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Abstract 

Starting from a netlist of a digital circuit the gate array 

system is able to generate a layout description on several 

types of gate arrays. Described in this paper is a place­

ment which places the cells on the gate array. This place­

ment is based on the eigenvector decomposition of a cost 

matrix. It tries to keep the total netlength short and so 

the routing chances high. One of the problems was to calcu­

late promising eigenvectors, this was solved by using the 

method of lanczos as described in this paper. The goal of 

the placing algorithm is to place the cells close to the 

most promising eigenvectors. 
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1. Introduction 

At the laboratory of the automatic system design group (ES) 

of the department of electronic engineering of the Eindhoven 

University of Technology effort is made on the construction 

of silicon compilers. In this environment there is a pro­

ject which is concerned with the realization of digital cir­

cuits on gate arrays. The project is called GAS and is an 

"open" design system. The system is open with respect to 

the type of gate array and with respect to the tools for 

logic design, placement and routing. 

The paper describes the newly developed placement algorithm, 

based on the eigenvector decomposition of a cost matrix. 
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2. Introduction to the gate array system used on the TUE 

2.1 The gate array's 

Gate arrays are used for the realization of digital systems. 

Their internal structure and the logic and interface com­

ponents are fixed (fig 1). Only the wirering cost of the 

various components on the chip is subject of the design. 

Therefor they are known as 'semicustomized' chips. The 

advantages of the use of gate arrays are a quick turn around 

in time and the low cost of the fabrication process. This 

is due to the fact that only the wirering is different for 

every new design. 

Because of the fixed structure of the gate arrays the wirer­

ing problem is fairly complex. In other technologies the 

channel width is adjusted according to the need, but in the 

gate array system the channel width is fixed. So in gate 

array design special reroute strategies are necessary if the 

number of tracks exceeds the number that is allowed. 

There are many different types of gate arrays based on all 

kinds of logical families like I2L, Schottky TTL, static 

NMOS and CMOS. They all have there own so called image. 

The image of a gate array describes the possible locations 

of wires (polysilicon, silicide or metal) and the possible 

location of via holes connections between the various wiring 

layers. The image can be build up of one or more layers and 

different arrangements of gates (eg row or block arrange­

ments), where a gate is the smallest logic port on that par­

ticular gate array. 

2.2 The gate array system 

The gate array system, of which the placement described 

later in this report is part of, covers all different types 

of gate arrays. In this system the structure of the gate 

array is described by a grid. The grid contains all the 

essential place and rout information at any stage of the 
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Figure 1. Example of the internal structure of a gate array 
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design process. If we want to fit a new type of gate array 

in the system, the only thing that has to be done is to 

describe the image, design rules, the router cost function 

and the macros. To do this a special language, the so 

called Gate Array Description Language [4], is provided. 

Once this is done for any type of gate array, a compiler 

translates the image, design rules and macro description 

into a grid and a macro library. Now any design can be han­

dled by the gate array system. The great advantage of this 

gate array system is that there is no need to develop new 

placement and routing tools for a new type of gate array. 

2.3 The macro library 

By each type of gate array a macro library is generated. 

This macro library contains all the macros that can be real­

ized on that particular gate array (e.g. inverters, nands, 

different types of flip-flops etc.). Each macro consists of 

different realizations (stamps) with different legal places, 

internal wirering, positions for input and output terminals 

etc. 

2.4 The layout generation 

The layout generation of a digital circuit is divided in 

several steps (fig 2). If it is a new type of gate array 

then an image description, a router cost function and a 

macro description must be generated with the Gate Array 

Description Language. Then a compiler generates a macro 

library, a grid description and the design rules, these last 

two are stored in the core library. If these descriptions 

are available all sort of circuits can be handled by the 

gate array system. For the generation of a netlist there is 

a netlist compiler, which can handle information given in by 

hand or from a schematic editor. To generate a layout from 

this net list, first a placer places all the modules that 

are in the netlist onto the grid, taken into consideration 

the legal places of the modules and a cost function. When 

all the modules are placed the nets are globally routed [5]. 
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This means that the grid first is divided in a global grid 

with the smallest unit a grid cell of that global grid. 

Then the global router routes the nets hierarchical from 

grid cell to grid cell taken into consideration the the 

number of nets between these grid cells. The local router 

[6], then tries to rout each grid cell independently of the 

other grid cells given the information of the global router. 

The routing takes place wherever tracks are available and 

the modules (macros) are transparent for routing. In gen­

eral not all pins of a net are connected by solving these 

local routing problems. To connect the remaining pins the 

router takes successively more grid cells in consideration 

until all pins are connected or the routing area is the com­

plete chip. The extractor is able to get the information 

regarding critical paths. The place and rout tools are able 

to handle the nets in the critical path with special care. 
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3. Placement by eigenvector decomposition 

3.1 Introduction 

Another placement invoked in the gate array system is based 

on a simulated annealing approach [7]. Simulated annealing 

is based on interchanges of modules. The number of inter­

changes that take place at each step is an equivalent of the 

'temperature' of the system. The interchanges are excepted 

if the cost function becomes smaller else the interchanges 

have a probabilistic chance that they are excepted. This 

probabilistic chance a function of the temperature, the 

lower the temperature the smaller the chance is that the 

interchanges are excepted. This temperature is cooled down 

during the process. The cost function is a measure of how 

hard it is to rout the modules. With simulated annealing a 

good placement can be obtained for long run time. It is 

because of this long run time that another method to place 

the modules is developed and that annealing is used as a 

'back-up' placement. This new method is based on the eigen­

vector decomposition of a cost matrix as described by John 

Frankle and Richard M. Karp [2]. 

3.2 Problem definition 

The input for the problem is 

• A netlist which describes which modules are connected 

to each other. 

• A macro library. The macro library describes the macros 

(modules) in the terms of different realizations 

(stamps), where each stamp has a finite number of legal 

grid positions and a size. 

• The size of the grid. 

The constraints for the output are : 

• Each module has to placed on a for that module legal 

position on the grid. 

• There may be no overlap between the modules. 

• The modules must be placed in such a way that the nets 
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can be routed. 

3.3 The cost function 

As stated before the cost function must be a measure of how 

hard it is to rout the modules. The cost function for the 

eigenvector decomposition is entirely based on keeping the 

total netlength as short as possible. This is done by 

adding to each net a certain weight w. Now a cost function 

can be build up where cij stands for the accumulated net 

weights, where both module i and module j belong to. The 

cost function becomes as following : 

cost(x,y) = 1;2· ~ ~ cij. ( (x[i]-x[j))2 + (y[i]-y[j])2) 

Because cost(x,y) - cost(x) + cost(y) the equation can be 

simplified by threating only the x-positions and for the y­

positions will hold the same. 

3.4 Eigenvectors 

cost(x) 1;2· ~ ~ cij (x[i]-x[j])2 is expanded to get: 

cost(x) -~Cx + ~ x 2 [i]"(i-th row-sum of C) or 

cost(x) 

where the cost matrix A = -C plus a diagonal matrix with 

entries equal to the row-sums of C. 

Because A is symmetric it has n orthonormal eigenvectors ur. 

Each eigenvector has an associated cost: 

cost(ur) = u~ Aur = Ar. 

Any vector x has an unique expansion x 
T coefficients ar(x) - x ur. Since 

2 cost(x) = ~ ar(x)Ar , (1) 

The problem restatement is : 

Choose x to minimize ~ a;(x)Ar' where x is a permutation 

of the legal positions and ar - xT ur. 

The restatement allows a global approach of the placement 
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vector, as a combination of eigenvectors that make indepen­

dent contributions to solution cost. Here the observation 

that cost(ur+u
5

) = cost(ur)+cost(u
5
), which is true because 

u~u5 = 0, is used. 

T The vector (1,1, ..... ,1) is an eigenvector, because every 

row of A sums to 0. For the placing this vector is of no 

use, because it means that all the modules have to be placed 

on the same place. To make that the eigenvector 

(1,1, .... ,1) has no contribution to the placement, the legal 

position/, are centered (sum ~[i] = 0). Scaling so that 

~ x2 [i] - 1 insures that~ a; (x) - 1 for every placement. ~~) 
/ ""'· ., 

Equation (1) shows that the cost of a vector is the weighted 
\" 

average of its constituent eigenvector costs Ar· The bounds 

Al ~ cost(x) ~ An-l follow. Thus if the cost of a heuristic 

approaches A1 , a proof of near-optimality is immediate. 

Simply setting x u1 would be optimal, but the components 

of u1 are unlikely to coincide with the x legal input posi­

tions required. 

3.5 Transformation to the furthest away problem 

For any H, minimizing cost(x) =,~ a;(x)Ar is equivalent to 

maximizing 

Pick H > Hax(Ar) and define matrix V whose columns are the 

eigenvectors vr ur sqrt(H-Ar), scaled so that those with 

the least cost get the greatest length. Then the above 

expression to be maximized equals ~(xTvr) 2 , which is written 

as 1xTv1 2 . By representing placements x as points xTV (with 
T coordinates x vr), the problem becomes a search for the 

furthest point from 0. 

3.6 Probes for good points 

Now H-cost(x) can be evaluated as 1~v1 2 . The payoff comes 

for any given direction d€~-l ( a "probe") a valuable x, 

one that maximizes ~Vd, can efficiently be produced. The 
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diagram (fig 3) illustrates the idea for the special case in 

which only d1 and d 2 are nonzero. Each dot plots the first 

two components of a point ~V corresponding to some legal 

placement x. 

Every probe yields both a low-cost placement and a proof 

that no point in the entire set of solutions has a greater 

projection in the probe direction. 

To perform a probe, first Vd is computed, whose n elements 

(Vd)[i] are the projections of the rows V[i] onto the probe. 

The objective is then to compute the permutation of x posi­

tions that maximizes ~(Vd). 

Probe directions with only a few nonzero components have 

several advantages in practice. If k components that 

correspond to promising eigenvectors (e.g., those with the 

lowest Ar (is greatest (H-Ar)) are selected then the range 

of possible contributions to H-cost(x) from a particular set 

of eigenvectors can be explored by performing many probes. 

This artifice of constraining the probe directions effects a 

temporary reduction of the original search problem in ~-l 
to a more manageable one in Rk. Each dimension in Rk may be 

identified with an "active" column-vector in V. 

3.7 Placement by iterated probes 

The problem is to identify particular good probe directions. 

This is done by taking the new probe direction towards the 

maximum-projection point discovered by t.he previous one. 

This makes sure that the contribution to 1xTv1'2 from the k 

active dimensions (in theory) never decreases. However in 

practise this is not the case, because the maximum-

projection point is not found, but an approximation of it. 

As long as better results (~V increases) are obtained it is 

useful to perform more iterations at the same stage. Later 

stages can use progressively more dimensions, with new 

eigenvectors entering in order of increasing Ar (is decreas­

ing H-Ar). The current x determines the next probe: the 

r-tb coordinate of the new probe direction is ~vr if the 
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Figure 3. Probe direction 
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r-th vector is active 0 otherwise. At the beginning of each 

new stage, the probe is simply extended with the components 

of the newly activated eigenvectors. 

3.8 Probes and (x,y) positions 

The two dimensional problem can be stated in the following 

way: 

Maximize 1xTv1 2 + IYTVI 2 , where the vectors x,y must be 

obtained by a permutation of the legal (x,y) positions. 

The x and y vectors have to be handled jointly, because the 

legal positions in the gate array situation depend on each 

other. The analogue of a probe direction is a pair d,e, and 

the basic operation is to maximize ~Vd + yTVe over all pos­

sible placements (x,y). 

By defining the vectors a - Vd and b - Ve, the function of 

the probe can be concisely summarized : 

Arrange the legal positions into vectors x,y so that 

~ (x[i]"a[i]+y[i] "b[i]) is maximized, or 

~ (x[i]-a[i]) 2+(y[i]-b[i]) 2 is minimized 

3.9 Net weighting 

In the representation of a circuit as a connection matrix C, 

each net with s modules adds weight w(s) to cij for every 

pair of its modules i,j ("the clique model"). If w(s) = 1 

for all s, nets with many modules receive disproportionately 

large weights. Therefor other net weighting functions are 

considered. 

definition st(i) = the minimum spanning tree of net i 

definition n(i) =number of modules in net i. 

The ideal situation is that if st~ if n(J - that 

then the contributions to the total cost from net i and net 

j are the same. 

Assume that all the modules from the same net are lying in a 
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row on a equal distanced ( st(i) =d), then the net weights :nrrr=T 
follows: 

The contribution to the total cost for a net with s modules 

is 
s-1 s-1 

l/2'w(s) ~ ~ (d'(i-j))2 
i=O j-0 

Because the modules of a net do not lie in a row this is an 

over estimation. Assume that the modules are equally scat­

tered in the x-direction and the y-direction then 

((d'(i-j)) 2) could be roughly estimated by (d2 · li-jl). This 

would lead to the following formulas: 

s-1 s-1 
(d2 '1i-jl) lj2·w(s) ~ ~ 

i=O j=O 

d2 ·w(s)· 
s-2 s-1 
~ ~ (j-i) 

i=O j=i+l 

s-1 
d2 ·w(s)· ~ ( (s-i)'i ) 

i=l 

-
-

In the ideal situation the net cost is the same for all the 

nets if the distance d is the same. This leads to the fol­

lowing net weighting function w(s). 

w(s) - constant 
s-1 
~ ((s-i)'i) 

i=l 

In the literature [2] there are other net weighting func­

tions proposed: 

1 w(s) = s:T , 

2 w(s) s• 

w(s) 

Because the whole idea behind the eigenvector method merely 

depends a great deal on the net weighting function, further 

investigation is needed to find out which net weighting 

function is best suited in practical situations. 
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4. Probes and legal placements in gate arrays. 

4.1 Introduction 

In this chapter two different transformations are discussed. 

• Transforming a legal placement into a probe direction. 

• Transforming a probe direction into a legal placement. 

The theory in chapter 3 describes this problems only for 

normalized vectors. Because the legal placement vector is 

not a normalized vector some particular problems arise. 

4.2 From a legal placement to a probe. 

A legal placement in the gate array system consists of a 

list of modules with their coordinates on the grid and a 

reference to the stamp which realizes this module. The 

modules may not have any overlap. From this information a 

placement vector with ~ xi - 0 and ~ x1 1 must be made. 

To do this the middle of each module is taken as the coordi­

nates of the x vector. Then the following steps are taken : 

~ xi 
offset - nr of modules 

x. = x. - offset 
~ ~ 

factor = sqrt(~ x1) 
,centering xi 

,normalizing xi 

Now the probe direction can be calculated as in chapter 3 

with : 

Pj = r xi·vji 

where vji is the ith element of eigenvector vj, with 

eigenvector vj belonging to the set of active eigenvec­

tors. 

For the y vector holds the same. 
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4.3 From a probe to a legal placement 

If a probe direction is present, a normalized placement vec­

tor x can be calculated easily according to the theory 

presented in chapter 3 with 

This normalized x vector is first converted to a global vec­

tor lying on the placement grid, with the following steps : 

factor max occupied x - min occupied x 
x max - x m~n 

x. = x. ·factor 
~ ~ 

offset _ max occupied x - min occupied x 
2 

max_occupied_x is the maximum occupied position 

grid 

min_occupied_x is the minimum occupied position 

grid 

on the 

on the 

With above steps a global x and y vector which lie between 

the min_occupied and max_occupied x and y boundaries is 

formed. 

The legal placement must minimize 

The minimum of above formula is approximated by taking each 

module individual, and find the best legal place, taking in 

consideration the already placed modules (no overlap may 

occur), so that : 

is minimized. The reason to approximate the minimum is that 

this has to be done several times and to find the absolute 

minimum would take to much time. The only freedom is the 

order in which the modules are placed. To have better pros­

pects for latter modules to be placed close to there optimal 
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position, the greatest modules are chosen to be placed 

first. Another strategy could be to take the modules with 

the greatest contribution to solutions cost first. 

Another problem that arises with this approach is that the 

normalized x and y vector tend to be dependent of each 

other. The scalar product (x'y) is not zero, but becomes 

greater after each step because both vectors are build up 

with a preference for the best eigenvectors. The global x 

and y vector are more and more growing to each other and the 

modules cluster around some diagonal of the gate array. To 

overcome this problem the x and y vector are orthogonalized 

to each other. This means that~ (xi·yi) must be made zero. 

The x and y vector should be adjusted minimaly and each vec­

tor with the same proportions. To do this the following 

formulas are used 

(x'x) 

(x'y) 

A X + a'sqrtty·y) X sqrt(x·x) 

A 

sqrtty·y) + • X y a sqrt(x'x) 

We want that ~ A ,A 
xi Yi becomes 0 so 

(x·r) '(l+a2) sqrt( (x·xJ·(y'y) ) + 2'a- 0 

chose the a which is the smallest 

a - -1 + sqrt(l - cor xr·cor xr) 
cor_xy 

with (x'y) cor_xy = sqrt( (x·x ·(y·y) ) 

Remark : 

If cor_xy<<l then a - -~·cor_xy 

By making x- x andy- y, the normalized x andy vector are 

orthogonal to each other. 
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5. The eigenvalue problem 

5.1 Introduction 

In the previous chapters a placement is described which is 

totally based on the eigenvectors of a symmetric matrix A. 

The problem is to calculate 'promising' eigenvectors. In 

this chapter a method is presented to calculate this eigen­

vectors in a fast way, making use of the fact that A is 

sparse and that not all the eigenvectors are needed. For a 

more detailed description of the theory behind the eigen­

value problem, the book from Parlett ( The Symmetric Eigen­

value Problem ) [3] is recommended. 

5.2 Tridiagonalization of a matrix by Lanczos 

definition T is tridiagonal if tij- 0 whenever li-jl>l. 

A tridiagonal matrix T and a transformation matrix Q are 

formed, with Q orthogonal, from the symmetric matrix A. So 

that 

proof : 

The transformation T = QTAQ. Can be rewritten as 

QT = AQ , since QT 

If the j-th column on each side is equated, and the terms 

are rearranged, then the important relation is found. 

By defining Po= Pn = 0 this will hold for j = 1, ... ,n. 
Thus rn and q0 , qn+l are undefined. Next the orthogonality 

of Q is used to obtain. 

1. o = qJ(qj+lpj) qJAqj-1·aj-o·pj-l, 

2. Pj = lqj+lPjl lrjl 

3. qj+l = rj/Pj' Pj > 0 by the previous equation 
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From the equations above the 'simple' Lanczos algorithm is 

derived. 

ro is given, Po- lrol ~ 0. For j- 1,2, ... n repeat 

1. qj rj-1/Pp.l 

2. U· 
J Aqj 

3. rj u j-·lp j-1 (qo = O) 

T. 
4. aj q· Jr. 

. J 

5. rj rjaj 

6. pj lrjl 

Remark 1 

If pj becomes 0 at step 6, then we chose at step 6 a new rj 

which is orthogonal to all the previous found rj's. The 

fact that pj - 0 means that the chosen r 0 was orthogonal to 

some eigenvectors of A. 

Remark 2 : 

Because there is a subspace Qj = (q1 ·· ··qj) build, by multi­

plying A with a random vector, convergence will occur for 

the outher eigenvalues of A [3] This feature will be used to 

find the most 'promising' eigenvectors of A without calcu­

lating all eigenvectors. 

Remark 3 : 

To keep all found q's orthogonal to each other it is neces­

sary to perform a full orthogonalization after step 5. 

5.3 Eigenvalue and eigenvector estimation from a Tridiago­

nal matrix T 

This can be done with the "QL" algorithm. 

T-a = QL 

T T T1 = LQ+a = Q (T-a)Q+a = Q TQ 

a is the origin shift. L is lower triangular ( Lij is 0 for 
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The tridiagonal form is preserved, because the shape of Q 

and L simply preserve the zero elements above the diagonal. 

The elements below the diagonal must be zero through cancel­

lation, since T1 is like T symmetric. See also fig 4. QL 

(with To = T) is as follows: 

If the eigenvectors are not needed, but only the eigenvalues 

then this calculation could be done in approximately 1.7 QL 

transforms [3,p. 162] per eigenvalue when Yilkinson's shift 

is used. 

Yilkinson's shift if a1 - a 2 then a- a1-IP1I 

else a- a 1 -
sign(o)P~ 

The QL algorithm using Yilkingson's shift will always con­

verge in exact arithmetic. The eigenvalues will appear on 

the diagonal of Tk for k ~ ~ And the eigenvectors can be 

calculated as follows 

And now each column of P contains an eigenvector of T if 

k ~ ~ To perform a QL transformations Givens transforma-

tion is used [3]. 

5.4 Accuracy of eigenvalues and eigenvectors 

A good measure for the accuracy, of the eigenvectors u and 

eigenvalues A, is the residual norm IAu-uAI. Fortunately 

this norm can be computed without computing u. 

steps in the Lanczos algorithm : 

IAu-uAI = IAQs-QsAI , since u = Qs 

After j 
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0 
= 

0 

Figure 4. Preservation of the tridiagonal form 
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I(AQ-QT)sl since s>.. - Ts 

T since AQ· QjTj 
T l(r.e.)sl - rjej J J J 

T since lrjl - f3. f3 ·I e .s I J J J 

So the bottom elements of the normalized eigenvectors (s) of 

T. signal convergence and there is no need to form u until 
J 

its accuracy is satisfactory. 
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6. Short overview of the program and the data structures 

6.1 Used data structure 

The main data structures that are used in the program can be 

divided in two different types. 

First there are the data structures generated by the rou­

tines to read the net list and the macro library. 

Second there are the data structures that are constructed 

from the first type. 

There are two different data structures of the first type: 

One generated from the net list (fig 5) consists of a net 

list. Each net in the net list contains a pointer to a list 

which contains the modules connected to that net. The 

modules are also contained in a list. From the structure 

drawn in fig 5 a sparse matrix (fig 6) is constructed, this 

sparse matrix is the cost matrix mentioned in paragraph 2.3. 

An other data structure is generated from the macro library 

(fig 7). Because not all the information given by the 

structure off the macro library is needed, a new structure 

(fig 8) is made. There are two main differences between the 

old structure and the new structure, the new structure holds 

no information over terminals and wires, and the new struc­

ture has a new variable called gridlegals. These gridlegals 

contain in a compact form the legal grid positions of a 

macro or stamp. 

6.2 Program description 

The program can be roughly diveded in the following steps. 

read_macro_library; 

read_netlist; 

read_size_gatearray; 

define_gridlegals; 

make_gridlegals; 

calculate_net_weights; 

make_Sparse_cost_matrix; 



NET LIST 

net name 
weight 

nmodconn 
modconn ptr 

: 
: 
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MODULES 
CONNECTED 

module id 
! terminal id J 

I 

module id 
terminal id 

module id 
1 terminal id 1 

: 

l module id 
1 terminal id 1 

.... 

~ 

Figure 5. Structure net list 

MODULE 
LIST 

module name 
macro index 
stamp index 

position x 
position y 

module name 
macro index 
stamp index 

position x 
position y 

module name 
macro index 
stamp index 

position x 
position y 

: 

module name 
macro index 
stamp index 

position x 
position y 

module name ----.--.-
macro mdex 
stamp index 

position x 
position y 
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calculate_promising_eigenvectors; 

evaluate_placement; 

write_netlist; 

read macro lib : 

Read the macros from the macro library of this type of gate 

array. 

read net list 

Reads the net list which represents the circuit description. 

read_size_gatearray : 

Reads the size of the gate array. The X_SIZE, Y SIZE and the 

NLAYERS (number of layers) is read. 

define_gridlegals : 

Determines all the possible X positions and Y positions that 

may lead to legal positions for the modules contained in the 

net list. Also generated is a new grid called PL_GRID which 

consists of as many legal X and Y positions then there are 

legal X andY positions. 

make_macro_gridlegals 

Defines on which grid positions each macro and stamp may lie 

on PL GRID. 

calculate_net_weights : 

Calculates the weights of the nets taken into account the 

amount of modules of the net and the user specified impor­

tance of the net. 

net weight= i(n)· constant 
- s-1 

~ ((s-i)•i) 
i=l 

where i(n) is the user specified importance of the net, and 

s the number of modules in the net. 

make_Sparse_cost_matrix 
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Sparse_ Matrix 
pointer 

nr of elements 
element element element 

row pointer 
column nr column nr column nr 

: 

nr of elements - - element element element 
row pointer 

: column nr column nr column nr 

nr of elements 
element element element 

row pointer 

: column nr column nr column nr 

nr of elements - -
element element element 

row pointer 
column nr column nr column nr 

nr of elements -
element element element 

row pointer 
column nr column nr column nr 

Figure 6. Structure Sparse Matrix 
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First a NxN cost matrix is made as described in chapter 2 (N 

is the number of modules). Because we need the matrix only 

if we multiply the matrix by a vector we made the matrix 

sparse as shown in fig 6. The sparse matrix contains only 

the nonzero components. 

calculate_promising_eigenvectors : 

To calculate the most promising eigenvectors the matrix must 

be adjusted in the right way, first the eigenvector with the 

greatest lambda (H) is calculated. Then the sparse matrix S 

undergoes a transformation S = (H"I- S). Now the most 

promising eigenvectors consists of the eigenvectors with the 

greatest lambdas with this transformed matrix. 

evaluate_placement 

This routine tries to find a low cost placement with the 

help of the calculated eigenvectors. It can be divided in 

an initialization step and a repetition. 

make_random_global_placement; 

find_legal_placement; 

nr_of_probes- sqrt( nr of modules); 

do 

do 

find_legal_placement; 

find_new_probe_direction; 

while (improvement); 

nr_of_probes = nr_of_probes * 2; 

while ( nr_of_probes < ( 2 * nr_of_eigenvectors) ); 

This repetition leads to a local convergence, so if we 

repeat above routines with another random global placement 

then another local convergence arises which can be better or 

worse then the first one. To find the global minimum one 

would have to repeat this steps infinitely. Because the aim 

of this program is a good placement in a fast running time 

these steps are only taken once. 
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MACRO 
name 

nterminals TERMINAL 
terminal list name 
neqtermsets term type I 

eqtermset list 
nstamps EQTERMSET 

stamp list ~ neqterms 
eqterm list 

STAMP 
name 

id number -
ntermwires WIRE 

termwires list npositions 
nintwires positions list 

intwire list 
nlegals WIRE 

legal list -- npositions J 
X size positions list 
y_size 
nlayers LEGALS 

grid pointer fromx 
stepx 
tox 

fro my 
stepy 
toy 

Figure 7. Structure macro library 

MACRO 
gridlegals 
nstamps STAMP 

stamp list id number 
nlegals LEGALS 

legal list fromx 
X size stepx 
y size tox 

grid legals fro my 
stepy 
toy 

Figure 8. Data needed from the library 
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find_new_probe_direction : 

Before we can calculate the new probe direction we must 

determine the x and y vector of the best found placement so 

far. The mid of every module is taken as the real position 

of the module, and we make that ~ x. = 0. Now we can calcu-
i ~ 

late for every eigenvector we want to use probe
1
. = ~ x.·v ... 

i ~ J~ 

The new x vectors is then calculated as follows : 

Aj is the eigenvalue of the eigenvector from the matrix 

(H·I- S). For this x vector~ xi is still 0 and the max-
~ 

imum xi and minimum xi are not the maximum and minimum of 

the possible grid coordinates. To map the x vector onto the 

grid we must multiply the x vector by a factor and then add 

an offset to make sure that, 

~ xi 
nr of modules = mid of the grid 

find_legal_placement 

We want that the legal placement vectors x and y 

maximizes ~ (x. ·a.) 
~ ~ 

+ (yi·bi) 

minimizes ~ 2 2 (x.-a.) + (y. -b.) 
~ ~ ~ ~ 

(ai,bi) is the global place of module i 

To accomplish this we first order the modules on their 

sizes, greatest module first. Then we minimize the second 

formula for each module separately. By taking the greatest 

module first there is more change that the last modules will 

fit nearby their global place, because they are small. 

write netlist : 

Writes away the best resulting placement into a file. 
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7. Conclusions 

• A program which handles the placement of modules on 

gate arrays with the eigenvector method [2], is succes­

fully developed. The practical tests justify the 

choice of the new netweighting function above the net­

weighting funtions given in literature. 

• The order of the algorithom depends, for netlists with 

more then a hundred modules, merely on the calculation 

of the eigenvectors. If all eigenvectors have to be 

calculated then the order of the program is O(n3 ). The 

order of the algoritham depends on the convergence of 

the wanted eigenvectors, if not all eigenvectors have 

to be calculated. 

• The program is able to handle a net with special care, 

so that the netlength of that net decreases. 

• The disadvantage of the placement algorithtm is that 

the costfunction is limited to the total netlength. 

This can lead to the forming of clusters of modules 

which are heavily connected to each other. 
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