

MASTER

Moment transmitting dvw reinforced timber connection with internal steel plate and expanded tube fasteners influence of restrain effects on the behaviour

Brandon, D.

Award date: 2011

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
You may not further distribute the material or use it for any profit-making activity or commercial gain

Moment transmitting dvw reinforced timber connection with internal steel plate and expanded tube fasteners -Influence of restrain effects on the behaviour

APPENDICES

prof.dr. ir. A.J. dl. Joursen

D.Brandon

Graduation project Eindhoven University of Technology

Supervisors: prof.dr.ir.A.J.M.Jorissen dr.ir.A.J.M.Leijten ing.E.Luning

May 17, 2011

Table of contents

fasteners 6
Appendix 2: Results of analytical approach of connection with occurrence of gap closure due to bending moment
Appendix 3: Benchmark C3D8R
Appendix 4: Determination of l _{eff} for simplified strain calculation11
Appendix 5: Benchmark for cohesive elements16
Appendix 6: Analyses of tube deformation without internal steel plate 35 mm tube
Appendix 7: Analyses of tube deformation with internal steel plate and 35 mm tube
Appendix 8:Analyses of tube deformation without internal steel plate 18 mm tube26
Appendix 9: Analyses of tube deformation with internal steel plate and 18mm tube
Appendix 10: Applied tube parameters for global models and corresponding results
Appendix 11: Benchmark for determining suitable size of cohesive elements
Appendix 12: Photo report of glue process
Appendix 12: Photo report of glue process 36 Appendix 13: Photo report of tube assembly 40
Appendix 12: Photo report of glue process
Appendix 12: Photo report of glue process36Appendix 13: Photo report of tube assembly40Appendix 14: Photo report of tube assembly with portable hydraulic jack42Appendix 15: Results of tests of straight connection48Appendix 15 A: sample 0-149Appendix 15 B: sample 0-252Appendix 15 C: sample 0-355
Appendix 12: Photo report of glue process36Appendix 13: Photo report of tube assembly40Appendix 14: Photo report of tube assembly with portable hydraulic jack42Appendix 15: Results of tests of straight connection48Appendix 15 A: sample 0-149Appendix 15 B: sample 0-252Appendix 15 C: sample 0-355Appendix 16: Results of tests of angled connection58Appendix 16: Results of tests of angled connection59Appendix 16 B: sample 90-159Appendix 16 B: sample 90-263Appendix 16 C: sample 90-363Appendix 16 D: sample 90-473
Appendix 12: Photo report of glue process36Appendix 13: Photo report of tube assembly40Appendix 14: Photo report of tube assembly with portable hydraulic jack42Appendix 15: Results of tests of straight connection48Appendix 15 A: sample 0-149Appendix 15 B: sample 0-252Appendix 15 C: sample 0-355Appendix 16: Results of tests of angled connection58Appendix 16 A: sample 90-159Appendix 16 B: sample 90-263Appendix 16 C: sample 90-368Appendix 16 D: sample 90-473Appendix 17: Results tube tests77
Appendix 12: Photo report of glue process36Appendix 13: Photo report of tube assembly40Appendix 14: Photo report of tube assembly with portable hydraulic jack42Appendix 15: Results of tests of straight connection48Appendix 15 A: sample 0-149Appendix 15 B: sample 0-252Appendix 15 C: sample 0-355Appendix 16: Results of tests of angled connection58Appendix 16 A: sample 90-159Appendix 16 B: sample 90-263Appendix 16 D: sample 90-368Appendix 16 D: sample 90-473Appendix 16 D: sample 90-477Appendix 18: Results dvw tests79
Appendix 12: Photo report of glue process36Appendix 13: Photo report of tube assembly40Appendix 14: Photo report of tube assembly with portable hydraulic jack42Appendix 15: Results of tests of straight connection48Appendix 15 A: sample 0-149Appendix 15 B: sample 0-252Appendix 16: Results of tests of angled connection58Appendix 16 A: sample 90-159Appendix 16 B: sample 90-263Appendix 16 C: sample 90-363Appendix 16 D: sample 90-473Appendix 16 D: sample 90-473Appendix 18: Results dvw tests77Appendix 18: Results dvw tests79Appendix 19: Results adhesive tests83

Append	dix 20 C: R	ounding radius = 3 mm	91
Appendia	x 21: Para	allel to grain shear distribution in bond line (RP-adhesive)	93
Appendia	x 22: Nur	nerical predictions of experiments of angled connection	96
Appendia	x 23: Nur	nerical bond line predictions of angled connection	98
Appendia	x 24: Nur	nerical predictions of experiments of straight connection	
Appendia	x 25: Nur	nerical bond line predictions of straight connection	101
Appendix	x 26: Nur	nerical bond line predictions of angled connection with RP-adhesive	
Appendix	x 27: Nur	nerical bond line predictions of straight connection with RP-adhesive	
Appendix	x 28: Dat	a and material properties of bond line tests at Lund University	
Appendix	x 29: Ave	rage results of bond line shear tests at Lund University	
Appendi	x 30: Ave	rage results of bond line tensile tests at Lund University	
Appendix	x 31: Det	ailed results of bond line shear tests at Lund University	
Poly-ur	ethane;	d=0,1 mm	
Poly-ur	ethane;	d=0,3 mm	
Poly-ur	ethane;	d=0,5 mm	
Epoxy;	d=0,1	mm	
Epoxy;	d=0,3	mm	
Epoxy;	d=0, 5	mm	
Annondi	v 22. Dot	ailed results of hand line tensile tests at Lund University	122
Appendiz	d=0.1 mr		122
PU,	d=0.2 mr	n	
PU,	d=0.5 m	n	
FO, Enovy:	d-0.1	mm	
Epoxy,	d-0.3	mm	1/1
Epony,	d-0 =	mm	1/1
choxà,	u=0,5	111111	143

Figure 1: Numerical estimation of inverse of force-displacement curve for 18 mm tubes

Appendix 2: Results of analytical approach of connection with occurrence of gap closure due to bending moment

Figure 3: Moment capacity of connection with four tubes and an edge distance of 3.5 d; b=h; d=18mm; t=12mm; β =0,8.

Figure 4: x_v at maximum capacity of connection with four tubes and an edge distance of 3.5 d; b=h; d=18mm; t=12mm; β =0,8.

Figure 5: Moment capacity of connection with four tubes and an edge distance of 3.5 d; b=h; d=35mm; t=12mm; β =0,8.

Figure 6: x_v at maximum capacity of connection with four tubes and an edge distance of 3.5 d; b=h; d=35mm; t=12mm; β =0,8.

Appendix 3: Benchmark C3D8R

The 8-node element C3D8R is able to describe normal and shear strain accurately. To gain insight of the ability to describe bending strain, a benchmark is made. Figure 7 illustrates the shape and boundary conditions of the model. Length, height and depth are respectively 150mm, 5mm and 2.5mm. The results are compared to the solution of equation 1.

Figure 7: Benchmark model

First the results with fully integrated 8-node and 20-node elements are compared.

Element	Number of elements (Height × Length)				
	1 × 6 2 × 12		4 × 12	8 × 24	
C3D8	0,077	0,248	0,243	0,563	
C3D20	0,994	1,000	1,000	1,000	

Table 1: Displacement by Abaqus divided by displacements according to equation 1

From Table 1 it can be concluded that the C3D8 element acts too stiff to accurately describe the deformation. The 20-node element describes the deformation accurately regardless to the number of elements. The 20-node element requires more calculation time than the 8-node element, which is problematic when used in models with a large amount of elements.

Figure 8: 4-node (2D) and 8-node (2D) elements and their integration points

1

Secondly elements with reduced integration are tested. With reduced integration the number of integration points per element is reduced, resulting in less required calculations. The ideal location of these Gauss-integration points often leads to more accurate results.

Element	Number of elements (Height × Length)			
	1 × 6 2 × 12		4 × 12	8 × 24
C3D8R	70,1	1,323	1,063	1,015
C3D2OR	0,999	1,000	1,000	1,000

Figure 9 : Displacement by Abaqus divided by displacements according to equation 1

From Figure 9 it appears the 8-node elements tend to behave too flexible when reduced integration is implemented. An 8 node element has only one integration point and therefore only one strain (or stress) output value. The 2-dimensional 4-node element of Figure 10 represents similar problems. The length of the dotted lines in Figure 10 will not change due to pure bending moment in the elements. This results in zero strain values, zero stress values and zero energy. This specific behavior due to zero energy modes which can occur in 4-node 2D elements and 8-node 3D elements is called *hourglassing*.

Figure 10: 4-node (2D) and 8-node (2D) elements and their Gauss-integration points

Enhanced hourglass control in Abaqus/CAE can be used to solve this particular problem. An additional stiffness based on the pure stiffness method is implemented to gain reliable results.

Element	Number of elements (Height × Length)				
	1 × 6	2 × 12	4 × 12	8 × 24	
C3D8R	0.992	1.000	1.000	1.000	

Figure 11 : Displacement by Abaqus divided by displacements according to equation 1

The accuracy of the 8-node element, C3D8R, with enhanced hourglass control is comparable to the accuracy the 20-node element. A significant advantage of the 8-node element is the low costs (or calculation time).

Appendix 4: Determination of *leff* for simplified strain calculation

A simple finite element model is made to determine the value of I_{eff} that can be in the simplified strain calculation discussed in paragraph 7.1.2 of the report. Hook's law is used, but instead of using the full length of the beam (I), I_{eff} is used to compensate the fact that the beam is not compressed homogeneously by gap closure. Equation 2 is implemented for the strain calculations. I_{eff} is determined in this appendix by numerical analyses.

Figure 12 shows the geometry of the finite element model. A rigid surface with height h_c is introducing the compressive force in the timber and dvw member. As shown in Figure 12 one side of the rigid surface is moved for a distance equal to ΔI . The beam length in the model is taken 10 times the beam height. The input variable of the finite element analyses is ΔI and the strain ε output is used to determine I_{eff} .

Figure 12: FEM model for determining I_{eff}

Ε, Ε	11
(Avg	g: 85%)
-	+1.678e-08
	-9.326e-08
	-2.033e-07
	-3.133e-07
	-4.234e-07
1000	-5.334e-07
	-6.435e-07
	-7.535e-07
	-8.635e-07
1.1	-9.736e-07
	-1.084e-06
	-1.194e-06
	-1.304e-06

Figure 13: Strain in dvw and timber (back) with $h_c/h=0.2$ and $\Delta l=2.3911E-04$ mm

Figure 14: Strain in timber with $h_c/h=0.2$ and $\Delta I=2.3911E-04$ mm

The effective length corresponding to the strain values given in Figure 13 and Figure 14 can be determined with;

$$\varepsilon_{dvw} = \frac{\Delta l}{l_{eff;dvw}}$$

$$l_{eff;dvw} = \frac{2.3911^{-4}}{1.304 \cdot 10^{-6}} = 183.4 mm = 0.61h$$

$$\Delta l$$

$$\varepsilon_{timber} = \frac{1}{l_{eff;timber}}$$

$$l_{eff;timber} = \frac{2.3911^{-4}}{9.326 \cdot 10^{-7}} = 256.4 mm = 0.85h$$

Figure 15: Strain dvw and timber (back) with $h_c/h= 0.3$ and $\Delta I= 1.4980E-04$ mm

Figure 16: Strain timber with $h_c/h\text{=}~0.3$ and $\Delta\text{I}\text{=}1.4980\text{E-}04~\text{mm}$

The effective length corresponding to the strain values given in Figure 15 and Figure 16 can be determined with;

$$\varepsilon_{dvw} = \frac{\Delta l}{l_{eff;dvw}}$$

$$l_{eff;dvw} = \frac{1.4980 \cdot 10^{-4}}{7.478 \cdot 10^{-7}} = 200.3mm = 0.67h$$

$$\varepsilon_{limber} = \frac{\Delta l}{l_{eff;limber}}$$

$$l_{eff;limber} = \frac{1.4980 \cdot 10^{-4}}{5.625 \cdot 10^{-7}} = 266.3mm = 0.89h$$

 $5.625 \cdot 10^{-7}$

Studies of a redesigned timber connection

Apendices

Figure 17: Strain dvw and timber (back) with h_/h= 0.5 and Δ I=5.7500E-04 mm

Figure 18: Strain timber with $h_c/h=0.5$ and $\Delta I=5.7500E-04$ mm

The effective length corresponding to the strain values given in Figure 17 and Figure 18 can be determined with;

$$\varepsilon_{dvw} = \frac{\Delta l}{l_{eff;dvw}}$$
$$l_{eff;dvw} = \frac{5.7500^{-4}}{2.426 \cdot 10^{-6}} = 237.0mm = 0.79h$$

$$\varepsilon_{dvw} = \frac{\Delta l}{l_{eff;dvw}}$$
$$l_{eff;dvw} = \frac{5.7500^{-4}}{2.254 \cdot 10^{-6}} = 255.1mm = 0.85h$$

Figure 19 shows that the effective length is approximately constant for the different values of h_c that are implemented in this analysis.

Figure 19: I_{eff} for different values of h_c/h

Appendix 5: Benchmark for cohesive elements

Cohesive elements are used to simulate delamination in finite element analyses. To monitor the reliability of the simulation, benchmarks are compared to the results of studies made by Per Johan Gustafsson and Erik Serrano [5]. To control the accuracy of cohesive elements the creep dissipation due to viscous damping should be a fraction of the total internal energy. An analysis with creep dissipation less than three percent of the internal energy is defined accurate for this study.

The set-up of Figure 21 is modeled in Abaqus. The glue length L is taken 400 mm and the height of the glued surface is taken 150 mm (similar to the analyses of Gustafsson and Serrano and the experiments of Glos and Horstman). Table 2 shows the results of the benchmark (FEA Brandon). The results are comparable with the results of Gustafsson and Serrano.

Figure 23 shows the determined bond line capacity for different load to grain angles. The grain angle of the middle beam of Figure 21 is herewith adapted. From the results it can be concluded that the results of the analyses discussed in this appendix (FEM Brandon) mainly coincide with the FEA results of Gustafsson and Serrano and the experimental results of Glos and Horstman.

Figure 20: Geometry of finite element model; L = 400 mm [5]

Adhesive type	R/P	Epoxi	PVAc
Fracture energy (J/m2)	800	1400	1600
Gustafsson and Serrano (kN)	167	214	230
FEA Brandon (kN)	175	232	250
Deviation (%)	4.8	7.8	7.9

Table 2: Comparison of results of two finite element analyses; L = 400 mm

Figure 21: Total creep dissipation due to viscous damping divided by total internal energy

Figure 22: Force-displacement curve of benchmark

Figure 23: Force versus angle to grain direction referred to previously published results [5]

Appendix 6: Analyses of tube deformation without internal steel plate 35 mm tube

Figure 24: Tube force per shear plane versus displacement of different analyses and published test results [1] [3]

Figure 25: von Mises stress; step time = 0.0025

Studies of a redesigned timber connection

Figure 26: von Mises stress; step time = 0.0544

- x ž

Step: Last Increment 10: Step Time = 0,1897 Primary Var: S, Mises Deformed Var: U Deformation Scale Factor: + 1.000e+00

Figure 27: von Mises stress; step time = 0.1897

Studies of a redesigned timber connection

Figure 28: von Mises stress; step time = 0.6462

— X ţ

Step: Last Increment 25: Step Time = 1.000 Primary Var: S, Mises Deformed Var: U Deformation Scale Factor: +1.000e+00

Appendix 7: Analyses of tube deformation with internal steel plate and 35 mm tube

Figure 30: Tube force per shear plane versus displacement of different analyses and published test results [1] [3]

Appendix 7 A: Von Mises tube stresses

ODB: report-model-2-cohesive.odb Abaqus/Standard Version 6.8-2 Fri Apr 01 13:19:04 West-Europa (zomertijd) 2011

Step: Last Increment 1: Step Time = 2.5000E-03 Primary Var: S, Mises Deformed Var: U Deformation Scale Factor: +1.000e+00 - X

Ţ

ODB: report-model-2-cohesive.odb Abaqus/Standard Version 6.8-2 Fri Apr 01 13:19:04 West-Europa (zomertijd) 2011

Step: Last Increment 7: Step Time = 5.4453E-02 Primary Var: 5, Mises Deformed Var: U Deformation Scale Factor: +1.000e+00 - X Ţ

Figure 32: von Mises stress; step time = 0.0544

ODB: report-model-2-cohesive.odb Abaqus/Standard Version 6.8-2 Fri Apr 01 13:19:04 West-Europa (zomertijd) 2011

- Step: Last Increment 10: Step Time = 0.1897 Primary Var: S, Mises Deformed Var: U Deformation Scale Factor: +1.000e+00 x

Figure 33: von Mises stress; step time = 0.1897

ODB: report-model-2-cohesive.odb Abaqus/Standard Version 6.8-2 Fri Apr 01 13:19:04 West-Europa (zomertijd) 2011

- Step: Last Increment 15: Step Time = 0.6703 Primary Var: S, Mises Deformed Var: U Deformation Scale Factor: +1.000e+00 ¥--X

Figure 34: von Mises stress; step time = 0.6462

ODB: report-model-2-cohesive.odb Abaqus/Standard Version 6.8-2 Fri Apr 01 13:19:04 West-Europa (zomertijd) 2011

Step: Last Increment 21: Step Time = 1.000 Primary Var: 5, Mises Deformed Var: U Deformation Scale Factor: +1.000e+00

Figure 35: von Mises stress; step time = 1.0000

Appendix 7 B: Shear stress parallel to grain in bond line

Figure 36: Energy due to creep dissipation divided by total internal energy through time

Appendix 8:Analyses of tube deformation without internal steel plate 18 mm tube

Step: Last Y X Increment 1: Step Time = 2.5000E-03 Primary Var: S, Mises Z Deformed Var: U Deformation Scale Factor: +1.000e+00

Figure 38: von Mises stress; step time = 0.0025

Studies of a redesigned timber connection

Figure 40: von Mises stress; step time = 0.2858

Studies of a redesigned timber connection

Apendices

ODB: report-bestaand.odb Abaqus/Standard Version 6.8-2 Thu Mar 31 17:46:34 West-Europa (zomertijd) 2011

- Step: Last 13: Step Time = 0.6462 - X
- Increment 13: Step Time = 0.6462 Primary Var: S, Mises Deformed Var: U Deformation Scale Factor: +1.000e+00 7

-X

Increment 30: Step Time = 1.000 Primary Var: S, Mises Deformed Var: U Deformation Scale Factor: +1.000e+00

Figure 42: von Mises stress; step time = 1.0000

ž

Appendix 9: Analyse	of tube defo	ormation with	internal steel	plate and	18mm tube
---------------------	--------------	---------------	----------------	-----------	-----------

tube diameter (d)	18 mm
displacement at step time = 1.0 ($\delta_{1.0}$)	9 mm
edge/end distance	3.5d
timber thickness (t _{timber})	55 mm
dvw thickness (t _{dvw})	12 mm
adhesive	PU
bond line thickness	0.2 mm

Figure 43: Tube force per shear plane versus displacement of FEA and published test results [1] [3]

Appendix 9 A: Von Mises tube stresses

- Step: Last Increment 7: Step Time = 5.4453E-02 Primary Var: 5, Mises Deformed Var: U Deformation Scale Factor: +1.000e+00 ¥_×

Figure 46: von Mises stress; step time = 0.2858

Studies of a redesigned timber connection

Step: Last Increment 13: Step Time = 0.6462 Primary Var: S, Mises Deformed Var: U Deformation Scale Factor: +1.000e+00

Figure 47: von Mises stress; step time = 0.6462

Figure 48: von Mises stress; step time = 1.0000

Appendix 10: Applied tube parameters for global models and corresponding results

Figure 49: von Mises stresses in the deformed tube for global models

Figure 50: Force displacement curve fitted on experimental results and corresponding material properties

tube diameter (mm)	35
length (mm)	200
modulus of elasticity (N/mm ²)	1100000
vield stress (N/mm ²)	plastic strain (-)

1050	0
1400	0.005
2250	0.05
4500	0.6

Figure 51: Force displacement curve fitted on experimental results and corresponding material properties

Appendix 11: Benchmark for determining suitable size of cohesive elements

This benchmark is performed to determine the suitability of different cohesive element sizes. Figure 52 shows the finite element model used for this benchmark. The dvw plate (thin member) is translated 3.5 mm into the negative x-direction. The timber end (right side) is fixed in the x-direction. Results of different cohesive element sizes of 5 mm, 10 mm and 15 mm are studied. In all three analyses the element size of the adherents is exactly double the element size of the cohesive elements. Figure 53 shows that the results are practically similar for the different element sizes. Figure 54 shows that the energy due to creep dissipation ALLCD exceeds 4% of the total internal energy ALLIE, indicating that these analyses are not reliable from that point. However the shear capacity is already reached when the calculation becomes unreliable. The results of the bond line capacity are therefore reliable.

width of glued surface (mm)	245
height of glued surface (mm)	30
adhesive type	PU
glue thickness	0.2

Table 3: Properties of finite element model

Figure 52: Parallel to grain stress and shear stress parallel to grain in bond line; coh. element size = 5mm; step time = 0.0025

Figure 53: Force displacement curve of benchmark with different cohesive element sizes

Figure 54: ALLCD/ALLIE of benchmark with different cohesive element sizes
<section-header>

Figure 55: Measurement of adherent thickness before gluing

Figure 56: timber member with distance sheets near drill holes

Apendices

Figure 57: preparation for gluing

Figure 58: Surface glued by using a comb.

Figure 59: Screws as clamps

Figure 60: measurement of member thickness after gluing

Figure 61: Separation of adherents

Figure 62: Separated adherents after four hours of drying time; 100% of surface is glued

Appendix 13: Photo report of tube assembly

Figure 63 (left): Tube placed over rod that is placed in mold, tempex placed as support

Figure 64 (right): Tape the lower ring to prevent it from falling on the mold

Figure 65 (left): Placement of members to connect on top of the tempex

Figure 66 (right): Placement of upper steel ring

Figure 67 (left): Placement of upper mold

Figure 68 (right): Placement of upper mold base

Figure 69 (left): Expanding of the tube

Figure 70 (right): Deformed tube end

Appendix 14: Photo report of tube assembly with portable hydraulic jack

Figure 71: Placement of the tube and upper ring

Figure 72: Placement of lower ring

Figure 73: Placement of upper mold and (high capacity) threated rod and nut

Figure 74: Placement of foam as distance holder

Apendices

Figure 75: Placement of lower mold and nut

Figure 76: Placement portable hydraulic jack

Figure 77: Placement of nut for fastening the rod to the hydraulic jack

Figure 78: Placement of protection to prevent launching of the rod due to rod failure

Figure 79: T.J.van de Loo increasing the tensile force up to 85-90kN (for 18mm tubes)

Figure 80: Removal of distance foam when hydraulic jack starts to move down

Figure 81: End of loading process followed by disassembly

Appendix 15: Results of tests of straight connection

Figure 82: Set-up of four point bending test

timber beam height	300 mm
timber beam thickness	60 mm
dvw thickness	12 mm
steel thickness	15 mm
adhesive type	Poly-Urethane (DuoCol)
glue line thickness	0,4mm - 0,5mm

Appendix 15 A: sample 0-1

Ultimate bending moment	40.374 kNm	
Rotation at ultimate load	0.92 rad	
Ks	1601 kNm/rad (see comment)	
Ki	1835 kNm/rad (see comment)	
Ke	5443 kNm/rad (see comment)	
Initial gap width (compressed side)	1mm <t,<1.5mm< td=""></t,<1.5mm<>	
Type of failure	tube failure	
Comments	 Connection was not supported in out-of-plane direction. The timber members were rotating out of plane. Test is paused and continued with support. 	

Figure 83: Measured path of rotation point (sample 0-1)

Figure 84: Bending moment versus rotation (sample 0-1); red: without out-of-plain support; grey: with out-of-plain support

Apendices

Figure 85: Close-up of initial gap (sample 0-1)

Figure 86: Set-up without out-of-plane support before force initiation (sample 0-1)

Figure 87: Test set-up with out-of-plane support before continuation (sample 0-1)

Figure 88: Failed connection due to tube failure (sample 0-1)

Ultimate bending moment	41.059 kNm	
Rotation at ultimate load	0.095 rad	
Ks	2270 kNm/rad	
Ki	2597 kNm/rad	
Ke	7828 kNm/rad	
Initial gap width (compressed side)	t₅≈1mm	
Type of failure	tube failure	
Comments		

Appendix 15 B: sample 0-2

Figure 89: Measured path of rotation point (sample 0-2)

Figure 90: Bending moment versus rotation (sample 0-2)

Figure 91: Close-up of connection before load initiation (sample 0-2)

Figure 92: Test set-up (sample 0-2)

Figure 93: Failed connection (sample 0-2)

Appendix 15 C: sample 0-3

Ultimate bending moment	40.663 kNm	
Rotation at ultimate load	0.130 rad	
Ks –	2258 kNm/rad	
К;	2695 kNm/rad	
K _e	7278 kNm/rad	
Initial gap width (compressed side)	t₅≈1mm	
Type of failure	tube failure	
Comments	-	

Figure 94: Measured path of rotation point (sample 0-3)

Figure 95: Bending moment versus rotation (sample 0-3)

Figure 96: Compressed zone due to gap closure (sample 0-3)

Figure 97: Negligible friction of out-of-plane support due to teflon sheets (sample 0-3)

Figure 98: Failed connection (sample 0-3)

Appendix 16: Results of tests of angled connection

Figure 99: Set-up of test of angled connection

timber beam height	300 mm
timber beam thickness	60 mm
dvw thickness	12 mm
steel thickness	15 mm
adhesive type	Poly-Urethane (DuoCol)
glue line thickness	0,4mm - 0,5mm

Appendix 16 A: sample 90-1

Ultimate bending moment	33.052	
Rotation at ultimate load	0.067 rad	
Ks	985 kNm/rad	
Ki	996 kNm/rad	
Ke	3822 kNm/rad	
Initial gap width (compressed side)	t,≈0mm	
Type of failure	timber failure	
Comments	10% overlength and only a tube compression of 60 kN applied	

Figure 100: Measured path of rotation point (sample 90-1)

Figure 101: Bending moment versus rotation (sample 90-1)

Figure 102: Close-up of connection before load initiation (sample 90-1)

Figure 103: Close-up of connection before load initiation (sample 90-1)

Figure 104: Gap after a small deformation (sample 90-1)

Figure 105: Timber failure of lower beam (sample 90-1)

Figure 106: Timber failure and bond line failure of upper beam during continuation after first timber fracture (sample 90-1)

Page | 62

Appendix 16 B: sample 90-2

Ultimate bending moment	34.006	
Rotation at ultimate load	0.099 rad	
Ks	1843 kNm/rad	
Ki	2107 kNm/rad	
Ke	4073 kNm/rad	
Initial gap width (compressed side)	t,≈1mm	
Type of failure	bond line failure	
Comments	adhesive failed (insufficient amount of glue applied)	

Figure 107: Measured path of rotation point (sample 90-2)

Figure 108: Bending moment versus rotation (sample 90-1)

Figure 109: Connection before force initiation (sample 90-2)

Figure 110: Close-up of gap before force initiation (sample 90-2)

Apendices

Figure 111: Set-up angled connection (sample 90-2)

Figure 112: Gap after force diminishing; M = 4.6kNm (sample 90-2)

Figure 113: Tube after force diminishing; M = 4.6kNm (sample 90-2)

Figure 114: Connection with a bending moment of 28.6 kNm (sample 90-2)

Figure 115: Failed bond line (sample 90-2)

Figure 116: Gap closure (sample 90-2)

Appendix 16 C: sample 90-3

Ultimate bending moment	41.165	
Rotation at ultimate load	0.122 rad	
Ks	2649 kNm/rad	
Ki	3203 kNm/rad	
Ke	5408 kNm/rad	
Initial gap width (compressed side)	t,≈0mm	
Type of failure	tube failure	
Comments		

Figure 117: Measured path of rotation point (sample 90-3)

Figure 118: Bending moment versus rotation (sample 90-3)

Figure 119: Connection before force initiation (sample 90-3)

Figure 120: Connection before force initiation (sample 90-3)

Figure 121: Gap after force diminishing; M = 3.8kNm (sample 90-3)

Figure 122: Gap after force diminishing; M = 3.82kNm (sample 90-3)

Figure 123: Gap; M = 15.3kNm (sample 90-3)

Figure 124: Gap; M = 28.6kNm (sample 90-3)

Figure 125: Gap; M = 38.2kNm (sample 90-3)

Figure 126: Failed connection (sample 90-3)

Ultimate bending moment	38.863
Rotation at ultimate load	0.111 rad
Ks	1138 kNm/rad
Ki	1366 kNm/rad
Ke	4080 kNm/rad
Initial gap width (compressed side)	t₃≈0mm
Type of failure	tube failure
Comments	Two tubes are failed. This failure led to the timber failure shown in Figure 130

Distance rotation point y-direction (mm) Distance rotation point y-direction (mm) 100 100 50 50 0 0 -100 -50 č 50 100 -100 -50 50 100 -50 -50 -100 -100 Distance rotation point x-direction (mm) Distance rotation point x-direction (mm)

Figure 127: Measured path of rotation point (sample 90-4)

Figure 128: Bending moment versus rotation (sample 90-4)

Appendix 16 D: sample 90-4

Figure 129: Connection before force initiation (sample 90-4)

Figure 130: Failed connection (sample 90-4) Timber failed after failure of two tubes

Figure 131: Failed connection (sample 90-4)

Appendix 17:Results tube tests

Figure 132: Section of expanded tube with 10% overlength

Figure 133: Section of expanded tube with 13% overlength

Figure 134: Section of expanded tube with 16% overlength

Figure 135: Section of expanded tube with 16% overlength

Figure 136: Set-up dvw tests; measurements executed with 4 LDVT's and 2 strain gauges

Figure 137: Stress strain results determined with LVDT's

						Modulus of elasticity (N/mm ²)		
Sample	Width (mm)	Length (mm)	Thickness (mm)	Weight (g)	Density (kg/m³)	Strain gauges	LVDT	
A1	16.3	64.6	16.3	22.07	1286	20828	16968	
A2	16.19	64.62	16.19	21.84	1289	21515	16420	
A3	16.09	64.42	16.44	22.19	1302	not applied	14547	
A4	16.09	64.61	16.41	22.28	1306	not applied	16668	
A5	16.11	64.64	16.58	22.54	1305	not applied	18636	
Average	16.16	64.58	16.38	22.18	1298	21172	16648	

Table 4: Results of dvw in-plain compression tests

Figure 138: Failed dvw due to compression (sample A1)

Studies of a redesigned timber connection

Figure 139: Failed dvw due to compression (sample A2)

Figure 140: Failed dvw due to compression (sample A3)

Figure 141: Failed dvw due to compression (sample A4)

Figure 142: Failed dvw due to compression (sample A5)

Appendix 19: Results adhesive tests

Figure 143: Failed adhesive sample with sandpaper for fixation (sample R6)

Figure 144: Test set-up for tensile tests of adhesive

Sample	Width (mm)	Thickness (mm)	Modulus of elasicity (N/mm ²)	Poisson-factor v (-)	Shear modulus (N/mm²)	Ultimate Tensile Strength (N/mm²)
R1	26.15	4.2	348.04	0.43	121.69	6.56
R2	26.18	4.08	483.00	0.39	173.74	8.54
R3	26.16	4.08	405.55	0.41	143.81	9.19
R4	26.22	4.13	342.51	0.44	118.93	8.27
R5	26.16	4.06	434.22	0.49	145.71	8.63
R6	26.16	4.6	371.55	0.37	135.6	5.08
Average	26.17	4.19	397.48	0.42	139.91	7.71

Table 5: Results of adhesive tensile tests

Figure 145: Adhesive failed due to tension (sample R1)

Studies of a redesigned timber connection

Figure 146: Adhesive failed due to tension (sample R2)

Figure 147: Adhesive failed due to tension (sample R3)

Figure 148: Adhesive failed due to tension (sample R4)

Figure 149: Adhesive failed due to tension (sample R5)

Figure 150: Adhesive failed due to tension (sample R6)

tube diameter (d)	35 mm
displacement at step time = 1.0 ($\delta_{1.0}$)	18 mm
edge/end distance	3.5d
timber thickness (t _{timber})	55 mm
dvw thickness (t _{dvw})	18 mm

Appendix 20 A: Rounding radius = 1 mm

OOB: report-R1mm.odb Abaqus/Standard Version 6.8-2 Sun Apr 03 14:28:25 West-Europa (zomertijd) 2011 Step: Last Step: Last Increment 9: Step Time = 0.1256 Primary Var: S, Mises Deformed Var: U Deformation Scale Factor: +1.000e+00

Figure 152: von Mises stress; step time = 0.1256; r=1 mm

Studies of a redesigned timber connection

ODB: report-R1mm.odb Abaqus/Standard Version 6.8-2 Sun Apr 03 14:28:25 West-Europa (zomertijd) 2011

Υ_× z

Step: Last Increment 13: Step Time = 0.4840 Primary Var: S, Mises Deformed Var: U Deformation Scale Factor: +1.000e+00

ODB: report-R Imm.odb Abaqus/Standard Version 6.8-2 Sun Apr 03 14:28:25 West-Europa (zomertijd) 2011

- Ϋ́−×
- Step: Last Increment 17: Step Time = 0.7096 Primary Var: 5, Mises Deformed Var: U Deformation Scale Factor: +1.000e+00

Figure 154: von Mises stress; step time = 0.7096; r=1mm

OOB: report-R1mm.odb Abaqus/Standard Version 6.8-2 Sun Apr 03 14:28:25 West-Europa (zomertijd) 2011 Step: Last Increment 23: Step Time ≈ 1.000 Primary Var: S, Mises Deformed Var: U Deformation Scale Factor: +1.000e+00

Figure 155: von Mises stress; step time = 1.000; r=1mm

ţ

Appendix 20 B: Rounding radius = 2 mm

ODB: report-R2mm.odb Abaqus/Standard Version 6.8-2 Sun Apr 03 14:01:16 West-Europa (zomertijd) 2011

Step: Last Y—X Increment 11: Step Time = 0.1448 Primary Var: S, Mises Z Deformed Var: U Deformation Scale Factor: +1.000e+00

Figure 156: von Mises stress; step time = 0.1448; r=2mm

OD8: report-R2mm.odb Abaqus/Standard Version 6.8-2 Sun Apr 03 14:01:16 West-Europa (zomertijd) 2011 Step: Last

Step: Last Increment 14: Step Time = 0.4872 Primary Var: 5, Mises Deformed Var: U Deformation Scale Factor: +1.000e+00

¥-×

ţ

Figure 157: von Mises stress; step time = 0.4872; r=2mm

ODB: report-R2mm.odb Abaqus/Standard Version 6.8-2 Sun Apr 03 14:01:16 West-Europa (zomertijd) 2011 Step: Last Increment 18: Step Time = 0.7247 Primary Var: S, Mises Deformed Var: U Deformation Scale Factor: +1.000e+00

Figure 158: von Mises stress; step time = 0.7247; r=2mm

Studies of a redesigned timber connection

ODB: report-R2mm.odb Abaqus/Standard Version 6.8-2 Sun Apr 03 14:01:16 West-Europa (zomertijd) 2011 Step: Last Increment 22: Step Time = 1.000 Primary Var: S Mises Deformed Var: U Deformation Scale Factor: +1.000e+00

Ť×

Figure 159: von Mises stress; step time = 1.000; r=2mm

Appendix 20 C: Rounding radius = 3 mm

ODB: report-R3mm.odb Abaqus/Standard Version 6.8-2 Sun Apr 03 13:21:31 West-Europa (zomertijd) 2011

- ż
- Step: Løst Increment II: Step Time ≓ 0.1448 Primary Var: 5, Mises Deformed Var: U Deformation Scale Factor: +1.000e+00

Figure 160: von Mises stress; step time = 0.1448; r=3mm

ODB: report-R3mm.odb Abaqus/Standard Version 6.8-2 Sun Apr 03 13:21:31 West-Europa (zomertijd) 2011 Step: Last Trorement 14: Step Time = 0.4872 Primary Var: S, Mises Deformed Var: U Deformation Scale Factor: +1.000e+00

Figure 161: von Mises stress; step time = 0.4872; r=3mm

Studies of a redesigned timber connection

008: report-R3mm.odb Abaqus/Standard Version 6.8-2 Sun Apr 03 13:21:31 West-Europa (zomertijd) 2011

Step: Last Increment 17: Step Time = 0.7076 Primary Var: 5, Mises Deformed Var: U Deformation Scale Factor: +1.000e+00 ¥-×

ODB: report-R3mm.odb Abaqus/Standard Version 6.8-2 Sun Apr 03 13:21:31 West-Europa (zomertijd) 2011

ţ

Step: Last Increment 22: Step Time = 1.000 Primary Var: S, Mises Deformed Var: U Deformation Scale Factor: +1.000e+00

Figure 163: von Mises stress; step time = 1.000; r=3mm

Г

Appendix 21: Parallel to grain shear distribution in bond line (RP-adhesive)

Γ

				5, 513 (Avg: 75%) +4,000e+00 +3,333e+00 +2.667e+00 +1.333e+00 +1.333e+00 +6.667e-01 -1.333e+00 -2.000e+00 -2.667e+00 -3.333e+00 -3.333e+00 -3.333e+00 -4.000e+00								
							Tube fo	<u>rce</u> per she	ar plane			
	t _{timber} (mm)	n	b (mm)	h (mm)	30 kN			60 kN			90 kN	
	93	8	600	600			•	•		Bond lir tube for	ne failed a rce per sh	t 77.9 kN ear plane
	82	8	800	800						Bond lir tube fo	ne failed a rce per shi	t 87.0 kN ear plane
	71	8	1000	1000							÷	
-	63	8	1200	1200								

Table 6: Bond line shear stress distribution parallel to grain; arm length=15b; t_{dvw}=18mm; d=35mm; **Resorcenol Phenol adhesive**

Table 7: Bond line shear stress distribution parallel to grain; arm length=15b; t_{dvw}=18mm; d=35mm;Resorcenol Phenol adhesive

Table 8: Bond line shear stress distribution parallel to grain; arm length=15b; t_{dvw}=18mm; d=35mm;Resorcenol Phenol adhesive

Table 9: Bond line shear stress distribution parallel to grain; arm length=15b; t_{dvw}=18mm; d=35mm; Resorcenol Phenol adhesive

Appendix 22: Numerical predictions of experiments of angled connection

Table 10: Different criteria visualized

Figure 164: Numerically predicted M- ϕ curve of angled connection

Figure 165: Numerically determined paths of rotation point

Table 11: Bond line stress distribution angled connection; t_{timber}=60mm; t_{dvw}=12mm; d=18mm; PU-adhesive

Table 12: Bond line stress distribution angled connection; t_{timber}=60mm; t_{dvw}=12mm; d=18mm; PU-adhesive

Appendix 24: Numerical predictions of experiments of straight connection

Table 13: Different criteria visualized

Appendix 25: Numerical bond line predictions of straight connection

Table 15: Bond line stress distribution straight connection; t_{timber}=60mm; t_{dvw}=15mm; d=35mm; PU-adhesive

Appendix 26: Numerical bond line predictions of angled connection with RPadhesive

Table 16: Bond line stress distribution angled connection; t_{timber}=60mm; t_{dvw}=12mm; d=18mm

Figure 166: M- ϕ curve angled connection; t_{timber} =60mm; t_{dvw} =12mm; d=18mm

Appendix 27: Numerical bond line predictions of straight connection with RPadhesive

Table 17: Bond line stress distribution straight connection; t_{timber}=60mm; t_{dvw}=12mm; d=18mm

Figure 167: M- ϕ curve straight connection; t_{timber}=60mm; t_{dvw}=12mm; d=18mm

			storage duration			
	Relative humidity (%)	Temperature (°C)	Timber	Dvw		
Store room	65	20	>6 months	1 month		
Testing room	40	25	4 - 10 days	4 - 10 days		

Appendix 28: Data and material properties of bond line tests at Lund University

Table 18: Environment properties of the store room and the testing room

North European Spruce

Spruce is the most common wood species used in the Netherlands. Therefore it is useful to choose spruce for the adherent in this research. The average density of the tested spruce is 456 kg/m³.

Densified Veneer Wood

Densified veneer wood is a plywood of beech veneers, compressed under high temperatures and is available in different densities. The in-plane strength of the product used in these tests is around 110 N/mm². Crosswise layed densified veneer has a relatively homogeneous behavior and dependent on the density the material can behave ductile.

Product	Average density (kg/m ³)				
Lignostone 1300	1331				

Adhesives

In these tests two different adhesives are used with different thicknesses. To accomplish a bond with a high capacity, the adherents should be stronger than the adhesive and the adhesive should behave in a ductile manner. For structural purposes it is recommended to use a 2-component thermosetting adhesive.

Glue type	Product	
2-component Epoxy	WEVO spezialharz EP 32 S with WEVO-härter B 22 TS	
2-component PU	DuoCol Frencken B.V. Weert	

To set the glue line thickness and the size of the glued surface, PTFE distance-sheets of 0.1 mm thickness are used. Dependent on the viscosity of the glue and the amount of pressure on the drying samples, there will be a small volume of glue between the distance sheets and the adherents. As a result the glue line thickness will be bigger than the total thickness of the distance-sheets. The glue dried in the testing room.
		Average glue
	Sheet thickness	line thickness
Glue type	(mm)	(mm)
PU	0.1	0.23
PU	0.3	0.44
PU	0.5	0.72
Ероху	0.1	0.16
Ероху	0.3	0.38
Ероху	0.5	0.58

Table 19: Distance-sheets thicknesses compared with glue line thicknesses

Appendix 29: Average results of bond line shear tests at Lund University

The deformation measured in the tests includes the deformation of the steel specimen holders and the deformation of the adherents.

Figure 168: Shear tests set-up.

Shear tests average	ge results (parallel	to the timber grai	n)	1	1			
Type of adhesive	Separation-sheet tickness (mm)	Actuator speed (mm/min)	Drying time, t (days)	Number of tests	Glue thickness, d_g	Strength, f (N/mm2)	Fracture energy, Gc	Initial stiffness, K (N/mm3)
			t<2	3	0.21	5.80	1829	79
	0.1	0.1	2 <t<4< td=""><td>6</td><td>0.23</td><td>8.68</td><td>3644</td><td>323</td></t<4<>	6	0.23	8.68	3644	323
			t>4	2	0.24	10.20	1858	329
Deliverations	0.2	0.2	t<2	2	unknown	8.12	2642	7
Poly-urethane	0.3	0.3	2 <t<4< td=""><td>10</td><td>0.44</td><td>8.61</td><td>5237</td><td>110</td></t<4<>	10	0.44	8.61	5237	110
			t<2	4	0.74	7.14	5882	32
	0.5	0.4	2 <t<4< td=""><td>4</td><td>0.73</td><td>7.52</td><td>6074</td><td>91</td></t<4<>	4	0.73	7.52	6074	91
			t>4	4	0.72	9.24	4939	125
	0.1	0.1		10	0.16	14.09	3135	379110
Ероху	0.3	0.1		10	0.4	17.16	3985	32528
	0.5	0.1		10	0.58	15.70	2793	541

Table 20: Average results and properties of shear tests

Figure 169: Mean results of shear tests with PU-based adhesive and distance-sheet thickness of 0.1mm and drying time, t

Figure 170: Mean results of shear tests with PU-based adhesive and a distance-sheet thickness of 0.3mm and a drying time, t

Figure 171: Mean results of shear tests with PU-based adhesive and distance-sheet thickness, d, of 0.5mm and drying time, t

Figure 172: Mean results of shear tests with epoxy-based adhesive and distance-sheet thickness, d

Figure 173: Mean results of shear tests with PU-based adhesive and distance-sheet thicknesses, d, and drying time, t

Figure 174: Mean results of shear tests with PU-based and epoxy-based adhesives and distance-sheet thickness, d, and drying time, t

Appendix 30: Average results of bond line tensile tests at Lund University

The thickness of the timber and dvw pieces of the samples is equal to three millimeters. The deformation measured in the test includes the deformation of the timber and the dvw. The strain of the timber is expected to be significantly larger than the strain of the glue. Because of the large scatter in the modulus of elasticity perpendicular to the timber grain, it would be inaccurate to eliminate the strain of the timber the same way it is done with the shear tests. The modulus of elasticity of the glue will be estimated with additional tests. With this E-modulus, it is possible to compare the stiffness of different glue line thicknesses.

Figure 175: Tensile tests set-up.

Tensile tests aver	age results			1			
Type of adhesive	Separation-sheet tickness (mm)	Actuator speed (mm/min)	Number of tests	Glue thickness, d_g (mm)	Strength, d_g (mm)	Fracture energy, Gc (J/m2)	Initial stiffness, K (N/mm3)
	0.1	0.2	5	0.26	5.19	1734	72
Poly-urethane	0.3	0.2	5	0.47	5.2	1059	59
	0.5	0.2	5	0.66	8.05	1466	111
	0.1	0.2	5	0.2	5.03	991	78
Ероху	0.3	0.2	5	0.38	5.35	1049	94
	0.5	0.2	4	0.6	4.96	867	59

Table 21 Average results and properties of tensile tests

Figure 176 Mean results of tensile tests with PU-based adhesive and distance-sheet thickness, d

Figure 177: Mean results of tensile tests with epoxy-based adhesive and distance-sheet thickness, d

Figure 178: Mean results of tensile tests with PU-based and epoxy-based adhesive and distance-sheet thickness, d

Appendix 31: Detailed results of bond line shear tests at Lund University

d=0,1 mm

Poly-urethane;

							Used fo	r the estim	ation of:		PAT	Percentage	of bond surf	ace failed:	
Sample	Angel of anual rings to loaded surface (°)	Fracture energy (J/m2)	Strength (N/mm2)	Initial stiffness (N/mm3)	days of drying	Glue thickness (mm)	Initial stiffness	Strength	Fracture energy	Notes	Timber	Interaction timber- adhesive	Adhesive	Interaction dvw- adhesive	Dvw
PU1-1	unknown	1633	5.48	88	1	0.21	yes	yes	yes				100		
PU2-1	85	1988	6.73		1	0.2	no	yes	yes	1			100		-
PU3-1	0	3967	12.39	307	2	0.25	yes	yes	yes		30		70		1
PU4-1	10	1876	10.05	361	5	0.28	yes	yes	yes			100			
PUS-1	20	1839	10.34	297	5	0.21	yes	yes	yes	2	50	50			
PU6-1	55			192	3	0.24	yes	по	no	2	unknown	unknown	unknown	unknown	unknown
PU7-1	30	2876	8.66	198	3	0.19	yes	yes	yes	3	40		60		1
PU8-1	5		4.75	217	3	0.28	yes	yes	yes	4	50		50		
PU9-1	0	3642	9.19	848	3	unknown	yes	yes	yes				100		
PU10-1	5	4091	8.39	175	3	unknown	yes	yes	yes				100	Real Property	
test5	unknown	1867	5.19	70	1	0.22	yes	yes	yes				100		1-1-1
Notes															
1	Timber part cont	acted stee	I holder o	f dvw part	at the be	ginning			-						
2	X 60* adhesive fa	ailed													
3	X 60* adhesive b	etween st	eel holder	rs, but this	glue faile	d short after	start of the	test							
4	Glue line thickne	ss not uni	form. Goe	s from 0,21	mm up t	o 0,35 mm				1					
* X 60 is a	fast drying adhes	ive, used	to attach th	he samples	to the st	eel holders	11			1					

Figure 179: Results of shear tests with PU-based adhesive. d=0.1 mm; t<2 days

Figure 180: Results of shear tests with PU-based adhesive. d=0.1 mm; 2<t<4 days

Figure 181: Results of shear tests with PU-based adhesive. d=0.1 mm; t>4 days

							Used fo	r the estim	ation of:			Percentage	of bond sur	face failed:	
Sample	Angel of anual rings to loaded surface (°)	Fracture energy (J/m2)	Strength (N/mm2)	Initial stiffness (N/mm3)	days of drying	Glue thickness (mm)	Initial stiffness	Strength	Fracture energy	Notes	Timber	Interaction timber-adhesive	Adhesive	Interaction dvw-adhesive	Dvw
PU1-3	10			69	2	0.35	yes	no	no	1	-		20		80
PU2-3	unknown				2	0.45	no	no	no	2		-			-
PU3-3	5	3981	6.08	104	2	0.48	yes	yes	yes	3			100		1
PU4-3	45	8587	11.99	107	2	0.49	yes	yes	yes	3			100		
PU5-3	20	6272	10.34	128	2	0.51	yes	yes	yes				100		
PU6-3	unknown	3698	7.73	110	3	0.35	yes	yes	yes		25		75	1	1
PU7-3	45	4235	6.94	151	3	0.54	yes	yes	yes	4			100		
PU8-3	30	4133	8.56	79	3	0.37	yes	yes	yes				95	- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1	5
PU9-3	close to center		9.59	105	3	unknown	yes	yes	no	5	-	-			-
PU10-3	unknown	5755	7.64	136	3	unknown	yes	yes	yes		- THE PARTY		100		
test 4	unknown	3365	5.60	8	1	unknown	yes	yes	yes				100		1
test 7	unknown	3118	4.53	7	1	unknown	yes	yes	yes				100		
Notes															
1	X 60* adhesive f	ailed					12	Ĩ							
2	test failed comp	pletely			ù										
3	X 60* adhesive b	between s	teel holde	rs, but this	glue faile	d short after	start of the	e test							
4	Glue line thickn	ess is large			([L	1							

Poly-urethane; d=0,3 mm

Figure 182: Results of shear tests with PU-based adhesive. d=0.3 mm; t<2 days

Figure 183: Results of shear tests with PU-based adhesive. d=0.3 mm; 2<t<4 days

Poly-urethane; d=0,5 mm

						ĩ –	Used fo	the estim	ation of:			Percentage	of bond su	face failed:	
Sample	Angel of anual rings to loaded surface (°)	Fracture energy (J/m2)	Strength (N/mm2)	Initial stiffness (N/mm3)	days of drying	Glue thickness (mm)	Initial stiffness	Strength	Fracture energy	Notes	Timber	Interaction timber- adhesive	Adhesive	Interaction dvw-adhesive	Dvw
PU1-5	50	4915	6.75	27	1	0.69	yes	yes	yes				100		
PU2-5	30	9507	9.02	33	1	0.79	yes	yes	yes				100		
PU3-5	5	7562	8.75	59	2	0.72	yes	yes	yes		50	40	10		-
PU4-5	5	1-	- Charles	88	2	0.76	yes	no	no	1	unknown	unknown	unknown	unknown	unknown
PU5-5	0	15		110	2	0.7	yes	no	no	1	100				
PU7-5	0	4585	6.29	107	3	0.69	yes	yes	yes		55		45		
PU8-5	close to center	4540	7.62	161	4	0.76	yes	yes	yes	2			100		
PU6-5	unknown	5038	8.92	154	4	0.68	yes	yes	yes	3		and the second second	100		
PU9-5	5	5241	7.74	68	4	unknown	yes	yes	yes		50	etter til stra	50		
PU10-5	40		12.67	119	4	unknown	yes	yes	no	4			· · ·		
test 3	10	1297	6.51	10	1	unknown	yes	yes	yes	11				100	
test 6		7807	6.28	57	1	unknown	yes	yes	yes	1			100		
Notes															
1	Due to difference	ces of she	ar deforma	ation in ad	hesive, t	he steel ho	ders rota	ted							
2	X 60* adhesive b	between s	teel holde	rs, but thi	s glue fai	iled short a	fter start o	of the test							
3	Rubber bands fa	iled to ho	d the stee	el parts par	rallel to e	each other									
4	Timber failed du	le to tens	ion perper	ndicular to	the grain	n caused by	the bend	ing mome	nt						

Figure 184: Rotated steel parts

Figure 185: Results of shear tests with PU-based adhesive. d=0.5 mm; t<2 days

Figure 186: Results of shear tests with PU-based adhesive. d=0.5 mm; 2<t<4 days

Figure 187: Results of shear tests with PU-based adhesive. d=0.5 mm; t>4 days

Epoxy; d=0,1 mm

			-				Used fo	r the estim	ation of:			Percentage	of bond sur	face failed:	
Sample	Angel of anual rings to loaded surface (°)	Fracture energy (J/m2)	Strength (N/mm2)	Initial stiffness (N/mm3)	days of drying	Glue thickness (mm)	Initial stiffness	Strength	Fracture energy	Notes	Timber	Interaction timber- adhesive	Adhesive	Interaction dvw- adhesive	Dvw
EPX1-1	15				3	0.12	no	по	no	1				100	
EPX2-1	unknown		9.37		3	0.13	no	no	no	1				100	
EPX3-1	30			1884234	2	unknown	yes	no	no	2	70			20	10
EPX4-1	30			5894	2	unknown	yes	no	no	2		The second second			100
EPX5-1	35		14.16	762	2	0.16	yes	yes	no	3			20	70	10
EPX6-1	45	3135	12.68	468	2	unknown	yes	yes	yes						100
EPX7-1	40				2	unknown	no	no	no	1	70			30	
EPX8-1	10		16.82		2	0.21	no	yes	no	4	80		15	-	5
EPX9-1	0				2	unknown	no	no	no	5			1000		1 mar 10 m
EPX10-1	75	2175	15.43	4192	2	unknown	yes	yes	yes	6	50				50
Notes	La Lucar di														
2	VIUCH X 60" adhe	sive betw	een steel r	loiders	-	_									
2	X 60* adhesive f	ailed durin	a the coffe	ning proce		-		_							
3	X 60* adhesive h	aneo durin	and holder	hut this	is Ilua failad	chart after	that of the	a tost							
4	Timber failed du	etween st	eer norder	icular to th	giue raneo	used by the	booding	moment							
5	Pubber bands fa	e to tensit	d the steel	norte nora	lel to oac	h other at t	be end of	the cofteni	D <i>A</i>						
e v cole a	fact daving adhes	ive used	o the steel	parts para	to the ste	al holdors	ne enu or	une sontenn	ng				-		

Figure 188: Results of shear tests with epoxy-based adhesive. d=0.1 mm

Epoxy; d=0,3 mm

				-			Used fo	r the estim	ation of:		-	Percentage	of bond sur	face failed:	
Sample	Angel of anual rings to loaded surface (°)	Fracture energy (J/m2)	Strength (N/mm2)	Initial stiffness (N/mm3)	days of drying	Glue thickness (mm)	Initial stiffness	Strength	Fracture energy	Notes	Timber	Interaction timber- adhesive	Adhesive	Interaction dvw- adhesive	Dvw
EPX1-3	0				3	0.34	no	no	no	1			100		
EPX2-3	close to center				3	0.38	no	no	no	1			100		
EPX3-3	80			218	2	0	yes	no	по	2					
EPX4-3	0				2	0.47	no	no	no	3	100				
EPX5-3	10	2756	16.16	512	3	0.47	yes	yes	yes		10			90	
EPX6-3	unknown	3503	19.88	138012	3	0	yes	yes	yes	4		50		50	
EPX7-3	90	4215	18.68	85421	3	0.4	yes	yes	yes		100				
EPX8-3	unknown		13.22	272	3	0.68	yes	yes	no	4	100			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
EPX9-3	40	5467	17.89	2750	3	0	yes	yes	yes		100				
EPX10-3	0			511	2	0	yes	no	no	2	unknown	unknown	unknown	unknown	unknown
Notes															
1	Preparation fail	ed		-											
2	Timber failed de	ue to tensi	on perpen	dicular to t	he grain c	aused by th	ne bending	moment							
3	Rubber bands fa	ailed to ho	ld the stee	I parts para	allel to ea	ch other									
4	Test ended little	e bit early				-									

Figure 189: Results of shear tests with epoxy-based adhesive. d=0.3 mm

Epoxy; d=0,5 mm

			1				Used fo	the estim	ation of:	li		Percentage o	f bond sur	face failed:	
Sample	Angel of anual rings to loaded surface (°)	Fracture energy (J/m2)	Strength (N/mm2)	Initial stiffness (N/mm3)	days of drying	Glue thickness (mm)	Initial stiffness	Strength	Fractu <i>r</i> e energy	Notes	Timber	Interaction timber-adhesive	Adhesive	Interaction dvw-adhesive	Dvw
EPX1-5	30				3	0.57	no	no	no	1					
EPX2-5	5				3	0.59	no	no	no	1					
EPX3-5	45		17.23	669	2	0.56	yes	yes	no	2	unknown	unknown	unknown	unknown	unknown
EPX4-5	30	3332	13.07	505	2	0.63	yes	yes	yes	3,5	100				
EPX5-5	0	2472	17.71	873	2	0.49	yes	yes	yes	5	100				
EPX6-5	unknown				2	0.68	no	no	no	1					
EPX7-5	45	2143	15.38	381	2	0.44	yes	yes	yes					50	50
EPX8-5	unknown			625	2	0.6	yes	no	no	1	100				
EPX9-5	25				2	0	no	no	no	4					
EPX10-5	unknown	3226	15.09	278	2	0	yes	yes	yes	4	100		_		
Notes															
1	Much X 60* adh	esive bet	ween steel	holders			_								
2	X 60" adhesive	between	steel holde	rs, but this	glue faile	d short aft	er start of	the test							
3	Much X 60* adh	esive bet	ween steel	holders b	ut it does	not seem t	o effect th	e results.							
4	Timber failed d	ue to tens	ion perper	dicular to	the grain o	aused by t	he bendin	moment							
5	Brittle failure:	oftening	part of curv	e is influe	nced by th	e elastic de	formation	of the set	up						
* X 60 is a	fast drving adhe	sive, used	to attach I	the sample	s to the st	eel holder	5								

Appendix 32: Detailed results of bond line tensile tests at Lund University PU; d=0,1 mm

							Used fo	the estim	ation of:			Percentage	of bond su	Inface failed:	
Sample	Angel of anual rings to loaded surface (°)	Fracture energy (J/m2)	Strength (N/mm2)	Initial stiffness (N/mm3)	days of drying	Glue thickness (mm)	Initial stiffness	Strength	Fracture energy	Notes	Timber	Interaction timber- adhesive	Adhesive	Interaction dvw- adhesive	Dvw
PU1-1T	0			-	5	0.22	no	no	no	1	100				
PU2-1T	5	1327	4.72	72	5	0.26	yes	yes	yes	1.24.0	100			1	
PU3-1T	5	1447	4.23		5	0.26	no	yes	yes		100		1953		
PU4-1T	unknown	2429	6.62	72	5	0.27	yes	yes	yes		90		10		
PU5-1T	5				5	0.31	no	no	no	2	70		10		20
Notes		-													
1	Pressure of 9kN	on the spe	cimen bef	ore starting	g the test				1			1.1		_	
2	X 60* adhesive p	artly failed	1			-									

Figure 191: Results of tensile tests with poly-urethane based adhesive. d=0.1 mm

PU; d=0,3 mm

Figure 192: Results of tensile tests with poly-urethane based adhesive. d=0.3 mm

PU; d=0,5 mm

							Used for	r the estim	ation of:			Percentage	of bond su	rface failed:	
Sample	Angel of anual rings to loaded surface (°)	Fracture energy (J/m2)	Strength (N/mm2)	Initial stiffness (N/mm3)	days of drying	Glue thickness (mm)	Initial stiffness	Strength	Fracture energy	Notes	Timber	Interaction timber- adhesive	Adhesive	Interaction dvw- adhesive	Dvw
PU1-ST	25	1194	6.18	144	5	0.63	yes	yes	yes	+	100				
PU2-ST	5				5	0.66	no	no	no	1	100	1			
PU3-ST	0	1739	7.40	78	5	0.64	yes	yes	yes		90		10		
PU4-5T	0		5.00		5	0.63	no	yes	no	2	100				
PU5-5T	25				5	0.76	no	no	no	1	100				
Notes															
1	High Pressure on	the speci	men befor	e starting th	ne test			-	_						
2	LVDT not proper	y installed	. Only stre	ngth is me	asured										

Figure 193: Results of tensile tests with poly-urethane based adhesive. d=0.5 mm

Ерох	y;	d=0,	1 mm	1											
	1		1	[]		1	Used fo	the estim	ation of:			Percentage	of bond su	rface failed:	
Sample	Angel of anual rings to loaded surface (°)	Fracture energy (J/m2)	Strength (N/mm2)	Initial stiffness (N/mm3)	days of drying	Glue thickness (mm)	Initial stiffness	Strength	Fracture energy	Notes	Timber	Interaction timber- adhesive	Adhesive	Interaction dvw- adhesive	Dvw
EPX1-1T	5	579	2.92	48	2	0.17	yes	yes	yes		100				
EPX2-1T	10	812	3.08	59	2	0.1	yes	yes	yes	1	80			20	
EPX3-1T	0	1240	8.02	142	2	0.18	yes	yes	yes		15			85	
EPX4-1T	0	937	6.58	86	2	0.37	yes	yes	yes		100				
EPX5-1T	5	1387	4.53	54	2	0.18	yes	yes	yes	f	50			50	
Natas															
1 * X 60 is a	X 60* partly faile fast drying adhes	ed sive, used :	to attach th	ne samples	to the ste	el holders									

Figure 194: Results of tensile tests with epoxy-based adhesive. d=0.1 mm

Epoxy; d=0,3 mm

Sample	Angel of anual rings to loaded surface (°)	Fracture energy (J/m2)	Strength (N/mm2)	Initiał stiffness (N/mm3)	days of drying	Glue thickness (mm)	Used for the estimation of:				Percentage of bond surface failed:					
							Initial stiffness	Strength	Fracture energy	Notes	Timber	Interaction timber- adhesive	Adhesive	Interaction dvw- adhesive	Dvw	
EPX1-3T	0	1681	6.43	82	2	0.35	yes	yes	yes	0	100					
ÉPX2-3T	0	727	4.83	57	2	0.34	yes	yes	yes		100					
EPX3-3T	10	1306	5.11	\$7	2	0.39	yes	yes	yes	1	70				30	
EPX4-3T	0		3.97		2	0.4	no	yes	no	2	100					
EPX5-3T	5	482	6.42	179	2	0.44	yes	yes	yes		100					
Notes																
1	Pressure of 4kN on the specimen before starting the test															
2	LVDT's not installed correctly. Only the strength is measured															

Figure 195: Results of tensile tests with epoxy-based adhesive. d=0.3 mm

Epoxy; d=0,5 mm

Sample	Angel of anual rings to loaded surface (°)	Fracture energy (J/m2)	Strength (N/mm2)	Initial stiffness (N/mm3)	days of drying	Glue thickness (mm)	Used for the estimation of:				Percentage of bond surface failed:				
							Initial stiffness	Strength	Fracture energy	Notes	Timber	Interaction timber- adhesive	Adhesive	Interaction dvw- adhesive	Dvw
EPX1-5T	5	867	4.55	59	2	0.53	yes	yes	yes		100				
EPX2-5T	0		5.51		2	0.81	no	yes	no	1	100				
EPX3-5T	0				2	0.92	no	no	no	2	100				
EPX4-5T	5		4.83	_	2	0.42	no	yes	no	1	100				
Notes															
1	LVDT's not installed correctly. Only the strength is measured														
2	X 60" adhesive failed at the start														

Figure 196: Results of tensile tests with epoxy-based adhesive. d=0.5 mm