(SORT(|N |)). The list R has maximum size O(|N |); the read and write patterns to this list are not sequen-
tially; but they are localized. One only has to read the next element when a start-tag is encountered; and
return to the previous element in the list when an end-tag is encountered. The total IO cost for list R

59

thus is O(SCAN(|N |)). In total |E |=Θ(|N |) elements are added and removed from the priority queue; this
introduces an additional IO cost of O(PQ(|N |)).

Remark 5.18. For clarity Algorithm 5.1 is not presented in an optimized fashion. We shall give some
brief ideas that can be used for optimizing implementations of Algorithm 5.1.

(1) We have stored backward ranks quit liberal in the algorithm. Many of these stored backward rank
values are unnecessary and can be removed from actual implementations to reduce the total size
of the used data structures.

(a) Edges ((r1, i 1), (r2, i 2)) stored in E can be simplified to ((r1, i 1), i 2). In trees we always have
r2 = r1+1; the backward rank of child nodes is always one higher then the backward rank of
parent nodes.

(b) Each initial partition block p contains all nodes with a specific backward rank r . All chil-
dren of nodes in this partition block have backward rank r + 1. The priority queue will (at
any given time) only contain nodes that are placed in the same partition block; all these
nodes have the same backward rank. The backward rank can thus be omitted when sending
messages to children utilizing the priority queue.

(2) As with Algorithm 3.6 it is a good idea to perform operations in internal memory whenever pos-
sible; see the first three ideas described in Subsection 3.6.2.

5.2.2 Constructing the F&B-index

The F+B-index provides a simple approach to calculating the F&B-index on a XML document. One
simply runs Algorithm 3.6 to calculate the forward node bisimulation partition P and then runs an
adapted version of Algorithm 3.6 to refine this partition P by refining each partition block on backward
node bisimilarity. This results in the F+B partition of the XML document; which is equivalent to the
F&B partition.

In Subsection 5.2.1 we have however seen that the backward node bisimulation partition of an XML
document can be constructed very efficiently. A better approach would thus be reverse the two par-
titioning steps; thus to calculate a ‘B+F partition’. We shall first show that this approach will yield a
partition equivalent to the F+B partition.

Theorem 5.19. Let G =<N , E , l > be a graph, let PF+B be the F+B partition of nodes N , let PB+F be the
B+F partition of nodes N . These partitions are equivalent; thus PF+B = PB+F.

Proof (sketch). Both partitions are node-value partitions on the value (forward node-bisimilarity value,
backward node-bisimilarity value).

We thus can utilize Algorithm 5.1 to calculate an initial backward node bisimulation partition PB

that is used as input for Algorithm 3.6. We can however easily enhance Algorithm 5.1 such that during
backward node bisimulation partitioning each node is also annotated with a forward rank.

Proposition 5.20. Let D be an XML document, let t be the end-tag read with function NEXT for an XML
element or attribute represented by node n , let r be the maximum forward rank of any child node of n .
The forward rank of node n is given by rank(n) = r +1.

We can utilize Proposition 5.20 to efficiently evaluate the forward rank of each node. Remark 5.21
sketches how the construction of node identifiers can be performed by utilizing a stack.

Remark 5.21. Assume we have a counter r and stack S. The counter r maintains the backward rank for
the node represented by the next start-tag; see Remark 5.15 on how this counter r is maintained. The
top of the stack S maintains the maximum forward rank of any descendants of the last node we have
encountered with rank r − 1; thus the top of the stack S contains the maximum forward rank of any
descendants of the current node. The stack S is an empty stack on initialization.

Now when we read a start-tag represents a node n during the processing of an XML document; then
this node is assigned backward rank r . We have not yet encountered any descendants of this node n ;

60

thus we push 0 onto the stack. When an end-tag for node n is read; then the forward rank of node n
is given by rank(n) = TOP(s) + 1; we then pop the top of the stack. If the stack is not empty (thus when
node n has a parent); then we replace the new top of the stack by max(rank(n), TOP(s)).

Note that Remark 5.21 describes a simplified version of time-forward processing to calculate for-
ward ranks. Forward ranks provide enough information for an initial partition whereon Algorithm 3.6
can operate. We can however further enhance Algorithm 5.1 such that during backward node bisimu-
lation partitioning each node is also annotated with a forward node-hash value. Remark 5.22 sketches
how we can integrate the computation of node-hash values into Algorithm 5.1 by using time-forward
processing.

Remark 5.22. Assume we have a counter r , list R and priority queue QH. The counter r maintains the
backward rank for the node represented by the next start-tag. The list R is a mapping between backward
rank and the number of nodes that are already assigned this backward rank. See Remark 5.15 on how
this counter r and list R are maintained. The priority queue QH is used to send node-hash values from
child nodes to their parent nodes.

When an end-tag for node n is read; then we can use counter r and list R to determine the composite
node identifier i of node n ; see Remark 5.15 for details. The node-hash value for node n is now given
by vH(n) =H(l (n),{s : (i , s) = TOP(QH)}). If node n has a parent node (when r 6= 0); then the node-hash
value vH(n) must be send to this parent node. We can utilize counter r and list R to determine the
composite node identifier j of the parent of node n ; to send vH(n) to the parent of node n we add the
value (j , vH(n)) to the priority queue QH.

By integrating the ideas outlined in Remark 5.21 and Remark 5.22 into Algorithm 5.1 we construct
an algorithm that performs backward node bisimulation partitioning and at the same time annotates
each node with the forward rank and forward node-hash value needed for constricting the structural
summary partition used as input for Algorithm 3.6.

Note that Algorithm 3.6 gets a refinement of the structural summary as input (refined on backward
node bisimulation); this further reduces the size of initial partition blocks and thus allows more work to
be performed entirely in internal memory. The output of Algorithm 3.6 will be a refinement of the for-
ward node bisimulation partition (namely the F+B partition). A global partition decision structure thus
can contain several entries that have the same forward node-decision value as a key. For constructing a
useful global partition decision structure one thus should use a combination of forward node-decision
values and backward node-decision values as a key; as this key is unique for partition blocks in the F+B
partition.

5.2.3 Constructing the A(k)-index

The A(k)-index seems similar to the 1-index; but there is a major difference between the two. According
to Theorem 2.36 all backward bisimilar nodes have the same backward rank. This does however not
have to hold for backward k -bisimilar nodes; see Example 5.12 for some examples. We thus cannot
use backward rank to localize the partitioning computations. We can however express backward node
k -bisimilarity in another way; namely in terms of k -traces.

Definition 5.23. Let G = 〈N , E , l 〉 be a graph, let n 1 ∈ N , . . . , n i ∈ N ; 1 ≤ i be nodes, let n 1, . . . , n i be a
path11 from node n 1 to node n i . The sequence l (n 1), . . . , l (n i) is a trace.

Let T = l 1, . . . , l i ; 1≤ i be a trace. The k -trace of T is a sequence containing the last k elements in the
sequence T ; we thus define the k -trace of T as l i−k . . . l i . Thereby we assume that traces whose length
is less than k are prefixed by at least k − i occurrences of a special label λ; we thus define l j = λ, j < 1.
The special label λ should thereby only be used for prefixing too-short traces.

The k -trace can easily be represented by a fixed size value; we shall now show that k -trace values
can be used as a backward k -bisimilarity replacement for the backward node-decision value used for
constructing the 1-index.

11 Note that we use a slightly different definition for a path as Definition 2.3. For defining k -traces we allow paths consisting of
a single node.

61

Theorem 5.24. Let G = 〈N , E , l 〉 be a tree, let r ∈ N be the root node of tree G , let n ∈ N , m ∈ N be
nodes, let T k+1

n be the k+1-trace from node r to node n , let T k+1
m be the k+1-trace from node r to node

m . We have n ≈k
B m if and only if T k+1

n = T k+1
m .

Proof. The proof is by induction on k .

BASE CASE: For k = 0 we have that the 1-traces Tn and Tm only contain the labels of node n and node m .
Definition 5.11 defines backward 0-bisimilarity as label equivalence; as such n ≈0

B m if and only
if T 1

n = T 1
m holds.

INDUCTION HYPOTHESIS: For any value of k ≤ i we have n ≈k
B m if and only if T k+1

n = T k+1
m .

INDUCTION STEP: Let n ′ be the parent node of n , let m ′ be the parent node of m , let T j
m ′ be the j -trace

from node r to node m ′, let T j
n ′ be the j -trace from node r to node n ′. According to Definition

5.11 we have n ≈i+1
B m if and only if (l (n) = l (m)) and (n ≈i

B m) and (n ′ ≈i
B m ′).

According to the induction hypothesis we have n ′ ≈i
B m ′ if and only if T i+1

n ′ = T i+1
m ′ and we have

n ≈i
B m if and only if T i+1

n = T i+1
m . We can rewrite T i+1

n = T i+1
m to T i

n ′ ++ l (n) = T i
m ′ ++ l (m). We

have T i
n ′ = T i

m ′ whenever T i+1
n ′ = T i+1

m ′ . As such we have n ≈i+1
B m if and only if T i+1

n ′ = T i+1
m ′ and

l (n) = l (m). We have T i+2
n = T i+1

n ′ ++ l (n) and T i+2
m = T i+1

m ′ ++ l (m) thus we have n ≈i+1
B m if and

only if T i+2
n = T i+2

m .

We can easily use a stack to store the labels of all parents of the current node; this by pushing the
label of a node onto the stack when we encounter a start-tag and popping the top of the stack when we
encounter an end-tag. By taking the topmost k elements we get the k -trace. This leads to a very straight
forward A(k)-construction algorithm for XML documents, this algorithm is presented in Algorithm 5.2.

Algorithm 5.2 Online backward k -bisimulation partitioning algorithm for XML documents

Require: XML document D.
Ensure: The output is the pair (i , p) with i the node identifier for node n and p an identifier for the

backward k -bisimulation partition block whereto n belongs.
1: N ,S are empty lists
2: for all 0≤ i < k do
3: ADD(S,λ)

4: i ← 0
5: for all e ←NEXT(D) do
6: if e is a start-tag then
7: PUSH(S, l (e))
8: ADD(N , (S[|S| − (k +1), |S|), i))
9: i ← i +1

10: else if e is a end-tag then
11: POP(S)

12: SORT(N) on lexicographically order

13: p ← 0
14: for all k -trace t in list N do
15: for all (t , i)∈N do
16: print (i , p)
17: p ← p +1

The correctness of Algorithm 5.2 follows directly from Theorem 5.24. We shall now analyze the IO
complexity of the algorithm.

62

Theorem 5.25. The worst case IO complexity of Algorithm 5.1 is O(SCAN(k + |N |)+SORT(k |N |)).

Proof. The stack S will contain at most k + |N | labels; this stack can be read and written to with
a total IO cost of O(SCAN(k + |N |)). The list N will contain at most |N | entries; each entry hav-
ing a size given by Θ(k); the total IO cost for reading, writing and sorting list N is thus given by
O(SCAN(k + |N |)+SORT(k |N |)).

5.3 Partition maintenance for XML documents

The structure of XML documents restricts the allowed update operations on an XML document. None
of the operations studied in Chapter 4 are allowed; as all these operations can turn the XML document
into a non-tree graph. The structure of XML documents does however allow some update operations;
namely the addition of a document fragment to a node and removal of a document fragment from a
node.

When we store XML documents in a single large container; then we can also allow subgraph addition
and removal. For an XML document container subgraph addition corresponds with adding an XML
document to the container, subgraph removal corresponds with removing an XML document from the
container. We shall briefly look at all three index types to see what the possibilities and difficulties are
for supporting these update operations.

5.3.1 Updating the 1-index

The 1-index is comparable to the graph index studied in Chapter 4. We can however utilize that each
node in an XML document has at most a single parent. The node-decision values for nodes in XML
documents thus have a fixed size. Therefore we can replace string B-trees for storing the index by the
simpler B+ tree data structure.

For document fragment addition to a node n with index node n ↓ we can easily adapt subgraph addi-
tion. We can simply add the 1-index of the document fragments as children of n ↓; we can then perform
the same approach as described for subgraph addition in Subsection 4.3.1. Removal of document frag-
ments and removal of subgraphs can both be handled in the same way as subgraph removal described
in Subsection 4.3.2.

5.3.2 Updating the F&B-index

For subgraph addition and removal we can stick with the approach described in Subsection 4.3.2.
Thereby we repeat a remark stated in Subsection 5.2.2; one should use a combination of forward node-
decision values and backward node-decision values as a key for partition blocks in a F+B partition.

Updating the F&B-index after document fragment updates is a bit more complicated as updating
the 1-index. Performing document fragment updates to node n implies edge updates. For the F&B-
index one sees that updating the index after document fragment updates can affect the document frag-
ment and its new ancestors. These new ancestors are node n and the ancestors A(n) of node n . As such
these ancestors are those nodes on the path from the root node r to node n ; whereby root node r is the
root node of the XML document wherein node n is placed.

We can utilize the same approach as we used for the construction of the F+B index. Updating after
a document fragment can be implemented by first adjusting the backward bisimulation partition of
the affected nodes and then adjusting the forward bisimulation partition of the affected nodes. For
adjusting the backward bisimulation partition of the affected nodes one can look at the approach for
the 1-index described in the previous subsection. For adjusting the forward bisimulation partition of
the affected nodes one can look at the edge propagation approach described in Subsection 4.3.3.

5.3.3 Updating the A(k)-index

For subgraph addition and removal from an A(k)-index one can easily adopt the approach described
in Chapter 4. Thereby we note that we have utilized k+1-traces as a unique partition block key to

63

determine in which backward k -bisimilarity partition block each node n should be placed. These k+1-
traces are completely independent from the graph wherein node n is placed. As such no renaming step
is necessary when merging several backward k -bisimilarity partitions.

For document fragment addition in A(k)-indices we can utilize the same idea as used for document
fragment addition in 1-indices. If a document fragment is added to node n represented by index node
n ↓; then we can simply let the document fragment be a child of the index node n ↓. An easy way to
achieve this is by prefixing the trace of each node in the document fragment by the k -trace of node n .

For practical purposes one might use string B-trees with prefix searching for lookups on k+1-traces.
When we store k+1 in reverse order then we can also range query the string B-tree with j -traces where
j ≤ k . As such this structure for storing the backward k -bisimulation partition also provides easy access
to backward j -bisimulation partitions.

5.4 Final notes

This chapter provides construction algorithms for indexing XML documents using the 1-index, the
F&B-index, and the A(k)-index. We have also provided sketches for updating these indices after changes
to the indexed XML documents are made. Thereby we have utilized the structure of XML documents to
our advantage. The approaches presented in this chapter thus are limited to their applicability.

The 1-index can easily be constructed for topological ordered directed acyclic graphs; this by utiliz-
ing Algorithm 3.6. For the F&B-index we cannot easily extend the approach presented in this chapter;
as for non-tree graphs it does not hold that the F+B-index of the graph is equivalent to the F&B-index
of the graph. Also for the A(k)-index we see that the theory presented in this chapter only holds for
trees. For directed (acyclic) graphs the k -trace between a root node r and a node n is not a key that can
determine the backward k -bisimulation partition block wherein node n should be placed.

Extending the F&B-index and the A(k)-index to directed acyclic graph is difficult. For the F&B-index
we see that processing in one direction does not directly yield a good index; one-direction processing
needs to be repeated until no changes are made. An algorithm that processes nodes in multiple direc-
tions at the same time is hard to construct in an IO efficient way. For the A(k)-index we see that we
cannot use backward ranks to localize complicated decision making (by localizing partition decision
structures). As such a more powerful approach then the approach used for bisimulation partitioning is
needed to make backward k -bisimulation partitioning of directed acyclic graphs IO efficient.

64

Chapter 6

EXPERIMENTAL VERIFICATION

In the previous chapters we have presented external memory algorithms for bisimulation partitioning
of directed acyclic graphs and XML documents. Analysis showed that these algorithms are expected to
have low runtimes and low IO complexities. Theoretically expected low runtimes and IO complexities
for an algorithm do however not always imply a practically fast algorithm. Therefore we have set up a
small scale experiment to see if the algorithms are also practically fast.

We have primarily restricted this small scale experimental to the external memory bisimulation al-
gorithm presented in Algorithm 3.6. This algorithm; and the theory it builds upon; provides the foun-
dation whereupon the remainder of our work is based. For the experiment we have implemented Algo-
rithm 3.6 together with supporting algorithms; on these implementations we have performed several
measurements to see how the algorithms behave in practice. Thereby we have also made a comparison
between Algorithm 3.6 and the more specialized approach for XML documents presented in Algorithm
5.1.

In our experiments we have studied the behavior of Algorithm 3.6 with respect to the size of its input
and the available amount of internal memory. The comparison between Algorithm 3.6 and Algorithm
5.1 only looks at the behavior as a function of the size of the input. The questions we want to answer
with the experiments and details of the experiments can be found in Section 6.2. Before introducing
the details of the experiments we introduce relevant details of the implementations; this can be found
in Section 6.1. The results of these experiments are presented in Section 6.3. In Section 6.4 we try to
answer the questions stated in Section 6.2; thereby concluding on the experimental results.

6.1 Implementation overview

For the experiments we have implemented each tested algorithm and each supporting tool as a sepa-
rate program. With this setup it is easy to perform measurements on each algorithm. This results in
three classes of programs; namely programs implementing the algorithms we are interested in, inter-
nal developed tools to aid performing measurements, and externally developed tools to aid performing
measurements. We shall first introduce the three programs that implement the algorithms we are in-
terested in.

dagfpdagfps: Implements Algorithm 3.4. The dagfpdagfps program reads graphs in L represen-
tation and transforms them into graphs in LS representation. The program supports two types
of output. The output graph can be an initial partition based on structural summaries and the
output graph can be an initial partition based on rank and label. The initial partition based on
rank and label represents the worst-case structural summary.

exbisim: Implements Algorithm 3.6. The exbisim program reads graphs in LS representation and
outputs a bisimulation partition of this graph.

xmlbbisim: Implements Algorithm 5.1. The xmlbbisim program reads trees represented by XML
documents and outputs a backward-bisimulation partition of the tree. This program only uses
XML elements and attributes as nodes in the tree representation of XML documents.

The three algorithms are implemented without any of the possible implementation-specific im-
provements described in Subsection 3.6.2 and improvements described in Remark 5.18. For testing the
three implemented algorithms we need several programs to generate input graphs and convert them to
the expected graph representations. Therefore we have developed the following tools:

gen: The gen program is a simple graph generator. The program can create random directed acyclic
graphs and trees. The program can also create chains and transitive closure chains. There is
limited support for controlling label assignment. This program generates the input for most ex-
periments; thereby the program does not try to represent any particular class of directed acyclic
graphs.

For generating these random graphs we use a simple approach. First the generator generates a
label for the node. This label is picked from a limited set; thereby the generator uses a subset of
the available labels. The specific subset is selected by using information derived from the node
identifier. The generator then tries to repeatedly assign edges with probability p to the generated
node. When no edge is assigned then the generator moves on to generating the next node. An n-
th edge for node i is thus generated with probability p n . For generating an edge for the i -th node
the random generator picks a node identifier in the range 0 ≤ j < i ; if the picked node identifier
is already a child of the i -th node then this generated edge is ignored.

dagdagfp: The dagdagfp program reads graphs in the format produced by gen and outputs the
graphs in L representation. The L representation of the graph can be used as input for the
dagfpdagfps program.

graphstat: The graphstat program gives statistics about graphs. It accepts input in any format
used by the various programs. The output includes the number of nodes, number of edges and
the number of labels. For certain types of input the program can provide additional details such
as the maximum rank assigned to a node in the graph.

xmldagfpr: The xmldagfpr program reads trees represented by XML documents and outputs the
trees in L representation. The L representation of the graph can be used as input for the
dagfpdagfps program. This program is only used to compare Algorithm 3.6 and Algorithm 5.1.
This program only uses XML elements and attributes as nodes in the tree representation of XML
documents. Thereby the program automatically reverses all edges in this tree representation such
that the backward node bisimulation partition is calculated when this tree is given as input to Al-
gorithm 3.4 and Algorithm 3.6.

During testing we also used an externally developed program; namely the xmlgen program pro-
vided by the XML Benchmark Project1. This program is used to generate large XML documents for
benchmarking XML-related algorithms. We have used version 0.92 of xmlgen. Further we have used
various measurements scripts that generated test data and executed the various programs to prepare
the generated test data and measure the performance of the implemented algorithms.

6.1.1 Low-level details

All programs are written in C++; the source code can be found athttp://jhellings.nl/projects/
exbisim/. All source code is compiled with the Microsoft (R) C/C++ Optimizing Compiler (version
16.00.40219.01 for x64). We have used the following third party libraries for crucial functionality:

STXXL: STANDARD TEMPLATE LIBRARY FOR EXTRA LARGE DATA SETS: This library provides IO efficient ex-
ternal memory implementations for common algorithms and data structures. From this library
we have used the vector data structure, the priority queue data structure, and the general sort
algorithm. We have used version 1.3.1 of the library; retrieved from SourceForge2.

1 See http://www.xml-benchmark.org/.
2 See http://sourceforge.net/projects/stxxl/files/stxxl/1.3.1/stxxl-1.3.1.tar.gz/download.

66

http://www.xml-benchmark.org/
http://jhellings.nl/projects/exbisim/
http://jhellings.nl/projects/exbisim/
http://sourceforge.net/projects/stxxl/files/stxxl/1.3.1/stxxl-1.3.1.tar.gz/download
http://www.xml-benchmark.org/
http://sourceforge.net/projects/stxxl/files/stxxl/1.3.1/stxxl-1.3.1.tar.gz/download

LIBXML2: This library provides several interfaces for reading and writing XML documents. We have used
the XMLReader API for reading XML documents. We have used version 2.7.8 of the libxml2 library;
retrieved from xmlsoft.org3.

BOOST C++ LIBRARIES: This library provides functionality supporting many useful tasks. The STXXL
library depends on some of the Boost libraries. Further we have used the program options library
for reading command line options. We have used version 1.46.1; retrieved from SourceForge4.

The implementation used 32bit unsigned integers for storing node identifiers, labels, hash values,
ranks and other pieces of information. The storage space needed to store a single node stored as a
(node identifier, label identifier)-pair thus is 8bytes. The STXXL library utilizes a disk block size of 2MB;
as such at most 262144 nodes can be stored in a single disk block. This results in a lower bound on the
IOs per (number of nodes, number of edges) of 1

262144
≈ 3.8 ·10−6. In practice we shall see higher values

as we not only store nodes but also edges and other auxiliary data. Furthermore we are likely to perform
several IOs per node and edge as information is read, written and sorted several times.

We have assured ourselves of the correctness of the implemented algorithms in several ways. First
we have proven that the implemented approaches should theoretically work. We have also run the pro-
grams on small inputs and manually verified the outcomes. We did also test the programs on large
predictable inputs and verified the outcome for these inputs. Thereby we have tested if the programs
worked on groups of (topological) chains. Lastly we have verified if several implementations gave the
same result for the same input. Thereby we have compared an internal memory bisimulation parti-
tioning implementation with the external memory bisimulation partitioning implementation. We have
also checked if the XML backward bisimulation implementation provided by xmlbbisim did give the
same results as the external memory bisimulation partitioning algorithm provided by exbisim.

6.1.2 System specifications

All programs are tested on a Dell XPS 15 (L501X) laptop with an Intel Core i5-560M Processor and
4GB of main memory. We have used the internal hard disk drive of this system; a Seagate Momen-
tus ST9500420AS; for temporary storage. Thereby the internal hard disk drive is used for sorting and for
storing temporarily data structures such as the used lists and priority queues. All storage used on this
drive is managed by the STXXL library.

During testing the laptop was connected to an external USB hard disk drive; the Western Digital
Elements WDBAAU0010HBK-01. This external hard disk drive is only used for storing input and output
of programs. Thereby it is guaranteed that each program reads its input sequentially from the exter-
nal hard disk drive and writes its output sequentially to the same external hard disk drive. We have
performed some raw performance benchmarks on these hard disk drives using the HD Tach 3.0.4.05

benchmark program; see Table 6.1 for the results.

Disk Random access [ms] Average speed [MB/s] Burst speed [MB/s]

ST9500420AS 17.4 87.8 179.2
WDBAAU0010HBK-01 14.9 36.7 37.4

Table 6.1: Raw performance benchmarks on the internal and external hard disk drive.

We have performed the experiments under Microsoft Windows 7 x64 (Home Premium) using the
high performance power plan. We have tested and measured the behavior of each program at least once
before performing the experiments. Thereby we have checked and verified that at no prolonged amount
of time the CPU load is high and that at any prolonged amount of time the IO throughput is high. We
have also checked that memory consumption is as expected (both for the program and for the system).

3 See ftp://xmlsoft.org/libxml2/libxml2-2.7.8.tar.gz.
4 See http://sourceforge.net/projects/boost/files/boost/1.46.1/boost_1_46_1.7z/download.
5 See http://www.simplisoftware.com/Public/index.php?request=HdTach.

67

ftp://xmlsoft.org/libxml2/libxml2-2.7.8.tar.gz
http://sourceforge.net/projects/boost/files/boost/1.46.1/boost_1_46_1.7z/download
http://www.simplisoftware.com/Public/index.php?request=HdTach
ftp://xmlsoft.org/libxml2/libxml2-2.7.8.tar.gz
http://sourceforge.net/projects/boost/files/boost/1.46.1/boost_1_46_1.7z/download
http://www.simplisoftware.com/Public/index.php?request=HdTach

These checks have been performed to assure that there are no anomalies in the implementation and
in the environment that could result in useless experimental results. After these verifications we have
performed the real measurements on the experiments.

6.2 Experiment description

We have performed four small scale experiments. During each experiment we have measured the run-
time of each program and the total number of IOs performed by the algorithms. For determining the
total number of IOs we have only looked at the IOs performed by the STXXL library (to the internal hard
drive); as only these IOs are a necessary part of the algorithm. During measurements we also collect
statistics; including statistics on the input graphs and resulting partitions. With our experiments we
have tried to answer the following questions:

DOES ALGORITHM 3.6 BEHAVE AS ONE CAN EXPECT FROM THE THEORY? Thereby we have looked at IO effi-
ciency and runtime scalability with respect to the size of input graphs. We have also looked at
IO efficiency and runtime with respect to the memory usage.

DOES ALGORITHM 3.6 BENEFIT FROM A GOOD INITIAL PARTITION? Thereby we have compared the perfor-
mance of the algorithm when it has a bad initial partition (with few initial partition blocks) as
input with the performance of the algorithm when it has a good initial partition (with many ini-
tial partition blocks) as input.

HOW DOES ALGORITHM 3.6 COMPARE WITH MORE OPTIMIZED APPROACHES? Thereby we have compared the
performance of Algorithm 3.6 and Algorithm 5.1 for performing backward node bisimulation par-
titioning on large XML documents.

We have set up four small scale experiments that should aid in answering these questions.

EXPERIMENT 1: In this experiment we measure results that should help answering the first two ques-
tions. In this experiment we have performed external memory bisimulation of graphs; thereby
we have used initial partitions based on structural summaries and initial partitions based on rank
and label. For this experiment we have created graphs whose size is a function of the number of
nodes; we have created graphs that have between 100 · 106 and 1000 · 106 nodes. Figure 6.1 pro-
vides the program flow used in this experiment. Every graph has an average of three to four edges
per node. The file size of the input graphs ranges from 2.1GB to 21.2GB.

gen dagdagfp dagfpdagfps

graphstatss

exbisimss

exbisimrl

graphstatrl

Figure 6.1: Visualization of the program flow for EXPERIMENT 1; in this figure an arrow indicates that the
output of one program is used as the input for another program. We have only performed
measurements on the highlighted programs (dagfpdagfps and exbisim). The subscript rl

stands for an initial partition based on rank and label. The subscript ss stands for an initial
partition based on structural summaries.

EXPERIMENT 2: In this experiment we measure results that should help answering the first question.
In this experiment we have performed external memory bisimulation of graphs; thereby we have
used initial partitions based on structural summaries. For this experiment we have created graphs

68

with 50000 nodes and a variable amount of edges; namely between 0 and 1249 ·106 edges. Figure
6.2 provides the program flow used in this experiment.

gen dagdagfp dagfpdagfps

graphstat

exbisim

Figure 6.2: Visualization of the program flow for EXPERIMENT 2; in this figure an arrow indicates that the
output of one program is used as the input for another program. We have only performed
measurements on the highlighted programs (dagfpdagfps and exbisim).

EXPERIMENT 3: In this experiment we measure results that should help answering the first question. In
this experiment we have performed external memory bisimulation of graphs. For this experi-
ment we have created a single graph with 108 nodes and 3.3 · 108 edges. On this graph we have
calculated the structural summary partition; on this structural summary partition we have per-
formed external memory bisimulation partitioning. Thereby we have used versions of exbisim
and dagfpdagfps that are constrained to a limited memory usage. We have used values between
4MB and 512MB for the amount of memory each data structure and sort operation is allowed to
use. Figure 6.3 provides the program flow used in this experiment.

gen dagdagfp

dagfpdagfps4MB exbisim4MB

dagfpdagfps8MB exbisim8MB

...
...

dagfpdagfps256MB exbisim256MB

dagfpdagfps512MB exbisim512MB

Figure 6.3: Visualization of the program flow for EXPERIMENT 3; in this figure an arrow indicates that the
output of one program is used as the input for another program. We have only performed
measurements on the highlighted programs (dagfpdagfps and exbisim). The subscript
indicates the amount of memory each data structure and sort operation is allowed to use.

EXPERIMENT 4: In this experiment we measure results that should help answering the last question. In
this experiment we have performed external memory bisimulation of XML documents. Thereby
we have compared Algorithm 5.1 with the combination of Algorithm 3.4 and Algorithm 3.6. For
this experiment we have created XML documents using the xmlgen program provided by the
XML Benchmark Project. For the generation of XML documents we have used scaling factors
between 50 and 500. Figure 6.4 provides the program flow used in this experiment.

xmlgen

xmlbbisim

xmldagfpr dagfpdagfps exbisim

Figure 6.4: Visualization of the program flow for EXPERIMENT 4; in this figure an arrow indicates that the
output of one program is used as the input for another program. We have only performed
measurements on the highlighted programs (xmldagfpr, xmlbbisim, dagfpdagfps and
exbisim).

69

6.3 Results

We shall present the relevant measurements performed for each experiment.

EXPERIMENT 1: In Figure 6.5 we have plotted the runtime and IO scalability as a function of the size of
the input graph. Thereby we have plotted the results for performing external memory bisimula-
tion partitioning on two types of initial partitions; namely the structural summary partition and
the partition based on rank and label. Table 6.2 shows the accuracy of these initial partitions and
the resulting local refined partitions with respect to the bisimulation partition. In Table 6.3 the
number of local collisions occurring during bisimulation partitioning is shown.

EXPERIMENT 2: In Figure 6.6 we have plotted the runtime and IO scalability as a function of the size of
the input graph.

EXPERIMENT 3: In Figure 6.7 we have plotted the runtime and IO scalability as a function of the amount
of memory each data structure and sort operation is allowed to use.

EXPERIMENT 4: In Table 6.4 we have given an overview of the scaling factor and other measurements of
the size of an XML document (document size and the number of extracted nodes). In Figure 6.8
we have plotted the runtime and IO scalability as a function of the scaling factor used by xmlgen
to generate XML documents.

exbisimrl exbisimss dagfpdagfps
exbisimrl, dagfpdagfps exbisimss, dagfpdagfps

0 1 2 3 4

·109

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

·104

Graph size

R
u

n
n

in
g

ti
m

e
[s
]

(a) Runtime performance

0 1 2 3 4

·109

0

0.2

0.4

0.6

0.8

1

·10−4

Graph size

IO
s

p
er

si
ze

(b) IO complexity

Figure 6.5: Results of EXPERIMENT 1. In Figure 6.5a the runtime is plotted as function of the size of the
input. In Figure 6.5b the number of IOs performed per node and edge is plotted as function
of the size of the input. We have plotted results for individual programs and for entire tool
chains.

70

exbisimss exbisimrl

Nodes Initial [%] Refined [%] (max) Initial [%] Refined [%] (max)

1.0 ·108 99.86 100.00 15 0.02 99.96 33,391
2.5 ·108 99.84 100.00 21 0.01 99.98 83,047
4.0 ·108 99.83 100.00 24 0.00 99.92 132,730
5.5 ·108 99.82 100.00 25 0.00 99.97 182,525
7.0 ·108 99.81 100.00 25 0.00 99.95 232,238
8.5 ·108 99.81 100.00 25 0.00 99.97 282,043
1.0 ·109 99.80 100.00 26 0.00 99.96 331,530

Table 6.2: Results of EXPERIMENT 1. This table provides a comparison of some statistics on the initial
partition and on the locally refined partitions of partition blocks in the initial partition. The
exbisimss columns show these statistics for external memory bisimulation partitioning on
a structural summary partition. The exbisimrl columns show these statistics for external
memory bisimulation partitioning on an initial partition based on rank and label. Each col-
umn ‘Initial’ shows the size of the initial partition as a percentage of the size of the bisim-
ulation partition; each column ‘Refined’ shows the cumulative size of all refined partitions
of initial partition block; and each column ‘(max)’ shows the maximum number of partition
blocks wherein an initial partition block is refined. The number of bisimulation partitions in
the output ranged from 70 ·106 for the smallest graph to 708 ·106 for the largest graph.

exbisimss exbisimrl

Nodes Collisions (max) Collisions (max)

1.0 ·108 0 0 28,709 3
2.5 ·108 0 0 44,245 4
4.0 ·108 0 0 216,302 6
5.5 ·108 0 0 108,743 5
7.0 ·108 0 0 236,386 5
8.5 ·108 0 0 203,958 6
1.0 ·109 0 0 278,918 6

Table 6.3: Results of EXPERIMENT 1. Some statistics on the usage of local partition decision structures
during bisimulation partitioning. The exbisimss columns show these statistics for exter-
nal memory bisimulation partitioning on a structural summary partition. The exbisimrl

columns show these statistics for external memory bisimulation partitioning on an initial
partition based on rank and label. Each column ‘Collision’ shows the cumulative amount of
collisions for all local partition decision structures. Each column ‘(max)’ shows the maxi-
mum number of collisions per local partition decision structure. A collision corresponds to
the addition of a new entry to a non-empty local partition decision structure.

71

exbisim dagfpdagfps exbisim, dagfpdagfps

0 0.2 0.4 0.6 0.8 1 1.2

·109

0

0.5

1

1.5

2

2.5

3

·103

Edges

R
u

n
n

in
g

ti
m

e
[s
]

(a) Runtime performance

0 0.2 0.4 0.6 0.8 1 1.2

·109

0

0.2

0.4

0.6

0.8
·10−4

Edges

IO
s

p
er

si
ze

(b) IO complexity

Figure 6.6: Results of EXPERIMENT 2. In Figure 6.6a the runtime is plotted as function of the number of
edges in the input. In Figure 6.6b the number of IOs performed per node and edge is plot-
ted as function of the number of edges in the input. We have plotted results for individual
programs and for the entire tool chain.

exbisim dagfpdagfps exbisim, dagfpdagfps

22 23 24 25 26 27 28 29

103

104

Memory block size [MB]

R
u

n
n

in
g

ti
m

e
[s
]

(a) Runtime performance

22 23 24 25 26 27 28 29

10−5

10−4

10−3

Memory block size [MB]

IO
s

p
er

si
ze

(b) IO complexity

Figure 6.7: Results of EXPERIMENT 3. In Figure 6.7a the runtime is plotted as function of the amount of
memory data structures and sort operations can use. In Figure 6.7b the number of IOs per-
formed per node and edge is plotted as function of the amount of memory data structures
and sort operations can use. We have plotted results for individual programs and for the
entire tool chain.

72

Scaling factor Document size [GB] Extracted nodes

50 5.6 1.03 ·108

100 11.1 2.05 ·108

150 16.7 3.08 ·108

200 22.3 4.11 ·108

250 27.9 5.13 ·108

300 33.5 6.16 ·108

350 39.0 7.19 ·108

400 44.6 8.21 ·108

450 50.2 9.24 ·108

500 55.8 1.03 ·109

Table 6.4: Results of EXPERIMENT 4. Statistics on the size of generated XML documents. Thereby the
column ‘Scaling factor’ shows the scaling factor used as input for the xmlgen program. The
column ‘Document size’ shows the size of the produced XML documents. The column ‘Ex-
tracted nodes’ shows the number of XML elements and attributes that are represented by
nodes in the tree representation of the XML document. On the nodes in this tree representa-
tion we calculate the backward bisimulation partition.

exbisim, dagfpdagfps, xmldagfpr exbisim, dagfpdagfps xmlbbisim

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

·104

Scaling factor

R
u

n
n

in
g

ti
m

e
[s
]

(a) Runtime performance

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

·10−4

Scaling factor

IO
s

p
er

si
ze

(b) IO complexity

Figure 6.8: Results of EXPERIMENT 4. In Figure 6.8a the runtime is plotted as function of the scaling
factor. In Figure 6.8b the number of IOs performed per node and edge is plotted as function
of the scaling factor. We have plotted results for the entire tool chain. Thereby we have not
plotted the IO cost for running xmldagfpr; as we have only measured IO complexity of
presented algorithms. Note that the functionality of xmldagfprs can easily be integrated
into dagfpdagfps.

6.4 Conclusions

In Section 6.2 we have stated three questions related to the behavior of the external memory bisimula-
tion partitioning algorithm. With the results presented in Section 6.3 we can answer these questions.

DOES ALGORITHM 3.6 BEHAVE AS ONE CAN EXPECT FROM THE THEORY? From the results of EXPERIMENT 1

73

and EXPERIMENT 2 we can conclude that the runtime of the algorithm scales near-linear with
respect to the number of nodes and with respect to the number of edges. We also see that the
algorithm stays IO efficient for any amount of nodes and edges. The IO cost comes close to the
absolute lower bound and stays well below a single IO per node or a single IO per edge.

From the results of EXPERIMENT 3 we see that the algorithm operates IO efficient for all the tested
amounts of available internal memory. We do however see that within the range 4MB to 128MB
increasing the amount of available memory does strongly increases the performance and reduces
IO cost of the algorithm. Additional increasing of the size of internal memory beyond 128MB does
not result in an evenly strong increase of performance or reduction of the IO cost.

DOES ALGORITHM 3.6 BENEFIT FROM A GOOD INITIAL PARTITION? The results of EXPERIMENT 1 clearly show
that on a unstructured input (as generated by gen) the rank and label based initial partition is
a very bad predictor for the bisimulation partition. As such the structural summary partition; a
highly structured initial partition; provides better performance and lower IO cost during parti-
tioning. The cause of this improvement can be explained by the reduction of collisions.

HOW DOES ALGORITHM 3.6 COMPARE WITH MORE OPTIMIZED APPROACHES? The comparison made in EX-
PERIMENT 4 clearly show that a fine-tuned algorithm for bisimulation partitioning (in this case
an optimized backward bisimulation partitioning algorithm for XML documents) does improve
performance.

74

Chapter 7

CONCLUSION

The objective of this thesis was to develop techniques for constructing and maintaining bisimulation
partitions of large directed acyclic graphs. These techniques can for example be used for construct-
ing graph databases wherein graphs are indexed using bisimulation-based indices. In Section 1.2 we
have stated two research goals for this objective. The first goal is the development of external mem-
ory bisimulation partition algorithms. The main theoretical contributions for this goal are presented in
Chapter 3. The second goal is the investigation of partition maintenance in an external memory setting.
Therefore the main contributions are presented in Chapter 4. We can already conclude that the goals
set out in the problem statement are met. A more detailed conclusion and overview of our results is
presented in Section 7.1. We end our work by providing an overview of possible future (research) work;
this overview is presented in Section 7.2.

7.1 Overview

The first goal of our work is the development of external memory bisimulation partition algorithms.
Therefore we have developed an external memory bisimulation partitioning algorithm for directed
acyclic graphs. This algorithm is designed as an online algorithm; whereby the algorithm processes
the nodes in the order wherein they are stored. Thereby the algorithm decides for each node in which
bisimulation partition block it should be placed; this by utilizing only the information gathered on the
node. For making this decision we have introduced the partition decision structure. We have ana-
lyzed access patterns to this partition decision structure; and we have introduced several hash-based
techniques to optimize these access patterns. This leads to an expected IO efficient bisimulation parti-
tioning algorithm.

The developed algorithm has an expected IO complexity of O(SORT(|N |)+SORT(|E |)+PQ(|E |)). For the
worst case IO complexity we have presented two possible implementations. The first implementation
uses a list to store the partition decision structure; this implementation has worst case complexity of
O(SORT(|N |) + SORT(|E |) + PQ(|E |) + SCAN(|N ||E↓|)). The other implementation uses a string B-tree to
store the partition decision structure thereby achieving a worst case IO complexity of O(SORT(|N |) +
SORT(|E |)+PQ(|E |)+ |N | logB (|N↓|)). With a small experimental study we have verified that the algorithm
is IO efficient in practice; this for graphs containing up to 109 nodes and 4 · 109 edges. Thereby the
experiment did not show any reasons to question the scalability of the algorithm for graphs with much
more than 109 nodes.

The external memory bisimulation algorithm is accompanied with a theoretical framework. This
framework is also applicable to other (partitioning) problems. We have presented some of these appli-
cations for indexing XML documents. Thereby we have shown efficient external memory algorithms
for constructing the 1-index, the F&B-index, and the A(k)-index of XML documents. The 1-index con-
struction algorithm has a worst case IO complexity of O(SORT(|N |) +PQ(|N |)). We have compared this
1-index construction algorithm with the external memory bisimulation partition algorithm. Both al-
gorithms could easily handle XML documents with a size of 55.8GB (representing trees containing 109

nodes). Thereby the experiment shows that the specialized 1-index construction algorithm was faster
than the general approach. For the construction of an F&B-index we have provided details on how the
external memory bisimulation partitioning algorithm can be utilized. For the construction of an A(k)-

index we have provided an algorithm with worst case IO complexity of O(SCAN(k + |N |)+SORT(k |N |)).
The second goal of our work is the investigation of partition maintenance in an external memory

setting. For partition maintenance we have provided theoretical analysis of the worst case complexity.
We have also provided practical approaches for updating partitions; thereby utilizing the data struc-
tures and algorithms developed for the external memory bisimulation partitioning algorithm. Lastly
we have shown how partition maintenance can play a role for XML documents. Thereby we have given
an overview of useful XML document update operations. We have also provided details on how to adapt
the described general partition maintenance approaches for maintaining the 1-index, the F&B-index,
and the A(k)-index of XML documents.

We have introduced update complexity and index update complexity for studying the lower bounds
on the cost of partition maintenance. These complexities express the minimum number of changes
one needs to make to a bisimulation partition and/or to a graph index to update it after the underlying
graph has been modified. Within this framework we have studied the lower bound on the cost of four
operations; namely subgraph addition, subgraph removal, edge addition, and edge removal.

We have proven that the lower bound on the cost for performing index updates for adding or re-
moving a subgraph Gs from a graph index is O(|Ns |+ |Es↓). For supporting subgraph addition we have
developed an approach around the idea of maximum-merge graphs. Thereby we use node bisimilarity
to relate index nodes of several graph indices. We can then use transitivity of node bisimilarity to relate
all bisimilar equivalent graph nodes. We have provided two sketches for subgraph addition algorithms
based on maximum-merge graphs. The first approach has expected IO complexity of O(SORT(|Ns |) +
SORT(|N↓|+|Ns↓|)+SORT(|E↓|+|Es↓|)+PQ(|E↓|+|Es↓)). This approach is only fast whenever the graphs have
small indices. As such this approach is best suited whenever the graphs are highly structured. The sec-
ond approach has worst case IO complexity of O(SORT(|Ns |)+SORT(|Es↓|)+PQ(|Es↓|)+ |Ns↓| logB (|NM

↓ |)).
This approach is only fast when the subgraph is small. As such this approach is best suited additions
of graphs that have a small index. For subgraph removal we have provided a sketch for an algorithm
with IO complexity of O(SCAN(|Es↓|) + |Ns↓| logB (|N↓|)). This approach is also best suited for removal of
subgraphs that have a small index.

For edge changes we have proven that the lower bound on the worst case index update cost isΘ(|N |+
|E |); this already rules out a general and practically fast algorithm for edge updates. Using the idea of
edge change propagation we have provided a sketch for an edge update algorithm with worst case IO
complexity of O(|Nn | logB (|N |)+SORT(|Nn |)+SORT(|E ′(Nn)|)+SCAN(|E (Nn)|)+PQ(|E ′(Nn)|)). Thereby Nn

is the set of affected nodes; for an updated edge (n , m) this includes node n and its ancestors. Edge
updates using this propagation approach are only fast when the number of affected nodes is small.

From the results we can conclude that the first goal has been reached; we have developed an IO
efficient bisimulation partitioning algorithm and we have validated its performance in a small scale ex-
periment. For the secondary goal; investigating partition maintenance; we have shown lower bounds
and upper bounds on the complexity of partition maintenance. Thereby we have concluded that it is
unlikely that a general approach for partition maintenance exist that is (asymptotically) faster than re-
calculating the entire bisimulation partition. We have however provided approaches that are applicable
in some practical settings.

7.2 Future work

This work focuses on bisimulation partitioning and partition maintenance. Thereby our work resulted
in useful theory and algorithms for large directed acyclic graphs. Based on these results there are many
topics for further research; we shall list several suggestions.

7.2.1 Practical implementations and verification

We have only performed a small scale experiment to see if the developed external memory bisimula-
tion partitioning algorithm behaves as expected. Thereby we have primarily used random generated
graphs that do not represent real-life data and we haven’t paid any attention to the way the results of
our algorithm are stored. We haven’t looked at partition maintenance; as the performance of partition

76

maintenance is highly dependent on the used external memory data structures for storing the graph in-
dex. These data structures used for storing the graph index highly depend on the purpose of the index.
This all leads to the following question: How does bisimulation partitioning and partition maintenance
perform in a practical setting?

One of such practical settings is an XML database. Thereby several questions and issues pop up dur-
ing implementation. Which data structures should one use for storing the constructed bisimulation-
based index (the graph index, the 1-index, the A(k)-index, or the F&B-index)? What is the impact of this
data structure on the cost of constructing the index? What is the impact of this data structure on the
cost of maintaining the index? What is the impact of this data structure on the cost of using the index
for querying the XML database?

For practical purposes; such as querying XML databases; one can expect to need more than just the
list of (node identifier, partition block identifier)-pairs produced by the algorithms in this paper. There
is already some work on storing and querying XML document indices in external memory [WJW+05].
One thus might want to investigate how the structure presented in [WJW+05] can be combined with the
index construction algorithms presented in this paper in an efficient way.

There might however be better approaches. In our work we have already mentioned some data
structures that can be used to represent graph indices. We have for example seen how the string B-tree
can be used for storing partition decision structures. When the string B-tree is combined with the A(k)-
index on XML documents we see that this structure can provide all A(i)-indices for i ≤ k . In the same
way we can utilize the string B-tree for storing the 1-index. An alternative approach is thus to investigate
if the data structures used in this paper can be utilized for performing queries.

7.2.2 Practical partition maintenance

We have provided several approaches to perform partition maintenance after some update. None of
these approaches where truly satisfactory. We have seen that edge changes are just expensive. For
subgraph additions and removals we have provided some reasons why general efficient approaches are
unlikely to exist.

Subgraph addition and removal are very useful operations; as they model the construction of a
graph index over a collection of graphs. As such fast approaches are of use. One can investigate if
(practically) faster approaches exist when the algorithms for subgraph addition and subgraph removal
use specialized data structures. One might for example consider a buffered subgraph addition or re-
moval approach wherein changes are only made to those parts of the index when these parts are ac-
cessed. Note that such a buffered approach does in no way invalidate the comments made in Section
4.4. These delayed updates need to happen at some point; this without the guarantee that other updates
are included.

This buffered approach might however be fast in practice as it hides the cost of a single update by
‘smearing’ it out over many operations. Furthermore for certain data loads this buffered approach is
able to group several updates to the same part of the index graph and perform them as one update;
thereby reducing the overall IO cost. A possible implementation for the graph index might be to buffer
the update in the buffer for a virtual leaf node that has all leaf nodes as parent nodes. Relevant parts
of the update are then pushed forward to the right index node when needed. The complexity of this
approach lies in performing these forward pushes. For an XML document indexed with the 1-index this
complexity does not exist, as each index node has only one child node per label. We can thus easily
push down the right parts of an update to the right child index node based on this label.

One might also want to look at the performance of the partition maintenance algorithms in a setting
wherein the external memory is provided by solid-state drives. Good solid-state drives have much lower
seek latencies then ordinary hard disk drives; as such random reads and writes of disk blocks are at the
same level of performance as sequential read and writes of disk blocks. Using solid-state drives thus
allows one to use a more random pattern on IO behavior. Thereby solid-state drives can provide higher
performance then ordinary hard disk drives; especially for problems that are not expected to be very
sequential in nature (such as partition maintenance). For optimal usage of solid-state drives one should
further take into account that solid-state drives often have non-symmetric read and write speeds. For

77

solid state drives the write speed is often less than the read speed; moreover the write speed can degrade
when the solid state drive gets older or when free space becomes sparse on the solid state drive.

7.2.3 Internal memory bisimulation

Our external memory bisimulation partitioning algorithm can easily be used as an internal memory al-
gorithm for bisimulation partitioning of directed acyclic graphs. We thus provide an alternative for fast
internal algorithms [PT87, DPP01, GBH10]. Thereby we directly note that our approach is asymptoti-
cally slower than other approaches for directed acyclic graphs.

We can however improve our approach for an internal memory setting; thereby the first thing to
remove would be the priority queue. Also the performed sorting operations are not needed; as one can
directly use a hash table for refinement. Thereby we however need another way for efficiently removing
duplicates during node-decision and node-hash value evaluation. We also need a fast approach for
getting node-decision and node-hash values in some standard format that allows fast comparisons and
hashing. After tackling these issues the resulting algorithm can be compared with other bisimulation
partitioning algorithms to see how it performs in practice.

We can also use the theory and algorithms developed in this work for the development of a hybrid
algorithm. We can for example improve the performance of the Paige and Tarjan algorithm by provid-
ing a good initial partition. Part of our theory focused on constructing such a good initial partition. For
constructing a good initial partition for directed graphs we however need to extend node-hash values.
For node-hash values to work for directed graphs we need to look at cycles (or more general: nodes that
are part of some strongly connected component1). A simple solution would be to assign every node
in a strongly connected component the node-hash value SH. One can try to further improve perfor-
mance by processing initial partition blocks in ‘reverse-topological order’. This order can be calculated
by replacing each strongly connected component by a single node S.

For better results one should construct better node-hash values for strongly connected components.
Therefore one could extend the node-hash value by utilizing properties of the strongly connected com-
ponent. One could also set up a general theory for node-bisimulation values and node-hash values in
a directed graph setting. For all cases the node-hash based initial partition can be at least as good as a
simple label partitioning. Thereby the node-hash based initial partition can increasing performance of
the Paige and Tarjan algorithm by reducing the number of refinements each partition block needs.

7.2.4 Generalizing bisimulation partitioning

We have only provided an external memory bisimulation partitioning algorithm for reverse-topological
ordered directed acyclic graphs. In Subsection 3.6.1 we have already argued that a general IO efficient
solution for directed acyclic graphs and directed graphs might be hard to find. One research topic is
finding (heuristic) approaches for general classes of graphs.

We have already developed some technology that can be applied on certain directed graphs. When
a large directed (acyclic) graph has a small index; and this large graph and can be subdivided in small
subgraphs; then we can use the subgraph addition method to construct the entire bisimulation parti-
tion. Thereby we can calculate maximum-merge graphs for each subgraph and the index (in memory,
using for example Paige and Tarjan [PT87]) and thereby constructing a full index over the entire graph.
This can be generalized by grouping nodes starting at leaf nodes and ending at root nodes. Thereby
groups are processed one at a time. After processing the nodes in a group we can replace all nodes
placed in the same partition block by a single node; thereby reducing the size of the entire graph during
bisimulation partitioning.

Also other extensions into less-restricted cases are useful. One approach is to perform Paige and
Tarjan, this approach is taken in [HDFJ10]. The approach taken in [HDFJ10] does however not seem to
result in a fully IO efficient algorithm; we can however improve this method in several ways. The main
way is by constructing a good initial partition beforehand. We have already discusses how this can be
achieved for internal memory bisimulation partition algorithms. We can also try to construct a partially-
external memory algorithm; for example by allowing each graph node and/or index node to keep a fixed

1 A strongly connected component is a set of nodes S; whereby every node n ∈S has a path to all nodes in the set.

78

amount of data in internal memory. This can introduce a useful algorithm for many practical cases as
modern computer systems can already keep information of billions of nodes in internal memory.

7.2.5 Generalizing index construction

For the construction of the 1-index, the F&B-index and the A(k)-index we have only presented solutions
for XML documents. These solutions can easily be generalized to work on all trees and forests. But only
the 1-index can easily be generalized to topological ordered directed acyclic graphs (by using Algorithm
3.6). For practical purposes one can be interested in the construction of the F&B-index and/or the A(k)-
index on directed (acyclic) graphs. We have already noted the difficulties one can expect for directed
graph bisimulation partitioning; we shall thus restrict ourselves to topological ordered directed acyclic
graphs.

For the A(k)-index we have presented an approach for trees; this approach cannot be generalized to
general graphs as k -trace equivalence is not equivalent to backward node k -bisimilarity for non-tree
nodes. For directed acyclic graphs we thus need a more complicated algorithm. For the A(k)-index one
cannot utilize the backward rank to localize backward k -bisimulation partitioning. One can however
use an inductive approach to localize backward k -bisimulation partitioning. Thereby we perform k
steps. At step j we calculate the backward j -bisimulation partition; we do so by first sending backward
j -1-bisimulation partition block identifiers from parent nodes to child nodes. On these values we can
construct a node-hash value. Ordering on these node-hash values would localize the backward node
j -bisimulation partitioning calculation. The details for such an approach need to be further worked
out; we can however already say that for large values of k the approach will result in many steps and
thus will be much slower then calculating the 1-index.

The F&B-index is another index with practical value. For trees we have seen that the F&B-index is
easily calculated by calculating the F+B-index. For directed acyclic graphs this approach will not work.
We have however already given a native approach. We have described that repeated forward and back-
ward bisimulation partition refinement will result in the F&B bisimulation partition. We have already
provided IO efficient algorithms for performing each refinement step. This solution does however not
seem very satisfactory. More efficient approaches should use an alternative form of processing. This
might however be hard; as F&B bisimilarity of a node depends on all ascendants and descendants of
the node. As such processing the node in one time-forward processing step seems impossible; a single
time-forward processing step can collect information from either the ancestors of a node or the descen-
dants of a node; not from both. Finding a general fast algorithm for the construction of the F&B-index
on directed acyclic graphs is thus also non-trivial.

79

BIBLIOGRAPHY

[ABS00] Serge Abiteboul, Peter Buneman, and Dan Suciu, Data on the web: from relations to
semistructured data and xml, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2000.

[ACLZ11] D. Ajwani, A. Cosgaya-Lozano, and N. Zeh, Engineering a topological sorting algorithm
for massive graphs, International Workshop on Algorithm Engineering and Experiments
(ALENEX 2011), 2011.

[BGVW00] Adam L. Buchsbaum, Michael Goldwasser, Suresh Venkatasubramanian, and Jeffery R.
Westbrook, On external memory graph traversal, Proceedings of the eleventh annual ACM-
SIAM symposium on Discrete algorithms (Philadelphia, PA, USA), SODA ’00, Society for In-
dustrial and Applied Mathematics, 2000, pp. 859–860.

[DCXB11] Jintian Deng, Byron Choi, Jianliang Xu, and Sourav S. Bhowmick, Optimizing incremental
maintenance of minimal bisimulation of cyclic graphs, DASFAA (1), 2011, pp. 543–557.

[DPP01] Agostino Dovier, Carla Piazza, and Alberto Policriti, A fast bisimulation algorithm, CAV ’01:
Proceedings of the 13th International Conference on Computer Aided Verification (London,
UK), Springer-Verlag, 2001, pp. 79–90.

[FG99] Paolo Ferragina and Roberto Grossi, The string b-tree: a new data structure for string search
in external memory and its applications, J. ACM 46 (1999), 236–280.

[GBH10] Nils Grimsmo, Truls Amundsen Bjørklund, and Magnus Lie Hetland, Linear computation
of the maximum simultaneous forward and backward bisimulation for node-labeled trees,
XSym, 2010, pp. 18–32.

[GC07] Gang Gou and Rada Chirkova, Efficiently querying large xml data repositories: A survey, IEEE
Trans. on Knowl. and Data Eng. 19 (2007), 1381–1403.

[HDFJ10] Ala’ Hawash, Anton Deik, Bilal Farraj, and Mustafa Jarrar, Towards query optimization for
the data web: disk-based algorithms: trace equivalence and bisimilarity, Proceedings of the
1st International Conference on Intelligent Semantic Web-Services and Applications (New
York, NY, USA), ISWSA ’10, ACM, 2010, pp. 17:1–17:7.

[KBNK02] Raghav Kaushik, Philip Bohannon, Jeffrey F Naughton, and Henry F Korth, Covering indexes
for branching path queries, Proceedings of the 2002 ACM SIGMOD international conference
on Management of data (New York, NY, USA), SIGMOD ’02, ACM, 2002, pp. 133–144.

[KBNS02] Raghav Kaushik, Philip Bohannon, Jeffrey F. Naughton, and Pradeep Shenoy, Updates for
structure indexes, Proceedings of the 28th international conference on Very Large Data
Bases, VLDB ’02, VLDB Endowment, 2002, pp. 239–250.

[KSBG02] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes, Exploiting local similarity for indexing
paths in graph-structured data, Data Engineering, 2002. Proceedings. 18th International
Conference on, 2002, pp. 129–140.

[MS99] Tova Milo and Dan Suciu, Index structures for path expressions, Database Theory – ICDT’99
(Catriel Beeri and Peter Buneman, eds.), Lecture Notes in Computer Science, vol. 1540,
Springer Berlin /Heidelberg, 1999, pp. 277–295.

[MSS03] Ulrich Meyer, Peter Sanders, and Jop Sibeyn (eds.), Algorithms for memory hierarchies: ad-
vanced lectures, Springer-Verlag, Berlin, Heidelberg, 2003.

[PT87] Robert Paige and Robert E. Tarjan, Three partition refinement algorithms, SIAM J. Comput.
16 (1987), no. 6, 973–989.

[Sah07] Diptikalyan Saha, An incremental bisimulation algorithm, Proceedings of the 27th interna-
tional conference on Foundations of software technology and theoretical computer science
(Berlin, Heidelberg), FSTTCS’07, Springer-Verlag, 2007, pp. 204–215.

[San09] Davide Sangiorgi, On the origins of bisimulation and coinduction, ACM Trans. Program.
Lang. Syst. 31 (2009), 15:1–15:41.

[WJW+05] Wei Wang, Haifeng Jiang, Hongzhi Wang, Xuemin Lin, Hongjun Lu, and Jianzhong Li, Ef-
ficient processing of xml path queries using the disk-based f&b index, Proceedings of the
31st international conference on Very large data bases, VLDB ’05, VLDB Endowment, 2005,
pp. 145–156.

[Zeh02] Norbert Zeh, I/o-efficient graph algorithms, 2002.

81

	Abstract
	Acknowledgements
	Contents
	1. Introduction
	A small example: the 1-index
	Problem statement
	Overview

	2. Preliminaries
	Directed graphs
	Node and graph bisimulation
	Partitions and partition refinement
	Graph index
	External memory algorithms
	Memory model
	Complexity

	3. Bisimulation partitioning
	Online bisimulation partitioning
	Decision structures
	Online bisimulation

	Introducing time-forward processing
	The time-forward processing technique
	Time-forward processing online bisimulation partitioning algorithm

	On partition decision structures
	External memory search structures
	Query patterns
	Structural summary partition
	Using structural summaries for bisimulation partitioning

	External memory bisimulation partitioning
	Constructing maximum bisimulation graphs and graph indices
	Final notes
	Limitations on the external memory bisimulation partitioning algorithm
	Implementing external memory bisimulation

	4. Bisimulation partition maintenance
	Naive updating
	Maintenance complexity
	Update complexity for subgraph additions
	Update complexity for edge additions

	External memory algorithms for maintenance
	Adding subgraphs
	Removing subgraphs
	Edge updates

	Final notes

	5. Indexing XML documents
	Preliminaries
	The Extensible Markup Language
	Variants on node bisimulation

	External memory index construction for XML documents
	Constructing the 1-index
	Constructing the F&B-index
	Constructing the A(k)-index

	Partition maintenance for XML documents
	Updating the 1-index
	Updating the F&B-index
	Updating the A(k)-index

	Final notes

	6. Experimental verification
	Implementation overview
	Low-level details
	System specifications

	Experiment description
	Results
	Conclusions

	7. Conclusion
	Overview
	Future work
	Practical implementations and verification
	Practical partition maintenance
	Internal memory bisimulation
	Generalizing bisimulation partitioning
	Generalizing index construction

	Bibliography

