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Abstract—Unobtrusive vital signs monitoring is a hot topic
in both lifestyle and the medical domain. The most promising
methods at this moment are using video cameras. Existing
methods for the monitoring of respiration are not robust for
camera motion. There is a need for new methods that are more
robust for this motion. This project investigates possible solutions
to this problem by proposing new methods for global motion
robust respiration monitoring. The main contribution of this
paper is the use of a region of interest to protect the respiratory
motion from being used in the compensation of the global motion.
Two different quality metrics are proposed for analysing the
accuracy of the different methods.

I. INTRODUCTION

A. Context of the assignment

In hospitals it is important to measure and monitor the vital
signs of patients. One of the goals is to get information about
the health of the patients that you can not get from simply
looking at the patient or asking questions. A specific vital sign
to look for is the respiration of patients, which can be used as
an early indicator of physiological deterioration. In literature it
is suggested that cardiac failure is often preceded by significant
changes in the respiration pattern [1]. However, currently the
respiration has to be monitored by human inspection and to
do this the person inspecting will have to watch and count
the respiration of the patient for 30 seconds. In the current
situation this very often does not happen [2].

Philips Research Eindhoven is one of the biggest research
labs in the world. One of the many things being developed at
the moment is camera-based vital signs monitoring. Not only
for medical use in hospitals, but also for fitness equipment and
in-car monitoring (e.g. drowsiness detection). A new algorithm
for respiration monitoring has recently been developed in this
project.

B. Problem definition

Although a first algorithm for respiration monitoring existed
at the start of this project, this algorithm is sensitive to all
kinds of motion. The camera has to be perfectly static, and the
patient has to be stationary during the measurement. Basically,
the only movement that is allowed in the view of the camera
is the respiration itself. This is unpractical when the camera
is located in a hand-held device.

This report will focus on the movement of the camera.
Movement of the camera will produce global motion of the
video sequence. Local motion is motion of an object inside the
video, the compensating for such motion is outside the scope

of this project. The difficulty of global motion compensating
for respiration monitoring lies in the fact that not all the motion
has to be considered when compensating the motion, since
the motion of the chest not only has to be preserved, it is the
element that has to be measured.

It should be noted that, during the course of this project,
the existing respiration detection algorithm (ProCor) was also
still in development. Limited information about the algorithm
itself is available in this report. This is partly for reasons of
confidentiality, the other reason is to keep the global motion
robustness part of the algorithm separate from ProCor. This
makes it easier to reuse the software for other (vital signs
monitoring) projects and less sensitive to changes in other
parts of the algorithm. ProCor takes a (static) video sequence
that contains a respiration signal, and produces one value for
each frame. This values can then be considered to be the
differentiated respiration signal.

As a first benchmark, a test video was stabilised using the
state-of-the art video stabilizer DeShaker [3]. The resulting
video was processed by ProCor. The obtained respiration-
signal was very noisy and no real respiratory information could
be seen. This is probably caused by compensating all motion,
including the respiration motion that needs to be measured.

C. Assignment

The Assignment was defined as follows: To design, imple-
ment and test algorithms for global-motion-robust monitoring
of respiration using a hand-held video camera.

D. Outline

In the first part of this report (sections II and III) the differ-
ent methods for global motion estimation and compensation
are discussed. The report will focus on three techniques that
were implemented in the code and makes mention of a couple
of other techniques that are available.

The second part of the report describes the performed
experiments and the results (section IV), this section will also
explain the proposed quality metrics. Section V will briefly
discuss the trade-offs between different methods. Section VI
will conclude the report and propose future work.

II. METHODS FOR MOTION ESTIMATION

A. Introduction

All applications of global motion estimation can generally
be divided in two main groups: compression and image
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enhancement. The area of compression tries to find global
motion in a video sequence as to improve the compression rate
of a stored video. The area of image enhancement on the other
hand tries to find and eliminate unintended global motion to
enhance the video quality, e.g. eliminate jittering motion made
by unsteady camera positions. The project described in this
report has the goal to find and correct for the global motion
in the video, to be able to retract an unrelated local motion
signal (the respiration signal) from the video.

Motion estimation algorithms can be separated in two
groups: global motion estimators and local motion estimators.

Global motion estimators attempt to find global motion
in the video by looking at the frames as a whole, and not
differentiating between blocks or objects. The output of a
global motion estimator can be described in a global motion
model like the three parameter model[4]:

~D( ~X, n) =

(
p1(n) + p3(n)x
p2(n) + p3(n)y

)
where ~D( ~X, n) is the displacement vector for a given pixel
~X in a given frame n, The parameter p1 describes the motion
in the x-direction, p2 describes the motion in the y-direction,
and p3 describes the zooming of the camera. Note that in this
report, the zooming of the camera is assumed to be negligible,
since the person holding the camera is trying to hold it still.
This implies that a simpler, two parameter model can be used.
The two parameters p1 and p2 are combined in the Global
Motion Vector (~G).

~G(n) =

(
Gx(n)
Gy(n)

)
, and ~D( ~X, n) =

(
Gx(n) + x
Gy(n) + y

)
Local motion estimators give multiple motion vectors per

frame. Every motion vector only has the information about
one pixel or pixelblock. However, it is possible to derive global
motion information from the local vectors and thus using Local
motion estimators to compute a global motion vector.

During our experiments, three different implementations
for generating a global motion vector are used. This section
explains the three methods. The compensation of the motion
is discussed in chapter III.

B. Projection Based Motion Estimation

The most important difference between the projection based
estimation and the other methods described in this report, is
the fact that this method relies on global motion where the
other two are actually computing local motion vectors and
are extended with a computation to determine the dominant
motion from the local motion vectors.

The computationally inexpensive algorithm divides the
frame into a number of subframes (typically four) and makes
vertical and horizontal projections of this sub-frame. The
vertical projection ~Pv is a vector with the same height as
the subframe, which values are defined as follows:

∀i ∈ 0.. (height subframe - 1) : Pvi =

width subframe−1∑
j=0

pi,j ,

where px,y is the Y-value of pixel x, y.
The definition of the horizontal projection is analogue to

the vertical projection, only in the horizontal direction.
The algorithm does this for every frame in the sequence

and compares the projections. For every subframe an optimal
shift is calculated with respect to the previous frame. The
optimal shift is defined as the shift of the 1D signal with the
smallest SAD (Summed Absolute Differences) compared to
the projection of the last frame. For a certain projection ~Pv(n)
in framenumber n, and a certain shift s, and a maximum shift
maxshift the SAD is defined as follows:

SAD( ~Pv(n), s) =

sizeOf( ~Pv)−maxshift∑
k=maxshift

|Pv(n−1)k−Pv(n)k+s|

For both directions the median over the subframes is calculated
and this way a global motion vector is generated. The median
for a set of N values is the value with rank N+1

2 when N is
odd. When N is even, the median is defined as the mean of
the values with rank N

2 and rank N
2 + 1.

The median operator will make sure that a motion value
that only occurs in 1 subframe, that is probably local motion
of an object, does not influence the global motion vector.

C. 3DRS

The Three Dimensional Recursive Search block-matching
method (3DRS) is the second method that is implemented.
This method is normally used for local-motion estimation, but
it can also be used for global motion, by deriving one global
motion vector from the many local motion vectors given by
3DRS. The method used is algorithm as described in [5], only
without the extension to allow for sub-pixel motion vectors.

The basis of 3DRS is the normal block-matching algorithm.
The frame is divided in blocks that are typically 8 by 8
pixels. Then for each block the best match in the image is
searched with a minimisation technique such as the Summed
Absolute Differences. The difference of 3DRS with respect to
other block-matching methods is the 3-D approach to generate
candidate vectors. Two assumptions have to be met for this
algorithms to work efficient:

• Objects are larger than blocks
• Objects have inertia.

Object are defined as area’s with the same actual motion
vector.

The first assumption is necessary because only one motion
vector is given per block. The second assumption is used in
the method 3DRS uses for generating candidate vectors

The basic idea of 3DRS is to make up the candidate
vectors by looking at the calculated motion vectors of the
neighbouring pixel-blocks. Of course, if obtaining the vector
for every pixelblock needs the vector from the neighbouring
blocks, a causality problem occurs.

This problem is solved by looking at motion vectors in the
previous frame. This is based the second assumption: Objects
have inertia. Note that this is the reason why the algorithm is
named three-dimensional. The other problem this idea is this:
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if all motion vectors are based on the value of other motion
vectors, no new values can occur. Especially if the vectors
are all initially 0, what is typically the case, everything will
stay at zero. This is solved with the update vector, or noise
vector. This is a (small) vector that is randomly chosen from
a number of possible vectors. Each spatial candidate that is
tried is always updated with such a update-vector.

The essence of the 3DRS algorithm is that once a block has
a good vector, after a small number of frames all the blocks
of the object in question will be checked against that vector
and have obtained the right value. The algorithm gets even
cheaper when a subset of the neighbours is used. The typical
implementation of the 3DRS uses the “neighbouring” block
as they are shown in figure 1.

D. Optical Flow (Pyramidal Lukas Kanade, PLK)

The optical flow method differs from the other methods
since it is not designed to give a full vector field for the whole
image. Rather than finding motion vectors for every part of the
image, this method focusses on those part of the image that
it expects good results from. To make that possible the image
has to be searched for good features to track. This is done by
looking for lines and corners in the image.

These features will be tracked with the Lucas Kanade
Feature tracker. Each feature is a point in the image. For
each feature-point in an image, the same pixel is searched
for in the next image, within a specified search window. A
pyramidal version of the Lucas Kanade algorithm was used as
described in [6]. The implementation from opencv[7] is used
with a pyramidal depth of 3. To find the initial features to
track in the image frame, the method cvGoodFeaturesToTrack
from opencv is used.

The basic of the Lucas Kanade Feature tracker is to for
each feature-point ~u , find the displacement vector ~d and the
transformation matrix A that minimises the error function ε
defined as follows:

ε(~d,A) =

ω∑
x=−ω

ω∑
y=−ω

(
(In−1(~x+ ~u)− In(A~x+ ~d+ ~u)

)2

Fig. 2. Example of the position of both ROIs. shown in white is the RespROI,
the NoMeasureROI is shown in black.

Where ~x = (x, y)T . and ω sets the size of the integration
window to (2ω + 1)2. The intuitive trade-off that has to
be made concerning the size of the integration window is
that a small window will give a high local accuracy, and a
large window will be more robust against larger motion. The
pyramidal algorithm solves this by using a multi resolution
method. Several downsampled pictures are made (using an
anti-alias filter) and the displacement vector is first found at
the smallest image, which gives an initial guess for finding the
vector in the the larger image, and so on.

III. COMPENSATION OF THE ESTIMATED MOTION

The motion vectors obtained by one of above methods will
be used to reposition the video frame and thus stabilise the
video.

A. Generating a single global motion vector
The first task is to get the global motion vector from all

the individual local motion vectors. With the Projection Based
method this is not the case, since only one vector is obtained.
But for the 3DRS- and the PLK methods a large amount
of motion vectors are generated. It was decided to do this
by taking the median of the x and y values of the all the
vectors, and thus creating a global motion vector. The median
is used because it is robust against small moving objects in
the image, where a mean vector would be effected by this.
An implemented way to improve on this is to take the alpha-
trimmed mean in stead of the median. The alpha-trimmed
mean for a set of N values is defined as the mean of the
values with rank r for α < r < (N − α) where r is the rank
in a sorted list. In our implementation α is chosen in such
a way that only five values are used. This method is only
implemented for the PLK-method, since the nature of 3DRS
causes the five values that are averaged to very likely be the
same.

B. Ignoring the respiration motion
The main problem of motion robust respiration monitoring

is compensating for motion (of the camera), where motion
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(of the respiration) has to be preserved. To achieve this, the
option was built in the software to specify two different regions
of interest: the Respiration Region of Interest (RespROI),
and the Not Measure Region of Interest (NoMeasureROI).
The RespROI is the area of the video frames that get sent
to the respiration detection algorithm. It has to be chosen
so that all motion that occurs inside this region is likely
to be respiratory motion. This is typically the chest of the
subject. The NoMeasureROI is used in generating the global
motion vector. This region has to be chosen in such a way
that all regions of the image where respiratory motion can
occur are inside this rectangle. Typical areas to include are
the chest, stomach, shoulders, and upper arms of the subject.
An example of how the two regions are chosen is shown in
figure 2. In the future it may be possible to have automatic
selection of the two ROIs. For all different methods it holds
that information from within the NoMeasureROI will never
affect the value of the global motion vector. In practise, for
3DRS and PLK this means that all local motion vectors that
are inside of the NoMeasureROI are not taken into account
when calculating the median of the vectors. See figure 3 for
a block diagram of the algorithm. In the projection based
motion detection an implementation is made that defines eight
subframes that together contain every part of the image but the
NoMeasureROI.

C. Towards a true static video sequence

Most existing image stabilising algorithms only improve the
smoothness of the camera motion. This means that camera
motion will be present in the final video, only it will be more
slower camera movement compared to the initial sequence.
The respiration detection algorithm expects a video from a
true static camera. The term static video is used to describe
a video sequence that appears to be made with a stationary
camera. Two different methods can be used to obtain a global
motion vector that achieves static video. The first method that
is considered is to actually calculate the motion from the
first image in the sequence. For instance: in 3DRS, instead
of letting the 3DRS-algorithm compare frame n and frame
n− 1, a copy of frame 1 is kept in memory as the reference
frame and in each frame the 3DRS algorithm compares frame
n with the reference frame. In the projection based algorithm,
the new projections will be compared to the projections of the
reference frame, in stead of the projections of the last frame. If
the motion vector gets larger than a certain threshold value for
long enough, the reference frame is refreshed with the current
frame.

The second way of getting a static video uses a cumulative
motion vector. Every time the global motion vector for two
consecutive frames is computed, the x and y values are added
to a cumulative motion vector, which is then used for the
motion compensation. This vector is also reset if it gets larger
than the threshold value for long enough.

In the case of the Lucas-Kanade algorithm, a refresh will
also occur when the number of features outside of the NoMea-
sureROI is less then a defined value. And as a third option, a
refresh can also be forced by the user.

D. Repositioning of the video-frame

The most straight forward way to do the motion compen-
sation is translation of image locations. Each pixel in the
compensated frame Ic is calculated according to the following
equations:

Ic( ~X) =

{
Io( ~X − ~Gi) if ~X − ~G is in the image frame
black otherwise

Where Io is the original image-frame, and ~Gi is the rounded-
to-integer version of the calculated global motion vector. Com-
putationally, this method is relatively cheap, it is essentially a
shifted frame copy. The most important problem, however, is
the jittering effect on the video. This is caused by the sub-pixel
motion of the image, that is corrected for on a integer-motion-
based manner. Unfortunately, this effect is also very visible in
the output of the respiration detection algorithm, ProCor.

An other, more computational expensive way of dealing
with sub-pixel motion vectors, is to allow for sub-pixel motion
image shifts. To do this every new pixel value can be calcu-
lated using bilinear pixel fetch. The pixels get interpreted as
brightness values of a point in the middle of the corresponding
pixel. The value of pixel Io( ~X) is then defined as the weighted
average of the four pixels nearest to point ( ~X + ~G) where
the weight of each value is linear to the distance to the
corresponding point. This calculation is usually done by first
interpolating in one direction and then in the other, since this
is computationally more efficient.

This function is only implemented for the PLK-method.
This follows from the fact that the used implementation of
3DRS only gives pixel-accurate motion estimation, and it has
no use to implement sub-pixel frame shifting with a pixel-
accurate vector.

E. Sub pixel motion compensation in the respiration signal

An alternative to the bilinear pixel fetch, for overcoming
the accuracy problem of the motion compensation only having
pixel-accuracy, is to use the sub-pixel part of the motion vector
directly on the output of ProCor. To do this, we should first
have a basic understanding of the ProCor algorithm.

1) ProCor: The respiration monitoring algorithm is a very
simple algorithm. For each video frame it makes a vertical pro-
jection as defined in section II-B (Projection based method).
Then a cross correlation function is calculated comparing the
projection of each frame n to the projection of frame n− lag,
where lag is the number of lag frames to avoid a noisy
signal. The location of the peak of this correlation function
is the output of ProCor, this can be considered to be the
differentiated respiration signal. Hence, the respiration signal
R is calculated as follows:

R(n) = R(n− 1) + PC(n)

where PC(n) is the output of ProCor in frame n. It is known
from testing that the value coming out of ProCor is not only
affected by the pixel shift, but also by the composition of the
image. Due to the lag frames, a one-time one-pixel shift on
the input image affects the next few consecutive values coming
out of ProCor.
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For a static video sequence, the respiration movement has
a fixed effect on the output of the respiration detection. It is
assumed that for small camera motion (sub pixel motion) this
effect on the ProCor values is the same for both static and
moving cameras. So that with video sequences with small
camera motion the value from ProCor will be the sum of
the value from the respiration motion and the value from the
motion of the video sequence. It is also assumed that the effect
of small motions is linear in the output of ProCor: e.g. a shift
of half the pixel width will add half the amount compared to
a shift of one pixel width.

2) Compensating for motion on the respiration signal:
Using this assumption, it can be reasoned that the desired
respiration signal can be obtained by subtracting the effect of
the motion of the video. The motion of the video is known in
the case of a sub-pixel-accuracy global motion vector. Namely,
it is the part of the sub-pixel-accuracy global motion vector
that is not corrected for. When the shift is known the influence
on the ProCor output can be calculated using the second
assumption. But only if it is known how ProCor reacts to
a single pixel shift. Since this value is dependent of the image

composition there is no value that can be hard coded in an
algorithm. Therefore the current implementation will calculate
the ProCor-Factor (PKF ), which is the value that is added
to the output of ProCor with one pixel shift in the y direction.
With this information, it can calculate the influence of the pixel
accuracy motion correction and subtract it from the ProCor
output, which after that will only consist of the respiratory
data. The block diagram for this case is shown in figure 3.
The new respiration signal Rsm will be calculated according
to the following equation:

Rsm(n) =Rsm(n− 1) + PC(n)−

PKF ·
4∑

k=0

(
~G(n− k)y − ~Gi(n− k)y

)
where ~G(n)y is the y value of the global motion vector, and

~Gi(n)y is the y value of the rounded-to-integer global motion
vector

IV. EXPERIMENTS

A. Introduction

To test the performance of the different implementations, a
large amount of test videos is recorded.

Two kind of experiments are done. The first experiments
that are considered in this report use the video-sequence from
the static camera with added, synthetic, motion. This is done to
compare the different implementations. Since the basic, non-
motion-robust, respiration detection can be run on the static
sequence, there is a ground truth that we can compare the
results to.

The second experiments are done on video sequences from
actual hand-held cameras. The results from this tests will show
whether the good implementations in the synthetic sequences
are also good with real hand-held camera material.

B. Setup

For each recording at least two cameras are used. One
camera is mounted on a tripod, the other camera is hand-held
during the whole recording. This way the videos are recorded
at the same moment in time. Also a respiration measuring belt
is worn by the test subject, to provide a reference signal.

A subject follows the following breathing-schedule: For all
four positions complete the sequence in figure 4.

Where the four positions are as follows:
• Lying on back with the bed in sitting position
• Lying on the left side (facing the camera)
• Lying on the right side (not facing the camera)
• Lying face down
• Sitting with legs outside of the bed

C. Quality Metric

To interpret the results of the experiments, there has to be
a quality metric to be able to give the different algorithms
a rating in how good they are. The goal of the project is
To design, implement and test algorithms for motion robust
monitoring of respiration using a hand-held video camera.
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From this it can be said that a algorithm is good if it can
monitor respiration. Two different metrics are proposed for
measuring the quality of the signal. Both make use of a
reference signal, that is considered to be ideal. The intuitive
meaning is that the signal will get a higher score, if it is more
similar to the reference signal.

Two choices are possible for the comparison signal, namely
the reference signal from the respiration monitor belt, or
the respiration signal from the static camera for the same
video sequence. The choice is made for the signal from the
static camera. This way both signals are constructed by the
ProCor algorithm, and the signals have similar amplitudes and
characteristics. Two methods are proposed to construct such a
metric.

The first method depends on a trained peak detector to
calculate the respiration rate that can be extracted from the
signal during the whole sequence. This is also done for the
comparison signal. The metric in this case is the percentage of
the video in which the two signals give the same respiration
rate (within a allowed deviation). Note that this will only
give a score for the corresponding video in combination with
the corresponding algorithm. To give an overall score to the
algorithm an average will be made of the scores of all available
video sequences. In specific use-cases, it is also possible
to make this a weighted average, were sequences that are
considered more important will have a bigger weight in the
final score.

The second method makes use of the correlation coefficient
between the signal that is being analysed and the comparison
signal. To remove large steps and offset both signals are first
processed by a band-pass filter. A 4th-order bandpass filter
is used witk pass band 0.1

fps/2 < ω < 1
fps/2 After this the

correlation coefficient is computed between the two filtered
sequences. Note that this method can give undesirable results
when there is motion other then respiration in the sequence,
e.g. the subject changes position or a second person walks
through the region of interest. The relatively large motion has a
very large influence on the correlation function. To prevent this
from having a effect on the score, these parts of the sequences
must be ignored by the correlation function. This is done by
calling the correlation function multiple times, once for every
“pure respiration” subsequence of the sequence. It is evident

that this method, like the first one, will give an independent
score for each tested (sub)sequence. The same technique can
be used here: compute a (weighted) average of all scores per
algorithm.

Both techniques have advantages and disadvantages. The
respiration rate method depends completely on the quality of
a peak-detector, if the peak detector gives wrong peaks, the
rate will be wrong and the algorithm will have a low score.
The other fact is that it only looks at the respiration rate.
This can be a advantage, since in a lot of possible use-case
scenarios this is exactly what is desired from the algorithm.
The disadvantage is that the respiration rate is not the only
possible information in the signal, and some uses of respiration
monitoring may need the other information. As described, the
correlation method is sensitive to large motion.

D. Distance to the camera

A small experiment is also performed regarding the optimal
distance from the camera. This experiment has the same setup
as the other experiments with the exception that there are three
in stead of two cameras, of which two are hand-held. The two
hand-held cameras are held in different distances to from the
chest of the subject. The two hand-held cameras have the same
specifications and lenses. It must be noted that while it would
be ideal for the experiment to have the same viewing angle
on the subject, this cannot be done without one camera being
in the way of the other.

E. Results

During the first exploratory tests and subjective evalua-
tion of the signals it became clear very fast that both the
”projection-based” motion detection, and the ”Sub pixel mo-
tion compensation in the respiration signal (section III-E)”
gave very poor —even unusable— results.

With the projection based motion estimation, both the
reference frame-method and the cumulative-vector method are
tested. In the reference-frame method, the poor result was
due to the simplicity of the system; when large peaks in the
projection fall outside the screen in the current frame, the
optimal shift will likely be one that places the peak on the
nearest other peak. It might be possible to get better results
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using a windowing function on the projection, but this is not
tested.

The “Sub pixel motion compensation in the respiration
signal” also gives very poor results. The reason is a false
assumption. In the development of this method, it was assumed
that “with video sequences with small camera motion, the
value from ProCor will be the sum of 1) the value from the
respiration motion and 2) the value from the motion of the
video sequence”. This assumption is based on a model of
ProCor that is not complex enough. The method could possibly
be extended by taking into account different kinds of motion
(not only in the y-direction) and different behaviour of ProCor
with amount of detail in the video composition.

Due to the poor results, both these methods are discontinued
and are not present in the further test results.

The results of the experiments (the respiration signals) are
investigated to see which parts contain real respiration motion
and which parts are the result of other motion in the frame;
only the parts that have respiration motion are considered.
This way only the respiration detection is tested and not the
reaction to local motion within the ROI. All sub-sequences
were then graded with the correlation-method. The peak-
detector method is not used in this experiments, since there
is no robust peak-detector available at the time of writing this
report. All unexpected results are also compared manually.

1) Synthetic motion: Below are the results for the test with
synthetic motion. The test is done as follows:

• The static video sequence was divided into five different
subsequences, one for each position of the subject.

• These sequences are run trough the basic ProCor algo-
rithm to generate a reference signal.

• A file with realistic motion vectors was created, this was
done by pointing the camera to a contrast-rich scene at
approximately the same distance as the subject would be
from the camera in the hand-held scenario (approximately
1 meter). The recorded sequences were then processed
with the PLK motion estimator, and the global motion
vector was derived as described in section III.

• The static sequences were shifted according to the ob-
tained motion vectors. This was done with a bi-cubical
resample method.

• The sequences with synthetic motion are cropped to
remove the shifting black borders.

• And finally the videos with synthetic motion are pro-
cessed by the different proposed methods for stabilising.

After the division in good subsequences, there are ten se-
quences that all are evaluated with the correlation coefficient
metric. These numbers are then averaged for each stabilising
method and that gives the score for the method.

The expectation of this experiment is that the methods with
the PLK method will give the best result, of which the methods
with bilinear pixel fetch will be the top. PLK is followed by
3DRS with the reference frame, and the least result of this
test will probable be for 3DRS with the cumulative motion
vector. This is expected because the 3DRS method is very
sensitive for motion vector propagation in large areas with
little detail. PLK does not suffer from that since it only follows
point that have good detail. The cumulative vector will suffer

from cumulative errors, where the method with the reference
frame will compute a “fresh” motion vector every frame.

Furthermore it is expected that the methods that use the
NoMeasureROI will perform better than the ones without,
since they will not compensate for motion that is actually
respiration motion that needs to be measured by ProCor. The
least significant factor will probably be the alpha-trimmed
mean, the normal median performs pretty well on itself. Taking
the average of the five vectors will have only a marginal
effect on the output-signal, also because the five vectors will
probably be very close to each other in terms of value. The
result of this experiment can be seen in figure 5. The meaning
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Fig. 5. The results of the synthetic motion experiment

of the names of the different methods can be found in table I,
note that the different size of the region of interest is not used
in this experiment. The bar chart in figure 5 shows that the
test results almost exactly as expected. A example of certain
signals and how they compare to the reference-signal can
be seen in figure 6. The only point where the expectation
did not hold is the case mmc5 L IROI0 BL1 FVAx were the
method with the median motion vector gets a slightly better
result than the one with the alpha-trimmed mean. What also
is notable is the large difference between the 3DRS with
reference frame and the 3DRS with the cumulative motion
vector. This effect is accounted for by the cumulative error. It
is true that the PLK-method also makes use of a cumulative
motion vector, and clearly does not suffer from this problem.
However, the implemented 3DRS method only generates pixel-
accurate motion vector. This means that each error will be
larger, and the accumulated error will naturally become much
larger as well. The 3DRS implementation with the reference
frame will not suffer as much from this error, since it will
compute independent new motion vectors for each frame.

2) hand-held camera: The experiments with the synthetic
motion have shown that the methods work, and how good they
work in relation to each other in the very basic case. To see
how they work in a more realistic use-case the experiments
must be done with videos from real hand-held camera’s.

The experiments are done in the same way as the synthetic-
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mmc: Method of Motion Compensation mmc0: No Motion compensating
mmc2: 3DRS with reference frame
mmc3: 3DRS with cummulative motion vector
mmc5: Pyramidal Lucas Kanade (PLK)

L/S: size of ROI L: large ROI, same for every sequence
S: Small ROI, unique for each sequence

IROI: state of the NoMeasure (inverse) ROI IROI0: not active
IROI1: active

BL: method of image shift BL0: No Bilinear, Pixel accurate image shift
BL1: Bilinear pixel fetch image shift

FVA: Five Vector average FVA0: off, only the median vector is used
FVA1: on, the average of the five most median vectors is used

TABLE I
NAMING CONVENTION FOR THE DIFFERENT METHODS IN THE TEST RESULTS
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Fig. 6.
The (band pass filtered) results of the synthetic motion experiment: The dashed line is the reference signal, the solid lines are:
a) The best scoring method (mmc5 L IROI1 BL1 FVA1), b) The best 3DRS-based method (mmc2 L IROI1 BL0 FVA0),
c) Non-usable method (mmc3 L IROI1 BL0 FVA0), d) The reference signal.

motion experiments. The difference is that the references are
compared to real hand-held-camera video sequences. Some
specific sequences are disregarded in the test because the
respiration was too hard to detect in this sequences. Mostly
this was because the person holding the camera was moving it
to much (intentionally shaking the hand holding the camera).
Some sequences suffer from a lot of rotating movement. Since
we do not estimate or compensate for rotation these sequences
do not give a usable result with any of the proposed methods.

The expected result of this experiment is that the overall
score will be a lot lower compared to the synthetic motion.
However, the relative position of the different methods is sus-
pected to be the same. The size of the ROI is not differed in the

synthetic-motion experiment. It is expected that the smaller,
hand-picked ROIs will give a significant better performance
than the general, larger ROI. Note that with the smaller ROI,
both the RespROI and the NoMeasureROI are smaller and
manually defined per sequence. The results can be seen in
figure 8, and an example of some of the signals can be seen
in figure 7. The naming convention can be found in table I.
Two things are very remarkable. Firstly, the poor results of the
PLK-method when a large ROI is used. Three of them are even
scoring lower then the reference sequence where no motion
compensating is used. This can be explained by the fact that
when a large ROI is used, most objects seen in the part of the
image that is not in the ROI have a different distance to the
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Fig. 7.
The (band-pass filtered) results of the hand-held camera experiment: The dashed line is the reference signal, the solid lines are:
a) The best PLK-result (mmc5 S IROI1 BL1 FVA1), b) The second-best PLK result (mmc5 S IROI1 BL0 FVA1) ,
c) The result with the best correlation score (mmc2 S IROI1 BL0 FVA0), d) The reference signal.

camera as the test-subject. (see figure 2 for a example).
The other notable fact is that one of the 3DRS-based

methods (mmc2 S IROI1 BL0 FVA0) has the highest score
of all. However, when looking at the graph of the signals, it is
clear that the signal from the PLK-method is still preferable
over the 3DRS method (see figure 7 a and c). The strange score
is probably due to the imperfection of the quality metric. The
exact explanation remains an open question.

When these things are taken into account, the rest of the
methods are graded similar to the synthetic motion experi-
ments.

3) Different distances from the camera: One small test is
done considering the optimal distance from the camera. The
intuition is that when the camera is closer to the subject, the
motion of the camera will have less influence on the motion
of the video-sequence. And less motion in the video-sequence
would mean a better respiration signal. However, the results
for the camera that was very close-by (approximately 30 cm)
are very unexpected. For some sequences the results follow the
expected order that was seen in the results of the hand-held
camera, with better scores. But for a equally large number of
sequences the results are very different.

Particularly the PLK-method scores a lot of negative values
on the correlation metric. Values occur as low as −0.74. Since
the used quality metric is based on the correlation coefficient
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Fig. 8. The results of the hand-held-camera experiment

for comparing a signal against its reference signal, this means
that a high negative correlation is found. When the signal
is inspected manually (see figure 9) it is easy to see that
some parts of the video give a inverted respiration signal.
Further investigation of the signals and the global motion
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vector show that when the camera is very close to the subject,
the chance is very large that most tracked features contain
respiration motion. This way the obtained global motion vector
will contain respiratory motion and in some cases it will
overcompensate so much that the RespROI will contain motion
opposite to the respiration motion. The problem is that when
the NoMeasureResp is chosen to contain all areas where
respiratory motion can occur there is not enough detail left
in the image to estimate global motion from.
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Fig. 9. Overcompensating when camera is too close to test subject: dotted
line: reference signal, solid line: PLK, small ROI

V. TRADE-OFFS

In the results section it is shown that there is a significant
difference between the results of the different methods. This
section will discus how computationally expensive these meth-
ods are. As a method for comparing the three best methods,
the average computation time per frame is recorded. The
compared methods are: 3DRS with reference frame, PLK with
pixel accurate image shift, and PLK with bilinear resampling
image-shift. The results are as follows:

Method Average computation time
3DRS reference frame 0.1198 s
PLK no bilinear fetch 0.0706 s
PLK bilinear fetch 0.1001 s
These results are measured on a PC with an Intel core 2

duo processor running Windows XP at 1.86 GHz
Note that the implementation of 3DRS is a non-optimized

implementation and the OpenCV method for PLK is a opti-
mized one. Also, the bilinear pixel fetch used in the PLK-
method can be optimized, for getting more pixels with the
same displacement vector at the same time. The way it is
implemented now, it is independently called for each pixel. On
top of that, the PLK can be optimized to only track features
outside of the NoMeasureROI. An other optimisation, that is
useful for all methods, but especially for the bilinear pixel
fetch, is to only reposition the image when the RespROI is
extracted from the image to be sent to ProCor. This way only
the pixels that are needed are fetched.

Nevertheless, the differences in speed are explained quite
intuitive. 3DRS is a very fast method if a full vector-field must
be calculated. However, a whole vector field is not needed in

the case of this problem. The number of computations that is
needed per motion vector will be much smaller for 3DRS,
but 3DRS has to compute 5640 motion vectors per frame
for a typical camera resolution and blocksize. The pyramidal
Lucas Kanade feature tracker only computes a fraction of
this number. The typical value used in the experiment is 100
features per frame.

Because of all the above, 3DRS is not considered to be the
right algorithm for this problem.

The real trade-off decision will be the extra computational
power (needed for the bilinear pixel fetch) against a more
accurate respiration signal.

VI. CONCLUSION

Robustness of respiration monitoring to global motion has
been investigated. New methods have been designed and
tested. The designed methods are based on the principle that
the global motion of the image frame must be determined
without affecting analysis of the respiratory motion in the
video. To achieve this, a region of interest is manually defined
in the scene (NoMeasureROI). This region should include all
the areas of the video where respiratory motion can occur. The
algorithm is designed in such a way that any information from
within the NoMeasureROI can not influence the global motion
vector, which is used for global motion compensating.

Estimation of the global motion vector can be done in
several ways, producing three different proposed methods.
One method uses a projection based global motion estimator,
another method is based on the 3DRS motion estimation algo-
rithm, and the last one is based on a pyramidal implementation
of the Lucas and Kanade feature tracker.

Two quality metrics are designed for objective evaluation of
respiration signals obtained with different methods. The first
quality metric focuses on the respiration rate and is dependent
on a peak detector for noisy respiration signals. The second
quality metric is based on the correlation analysis of the
respiration signal and a reference signal.

The method that provided the best results based on the
correlation-analysis quality metric, is the method using the
pyramidal implementation of the Lucas and Kanade feature
tracker. The tracked features are classified based on spatial
position to exclude the motion vectors that contain respiration
motion. This is done by disregarding all features that are
placed inside the NoMeasureROI. The values of the global
motion vector are then defined as the alpha-trimmed mean of
all remaining vector values for both the x and the y value.

During the experiments it has been observed that the quality
of the particular peak detection algorithm makes an impact on
performance of the whole respiration monitoring algorithms
as well as on the reliability of the objective metric.

VII. FUTURE WORK

Future work in this project will include optimization of the
algorithms for computational cost and implementation in a
embedded system in a hand-held camera device. Furthermore,
it is suggested to extend the global motion model to include
rotation, since the current algorithm is not robust to that kind
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of motion. An even more motion robust manner would be to
implement Motion/Depth Estimation as is done in [8] this way
the algorithm could compensate motion for the right camera
distance.
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