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Abstract

This paper introduces a graphical layer on top of the Octopus toolset. This Octopus
toolset is a toolset that aims to ease and speed-up the process of designing embedded sys-
tems, by combining the power of several existing analysis tools, including CPNTools and
Uppaal. The toolset uses the domain-specific language called “Design Space Exploration
Intermediate Representation” (DSEIR), inspired by the Y-chart approach (application,
platform, and mapping). Specifications in this language can be translated into the for-
malisms used by the analysis tools. Currently, the language and the toolset itself are
implemented as a pure Java API. If users want to make specifications in this domain
language they need to be able to program in Java and they need to know the API. In
addition, if the users want to address any of the toolset’s functionality, they need to know
its architecture.

This paper introduces a graphical representation for DSEIR, called Visual DSEIR
(VDSEIR). By using VDSEIR, users of the toolset can create specifications in DSEIR by
means of creating graphical models, removing the need for those users to know how to
program in the Octopus API. Of course, a method is needed to convert a VDSEIR model
to a DSEIR model, because otherwise the new graphical representation has no relation
with DSEIR. Hence, this paper provides a model transformation from VDSEIR to DSEIR
that makes use of an intermediate generator model and a parser that is automatically
generated from an annotated JavaCC grammar.

The graphical representation for DSEIR consists of several perspectives and it con-
tains a special form of syntactic sugar, namely hierarchy. It is possible to create hier-
archical models in the graphical representation without having support for hierarchy in
the original DSEIR language, because these hierarchical models can be translated into
non-hierarchical DSEIR models. This way, additional expressiveness is created for the
user, without modifying the underlying toolset.

To allow the users of the toolset to create models using this graphical representation,
an approach is given to create a graphical editor for VDSEIR with the Eclipse Graphical
Modeling Framework (GMF). This approach allows source code for this graphical editor
to be automatically generated from a set of models, including meta-models for VDSEIR.
In order to get some advanced features in the generated editor, some customizations are
made to the GMF generation process, while keeping the generative nature intact.

To let users interact with the toolset, a framework is introduced in which the users
can design graphical experiments to create and analyze DSEIR models. This framework
is extensible by plug-ins, allowing future contributions to the graphical editor. To allow
some core functionality, a base set of plug-ins is already described in this paper.

Concludingly, the graphical editor for VDSEIR in combination with the extensible
framework provides a graphical layer on top of the Octopus toolset in which users can
create and analyze (hierarchical) DSEIR specifications without any knowledge of the un-
derlying toolset’s API.

3



4



Contents

1 Introduction 9

2 Domain language 15

2.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Visual DSEIR 25

3.1 Application perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Load perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Resource perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Scheduling perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Mapping perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 System perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Textual representation 39

4.1 Expression labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Declaration labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Statement labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Special labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.1 Port label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.2 Edge label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.3 Task name and parameters . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.4 Port type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Graphical editor generation 47

5.1 GMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5



5.3 Implemented customizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Domain specification generation 55

6.1 Combining the perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Generator model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3 Domain specification generation . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7 Task hierarchy 63

7.1 Extensions to the application perspective . . . . . . . . . . . . . . . . . . . . 63

7.2 Visual representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.3 Transforming a hierarchical model . . . . . . . . . . . . . . . . . . . . . . . . 67

7.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.5 Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8 Comparison with other languages 73

8.1 CPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.2 UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.3 Uppaal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

9 Analysis framework 79

9.1 Design goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9.2 The framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9.3 The plug-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

10 Model parameters 85

10.1 Domain specification generation . . . . . . . . . . . . . . . . . . . . . . . . . . 85

10.2 Generator plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

10.3 Analysis framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

11 Error reporting 89

12 Conclusion 93

6



A Case study 97

7



8



1 Introduction

Context
The Octopus toolset ([3]) is a toolset that tries to ease and speed-up the process of design-
ing embedded systems. The following two paragraphs are taken from the Octopus toolset’s
website and illustrate the goals and motivation of the toolset:

“Today’s embedded systems are rapidly becoming more complex. A systematic model-driven
design trajectory is needed to provide high-quality, cost-effective systems. The Octopus
toolset provides support to model, analyze and select appropriate design alternatives in the
early phases of product development.”

“An important challenge in the early stages of the design of embedded systems is the many
design possibilities that need to be considered. The design spaces usually involve multiple
metrics of interest (timing, resource usage, energy usage, cost, etc.) and multiple design
parameters (e.g. the number and type of processing cores, sizes and organization of memories,
interconnect, scheduling and arbitration policies, etc.). The relation between design choices
on the one hand and metrics of interest on the other hand is often very difficult to establish,
due to aspects such as concurrency, dynamic application behaviour, and resource sharing.
No single modeling approach or analysis tool is fit to cope with all the challenges of modern
embedded-system design.”

The Octopus toolset aims to leverage existing modeling, analysis, and Design Space Explo-
ration (DSE) tools to support model-driven DSE for embedded systems. This is done using
the ‘Y-chart’ approach, visible in Figure 1.

Figure 1: The Y-chart approach; a design pattern on which the Octopus toolset has been
built

When designing a system with this approach, three parts of that system have to be specified:
an application, a platform, and the mapping of the application onto the platform. Diagnostic
information of this system is used to (semi-automatically) improve application, platform,
and/or mapping.

Current situation
The Octopus toolset makes use of a language called ‘Design Space Exploration Intermediate
Representation’ (DSEIR). Users of the toolset design their application, platform, and mapping
of the application onto the platform in this language (conform the Y-chart). The DSEIR
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DseirModel dseir = DseirModelFactory.createModel("Example");

Application app = dseir.getApplication();

Platform platform = dseir.getPlatform();

Mapping mapping = dseir.getMapping();

Task taskA = app.createTask("A");

Variable pageSizeVarA = taskA.addParVariable("page_sizeA", ARRAY2);

Port inA = taskA.createPort("page_size", TRUE, cnst(pageSizeVarA), array(ONE, dist(sizeDist)),

Port.Order.FIFO);

Resource m1 = platform.createResource("M1", 100);

m1.setProcTime(ServiceType.INTERNAL_STORAGE, ZERO);

m1.setProcTime(ServiceType.RESULT_STORAGE, ZERO);

Figure 2: (Part of) an example DSEIR specification; knowledge of the toolset’s API as well
as knowledge of Java is required to create this specification.

language is implemented as a Java library; the supported services are implemented as classes
and methods and the Java language itself can be used to define and run experiments. Figure
2 shows a code snipped of a specification in the DSEIR language. We can see that elements
have to be created explicitly via a function call (for example app.createTask("A")).

The DSEIR model forms the basic input for the Octopus toolset. With it, the toolset can
execute different kinds of analysis. The analysis techniques are not directly applied in the
toolset, but the analysis is performed by external tools, such as CPN Tools and Uppaal. In
order to do that, the Octopus toolset houses translations from DSEIR specifications to the
domain languages of these external tools. Figure 3 shows the current architecture of the
toolset, where we can see the external tools and their domain language translations within
the DSEIR library.

The purpose of DSEIR is to provide an abstraction from the domain languages of the external
tools used by Octopus. It also aims at providing some useful modeling constructs that will
allow modelers to express things that can be hard to implement or maintain in these languages,
for example resources together with their allocation to tasks. These extra modeling constructs
will not allow modelers to express things that cannot be expressed in the domain languages
of the external tools, so they can be considered syntactic sugar.
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Figure 3: Current toolset architecture; we can see that the toolset addresses different existing
tools such as CPN Tools and Uppaal

Figure 4: The toolset architecture with the graphical layer on top of it
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Problem statement
There are three major issues with the DSEIR language and implementation. The first issue is
that the Java implementation is not suitable for modeling. Not all potential users of the toolset
know how to use Java and even if the users know how to specify DSEIR models in Java, this
is not very user friendly and not easy to read, maintain, etc. Therefore a visual representation
of the language is needed together with a translation from the visual representation to the
DSEIR language, so that users of the toolset can create specifications in the DSEIR language
in a graphical editor. In this way, the underlying Java implementation is hidden from the
users.

The second issue with the DSEIR language is that the language does not support any hierarchal
constructions. This means that DSEIR models have to incorporate all levels of detail in one
place. Hence, a single model’s application specification contains the high level workflow
together with low level implementation details. Furthermore, the DSEIR language does not
allow its users to reuse and combine small parts or building blocks they modeled. To overcome
these issues and to make the DSEIR language more readable and maintainable, its visual
representation needs to incorporate hierarchy, on the application part of the Y-chart.

The final issue is that users of the current implementation of the toolset also have to use
Java programming to apply the analysis techniques provided by the toolset. The user should
be able to perform the analysis right from the visual representation. Therefore, a framework
needs to be created in which the user can perform any analysis he or she wants with any
specification in the visual representation of the DSEIR language.

General approach
Because the Octopus toolset is still under development, it is highly likely that the DSEIR
language will undergo some changes that will occur during and after the development of the
graphical editor. These changes can possibly influence the visual representation of DSEIR and
the translation from this visual representation to the DSEIR language itself. These changes
might also influence the set of analysis techniques that are supported by the toolset, mainly
by adding extra capabilities. With maintainability in mind, an approach is chosen that will
be robust with respect to these possible changes.

This robust approach comes in the form of a model-driven approach. Models will be used
to specify the visual representation as well as the graphical editor, because models are much
easier to create, maintain, and adapt than source code. The language translations will be
realized using model-to-model transformations where possible (because the DSEIR language
is implemented as a Java library, it is not possible to apply model-to-model transformation
techniques to translate any (visual) model into a DSEIR model).

To cope with the changing set of analysis techniques supported by the toolset, an extensible
framework will be designed and implemented. This framework will allow users of the graphical
editor to execute analysis on the DSEIR models. The framework will be able to load so called
plug-ins, pieces of software that can be added to the finished graphical editor to extend its
capabilities. Each of these plug-ins will provide a certain functionality to the user, comparable
to the plug-ins in the ProM toolset ([7]). They will have a certain predefined input on which
they act (for example a DSEIR model) and they have a predefined output they produce, for
example an event trace, a resource occupancy, a modified DSEIR model, a file, etc. Using
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this extensible framework, the graphical editor can easily be changed and improved after its
deployment, again providing a robust solution.

The tool in which everything will be developed is chosen to be the Eclipse Graphical Modeling
Project (GMP). This tool is picked, because it is built according to the concept of model-
driven approach and it includes a lot of ready-to-use tools for model-driven engineering.

Eclipse GMP includes the Graphical Modeling Framework (GMF). This framework allows a
fully-functional graphical editor to be automatically generated out of a meta-model describing
the domain language and a set of models describing how the graphical editor should behave.
This implies the following property:

When the DSEIR language changes, only its visual representation and possibly the
models describing the behavior of the graphical editor have to be updated. After
these updates, a new graphical editor can be automatically regenerated.

Because of this property, the GMF framework provides a robust method to create a graphical
editor.

Next to the GMF, the Eclipse GMP houses the Eclipse Modeling Framework (EMF). This
framework allows its users to easily create meta-models. It also houses tools to generate code
for these meta-models, that allows model instances of these meta-models to be created.

In addition to GMF and EMF, Eclipse GMP provides a model transformation engine con-
forming to the Query/View/Transformation (QVT) standard. This engine makes it possible
to easily apply model-to-model transformations.

In [4], a lot of information has been written about the design of domain-specific languages
and the tools in GMP to support this.

Step-wise approach
The approach is given by the following steps.

1. First, a visual representation without any hierarchy will be made and the GMF frame-
work will be used to to create a graphical editor for the representation.

2. The transformation from the visual representation to DSEIR will then be designed and
implemented.

3. Third, the visual representation will be improved and extended with hierarchy on the
application part of the Y-chart.

4. After that, an extensible framework is developed for the graphical editor that allows its
users to perform different analysis.

5. Finally, a mechanism is made to report errors to the end-users, originating in the models
they create and in the way they use the framework.

This approach can be seen in Figure 5.
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Domain language

Graphical representation

graphical representation
Extended

Hierarchy

Graphical editor

GMF

Transformation

Transformation

graphical editor
Framework +

Extensible framework

Figure 5: The step-wise approach, starting with de domain language (DSEIR) and ending
with the graphical editor with the extensible framework

The visual representation, including the hierarchy concept, will also be tested on a real-life
case, to show how this case can be modeled for the Octopus toolset using both the graphical
editor and the new hierarchy concepts.

Outline
The outline of this report will follow the step-wise approach, so Chapter 2 will explain the
DSEIR language, for which a visual representation is presented in Chapter 3 and Chapter 4.
Chapter 5 describes the techniques used to create the graphical editor using GMF and Chapter
6 presents the translation from the visual language to the DSEIR language. In Chapter 7,
the visual representation will be modified to support hierarchy on the application level and
the resulting visual representation will be compared to known general-purpose languages in
Chapter 8. Finally, the analysis framework will be presented in Chapter 9 and will be extended
with model parameters in Chapter 10 and error reporting in Chapter 11. Chapter A shows a
case study performed on a real-life problem.
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2 Domain language

This section gives an overview of the DSEIR language that was introduced in [3], from hereon
referred to as the domain language, because it is the language that we want to make a
graphical editor for. As stated in the introduction, the domain language is implemented as a
Java library. Although [6] formally describes the semantics of the underlying concepts of the
domain language, it lacks a connection to the domain language itself. Hence, only informal
semantics of the language can be given.

First, an overview is given of concepts that can be found in the domain language. After that,
the concepts will be described in detail and an example specification is constructed using
these concepts. This example will later on serve as an example domain model that will be
modeled in the graphical editor.

A system specification in the DSEIR language consists of three main concepts: the application,
the platform, and the mapping. The application specifies the control flow using tasks, ports
and edges. The platform describes the platform on which the application is executed, for
example the hardware of a printer. A platform consists of resources such as a CPU, memory,
etc. Each resource provides some services that can be used by the application. A service can
for example be computation, storage, etc. Table 1 shows the list of all supported services.
Finally the mapping specifies how a task from the application gets its required resources,
by indicating per required service how much of a particular resource is assigned. This last
concept is specified via a scheduler.

Figure 6 shows the UML class diagram of the current library implementation (semi auto-
matically generated from the source code). Important to note is that there is a common
Expression class representing an expression tree. The classes in the diagram will now be
explained individually.

Table 1: List of all services

Service

COMPUTATION

TRANSFER

STORAGE

INTERNAL STORAGE

RESULT STORAGE

UPLOAD

DOWNLOAD

DUMMY
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Figure 6: UML class diagram of the domain language
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DseirModel

This class represents a model in the domain language. It has a name and it consists
of an Application object, Platform object, and a Mapping object. These objects
represent respectively the application part of the Y-chart, the platform part of the
Y-chart and the mapping part of the Y-chart.

We will now give a simple example DSEIR specification that will be extended in the rest
of this section. This specification will create a DSEIR model called ‘Example’ and will get
references to the application, the platform, and the mapping.

DseirModel dseir = DseirModelFactory.createModel("Example");

Application app = dseir.getApplication();

Platform platform = dseir.getPlatform();

Mapping mapping = dseir.getMapping();

The following sections will describe the example we will use to demonstrate the domain
language and will describe the application, the platform, and the resource perspective in
more detail.

2.1 Example

To show an example implementation in the domain language we will be specifying a small
example. For this small example we will model a single printer. The printer will continuously
receive print jobs. When a processing job arrives at the printer, the printer will print the job.
This may either succeed or fail. If it fails (5% of all jobs), then the job is again scheduled for
printing until it is successfully printed.

Figure 7 shows a conceptual model for this small example.

printer
jobs 95% of the jobs

5% of the jobs

Figure 7: Conceptual model of the example

2.2 Application

The classes in the class diagram that together form the application part can be explained as
follows.

17



Application

This class contains all application logic of a model in the domain language, i.e.
it describes the control flow. It contains a number of Task objects, a number of
Port objects, and a number of Edge objects. Furthermore it has a list of global
variables. Note that this class houses a method to instantiate a new Type object for
convenience only, because it does not contain references to created Type.

Task

This class represents a task that has to be executed, for example the scanning of a
document or the computation of a certain value. A task has a name and furthermore
involves the following concepts.

Load: Executing a task may require some services of the platform, hence a task can
indicate that it requires a certain amount of units of a particular ServiceType (this
mapping from a ServiceType to an amount of units required of that type is called
the load of a task).

Ports: A task can have several Port objects which serve as inputs for the task.

Variables: It also has parameter variables as well as local variables, both in the form
of Variable objects. The parameters of a task define what data is needed to start
an instance of that task. When such an instance is started, the parameter variables
get a value (which can influence the behaviour of the task). Local variables only
exist from the moment the task starts (after parameter variables have been assigned
a value) until the moment the task finishes.

Statements: A task can modify local variables and global variables when it starts
or ends. A single assignment to a variable is represented with an AssignStmt class.
A single task can have multiple start statements and/or end statements.

Port

A port serves as an input for a task. Entities (tokens) will be stored in ports and
will be moved from port to port by the tasks of the application. A port belongs to a
specific task and describes how the value of the entity or entities residing in the port
can be mapped to the parameter variables of the task, via its binding expression.

Besides a binding expression, a port has a name, a type, an order, an initial value
and a condition. The type of a port indicates the type of entities that can reside in
it and the initial value indicates the entity or entities that reside in the port at the
start of execution of the application logic. The order of a port can be either FIFO
or Unordered, meaning that respectively entities that first enter a port are the first
to come out and that there is no ordering on the outgoing entities of a port. Finally
no entity can move out of a port if it has specified a condition that is not met.

18



Edge

This class represents a flow relation from a task to a port. If the source task of an
edge has finished, an entity with the value specified by the edge is moved to the
target port of the edge. However, no entity is moved if the condition of the edge is
not met. An edge can specify a time for its minimum delay, which indicates that
the entity will take that amount of time to move to the target port.

We will now extend the DSEIR model introduced before by creating a model for the small
example. We will model this example with two tasks. One task will generate 1000 jobs and
one task will print the jobs. The following code shows how these tasks can be created.

...

Task jobGenerator = app.createTask("JobGenerator");

Task printer = app.createTask("Printer");

The job generator task will have one port of type int (integer), with an initial value of 0.
There will be an edge from the generater task to this port that increases this value. The
guard of the generator task will become false when this value has reached 1000, so then the
generator will stop generating jobs. The following code shows how this can be specified in
DSEIR.

...

Variable x = jobGenerator.addParVariable("x", int);

Port inJobGenerator = jobGenerator.createPort(

/* name */ "p1",

/* condition */ TRUE,

/* binding expression */ cnst(x),

/* initial value */ ZERO,

/* ordering */ Port.Order.Unordered);

Edge e = app.createEdge(

/* from */ jobGenerator,

/* to */ inJobGenerator,

/* condition */ TRUE,

/* expression */ cnst(x) + ONE,

/* delay */ ZERO) ;

jobGenerator.setGuard(lt(cnst(x), cnst(1000)));

For the print task we introduce one port where jobs arrive (jobs will be integers with value
zero). To model the success of printing, we introduce a local variable ‘success’ for the print
task that is initialized when the task starts. Only if this variable is 1 then the job will be
successful. If the print job is not successful, then the job will be put back into the input port
of the print task via an edge. The following code shows these additions.
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...

Variable success = printer.addLocalVariable("success",

gt(uniformDist(ONE, cnst(100)), cnst(5)) /* initial value */);

Port inPrinter = printer.createPort(

/* name */ "p2",

/* condition */ TRUE,

/* binding expression */ ZERO,

/* ordering */ Port.Order.FIFO);

Edge jobInputEdge = app.createEdge(

/* from */ jobGenerator,

/* to */ inPrinter,

/* condition */ TRUE,

/* expression */ ZERO,

/* delay */ ZERO);

Edge jobFailedEdge = app.createEdge(printer, inPrinter,

eq(cnst(success), ONE), ZERO, ZERO);

What remains to specify is the load of our two tasks. The job generator task will not require
any services, as it is just a dummy task to generate jobs. The printer task will require five
units of computation and a certain amount of memory, taken from a uniform distribution
between 0 and 50.

...

printer.addLoad(ServiceType.COMPUTATION, cnst(5));

printer.addLoad(ServiceType.STORAGE, uniformDist(ZERO, cnst(50)));

2.3 Platform

The classes in the class diagram that together form the platform part can be explained as
follows.

Platform

This class contains only Resource objects, which together define the platform of the
DseirModel.

Resource

This class describes a single resource, with a certain name and capacity. A resource
can provide several services in the form of a ServiceType (for the tasks to use). For
each service type a resource provides, a processing time is given that indicates the
amount of time needed to process one unit of load imposed on the service type.

For our example domain model, we will use two resources, namely a cpu and a storage unit
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called ‘Memory’.

...

Resource cpu = platform.createResource(

/* name */ "CPU",

/* capacity */ 1);

Resource memory = platform.createResource(

/* name */ "Memory",

/* capacity */ 100);

Given these resource specification, we indicate that the cpu provides the service COMPUTATION
and that one unit of computation takes two time units. The memory will provide STORAGE

and storing will take no time.

...

cpu.setProcTime(ServiceType.COMPUTATION, 2);

memory.setProcTime(ServiceType.STORAGE, 0);

2.4 Mapping

The classes in the class diagram that together form the mapping part can be explained as
follows.

Mapping

This class specifies the mapping between the application and the platform, using
the following concepts.

Schedulers: The mapping has a number of Scheduler objects. A scheduler is used
to assign resources to required service types (required by the tasks). For each task,
such a scheduler is required. A task can have at most one scheduler, but a single
scheduler can be shared between multiple tasks.

Priorities: The mapping class specifies a priority for each task. A task with a higher
priority is always considered for scheduling before a task with a lower priority.

Deadlines: The mapping maintains a deadline for each task, indicating the maximal
(wanted) duration between the start and the end of the task.

Handovers: The mapping class also indicates resource handovers. A resource han-
dover indicates for an Edge, for example an edge from a task A to a port of a task
B, that an amount of resources claimed by task A of a particular service type are
handed over to task B after completion of task A. This can for example be used to
hand over memory that contains the result of a computation done by A.
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Scheduler

This class represents a scheduler which scheduling indicates which resource has to
process a load imposed on a specific service type (by a task). Aside from determining
which resource(s) have to process which load, the scheduler also specifies how much
units each resource has to process and whether a resource can be taken away from
a task (preemption).

In our example we will have two schedulers, one for the generator task and one for the printer
task. As the generator task requires no services, its scheduler will have no scheduling rules.

...

Scheduler generatorScheduler = mapping.createScheduler();

mapping.addScheduler(jobGenerator, generatorScheduler);

Our print task needs scheduling rules for both services it requires: computation and storage.
Once a certain amount of units (load) is required from the cpu, we will assign the full capacity
of the cpu to it. In case of the memory resource, we will always assign the amount of units
required for storage. We will model the cpu as a preemptive resource.

...

Scheduler printerScheduler = mapping.createScheduler();

printerScheduler.add(

/* service type */ ServiceType.COMPUTATION,

/* resource */ cpu,

/* amount */ 1,

/* preemptive */ TRUE);

printerScheduler.add(

ServiceType.STORAGE,

memory,

load(ServiceType.STORAGE

);

mapping.addScheduler(printer, printerScheduler);

We will have no deadlines, and for the priorities we will use zero for the generator task and
one for the printer task (although this does not matter, because the generator task requires
no services).

...

mapping.setPriority(jobGenerator, ZERO);

mapping.setPriority(printer, ONE);

The last thing that has to be specified is the handovers. In our example system, we do not
really need any handovers, but to demonstrate handovers, we add a handover of all storage
from the printer task to itself in case of a failed printing task (note that function call to
amount returns the amount of storage currently assigned to the printer task):
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...

mapping.addHandover(jobFailedEdge,

ServiceType.STORAGE,

amount(ServiceType.STORAGE, 2));
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3 Visual DSEIR

In Chapter 2 we described a lot of concepts that are present in the domain language. All
these concepts need to be present in the visual representation as well. It is not a good idea
to let the user specify these concepts in one big model, because this big model can then be
very complex to understand. Hence, the concepts are divided into multiple perspectives. A
perspective is a visual representation of a set of related concepts, for example tasks and ports.
All perspectives together form the whole visual representation that can be translated to the
domain language. For convenience, we will simply call a model in this visual representation
the model. The name of the visual representation shall be Visual DSEIR, or VDSEIR in short.

The domain language itself already makes the distinction between application, platform and
mapping. For the visual representation, this distinction will be refined. The following sections
describe the refined perspectives in detail and the example from Chapter 2 will be modeled
using these perspectives.

It is important to note that the provided meta-models of the perspectives are for the visual
representation. Because of this, all expressions are represented as strings. In Chapter 4 the
translation of such a string to an Expression is given.

Throughout all perspectives, a service type is represented in the following way:

Service

This node represents a service type.
The service string specifies the name
of the service type that this node
represents. It can for example be
‘COMPUTATION’ or ‘STORAGE’.

3.1 Application perspective

This perspective will represent the control flow of the model as well as the global variables.
This means that it incorporates tasks, ports and edges. Figure 8 shows the meta-model of
this perspective. This perspective is similar to the application part of the domain language,
with the exception that it will not specify task loads.

The application perspective can have at most one GlobalDeclaration. This class has a
declaration attribute to specify global variables. See Chapter 4 for the syntax that is
allowed in this attribute together with its interpretation.

As in the domain language, a Task can have a name, a guard, start statements, end statements,
local variables and parameter variables. The interpretations of the last four strings are given
in Chapter 4 as well, while the guard is a string that represents an Expression.

A Port has the same properties as its domain version, so it has a name, a binding expression,
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an initial value, an ordering, a condition and a type. This interpretation of this type property
is given in Chapter 4.

An Edge has an expression, a condition and a (minimum) delay, as well as a name. The name
attribute is introduced in the visual representation, so that an edge can be referred to by a
handover (which will be described in the load perspective).

All these elements will be represented as follows:

GlobalDeclaration

This node represents the global vari-
ables of the application. The variables
can be declared in the expression part
of the visual representation.

Task

This node represents a task. It has
labels to edit all its properties and it
has its child ports attached to its bor-
der. Both the name of the task and
the parameters of the task are specified
via the name label. This is explained
in Chapter 4. The labels for the local
declarations, start statements, and end
statements are only visible if their cor-
responding property is set. This way,
only relevant information is shown in
the tasks.
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Unordered Port

This node represents a port with order-
ing Unordered. The port is attached to
the border of its parent task. It has la-
bels to edit its expression and its initial
value. The expression of the port con-
sists of either a condition and a binding
expression or only a binding expression
separated via a delimiter (see Chap-
ter 4). The ordering, type and name

attributes are not represented visually,
but can be set via the properties view.

FIFO Port

This node represents a port with order-
ing FIFO. The only difference with the
Unordered Port is that this port has
vertical lines to represent its ordering.

Edge

This arc represents an Edge. The ex-
pression label of the edge is used to
specify its condition, expression and a
minimum delay, separated with special
delimiters (see Chapter 4).

Figure 9 shows the application perspective of the example.

3.2 Load perspective

This perspective will represent the relation between tasks and service types, i.e. it will
visualize the service types that are required by the tasks (the load), as well as the service
types that are handed over from task to task. The meta-model of the load perspective can
be seen in Figure 10.

Tasks will have zero or more ServiceAmount children. A single ServiceAmount specifies an
amount of load of a particular service type. Together, the ServiceAmount children of a task
describe its load.
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Figure 8: Meta-model of the application perspective

Figure 9: Example application perspective
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A handover of certain service types for a specific edge will be specified with a Handover. It can
contain zero or more ServiceAmount children, each one specifying the amount that is handed
over of a particular service type. A Handover has an attribute edge to specify the name of
the edge over which this handover occurs. A handover goes from a task (via Task2Handover)
to a task (via Handover2Task). If there is only one edge from the source task to a port of
the target task (in the application perspective), then the handover will occur over this edge
(and the edge is not needed).

These elements will be represented as follows:

Task

This node represents a Task from the
application perspective. It can contain
zero or more ServiceAmount children,
each one specifying the load of the task
for a particular service type with a par-
ticular amount.

Handover

This node (together with a
Task2Handover arc and a
Handover2Task arc) represents a
Handover. It can contain zero or more
ServiceAmount children, each one
specifying the amount that is handed
over of a particular service type. The
edge attribute is not represented visu-
ally, but can be set via the properties
view.

Figure 11 shows the load perspective of our printer example. Because there is only one edge
from the printer task to the printer task, the edge attribute for the handover is not set.

3.3 Resource perspective

This perspective is similar to the platform part of the domain language, i.e. it describes the
resources and what service types the resources do provide at what processing speed. Figure
12 shows the meta-model of this perspective.

As in the domain language, the resource perspective can have multiple Resource objects.
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Figure 10: Meta-model of the load perspective

Figure 11: Example load perspective
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Each resource has a name and a capacity expression. Each resource can have a ProvidesArc

to a Service, to specify that the resource provides the service type specified via the Service.
This ProvidesArc has a processingTime attribute to specify how much time the processing
of one time unit of the service type requires.

Figure 12: Meta-model of the resource perspective

The elements of this perspective are represented as follows:

Resource

This node will represent a Resource. It
has a label for the name of the resource
as well as a label for the capacity of the
resource.

ProvidesArc

This arc will represent a ProvidesArc.
It has a label to specify the processing
time.

Figure 13 shows the resource perspective for the printer example introduced in Chapter 2.

Figure 13: Example resource perspective
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3.4 Scheduling perspective

This perspective will represent the scheduling part of the model, i.e. it will visualize the
schedulers. In the domain language, the specification of the schedulers belongs to the mapping.
Because this concept involves a lot of things (schedulers, services, resources, and scheduling
rules), it is not placed alongside other concepts, but instead moved to this new scheduling
perspective. Figure 14 shows the meta-model of this perspective.

The main difference between the visual representation and the domain language is the Knot.
A knot is a child of a Scheduler and a knot serves to define a single scheduling rule. It
has one or more input services (bound via a BindingArc) and one or more output resources
(bound via a AmountArc). When a task requires some service type that is specified by an
input service of a knot, the task gets assigned all output resources of that knot. The amount
arcs specify how much of each of these output resources is assigned to the task.

Figure 14: Meta-model of the scheduling perspective

The elements of this perspective are represented as follows:

Scheduler

This node will represent a Scheduler.
It has a label to specify its name and it
can contain child Knot elements.
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Non-preemptive knot

This child node will represent a Knot

which is not preemptive. It can be
changed into a preemptive knot via the
properties view.

Preemptive knot

This child node will represent a Knot

which is preemptive. It can be changed
into a non-preemptive knot via the
properties view.

Resource

This node will represent a Resource

from the resource perspective. It has
a label to specify the name of the re-
source.

AmountArc

This arc will represent a AmountArc

from a Knot to a Resource. It has
a label to specify the amount of units
taken from the resource (and assigned
to a task requesting a service bound to
knot via a BindingArc).

Figure 15 shows the scheduling perspective of the example printer model.
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Figure 15: Example scheduling perspective

3.5 Mapping perspective

This perspective will visualize for each task which scheduler it uses, as well as its priority and
deadline. These last two attributes are specified within task nodes and the scheduler used
by a task is represented using a connection between that task and the scheduler. Figure 16
shows the meta-model of the mapping perspective.

Figure 16: Meta-model of the mapping perspective

The elements of this perspective are represented as follows:
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Task

This node will represent a Task from
the application perspective. It has a la-
bel to specify its name, priority, and its
deadline.

Scheduler

This node will represent a Scheduler

from the scheduling perspective. It has
a label to specify its name.

Figure 17 shows the mapping perspective of our printer example.

Figure 17: Example mapping perspective

3.6 System perspective

The system perspective will specify how all previously mentioned perspectives together form
the system. It will allow the modeler to indicate the models that together form the application
perspective, the models that together form the load perspective, etc. (any perspective can
consist of multiple models). Without the system perspective there will be no relation between
the individual perspectives, so the system can be considered as the glue of the perspectives.
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Figure 18 shows the meta-model of the system perspective.

The system perspective is also responsible for the name of the whole system. This name can
be specified via the name attribute of the System (root) class.

Figure 18: Meta-model of the system perspective

The visual representation of the system is as follows:

Container

For each perspective there is a container
with zero or more File child nodes.
These child nodes indicate the relative
path of the file that will contribute
to the perspective (without the exten-
sion). In the picture, only the appli-
cation perspective container is showed,
but the other containers only differ in
their header.

Figure 19 shows the system perspective of the printer example. For each perspective we have
only one file. The name of the system can only be set via the properties view of the editor,
so it is not visible here. Figure 20 shows the name for the example in the properties view.
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Figure 19: Example system perspective

Figure 20: Example system perspective name
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4 Textual representation

The string labels introduced in the previous section do not yet have any meaning or structure.
This section will focus on precisely what can be entered in these labels and if applicable, to
what expression in the toolset such an entered string corresponds. Because all name labels
have a trivial structure and meaning, they will not be treated in this section.

Most labels represent precisely one expression (for example the capacity of a Resource), while
some labels can represent multiple expressions (for example the expression label of a Port

represents both its condition and its binding expression). Next to the expression labels, there
are also declaration labels. For example the label of the GlobalDeclaration and the local
declaration label of a Task. Finally, we have statement labels (start and end statements of a
Task) and some remaining special labels. These special labels are the combination of name
and parameters of a task and the type of a port.

The following subsections will explain the textual representations of all these types of labels
in detail.

4.1 Expression labels

The ExpressionBuilder class that resides in the domain language’s implementation is used to
specify all expressions. This can be done via methods that create expressions (constants) and
methods that combine one or more expressions into a more complex expression (operators).

The following table shows the constants of the domain language together with their textual
representation and their explanation.

Constants:

Domain Representation Explanation
TRUE ‘true’ The boolean constant true.
FALSE ‘false’ The boolean constant false.
ZERO ‘0’ The integer constant 0.
ONE ‘1’ The integer constant 1.
cnst(int c) <string representation of c> The integer constant c.
cnst(Variable v) <name of v> The value of variable v.

The following part of this section explains the operators that are present in the domain
language and gives the textual representation for each of them.

Boolean operators:

Domain: and(Expression e1, Expression e2)

Representation: <e1> ‘&&’ <e2>

Explanation: The conjunction of expression e1 and e2.

Domain: or(Expression e1, Expression e2)

Representation: <e1> ‘||’ <e2>

Explanation: The disjunction of expression e1 and e2.
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Domain: not(Expression e1)

Representation: ‘!’ <e1>

Explanation: The negation of expression e1.

Domain: lt(Expression e1, Expression e2)

Representation: <e1> ‘<’ <e2>

Explanation: Expresses e1 < e2.

Domain: gt(Expression e1, Expression e2)

Representation: <e1> ‘>’ <e2>

Explanation: Expresses e1 > e2.

Domain: le(Expression e1, Expression e2)

Representation: <e1> ‘<=’ <e2>

Explanation: Expresses e1 ≤ e2.

Domain: ge(Expression e1, Expression e2)

Representation: <e1> ‘>=’ <e2>

Explanation: Expresses e1 ≥ e2.

Domain: eq(Expression e1, Expression e2)

Representation: <e1> ‘==’ <e2>

Explanation: Expresses e1 = e2.

Domain: neq(Expression e1, Expression e2)

Representation: <e1> ‘! =’ <e2>

Explanation: Expresses e1 6= e2.

Integer operators:

Domain: add(Expression e1, Expression e2)

Representation: <e1> ‘+’ <e2>

Explanation: Expresses e1 + e2.

Domain: sub(Expression e1, Expression e2)

Representation: <e1> ‘−’ <e2>

Explanation: Expresses e1 − e2.

Domain: mult(Expression e1, Expression e2)

Representation: <e1> ‘∗’ <e2>

Explanation: Expresses e1 · e2.

Domain: div(Expression e1, Expression e2)

Representation: <e1> ‘/’ <e2>

Explanation: Expresses e1 div e2.
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Domain: mod(Expression e1, Expression e2)

Representation: <e1> ‘%’ <e2>

Explanation: Expresses e1 mod e2.

Domain: min(Expression e1, Expression e2)

Representation: ‘min(’ <e1> ‘,’ <e2> ‘)’

Explanation: Expresses the minimum of e1 and e2.

Domain: max(Expression e1, Expression e2)

Representation: ‘max(’ <e1> ‘,’ <e2> ‘)’

Explanation: Expresses the maximum of e1 and e2.

Other:

Domain: array(Expression... e)

Representation: ‘[’<e1> ‘,’ <e2> ‘,’ ... ‘]’

Explanation: Expresses the array [e1,e2, . . . ].

Domain: iF(Expression c, Expression t, Expression e)

Representation: ‘if’ ‘(’ <c> ‘)’ ‘then’ <t> ‘else’ <e>

Explanation: An if-then-else expression with condition c, then-expression t,
and else-expression e.

Domain: uniformDist(Expression a, Expression b)

Representation: ‘uniformDist(’ <a> ‘,’ <b> ‘)’

Explanation: Expresses a sample taken from the uniform distribution ranging
from a (inclusive) to b (exclusive)

Domain: dist(Map<Expression, Expression> valueToProb)

Representation: ‘dist(’ <name of v> ‘)’

Explanation: Expresses a sample taken from a random distribution indicated
with the map valueToProb. Each entry <value, probability>

in the map specifies that value has a probability of probability
to be returned as a sample of the distribution. For the visual
representation, a variable name of variable v has to be given.
This variable v has to be an array with the values on the uneven
indices and a size that is a multiple of two. For each value at
index i, its probability is assumed to be at index i + 1.

Domain: unkownDist(Expression a, Expression b)

Representation: ‘unkownDist(’ <a> ‘,’ <b> ‘)’

Explanation: Expresses a sample taken from an unknown distribution with in-
clusive lower bound a and exclusive lower bound b.
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Domain: load(ServiceType s, 0)

Representation: ‘load(’ <name of s> ‘)’

Explanation: In the context of scheduling, this expresses the amount of units
of service type s required by the task that is currently being
scheduled.

Domain: load(ServiceType s, 1)

Representation: ‘totalLoad(’ <name of s> ‘)’

Explanation: In the context of scheduling, this expresses the total amount of
units of service type s required by all tasks that are being sched-
uled.

Domain: amount(ServiceType s, 0)

Representation: ‘amount(’ <name of s> ‘)’

Explanation: In the context of processing times for resources, this expresses the
amount of units that have to be processed. This allows to specify
a processing time of a resource (for a service type) that depends
on the number of units that have to be processed.

Domain: amount(ServiceType s, 1)

Representation: ‘amount(’ <name of s> ‘)’

Explanation: In the context of scheduling, this expresses the amount of re-
sources of service type s held by the task that is currently being
scheduled.

Domain: amount(ServiceType s, 2)

Representation: ‘amount(’ <name of s> ‘)’

Explanation: In the context of resource handovers, this expresses the amount
of resources of service type s held by the task after it finishes.

Domain: free(Resource r)

Representation: ‘free(’ <name of r> ‘)’

Explanation: In the context of scheduling, this expresses the amount of free
units that resource r has.

4.2 Declaration labels

The declaration labels are used for the global declarations of an application and for the local
declarations of a task. Currently, the domain language only allows variables to be declared.
Each variable should either have a type or an initial value (from which its type can be
extracted). The supported types are the integer and boolean types. Furthermore integer and
boolean arrays can be specified, with a constant size.

The type of a variable will be represented as follows:
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Domain: INT

Representation: ‘int’

Explanation: An integer.

Domain: BOOL

Representation: ‘bool’

Explanation: A boolean.

To make variable declarations more clear, the type has to be specified for each variable, even
if it has an initial value. A declaration of a single variable can be done in the following ways:

Representation: <variable type> <variable name> ‘;’

Explanation: This declares a variable with the given name and type.

Example(s): int x;

Representation: <variable type> <variable name> ‘=’ <initial value> ‘;’

Explanation: This declares a variable with the given name, type and initial
value.

Example(s): bool b = true;

Representation: <variable type> <variable name> ‘[’ <size expression> ‘]’ ‘;’

Explanation: This declares an array variable with the given name and with
elements of the given type. The size expression has to be an
integer expression specifying the size of the array.

Example(s): bool b[6];

Representation: <variable type> <variable name> ‘[]’ ‘=’ <array expression> ‘;’

Explanation: This declares an array variable with the given name and with
elements of the given type. The array will initially be equal to
the given array expression, and the size of the array is extracted
from the array expression.

Example(s): int x[] = [1, 2, 3];

Multiple variables can be declared by concatenating their declarations.

4.3 Statement labels

The labels that can specify statements are the start statement and end statement labels of
a task. The domain language only supports assign statements, which will be represented as
follows:

Representation: <variable name> ‘=’ <expression> ‘;’

Explanation: This represents exactly one assignment expressing that the vari-
able with the given name will be assigned the given expression.

Example(s): x = 4;

Multiple assign statements can be given in one statement label by concatenating them. The
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order in which the statements are processed is equal to the order in which they appear in the
statement label.

4.4 Special labels

4.4.1 Port label

The expression label of a port will represent its condition and its binding expression. The
representation will be as follows:

Representation: [<condition expression> ‘->’] <binding expression>

Explanation: The port expression is either a binding expression or a condition
followed by a binding expression, separated with ‘->’.

Example(s): x (a binding expression only)
x > 3 -> x (a binding expression with a condition)

4.4.2 Edge label

The label on an Edge (application perspective) will represent its condition, expression and its
delay. Its representation is as follows:

Representation: [<condition> ‘->’] <expression> [‘>>’ <delay>]

Explanation: The edge label is the expression, possibly prefixed with a condi-
tion and a delimiter ‘->’, and possibly followed by a delay delim-
iter ‘>>’ and a delay expression.

Example(s): 5 (only an expression )
x == 3 -> 5 (a condition and an expression)
5 >> 10 (a delayed expression)
x == 3 -> 5 >> 10 (an expression with a condition and a delay)

4.4.3 Task name and parameters

A Task has a label that represents its name and parameters. To explain its representation,
first the representation for a parameter type is given and the representation of the declaration
of a single parameter.

A parameter type is represented as follows:

Representation: <type> [‘[’ <size> ‘]’]

Explanation: A parameter type is represented as a type (‘int’ or ‘bool’), op-
tionally followed by an integer size constant in between brackets,
expressing an array of the given size.

Example(s): int (an integer)
bool[3] (a boolean array with three elements)
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A parameter variable declaration is represented as follows:

Representation: <parameter type> <name>

Explanation: A parameter variable is represented with its type, followed by
its name. Because parameter variables can have no initial value
(they get assigned a value when the task starts), this is its only
representation.

Example(s): int[2] x

The representation for the task name and parameters, based on the previous two representa-
tions, is as follows:

Representation: <name> [‘(’ <parameter> ‘,’ <parameter> ‘,’ . . . ‘)’]

Explanation: This representation consists of a name, possibly followed by a
comma-separated list of parameter variable declarations.

Example(s): TaskA (only an name)
TaskA(int x, bool[2] b) (task name with two parameters)

4.4.4 Port type

A Port has an attribute to specify its type. This is a string attribute with the same represen-
tation as the parameter type representation from the previous section, so a port type can for
example be bool to represent a boolean, or int[2] to represent an integer array containing
two elements.
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5 Graphical editor generation

This appendix will explain the approach used to automatically generate the graphical editor
for the domain’s visual representation. First the GMF framework together with its automatic
graphical editor generation will be explained. We will see that by default, this generation is not
very flexible and the generated editor is not very adaptable, so we will present our approach
to customize the graphical editor to our needs, without losing the ability to automatically
generate it. The information found in [4] has been used to come to this approach.

5.1 GMF

Domain model
The core concept in the editor generation process is the domain model. The domain model is
a meta-model describing the domain language. The modeling language in which this meta-
model is developed is called the Ecore language. This language is very similar to the UML
class diagram language. The meta-model specifies which classes have which attributes and
how the classes are related (inheritance, association, containment). The domain model should
have a single class representing the root of the domain language. This root will have contain-
ment references to other classes, which form the building blocks of the domain language.

Model-code generation
If the domain model has been specified, it is still only a model. The graphical editor has to
work with Java code and classes, so the first step in the generation process is to turn the
domain model into Java classes. This process is depicted in Figure 21. First, the domain
model is converted into a generator model. After that, this generator model is converted into
plain Java code. The creation of the generator model out of the domain model and the code
generation based on this generator model is handled by the EMF framework.

domain model generator model model code

Figure 21: Model code generation process

Graphical definition
The domain model specifies the building blocks that are present in the domain language, but
it does not specify the visual representation of these building blocks. Therefore a graphical
definition model is created. This model describes figures that can be used to represent classes.
The expressiveness of this model is limited (we will see how we can overcome this in the next
section), but we can specify a rectangle, ellipse, line, arc, etc.

Tooling definition
Apart from the graphical definition, we also need to specify what tools we want in the graphical
editor. A tool is a entry in the palette that allows us to create elements in the graphical editor.
Figure 22 shows an example generated graphical editor. The large pane on the left shows the
model as specified in the graphical definition. The pane one the right (the palette) shows the
elements we can add to the left pane. This palette is specified via the tooling definition by

47



specifying groups of tools as well as icons, titles, and descriptions.

Figure 22: Screenshot of the graphical editor where the areas specified by the graphical
definition and the tooling definition are highlighted

Mapping definition
In the domain model we specify the building blocks of or domain language, in the graphical
definition we specify some representations and in the tooling definition we specify some palette
entries. The mapping definition couples these three models together. For each class in the
domain model it states the figure that should be used to represent it (taken from the graphical
definition), the tool that is used to create it (taken from the tooling definition) and whether
it should be interpreted as a node or a link. For each attribute that should be drawn on the
canvas, the mapping definition states the figure that should be used to represent it (again
taken from the graphical definition). Note that any attribute that is not represented on the
canvas will be present in the properties view, as can be seen in Figure 23. The mapping
definition also specifies which class from the domain model is the root (so that it knows
where to add newly created elements) and it specifies which classes contain which children.

Graphical editor generation
The domain model, the graphical definition, the tooling definition, and the mapping definition
together provide enough information for the GMF framework to generate the graphical editor
code. Figure 24 shows the code-generation process. First, a generator model is created from
the mapping definition (which contains references to the other three models). This generator
model combines all information from all mentioned definitions and models into one big model
that provides exactly enough information to generate the graphical editor’s code. Hence,
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Figure 23: Example properties view

when the generator model is created, the only remaining step is to generate the code for the
graphical editor. All these steps are provided by the GMF framework.

domain model graphical definition tooling definition

mapping definition

generator model

graphical editor code

Figure 24: The process of generating graphical editor code

5.2 Customization

The graphical definition does not provide enough expressiveness to describe the figures we
want for tasks, resources, etc. Furthermore, the generated graphical editor can only be
customized by adapting its source code directly. Ideally, we want the process of creating the
graphical editor from the models to be fully automatic and we want to be able to regenerate
the graphical editor after some changes have been made. In order to achieve this, we extend
the generation flow of the graphical editor in three places, indicated by the darker nodes in
Figure 27.

The following part explains each of the three customizations:
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• First of all, we add custom figures to the generation process to overcome the lack of
expressiveness of the graphical definition. The custom figures will be plain java classes,
implementing a common interface used by the GMF editor (to be more precise, they
implement the IFigure from the draw2d library, which is used by the GMF for rendering
models). Luckily, the graphical definition model allows us to specify that we want to
use such a custom java class as a figure.

Normally, a figure is specified in the graphical definition by assigning a shape (circle,
rectangle, etc) to it. Then, the children of the figure (labels and contained classes,
such as ports of a task) are specified. A layout manager can be assigned to the figure
to specify how the children of the figure are positioned. This works fine for figures
specified in the graphical definition, but we want different behavior for our custom
figures. Namely, want our custom figure to take control over the shapes and positions
of the child elements and we only want to specify in the graphical definition which child
we use for a specific custom figure.

Therefore, the following customization is implemented. Each custom figure specifies a
list of special strings, called ‘fields’. These strings represent the name of children that it
expects. The custom figure also implements functionality to draw the figure, given the
child elements. The top of Figure 25 depicts this situation. For example, the custom
figure for a Resource expects a label for the name of the resource, specified as ‘name’. It
also expects a label for the capacity of the resource, specified as ‘capacity’. The custom
figure might be drawn like Figure 26, where the ‘name’ label should of course reflect the
actual name of the resource and the ‘capacity’ label should reflect the actual capacity.

In the graphical definition we now specify a figure by indicating the custom figure’s java
class. Furthermore we add all necessary child elements of the figure and for each of them
we indicate its name. This name is mapped one-to-one to the names specified by the
custom figure itself. In this way, we propagate enough information to the the custom
figure its children, so that the custom figure can be drawn. Following the resource figure
example, the graphical definition of the resource figure points to the custom figure for
the resource. The graphical definition will assign two child labels to the rectangle figure.
The name label of the resource is given the tag ‘name’ and the capacity label is tagged
as ‘capacity’. This is shown in the bottom right of Figure 26.

To allow this information to be entered in the graphical definition and to expose the
children of a figure to its custom figure implementation, a custom layout manager is
created. This layout manager collects the children specified in the graphical definition
as they are being created by the source code of the graphical editor. When all children
required by the custom figure are collected, the layout manager passes this information
to the custom figure. The position of this layout manager in the custom figure overview
is depicted in the bottom-left of Figure 25.

Given this customization, we can create custom figures that are in control of their
children, which is precisely what we need for the graphical editor.

• The second customization of the graphical editor generation process is the addition of
a model transformation on the generator model created by the GMF framework. This
generator model has some properties that influence the code generation process, for
example the extension used for the model files. We want to be able to change these
properties, however the generator model is a generated model. We can of course directly
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Figure 26: An example figure with two fields: ‘name’ and ‘capacity’
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edit the generator model after it has been generated, but for a clean workflow we do
not want to adapt generated models (nor source code) manually.

To overcome this problem, we add an in-place model transformation step to the graphical
editor generation process. This transformation, specified in the Operational Query/
View/ Transformation language, takes a generator model as input and adapts it to suit
our needs. This transformation will form an additional input for the graphical editor
generation, so next to the mapping definition, graphical definition, tooling definition,
domain model, and custom figures, we also (optionally) have a model transformation.

With this customization, we are able to separate the models required for the generation
of the graphical editor from the generated models and source code, resulting in a clean
generation process. Figure 27 shows the place of this customization in the generation
process.

• The last and most powerful customization of the graphical editor generation process
is the use of dynamic templates. If we would change the source code that is created
by the GMF framework, we lose the option to regenerate the graphical editor, because
changes made to the source code are lost when regenerating. To be able to adapt the
source code without losing the regenerative property of the generation process, we use
dynamic templates. These dynamic templates allow us to modify the way in which the
source code is generated. The following two paragraphs briefly explain these dynamic
templates.

The GMF framework uses Xpand to generate the source code of the graphical editor.
Xpand is a model-to-text engine that comes with the GMP project. The GMF framework
houses the Xpand definitions (called templates) that can generate the source code for
the graphical editor from the generator model.

Custom versions or adaptations of these templates can be made to customize the code
generation process. These custom templates are called dynamic templates and can be
plugged in in the GMF code generation framework. Any desired behavior that cannot
be specified in the domain model, graphical definition, tooling definition, mapping def-
inition, or generator model (via a transformation), is expressed in a dynamic template.

So, with the use of dynamic templates, we can totally customize the graphical editor
to our needs, without modifying any generated source code. Furthermore, with the
use of dynamic templates we make sure that the graphical editor can be regenerated
from scratch when some changes have occurred. Of course, all dynamic templates form
another input for the generation process. Figure 27 shows the place of this customization
in the generation process.

Given these customizations, the graphical editor can be automatically generated out of a
mapping definition, graphical definition, tooling definition, domain model, (optionally) a
model transformation, dynamic templates, and custom figures. The additional inputs for the
generation process provide a lot of expressiveness, making the graphical easy customizable.
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Figure 27: Customized process of generating source code for the graphical editor.

5.3 Implemented customizations

The following list gives a small overview of what has been done with these customization
techniques:

• Custom figures
Custom drawn figures with nice visual features such as gradients. Note that most
customizations have been made to make this possible.

• Context-sensitive figures
The port figure looks different based on its type. See visual representation for the port
in Chapter 3.

• Multi-line labels
When a user presses Control + Enter, he or she can add extra lines to labels. This is
especially useful for large declaration blocks.

• Arc endpoints
By default, GMF attaches the endpoints of arcs only to points lying on the axis-parallel
bounding box of figures. This behavior is bad for non-rectangular figures, such as ovals
and rounded rectangles. Hence, the behavior has been modified so that the endpoints
of an arc are always correct.

• Ports attached to tasks
The GMF framework does support nodes that are attached to parent nodes, however a
special customization had to be made to allow the ports of a task to overlap a bit the
the task (see visual representation for the port in Chapter 3).

53



• Removed bugs in the GMF framework
Several bugs originally in the GMF framework have been removed, for example there
was an issue with not being able to create arcs from sub-nodes such as scheduling knots.

• Delete semantics
Customizations have been made to make it impossible to remove the global declaration
node. In addition, the delete behavior of labels is changed. Originally, when a user
deletes a label, the label was not actually deleted, but only hidden. This behavior has
been changed so that the text in the label is set to the empty string instead.

• Initial models
When we create an application perspective, we want the global declaration node to be
present in the new model automatically. To allow this behavior, a customization to the
GMF code generation was made.

54



6 Domain specification generation

This section will show how the perspectives introduced in section Chapter 3 and the textual
representations introduced in Chapter 4 can be used to generate a specification in the domain
language.

Such a specification can be either an instance of the DseirModel class, as explained in Chapter
2, or it can be plain Java source code that, when run, creates the instance of the DseirModel.
The first approach is taken because of the following reasons:

• No intermediate layer is needed to create the DseirModel instance.

• The source code will not be visible to the end-user anyway, so possible extra work to
generate the source code will not be worth it.

• Although source code can be persisted (opposed to an DseirModel instance), it is in-
validated when the domain language changes.

The process of generating an instance of the DseirModel class consists of three steps, which
can be seen in Figure 28.

1. First, the system perspective is used to find all input models of the system. Then,
all input models are combined into one generator model and errors in any of the input
perspectives are detected. This generator model contains enough information to actually
generate a domain specification and it contains some extra information to ease this
generation process.

2. In the second step, the generator model is checked for errors which can only be found
after combining the perspectives. For example, we need information from both the
application perspective and the mapping perspective to check whether each tasks has
a scheduler associated with it (to be more specific, each task that requires at least one
service type).

3. Finally, the actual domain specification is generated using the generator model. During
this step all strings are parsed and the domain elements are initialized.

First, the generator model will be explained and then each step will be described in more
detail.

In the first step, all individual perspective files are combined into one big generator model
that contains all information. The meta-model of this generator model is visible in Figure 29
(note that it shows only the elements with their attributes and references as a tree, because
a diagram would contain too much crossing links).

The root of this meta-model is the DseirGen class. The meta-model is designed in such a way
that it is very close to the domain language, while still using strings. This has the following
advantages:
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Figure 28: Domain specification generation process

Figure 29: Meta-model of the generator model
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• Generation of the domain specification becomes relatively straightforward. The main
challenge will be parsing all strings.

• When new syntactic sugar (such as hierarchy) is added, the only thing that has to
change is the process of combining the perspectives into the generator model. The
generation of the domain specification does not have to be touched.

The disadvantage of the use of the generator model is that it would be more efficient to gen-
erate the domain specification directly when combining the perspectives, but the advantages
given above outweigh this efficiency loss. Especially because we know for sure that syntactic
sugar will be added.

Most elements in the generator meta-model are already explained in Chapter 2 and Chapter
3. Apart from a convenience reference edges pointing to the outgoing edges of a task, the
main new thing is the DomainSupportedElement class.

DomainSupportedElement

This is a superclass of all elements in the generator model that can also be con-
structed in the domain language. It has an attribute domainElement that is used
for generation of the domain specification. This attribute provides a link between
the generator model and the domain specification being constructed. The specific
use of this attribute is explained further on.

The generator meta-model does not contain separate elements for label-less connections used
in the perspectives. Instead, these connections are represented using attributes and references.
For example all service types that are bound to a knot are represented using the services

attribute of the Knot class.

Finally, the Handover class is somewhat different than the one found in the load perspective.
The edge over which the handover occurs is referenced using the edge reference. The han-
dover class in the load perspective does not directly contain this information, so this edge is
discovered while creating the generator model.

6.1 Combining the perspectives

This step starts by finding all models that contribute to the system, as indicated by the system
perspective. Then, an empty generator model created and each perspective is handled. While
handling each single perspective model, all significant nodes are added to the generator model,
so finally the generator model contains information about all perspectives.

The perspective files cannot be handled in arbitrary order. For instance, the mapping per-
spective has references to tasks defined in the application perspective and schedulers defined
in the scheduling perspective. If we would start by handling the mapping perspective, we
would not be able to resolve these references. Figure 30 shows an overview of the dependen-
cies between the perspectives. If there can be a reference from perspective A to an element
in perspective B, an arc is drawn from A to B.
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Figure 30: Dependencies between perspectives

From these dependencies, the following order is used to handle the individual perspectives.

1. Resource perspective

2. Application perspective

3. Load perspective

4. Scheduling perspective

5. Mapping perspective

In order to be able to resolve referenced elements, a central mapping (implemented using a
hash-table) is maintained while filling the generator model. This mapping has methods to
register elements with their name and to retrieve registered elements given their name, i.e.
it has keys of type String. For instance, when handling the application perspective, a Task

instance is added to the generator model. This task instance is then registered in the central
mapping, using its name as a key. When handling the load perspective later on, this central
mapping is used to lookup the Task instance in the generated model.

If we would not use this central mapping and we want to find the Task instance in the
generator model for a task with a given name, all Task instances in the (partial) generator
model have to be inspected. This is not needed if we use the central mapping, so we gain a
more efficient implementation.

Handling the individual files is pretty straightforward. It mainly involves creating a task for
each task in the application perspective, a port for each port in the application perspective,
a scheduler for each scheduler in the scheduling perspective, etc. The only difficulties are
caused by the connections. When processing a connection from a perspective, the from and
to attributes of the connection point to elements in the perspective, so not in the generator
model. However, when creating the corresponding connection in the generator model, we
want the from and to to point to the corresponding elements in the generator model.
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To overcome this problem the general schema given in Algorithm 1 is used for each perspective,
where generatorModel is the partial generator model that is being filled and perspective is
the perspective that is being handled. First all nodes (elements which are not a connection)
are handled and a local mapping is maintained, remembering the corresponding node in the
generator model for each node in the perspective. For example, in the resource perspective,
for each resource r, a resource node r′ is created in the generator model. This pair r, r′ is
then stored in the local mapping, such that given r we can obtain r′ again when we need it.
If the node has any child nodes (such as ports for tasks), they are handled and remembered
as well. After this, all connections in the perspective are handled and the local mapping is
addressed to find the source and target of the connections in the generator model.

Algorithm 1 HandlePerspective(generatorModel, perspective)

localMapping ← new mapping
for all node ∈ perspective do

node′ ← new generator model node for node
generatorModel.add(node′)
localMapping.put(node, node′)
for all child ∈ node.children do

child′ ← new generator model node for child
generatorModel.add(child′)
localMapping.put(child, child′)

end for
end for
for all connection ∈ perspective do
from← localMapping.get(connection.from)
to← localMapping.get(connection.to)
Handle connection

end for

This general scheme that is not optimal for all perspectives. First of all, not all nodes have a
corresponding node in the generator model. Second, when a certain node is never referenced
in a connection later on, it is still stored in the local mapping. Therefore only the necessary
nodes are stored in the local mapping in our implementation.

Note that during the handling of each perspective, errors such as empty attributes (for ex-
ample no name for a task, not type for a port) are reported as well as errors that are caused
by unresolvable references (a load specified for a task which does not exist). Opposed to the
first error type, this last type of error depends on more than one perspective. The general
approach was to check these types of errors during the validation of the generator model,
however the generator model simply cannot be constructed if these errors are present. Hence,
they are already reported in this step.

6.2 Generator model validation

If the generator model is successfully created, it can still contain (semantic) errors. For
instance, each task which requires some services should have a scheduler associated with it.
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This requirement involves information from multiple perspectives, so it could not be checked
during creation of the generator model. Hence, this step checks whether the generator model
does not violate any of these type of requirements. These checks are performed simply by
iterating over the elements regarding the requirement.

6.3 Domain specification generation

After the generator model is created and checked, it will be transformed into a specification
in the domain language. Because the structure of the generator model is closely related to
the domain language, each element in the generator model that is supported in the domain
(it inherits from DomainSupportedElement) will become precisely one element in the domain
specification.

The general approach is as follows. First, an empty DseirModel instance is constructed.
Then, all elements of the generator model are traversed and for each element, the correspond-
ing element in the domain is created.

The hardest part in this approach is the interpretation of all string attributes. As shown
in Chapter 4, a great deal of the strings represent expressions. Other common strings are
statement and declaration strings.

For the expression strings, a parser has been made that can parse a given string into an
instance of the Expression class. The following part will explain how this parser is created.

Expression parsing
Ideally, the expression parser takes a String and turns it into an Expression. If we for
example take the string "5 * 3 + 2", we want it to be converted to add(mult(cnst(5),

cnst(3)), cnst(2)).

However, this is impossible to do for any expression. Lets assume we have a global variable
named "a". To parse the string "a - 2", we need information about the global variables.
Because a task can have local variables and parameters that can be used in an expression
string, we need information about these variables as well.

Furthermore, we can have expressions referring to resources (for example "free(CPU)"). To
make things even worse, the string "amount(COMPUTATION)" has three different meanings,
depending on the context in which the string is parsed (scheduling, processing times, or
resource handovers).

To solve these issues, a context is defined that is used together with a string to create an
Expression instance.

60



Context

A context has the following attributes:
model This is a DseirModel instance from the domain language in which

global variables and resources are located.
task This can be either a Task instance from the domain language or

null. If it is a task instance, variables are first sought in this
task’s local variables and parameters. If the task does not have
the required variables or when the attribute is null, the variables
are sought in model.

contextType This can be either RESOURCE PROCESSING TIME,
SCHEDULING AMOUNT, HANDOVER AMOUNT, or OTHER. This in-
dicates how an amount expression should be interpreted. The
value OTHER indicates that it does not matter how an amount
expression should be interpreted.

Given this definition of the context, an annotated grammar is created to parse a string into
an expression, given the context. This grammar is then converted into a recursive-descent
parser with JavaCC ([2]).

The obtained parser is used to parse all expression strings found in the generator model. The
model of the context is the instance of the DseirModel that is under construction. Hence,
we have to make sure that all referred elements are present in this model before we parse
the expressions referring to these elements. The dependencies between the expression strings
used in the generator model’s elements are depicted in Figure 31. The schedulers can refer to
resources (with a "free(RESOURCE)" expression), while the ports, edges, and handovers can
refer to variables used in their associated task (the parent task for the ports, the source task
for the edges and the task from which resources are handed over for the handovers).

In order to not violate these dependencies, the resources are handled first and then the
schedulers. After that the tasks are handled together with their ports. After initializing the
task in the domain language, the task attribute of the context is set to this task in the domain
language. After the tasks and ports are generated, the edges and handovers are handled with
task attribute of the context set to the associated task in the domain specification (using the
domainElement attribute to get the task in the domain specification given the task in the
generator model).

Schedulers

Resources

Edges

Tasks

Ports Handovers

Figure 31: Dependencies of expressions in generator model elements

Declaration and statement parsing
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The declarations and statements have to be parsed as well. Opposed to the parsing of ex-
pressions, declarations and statements should not generate a data structure (there is no such
thing as a Declaration or a Statement in the domain language).

Instead, when a variable is discovered during parsing, it should be added to the correct part
of domain specification and when a statement is discovered, it should be added either to the
start statements of a task of the end statements of a task. To achieve this, again a context
is supplied while parsing. This time, the context has methods that are called by the parser
when it discovers a variable (with its type and possible initial value), or a statement.

Context

This context has the following methods:

onVariable(String name, Type type)

This method indicates that a variable has been discovered with the given type and
no initial value.

onVariable(String name, Expression initialValue)

This method indicates that a variable has been discovered with the given initial
value.

onAssignment(Variable variable, Expression value)

This method indicates that an assign statement has been discovered. This assign
statement assigns value to variable.

Again an annotated grammar is created that calls the appropriate methods in the supplied
context. This context is converted into a recursive-descent parser with JavaCC.

Because a declaration or statement can contain expressions, the grammar is set up as follows.
When the declaration and statement parser expects an expression while parsing, the control
is passed over to the expression parser. The expression parser will then try to parse as much
as possible starting where the declaration and statement parser has stopped. At some point
the expression parser will stop parsing. This either means that the remaining input has
been completely parsed into a single expression or that the expression parser constructed an
expression up until the point it encountered an error in the remaining input (for example when
it encounters a character that is not valid in an expression, but that is part of the declaration
or statement, e.g. ‘;’). In both cases the expression is returned and the declaration and
statement parser will continue where the expression parser stopped parsing.
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7 Task hierarchy

This section describes the extension to the visual representation of the domain language to
incorporate task hierarchy. The aim of the task hierarchy is to allow a single task at a high
abstraction level to represent a complete application perspective at a lower abstraction level.
This allows us to create models with different levels of abstraction.

Before explaining the hierarchy implementation, two notions are introduced. We will call
a task that represents a complete application perspective a super task and we will call the
application perspective its sub-application.

Our design goals of the hierarchy are as follows:

• It should be possible to let information flow from the super task to its sub-application.

• After a sub-application has been executed, any results of the execution should be ac-
cessible at the super task.

The hierarchy will be implemented as syntactic sugar only and in such a way that any model
incorporating task hierarchy can be translated into a model without hierarchy. In the re-
mainder of this section, the general idea of the hierarchy is sketched and the meta-model
of the application perspective is extended. Then, the visual representations of a super task
and a sub-application are given. After that, the transformation from a representation using
hierarchy to the representation without hierarchy is explained. Finally, our example from
Chapter 2 is refined using hierarchy.

7.1 Extensions to the application perspective

The general idea of the hierarchy is as follows. We want to allow a sub-application to be
represented by a super task and we want information to flow from this super task to the sub-
application. Therefore we introduce the concept of application parameters. Each application
perspective will have the possibility to specify parameters, just like a task. The semantics of
these parameters will be given later on in this section, however the idea behind the param-
eters is that a super task can start its sub-application with a particular valuation of these
parameters. If we have for example a sub-application that will print a number of pages, say n
pages, we give this sub-application a parameter int n. The sub-application can then access
this parameter to know how many pages should be printed (how this parameter is accessed
will be explained later).

The GlobalDeclaration class in the application perspective’s meta-model is extended with
a parameters property for the parameters of the application perspective. The extended
meta-model can be seen in Figure 32.

Given these application parameters, we can define how a super task refers to its sub-application.
Each super task has a call to its sub-application. A call to a sub-application involves specify-
ing which sub-application to use and supplying values for all parameters of the sub-application
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Figure 32: Meta-model of the hierarchical application perspective
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(similar to a function call). A call is of the form

<sub-application name>(<parameter value>, <parameter value>),

where the name of the sub-application is the name of the file in which it resides and the
parameter values can be arbitrary expressions. Via these parameter values, information can
flow from the super task to the sub-application.

The Task class is extended in the application perspective’s meta-model, to support an ad-
ditional property for sub-application call. We will call any task that has this property set a
super task. Tasks that do not have this property set will remain regular tasks.

What remains to define is how the sub-application can refer to its parameters and how infor-
mation can flow from a sub-application to the super task. To allow a sub-application to use its
parameters, we introduce the element InputEdge in the application perspective’s meta-model.

InputEdge

An InputEdge can be attached to a Port. Its purpose is to allow parameter passed
to the sub-application to be redirected to the Port it is attached to, called the target
port. It has a property that specifies the name of one of the parameters of the sub-
application, say parameter p. When the sub-application is called with a value v for
this parameter p, the value v will be put into the target port.

To allow information to flow from the sub-application to its super task, we use the following
mechanism. We allow a task in the sub-application to publish some expressions. An expres-
sion that is published in the sub-application can be used in the super task. Expressions will
be published under a name. For example, say we have a sub-application that does some com-
plex calculations and these calculation can either be successful or unsuccessful. We publish
the boolean expression indicating whether the calculations were successful in the last task
of the calculations. We publish this expression under the name ‘success’. We can then use
‘success’ in expressions in the super task to check whether the sub-application has successfully
executed its calculations, in the same manner that we use variables.

OutputEdge

An OutputEdge can be attached to a Task. Its purpose is to publish a single expres-
sion. Its label property is the name under which the expression is published and
the expression is the expression that is published.

Note that a sub-application is assumed to be finished after a task which publishes one or more
expression is executed.

65



7.2 Visual representation

The visual representation for the application perspective needs to be adapted because of these
changes. First of all, an application perspective can now have parameters.

GlobalDeclarations

Instead of ‘Global declarations’, the
header now shows the name of the ap-
plication perspective (the name of the
file it resides in), together with the pa-
rameters in between brackets.

We also introduce a new representation for a super task, to make it easy for the modeler to
separate super tasks and normal tasks.

Task (which is a super task)

The visual representation of a super
task is similar to a normal task. The
only difference is the double border and
the label that allows the call to the sub-
application to be made.

Beside of these changes to the visual representation, two new elements have been introduced,
namely the input edge and the output edge.

InputEdge

The visual representation of the input
edge is similar to an edge without a
source. It has a label to specify the pa-
rameter whose value will be redirected
to the target port.
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OutputEdge

The visual representation of the output
edge is similar to an edge without a tar-
get. It has a single label that represents
both the label property (the name un-
der which the expressions is published)
and the expression property. These two
properties are separated by a semicolon.

7.3 Transforming a hierarchical model

Because the hierarchy is syntactic sugar only, we need a way to convert an arbitrary model
with hierarchy into a model without hierarchy. In order to do this, all super tasks have to be
replaced by their sub-application, respecting the information flow inside the sub-application
and the information flow out of the sub-application. We will now explain how to do this for
a single super task and its sub-application.

We will use a super task in a generalized context, visible in Figure 35. The super task,
annotated with the letter S, has an arbitrary number of input ports and an arbitrary number
of outgoing edges. It makes a call to its sub-application with expressions <par 1> . . . <par n>

as parameter values.

The generalized sub-application corresponding to S is visible in Figure 36. The sub-application
has parameters <var 1> . . . <var n>. It has a single task with input edges (task A) and a
single task with output edges (task B). Task A has several ports with input edges and task B

has several output edges. The other tasks of the sub-application are not specified and they can
form an arbitrary sub-application logic. The only thing we know about this sub-application
logic is that there is no task in it with input edges and there is no task in it with output
edges. Note that we say a task has input edges if and only if it has at least one port with an
input edge.

When we now replace S by its sub-application, the following steps occur:

1. All tasks of the sub-application are copied and inserted at the level of S. For each task,
its name is concatenated with ‘ sub ’ followed by the name of S. This concatenation is
done to ensure unique names for all tasks after the sub-application is inserted.

2. The global declarations of the sub-application are added to the global declarations of
the level of S. However, instead of using the variable names as defined in the sub-
application, the names are again concatenated with ‘ sub ’ followed by the name of S

to ensure unique names for all global variables.

3. We replace S with a dummy task that is an exact copy of super task S, without the sub-
application call and with it’s name appended with ’ start’. The purpose of this dummy
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task is to start the sub-application by redirecting the parameter values supplied in the
sub-application call to the correct ports of the sub-application.

4. For each input edge of the sub-application we identify the variable v that is on the label
of the input edge. Then we find out the index i for which v = <var i>. Now that we
know i, we know which parameter value in the call to the sub-application should be
redirected to the target port of the input edge, namely <par i>. Hence, we replace the
input edge with a real edge from the dummy task to the target port of the input edge.
The expression of the edge is set to <par i>, so the correct parameter value will be put
in the correct port of the sub-application after execution of the dummy task.

5. For each outgoing edge of S we change the source task to B. This ensures that the control
flow at the level of S is continued after the sub-application has finished. Furthermore, the
expression <expr> on each outgoing edge is replaced by <expr>’, which is a transformed
version of the expression. The transformation is obtained by replacing each occurrence
of <label i> by <out i>, for 0 ≤ i ≤ n.

The model that is obtained after performing all these steps is visible in Figure 37.

7.4 Example

We will now extend the printer example introduced in Chapter 2 and modeled in Chapter 3.
Suppose that we want three different kinds of jobs to arrive at the printer, all with an equal
likelihood of arriving. Each job will have a different chance of success, given by the following
table:

Job type Chance to fail
0 5
1 3
1 8

Furthermore, we will refine the ‘Printer’ task by making it a super task with a ‘printer’ sub-
application. This sub-application will be responsible for printing a job of a given type and
returning whether the print job was successful.

To do this, we change the ‘Printer’ task into a super task, as can be seen in Figure 33. We
also change the expression on the edge from the generator task to the printer task, so that it
generates a random job type each time a job is created.

The printer sub-application will be kept very simple. It will contain two tasks. One task
identifies the success percentage for the given job type and the other task will print the job,
with the calculated success percentage. The sub-application can be seen in Figure 34. Note
that the sub-application has only one parameter, namely the job type, and that the sub-
application publishes the ‘success’ expression as well as the job type (needed for the edge that
is taken when the print job failed).

68



Figure 33: Printer example with hierarchy

Figure 34: The ‘printer’ sub-application

Figure 35: Super task S in a generalized context

Figure 36: Generalized sub-application

69



Figure 37: Generalized model without hierarchy

7.5 Consequences

The addition of hierarchy does not come without any consequences. The following two sec-
tions describe problematic consequences of the introduction of hierarchy together with their
solutions.

No parameters
First of all, the steps to replace a super task with its sub-application only work if the sub-
application has parameters. If a sub-application with no parameters is called from a super
task, step 4 will not add any edges from the dummy task to the entry point of the sub-
application (as there can be no ports with input edges referring to a parameter). To overcome
this problem and allow parameterless sub-applications, we introduce the following solution.

In a sub-application without parameters, we allow an input edge to have an unset parameter
property. This input edge will mark the entry point of the sub-application. We require that
this input edge is attached to a port of the boolean type (because we will be adding an edge
to this port with expression true when removing hierarchy). We allow a super task to call a
sub-application with no parameters simply by supplying no arguments in the sub-application
call.

To allow correct removal of hierarchy, we modify step 4 of replacing a super task by its
sub-application as follows:

4. If the sup-application has parameters, executed step 4 as before. Otherwise, let p be
the port of type boolean with an input edge that has no parameter attached to it, e.g.
the entry point of the sub-application. Add an edge from the dummy task (created in
step 3) to port p, having expression true.

Task references
Second, tasks are referenced in both the load perspective and the mapping perspective. With
the new hierarchy concept, we need a way to reference tasks within a sub-application. There-
fore we introduce a dot-notation for the names of tasks in the load perspective and mapping
perspective. Such a name is now equal to the following:

<application perspective> ‘.’ <task>
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In words, the name of a task reference now consist of the name of the application perspective
in which the referenced task resides, followed by a dot and the name of the referenced task.
For example, a task reference can now be application3.task2, referencing task2 from
application perspective application3.

The conversion from the visual perspectives to the generator model (see Chapter 6) is mod-
ified in such a way that all tasks are registered according to this scheme when handling the
application perspectives.

Using this new notation, individual tasks in sub-applications can be referenced in the load
perspective and mapping perspective.

Multiple occurrences of a single sub-application
The third problem that is caused by the introduction of hierarchy is that special action has
to be taken to allow multiple super tasks to call the same sub-application. The steps taken to
remove hierarchy have no problem with multiple calls to the same sub-application, because
step 1 of replacing a super task with its sub-application makes sure that a fresh (and uniquely
named) copy of the sub-application is created for each super task calling it.

However, this causes the situation where single task in a sub-application is converted to
multiple tasks in the generator model. Take the hierarchical model depicted in Figure 38 for
example. It has two super tasks that call the same sub-application. This sub-application
contains one task (‘Sub’). When we remove the hierarchy from this hierarchical model, we
get the model depicted in Figure 39. We can see that the single task ‘Sub’ occurs twice in the
resulting model, one time as ‘Sub sub SuperTask1’ and one time as ‘Sub sub SuperTask2’.
Note that this example has a sub-application with no parameters.

When we refer to ‘sub.Sub’ from either the load perspective or the mapping perspective, we
have to make sure that this reference influences both ‘Sub sub SuperTask1’ and ‘Sub sub SuperTask2’.
If we for example specify a load for ‘sub.Sub’, the specification should be applied to both
‘Sub sub SuperTask1’ and ‘Sub sub SuperTask2’.

Figure 38: Example model with two super tasks calling the same sub-application

To do this, we modify the central mapping introduced in Chapter 6 to store multiple tasks for a
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Figure 39: Example model with two super tasks calling the same sub-application, where
hierarchy has been removed

single key. When processing the application perspective in the example, both ‘Sub sub SuperTask1’
and ‘Sub sub SuperTask2’ are stored in the central mapping under the key ‘sub.Sub’. The
following changes are made to the generation of the generator model.

• When adding a scheduler to a task referenced by the name s in the mapping perspective,
this scheduler is added to all tasks registered under the key s in the central mapping.

• When adding load to a task referenced by the name s in the load perspective, this load
is added to all tasks registered under the key s in the central mapping.

• When encountering a handover from a task referenced by the name s1 and a task
referenced by the name s2 in the load perspective, this handover is processed as if it
were from task t1 to t2, for each t1 in the central mapping for key s1 and each t2 in the
central mapping for key s2.
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8 Comparison with other languages

This section presents a comparison of the graphical language for DSEIR with a well-known
general-purpose modeling languages. The reason that the language is compared to general-
purpose languages, is because it is the first existing Y-chart-based language, so there are no
other languages in the same domain to compare it to. The visual representation of the domain
language will be compared to the language for Colored Petri Nets (CPN) ([5]), the Unified
Modeling Language (UML) and (Uppaal?, EPCs?).

A tool is picked for each of the languages that the graphical editor is compared to. Of course,
it is unfair to compare the tools developed by teams of people over several years with a tool
developed in less than six months by one person, so the main focus of the comparison will be
the language supported by the tool.

Because we are comparing a domain-specific language with general-purpose languages, the
focus is on how models can be made for this specific domain.

8.1 CPN

For the comparison to the CPN language, the ‘CPN Tools’ tool is used as a reference. This
tool is picked because it is free, it has been around some time, it is under active development,
and it provides a large set of features. It is also used by the Octopus toolset for simulations.

The following advantages of the CPN language over the VDSEIR language are identified:

• Clear semantics
The CPN language has very clear semantics. There are only two key elements, places
and transitions, and their interaction is made very explicit.

• Hierarchy expressiveness
A sub-net in a CPN model can have multiple entry points and multiple exit points.
Opposed to task hierarchy in VDSEIR, input tokens can arrive at a sub-net at arbitrary
moments in time and output tokens can leave a sub-net at arbitrary moments in time.

• Expressiveness
The use of a functional language to annotate CPNs allows for a lot of expressiveness.
The functional language has support for multiple high order data structures, such as
lists, sets, bags, records, tuples, etc. It also allows the user to specify custom data
structures that can be combinations of other data structures. Furthermore, CPN Tools
allows users to specify functions that can be called from expressions in CPNs.

Unfortunately, the expressions used in the domain language are not as expressive. The
domain language can of course be extended with custom data structures and custom
functions, but this requires that the core toolset should be changed as well, which is
outside the scope of this thesis.

Concludingly, the CPN language is very expressive, with only a small number of concepts.
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The following list show some advantages of the VDSEIR language over the CPN language:

• Perspectives
A VDSEIR model consists of five key perspectives. These perspectives provide a guid-
ance in the modeling process of the users of the language. The users are motivated to
think of the application and the platform as two independent entities and the perspec-
tives allow the user to follow the Y-chart approach very closely.

• Concepts with a higher abstraction level
The VDSEIR language has a lot more concepts than the CPN language, with resources,
services, schedulers, etc. This can be both good and bad. It does give the language
a more steep learning curve for people not used to these concepts, but users that are
used to these concepts will find that the language is more closely related to their point
of reference. Independent of the learning curve, the concepts with a higher abstraction
have their advantages. By having resources for example, users of the toolset are not
forced to model each resource using tasks and places, allowing the user to focus more
on the important aspects of the model they are creating.

Furthermore, the abstract concepts can also help making the model more readable. Take
for example a CPN net, describing two tasks that have to be executed. The tasks both
require the same two resources. A typical CPN model would look like the one shown in
Figure 40. As we can see, this model requires two arcs for each task using a resource,
requiring a lot of arcs, even in this small example. Now imagine that more tasks are
added, requiring more resources. This will cause a lot more arcs to be added and this
will reduce the readability of the model significantly. In the VDSEIR language, the
readability of such an example would be much better, because of the ‘resource’ concept.
The VDSEIR application perspective, load perspective, and resource perspective for the
same example can be found in Figure 41, Figure 42, and Figure 43 respectively.

A_busy B_busyA_End B_Start

INT

1`R2_capacity

x'

x'

y'

B_EndA_finishedA_Start

RESOURCE_1

RESOURCE_2

y'

x

x

y y

INT

1`R1_capacity

Figure 40: Typical CPN model of two tasks using two resources
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Figure 41: Application perspective of two tasks using two resources

Figure 42: Load perspective of two tasks using two resources

Figure 43: Resource perspective of two tasks using two resources
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• Hierarchy more suitable for workflows and pipelines
Although the hierarchy in the CPN language is very expressive, it also has disadvantages.
The semantics of the CPN hierarchy do not allow to treat a sub-net as a ‘function
call’, which is what happens in VDSEIR. Having such ‘function call’ semantics allows
to clearly specify the information that flows in a sub-application and the information
that flows out of the sub-application. In CPN Tools this information flow is not even
visible at one abstraction level above the sub-net, as can be seen in Figure 44. The arc
inscriptions are only visible in the sub-net.

in_1

in_n

out_1

Hierarchical

Task

Hierarchical Task

...

out_k

...

Hierarchical Task

Figure 44: Top level view of a hierarchal CPN model does not show arc inscriptions

• Ability to swap perspectives and sub-applications
Because the VDSEIR language uses decoupled perspectives, it is very easy to change
the set of perspectives that together define the VDSIER model. One could for example
model multiple alternatives for the load perspective and easily switch between those
perspectives when desired. The same holds for sub-applications. One could model mul-
tiple alternatives of a sub-application and then switch between the alternatives simply
by changing the sub-application call(s) in the super tasks that use the sub-application.

8.2 UML

As a reference tool for UML, the free ‘ArgoUML’ tool is picked ([1]).

Characteristics of UML:

• Diagrams
Similar to the perspectives in VDSEIR, UML has several diagrams. Each diagram con-
tains a piece of the information about the whole system that is being modeled. Opposed
to VDSEIR, there exists some overlap in what the different perspectives express. For
instance, we have an activity diagram and a state machine diagram, which can both
describe application flow and state information.

• Semantics
Although there is a standard that defines the UML modeling language (managed by
the Object Management Group), different users across industry have been using their
own semantics for UML models. Hence, differences in interpretation exist, making it
hard to spread UML models across companies or even across departments of the same
company.

• Code generation
Most UML tools support automatic code generation based on the created models, in-
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cluding ArgoUML. This functionality is not yet available for VDSEIR models (although
it is certainly possible to add this feature). For our domain it might be hard to make
good use of this feature, because we can have different application logic running on dif-
ferent computational units. For instance, we could have a task running on a dedicated
piece of software, opposed to a task running on a normal CPU.

Advantages of VDSEIR:

• Design space exploration
The big advantage of the VDSEIR language over the UML language is that it allows
simulations to be run on it. UML also has some support for simulations, but only for
certain diagrams. We can use the simulation information to fine tune the VDSEIR
models themselves, making VDSEIR a good choice if the architecture of the system
is not yet determined. UML is better at specifying a system once it’s architecture is
known.

Now concerning hierarchy, the UML ‘state machine’ diagram can be used to model a hierarchi-
cal state machine. It can have normal states and transitions, but it can also have states that
contain other states, see Figure 45, where we have a state called ‘Super state’ that contains
two other states.

Figure 45: Hierarchy in a state machine diagram in UML, using the ArgoUML tool

As we can see, the sub-states of a super state are depicted directly in the graphical represen-
tation. This has the advantage that arbitrary sub-states can easily be coupled to other states
outside of the super state. On the other hand, because there is no way to visually collapse
a super state, we still have information about all abstraction levels inside the same model.
Furthermore, this mechanism does not allow to re-use sub-state configurations, like having
multiple calls to the same sub-application.

8.3 Uppaal

The Uppaal formalism is only supported by the Uppaal tool, so this tool is picked for reference.
The Uppaal tool is also used by the Octopus toolset and VDSEIR models can be converted
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to Uppaal models.

Advantages of Uppaal:

• Parallel components
Uppaal allows to model multiple parallel components with communication channels in
between them. When expressing applications or platforms with a similar architecture
this can be really convenient. If the application logic for instance is not a pipeline or
workflow, but a number of computational units communicating with each other, Uppaal
can be better suited.

• Templates
A model drawn in Uppaal is merely a template, depending on some parameters. In the
global system declaration one needs to instantiate templates by supplying values for
these parameters. So for instance, one can model a single resource and then instantiate
it multiple times, each time with a different capacity. This behavior can be slightly
mimicked by calling sub-applications in multiple places, each time with different pa-
rameters. Later on in this paper (when we talk about model parameters in Chapter 10,
we see how we can even further mimic this behavior.

Advantages of VDSEIR:

• Higher abstraction level
As with the comparison with CPN, the constructs in VDSEIR are of a higher abstraction
level. The same advantages (and disadvantages) hold in comparison with Uppaal as well.

Furthermore, while modeling in automata, systems can quickly become very complex,
because everything is modeled at the level of states. In VDSEIR, we can model elements
in a more abstract manner, hiding the small details.

• Support for stochastic processes
Uppaal does not allow its user to model stochastic quantities, but VDSEIR does.
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9 Analysis framework

In the previous sections we have seen the perspectives that are used to generate specifications
in the domain language and we have seen how these specifications in the domain language
are actually created. This means that users of the toolset will now be able to create graphical
models and generate DSEIR models from these graphical models. However, the users are not
yet able to use these generated DSEIR models for analysis. This sections will introduce an
extensible framework in which users can specify what they want to do with the models they
create. The first part of the section will explain the design goals of the framework, followed
by the explanation of the framework itself.

9.1 Design goals

The introduction already introduced the concept of an extensible framework to allow users
to apply analysis techniques offered by the toolset on their models. The design goals of this
framework are identified as follows:

• The framework should be extensible, meaning that users (and developers for) the toolset
can add functionality to the framework, even after deployment of the toolset. We want
the framework to be extensible for two major reasons. The first reason is that the
toolset is still under development and new analysis techniques and methods are likely
to be added to the toolset, so we want a way to add support for this new content easily.
The second reason is that we want to give advanced users of the toolset the possibility
to extend the toolset themselves, so that they can perform any analysis they want.

• The framework should be housed in the graphical editor. We want users that do not
have any experience with programming to be able to access all features of the toolset,
so the users should be able to invoke any functionality they want from the toolset right
from the graphical editor.

• The framework should allow analysis techniques to be chained, i.e. we want the user to
be able to specify that the results of one analysis technique should be used for another
analysis technique. For example, we want the user to be able to specify that first a
simulation has to be performed and that the results of this simulation have to be used
to create a performance report.

9.2 The framework

General idea
The chosen framework satisfies all three design goals from previous section. The idea of the
framework is as follows. We have a set of plug-ins that are linked with transport arcs. In our
framework, a plug-in is a piece of code that can produce a set of output objects, given a set
of input objects. For example, we can have a simulator plug-in that takes a DSEIR model as
input and that produces an event trace. A transport arc allows an output object produced
by a plug-in to be offered to another plug-in as an input object.
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To be able to steer the behavior of a plug-in, a plug-in acts on a set of properties. These
properties are also an input of the plug-in when producing output objects. Each plug-in also
provides a means for the user to set its properties. See Figure 46.

plug-in

input1

inputn

output1

outputk

properties

Figure 46: A plug-in

Now that we know the general idea of a plug-in, we define the most important things a plug-in
should offer to the framework:

• A number of input connectors. A connector is a tuple consisting of a name and a type,
which are both strings. The name is for the users of the toolset, so they know what that
particular connector does. The type of the connector is a string describing what type of
data it acts on. A connector can have an empty string as its type, indicating that it acts
on data of any type. The input connectors describe the objects that are required for
the plug-in to produce its output objects. The previously mentioned simulator plug-in
for example has one input connector with name ‘Model’ and type ‘Model’.

• A number of output connectors. These output connectors describe the objects that are
produced by the plug-in. For example, the simulator plug-in has one output connector
with name ‘Trace’ and type ‘Trace’. Now, if another plug-in has an input connector
with type ‘Trace’ as well, a transport arc can be created between this input connector
and the output connector of the simulator.

• Code that, given the input objects, produces the output objects of the plug-in. This
code can be seen as the ‘functionality’ that is added to the framework by the plug-in.
In case of the simulator plug-in, this code will execute a simulation on the input model.
After this simulation is finished, its event trace will be extracted and the output object
of the plug-in will be produced. This code can also have side-effects, such as a dialog
that pops up or a file that is created (which is especially relevant for plug-ins with no
outputs).

• A set of default properties as well as code to create a dialog for the user to modify the
properties of the plug-in. The default properties are used to create new instances of
the plug-in. The code that creates the dialog is used when the user wants to modify
the properties of a plug-in (instance). When executed, the code should create a dialog
with text fields, radio buttons, etc. When the user makes changes in this dialog, these
changes should be propagated to the properties of the plug-in.

• Code to validate the current properties of the plug-in, to be able to check whether
the current properties of the plug-in are making sense. A file-loading plug-in with a
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property indicating the path of the file can for example have code to check whether the
path is valid.

• Code to check whether the plug-in can act on a set of input objects. With this code,
the plug-in can accept or reject a set of input objects, based on information about these
objects (e.g. their type) and information that resides in the input objects.

Note that the type of the connectors is only there to make sure that a transport arc can only
be created between an output connector and an input connector if they have the same type
or if either of them has no type.

Concludingly, we have plug-ins, which provide some properties and functionality and we have
transport arcs, transporting output objects from one plug-in to the inputs of other plug-ins.
We will use the name experiment to refer to a collection of plug-ins and transport arcs.

Visual representation
Because the framework should be housed in the graphical editor, a visual representation of a
The visual representations of an experiment will be as follows:

Plug-in

This node represents a single plug-in in-
stance. On the left it has its inputs
and on the right it has its outputs.
It has a title so that the users of the
toolset know which plug-in it is and it
has a body. The body of a plug-in is
a string representing its current prop-
erties. Double clicking this node brings
up a dialog to modify the properties of
this plug-in.

Transport arc

This arc represents a transport arc from
an output of a plug-in node to an input
of another plug-in node.

Execution
Now that we know what an experiment is and how it looks, we will explain how an experiment
can be executed. By executing, we mean that we want the plug-ins in the experiment to start
working. If we for example have the experiment shown in Figure 47, we want Plugin 1 to
start (because it requires no input). After Plugin 1 finishes, we want Plugin 2 to be executed
with the output of Plugin 1. Finally, if Plugin 2 is finished, we want Plugin 3 to start with
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the output of Plugin 2.

Figure 47: An example experiment

In order to execute an experiment, we first accumulate all input connectors specified by all the
plug-ins that are present in the experiment. We call this set of input connectors I. Second,
we create an empty ‘First In, First Out’ (FIFO) buffer that can hold any data object for each
i ∈ I and we will use buffer(i) to denote the buffer that was created for input connector i.

We will now present the execution semantics of an experiment. Executing an experiment is
done using the following algorithm (Algorithm 2). Note that by executing a node with certain
input objects, we mean executing the code it has to produce its output objects from these
input objects.

Algorithm 2 ExecuteExperiment()

Start execution (with no input objects) of all plug-ins with no input connectors.
while plug-ins are being executed do

Wait for the first plug-in to finish; let p be the this plug-in.
updatedP lugins← ∅
for all output connectors o of plug-in p do

for all transport arcs from o to an input connector i do
Add the output object produced by p for output connector o to buffer(i)
Let p′ be the plug-in to which i belongs
updatedP lugins← updatedP lugins ∪ {p′}

end for
end for
for all p′ ∈ updatedP lugins do

if buffer(i) is not empty for each input connector i of p′ then
input← ∅
for all transport arcs from o to an input connector i do

Move the first object in buffer(i) to input
end for
Start execution of p′ with input

end if
end for

end while

The algorithm consists of an initialization phase, followed by a main loop. In the initialization
phase, all plug-ins that do not require any input, i.e. those without input connectors, are
started. After that, the algorithm keeps looping until no plug-in is running anymore. Each
time a plug-in finishes, its produced output objects are moved along the transport arcs, ending
up in a buffer for an input connector. Then it can be the case that a plug-in can be executed
because of this newly produced and moved data. Each plug-in that has data in the buffer of
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each of its input connectors then consumes the first object out of each of these buffers and
starts execution with these objects.

9.3 The plug-ins

We have described the extensible framework, what an experiment is, what an experiment
looks like and how an experiment can be executed, but we haven’t shown any plug-ins that
can be added to an experiment. To provide some basic functionality to the users, a basic set
of plug-ins is developed.

Perspective

In order to do anything with VDSEIR
models, we need a way to load a per-
spective. The perspective plug-in al-
lows the user to specify a perspective
file (i.e. an application perspective, a
load perspective, etc.). Upon execution
of the plug-in, the selected file is loaded
and forwarded through the perspective
output connector.

Generator

The generator plug-in converts a com-
bination of an application perspective,
load perspective, resource perspective,
scheduling perspective, and mapping
perspective into a specification in the
DSEIR language (see Chapter 6). Im-
portant to note is that no system per-
spective is required. Instead, an im-
plicit system perspective is used. This
implicit system perspective simply con-
tains the perspectives connected to the
input connectors of the plug-in (so only
one file per perspective). It has a prop-
erty to set the name of the generated
model.
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Generator

The simulator plug-in takes a DSEIR
model and simulates it, creating a trace.
A trace contains all information about a
run of the model, including information
about the start times and end times of
the tasks, as well as resource occupa-
tion.

PerformanceReport

This plug-in takes a trace and creates a
human-readable performance report of
it. The performance report is stored in
a file.

Given these plug-ins, we can for example have the experiment indicated in Figure 48. This
example experiment creates a DSEIR model, simulates it and then creates a performance
report of the trace generated by the simulator.

Figure 48: An example experiment
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10 Model parameters

The analysis framework described in section Chapter 9 allows us to easily generate a model
in the domain language based on a particular set of perspectives and to apply analysis on the
generated model. However, the framework does not allow us to use simulation to for instance
find the best capacity of a resource or the best resource to use in the platform. If a user for
example wants to find out the best capacity for a resource, he or she has to set the capacity
to a particular value, run the experiment, and check the results. After that, the user changes
the capacity to another value and repeats the process to see whether this new value is better.

To ease this process of having to manually change certain model values, we introduce the
concept of a model parameter. The idea behind a model parameter is as follows. We have a
set of parameters that we allow all perspectives to refer to in expressions. In our experiment,
we assign values to these parameters and when we generate a domain specification for the
perspectives, we replace all references to the parameters by their values.

10.1 Domain specification generation

To implement this behavior, we resolve the model parameters when we convert the perspec-
tives to a generator model (see Chapter 6). Because we resolve the parameters in this step,
we do not have to change the graphical representations and we do not have to change the
transformation from the generator model to the domain model. The only thing that happens
is for each expression set in the generator model, we take the expression from the visual model
and replace all occurrences of parameters by their values. See Figure 49.

Application perspective

Resource perspective

Mapping perspective

Scheduling perspective

Load perspective

Generator model

1: Create generator model

2: Check generator model

Domain specification
3: Generate

Parameter values

Figure 49: Domain specification generation with model parameters

10.2 Generator plug-in

Now we know how the model parameters are resolved, but we do not have a place where the
parameters and their values come from. This place will be the generator plug-in. We change
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this plug-in in such a way that we can specify model parameters in its properties dialog, see
Figure 50.

Figure 50: Properties dialog of the generator plug-in

We add a property to indicate whether we want to use model parameters and we add a
property specifying wether we want to generate a single DSEIR model with random parameter
values (the ‘Random’ exploration method), or that we want to generate a DSEIR model with
all possible combinations of parameter values (the ‘Exhaustive’ exploration method’).

There is also a text area in which the users can specify the model parameters together with the
interval describing the possible values of the parameter. The textual representation consist
of one or more concatenated model parameter declarations.

Representation: <name> ‘:’ ‘[’ <min> ‘,’ <max> ‘]’ ‘;’

Explanation: This declares a single parameter with name as its name. The
values of this parameter all come from the interval [min, max] (both
inclusive).

Example(s): X: [0, 2]; (parameter X with possible values 0, 1, and 2)
Y: [4, 4]; (parameter Y with only one possible value: 4)

In order to allow the users of the toolset to distinguish the generated models, the name of any
generated DSEIR model is changed into the concatenation of the name provided by the user
(as a property of the generator plug-in) and a string showing the parameters with their values.
If ‘model’ is the name provided by the user and we have parameters ‘A’ and ‘B’ with values
‘0’ and ‘3’ respectively, the resulting name of the DSEIR model will be ‘model[A=0,B=3]’.

Now, if the user indicates that he or she wants to use random parameter values, a random
value is picked for each of the model parameters and these values are used to generate a single
domain specification.

If the user indicates that he or she wants to use an exhaustive exploration, we want the
generator plug-in to keep generating DSEIR models with permutations of the parameter
values, until all of them have been generated. We do not want all the models to be created
at once, because it is highly likely that not all models fit in memory. In addition, we want
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the plug-ins that come after the generator to be able to already start working once the first
model has been generated. Because the analysis framework allows plug-ins to produce output
one time per input, we need to change the execution semantics of the framework a bit.

10.3 Analysis framework

In order to allow a plug-in to produce multiple outputs based on a single input only, we
introduce the notion of a streaming plug-in. A streaming plug-in indicates to the framework
that it can produce multiple outputs for each input.

The execution semantics of the framework change as follows. When input I arrives at a
streaming plug-in, the plug-in is added to a global set of streaming plug-ins. The plug-in is
then executed with input I. After execution of the streaming plug-in, all plug-ins are executed
normally, until no plug-in can be executed anymore. After that, if there are streaming plug-ins
in the global set, one of those streaming plug-ins is executed again and the process repeats.
Once a streaming plug-in does not produce any data (it returns null), it is removed from the
global set of streaming plug-ins. Using these semantics, the framework aims to do everything
possible with the available data, before executing streaming plug-ins to generate new data.

Algorithm 3 shows an adaptation on Algorithm 2. This new algorithm is able to cope with
streaming plug-ins.

Algorithm 3 ExecuteStreamingExperiment()

streaming ← ∅
Start execution (with no input objects) of all plug-ins with no input connectors.
while true do

while plug-ins are being executed do
Wait for the first plug-in to finish; let p be the this plug-in.
if p is a streaming plug-in then
streaming ← streaming ∪ {p}

end if
Process the output of p and start plug-ins that can be started.
if p is a streaming plug-in, but it did not produce data then

streaming ← streaming \ {p}
end if

end while
if streaming 6= ∅ then

Let p be a plug-in such that p ∈ streaming.
Start execution of p

else
Finish the experiment

end if
end while

Using these new execution semantics, the generator plug-in can exhaustively generate DSEIR
models for all permutations of the model parameters, based on a single input.
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11 Error reporting

When creating VDSEIR models, an error can easily be made, for example one could make a
typo in one of the names of the tasks in the load perspective. The plug-ins in the experiment
framework can also cause validation errors or runtime errors. To give good feedback to the
users of the toolset, an error reporting mechanism is implemented.

Basically, all errors originate in plug-ins, because all functionality of the toolset is addressed
from an experiment. Hence, errors can be found only when running an experiment. A plug-in
can cause two types of errors, namely validation errors or runtime errors. Validation errors
occur when a plug-in has an ill-configured set of properties or when it is unable to run on its
given input data. Runtime errors occur in between the start and end of a plug-in.

We extend the framework in such a way that the plug-ins can create both these errors via
exceptions. When a plug-in creates an error (validation or runtime), we create an error using
the resource marker mechanism designed by Eclipse, so an error will be created in the standard
problems view of the graphical editor, see Figure 51.

Figure 51: A validation error in the perspective plug-in

Now, when the user sees such an error, he or she needs to go trough all the perspective plug-
ins in the experiment to find out which one has a wrong file reference. To allow the user to
conveniently navigate to the source of this error, we do something special. When a plug-in
creates an error, we capture this error in the framework and we add information about the
originating plug-in in the error (e.g. the id of the visual node belonging to the plug-in). When
the user then double clicks the error, this information is used to open the experiment with
the faulty perspective plug-in and then this faulty plug-in is automatically selected. So when
we double click the error from Figure 51, we get the situation depicted in Figure 52.

For these types of errors this mechanism works good, however we run into problems when the
error is not really in the experiment. This applies especially to the generator plug-in. If the
generator plug-in encounters and error in for example the load perspective while generate a
domain model from the five perspectives, the user should be forwarded to the load perspective
when double clicking the error; he or she should not be forwarded to the generator plug-in.

So, say we have a load perspective with a reference to a task that does not exist. This will
give the error shown in Figure 53.

What we want to see after double clicking the error is that the load perspective is opened
and that the cause element is selected, as depicted in Figure 54.
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Figure 52: The result of double clicking the error from Figure 51; the user is forwared to the
faulty perspective plug-in

Figure 53: A load perspective (runtime) error, caused by the generator plug-in

Figure 54: The result of double clicking the error from Figure 53; the user is forwared to the
faulty load perspective and the faulty element is automatically selected
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To enable this behavior, we allow plug-ins to supply additional information about the location
of the error when the cause an error (this information is equal to the file in which the error
occurs, together with the id of the faulty visual element). We extend the double-clicking
behavior of the errors to automatically navigate to this location if it is supplied.

This way, the plug-ins can forward errors to the end-user in a nice manner and by supplying
location information, they can let the users navigate automatically to the error’s cause. The
only problem is that information about the location of the cause is not always present (for
example when encountering errors in places where the visual models are not known anymore,
i.e. when encountering an error in the generator model described in Chapter 6), so if that
is the case, the error will not have a intuitive double-click behavior; it will only point to the
plug-in that caused the error. Hence, it is up to the plug-ins to make sure that they can
always supply enough information in their errors.
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12 Conclusion

Accomplishments
Using model-driven engineering and by making use of the GMP framework in Eclipse, we
have been able to automatically generate a complete graphical editor for the DSEIR domain
language. The visual representation of the DSEIR models has been developed in such a way
that we have several perspectives which together define a single DSEIR model, following the
Y-chart approach. Each individual perspective is independent of the other perspectives and
can therefore easily be swapped for another perspective and interchanged between different
users of the editor.

Because of the generative nature of the approach, any changes in the visual representation
can be incorporated in the graphical editor simply by regenerating its source code. Hence,
any future changes to the underlying toolset and any extensions to the visual representation
can rapidly be added to the graphical editor, making it a robust solution.

The visual representation of the DSEIR models does not only allow to express everything
that can be expressed in the domain language, but it also adds additional expressiveness in
the form of task hierarchy. The system with super tasks and sub-applications allows us to
build models with different abstraction levels at different levels in the hierarchy.

The extensible framework that has been developed add a easy way for users to interact with
the toolset. Its extensible nature allows developers to easily add additional expressiveness to
the framework.

Impact
Because a visual representation has been developed for the domain language, users of the
toolset are no longer required to have programming skills to use the toolset. This opens
up the toolset to a broader range of users. This can imply that the expressiveness of the
toolset has decreased, but because of the extensible framework, advanced users that want to
use programming to perform special actions are still able to do so. Hence, the toolset offers
everything it had to the advanced users, while offering a low step-in visual representation for
less advanced users.

A second advantage of existence of a visual representation for the domain language is com-
munication. Before any visual representation existed, users of the toolset communicated their
models by means of source code, which is way harder to read than a model. Even when
communicating a certain case, it is much clearer to provide a model than to provide a textual
description. As a side note, the visual representation for the toolset is already used for ex-
planation purposes in reports of colleague students. So we see that the presence of the visual
representation already eases the way users of the toolset communicate their models to other
users.

Future work
The toolset and the graphical editor can benefit from some improvements, including the
following ones:

• More plug-ins - The extensible framework has only a small set of plug-ins to generate
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DSEIR models and to do something with the generated DSEIR models. Not all func-
tionality of the toolset is captured in the form of a plug-in, so adding more plug-ins can
lift the expressiveness of the graphical editor to the level of the toolset. Later on, as new
functionality comes to the toolset, this functionality can be added to the framework in
the form of a plug-in as well.

• Experiment hierarchy - An experiment currently is a flat view of plug-ins linked via
transport arcs. It would be nice if we can have a plug-in that consists of several other
plug-ins connected with transport arcs, so that we can combine low-level plug-ins into
plug-ins with a higher abstraction level.

• Model-to-code generation for plug-ins - Right now, a plug-in definition has to be created
manually by the user of the toolset. This definition has information about the plug-
in’s name, input connectors, output connectors, etc. This information can perfectly be
visualized by a model (for example a single plug-in node to which input and output
connectors can be attached and properties of this node can be set). If we have such a
visual model of a plug-in’s signature, we can also have a model-to-code transformation
that creates skeleton code for the plug-in.

• Error reporting - Not all errors that occur while running an experiment, are clear to the
end-user, especially those from the generator. Ideally, when a user gets a notification
of an error, he or she should be able to jump to the place in the visual representation
where the error is found. The problem, however, is that the information about the visual
representation is lost when we convert the perspectives to a generator model (Chapter
6). When we encounter an error in the generator model (for example a parsing error),
we do not know the visual element corresponding to the element in the generator model.
To be able to trace the problem origin back to the visual model, we can for example
maintain a mapping from model element’s names to their visual element.

• Model-time consistency checking - Right now, the consistency between the perspectives
is only checked when we combine the perspectives via the generator plug-in. The users
of the toolset could benefit from model-time consistency checking, which would alert
them immediately if they for example have a reference to a non-existing task in the load
perspective.

Reflection
The model-driven-engineering paradigm is well-suited to design a domain-specific language
and to create a graphical editor for this domain-specific language. Eclipse provides a fully
functional and expressive framework to do this. A simple graphical editor can be generated
for a particular domain model in a short amount of time. The drawback, however, is that
this simple graphical editor is not good enough and some special actions have to be taken to
customize it.

The EMP framework houses facilities to create a meta-model of the domain-specific language,
which is a good way to describe the elements and their constraints of a visual representation.
The GMF framework takes this meta-model of the domain-specific language to generate a
graphical editor, which is intuitive, but there is one drawback. The GMF framework only
uses the meta-model of the visual representation. In our case, the real domain differs from
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it’s visual representation, but there is no way in GMF to have a separate domain model
and a visual representation model. Therefore the transformation from the visual models to
the domain models had to be manually made (Chapter 6). The domain-specific language
expertise field would greatly benefit from a clear separation of the domain model and its
visual representation.

Finally, the framework lacks a central place with good documentation and its own editors
(especially the editor for the graphical definition model, see Chapter 5) are not what one would
expect from a framework specialized in graphical editors. The automatic code generation on
the other hand heavily outweighs these downsides.

All in all, the model-driven-engineering approach for domain-specific languages is supported
by existing tools in a sufficient enough way to create real graphical editors, but the tools
themselves could still be improved.
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A Case study

For confidentiality reasons, this chapter is hidden from public view.
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