
 Eindhoven University of Technology

MASTER

Placement for gate arrays by eigenvector decomposition

Schenning, J.H.M.

Award date:
1987

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/5273532c-494c-41b8-be9f-3184d94f3c63

EINDHOVEN UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF ELECTRICAL ENGINEERING

AUTOMATIC SYSTEM DESIGN GROUP

Placement for gate arrays by eigenvector decomposition

by J.H.M. Schenning

Master thesis
report on graduation work

performed from 15.12.86 to 22.10.87
by order of prof. dr.-ing. J.A.G. Jess
and supervised by ir. A.G.J. Slenter

The Eindhoven University of Technology is not responsible
for the contents of training and thesis reports.

Abstract

Starting from a netlist of a digital circuit the gate array

system is able to generate a layout description on several

types of gate arrays. Described in this paper is a place­

ment which places the cells on the gate array. This place­

ment is based on the eigenvector decomposition of a cost

matrix. It tries to keep the total netlength short and so

the routing chances high. One of the problems was to calcu­

late promising eigenvectors, this was solved by using the

method of lanczos as described in this paper. The goal of

the placing algorithm is to place the cells close to the

most promising eigenvectors.

CONTENTS

1. Introduction. 1

2. Introduction to the gate array system used on the

TUE... 2

2.1 The gate array's............................... 2

2.2 The gate array system.......................... 2

2. 3 The macro library.............................. 4

2.4 The layout generation.......................... 4

3. Placement by eigenvector decomposition.............. 7

3.1 Introduction................................... 7

3.2 Problem definition............................. 7

3. 3 The cost function.............................. 8

3. 4 Eigenvectors. 8

3.5 Transformation to the furthest away prob-

lem.. 9

3.6 Probes for good points......................... 9

3.7 Placement by iterated probes 10

3.8 Probes and (x,y) positions 12

3. 9 Net weighting. 12

4. Probes and legal placements in gate arrays 14

4.1 Introduction................................... 14

4.2 From a legal placement to a probe 14

4.3 From a probe to a legal placement 15

- i -

5. The eigenvalue problem.............................. 17

5.1 Introduction................................... 17

5.2 Tridiagonalization of a matrix by Lanczos 17

5.3 Eigenvalue and eigenvector estimation from a

Tridiagonal matrix T........................... 18

5.4 Accuracy of eigenvalues and eigenvectors 19

6. Short overview of the program and the data struc-

tures... 22

6 .1 Used data structure. 22

6.2 Program description 22

7. Conclusions... 29

References. 30

- ii -

LIST OF FIGURES

Figure 1. Example of the internal structure of a gate

array.. 3

Figure 2. Overview Gate Array System................... 5

Figure 3. Probe direction 11

Figure 4. Preservation of the tridiagonal form 20

Figure 5. Structure net list 23

Figure 6. Structure Sparse Matrix 25

Figure 7. Structure macro library 27

Figure 8. Data needed from the library 27

- iii -

- 1 -

1. Introduction

At the laboratory of the automatic system design group (ES)

of the department of electronic engineering of the Eindhoven

University of Technology effort is made on the construction

of silicon compilers. In this environment there is a pro­

ject which is concerned with the realization of digital cir­

cuits on gate arrays. The project is called GAS and is an

"open" design system. The system is open with respect to

the type of gate array and with respect to the tools for

logic design, placement and routing.

The paper describes the newly developed placement algorithm,

based on the eigenvector decomposition of a cost matrix.

- 2 -

2. Introduction to the gate array system used on the TUE

2.1 The gate array's

Gate arrays are used for the realization of digital systems.

Their internal structure and the logic and interface com­

ponents are fixed (fig 1). Only the wirering cost of the

various components on the chip is subject of the design.

Therefor they are known as 'semicustomized' chips. The

advantages of the use of gate arrays are a quick turn around

in time and the low cost of the fabrication process. This

is due to the fact that only the wirering is different for

every new design.

Because of the fixed structure of the gate arrays the wirer­

ing problem is fairly complex. In other technologies the

channel width is adjusted according to the need, but in the

gate array system the channel width is fixed. So in gate

array design special reroute strategies are necessary if the

number of tracks exceeds the number that is allowed.

There are many different types of gate arrays based on all

kinds of logical families like I2L, Schottky TTL, static

NMOS and CMOS. They all have there own so called image.

The image of a gate array describes the possible locations

of wires (polysilicon, silicide or metal) and the possible

location of via holes connections between the various wiring

layers. The image can be build up of one or more layers and

different arrangements of gates (eg row or block arrange­

ments), where a gate is the smallest logic port on that par­

ticular gate array.

2.2 The gate array system

The gate array system, of which the placement described

later in this report is part of, covers all different types

of gate arrays. In this system the structure of the gate

array is described by a grid. The grid contains all the

essential place and rout information at any stage of the

- 3 -

DODD
DODD
DODD
DODD

Figure 1. Example of the internal structure of a gate array

- 4 -

design process. If we want to fit a new type of gate array

in the system, the only thing that has to be done is to

describe the image, design rules, the router cost function

and the macros. To do this a special language, the so

called Gate Array Description Language [4], is provided.

Once this is done for any type of gate array, a compiler

translates the image, design rules and macro description

into a grid and a macro library. Now any design can be han­

dled by the gate array system. The great advantage of this

gate array system is that there is no need to develop new

placement and routing tools for a new type of gate array.

2.3 The macro library

By each type of gate array a macro library is generated.

This macro library contains all the macros that can be real­

ized on that particular gate array (e.g. inverters, nands,

different types of flip-flops etc.). Each macro consists of

different realizations (stamps) with different legal places,

internal wirering, positions for input and output terminals

etc.

2.4 The layout generation

The layout generation of a digital circuit is divided in

several steps (fig 2). If it is a new type of gate array

then an image description, a router cost function and a

macro description must be generated with the Gate Array

Description Language. Then a compiler generates a macro

library, a grid description and the design rules, these last

two are stored in the core library. If these descriptions

are available all sort of circuits can be handled by the

gate array system. For the generation of a netlist there is

a netlist compiler, which can handle information given in by

hand or from a schematic editor. To generate a layout from

this net list, first a placer places all the modules that

are in the netlist onto the grid, taken into consideration

the legal places of the modules and a cost function. When

all the modules are placed the nets are globally routed [5].

- 5 -

FOUNDRY

IMAGE MACRO
DESCRIPTION J J DESCRIPTION

COMPILER

CORE I 1 MACRO
LIBRARY LIBRARY

NETLIST DESIGN - COMPILER ENTRY

J
PLACEMENT

J
- GLOBAL SIMULATOR

ROUTING

J t
LOCAL ~-

EXTRACTOR
ROUTING

I
"' lj

MASK
GENERATOR

t
FOUNDRY

Figure 2. Overview Gate Array System

- 6 -

This means that the grid first is divided in a global grid

with the smallest unit a grid cell of that global grid.

Then the global router routes the nets hierarchical from

grid cell to grid cell taken into consideration the the

number of nets between these grid cells. The local router

[6], then tries to rout each grid cell independently of the

other grid cells given the information of the global router.

The routing takes place wherever tracks are available and

the modules (macros) are transparent for routing. In gen­

eral not all pins of a net are connected by solving these

local routing problems. To connect the remaining pins the

router takes successively more grid cells in consideration

until all pins are connected or the routing area is the com­

plete chip. The extractor is able to get the information

regarding critical paths. The place and rout tools are able

to handle the nets in the critical path with special care.

- 7 -

3. Placement by eigenvector decomposition

3.1 Introduction

Another placement invoked in the gate array system is based

on a simulated annealing approach [7]. Simulated annealing

is based on interchanges of modules. The number of inter­

changes that take place at each step is an equivalent of the

'temperature' of the system. The interchanges are excepted

if the cost function becomes smaller else the interchanges

have a probabilistic chance that they are excepted. This

probabilistic chance a function of the temperature, the

lower the temperature the smaller the chance is that the

interchanges are excepted. This temperature is cooled down

during the process. The cost function is a measure of how

hard it is to rout the modules. With simulated annealing a

good placement can be obtained for long run time. It is

because of this long run time that another method to place

the modules is developed and that annealing is used as a

'back-up' placement. This new method is based on the eigen­

vector decomposition of a cost matrix as described by John

Frankle and Richard M. Karp [2].

3.2 Problem definition

The input for the problem is

• A netlist which describes which modules are connected

to each other.

• A macro library. The macro library describes the macros

(modules) in the terms of different realizations

(stamps), where each stamp has a finite number of legal

grid positions and a size.

• The size of the grid.

The constraints for the output are :

• Each module has to placed on a for that module legal

position on the grid.

• There may be no overlap between the modules.

• The modules must be placed in such a way that the nets

- 8 -

can be routed.

3.3 The cost function

As stated before the cost function must be a measure of how

hard it is to rout the modules. The cost function for the

eigenvector decomposition is entirely based on keeping the

total netlength as short as possible. This is done by

adding to each net a certain weight w. Now a cost function

can be build up where cij stands for the accumulated net

weights, where both module i and module j belong to. The

cost function becomes as following :

cost(x,y) = 1;2· ~ ~ cij. ((x[i]-x[j))2 + (y[i]-y[j])2)

Because cost(x,y) - cost(x) + cost(y) the equation can be

simplified by threating only the x-positions and for the y­

positions will hold the same.

3.4 Eigenvectors

cost(x) 1;2· ~ ~ cij (x[i]-x[j])2 is expanded to get:

cost(x) -~Cx + ~ x 2 [i]"(i-th row-sum of C) or

cost(x)

where the cost matrix A = -C plus a diagonal matrix with

entries equal to the row-sums of C.

Because A is symmetric it has n orthonormal eigenvectors ur.

Each eigenvector has an associated cost:

cost(ur) = u~ Aur = Ar.

Any vector x has an unique expansion x
T coefficients ar(x) - x ur. Since

2 cost(x) = ~ ar(x)Ar , (1)

The problem restatement is :

Choose x to minimize ~ a;(x)Ar' where x is a permutation

of the legal positions and ar - xT ur.

The restatement allows a global approach of the placement

- 9 -

vector, as a combination of eigenvectors that make indepen­

dent contributions to solution cost. Here the observation

that cost(ur+u
5

) = cost(ur)+cost(u
5
), which is true because

u~u5 = 0, is used.

T The vector (1,1, ,1) is an eigenvector, because every

row of A sums to 0. For the placing this vector is of no

use, because it means that all the modules have to be placed

on the same place. To make that the eigenvector

(1,1, ,1) has no contribution to the placement, the legal

position/, are centered (sum ~[i] = 0). Scaling so that

~ x2 [i] - 1 insures that~ a; (x) - 1 for every placement. ~~)
/ ""'· .,

Equation (1) shows that the cost of a vector is the weighted
\"

average of its constituent eigenvector costs Ar· The bounds

Al ~ cost(x) ~ An-l follow. Thus if the cost of a heuristic

approaches A1 , a proof of near-optimality is immediate.

Simply setting x u1 would be optimal, but the components

of u1 are unlikely to coincide with the x legal input posi­

tions required.

3.5 Transformation to the furthest away problem

For any H, minimizing cost(x) =,~ a;(x)Ar is equivalent to

maximizing

Pick H > Hax(Ar) and define matrix V whose columns are the

eigenvectors vr ur sqrt(H-Ar), scaled so that those with

the least cost get the greatest length. Then the above

expression to be maximized equals ~(xTvr) 2 , which is written

as 1xTv1 2 . By representing placements x as points xTV (with
T coordinates x vr), the problem becomes a search for the

furthest point from 0.

3.6 Probes for good points

Now H-cost(x) can be evaluated as 1~v1 2 . The payoff comes

for any given direction d€~-l (a "probe") a valuable x,

one that maximizes ~Vd, can efficiently be produced. The

- 10 -

diagram (fig 3) illustrates the idea for the special case in

which only d1 and d 2 are nonzero. Each dot plots the first

two components of a point ~V corresponding to some legal

placement x.

Every probe yields both a low-cost placement and a proof

that no point in the entire set of solutions has a greater

projection in the probe direction.

To perform a probe, first Vd is computed, whose n elements

(Vd)[i] are the projections of the rows V[i] onto the probe.

The objective is then to compute the permutation of x posi­

tions that maximizes ~(Vd).

Probe directions with only a few nonzero components have

several advantages in practice. If k components that

correspond to promising eigenvectors (e.g., those with the

lowest Ar (is greatest (H-Ar)) are selected then the range

of possible contributions to H-cost(x) from a particular set

of eigenvectors can be explored by performing many probes.

This artifice of constraining the probe directions effects a

temporary reduction of the original search problem in ~-l
to a more manageable one in Rk. Each dimension in Rk may be

identified with an "active" column-vector in V.

3.7 Placement by iterated probes

The problem is to identify particular good probe directions.

This is done by taking the new probe direction towards the

maximum-projection point discovered by t.he previous one.

This makes sure that the contribution to 1xTv1'2 from the k

active dimensions (in theory) never decreases. However in

practise this is not the case, because the maximum-

projection point is not found, but an approximation of it.

As long as better results (~V increases) are obtained it is

useful to perform more iterations at the same stage. Later

stages can use progressively more dimensions, with new

eigenvectors entering in order of increasing Ar (is decreas­

ing H-Ar). The current x determines the next probe: the

r-tb coordinate of the new probe direction is ~vr if the

- 11 -

•
•

\

\ xTv
• • \

• \

• \
\

\ d •

• •

-----------------------------i~--------------------~------ xTvl \

•

•

•
• •

•
•

\ . \
\

•

\
\

\

\

•

The points are projections from the legal x vectors onto the

sub space (v1 ,v2).

d is the probe direction.

xTV is the maximum projection point. This maximum projection

point is the next probe direction.

Figure 3. Probe direction

- 12 -

r-th vector is active 0 otherwise. At the beginning of each

new stage, the probe is simply extended with the components

of the newly activated eigenvectors.

3.8 Probes and (x,y) positions

The two dimensional problem can be stated in the following

way:

Maximize 1xTv1 2 + IYTVI 2 , where the vectors x,y must be

obtained by a permutation of the legal (x,y) positions.

The x and y vectors have to be handled jointly, because the

legal positions in the gate array situation depend on each

other. The analogue of a probe direction is a pair d,e, and

the basic operation is to maximize ~Vd + yTVe over all pos­

sible placements (x,y).

By defining the vectors a - Vd and b - Ve, the function of

the probe can be concisely summarized :

Arrange the legal positions into vectors x,y so that

~ (x[i]"a[i]+y[i] "b[i]) is maximized, or

~ (x[i]-a[i]) 2+(y[i]-b[i]) 2 is minimized

3.9 Net weighting

In the representation of a circuit as a connection matrix C,

each net with s modules adds weight w(s) to cij for every

pair of its modules i,j ("the clique model"). If w(s) = 1

for all s, nets with many modules receive disproportionately

large weights. Therefor other net weighting functions are

considered.

definition st(i) = the minimum spanning tree of net i

definition n(i) =number of modules in net i.

The ideal situation is that if st~ if n(J - that

then the contributions to the total cost from net i and net

j are the same.

Assume that all the modules from the same net are lying in a

- 13 -

row on a equal distanced (st(i) =d), then the net weights :nrrr=T
follows:

The contribution to the total cost for a net with s modules

is
s-1 s-1

l/2'w(s) ~ ~ (d'(i-j))2
i=O j-0

Because the modules of a net do not lie in a row this is an

over estimation. Assume that the modules are equally scat­

tered in the x-direction and the y-direction then

((d'(i-j)) 2) could be roughly estimated by (d2 · li-jl). This

would lead to the following formulas:

s-1 s-1
(d2 '1i-jl) lj2·w(s) ~ ~

i=O j=O

d2 ·w(s)·
s-2 s-1
~ ~ (j-i)

i=O j=i+l

s-1
d2 ·w(s)· ~ ((s-i)'i)

i=l

-
-

In the ideal situation the net cost is the same for all the

nets if the distance d is the same. This leads to the fol­

lowing net weighting function w(s).

w(s) - constant
s-1
~ ((s-i)'i)

i=l

In the literature [2] there are other net weighting func­

tions proposed:

1 w(s) = s:T ,

2 w(s) s•

w(s)

Because the whole idea behind the eigenvector method merely

depends a great deal on the net weighting function, further

investigation is needed to find out which net weighting

function is best suited in practical situations.

- 14 -

4. Probes and legal placements in gate arrays.

4.1 Introduction

In this chapter two different transformations are discussed.

• Transforming a legal placement into a probe direction.

• Transforming a probe direction into a legal placement.

The theory in chapter 3 describes this problems only for

normalized vectors. Because the legal placement vector is

not a normalized vector some particular problems arise.

4.2 From a legal placement to a probe.

A legal placement in the gate array system consists of a

list of modules with their coordinates on the grid and a

reference to the stamp which realizes this module. The

modules may not have any overlap. From this information a

placement vector with ~ xi - 0 and ~ x1 1 must be made.

To do this the middle of each module is taken as the coordi­

nates of the x vector. Then the following steps are taken :

~ xi
offset - nr of modules

x. = x. - offset
~ ~

factor = sqrt(~ x1)
,centering xi

,normalizing xi

Now the probe direction can be calculated as in chapter 3

with :

Pj = r xi·vji

where vji is the ith element of eigenvector vj, with

eigenvector vj belonging to the set of active eigenvec­

tors.

For the y vector holds the same.

- 15 -

4.3 From a probe to a legal placement

If a probe direction is present, a normalized placement vec­

tor x can be calculated easily according to the theory

presented in chapter 3 with

This normalized x vector is first converted to a global vec­

tor lying on the placement grid, with the following steps :

factor max occupied x - min occupied x
x max - x m~n

x. = x. ·factor
~ ~

offset _ max occupied x - min occupied x
2

max_occupied_x is the maximum occupied position

grid

min_occupied_x is the minimum occupied position

grid

on the

on the

With above steps a global x and y vector which lie between

the min_occupied and max_occupied x and y boundaries is

formed.

The legal placement must minimize

The minimum of above formula is approximated by taking each

module individual, and find the best legal place, taking in

consideration the already placed modules (no overlap may

occur), so that :

is minimized. The reason to approximate the minimum is that

this has to be done several times and to find the absolute

minimum would take to much time. The only freedom is the

order in which the modules are placed. To have better pros­

pects for latter modules to be placed close to there optimal

- 16 -

position, the greatest modules are chosen to be placed

first. Another strategy could be to take the modules with

the greatest contribution to solutions cost first.

Another problem that arises with this approach is that the

normalized x and y vector tend to be dependent of each

other. The scalar product (x'y) is not zero, but becomes

greater after each step because both vectors are build up

with a preference for the best eigenvectors. The global x

and y vector are more and more growing to each other and the

modules cluster around some diagonal of the gate array. To

overcome this problem the x and y vector are orthogonalized

to each other. This means that~ (xi·yi) must be made zero.

The x and y vector should be adjusted minimaly and each vec­

tor with the same proportions. To do this the following

formulas are used

(x'x)

(x'y)

A X + a'sqrtty·y) X sqrt(x·x)

A

sqrtty·y) + • X y a sqrt(x'x)

We want that ~ A ,A
xi Yi becomes 0 so

(x·r) '(l+a2) sqrt((x·xJ·(y'y)) + 2'a- 0

chose the a which is the smallest

a - -1 + sqrt(l - cor xr·cor xr)
cor_xy

with (x'y) cor_xy = sqrt((x·x ·(y·y))

Remark :

If cor_xy<<l then a - -~·cor_xy

By making x- x andy- y, the normalized x andy vector are

orthogonal to each other.

- 17 -

5. The eigenvalue problem

5.1 Introduction

In the previous chapters a placement is described which is

totally based on the eigenvectors of a symmetric matrix A.

The problem is to calculate 'promising' eigenvectors. In

this chapter a method is presented to calculate this eigen­

vectors in a fast way, making use of the fact that A is

sparse and that not all the eigenvectors are needed. For a

more detailed description of the theory behind the eigen­

value problem, the book from Parlett (The Symmetric Eigen­

value Problem) [3] is recommended.

5.2 Tridiagonalization of a matrix by Lanczos

definition T is tridiagonal if tij- 0 whenever li-jl>l.

A tridiagonal matrix T and a transformation matrix Q are

formed, with Q orthogonal, from the symmetric matrix A. So

that

proof :

The transformation T = QTAQ. Can be rewritten as

QT = AQ , since QT

If the j-th column on each side is equated, and the terms

are rearranged, then the important relation is found.

By defining Po= Pn = 0 this will hold for j = 1, ... ,n.
Thus rn and q0 , qn+l are undefined. Next the orthogonality

of Q is used to obtain.

1. o = qJ(qj+lpj) qJAqj-1·aj-o·pj-l,

2. Pj = lqj+lPjl lrjl

3. qj+l = rj/Pj' Pj > 0 by the previous equation

- 18 -

From the equations above the 'simple' Lanczos algorithm is

derived.

ro is given, Po- lrol ~ 0. For j- 1,2, ... n repeat

1. qj rj-1/Pp.l

2. U·
J Aqj

3. rj u j-·lp j-1 (qo = O)

T.
4. aj q· Jr.

. J

5. rj rjaj

6. pj lrjl

Remark 1

If pj becomes 0 at step 6, then we chose at step 6 a new rj

which is orthogonal to all the previous found rj's. The

fact that pj - 0 means that the chosen r 0 was orthogonal to

some eigenvectors of A.

Remark 2 :

Because there is a subspace Qj = (q1 ·· ··qj) build, by multi­

plying A with a random vector, convergence will occur for

the outher eigenvalues of A [3] This feature will be used to

find the most 'promising' eigenvectors of A without calcu­

lating all eigenvectors.

Remark 3 :

To keep all found q's orthogonal to each other it is neces­

sary to perform a full orthogonalization after step 5.

5.3 Eigenvalue and eigenvector estimation from a Tridiago­

nal matrix T

This can be done with the "QL" algorithm.

T-a = QL

T T T1 = LQ+a = Q (T-a)Q+a = Q TQ

a is the origin shift. L is lower triangular (Lij is 0 for

- 19 -

The tridiagonal form is preserved, because the shape of Q

and L simply preserve the zero elements above the diagonal.

The elements below the diagonal must be zero through cancel­

lation, since T1 is like T symmetric. See also fig 4. QL

(with To = T) is as follows:

If the eigenvectors are not needed, but only the eigenvalues

then this calculation could be done in approximately 1.7 QL

transforms [3,p. 162] per eigenvalue when Yilkinson's shift

is used.

Yilkinson's shift if a1 - a 2 then a- a1-IP1I

else a- a 1 -
sign(o)P~

The QL algorithm using Yilkingson's shift will always con­

verge in exact arithmetic. The eigenvalues will appear on

the diagonal of Tk for k ~ ~ And the eigenvectors can be

calculated as follows

And now each column of P contains an eigenvector of T if

k ~ ~ To perform a QL transformations Givens transforma-

tion is used [3].

5.4 Accuracy of eigenvalues and eigenvectors

A good measure for the accuracy, of the eigenvectors u and

eigenvalues A, is the residual norm IAu-uAI. Fortunately

this norm can be computed without computing u.

steps in the Lanczos algorithm :

IAu-uAI = IAQs-QsAI , since u = Qs

After j

- 20 -

0
=

0

Figure 4. Preservation of the tridiagonal form

- 21 -

I(AQ-QT)sl since s>.. - Ts

T since AQ· QjTj
T l(r.e.)sl - rjej J J J

T since lrjl - f3. f3 ·I e .s I J J J

So the bottom elements of the normalized eigenvectors (s) of

T. signal convergence and there is no need to form u until
J

its accuracy is satisfactory.

- 22 -

6. Short overview of the program and the data structures

6.1 Used data structure

The main data structures that are used in the program can be

divided in two different types.

First there are the data structures generated by the rou­

tines to read the net list and the macro library.

Second there are the data structures that are constructed

from the first type.

There are two different data structures of the first type:

One generated from the net list (fig 5) consists of a net

list. Each net in the net list contains a pointer to a list

which contains the modules connected to that net. The

modules are also contained in a list. From the structure

drawn in fig 5 a sparse matrix (fig 6) is constructed, this

sparse matrix is the cost matrix mentioned in paragraph 2.3.

An other data structure is generated from the macro library

(fig 7). Because not all the information given by the

structure off the macro library is needed, a new structure

(fig 8) is made. There are two main differences between the

old structure and the new structure, the new structure holds

no information over terminals and wires, and the new struc­

ture has a new variable called gridlegals. These gridlegals

contain in a compact form the legal grid positions of a

macro or stamp.

6.2 Program description

The program can be roughly diveded in the following steps.

read_macro_library;

read_netlist;

read_size_gatearray;

define_gridlegals;

make_gridlegals;

calculate_net_weights;

make_Sparse_cost_matrix;

NET LIST

net name
weight

nmodconn
modconn ptr

:
:

- 23 -

MODULES
CONNECTED

module id
! terminal id J

I

module id
terminal id

module id
1 terminal id 1

:

l module id
1 terminal id 1

....

~

Figure 5. Structure net list

MODULE
LIST

module name
macro index
stamp index

position x
position y

module name
macro index
stamp index

position x
position y

module name
macro index
stamp index

position x
position y

:

module name
macro index
stamp index

position x
position y

module name ----.--.-
macro mdex
stamp index

position x
position y

- 24 -

calculate_promising_eigenvectors;

evaluate_placement;

write_netlist;

read macro lib :

Read the macros from the macro library of this type of gate

array.

read net list

Reads the net list which represents the circuit description.

read_size_gatearray :

Reads the size of the gate array. The X_SIZE, Y SIZE and the

NLAYERS (number of layers) is read.

define_gridlegals :

Determines all the possible X positions and Y positions that

may lead to legal positions for the modules contained in the

net list. Also generated is a new grid called PL_GRID which

consists of as many legal X and Y positions then there are

legal X andY positions.

make_macro_gridlegals

Defines on which grid positions each macro and stamp may lie

on PL GRID.

calculate_net_weights :

Calculates the weights of the nets taken into account the

amount of modules of the net and the user specified impor­

tance of the net.

net weight= i(n)· constant
- s-1

~ ((s-i)•i)
i=l

where i(n) is the user specified importance of the net, and

s the number of modules in the net.

make_Sparse_cost_matrix

- 25 -

Sparse_ Matrix
pointer

nr of elements
element element element

row pointer
column nr column nr column nr

:

nr of elements - - element element element
row pointer

: column nr column nr column nr

nr of elements
element element element

row pointer

: column nr column nr column nr

nr of elements - -
element element element

row pointer
column nr column nr column nr

nr of elements -
element element element

row pointer
column nr column nr column nr

Figure 6. Structure Sparse Matrix

- 26 -

First a NxN cost matrix is made as described in chapter 2 (N

is the number of modules). Because we need the matrix only

if we multiply the matrix by a vector we made the matrix

sparse as shown in fig 6. The sparse matrix contains only

the nonzero components.

calculate_promising_eigenvectors :

To calculate the most promising eigenvectors the matrix must

be adjusted in the right way, first the eigenvector with the

greatest lambda (H) is calculated. Then the sparse matrix S

undergoes a transformation S = (H"I- S). Now the most

promising eigenvectors consists of the eigenvectors with the

greatest lambdas with this transformed matrix.

evaluate_placement

This routine tries to find a low cost placement with the

help of the calculated eigenvectors. It can be divided in

an initialization step and a repetition.

make_random_global_placement;

find_legal_placement;

nr_of_probes- sqrt(nr of modules);

do

do

find_legal_placement;

find_new_probe_direction;

while (improvement);

nr_of_probes = nr_of_probes * 2;

while (nr_of_probes < (2 * nr_of_eigenvectors));

This repetition leads to a local convergence, so if we

repeat above routines with another random global placement

then another local convergence arises which can be better or

worse then the first one. To find the global minimum one

would have to repeat this steps infinitely. Because the aim

of this program is a good placement in a fast running time

these steps are only taken once.

- 27 -

MACRO
name

nterminals TERMINAL
terminal list name
neqtermsets term type I

eqtermset list
nstamps EQTERMSET

stamp list ~ neqterms
eqterm list

STAMP
name

id number -
ntermwires WIRE

termwires list npositions
nintwires positions list

intwire list
nlegals WIRE

legal list -- npositions J
X size positions list
y_size
nlayers LEGALS

grid pointer fromx
stepx
tox

fro my
stepy
toy

Figure 7. Structure macro library

MACRO
gridlegals
nstamps STAMP

stamp list id number
nlegals LEGALS

legal list fromx
X size stepx
y size tox

grid legals fro my
stepy
toy

Figure 8. Data needed from the library

- 28 -

find_new_probe_direction :

Before we can calculate the new probe direction we must

determine the x and y vector of the best found placement so

far. The mid of every module is taken as the real position

of the module, and we make that ~ x. = 0. Now we can calcu-
i ~

late for every eigenvector we want to use probe
1
. = ~ x.·v ...

i ~ J~

The new x vectors is then calculated as follows :

Aj is the eigenvalue of the eigenvector from the matrix

(H·I- S). For this x vector~ xi is still 0 and the max-
~

imum xi and minimum xi are not the maximum and minimum of

the possible grid coordinates. To map the x vector onto the

grid we must multiply the x vector by a factor and then add

an offset to make sure that,

~ xi
nr of modules = mid of the grid

find_legal_placement

We want that the legal placement vectors x and y

maximizes ~ (x. ·a.)
~ ~

+ (yi·bi)

minimizes ~ 2 2 (x.-a.) + (y. -b.)
~ ~ ~ ~

(ai,bi) is the global place of module i

To accomplish this we first order the modules on their

sizes, greatest module first. Then we minimize the second

formula for each module separately. By taking the greatest

module first there is more change that the last modules will

fit nearby their global place, because they are small.

write netlist :

Writes away the best resulting placement into a file.

- 29 -

7. Conclusions

• A program which handles the placement of modules on

gate arrays with the eigenvector method [2], is succes­

fully developed. The practical tests justify the

choice of the new netweighting function above the net­

weighting funtions given in literature.

• The order of the algorithom depends, for netlists with

more then a hundred modules, merely on the calculation

of the eigenvectors. If all eigenvectors have to be

calculated then the order of the program is O(n3). The

order of the algoritham depends on the convergence of

the wanted eigenvectors, if not all eigenvectors have

to be calculated.

• The program is able to handle a net with special care,

so that the netlength of that net decreases.

• The disadvantage of the placement algorithtm is that

the costfunction is limited to the total netlength.

This can lead to the forming of clusters of modules

which are heavily connected to each other.

- 30 -

References

[1] Dewilde, P.

The Integrated Circuit Design Book,

Delft University Press, 1986.

[2] Frankle, J. and Karp, R.M.

Circuit Placement and Cost Bounds by Eigenvector Decom­

position,

IEEE, p 414,417 1986.

[3] Parlett, B.N.

The Symmetric Eigenvalue Problem,

Prentice Hall Inc. , 1980.

[4] Lippens, P.E.R.

GADL - a gate array description language

M.Sc. Thesis. Automatic System Design Group, Department

of Electrical Engineering, Eindhoven University of Tech­

nology, 1984.

[5) Nuijten, P.A.C.M.

Hierarchical wire routing of gate arrays

M.Sc. Thesis. Automatic System Design Group, Department

of Electrical Engineering, Eindhoven University of Tech­

nology, 1985.

[6) Slenter, A.G.J.

Local routing of gate arrays

M.Sc. Thesis. Automatic System Design Group, Department

of Electrical Engineering, Eindhoven University of Tech­

nology, 1985.

[7) Jongen, R.J.

Gate array placement by simulated annealing

M.Sc. Thesis. Automatic System Design Group, Department

of Electrical Engineering, Eindhoven University of Tech­

nology, 1984.

