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Abstract 

This master thesis describes a research project conducted within the Customer Service 

Operational Services department at ASML. A decision support model is developed for 

condition based predictive maintenance of a critical machine component by implementing 

data mining methods. Several data mining techniques are used to predict the upcoming 

failures and they are compared in terms of their prediction accuracy in order to find out the 

best model. Furthermore the proposed model is compared with the physical model which has 

already been developed by ASML by using the system knowledge. The thesis concludes with 

a discussion on main findings, limitations and possible future extensions. 
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Executive Summary 

 

To preserve its market share and to satisfy its customers, ASML provides high quality 

customized support services with technology. Maintenance support service is an essential 

service provided with the technology. ASML implements periodic and corrective 

maintenance according to the customer demand. However an innovative maintenance policy, 

Condition Based Maintenance, commits to increase availability and to reduce scheduled and 

unscheduled downtime by predicting the failure time. Therefore in order to remain the best, 

ASML is committed to provide best service and it focuses on the improvement of the 

predictive tools to implement condition based maintenance.  

This master thesis is a study of an exemplary implementation of condition based maintenance 

policy in ASML. The research assignment has been defined as “to develop a data driven 

decision support model which alerts the user before failures occur, and indicates the 

remaining useful life of the critical component by using condition-based data”.  

In order to accomplish the assignment, the following research questions have been 

formulated and answered during this research.  

1. How can a condition based maintenance decision support model be designed technically? 

1.1. How to perform the Data Acquisition step? 

1.2. How to perform the Data Processing step? 

1.3. How to perform the Maintenance Decision Making step? 

2. What is the difference between the proposed model and the physical model that has 

already been developed by ASML?  

Historical data which include the condition and event data (failure cases) were acquired from 

the global database. It was aimed to find the relation between condition data and failure 

cases, and to find a method to predict upcoming failures based on that relation.  

Data understanding and data preparation are significant steps. Since data includes errors and 

missing cases, it is required to obtain the qualified representative data. As a result of the data 

preparation step, model inputs were defined. Although success of the local monitoring data is 

indisputable, more complete and accurate data is required to develop a better model. 

For the prediction model, three distinct approaches have been investigated. Firstly, several 

machine learning techniques were used to classify samples in three nominal groups which 

show the component remaining life time as an interval. As a second approach, machine 

learning techniques were used to predict the remaining time of the component in days. As a 

third approach, a mathematical model was developed to explain the relation between 

condition parameters and failure cases. 
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The given failure cases imply not only the component being out of service, but also the 

decreased performance of the component which could have a customer (i.e. process related) 

dependent impact on wafer quality. The customer expectation on the machine performance 

depends on machine type, exigent circumstances etc. So, the threshold level of failure 

depends on many external factors. Thus, the third approach was enhanced with the given 

threshold level. It provides a significant improvement in the failure prediction. As a result a 

final model which predicts 82% of the upcoming failures was proposed for ASML use. 

Therefore prediction of the upcoming failure can contribute to eliminate over-maintenance 

and decrease unscheduled down time. Moreover since the model diagnoses all faulty sub-

modules, it enables a service engineer to specify the scope of the maintenance. This leads to a 

decrease in maintenance expenditures. The remaining useful life (RUL) indication helps the 

service engineer decide about when to plan maintenance, when to arrange labor and when to 

order spare parts cost-effectively.  

As a next step, this proposed model was compared with the physical model which has already 

been developed by the domain experts in ASML. Physical models predict the upcoming 

machine failure by using physical theories whereas data driven models predict failures 

according to the relation between given inputs (condition parameters) and outputs (failure 

events). The prediction accuracy of these models was assessed for 11 failure cases. 

Consequently, the data driven model which predicts 82% of the failure cases outperforms the 

physical model which does not produce any warning signal for 55% of the upcoming failures. 

Thus, the success and feasibility of the data driven model proved the predictability of failures 

without using the system knowledge.  

Last but not least, in the deployment phase, the decision support model has been built in order 

to integrate the outputs of the prediction model with the maintenance activities. Moreover, in 

the deployment phase, the user interface has been developed to support ASML to use the 

output of the proposed prediction model. A user friendly interface has been built in MS 

Excel. For entered condition parameters and threshold values, the status of the module and 

the remaining useful life of the module are shown. Therefore the field service engineer is 

informed about the upcoming failure.  
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The major difference between a thing that 

might go wrong and a thing that cannot 

possibly go wrong is that when a thing that 

cannot possibly go wrong goes wrong it 

usually turns out to be impossible to get at or 

repair. 

Douglas Adams 

 

 

Introduction 

 

The maintenance concept for capital goods has gained more importance as availability and 

reliability has become a significant issue for manufacturing companies and service 

organizations. Among maintenance policies, Condition Based Maintenance has become 

prominent by supporting right-on-time maintenance based on tangible reasons. Condition 

Based Maintenance is a developed proactive maintenance strategy which increases 

availability of capital goods while eliminating over-maintenance cost. 

Aiming to increase availability and reduce scheduled and unscheduled downtime, ASML 

started to develop and use predictive tools. Local offices initiated condition monitoring and 

these initiatives resulted in local improvements on down time. ASML’s objective is to 

develop a sustainable solution by bringing the locally developed monitoring tooling 

knowledge into sustainable toolset of means and methods. 

This master thesis aims to develop data driven decision support model which alerts the user 

before the failure occurs, and indicates the remaining useful life (RUL) of capital goods 

by using condition-based data. 

Chapter 1 provides information about the research setting, ASML, and gives background 

information about maintenance policies and condition based maintenance. Then the research 

assignment is explained in detail. This report is organized in 8 chapters and the report outline 

is presented at the end of the first chapter.    
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1. Company Description and Research Assignment 

This chapter consists of three sections. In the first section, we present brief introduction about 

the company ASML and the Customer Support Operational Services Department which 

constitutes the research settings of this master thesis study. In the second section, background 

information about the maintenance policies and condition based maintenance policy is 

provided. Finally, the design of the research assignment is explained. 

1.1. Company Description 

ASML is the world’s leading provider of lithography systems for semiconductor industry. It 

designs, develops, integrates, markets and services advanced systems used by the 

semiconductor industry to manufacture complex integrated circuits (ICs or chips). ASML's 

customers include most of the world’s major chip manufacturers such as Intel, Toshiba, 

Samsung, Texas Instrument, IBM, Micron and TSMC.  

In the semiconductor industry, technology is provided with support services. An integrated 

customer solution is a key for semiconductor manufacturers to remain competitive. To 

preserve its market share and to satisfy the customers, ASML provides high quality 

customized support services with technology. Every fab is different and requires a different 

support coverage package. Therefore ASML’s service contract portfolio is designed to be 

flexible to meet any Customer’s need. ASML offers an extensive portfolio of Labor, 

Applications, Parts and Parts Inventory Management contracts. The contract form depends on 

the number and type of systems in a fab. Moreover ASML also offers equipment relocation, 

fab start-up, training and advanced application notes.  

Support Packages 

ASML offers support packages which may consist of a part contract, a labor contract, an 

application contract and a logistic contract. 

Labor Contracts 

ASML’s Field Service Engineers are armed with the most up-to-date technical information to 

assure the highest levels of system performance. ASML’s fully qualified technical experts 

facilitate fast troubleshooting and repair, minimizing downtime and securing maximum 

performance of your systems.  

Applications Contract 

ASML offers application support contract that can be customized to specific customer 

requirements. It aims to optimize process efficiency. 

Parts Contracts 

In addition to labor contract, ASML also offers Parts Contracts per machine or for a Fab. 

Owing to this contract, fixed, yearly fee for all relevant spare parts (excluding consumables) 

will be made available with a guaranteed service level. Planning, shipment, customs 
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clearance and installation of spares are cared by ASML. Yearly expenditures can be budgeted 

in advance. 

Logistics Service Contract 

ASML also supports parts inventory management. Logistic service contracts can be designed 

according to customer specifications in terms of:  

• The required service level 

• Guaranteed availability of spare parts whenever they are needed 

• Minimum unexpected downtime and related costs 

• Contract price depends on the agreed service level 

1.1.1. Organization of ASML 

There are 4 main divisions under the ASML organization, namely: Support, Product, Market 

and Operations. Figure 1 shows the organizational chart. 

 

Figure 1: ASML Organizational Chart 

The master thesis was carried out with the collaboration of the Customer Support and 

Operational Services department under Market division of ASML. This department supports 
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the whole market (all customers), in terms of field operations by providing generic solutions. 

These solutions are implemented by the field operations department. The following part 

describes the Customer Support and Operational Services department. 

1.1.2. Customer Support - Operational Services Department 

Customer Support Department aims to provide operational excellence by reducing service 

cost while improving product performance. Escalation Management, System Performance 

Management, Maintenance Planning, Service Execution are Customer Support (CS) 

processes.  

Customer Support-Operational Services (CS-OS) supports customers by means of ASML’s 

field service engineers in terms of (1) data and analysis, (2) tooling and automation, (3) 

continuous improvement of services and support and (4) standard and reliable ways of 

working. This department’s main responsibilities are maintenance engineering, business 

process development and equipment performance monitoring. It consists of three teams: 

Analysis & Reporting, Data Quality & Tooling and Projects & Processes. Analysis & 

Reporting team is responsible for providing on time, accurate, complete analysis and reports 

regularly. Data Quality & Tooling team provides automation tools that meet customer 

requirements. Projects & Processes team initiates and manages aligned, effective and 

efficient projects & processes to support customer. 

1.2. Background about Maintenance Policies and Condition Based 

Maintenance Policy  

No matter how good capital goods are designed, to keep them operating at desired reliability 

level, maintenance is required. Tsang et al. (1999) define maintenance as to repair broken 

items. However as opposed to this traditional perception, maintenance concept has been 

evolved throughout the years and distinct definitions have been given for maintenance. 

According to British Standards (1984); maintenance is defined as the combination of all 

technical and associated administrative actions intended to retain an item or system in, or 

restore it to, a state in which it can perform its required function. 

Zhao et al. (2010) state that the annual cost of maintenance goes up to 15% for manufacturing 

companies, 20%–30% for chemical industries, and 40% for iron and steel industries. 

Therefore, importance of maintenance increases significantly and there is a continuous search 

for a better maintenance policy which provides economic efficiency with higher system 

reliability, availability and safety.  

Under these circumstances maintenance applications have changed from corrective 

maintenance to proactive maintenance. Whereas users had performed maintenance after 

failure occurrence, nowadays they try to eliminate failure by performing proactive 

maintenance. In other words they are moving from reactive to a proactive maintenance 

policy. One of such proactive maintenance policies is condition based maintenance which 

aims to predict failure through condition monitoring 
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Maintenance Policies 

In the literature different classifications and denomination exist for maintenance techniques. 

By taking the definition of maintenance into account, maintenance policies are figured out in 

two categories in this study:  

 

Figure 2: Maintenance Techniques (Niu et al. 2010) 

(1)Planned maintenance which aims to retain the capital goods in, to prevent failures  

(2)Unplanned maintenance which aims to restore the capital goods after failure  

Figure 2 shows maintenance techniques. Three most common maintenance techniques are 

corrective maintenance, predetermined (so called preventive) maintenance and condition 

based maintenance. 

Corrective Maintenance: It is also known as breakdown maintenance or unplanned 

maintenance, or run-to-failure maintenance. Corrective Maintenance is the earliest and 

simplest maintenance technique. Maintenance is performed when the failure happens. 

Therefore it is formed of unplanned activities and crisis management is required when the 

machine fails. The reason of the failure is diagnosed first and then maintenance is performed. 

It has high spare part and repair costs. Safety hazard is high because emergency situation is 

not detected and breakdown is waited to perform maintenance. On the other hand, corrective 

maintenance eliminates over maintenance and related costs. There is no difference between 

implementation of immediate and deferred maintenance except timing. 

If unscheduled failure maintenance cost is not higher than preventive maintenance cost and 

safety and uptime are not critical issues, the usage of corrective maintenance could be the 

most economic way owing to usage of full life time of the component/machine. It could be 

 

MAINTENANCE

PLANNED MAINTENANCE-

PREVENTIVE MAINTENANCE

UNPLANNED MAINTENANCE-

CORRECTIVE MAINTENANCE

PREDETERMINED  

MAINTENANCE

CONDITION BASED 

MAINTENANCE

DEFERRED IMMEDIATEScheduled
Scheduled, continuous 

or on request
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useful for simple non-integrated machines if the failure is easily and cheaply repairable and it 

doesn’t cause any other failure. 

Predetermined Maintenance: It is also called as periodic, preventive or planned 

maintenance. The condition of a machine is not taken into account and machine age is the 

only criteria to execute maintenance. Maintenance is performed periodically to decrease 

unexpected failures; however it is not possible to eliminate all random failures.  The 

maintenance activities could be managed and the amount of required labor and spare parts are 

determined earlier. Unscheduled breakdown and so down time are reduced. Although this 

approach reduces failure risk and down time, costs related to over-maintenance and spare 

parts increases.  

Condition Based Maintenance: CBM is the developed preventive maintenance technique 

which is based on machine condition. Maintenance is performed when it is required by 

observing the condition of the physical asset. CBM aims to improve system reliability, 

availability and security and to reduce maintenance cost. This technique has significant 

advantages over conventional techniques. Firstly, induced failure, spare parts, downtime and 

production interference are reduced. System availability is increased by CBM. Secondly 

management and logistic activities are controlled. Labor planning, maintenance planning 

spare parts planning can be conducted effectively by observing machine condition. One of the 

greatest advantages is the extended equipment life which causes reduction in life cycle cost. 

Since machines condition is observed continuously or periodically, machines can be stopped 

in critical situations and it provides higher safety. On the other hand the implementation of 

this technique is complex and costly. It requires additional skills and higher investment in 

comparison to the other two techniques. Capital investment includes cost of experiment tests, 

R&D expenses, and system development cost due to new IT infrastructure, hardware, 

software, system integration.  

Selection of the appropriate maintenance policy is based on the main concern of the user. The 

significance of availability, cost and safety issues may lead to implementation of different 

maintenance techniques. If the system is cheap, easily repairable and failure doesn’t cause 

any serious problem, corrective maintenance could be the effective way. However if failure is 

avoided due to the mentioned issues, preventive maintenance or CBM could be a better 

alternative. Availability of condition monitoring system and skilled labor directs to the 

condition based maintenance option which provides higher uptime, reduced cost and higher 

safety. However if required infrastructure is not available, a user should trade off between 

investing in a CBM system, and paying for over maintenance and unscheduled breakdown.  

The advantages and disadvantages of the maintenance techniques are summarized in Table 1. 
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Table 1: Comparison of Maintenance Techniques 

Advantages Disadvantages 

Corrective 

Maintenance 

No over-maintenance (low cost policy) High production downtime 

No condition related cost Large spare inventory 

Requires minimal management High cost repairs 

Useful on small non-integrated plant Crisis management needed 

  Over time labor 

  Safety hazardous 

Predetermined 

Maintenance 

Enabled management control Over-maintenance  

Reduced down time Unscheduled breakdown  

Control over spare parts and costs   

Reduced unexpected failure   

Fewer catastrophic failure 

Condition Based 

Maintenance 

Reduced unplanned downtime, spares, 

induced failures 
Higher investment cost 

Reduced production interference Additional skills are required 

Enabled management and logistic control   

Extended equipment life   

Reduced life cycle cost and maintenance 

expenditures 
  

 

CBM Methodology  

Three main steps in CBM should be followed in order to design a CBM decision model: (1) 

Data Acquisition, (2) Data Processing, (3) and Maintenance Decision Making 

a. Data Acquisition 

Data Acquisition is the first step which includes collecting and storing information from the 

capital goods. Two types of data namely condition and event data are recorded to use 

diagnostics and prognostics. Condition data indicates the state and health condition of capital 

goods whereas event data depicts the cases and taken actions.  

Condition data is obtained by means of condition monitoring. Condition monitoring has been 

defined as “The assessment on a continuous or periodic basis of the mechanical and electrical 

condition of machinery, equipment and systems from the observation and/or recordings of 

selected measurement parameters” (Collacott 1997).  
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b. Data Processing 

Data Processing includes the data cleaning and data analysis steps.  

• Data Cleaning 

Obtaining high quality data is the first crucial step to generate a strong CBM decision model. 

Data cleaning which includes detecting and correcting inaccurate data is required to enhance 

the data quality. Statistical tools such as Descriptive Statistics, Histograms, Scatter plot could 

be helpful to detect errors. 

• Data Analysis 

Which data analysis is performed depends on the data type. According to Jardine et al. (2006) 

data are collected in three different categories.  

o Waveform type: Data collected in the form of time  series at a specific time period  

o Value type: Single value data collected at a specific time period 

o Multidimensional type: Multidimensional data collected at a specific time period  

Data analysis can be performed either for only event data or for combination of event and 

condition data. The first type of analysis, known as reliability analysis, is to select best fitting 

survival distribution based on event data. The fitted distribution is used for further analysis. 

Secondly, in order to better understand and interpret data, combination of event and condition 

data is analyzed by building mathematical model. This mathematical model is the basis for 

maintenance decision support model (Jardine et al, 2006). 

c. Maintenance Decision Making 

Diagnostics and prognostics are two significant aspects of CBM decision making step. 

Although the aim of CBM model to do prognostics, diagnostic is required when prognostics 

fails to predict and fault occurs (Vismara, 2010). Peng et al. (2010) define diagnostics as 

dealing with fault detection, isolation, and identification when abnormity occurs and define 

prognostics as dealing with fault and degradation prediction before they occur.  

Diagnostics analyze the system performance, degradation level and health states. Firstly the 

abnormal operating condition is discovered (Fault detection). Then the faulty component or 

subsystem is detected (Fault isolation). Finally the nature and extend of fault/failure is 

evaluated (Fault identification). 

Prognostics refer to the capability to provide early detection of the fault condition of a 

component, and to predict the progression of this fault condition to component failure 

(Gilmartin et al., 2000). In other words failure occurrence time is estimated. Precise and 

reliable prognostic is critical for CBM in order to improve safety, schedule maintenance, 

reduce maintenance cost and increase availability.  

According to Jardine et al. (2006), there are two main prediction types in machine 

prognostics. One of them, common type, is the prediction of machine remaining useful life 

(RUL). RUL, also called remaining service life, residual life or remnant life, indicate the time 
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left before the failure occurs. The second one is to predict the chance that a machine operates 

without a fault or a failure up to some future time. This prediction could help to determine an 

inspection interval by estimating failure probability in this time period.  

Although a variety of algorithms and techniques have been developed for diagnostic, 

prognostic algorithms for CBM have only recently been introduced in literature (Peng et al., 

2010). In literature, similar approaches are used for diagnosis and prognosis which are 

classified in three main categories: Physical Model, Knowledge Based Model and Data 

Driven Model.  

As mentioned above, physical models are utilized both for diagnostics and prognostics in 

literature. This approach uses a mathematical model related to physical processes that have 

direct or indirect effect on health of physical asset (Peng et al., 2010). Knowledge based 

model is based on a priori knowledge of state of system and its components. Expert System 

and Fuzzy Logic are two approaches used for knowledge based model are. Data-driven 

models are the models in which both previous inputs and outputs are known and measured. 

The main aim of data driven model is to figure out a relationship between measured input and 

output by using statistical and learning techniques. Peng et al. (2010) classify data-driven 

methods into two categories: statistical approaches and AI approaches.  

CBM Applications and Results 

CBM has proved to minimize the cost of maintenance, to improve operational safety and to 

reduce the quantity and severity of system failure. Rao (1996) explains that in 1988 a survey 

was conducted among 500 plants to evaluate the impact of CBM. Participants had been 

operating CBM for three or more years. The results of the survey show 50%-80% reduction 

in maintenance and repair costs and more than 30% reduction in spare part inventory 

emerged (Rao, 1996). Furthermore, saving of some companies due o predictive maintenance 

are also stated in his book.  

Lee et al. (2006) introduce several case studies to compare several maintenance strategies in 

their study. Four maintenance strategies are defined as corrective maintenance strategy, 

scheduled maintenance strategy, condition based maintenance and predictive maintenance 

strategy based on maintenance scheduling. In this study maintenance labor availability is 

considered and it was assumed that any unscheduled equipment failure will be addressed 

when a maintenance team is available. Spare part inventory is not taken into account. Cost 

effects of maintenance are evaluated based on system state, total scheduled maintenance, total 

unscheduled maintenance maintaining time, unit cost for scheduled maintenance and unit cost 

for unscheduled maintenance. The result of the case studies verifies that as long as 

unscheduled failure maintenance is more expensive than scheduled one, cost benefit of last 

two strategies was higher than the corrective and scheduled maintenance strategies. 

Beside the fact that superiority of CBM is proved theoretically like in Lee et al., its feasibility 

and practicability is also proved in many studies.  

Li and Nilkitsaranont (2009) describe a prognostic approach to estimate the remaining useful 

life of gas turbine engines. Their approach provides valuable estimation of the engine 
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remaining useful life and assists gas turbine users in their condition-based maintenance 

activities. 

Blechertas et al. (2009) explain a systematic approach to US Army rotorcraft CBM and the 

resulting tangible benefits in their study. In this article, AH-64 Tail Rotor Gearbox case is 

studied, and results of cost benefit analysis of the rotorcraft Condition-Based Maintenance 

program which is implemented at the South Carolina Army National Guard is stated. Cost 

benefit analysis is done by figuring out investment cost and returns. Whether the benefits and 

returns exceed the investment shows the success of CBM program.  As a result, $33.4 million 

savings in parts costs, $38.3 million savings in parts cost and operation support are observed. 

Furthermore productivity is increased through reduction in maintenance test flights and 

unscheduled maintenance and increase in mission flight time. Improvement in safety, sense 

of safety, morale, and performance are also verified outcomes of CBM implementation in this 

study. Shortly this case confirmed the CBM effect on increase in cost effectiveness, 

availability and safety practically. 

Hoyle et al. (2007) analyze cost benefit of Integrated Systems Health Management (ISHM) in 

Aerospace Systems. As Condition Based Maintenance Policy, ISHM detects, assesses and 

isolate faults and so improves safety and reliability. It is used to determine optimum threshold 

level and inspection interval. Proposed ISHM framework is applied to aerospace system in 

their study. While calculating system cost and profit; System Availability, Cost of Detection 

and Cost of Risk are considered.  Significant increase in profit, decrease in cost and increase 

in inspection interval is observed. 

Kent and Murphy (2000) present cost benefit analysis of implementation of sensor based 

technologies for use in aerospace structure health monitoring systems (ASHMS). They focus 

on the cost and benefit of usage of health monitoring for maintenance. Such CBM policy 

requires high investment and they figure out whether the expected benefits are worth the high 

investment. This study leads to 30-40% improvement in maintenance. Reduced scheduled 

maintenance requirements, operational performance improvement, increased environmental 

safety are some of non-economic benefit of ASHMS. 

1.3. Research Assignment 

1.3.1. Problem Statement 

To ensure competitiveness and getting a larger market shares, companies are forced to 

continuously decrease cost and increase productivity. Manufacturing companies use physical 

assets/capital goods to produce their end-products. The availability of these capital goods is 

the main concern of manufacturing companies to eliminate costly unexpected downtime and 

to increase productivity. Therefore maintenance becomes a significant issue for 

manufacturing companies.  

Customers of ASML are unsatisfied with conventional maintenance techniques which are 

corrective and periodic maintenance. Periodic maintenance is based on the worst case 

scenario and customer usage. Therefore it causes over-maintenance and so extra downtime. 
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Furthermore it may not eliminate all unscheduled downs (USDs). On the other hand, reactive 

maintenance provides the use of whole life time of the machine, but an USD may lead to long 

down time and higher repair cost. Considering customer demand on increasing availability, 

ASML focuses on predictive tools to decrease down time.  

Condition Based Maintenance (CBM) is a proactive maintenance strategy which increases 

availability of capital goods while eliminating over maintenance cost. By monitoring the 

condition of the system, the optimal maintenance strategy can be determined in terms of cost 

effectiveness, availability and safety. CBM policy helps ASML provide better maintenance 

solutions to customers (increased system availability and decreased associated costs).  

1.3.2. Objective 

The objective of this thesis is to develop a data driven CBM decision support model 

which alerts the user before failures occur, and indicates the remaining useful life 

(RUL) of capital goods by using condition-based data.  

1.3.3. Research Scope 

Implementation of condition based maintenance policy in ASML is a broad topic. The main 

output of the project is a data-driven decision support model which figures out the 

relationship between measured input (machine condition parameter) and output (machine 

health state) by using statistical and learning techniques. In other words, the failure prediction 

model will be built by using machine historical data without any system knowledge.  

In general, to implement a CBM policy in ASML, the failures of all machine types have to be 

figured out. However there are millions of parameters to analyze and each machine consists 

of variety components which should be examined separately. Therefore the failure of the 

machine component could be seen as the root of machine failure. Rather than focusing on a 

machine failure, the critical component failures are taken as a starting point.  

The project focuses on the development of a condition based maintenance decision support 

model for a single module. This module (which is referred to Module X in the rest of the 

report) is used on an installed base of more than 1000 systems. A high number of early 

lifetime failures (10 %) of the module have been observed. Furthermore maintenance of this 

part takes a long time and thus causes significant downtimes. Delays including diagnostics, 

parts delay and customer delay are the reason of 50 % of downtime caused by Module X 

(Figure 3). Therefore Module X is a significant component in order to keep machine 

operating. Explanation of this part failure contributes significantly to the explanation of 

machine failure. Through proactive maintenance, a significant amount of machine hours 

spend on unscheduled downtime (USD) could be saved. 



 

 

12 

 

Figure 3: Breakdown of Module X Long downs  

1.3.4. Research Methodology 

This master thesis is a Business Problem Solving (BPS) project which focuses on the design 

of a solution for a business problem. Van Aken et al. (2007) state that “Problem solving 

projects aim at the design of a sound solution and at the realization of performance 

improvement through planned change.” Furthermore they claim that a sound business solving 

project has to satisfy the following criteria, which we have adopted for this master thesis: 

Performance focused: The main objective of the project should be to improve actual 

performance. This project points out the company problem and aims to develop a model 

which results in performance increase. ASML has to continuously improve Operational 

Expenditures and their main focus is to increase system availability. In line with ASML’s 

objective, a model is built to increase uptimes.  

Design Oriented: The projects steps are controlled by a project plan. This plan gives an 

insight about the project progress. Therefore while generating model, sound decisions could 

be taken. 

Theory-based: Existing literature has been reviewed and evaluated. By contextualizing the 

theories for company problem, analysis and design activities are realized in this project. 

Therefore valid and state of art knowledge is used to solve the problem. 

Client Centered: Since the proposed solution is an operational service for ASML, ASML 

requirements are identified and taken into account.  

Justified: The solution is provided with reasoning behind it. Performance analysis is 

executed to justify the proposed solution. 

The approach that we follow is CRISP-DM (CRoss-Industry Standard Process for Data 

Mining), which is the industry standard methodology for data mining and predictive 

analytics. It is a useful methodology to make large data mining projects faster, cheaper, more 

reliable and more manageable (Shearer, 2000). As shown in Figure 4, CRISP-DM organizes 

the data mining process into six phases: business understanding, data understanding, data 

Diagnostics Time 
4.9hr

Corrective 
Action, 4.7hrC&T 

Stabilization, 0.7hr

Metrology 
Recovery, 3.5hr

Customer 
Delay, 0.3hr

Parts Delay, 3.0hr

Tools Delay, 0.1hr Other Delay, 0.5hr
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preparation, modelling, evaluation, and deployment. These phases help to understand the data 

mining process and guide a data mining project. 

 

Figure 4: Phases of the Crisp- DM Process Model 

 

1.3.5. Research Questions 

In order to accomplish the objective, the following research questions have been formulated:  

1. How can a condition based maintenance decision support model be designed 

technically? 

There are three main steps in order to design a CBM decision support model which are (1) 

Data Acquisition, (2) Data Processing, and (3) Maintenance Decision Making.  

1.1  How to perform the Data Acquisition step? (Data Understanding-Chapter 3) 

Data Acquisition is the first step which includes collecting the condition and event data. 

Since ASML has recorded millions of data up to now, by assuming that the data are reliable, 

any more additional activity will not be performed for this step. Therefore obtained data will 

be used in the following steps.  

1.2  How to perform the Data Processing step? (Data Preparation-Chapter4) 

Data Processing consists of Data Cleaning and Data Analysis. Data Cleaning is required to 

eliminate data errors. Moreover, Data Analysis helps to understand and interpret data.  

a. How to perform Data Cleaning? 

b. How to perform Data Analysis?  

Chapter 7 

Chapter 2 Chapter 3 

Chapter 4 

Chapter 5 

Chapter 5-6 
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i. What is the relationship between condition parameters and failure cases? 

ii. What is the relationship among condition parameters? 

 

1.3 How to perform Maintenance Decision Making step? (Modeling-Chapter5) 

After data is acquired and interpreted, the decision support model is built. This model helps 

the user to take decisions by warning about the upcoming failure. There are various methods 

to predict the RUL of the module. After selecting most appropriate method, a complete CBM 

decision support model which alerts the user and shows RUL of capital goods, is designed. 

a. What methods can be used to predict RUL?  

b. What is the best method to be used for the CBM decision support model?  

 

2. What is the difference between proposed model and physical model that has already 

been developed? (Evaluation-Chapter 6) 

A physical model has already been developed by ASML by considering the physical behavior 

of Module X. In the final part of research assignment, the proposed data driven model will be 

compared with the physical model and its feasibility and success will be evaluated.   

a. Does the proposed model perform better than the physical model? 

b. What is the improvement amount in terms of previously identified 

performance measures? What is the attainment of data driven model compared to 

physical model? 

1.4. Report Outline 

This chapter provided background information about ASML and Customer Support 

Operational Services Department where the practical part of this master thesis was 

conducted. Then, brief information about maintenance, maintenance policies were given. 

Furthermore the condition based maintenance methodology and applications were explained 

in detail. Finally, the research assignment was clearly defined in this chapter. Based on the 

research methodology, the rest of the report is organized as follows. Chapter 2 focuses on 

the understanding of ASML’s business objectives and expectations. Moreover the data 

mining problem is designed in line with these objectives. Chapter 3 points out understanding 

and exploration of the initial data. As a next step, Chapter 4 explains all activities performed 

to obtain final data set from initial raw data. In Chapter 5 the implementation of the 

modelling techniques, the creation of models, and the assessment of models are presented. 

After developing the prediction model, in Chapter 6, it is compared with the physical model. 

Chapter 7 explains the deployment phase of the project. It gives information about the 

decision support model and user interface by which ASML can use the knowledge gained 

from the model. Finally, the conclusion and discussion are presented in Chapter 8. 
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2.1. Determination of Business Objectives:

Integrated Customer Solution is a key for semiconductor manufacturers to remain 

competitive. To preserve its market share and to satisfy customer
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Maintenance Support Service is
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maintenance is performed.  
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parameters per machine are recorded in 

retained in the storage about 0.5 year

improvements on unscheduled down (USD) and extreme long down (XLD) p

monitoring systems. Therefore

developed monitoring tooling knowledge into a sustainable solution.
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focuses on determining the business objectives, assessing the situation and 

determining the project goals.  

Determination of Business Objectives: 

Integrated Customer Solution is a key for semiconductor manufacturers to remain 

To preserve its market share and to satisfy customers, ASM

quality customized support services with technology. 

ervice is an essential service provided with the technology. 

implements periodic and corrective maintenance according to customer demand

whole life time of the machine, reactive maintenance

failure occurrence, it takes time to respond to the failure, then 

service engineer discuss about the case. Service engineers starts 

the failure. Then required parts and tools are ordered. As soon as 

d parts, maintenance is planned, executed and the machine starts working again.

customer prefers preventive maintenance, service engineer perform

to eliminate failure. Periodic maintenance (scheduled maintenance) decreases 

downtime based on periods of worst case scenarios and customer usage assumptions. 

Although unscheduled down time is decreased, maintenance is performed too early and over 

 

Figure 5: Steps of Corrective Maintenance  

availability and reduce scheduled and unscheduled downtime, predictive tools 

started to use. Several years ago a pro-active initiative 

due to many reasons the initiative was not funded. Recently local offices, Custom

Veldhoven and Industrial Engineering have started their own Pro

to support demanding customers within their own competence. Local offices initiate warning 

monitoring, immersion parameter monitoring and scripts engineering. Mor

parameters per machine are recorded in a database (file archive) every day. 

retained in the storage about 0.5 years. Such local initiatives have

improvements on unscheduled down (USD) and extreme long down (XLD) p

. Therefore the Be-Warned project been started 

developed monitoring tooling knowledge into a sustainable solution. 
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Although unscheduled down time is decreased, maintenance is performed too early and over 

led downtime, predictive tools 

active initiative was started 

due to many reasons the initiative was not funded. Recently local offices, Customer 

Veldhoven and Industrial Engineering have started their own Pro-active initiatives 

. Local offices initiate warning 

engineering. More than 3000 

day. These data are 

have showed distinct 

improvements on unscheduled down (USD) and extreme long down (XLD) performance by 

started to translate local 



 

 

16 

CS-OS conducts the Be-warned Project to design and deliver predictive maintenance tools, 

methods, mindset and organization. Proactive Maintenance Models will be the basis of Be-

Warned Project. As explained in the literature study conducted by Cakir (2011) (see Chapter 

1.2), CBM decision models can be developed by using different modeling approaches such as 

Physical Model and Data Driven Model. In the scope of the Be-Warned project, ASML has 

already developed a physical model by using specific knowledge and theories relevant to the 

systems. As opposed to the physical model, data driven model without any system knowledge 

was developed in this project. This approach was taken to validate the expectation that, 

analysis of historical machine data together with the failure data, leads to correlation between 

particular data and the failure. This in turn is the starting point to design a model to predict 

the failure of the module without detailed system knowledge. The details about the data 

driven model are explained in the following sections. 

 

Pilot Model: Physical Model 

The physical model was developed to predict failure through understanding of the physical 

degradation behavior of Module X. It results in savings in labor hour per machine (LHM), 

increased availability of machine and decreased extreme long downtime. Furthermore, the 

model enables part failure prediction up to 10 weeks in advance. Performance of the model 

can be indicated as below:  

Table 2: Confusion Matrix 

Predicted Class 

Failure Non-Failure 

A
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l 
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Failure 
True Positives 

(TP) 

False Negatives 

(FN) 

NonFailure 
False Positives 

(FP) 

True Negatives 

(TN) 

 

Sensitivity =
Number of True Positives

Number of True Positives + Number of False Negatives
 

Speci�icity =
Number of True Negatives 

Number of True Negatives + Number of False Positives
 

Precision =
Number of True Positives

Number of True Positives + Number of False Positives
 

• Sensitivity: 91.0% 

• Specificity: 96.0% 

• Precision: 45.8% 
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Sensitivity and specificity shows that 91% of Failure cases and 96% of Non-Failure cases are 

recognized correctly respectively whereas precision indicates that only 46% of failure signal 

is correct. As a result, although 91% of part failures are predicted by this model, the model 

generates twice as much alert. In other words, this is a good model to prevent failures 

however too much preventive maintenance is implemented. 

Business Objectives  

ASML aims to develop sustainable predictive maintenance tools by using locally developed 

monitoring tooling knowledge. Within this context, the objective of this project is to develop 

a data driven, failure prediction model for Module X by using data mining methods. Besides, 

it is aimed to compare performance of data mining approach with the physical model. 

Business Success Criteria 

The success of this project can be measured by the following criteria: 

• Utility of local monitoring data 

• Discovery of system knowledge through data mining methods  

• Validated failure prediction model which increases machine availability 

2.2. Assess Situation 

In order to develop a CBM decision model for Module X, large number of qualified data is 

required. Data is collected from customer fields and sent to the global data base. Data quality 

and data amount which cannot be controlled easily are significant constraints for this project. 

Since it is aimed to discover knowledge through data mining methods, the knowledge about 

Module X working principle, the components of Module X explanation of the condition 

parameters, etc., which may give an idea about the part failure were not used until after the 

development of the model. Without any system knowledge, only data usage could be risky 

and may lead to misinterpretation of data and so do unreasonable models. 

2.3. Determine Data Mining Goals 

Data Mining Goals 

Data mining which is also known as data or knowledge discovery is the process of analyzing 

data from different perspectives and summarizing it into useful information. Data mining is 

the process of finding correlations or patterns in large relational databases (Data Mining, 

University of California).  

Main objective is to predict the failure time and to warn the user about the upcoming failure 

by indicating remaining useful life (RUL) of the part.  
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Data Mining Success Criteria 

Success of data mining can be assessed with the following criteria:  

• Accuracy: the proportion of true results in the population. 

Table 3 shows the example confusion matrix. Each column of the matrix represents the 

instances in a predicted class whereas each row represents the instances in an actual class.  

Table 3: Confusion Matrix for Three Class Classifier 

Predicted Class 
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• True Positive Rate, False Positive Rate and Precision 

These criteria explain the prediction accuracy in detail. The true positive rate (TP) is the 

proportion of positive cases that were correctly identified whereas the false positive rate (FP) 

is the proportion of negatives cases that were incorrectly classified as positive. Precision is 

the proportion of the true positives to all the positive results. Calculation of the true positive 

rate, false positive rate and precision for each class are shown in Table 4. Besides, averages 

of them are shown in the last row which can be taken into account if all classes are equally 

important. Higher true positive rate and precision and lower false positive rate indicate a 

better prediction model.  

Table 4: Calculation of the True Positive Rate, the False Positive Rate and the Precision 

  TP rate FP rate Precision 

A TPA=k/(k+l+m) FPA=(l+m)/(k+l+m) PA=k/(k+n+q) 

B TPB=o/(n+o+p) FPB=(n+p)/(n+o+p) PB=o/(l+o+r) 

C TPC=s/(q+r+s) FPC=(q+r)/(q+r+q) PC=s/(m+p+s) 

Weighted 

Average 
(TPA+TPB+TPC)/3 (FPA+FPB+FPC)/3 (PA+PB+PC)/3 

 

2.4. Conclusion 

This chapter has presented the evaluation of the project in terms of business perspectives. 

Background information about the business case has been provided and business expectations 

have been defined. Accordingly, data mining problem has been designed. Moreover the 

performance criteria of the overall system have been defined.  
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3. Data Understanding 

This chapter aims to increase familiarity with the data which has been collected by ASML. It 

includes the description of data and the exploration of data.  

Two types of data namely condition and event data were provided. Condition data indicates 

the state and health condition of the part whereas event data depicts cases and taken actions.  

3.1. Condition Data 

While machines operate, condition parameters, which are directly or indirectly related with 

Module X are recorded. The data which are retained in a database was extracted for the use of 

this project. Two data sets were provided, for the years 2009 and 2010, respectively. 

The 2009 data set consists of 110 condition parameters which were taken from 884 machines 

in 1 year time period. 3,047,312 parameter values were recorded. 

The 2010 data set is composed of 108 condition parameters which were taken from 106 

machines in 1 year time period. 1,986,898 parameter values were recorded. The group of 

machines in this data set is a subset of the group of machines in the 2009 data set.  

Besides, some information about Machine Type, Site Id, Customer Continent, Customer 

Country and Customer Number has been provided within data sets. 

 

3.2. Event Data 

Event data shows taken actions related to failure of Module X. ASML doesn’t have direct 

information about the part failure. However, the part order time and machine failure time is 

known. Part ordering may not only indicate part failure but also stock demand or preventive 

maintenance. To make a clear link, part ordering time and machine failure time are cross 

checked. Then part orders because of the machine failure are specified. Although this is a 

reasonable approach to get failure time, its accuracy can be disputable. E1 and E2 error cases 

are still issues in the given event data. 

E1: Although failure didn’t occur, part was ordered. 

E2: Although failure occurred, no part order were placed  

For the years 2009-2010, 179 orders which include single or multiple parts are specified for 

this research. Whereas a single part order includes only Module X, multiple part order 

indicates both the order of Module X and some other machine components.  

. 
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Table 5: Description of the Data Set 

Attribute Type Description 

Machine Nr Categorical Machine identifier 

Time Stamp Date Identifies when the parameters were recorded 

P955,...,P3780  Numeric 
Condition Parameters  

(which take value between +4, -10).  

Machine Type Categorical Machine Type 

Site Id Categorical Site Identifier 

Customer Id Categorical Customer Identifier 

Customer Continent Categorical Customer Continent 

Customer Country Categorical Customer Country 

Part Order Time Date Probable failure time 

 

3.3. Conclusion 

In this chapter, general information about the data sets has been presented. 4 million numeric 

and categorical condition data was provided by the company. In addition to condition data, 

event data which reflects possible failure cases was given. Despite of the given huge data set 

the applicability of the data is not queried in this chapter. The following chapter includes data 

preparation and analysis steps that bring out applicable data set. 
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4. Data Preparation- Data Analysis 

Obtaining high quality data is the first crucial step to generate a strong CBM decision support 

model. No matter how precise data is acquired, errors will still occur. This chapter presents 

steps to obtain qualified data and to eliminate E1and E2 error cases.  

The 2009 data set and the 2010 data set were determined to use as training and test data 

respectively. Thus, analysis results were provided separately for each data set.  

4.1. Selection of Failure Cases 

179 part orders which includes single and multiple part orders were specified as potential 

failure cases. Multiple part orders may not be related to Module X failure. Another part 

failure, machine performance problems or inventory demand could be the reasons of multiple 

part orders. Therefore the orders including multiple parts were eliminated. 

2009 Data Set: 58 failure cases with a single part order were used for further analysis. Since 

the part was ordered twice for 3 machines in 2009, 55 different machines were taken into 

consideration. 

2010 Data Set: 71 failure cases with a single part order were used for further analysis. Since 

for 6 machines the part was ordered twice in 2010, 65 different machines were taken into 

consideration. 

4.2. Selection of Parameters 

2009 data set: 187,622 data values and 108 variable condition parameters associated with the 

specified 55 machine were given. However, 72 parameters were recorded just a few times 

(only for November-December 2009). Due to the lack of data, their effect on failure couldn’t 

be analyzed and the only remaining 36 parameters were used to develop the model. 

2010 data set: Use of 36 parameters in 2009 data set led to eliminate remaining parameters 

from 2010 data set. 44,802 data values for 65 machine and 36 parameters were selected to use 

in following sections. 

4.3. Missing Data  

Missing data means that valid values on one or more variables are not available for analysis. 

Missing data under 10% for an individual case or observation can generally be ignored except 

when the missing data occurs in a specific non-random fashion (Hair et al, 2009). Unless the 

missing data is less than 10 % or the cases with no missing data on any of variables provide 

the sufficient sample size for analysis, remedies should be applied. In this case, missing 

values are estimated by the imputation methods which substitute some value for a missing 

data.  

Two types of missing data were recognized in the data sets. Zero (0) and minus ten (-10) 

parameter values indicates the unavailable and invalid data respectively.  
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2009 data set:  

Parameter value=0 (1950 data) 

Parameter value=-10 (2943 data) 

(1950+2943)/187,622=0.026�3% 

2010 Data Set: 

Parameter value=0 (108 data) 

Parameter value=-10 (477 data) 

(108+477)/44,802=0.013�1.5%  

For this case, missing data in both data sets can be deleted since they are less than 10%. 

4.4. Data Alignment 

Data set was given as a list of all independent records. Sample of given data format is shown 

in Appendix I. To observe the changes in the condition parameters in time, it is required to 

align 2009 (2010) data sets.  

Step by step data alignment 

1. Split the data into 55 (65) groups according to machine numbers.  

2. Split the groups into subgroups according to parameter ids.  36 sub groups were 

obtained for each of the 55 (65) groups. 

3. Sort data of subgroups chronologically (from oldest to newest). 

4. Unify 36 subgroups by using the time stamp as an identifier. Per each specified time 

stamp, 36 valid parameters are pointed out. The other time stamps which include less 

than 36 parameters are eliminated. 

As a result of data alignment, for each machine, during 1 year period simultaneous changes 

of 36 condition parameters can be observed. Sample of the aligned data format is given in 

Appendix I. 

2009 Data Set: During this step, it was noticed that 4 machines suffers from lack of the 

condition data. Therefore 51 machines (54 failure cases) were used for further analysis. 

2010 Data Set: In this data set, 54 machines suffer from lack of the condition data. Therefore 

11 machines (11 failure cases) were used for testing. This gradual reduction in machine 

numbers can be explained with the changes in the parameter denotation. In other words for 

most of the machines after a certain period, different parameters were used to indicate the 

same conditions. If the parameters are translated and consistency is provided with the 2009 

data set, more data can be used. However in this project, 11 failure cases were found 

sufficient for testing.  
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4.5. Detection of the Outliers 

An outlier is detected by examining all metric variables to identify unique or extreme 

observations. Generally, outliers are defined according to standard scores or standard 

deviations. In small samples (80 or fewer observations), an observation is detected as an 

outlier if its standard score is ±2.5 or beyond.  For large samples (more than 80 observations), 

an observation is classified as an outlier if its standard score is ±3.0 or beyond.   

In this case, both misrecorded data and the part failure might be classified as outliers. To 

differentiate wrong data and failure cases, it is required to observe data changes in time. 

Whereas one time gradual change indicates the data error, continuous deviation in data 

illustrates the part failure. 

The outlier detection methods cannot handle the classification of outliers. To detect and 

eliminate misrecorded data, scatter plot was used. Data points were plotted onto a graph to 

display the spread of condition parameters versus time. For 62 (51 +11) machines, condition 

parameters versus time graphs were drawn and spikes were detected and eliminated.  

4.6. Analysis of the Condition Parameters 

36 condition parameters were assessed as functional. They are metric data and all are 

measured in interval scale. Apart from those, machine type, customer id and site id may also 

explain the variation of failure cases. They are non-metric (categorical) data and are 

measured in nominal scale. By assuming that Site id includes the information about Customer 

Country and Continent, they weren’t used in the model.   

Statistic Analysis has been performed on 36 parameters. Their main features are shown in 

Descriptive Statistics Table in Appendix I. The parameters take values between -9.60 and 

3.60 with a mean value around -2. 

To understand the relationship among parameters Factor Analysis was performed. Factor 

Analysis is an approach for determining dimensionality of a multidimensional set of items. It 

examines interrelationships among a larger set of variables and then attempts to explain them 

in a terms of their common underlying dimensions.  These common underlying dimensions 

are factors which attempt to explain maximum variance in variables with minimum loss of 

information. Principal Component Analysis (PCA) method which is a type of Factor analysis 

is used to handle data with complicated correlation structure (Jardine, 2006). 

PCA method was implemented in order to detect underlying dimensions of the parameters. 

Detailed output is given in the Appendix I. Hair et al. (2009) discuss several criteria to decide 

on the number of factors. Firstly the pattern matrix (Table 35) and the correlation matrix 

(Table 36) show that the parameters are highly correlated (above 98%) in groups of six. As a 

second criterion which is latent root criterion, only the factors having eigen values greater 

than 1 are considered as significant when the number of variables differ between 20 and 50. 

In this case (36 variables), six factors have eigen values greater than 1 (Table 34). Lastly, the 

percentage of variance criterion helps to decide the number of factors by looking at the 
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cumulative percentage of total variance. The threshold value is taken as 60% since the 

information is less precise. As a result, at least 2 factors should be extracted (Table 34). 

Considering all these criteria the number of factors was decided to be 6. Therefore, 36 

parameters are clustered in six groups consisting of six parameters. Accordingly, instead of 

36 parameters, 6 parameters, which are average values of each group, were used in the 

model. 

Table 6: Correlated Parameters   

Groups P1 P2 P3 P4 P5 P6 

P
a

ra
m

et
er

 I
D

s 955 961 967 979 985 991 

956 962 968 980 986 992 

957 963 969 981 987 993 

958 964 970 982 988 994 

959 965 971 983 989 995 

960 966 972 984 990 996 

4.7. Analysis of the Event Data  

2009 Data Set: To see the changes in parameters, parameter values were displayed over time 

by scatter plot.  For about 80% of the machines (39/51), parameters change significantly 

before and after the failure. For the remaining 20% of machines, none of the parameters 

change due to the failure and maintenance records, they follow a stable trend, as shown in 

Figure 6. These cases could be an example of E1 which indicates that although failure did not 

occur, the part was ordered because of some other reasons.  

 

Figure 6: Parameter Values vs Time for the Machine ‘M2693’ 

It was discovered that the part failure is related to reduction in data value. After maintenance 

significant and sudden increase of parameter value is observed. One or more parameters 

decrease until the failure. After performing maintenance, they go up to higher values.  
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Figure 7: Failure Cases 

9 of 39 failure cases show that parameters are not only affected by the particular part failure, 

but some other factors also affect the parameters. These factors might be unrecorded part 

failure, other parts’ failure, machine intermittent etc. Similar situation is

Figure 8: Effect of Unknown Factors on the Parameters 

Modelling aims to detect failure cases through historical parameter data.  The changes in 

parameter will contribute to develop the model. However such unexplained cases as no 

change in the parameter values (Figure 6) and uncontrolled changes in the parameter values 

) could make noise in the model. Therefore they were disposed.  

For this data set, 11 failure events follow the similar trend as 

or more parameters decrease until the failure and they are recovered to normal values after 

no unexplained trend is detected, all 11 cases were decided to use for 
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not only affected by the particular part failure, 

but some other factors also affect the parameters. These factors might be unrecorded part 
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Modelling aims to detect failure cases through historical parameter data.  The changes in 
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) and uncontrolled changes in the parameter values 
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The summary of selection of the failure cases are shown in Figure 9. 41 failure cases out of 

179 failure cases can be used for modelling. Although the number of cases is sufficient to 

develop a model, more information leads to build a better model by considering more cases.  

 

Figure 9: Summary of the Event Selection   
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4.8. Gaps between the Time Stamps 

Condition data were collected from functioning systems in aperiodic intervals. Sample size 

varies between 3-4 samples per a day and 1 sample per 54 days. Therefore, big gaps are 

observed for some periods. The average interval between the timestamps is about 11 days. To 

fill the gaps in time stamp, artificial time stamps were assigned. If the time between two time 

stamps is more than 20 days (more than 2 times of the average interval), artificial time stamp 

was created for the midpoint and the parameter takes the average value of two consecutive 

values. Related formula is given below. 

Pi,t: Parameter i registered at time t. 

ta: artificial time stamp       ti <ta<ti+1 

*+,-. =
/0,1234/0,1

5
        6 = 1. .6                                                                                                                

4.9. Conclusion 

In this section, 2009 and 2010 data sets were analyzed elaborately. Applicable failure cases 

and parameters were selected. Data were organized to be used for modelling and testing. The 

relation between condition parameters and event cases were discovered and the 

unaccountable cases were eliminated. Furthermore, model inputs and so model complexity 

were reduced by grouping correlated parameters. As a result, the final data set which is 

applicable for failure prediction modelling was selected. 

For supervised learning, the quality of the given data is crucial. Missing or wrong information 

leads to error in the model and so to inaccurate outcomes. For this case, many data were 

eliminated in order to prevent noise in the model. Rather, accurate and complete information 

should be used as an input to get more generalizable and robust model. Exact part failure 

time, machine states, the other parts’ failure, machine performance problems etc. should be 

known to understand and interpret whole changes in parameters.  
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5. Development of a Prediction Model  

In this chapter, the development of a data-driven failure prediction model is presented. As a 

result of the data preparation step, model inputs were defined as 6 metric condition 

parameters which are P1...P6 and 3 categorical condition parameters which are Machine type, 

Site id and Customer id. Besides that, 30 event cases from the 2009 data set and 11 event 

cases from the 2010 data set were selected to use for modelling and testing respectively.  

Firstly, the failure threshold level and the effects of the environmental factors are analyzed. 

Then prediction models are developed by using three distinct approaches. Finally, models are 

compared in terms of their prediction accuracy.  

5.1. Failure Percentage with respect to the Threshold Level 

Repairs or replacements of Module X are performed once the degradation level reaches a 

threshold level.  

Since reduction in the parameter values triggers the failure, the threshold level for each case 

has been determined according to the parameter value which reaches the minimum level at 

the failure instant. The threshold level is situation dependent and deterministic. It varies for 

the 30 failure cases (in the training data set) between -5 and -9.6. There is not a fixed 

threshold level because the maintenance demand depends on the customer expectation about 

the machine performance (Appendix II). Different threshold levels indicate that some 

customers wait for the hard failure and perform maintenance (corrective maintenance) as late 

as possible, whereas others suffer from the performance reduction (preventive maintenance) 

and perform maintenance earlier. In addition to the customer dependency, the threshold level 

is also dependent to the situation. A customer may define different threshold levels for 

different circumstances. For example, according to the demand, customers might prefer to 

postpone the maintenance or bring it forward.  

The threshold level should be defined by the customers in order to predict the failure time. As 

mentioned above, the threshold level is dependent to the customer expectation on the module 

performance. If the unacceptable performance level, which is considered as the failure, is 

specified, corresponding threshold level can be discovered. While the module operates, the 

performance of the module decreases. AS monitoring the performance regularly, the service 

engineer decides the performance level at which the customer is unsatisfied with, and the 

customer prefers to execute maintenance. Then, the threshold level which corresponds to this 

performance level is specified. 

Table 7 depicts the number of failure cases observed between the upper (UL) and lower (LL) 

threshold limits.  
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Table 7: Number of Failure Cases for Varying Threshold Level 

 

 

 

 

 

 

 

The failure percentage (cumulative probability) indicates how many cases failed before the 

lower limit. As the threshold level decreases, the failure percentage increases. As seen from 

the table, whereas for 23% of the cases threshold level is greater than -6.6; for 100% of the 

failure cases, the threshold level is greater than -9.6. It could be deducted that machine 

performance decreases as the parameter values decrease. To explain the relation between the 

failure percentage and the threshold level (Figure 10), piecewise linear regression, 2nd order 

polynomial regression and logarithmic regression methods were used. Piecewise linear 

regression provides the best model which explains 97% deviation in the failure percentage 

with the threshold level. (Appendix II) 

 

Figure 10: Failure Percentage vs Threshold Level 

As a result of linear regression model, the threshold levels with the corresponding failure 

percentage and failure classes were defined as shown in Table 8. 
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-9 -9.6 8 0.267 1 

-7.8 -9 5 0.167 0.73 

-7 -7.8 5 0.167 0.56 

-6.6 -7 5 0.167 0.4 

-6 -6.6 4 0.133 0.23 

-5 -6 3 0.1 0.1 

4 -5 0 0 0 
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Table 8: Failure Percentage with the corresponding Failure Classes 

Failure 

Percentage Threshold Failure 

Class LL UL UL LL 

80 100 -8.94 -9.8 A 

60 80 -8.1 -8.94 B 

40 60 -7.22 -8.1 C 

20 40 -6.37 -7.22 D 

10 20 -6 -6.37 E 

7 10 -3 -6 F 

0 7 4 -3 G 

 

5.2. Effects of the Environmental Factors 

As explained above, the threshold level is dependent to the several factors. Machine type, 

customer id and site id are the environmental factors which may explain the variation in the 

threshold level. 30 failure cases were used to analyze and understand the effect of these 

environmental factors. However sample size of the factors should be sufficient to represent 

the groups. In this study, groups with more than 3 samples were taken into account. Appendix 

III shows the sample size for each factor. Therefore generalization can be done for T0007 and 

T0010 machine types, S1243, S366 site ids, and C1 and C1665 customer ids which have 

more than 3 samples.  

Figure 11, Figure 12 and Figure 13 were plotted based on all data taken for the 30 failure 

cases. The dots in the figures indicate that there is at least one instance belongs to indicated 

failure class (vertical axis) in that group (horizontal axis). Among two machine types, the 

effect of the machine type T0010 on the failure classes is obvious (Figure 11). For this type 

of machine, users do not allow hard failures and maintenance is performed at the higher 

threshold level (greater than -7.22), which corresponds to D-E-F-G failure classes. As seen 

from Figure 12 and Figure 13, Sites S1243, S366 and customers C1, C1665, do not explain 

the variation of failure classes. Therefore environmental factors were not used for the 

modelling due to lack of their representativeness.  

 
 

Figure 11: Machine Type Effect on the Failure Classes Figure 12: Site Id Effect on the Failure Classes 
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Figure 13: Customer Effect on the Failure Classes 

 

5.3.  First Modeling Approach 

The classification tools Weka and KNIME were used to develop models which predict the 

remaining time of Module X. Only the samples which were taken before the failure time have 

been selected to use for the modelling. The actual remaining time to the failure is calculated 

for each sample by calculating the difference between the time stamp of the sample and the 

failure time. According to the calculated remaining time, data is clustered into three groups.  

If the remaining time is greater than XX days�Cluster A 

Else if the remaining time is greater than YY days�Cluster B 

Else �Cluster C 

It is aimed to produce explanatory signals for the user with these groups. 

(A) Failure will not occur before XX days, no action is needed. 

(B) Failure will occur in XX days, start to plan maintenance.  

(C) Failure will occur in YY days, perform maintenance as soon as possible  

 

To find the optimum XX and YY values, several iterations were performed on the training 

data by using the decision tree method. To evaluate the models, average of True Positives 

(TP) rate, False Positives (FP) rate and precision of the three clusters were compared. 

Besides, classification accuracy of the models on the cluster C has been assessed since the 

cluster C is the most significant alert for the user (see chapter 2.3, for calculation details). 
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Table 9: Assessment of Different Interval Values for Clustering 

Weighted Average C Cluster 

XX-YY TP FP  Precision TP FP  
Precision 

60-20 0.560941 0.439059 0.724471 0.406542 0.593458 0.604167 

50-20 0.547726 0.452274 0.733161 0.350467 0.649533 0.681818 

50-15 0.546571 0.453429 0.728546 0.357895 0.642105 0.62963 

40-10 0.506837 0.493163 0.762629 0.152778 0.847222 0.733333 

 

Predicted Class 

    A B C 

A
ct

u
a

l 

C
la

ss
 A 1362 7 20 

B 144 76 37 

C 105 22 87 

Therefore 60 and 20 days which results in higher TP rate and precision; and lower FP rate are 

selected for the XX and YY value, respectively. Whereas cluster A refers that the failure will 

not occur in the following 60 days, cluster C shows that the failure will occur in 20 days. 

Various data mining techniques were implemented to classify the part life as Cluster A, 

Cluster B or Cluster C. These techniques were explained briefly in the following sections. For 

more information see Han and Kamber (2006). Six condition parameters (P1...P6), were 

taken as the inputs. 2009 data set was used to develop models and 2010 data set was kept 

apart for testing.  

1. Artificial Neural Network 

Artificial Neural Network is one of the common ways to perform machine failure prognosis 

and diagnosis. It is useful method when large amount of noisy and temporal data is available 

and physical, statistical or deterministic model is not known or impractical to apply. In other 

words, through ANN, complex, multidimensional, non linear systems can be modelled 

without a physical understanding of the system behaviour. On the other hand, such models 

are lacking of ability to explain themselves.  

 

a) Multilayer Perceptron (WEKA) 

A multilayer perceptron is a feed forward artificial neural network that uses back propagation 

to classify instances. A signal inside the neural network flows from the input layer passing 

hidden layers to the output layer. The goal of the training process is to find the set of weight 

values so that neural network output matches with the actual target values as closely as 

possible. While training the error correction of neural weights are done in the opposite 

direction. This is done by the back propagation algorithm.  

To build a multilayer perceptron neural network, the network parameters which are learning 

rate (LR), momentum (M) and number of neuron per hidden layer (NHL) should be 
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determined. Learning rate is the amount the weights that are updated. While lower learning 

rate may lead to the risk of the network to be stuck in local minimum, higher learning rate 

may result in undesirable oscillations. Momentum is applied to adjust the weights. Besides, 

number of neurons per hidden layer affects the structure of the network. Weka designs neural 

network with a single hidden layer. The proper choosing of learning rate and momentum is 

done by experience. Both values have a range between 0 and 1. Weka Classifier tool uses a 

default value of 0.3 for learning rate, 0.2 for momentum and ‘a’ (a= (attributes + classes) / 2) 

for neuron per hidden layer.  

Firstly, training and the test data were defined. Several models were developed by adjusting 

the network parameters. Optimum network which results in higher TP rate and Precision and 

lower FP rate for the test data, has been searched. The optimal combination for TP, FP and 

Precision has been obtained when M=0.7, LR=0.2, NHL=a.   

Table 10: Results of MLP-NN models for Variable Parameters 

Inputs M LR NHL TP Rate (%) FP Rate (%) Precision (%) 

P1...P6 0.1 0.2 a=4 0.407 0.377 0.355 

P1...P6 0.3 0.2 a 0.413 0.385 0.309 

P1...P6 0.5 0.2 a 0.413 0.386 0.311 

P1...P6 0.7 0.2 a 0.515 0.347 0.459 

P1...P6 0.8 0.2 a 0.475 0.363 0.340 

P1...P6 0.9 0.2 a 0.479 0.360 0.343 

      
P1...P6 0.7 0.1 a 0.413 0.386 0.313 

P1...P6 0.7 0.3 a 0.475 0.363 0.340 

P1...P6 0.7 0.5 a 0.498 0.353 0.524 

P1...P6 0.7 0.7 a 0.413 0.387 0.314 

              

P1...P6 0.7 0.2 1 0.423 0.434 0.271 

P1...P6 0.7 0.2 2 0.416 0.449 0.224 

P1...P6 0.7 0.2 3 0.459 0.368 0.328 

P1...P6 0.7 0.2 5 0.275 0.394 0.397 

P1...P6 0.7 0.2 6 0.266 0.380 0.223 

The MLP method just considers the static nature of the neural network. Most of the software 

does not provide any method to implement recurrent networks. In order to capture the 

dynamic nature of the underlying process, different time windows were used. This approach 

takes the previously inscribed data into account as a new input which uses similar principal 

with the recurrent network. While momentum, learning rate and hidden number of layers 

were kept constant, variable inputs were tested through time windows method. For example, 

Time Window 2 indicates that current time stamp data and previous time stamp data are used 

as the inputs for the model, Time Window 5 indicates that current time stamp and last 4 time 

stamps are taken as the inputs. This approach causes to increase the number of inputs (6 

additional parameters for each time window) and so complexity.  
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Here are the additional inputs which correspond to prior values of condition parameters 

(P1...P6).  

P7t...P12t     = P1t-1...P6t-1     

P13t...P18t = P1t-2...P6t-2 

P19t...P24t = P1t-3...P6t-3 

P25t...P30t = P1t-4...P6t-4 

P31t...P36t = P1t-5...P6t-5 

P37t...P42t = P1t-6...P6t-6 

P43t...P48t = P1t-7...P6t-7 

t indicates current timestamp 

 

Table 11 shows the result of MLP models for variable time windows. Time-Window-2 

provides the higher TP rate and precision and lower FP rate. 

Table 11: Results of MLP-NN Models for Variable Inputs 

Inputs M LR NHL TP Rate (%) FP Rate (%) Precision (%) 

P1...P6 0.3 0.2 a 0.413 0.385 0.309 

P1...P12 0.3 0.2 a 0.492 0.294 0.447 

P1...P18 0.3 0.2 a 0.42 0.328 0.39 

P1...P24 0.3 0.2 a 0.338 0.36 0.274 

P1...P36 0.3 0.2 a 0.305 0.34 0.264 

P1...P48 0.3 0.2 a 0.479 0.293 0.365 

P1...P60 0.3 0.2 a 0.508 0.361 0.487 

Several iterations were performed to tune the network parameter values. At each iteration, 

one of the parameters was changed and the others were kept constant. Optimum network has 

been obtained when M=0.3, LR=0.2, NHL=a and inputs are P1...P12 (Table 12).   

Table 12: Results of MLP-Neural Networks for Variable Parameters 

Inputs M LR NHL TP Rate (%) FP Rate (%) Precision (%) 

P1...P12 0.3 0.1 a 0.328 0.396 0.249 

P1...P12 0.3 0.2 a 0.492 0.294 0.447 

P1...P12 0.3 0.3 a 0.472 0.316 0.359 

P1...P12 0.3 0.5 a 0.279 0.366 0.235 

P1...P12 0.3 0.7 a 0.43 0.361 0.352 

              

P1...P12 0.1 0.2 a 0.259 0.459 0.316 

P1...P12 0.2 0.2 a 0.456 0.331 0.339 

P1...P12 0.3 0.2 a 0.492 0.294 0.447 

P1...P12 0.5 0.2 a 0.282 0.362 0.239 

P1...P12 0.7 0.2 a 0.38 0.37 0.288 

              

P1...P12 0.3 0.2 a=7 0.492 0.294 0.447 

P1...P12 0.3 0.2 6 0.439 0.406 0.369 

P1...P12 0.3 0.2 8 0.495 0.305 0.521 

P1...P12 0.3 0.2 12 0.318 0.394 0.355 

To sum up, MLP method when inputs=P1...P6 (single time window), M=0.7, LR=0.2, 

NHL=4 results in comparatively better prediction model. Table 13 shows the corresponding 

confusion matrix.  



 

 
 

35 

Table 13: MLP model (M=0.7, LR=0.2, NHL=4) Confusion Matrix 

Predicted Class 

    A B C 
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 A 120 17 0 

B 64 3 16 

C 50 1 34 

b) Radial Basis Function (WEKA): 

A Radial Basis Function (RBF) is two layered feed forward neural network. The neurons in 

the hidden layer contain Gaussian transfer functions whose outputs are inversely proportional 

to the distance from the center of the neuron.  

WEKA RBF classifier uses the k-means clustering algorithm to provide the basis functions 

and learns either a logistic regression (discrete class problems) or a linear regression (numeric 

class problems). In this approach, RBF was used to specify classes. It classifies all the 

samples as “cluster A” so it does not give signal about the upcoming failure. 

Table 14: Results of RBF-NN on Test Data 

  TP Rate (%) FP Rate (%) Precision (%) 

A 1 1 0.449 

B 0 0 0 

C 0 0 0 

Weighted Avg. 0.449 0.449 0.202 

Neural Network models (MLP and RBF) do not help to understand the failure propagation 

mechanism and to diagnose faulty component. Therefore their applicability is limited.  

2. Decision Tree (KNIME) 

KNIME decision tree has been used to map the input variables to the Cluster A, B or C. It is 

developed based on C4.5 algorithm (for more information about C4.5 algorithm, see Quinlan 

(1993)). By changing the value of minimum number of records, optimum decision tree which 

results in higher prediction accuracy on test data is searched. Highest accuracy on the test 

data is obtained when the minimum number of records is equal to 30.  

Table 15: Results of Decision Tree Models for Variable Parameters 

 

 

Min number 

of records 

Training data 

Accuracy (%) 

Test data 

Accuracy (%) 

50 78.01 44.91 

30 81.99 58.03 

20 87.15 45.90 

10 91.99 44.59 

5 94.14 51.47 

 

Test 

Data 
Predicted Class 
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 A 135 0 2 

B 52 0 31 

C 43 0 42 
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Table 16: Results of Decision Tree Model (min number= 30) on Test Data 

TP FP Precision 

A 0.985 0.0146 0.587 

B 0 1 0 

C 0.494 0.505 0.560 

Weighted Avg. 0.493 0.506 0.382 

This model can not detect Class B. Although there are less than 20 days remained to the 

failure, 43 samples are classified as “A” which indicates the higher remaining time.   

In order to analyze the effect of the different failure threshold levels, data is divided into 3 

groups as hard failure, medium failure and soft failure (Table 17). Distinct decision trees are 

developed for each group. 
 

Table 17: Failure Groups 

Hard Failure Medium Failure Soft Failure 

M0005 -9 M3398 -8.7 M0051 -6.9 

M1004 -9.6 M3407 -8.6 M1959 -6.7 

M1887 -9.6 M0018 -8.4 M2789 -6.5 

M3411 -9.6 M1321 -8.4 M3083 -6.5 

M0017 -9.5 M0067 -8 M2683 -6.3 

M1937 -9.5 M2601 -7.8 M2252 -6.2 

M0041 -9.3 M0006 -7.6 M0029 -5.8 

M0741 -9.3 M1186 -7.4 M1828 -5.4 

M2232 -9.2 M1771 -7.3 M2417 -5.2 

M1358 -7.1 
  

M0021 -7 
  

M0034 -7 
  

 

Table 18 shows the decision tree accuracy for training and test data for variable parameter 

value (minimum number of records). For the soft failure group, all samples in the test data are 

classified as “A” which causes to miss the failure cases. Different decision trees do not 

improve the classification in the soft and medium failure groups. However significant 

improvement (18%) is observed in the hard failure group. Therefore medium and soft failure 

groups are combined and another decision tree is developed for this group which results in 

47% prediction accuracy on the test data. 
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Table 18: Results of the Decision Trees for Different Failure Levels 

Min number 

of records 

Train data 

Accuracy (%) 

Test data 

Accuracy (%) 

 

4
th

 Decision Tree for Soft and 

Medium Failures 

H
a

rd
 

F
a

il
u

re
 

50 76.34 64.67  

30 81.99 65.76  Min 

number 

of 

records 

Train 

data 

Accuracy 

(%) 

Test 

data 

Accuracy 

(%) 

20 87.09 72.28  

10 89.25 62.5  

5 90.6 62.5  

M
e

d
iu

m
 

F
a

il
u

re
 

50 80.37 26.83 

M
e

d
iu

m
- 

S
o

ft
 

50 82.54 36.13 

30 82.84 26.83 30 82.40 31.09 

20 89.63 42.68 20 90.53 47.90 

10 91.6 29.26 10 93.55 31.09 

5 94.2 29.26 5 94.69 36.97 

S
o

ft
 

F
a

il
u

re
 50 80.56 51.35     

30 88.95 51.35     

20 90.57 51.35     

10 93.81 51.35     

 

As a result, using two decision trees (one for the hard failure group of which threshold level 

is lower than -9 and one for both soft and medium failure groups) increases the prediction 

accuracy. The results of the combined decision tree model are shown in Table 19. 

 

Table 19: Results of the Combined Decision Tree Model 

 

Test Data/ 

Medium+Soft 
Predicted Class 

A B C 

A
ct

u
a

l 

C
la

ss
 A 29 0 8 

B 16 0 11 

C 20 7 28 

 

Test Data/ 

Hard Failure 
Predicted Class 

A B C 

A
ct

u
a

l 

C
la

ss
 A 98 1 0 

B 21 19 16 

C 13 0 16 

 

  TP Rate (%) FP Rate (%) Precision (%) 

A 0.934 0.066 0.645 

B 0.229 0.771 0.704 

C 0.524 0.477 0.557 

Weighted Avg. 0.562 0.438 0.635 

 

Combined decision tree model provides 56%, 63% TP rate and precision respectively. 

Besides, such trees are easy to understand and enable the user detect faulty component 

(parameter). Decision tree models are shown in Appendix VI. 
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3. Simple Cart (WEKA) 

Simple Cart is another method for tree based representation of decisions. Minimal cost 

complexity pruning technique is used for the classification by adjusting the minimum number 

of objects. Cost complexity pruning is implemented on fully induced tree which is fitting the 

training data. It prunes the tree by aiming to increase the accuracy and decrease the 

complexity (for more information about Simple Cart method, see Breiman et. al. (1984)). 

Simple Cart model is shown in Appendix VII. When the minimum number of object is equal 

to 10, the optimum model which provides 0.498 TP rate and 0.532 Precision on test data is 

obtained (Table 20).  

Table 20: Results of Simple Cart for Variable Parameters 

Min # of 

objects 

TP Rate 

(%) 

FP Rate 

(%) 
Precision (%) 

50 0.377 0.449 0.239 

20 0.456 0.314 0.435 

10 0.498 0.257 0.532 

5 0.479 0.26 0.437 

 

 

4. K Nearest Neighbor (KNIME) 

K-nearest neighbor algorithm (KNN) is a method for classifying objects based on closest 

training examples. K is the user defined parameter. A sample is classified by assigning the 

class which is most frequent among the k training samples nearest to that query point.  

KNIME were run for different k values and maximum accuracy is obtained when k=4. 

However TP rate and precision of cluster C are relatively low.  

Table 21: Results of KNN Model for Variable Parameters 

 

k Accuracy (%) 

1 43.279 

2 41.639 

3 43.279 

4 45.574 

5 43.279 

6 43.279 

 

TP Rate (%) FP Rate (%) Precision (%) 

A 0.802 0.197 0.493 

B 0 1 0 

C 0.341 0.659 0.354 

Weighted Avg. 0.381 0.619 0.282 

 

Conclusion 

 

Neural network, decision tree, simple cart, KNN techniques have been used to develop 

models to classify remaining life of Module X as Cluster A, Cluster B or Cluster C. These 

clusters indicate the range of remaining time. Cluster A refers to the remaining time more 

than 60 days whereas cluster C refers to remaining time less than 20 days. For each 

technique, best model is searched by adjusting model parameters. As a result, it was found 

Predicted Class 

A B C 

A
ct

u
a

l 

C
la

ss
 A 101 35 1 

B 33 50 0 

C 15 69 1 
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that combined decision tree model which is combination of two decision tree (one for hard 

failures and one for soft and medium failures) provides more accurate prediction (TP=0.56, 

FP=0.44, Precision=0.63).  

5.4. Second Modeling Approach 

As a second approach, it was aimed to estimate the remaining time in days instead of clusters. 

Neural network and linear regression techniques of Weka have been used to estimate the 

remaining time of Module X. These techniques were evaluated in terms of root mean squared 

error and mean absolute error. The smaller error value indicates the better model. 

Several iterations were performed to tune the neural network parameters.Table 22 and Table 

24show the result of MLP and RBF techniques for variable parameters. 

Table 22: Result of the MLP Neural Network for Variable Parameter 

 Inputs M LR NHL 
Root Mean Squared 

Error (day) 

Mean Absolute 

Error (day) 

N
N

-M
u

lt
i 

La
y

e
r 

P
e

rc
e

p
tr

o
n

 

P1...P6 0.1 0.2 a=3 113.45 99.1 

P1...P6 0.3 0.2 a 83.82 71.71 

P1...P6 0.4 0.2 a 80.79 68.89 

P1...P6 0.5 0.2 a 82.81 70.47 

P1...P6 0.7 0.2 a 82.11 75.08 

P1...P6 0.4 0.1 a 80.35 68.32 

P1...P6 0.4 0.5 a 98.94 80.31 

P1...P6 0.4 0.7 a 97.72 82.09 

P1...P6 0.4 0.1 1 95.21 82.13 

P1...P6 0.4 0.1 2 94.15 78.5 

P1...P6 0.4 0.1 4 115.44 92.73 

P1...P6 0.4 0.1 5 116.83 102.48 

P1...P6 0.4 0.1 6 112.26 91.09 
 

Table 23: Results of the Linear Regression Model 

 Root Mean 

Squared Error 

Mean Absolute 

Error Model 

Linear Regression 101.99 88.46 

RUL=3.42   * P1 +  -1.634  * P2 +  

12.3182 * P3 +       2.494  * P5 + -

7.1724 * P6 + 154.6398 
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Table 24: Results of the Radial Basis Function Models 

Root Mean 

Squared Error 

Mean 

Absolute Error Model 

N
N

-R
a

d
ia

l 
B

a
si

s 
F

u
n

ct
io

n
 

cluster=6 86.09 73.35 

 RUL=-21.7573 * pCluster_0_0 +  

   -12.6426 * pCluster_0_1 + 

   -33.8206 * pCluster_0_2 + 

   1.8987 * pCluster_0_3 + 

   12.1479 * pCluster_0_4 + 

   26.92   * pCluster_0_5 + 

   127.9365 

cluster=5 86.83 74.56 

  RUL=-21.2185 * pCluster_0_0 + 

   2.8558 * pCluster_0_1 + 

   -33.1454 * pCluster_0_2 + 

   4.8096 * pCluster_0_3 + 

   12.454  * pCluster_0_4 + 

   127.2579 

cluster=4 80.57 69.73 

 RUL=24.2103 * pCluster_0_0 + 

 -11.0148 * pCluster_0_1 + 

 -4.1696 * pCluster_0_2 + 

 -9.5119 * pCluster_0_3 + 

128.26  

cluster=3 82.12 70.8 
RUL=-4.6842 * pCluster_0_0 + 

 4.6613 * pCluster_0_1 + 

 129.3493 

cluster=2 82.24 71.35 
 RUL=-4.6842 * pCluster_0_0  + 4.6613 * 

pCluster_0_1 +129.3493 

cluster=1 83.92 72.54 RUL=128.2661 

 

The best model was developed by MLP method when M=0.4, LR=0.1 and NHL=a. 

Furthermore the model’s warning capability was assessed with the model’s prediction 

accuracy in the last 30 days before the failure. Mean absolute error is found as 71 days. As a 

result, this model does not produce accurate signals to warn the user on time.  

Furthermore, the results of MLP model was translated into A, B, C clusters in order to 

compare with the first approach. Table 25 shows confusion matrix and detailed prediction 

accuracy of the model. Nevertheless, higher prediction accuracy is obtained by the first 

approach (see Table 19). 

Table 25: Results of MLP Method (M=0.4, LR=0.1, NHL=a) 

 

Predicted Class 

A B C 

A
ct

u
a

l 

C
la

ss
 A 47 4 2 

B 102 21 20 

C 59 34 16 

 

TP Rate 

(%) 

FP Rate 

(%) 

Precision 

(%) 

A 0.887 0.113 0.225 

B 0.356 0.644 0.356 

C 0.147 0.853 0.421 

Weighted 

Avg. 
0.463 0.536 0.334 
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5.5. Third Modeling Approach 

Machine learning techniques have been used in the previous approaches which predict RUL 

of Module X with 50% accuracy. As opposed to these approaches, third approach is based on 

understanding and interpretation of the parameters’ behaviour. Data visualisation technique is 

used to understand the relationships in multidimensional data.  

It is discovered that the part failure is because of the reduction in the data value. After 

maintenance, a significant and sudden increase in the parameter value is observed. One or 

more parameters decrease until the failure. After performing maintenance, some parameters 

go up to higher values. As understood from parameters variation over time for a machine, 

maintenance can recover all parameters or it can be performed for recovery of specific 

parameters. Regardless of the maintenance coverage, it always includes recovery of the 

highest degraded parameter. Therefore, it is reasonable to assume that maintenance is 

performed based on a single parameter so called “dominant parameter”. Dominant parameter 

is the parameter that takes the minimum value in comparison with the other parameters. The 

fact that dominant parameter goes beyond the user threshold level leads to the failure. During 

failure diagnosis, service engineer may check all other parameters and implement complete 

maintenance or he may prefer to fix the problematic parameters. 

Since the decrease in the parameter values causes the failure, firstly the parameters are 

classified to detect the decreasing trend. If a parameter value is less than -4 (upper limit for 

the failure threshold level) and it decreases continuously, it indicates degradation of the 

parameter. Decreasing trend is detected by using cumulative moving average (CA) method 

which smoothes out short term data fluctuation. In cumulative moving average, the average 

of all of the data up until the latest data point is calculated. Since CA method may not smooth 

all the fluctuations, the current cumulative average CAi+1 is not only compared with CAi, but 

also with CAi-1 to discover reduction in parameter values.6 condition parameters are checked, 

whether they are in the degradation period or not. If the dominant parameter decreases then 

life of Module X is specified as failure period (“Y”). 

Classification step shows only whether the part is in failure period or non failure period. 

However it doesn’t indicate when the part will fail. Failure may occur in a few days as well 

as in a few months. Therefore, more tangible output is required to warn the users and make 

them take better decisions. Secondly, RUL which shows the user how long the part operates 

before it fails is calculated. Hence service engineer gains time to plan maintenance, labor and 

spare parts. 

Threshold level is determined according to the value of the dominant parameter at the failure 

instant. For 30 failure cases, the dominant parameter takes different values between -4 and -

9.6 at the failure instant. Therefore, there is not a fixed threshold level because the user 

perception about the failure depends on the user expectation. Different threshold levels 

indicate that some customers wait for the hard failure and perform maintenance as late as 

possible, whereas others suffer from the performance reduction and perform maintenance 

earlier. Considering these issues, RUL of the module is calculated for different threshold 
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levels. The most suitable threshold level which is the closest to the actual value, leads to the 

smaller error between the actual and predicted RUL. 

Since the parameters decrease linearly in the failure period, it is reasonable to calculate RUL 

by performing a linear extrapolation. By using the first and the last sample points, a linear 

line is created and it is extended to the predefined threshold level. Therefore the remaining 

life of the module is calculated. In Figure 14, three RUL predictions are shown for a machine. 

Predictions are made at different times and the prediction accuracy increases as the data 

points get closer to the failure instant. Prediction 3 which is calculated just before the failure 

leads to better prediction than Prediction 2 and Prediction 1, which are determined by using 

the previous data points. 

 

Figure 14: RUL Calculation Based on the Dominant Parameter 

Formulation 

Pi: Condition Parameter i where i=1...6 

d: dominant parameter 

t: time stamp 

HS: Health Status 

CAi,t: Cumulative Moving average of parameter i at time t.  

Xi,t: value of parameter i at time t   

Step 1: Dominant Parameter: 

Min (P1...P6) 
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Step 2: Maintenance Diagnosis: 

Jumps in the parameter values indicate that parameter is recovered. Therefore, if a parameter 

is increased by 2 or more, this depicts the recovery of the parameter.  

Recovery Diagnosis (on each Parameter)=*+,- − *+,-;< > 2 → *+  6$ �@�#A@�@B  C C6&@ C.  

Step 3: Diagnosis: Degradation of Parameters  

Each parameter is checked to detect whether it follows stable trend or decreasing trend 

D�+,- =
E0,34⋯4E0,1

-
    

D�+,-4< =
G+,-4< + CD�+,-

C + 1
 

IF ( Pi < −4  'B (D�+4< < D�+ or D�+4< < D�+;<L               "Y" (decreasing trend in critical 

period) 

OPQO                                                                                                   "R"  

Step 4: Classification of Health Status of Module X:  

If Dominant Parameter is in degradation,  Failure        “Y” 

Else       Non-Failure “N”  

Step 5: Detection of the starting point of degradation: The point where degradation starts:  

HSt-1 = “N” and HSt= “Y”  

P1o, P2o, P3o, P4o, P5o, P6o ,To 

Keep the starting point of degradation in the memory to compute RUL. 

Step 6: Prognosis: RUL Computation (Linear Extrapolation) 

If Health Status of Module X = “Y” 

STP+,- =
UV;/01

/01;/0W
∗ (C − Y#L (in days) 

Else RULi=5000 (no alert) 

RUL of the component is equal to the RUL of the dominant parameter. 

 RULModule X= RULd where  

This step is performed for different threshold levels. 
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Results 

Figure 15 shows the predicted and the actual RUL for different machines (M0005, M0006, 

M0017, M0018). The accuracy of RUL prediction depends on the data behaviour. First few 

data samples might not be sufficient to indicate the trend of the dominant parameter, which 

causes high error of initial predictions. The predictions are improved and approximated to the 

actual RUL as more data is considered. As seen from Figure 15a, Figure 15c, Figure 15d, the 

error between the actual and predicted RUL gradually decreases. However if the parameter 

fluctuates at high frequency as in Figure 15b, predictions may not be consistent and 

reasonable.  

  

  
 

Figure 15: Changes in Actual and Predicted RUL for Machines: M0005 (a). M0006(b), M00017(c), M00018(d) 

 

According to the given formula, RUL of the module has been predicted for 6 different 

threshold levels. 

Table 26 and Table 27 show the mean error between actual and predicted RUL for each 

threshold level. If the error is smaller, the threshold level is closer to the actual level. That the 

error is equal to “#DIV/0!” indicates that corresponding threshold level is far beyond the 

actual level so RUL is not predicted. Therefore, for each failure case the smallest value, 

which is highlighted in the tables, is taken into account. In the last 30 days before the failure, 

the deviation between the predicted and the actual RUL is about 36 days and 42.5 days for 

the training and the test data set respectively. Although degradation level is checked if one of 

the parameters is less than -4 in the model, the failure of the machine M1959 occurs before 

this level. In other words, the failure occurs so unexpectedly early that the model cannot 

predict it.   
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Table 26: Mean Absolute Error between the Predicted RUL and the Actual RUL (Training Data Set) 

|RULact-RULpre| (last 30 days) for different Threshold Levels   

  
-5 -6 -7 -8 -9 -9.6 

Mean 

Absolute 

Error (day) 

M0005 449.45 336.88 224.31 111.74 5.02 68.37 5.02 

M0006 408.65 203.56 35.52 206.62 248.45 #DIV/0! 35.52 

M0017 440.60 342.27 243.94 145.62 47.29 11.71 11.71 

M0018 140.05 98.75 57.46 16.17 25.12 49.90 16.17 

M0021 52.48 23.64 5.28 34.03 62.86 80.16 5.28 

M0029 330.92 212.33 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 212.33 

M0034 86.53 41.48 5.33 48.63 93.68 120.72 5.33 

M0041 138.91 106.55 74.20 41.84 9.48 9.93 9.48 

M0051 160.74 72.29 16.17 104.62 193.08 246.15 16.17 

M0067 466.62 279.39 92.15 95.08 185.94 278.35 92.15 

M0741 1617.41 1240.56 863.70 486.84 109.99 116.13 109.99 

M1004 549.16 429.76 310.37 190.97 71.58 3.38 3.38 

M1186 266.82 155.59 44.36 66.86 178.09 244.82 44.36 

M1321 584.07 410.07 236.07 62.05 111.95 216.35 62.05 

M1358 1645.53 854.22 62.90 #DIV/0! #DIV/0! #DIV/0! 62.90 

M1771 186.07 103.92 21.76 60.39 142.55 191.84 21.76 

M1828 75.87 99.09 189.35 #DIV/0! #DIV/0! #DIV/0! 75.87 

M1887 1109.67 861.37 613.07 364.77 116.47 32.52 32.52 

M1937 368.91 287.56 206.21 124.86 43.51 8.77 8.77 

M1959 38.04 15.31 7.42 30.15 52.88 66.52 7.42 

M2232 114.79 88.86 62.94 37.02 11.10 5.68 5.68 

M2252 218.47 43.59 131.28 217.92 #DIV/0! #DIV/0! 43.59 

M2417 1.04 8.05 16.99 25.94 34.89 40.26 1.04 

M2601 1414.47 911.82 409.17 93.49 #DIV/0! #DIV/0! 93.49 

M2683 21.65 6.04 9.56 25.17 40.78 50.15 6.04 

M2789 13.15 4.09 4.96 14.02 23.07 28.50 4.09 

M3083 65.79 26.01 14.21 53.56 93.35 117.22 14.21 

M3398 743.70 543.78 343.87 143.95 65.19 125.80 65.19 

M3407 162.65 118.92 75.19 31.47 12.26 38.50 12.26 

M3411 419.36 328.17 236.98 145.79 54.60 3.48 3.48 

Average 36.24 days 
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Table 27: Mean Absolute Error between the Predicted RUL and the Actual RUL (Test Data Set) 

  |RULact-RULpre| (last 30 days)   

  
-5 -6 -7 -8 -9 -9.6 

Mean 

Absolute 

Error (day) 

M0019 302.99 235.47 167.95 100.43 32.91 7.85 7.85 

M0067 441.41 310.57 179.73 48.89 81.95 160.46 48.89 

M0885 320.25 241.24 162.24 83.24 17.38 44.63 17.38 

M0939 682.92 526.37 369.83 213.28 56.73 37.20 37.20 

M1053 1161.51 764.28 367.06 30.16 #DIV/0! #DIV/0! 30.16 

M1859 942.67 587.11 231.56 124.00 146.11 212.78 124.00 

M1959  N/A  N/A   N/A   N/A   N/A   N/A   N/A  

M2258 343.81 178.63 13.45 58.91 128.11 169.63 13.45 

M2417 114.17 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 114.17 

M3407 54.24 31.38 8.53 14.32 37.18 50.89 8.53 

M3409 620.74 481.25 341.76 202.27 62.78 20.91 20.91 

Average 42.25 days 

The average mean absolute errors in the last 30 days before the failure are found as 71 days 

and 43 days for the second and the third approaches, respectively. Therefore 3rd approach 

overflanks the second approach by predicting RUL more accurately. Moreover, in order to 

compare with the first approach, RUL predictions corresponding to the specified threshold 

level are clustered in the previously defined groups (see chapter 5.3). Combined decision tree 

prediction accuracy is higher than the third approach which provides 53 % and 56% TP rate 

and Precision respectively on the test data. 

Table 28: Results of the Third Approach 

  TP Rate (%) FP Rate (%) Precision (%) 

A 0.813333 0.186667 0.655914 

B 0.328767 0.671233 0.393443 

C 0.463415 0.536585 0.655172 

Weighted Avg. 0.535172 0.464828 0.568176 

Six different values were tried to specify the unknown threshold level. However, if more than 

6 values are tried for the threshold level, the results will be significantly improved. By 

assuming that the threshold level is known for each case (which is equal to actual value), 

RUL of the module have been computed, following results (Table 29) have been obtained.  

Classification on the training data Classification on the test data: 

Training Predicted Class 

Data A B C 

A
ct

u
a

l 

C
la

ss
 A 1214 142 103 

B 61 95 61 

C 23 34 127 

 

Test Predicted Class 

Data A B C 

A
ct

u
a

l 

C
la

ss
 A 122 14 14 

B 43 24 6 

C 21 23 38 

 

Accuracy: 77%      Accuracy: 60% 
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Table 29: Results of the Third Approach with given Threshold Level 

  TP FP Precision 

A 0.813333 0.186667 0.709302 

B 0.575342 0.424658 0.494118 

C 0.536585 0.463415 0.916667 

Weighted Avg. 0.641754 0.358246 0.706696 

 

RUL was predicted for each machine and the absolute error between the actual and the 

predicted RUL was calculated during last 30 days before the failure. Although predictions are 

not accurate for 6 machines which are highlighted in the Table 30, the average error between 

the actual and the predicted RUL is about 15 days.  

Table 30: Mean Absolute Error of RUL Predictions  

Training Data Test Data 

Sample 

Size 
Threshold 

Mean Absolute 

Error 

(last 30 days) 

Sample 

Size 
Threshold 

Mean Absolute 

Error 

(last 30 days) 

M0005 32 -9 5.019 M0019 97 -9.6 7.849 

M0006 149 -7.6 124.586 M0067 42 -8.5 16.532 

M0017 94 -9.5 1.952 M0885 86 -9.5 38.748 

M0018 152 -8.4 2.554 M0939 78 -9.4 6.815 

M0021 127 -7 5.277 M1053 26 -8 30.163 

M0029 90 -5.8 48.270 M1859 23 -7.7 17.333 

M0034 68 -7 5.327 M1959 31 -4 xxxxx 

M0041 26 -9.3 1.884 M2258 26 -7.1 7.552 

M0051 155 -6.9 7.321 M2417 75 -4.7 16.070 

M0067 128 -8 95.084 M3407 61 -7.5 2.935 

M0741 79 -9.3 3.069 M3409 74 -9.5 7.274 

M1004 99 -9.6 3.377     Mean 

Absolute 

Error 
15.127 days M1186 46 -7.4 7.005 

M1321 71 -8.4 10.983 

M1358 72 -7.1 18.301 

M1771 93 -7.3 3.379 

Classification on the training data Classification on the test data: 

Training Predicted Class 

Data A B C 

A
ct

u
a

l 

C
la

ss
 A 1306 135 18 

B 62 118 37 

C 24 17 144 

 

Test Predicted Class 

Data A B C 

A
ct

u
a

l 

C
la

ss
 A 122 26 2 

B 29 42 2 

C 21 17 44 

 

Accuracy: 84%      Accuracy: 68% 
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M1828 90 -5.4 

M1887 105 -9.6 

M1937 51 -9.5 

M1959 90 -6.7 

M2232 74 -9.2 

M2252 59 -6.2 

M2417 151 -5.2 

M2601 65 -7.8 

M2683 68 -6.3 

M2789 55 -6.5 

M3083 226 -6.5 

M3398 33 -8.7 

M3407 184 -8.6 

M3411 32 -9.6 

Mean Absolute 

Error 

 

The output of this model is updated through online data. With each new record, failure status 

is reclassified and RUL is recalculated. 

cannot be taken into account easily by

model modifies predictions with each record, it externalizes the changes in the system 

immediately. Besides, the effects of discontinuous changes which might be caused by 

missing or misrecorded data are smoothed in a short time.

missing and misrecorded data
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5.6. Assessment of the Models  

Several models were developed on the full training data (2009 data) by using three distinct 

approaches. Created models were tested and ranked based on their weighted average TP rate, 

FP rate, Precision and Prediction Accuracy on the test data set (2010 data).  

Firstly, data has been divided into three classes which indicate the distance to the failure time. 

Cluster A refers that the failure will not occur in the following 60 days, Cluster B refers that 

failure will occur in 60 days and Cluster C shows that the failure will occur in 20 days. To 

predict these classes, ANN-MLP, ANN-RBF, Decision Tree, Simple Cart and KNN methods 

have been used. The best model was obtained with the combination of two decision trees 

which results in 56% true classification and 63% precision. It should be pointed that 

classification of C cluster is important in terms of warning the user before the failure instant. 

The model output has been analyzed in detail to assess the warning capability. The model 

predicts 5 failure cases as cluster A or B at the failure instant. However for about 55% of the 

cases, it warns the user on time. Moreover the decision tree helps to diagnose the reason of 

the failure. The parameter that causes the failure could be detected by analyzing the decision 

tree steps.  

Secondly, ANN-MLP, ANN RBF and linear regression models were developed to estimate 

the remaining time of Module X in days. Although MLP outperforms the other methods, it 

does not make satisfactory predictions. For the last 30 days before the failure, mean absolute 

error is found as 71 days which indicates the high deviation from actual RUL (<=30 days). 

Warning signal is produced for only 18 % of the upcoming failures. Hence user can not be 

warned for most of the failure cases. Besides, this model does not help to explain failure 

reasons.  

Last but not least, data visualization technique was used to understand relationship between 

the parameters and the failure events. This understanding was translated into mathematical 

formulation which leads to diagnostics and prognostics of the failure. Since the actual 

threshold level is unknown, several values were tried and the threshold level results in 

minimum mean absolute error was selected for each case. This approach predicts with higher 

accuracy than the second approach. However, the combined decision tree model outperforms 

this mathematical model. By assuming that the threshold level is known for each case, the 

calculations were performed again. Although for 6 failure cases (4 from training data and 2 

from test data), the remaining useful time is predicted with higher error, the model achieves 

to warn the user about 82 % (9 cases out of 11 cases) of the upcoming failures with an 

accurate indication of RUL in comparison with the other approaches. Significant increase in 

TP rate and Precision was observed.   

Known threshold level increased prediction accuracy for the third approach. In order to 

analyze the effect of the given threshold level on second approach (MLP model), another 

model has been developed (see Appendix X). However given threshold level does not 

improve the RUL predictions of the MLP model. 
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Table 31 shows the results of three approaches. The first three columns indicate the warning 

capability of the models at the failure instants. Since the model should predict the class as C 

at the failure instant, the higher percentage of C predictions indicates better model. On the 

other hand, prediction of cluster A leads to missing failures. The latter three columns in the 

table depict the detailed prediction accuracy of the models.  

Table 31: Comparison of Three Approaches 

 Failure Instant Classification Detailed Prediction Accuracy 

A B C TP FP Precision 

1
st
 Approach  

(combined decision 

tree) 

0.364 

(4/11) 

0.091 

(1/11) 

0.545 

(6/11) 
0.562 0.438 0.635 

2
nd

 Approach (MLP) 
0.454 

(5/11) 

0.362 

(4/11) 

0.182 

(2/11) 
0.463 0.537 0.334 

3
rd

 

Approach 

Unknown 

Threshold 

Level 

0.362 

(4/11) 

0.182 

(2/11) 

0.454 

(5/11) 
0.535 0.464 0.568 

Known 

Threshold 

Level 

0.091 

(1/11) 

0.091 

(1/11) 

0.818 

(9/11) 
0.642 0.358 0.707 

To conclude, the third approach with the given threshold level outflanks the other approaches 

and predicts failure with higher accuracy. If the threshold level is not specified, it is 

recommended to use combined decision tree which predicts 50% of the upcoming failures. 

5.7. Conclusion 

In the first part of this section, failure threshold level was analyzed and according to the 

threshold limits, different failure classes were defined. Then the environmental factors were 

assessed in terms of their representativeness. Because of lack of samples, it was decided not 

to use environmental factors such as machine type, site id and customer id in the modelling.  

Next, several models were developed to estimate failure time of Module X. Their prediction 

accuracy was evaluated. As a result, it was found that the third approach with the given 

threshold level provides highest prediction accuracy. Besides, the model helps to diagnose 

faulty subcomponent.   
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6. Comparing the Data Driven Model with the Physical Model  

Domain experts in ASML have already developed a physical model to predict the upcoming 

failure by using mechanistic knowledge and theories related to Module X. In the previous 

section, the data driven model was developed without any system knowledge. In this section, 

the performance of the data driven model is compared with that of the physical model. 

The physical model was built with Matlab code. The required inputs for the model are the 36 

condition parameters and the machine type. It provides the remaining time of the sub-

modules of Module X in weeks. It was processed with the raw data of specified machines 

which were used to build and test the data driven model. The model produced biweekly 

reports which show the failure status of Module X for each machine. In these reports, the 

failure status of 6 different sub-modules and remaining weeks to the failure for each sub-

module are shown. Health status of Module X is determined based on the health status of the 

sub-module which has the lowest value and the least time to the failure. 

The health status of Module X is denoted by F1, F2, F3 and F4 which are explained below.  

F1:  one or more sub-modules has a value below the certain level. 

F2:  one or more sub-modules will fail within 10 weeks. 

F3:  Both F1 and F2 occur. 

F4:  non -failure 

Data driven model was developed by considering six parameters and one of the parameters 

was specified as the dominant parameter which has distinctive effect on the failure of Module 

X. Selected six parameters correspond to the 6 different sub-modules. Besides, dominant 

parameter refers to the sub-module which has the lowest value and the least time to the 

failure. As a result, precious and accurate knowledge in line with physical theories was 

discovered by data mining methods.  

The performance of the physical model was evaluated after adjusting the model output 

format. F1, F2 and F3 were specified as failure class whereas F4 was defined as non failure 

class in order to provide consistency. The physical model gives fewer warning signal than the 

proposed data driven model (DDM). Fewer signals may not be problem if it warns the user 

before the failure. However, the model does not predict remaining useful life for 6 cases 

(Table 32). Therefore the models cannot be completely compared. 

 

 

  



 

 

52 

Table 32: Results of PM Model and DDM Model 

 Failure Instant Classification Detailed Prediction Accuracy 

 A B C TP FP Precision 

PM 
0.545 

(6/11) 

0.182 

(2/11) 

0.273 

(3/11) 
   

3
rd

 Approach 
0.091 

(1/11) 

0.091 

(1/11) 

0.818 

(9/11) 
0.642 0.358 0.707 

 

Only for 5 cases out of 11 cases, RUL predictions of the PM model are reasonable and 

comparable with predictions of the DDM model. Figure 17 illustrates the two of these cases. 

 

  

Figure 17: Comparison of the RUL Predictions 

Models were also evaluated in terms of false alerts. False alerts means that the model 

produces warning signal although there will not be any failure in 60 days. Both DDM and 

PM models do not generate false alerts for 11 failure cases. Therefore they avert over-

maintenance and associated costs and down time. 

To sum up, in this chapter, the outputs of the physical model has been discussed and 

compared with the data driven model. Data driven model provides more accurate predictions 

than the physical model. Besides, the knowledge gained from data driven model has been 

validated with the principles of the physical model. 
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7. Deployment 

In this chapter, decision support model which is the integration of the knowledge gained from 

prediction model with ASML decision making process is explained. Furthermore user 

interface of the prediction model is presented. 

Decision Support Model 

ASML provides condition based maintenance to all customers during warranty period (first 2 

years) and to the customers who have the service contract for preventive maintenance after 

the warranty period. The decision support model consists of two processes.  

Monitoring Process: While the prediction model is running, its outputs are monitored 

continuously. These outputs are listed in the real time personalized Web pages. However in 

the case of RUL<20 days, field service engineer is also notified by mail. This notification 

shows the remaining useful life of Module X and faulty sub-modules. 

 

Maintenance Planning Process: When the field service engineer is notified about the 

forthcoming failure, he starts to plan maintenance. First he discusses with the customer about 

the timeline. Accordingly, he arranges labors and spare parts. Then maintenance is executed. 

At the end of this step, the details about maintenance and failure are reported. 

 

Figure 18: Decision Support Model  

The performance of the prediction model is monitored regularly. If the model doesn’t 

generate notification or if it generates false signals, model improvement would be required. 

Field service engineers, modelling team and development team are responsible for the model 

building/updating. They design, validate and release new models.  
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User Interface 

The user interface by which ASML can use the output of the prediction model was developed 

with MS Excel tool. The interface aims to show the status of Module X and the remaining 

time before the failure. Therefore the service engineer can be informed about the upcoming 

failure.  

Firstly, it is requested to enter the machine number and the threshold level. Secondly the 

parameter values (P1...P6) and the time stamp are entered. The interface shows the sample 

size (number of entered records for a machine), parameters in degradation, dominant 

parameter, health status of Module X, Failure Class, RUL of Module X (if it is in failure 

period), and maintenance diagnosis which indicates whether the maintenance is performed. 

According to the RUL of each sub-module, the user is warned about the faulty sub-modules 

and necessary repair process. As long as the second step is repeated, the new output and the 

new warning signals are provided. 

If the threshold level has not been specified, the model should run to determine the level at 

which machine performance is not acceptable. By step by step decreasing the threshold value 

from -4 to -9.6, the level at which the customer is dissatisfied with the module performance is 

decided. For example firstly the threshold level can be determined as -5. When the dominant 

parameter reaches this level (when RUL<10 days), module performance is checked, if the 

customer is satisfied with the performance, another threshold level such as “-6” is defined. 

This process is repeated until the customer settles the level where the maintenance is 

required. After specifying the threshold level, the model can run without any interruptions 

and indicate the remaining time of the module. 

It should be remarked that fewer data sample may lead to the large prediction errors. The 

predictions are improved and approximated to the actual RUL as more data is considered (see 

Figure 15 ). Therefore, it could be better to consider the outputs when the sample size is 

larger than 10.  

 

 

 

 

 

 

 

 

 

Figure 19: Sample Format of the User Interface  

Please Enter 

Machine Nr: M0001 

Threshold Level: -7.4 

Output 

Sample Size: 10 

Parameters in Degradation: P2, P5 

Dominant Parameter: P5 

Health Status of Module X: Y 

Failure Class: C 

RUL: 30 days 

Maintenance Detected: N 

Please Enter (Repeated Step) 

Time Stamp: 01/01/2010 

P1: -3.4 

P2:-4.6 

P3:-1.2 

P4:1.5 

P5:-6.8 

P6:-3.2 

Notifications: 

� Swap Sub-Module5 
� Order Spare Part  
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8. Conclusion 

This chapter summarizes the main findings provided in the previous chapters. Moreover it 

describes limitations and provides recommendations. Last but not the least, some future 

research options are explained. 

8.1. Main Findings, Limitations and Recommendations 

In this project, a failure prediction model for Module X has been developed by using the 

condition monitoring data in line with ASML objectives. Business success criteria (see 

Chapter 2.1) of ASML have been considered to evaluate the main findings.   

Utility of Local Monitoring Data 

The utility of the local monitoring data has been assessed in the project. Although given data 

helps to predict the failure, its applicability is limited. 

(1) Limitation on the Condition Data: Imperfect condition monitoring is the main limitation 

for the research. This results in lack of the condition data and non-periodic monitoring 

intervals between the samples.  

(2) Limitation on the Event Data: To understand the parameter-failure relation in depth, more 

information is required. All data about the taken actions such as the exact failure time of 

Module X and other machine components, performed maintenance actions and their 

coverage, machine intermittent and machine performance problems should be stated clearly 

to understand and interpret changes in the condition parameters and accordingly to predict the 

failures.  

Success of the local monitoring is indisputable. The failures are predicted despite of the 

limitations. Furthermore if more complete and accurate data is provided, the model can be 

improved.  

Discovering System Knowledge through Data Mining 

System knowledge was discovered through data mining methods and the accuracy of the 

gained knowledge was validated by the physical model. This situation supports sufficiency 

and applicability of the data mining techniques to model the systems about which we do not 

have extensive knowledge.  

Decision Support Model  

The validated failure prediction model was developed in this project. The model outperforms 

the physical model which can not produce accurate predictions and warn the customer on 

time. It is recommended to the use the data driven model which warns the user about 82% of 

the upcoming failures by indicating the remaining time of Module X accurately. Therefore 

unscheduled down time can be decreased significantly. Moreover prediction of the upcoming 

failure contributes to executing maintenance right on time and to eliminate over-maintenance 

because the maintenance decision is based on degradation of Module X.  
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ASML implements maintenance periodically or in case of a failure. Under both 

circumstances, the service engineer is unaware of the faulty sub-modules. Maintenance may 

be performed to recover specific components even if some other sub-modules are about to 

fail or complete maintenance may be performed even if only one component is faulty. Thanks 

to condition monitoring, a service engineer can control the degradation level of all of the sub-

modules and accordingly the coverage of maintenance is specified. Therefore maintenance is 

performed based on necessity of the components. This leads to a decrease in maintenance 

expenditures.  

The model indicates the remaining useful time, that makes the engineer decide about when to 

plan maintenance, when to arrange labor, and when to order a spare part. These steps are 

performed on-time and cost effectively based on the predicted failure time. 

As a result, despite of the limitations, a data driven prediction model is a very favorable 

model for maintenance planning. By means of this model, ASML can provide better 

maintenance solutions to customers, leading to increased system availability and decreased 

associated costs. 

8.2. Future Prospects 

Model Extension for Multiple Component Setting  

The model was developed for a single component (Module X) of the Machine. In order to 

predict the machine failure, the decision model should be extended for other components of 

the machine. 

Control of Condition Monitoring Interval 

Condition monitoring can be continuous or periodic. Since continuous monitoring could be 

expensive and gives inaccurate information, periodic monitoring is recommended as an 

effective approach. However, optimal condition monitoring interval should be determined 

based on cost and wear rate. 

Determination of Optimal Replacement Time 

Maintenance decision support model indicates the upcoming failure and the severity of the 

failure however the service engineer should decide about the optimum time for the 

maintenance by considering labor availability, maintenance urgency, spare part availability 

and machine necessity. Therefore another research direction could be to develop maintenance 

optimization model.  

Improvement of the Model for Logistic Decisions 

Prediction of the machine failure helps to take effective decisions about spare part inventory. 

To improve a proactive maintenance model with proactive logistics could be another research 

topic. 



 

 
 

57 

References 

ASML internet site, Company about ASML, ASML Profile, 

http://www.asml.com/asml/show.do?ctx=272&rid=362  Last retrieved on 15.02.2011.  

ASML intranet site. Last retrieved on 15.02.2011. 

Blechertas, V., Bayoumi, A., Goodman, N., Shah, R., Shin, Y. (2009) CBM Fundamental 

Research at the University of South Carolina: A Systematic Approach to U.S. Army 

Rotorcraft CBM and the Resulting Tangible Benefits, Proceedings of AHS International 

Specialists' Meeting on Condition Based Maintenance  

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J. (1984). “Classification and Regression 

Trees”, Wadsworth International Group, Belmont, California. 

British Standards Institution (1984) BS3811 Glossary  of maintenance  terms  in  

Terotechnology,  BSI,  London. 

Cakir, G. S. (2011). Implementation of Proactive Maintenance Policy in ASML: Literature 

study, in Operations Management and Logistics, Eindhoven University of Technology. 

Collacott, R.A. (1997) Mechanical fault diagnosis and condition monitoring, Chapman and 

Hall Ltd., London 

Cross Industry Standard Process for Data Mining (CRISP-DM) internet site, 

http://www.crisp-dm.org. Last retrieved on 15.05.2011.    

Drazin, S., Montag, M. Decision Tree Analysis using Weka Machine Learning Project II, 

University of Miami  

Gilmartin, B.J., Bongort K., Engel, A.H.S.J. (2000) Prognostics, The Real Issues Involved 

With  Predicting  Life  Remaining,  in  Proceedings  IEEE Aerospace Conference, vol. 6, pp. 

457-469. 

Hair, J. F., Black, W. C., Babin, B. J., Andersin, R.E. (2009), Multivariate Data Analysis, 7th 

edition, Prentice Hall 

Han, J., Kamber, M.(2006), Data Mining: Concepts and Techniques, Elsevier, 2006. 

Hoyle, W.C.C, Mehr, A., Tumer I. (2007) "On quantifying cost benefit of  ISHM  in  

aerospace  systems,"  in  ASME  2007  International  Design Engineering Technical 

Conferences, pp. 1-10 

Jardine, A. K.S., Lin, D., Banjevic, D. (2006). A review on machinery diagnositcs and 

prognostics implementing condition-based maintenance. Elsevier Ltd. , 1483-1510 

Kent, R.M., Murphy, D.A. (2000) Health Monitoring System Technology Assessments  Cost 

Benefits Analysis," Hampton, Virginia. 



 

 

58 

Lee, J., Ni, J., Djurdjanovic, D., Qiu, H., Liao, H. (2006) Intelligent prognostics tools and e-

maintenance, Computers in Industry, Volume 57, Issue 6, E-maintenance Special Issue, 

Pages 476-489. 

Li, Y.G., Nilkitsaranont, P. (2009) Gas turbine performance prognostic for condition-based 

maintenance, Applied Energy, Vol. 86, Iss. 10, pp 2152-2161 

Peng, Y., Dong, M.,  Zuo, M. (2010) Current status of machine prognostics in condition-

based maintenance: a review, The International Journal of Advanced Manufacturing 

Technology, Volume 50, Numbers 1-4, pp. 297-313(17)  

Quinlan, R. (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, 

CA. 

Rao, B. (1996) Handbook of condition monitoring, Amsterdam,: Elsevier  

Shearer, C. (2000) The CRISP-DM Model: The New Blueprint for Data Mining, Journal of 

Data Warehousing 

Tsang, A.H.C., Jardine, A. K.S., Kolodny, H. (1999) Measuring maintenance performance: a 

holistic approach, International Journal of Operations and Production Management volume 

19, Iss. 1, pp 691-715. 

Data Mining: What is Data Mining, University of California internet site: 

http://www.anderson.ucla.edu/faculty/jason.frand/teacher/technologies/palace/datamining.ht

ml Last retrieved on 15.02.2011 

Van Aken, J. E., Berends, H., and Van der Bij, H. (2007). Problem-solving in Organizations: 

A Methodological Handbook for Business Students. University press Cambridge. 

Vismara, M.G. (2010) An Integrated Approach to a Condition Based Maintenance policy and 

applications, Politecnico Di Milano. 

Zhao Z., Wang F., Jia M., Wang S. (2010) Predictive maintenance policy based on process 

data, Chemometrics and Intelligent Laboratory Systems Volume 103, Iss 2, pp 137-143. 



 

 
 

59 

Appendices 

Appendix I. Data Preparation-Data Analysis 

SAMPLE OF THE GIVEN DATA FORMAT 

Data sets were provided as a list of independent records.  

MACHINE 

NUMBER 

TIME 

STAMP VALUE 

MACHINE 

TYPE 

SITE 

ID 

CUSTOMER 

CONTINENT 

CUSTOMER 

COUNTRY 

CUSTOMER 

NUMBER 

PARAM 

ID 

M1297 17-Dec-09 -8.856 T0010 1288 Asia 

South 

Korea 188 3756 

M2572 22-Oct-09 -8.9597 T0005 665 Asia Singapore 2046 990 

M2488 30-Jul-09 -3.9977 T0083 755 Other Other OT01 981 

M0822 14-Jul-09 -4.0141 T0016 1284 Asia 

South 

Korea 188 960 

M1621 08-May-09 -3.8854 T0010 1294 Asia 

South 

Korea 1146 957 

M1647 23-Oct-09 -3.9167 T0001 277 

North 

America USA 196 966 

M0003 21-Jul-09 -3.873 T0010 1291 Asia 

South 

Korea 188 990 

M0004 21-Feb-09 -3.8264 T0010 1291 Asia 

South 

Korea 188 966 

M2862 27-Aug-09 -3.7398 T0004 629 Asia Taiwan 222 993 

M2631 06-Jan-09 -8.551 T0004 801 Europe France 192 972 

M1022 10-Jul-09 -8.9597 T0020 1163 

North 

America USA 188 960 

M2108 10-Jul-09 -3.9977 T0005 613 

North 

America USA 558 969 

M1141 10-Aug-09 -6.8885 T0011 1290 Asia 

South 

Korea 1146 966 

M3241 22-Apr-09 -8.551 T0010 629 Asia Taiwan 222 963 

M0051 05-Sep-09 -8.9597 T0008 1178 Asia Taiwan 386 996 

M1171 28-Feb-09 -3.9977 T0006 629 Asia Taiwan 222 987 

M1171 12-Aug-09 -6.8885 T0006 629 Asia Taiwan 222 990 

M1614 04-Dec-09 -8.551 T0007 1284 Asia 

South 

Korea 188 990 

M1951 16-Jul-09 -8.9597 T0019 1286 Asia 

South 

Korea 188 960 

M2785 05-Jul-09 -3.9977 T0010 1291 Asia 

South 

Korea 188 996 
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SAMPLE OF THE ALIGNED DATA FORMAT 

Data sets were aligned in order to understand the changes in the condition parameters in time. 

             Categorical parameters +                                      36 numeric condition parameters 

 

Chronological Order 

 

.   

MACHINE 

NUMBER 
TIMESTAMP 

MACHINE 

TYPE 

CUSTOMER 

ID 
P955 P956 P957 P958 P959 P960 P961 

M0005            07-Jan-09 T0007 C1058 -6.8961 -6.8860 -6.8910 -6.9177 -6.8542 -6.8860 -3.7979 

M0005         13-Feb-09 T0007 C1058 -7.3892 -7.3831 -7.3862 -7.4487 -7.3123 -7.3805 -4.3121 

M0005         16-Feb-09 T0007 C1058 -7.4847 -7.4738 -7.4792 -7.5021 -7.4451 -7.4736 -4.3567 

M0005         17-Feb-09 T0007 C1058 -7.5400 -7.5320 -7.5360 -7.5974 -7.4640 -7.5307 -4.3823 

M0005         19-Feb-09 T0007 C1058 -7.5305 -7.5201 -7.5253 -7.5479 -7.4915 -7.5197 -4.3793 

M0005         01-Mar-09 T0007 C1058 -7.6871 -7.6767 -7.6819 -7.7032 -7.6489 -7.6761 -4.5276 

M0005         07-Mar-09 T0007 C1058 -7.7783 -7.7686 -7.7734 -7.7954 -7.7414 -7.7684 -4.6072 

M0005         10-Mar-09 T0007 C1058 -7.7222 -7.7109 -7.7165 -7.7396 -7.6819 -7.7107 -4.6219 

M0005         06-Apr-09 T0007 C1058 -8.0890 -8.0804 -8.0847 -8.1049 -8.0527 -8.0788 -4.9698 

M0006         06-Apr-09 T0007 C1058 -7.9700 -7.9602 -7.9651 -7.9858 -7.9337 -7.9597 -4.9725 

M0006         22-Apr-09 T0007 C1058 -8.1674 -8.1635 -8.1654 -8.2214 -8.0994 -8.1604 -5.1675 

M0006         01-Jun-09 T0007 C1058 -8.5568 -8.5504 -8.5536 -8.5730 -8.5239 -8.5484 -5.6113 

M0006         09-Jun-09 T0007 C1058 -8.5599 -8.5553 -8.5576 -8.6090 -8.4949 -8.5519 -5.6860 

M0006         22-Jul-09 T0007 C1058 -8.7384 -8.7350 -8.7367 -8.7869 -8.6755 -8.7312 -6.2033 

M0006         24-Jul-09 T0007 C1058 -8.8330 -8.8257 -8.8293 -8.8461 -8.8004 -8.8232 -6.1697 

M0006         14-Aug-09 T0007 C1058 -8.9163 -8.9142 -8.9153 -8.9639 -8.8553 -8.9096 -6.3815 

M0006         14-Aug-09 T0007 C1058 -8.9392 -8.9371 -8.9381 -8.9871 -8.8776 -8.9323 -6.3531 

M0006         16-Aug-09 T0007 C1058 -8.8599 -8.8574 -8.8586 -8.9078 -8.7988 -8.8533 -6.4169 
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Principal Component Analysis 

Table 33: Descriptive Statistics 

 N Minimum Maximum Mean Std. Deviation 

P955 2738 -9.5831 3.3923 -1.755095 2.8740200 

P956 2738 -9.5782 3.2596 -1.782281 2.8867572 

P957 2738 -9.5807 3.2651 -1.768688 2.8791535 

P958 2738 -9.6075 3.2425 -1.746095 2.8264964 

P959 2738 -9.5596 3.5233 -1.791696 2.9422333 

P960 2738 -9.5836 3.2681 -1.768896 2.8799768 

P961 2738 -8.6859 2.7200 -1.730782 2.8300853 

P962 2738 -8.6826 2.7277 -1.684138 2.8326117 

P963 2738 -8.6842 2.7235 -1.707460 2.8291627 

P964 2738 -8.6673 2.7777 -1.728918 2.7860550 

P965 2738 -8.6929 2.6773 -1.683816 2.8801639 

P966 2738 -8.6801 2.7274 -1.706367 2.8279740 

P967 2738 -9.5355 2.9391 -1.983609 2.6068693 

P968 2738 -9.5462 2.9428 -1.969870 2.6053008 

P969 2738 -9.5409 2.9410 -1.976740 2.6047331 

P970 2738 -9.5651 3.1064 -1.943875 2.5675943 

P971 2738 -9.5682 3.0151 -2.010192 2.6466408 

P972 2738 -9.5393 2.9419 -1.977032 2.6028328 

P979 2738 -7.8873 3.5294 -2.347382 2.7141283 

P980 2738 -7.8906 3.5544 -2.394532 2.7073025 

P981 2738 -7.8889 3.5419 -2.370957 2.7085981 

P982 2738 -7.9202 3.4833 -2.419629 2.7000366 

P983 2738 -7.8607 3.6026 -2.322263 2.7209915 

P984 2738 -7.8905 3.5429 -2.370947 2.7073187 

P985 2738 -9.5123 3.2944 -2.952895 3.1781294 

P986 2738 -9.6146 3.3334 -2.847936 3.2572150 

P987 2738 -9.5634 3.3139 -2.900415 3.2150113 

P988 2738 -9.5547 3.2684 -2.837495 3.2553084 

P989 2738 -9.5795 3.3661 -2.960867 3.1797931 

P990 2738 -9.5671 3.3173 -2.899180 3.2152049 

P991 2738 -9.1248 2.2849 -1.976129 2.5244264 

P992 2738 -9.1248 2.3166 -2.071046 2.5117088 

P993 2738 -9.1248 2.2984 -2.023587 2.5162935 

P994 2738 -9.1418 2.2437 -1.997085 2.5602084 

P995 2738 -9.0903 2.3737 -2.049275 2.4758564 

P996 2738 -9.1161 2.2954 -2.023181 2.5146595 

Valid N (listwise) 2738     
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Table 34: Total Variance Explained 

Component Initial Eigenvalues Rotation Sums of Squared Loadings
a
 

Total % of Variance Cumulative % Total 

 

1 20.210 56.139 56.139 15.773 

2 6.623 18.396 74.535 9.730 

3 3.262 9.062 83.597 12.457 

4 2.224 6.178 89.775 12.079 

5 2.117 5.881 95.656 14.517 

6 1.519 4.220 99.876 14.600 

7 .015 .043 99.919 
 

8 .011 .031 99.950 
 

9 .008 .021 99.971 
 

10 .004 .010 99.981 
 

11 .002 .006 99.987 
 

12 .002 .005 99.992 
 

13 .001 .003 99.996 
 

14 .001 .002 99.997 
 

15 .000 .001 99.998 
 

16 .000 .001 99.999 
 

17 .000 .001 100.000 
 

18 6.364E-5 .000 100.000 
 

19 3.352E-6 9.312E-6 100.000 
 

20 2.299E-6 6.387E-6 100.000 
 

21 2.040E-6 5.667E-6 100.000 
 

22 1.483E-6 4.119E-6 100.000 
 

23 8.456E-7 2.349E-6 100.000 
 

24 6.749E-7 1.875E-6 100.000 
 

25 1.352E-10 3.755E-10 100.000 
 

26 1.296E-10 3.599E-10 100.000 
 

27 1.219E-10 3.386E-10 100.000 
 

28 1.199E-10 3.331E-10 100.000 
 

29 1.189E-10 3.302E-10 100.000 
 

30 1.107E-10 3.076E-10 100.000 
 

31 1.035E-10 2.875E-10 100.000 
 

32 1.026E-10 2.851E-10 100.000 
 

33 9.832E-11 2.731E-10 100.000 
 

34 9.293E-11 2.581E-10 100.000 
 

35 7.894E-11 2.193E-10 100.000 
 

36 7.652E-11 2.126E-10 100.000 
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Table 35: Pattern Matrix 

 
Component 

1 2 3 4 5 6 

P955 .996 -.006 -.001 -.002 .003 .008 

P956 1.001 .007 .002 .004 -.002 -.007 

P957 .999 .000 .000 .001 .000 .000 

P958 .993 -.019 .001 .004 .016 -.003 

P959 1.001 .018 .000 -.004 -.014 .003 

P960 .999 .000 .001 .000 .001 .000 

P961 .009 .010 .001 .004 -.009 .994 

P962 -.009 -.010 .000 -.004 .009 1.003 

P963 .000 .000 .000 .000 .000 1.000 

P964 -.006 .002 .001 .013 -.005 .999 

P965 .006 -.002 .000 -.013 .005 .996 

P966 .000 .000 .000 .000 .000 .999 

P967 .004 .007 1.000 .002 .000 -.008 

P968 -.002 -.006 .997 -.002 .000 .009 

P969 .001 .001 .999 .000 .000 .000 

P970 -.025 -.020 1.012 .005 .016 -.003 

P971 .026 .020 .984 -.004 -.016 .004 

P972 .001 .000 .999 .000 .000 .000 

P979 -.002 1.000 -.001 .004 -.002 -.008 

P980 .002 .997 .002 -.003 .003 .008 

P981 .000 1.000 .000 .001 .000 .000 

P982 -.006 1.000 .000 -.003 .014 -.013 

P983 .007 .997 .000 .003 -.013 .013 

P984 .000 1.000 .000 .000 .000 .000 

P985 .000 -.001 .001 .996 .006 -.002 

P986 .000 .001 -.001 1.001 -.006 .002 

P987 .000 .000 .000 1.000 .000 .000 

P988 -.001 -.008 .002 .998 .006 .008 

P989 .002 .009 -.002 1.000 -.005 -.008 

P990 .000 .000 .000 1.000 .000 .000 

P991 .001 -.001 -.002 .005 .995 .002 

P992 -.001 .001 .002 -.004 1.001 -.001 

P993 .000 .000 .000 .001 .999 .000 

P994 .000 -.007 .002 .018 .990 .001 

P995 .001 .008 -.002 -.018 1.006 .000 

P996 .000 .000 .000 .000 .999 .001 

Extraction Method: Principal Component Analysis.  

 Rotation Method: Oblimin with Kaiser Normalization. 

a. Rotation converged in 10 iterations. 
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Table 36:Correlation Matrix 

 

CORRELATION P955 P956 P957 P958 P959 P960 P961 P962 P963 P964 P965 P966 P967 P968 P969 P970 P971 P972 P979 P980 P981 P982 P983 P984 P985 P986 P987 P988 P989 P990 P991 P992 P993 P994 P995 P996

P955 1 .998** 1.000** .999** .998** 1.000** .737** .729** .734** .730** .734** .734** .625** .626** .626** .611** .638** .626** .318** .334** .326** .317** .335** .326** .449** .446** .448** .453** .442** .448** .628** .626** .627** .628** .626** .628**

P956 .998** 1 1.000** .997** .999** 1.000** .731** .720** .726** .725** .725** .726** .626** .624** .625** .609** .639** .625** .331** .348** .340** .331** .348** .340** .457** .454** .456** .461** .451** .456** .626** .625** .626** .627** .624** .626**

P957 1.000** 1.000** 1 .998** .999** 1.000** .735** .725** .730** .728** .730** .730** .626** .625** .626** .610** .639** .626** .324** .341** .333** .324** .342** .333** .453** .450** .452** .457** .447** .452** .628** .626** .627** .628** .625** .627**

P958 .999** .997** .998** 1 .994** .998** .734** .727** .731** .729** .731** .731** .626** .626** .626** .614** .637** .626** .311** .328** .320** .311** .329** .320** .452** .450** .451** .457** .445** .452** .634** .632** .633** .635** .630** .633**

P959 .998** .999** .999** .994** 1 .999** .733** .720** .727** .725** .728** .727** .625** .623** .625** .606** .640** .624** .335** .352** .344** .335** .352** .344** .452** .448** .451** .455** .446** .451** .620** .619** .620** .620** .618** .620**

P960 1.000** 1.000** 1.000** .998** .999** 1 .735** .725** .730** .728** .730** .730** .627** .626** .626** .611** .639** .626** .324** .341** .333** .324** .341** .333** .453** .450** .452** .457** .446** .452** .628** .626** .627** .628** .625** .627**

P961 .737** .731** .735** .734** .733** .735** 1 .997** .999** .999** .996** .999** .597** .603** .600** .591** .607** .600** .196** .217** .206** .196** .217** .207** .388** .386** .387** .395** .378** .387** .602** .601** .602** .603** .598** .602**

P962 .729** .720** .725** .727** .720** .725** .997** 1 .999** .996** .999** .999** .591** .600** .596** .589** .601** .596** .175** .195** .185** .174** .196** .186** .375** .373** .374** .383** .365** .374** .603** .600** .602** .603** .600** .602**

P963 .734** .726** .730** .731** .727** .730** .999** .999** 1 .998** .998** 1.000** .595** .602** .599** .591** .604** .599** .186** .206** .196** .185** .207** .196** .382** .380** .381** .389** .372** .381** .603** .601** .602** .603** .600** .602**

P964 .730** .725** .728** .729** .725** .728** .999** .996** .998** 1 .993** .998** .594** .599** .597** .590** .602** .597** .191** .212** .201** .191** .212** .202** .390** .389** .390** .398** .381** .390** .602** .600** .602** .604** .598** .602**

P965 .734** .725** .730** .731** .728** .730** .996** .999** .998** .993** 1 .998** .593** .602** .598** .590** .605** .598** .180** .201** .191** .180** .201** .191** .373** .369** .371** .380** .362** .372** .602** .599** .601** .600** .599** .601**

P966 .734** .726** .730** .731** .727** .730** .999** .999** 1.000** .998** .998** 1 .595** .602** .599** .591** .604** .599** .186** .206** .196** .186** .207** .197** .382** .380** .381** .390** .372** .381** .603** .601** .602** .603** .600** .602**

P967 .625** .626** .626** .626** .625** .627** .597** .591** .595** .594** .593** .595** 1 .998** .999** .997** .999** .999** .210** .226** .218** .212** .224** .218** .269** .265** .267** .272** .261** .267** .466** .468** .467** .468** .465** .467**

P968 .626** .624** .625** .626** .623** .626** .603** .600** .602** .599** .602** .602** .998** 1 .999** .999** .997** .999** .196** .211** .204** .197** .210** .204** .261** .257** .259** .265** .253** .259** .464** .465** .465** .465** .463** .465**

P969 .626** .625** .626** .626** .625** .626** .600** .596** .599** .597** .598** .599** .999** .999** 1 .998** .998** 1.000** .203** .218** .211** .205** .217** .211** .265** .261** .263** .269** .257** .263** .465** .467** .466** .467** .464** .466**

P970 .611** .609** .610** .614** .606** .611** .591** .589** .591** .590** .590** .591** .997** .999** .998** 1 .993** .998** .185** .200** .192** .186** .199** .193** .258** .255** .256** .263** .249** .256** .464** .465** .464** .466** .461** .464**

P971 .638** .639** .639** .637** .640** .639** .607** .601** .604** .602** .605** .604** .999** .997** .998** .993** 1 .998** .220** .236** .228** .222** .234** .228** .272** .267** .270** .274** .265** .270** .465** .467** .467** .466** .465** .466**

P972 .626** .625** .626** .626** .624** .626** .600** .596** .599** .597** .598** .599** .999** .999** 1.000** .998** .998** 1 .203** .218** .211** .204** .217** .211** .265** .262** .264** .269** .258** .264** .465** .467** .466** .467** .464** .466**

P979 .318** .331** .324** .311** .335** .324** .196** .175** .186** .191** .180** .186** .210** .196** .203** .185** .220** .203** 1 .997** .999** .998** .998** .999** .534** .536** .536** .530** .541** .536** .371** .369** .370** .369** .371** .370**

P980 .334** .348** .341** .328** .352** .341** .217** .195** .206** .212** .201** .206** .226** .211** .218** .200** .236** .218** .997** 1 .999** .998** .998** .999** .538** .537** .538** .532** .544** .538** .384** .384** .384** .383** .384** .384**

P981 .326** .340** .333** .320** .344** .333** .206** .185** .196** .201** .191** .196** .218** .204** .211** .192** .228** .211** .999** .999** 1 .999** .999** 1.000** .537** .537** .537** .531** .543** .537** .378** .376** .377** .376** .378** .378**

P982 .317** .331** .324** .311** .335** .324** .196** .174** .185** .191** .180** .186** .212** .197** .205** .186** .222** .204** .998** .998** .999** 1 .995** .999** .534** .532** .534** .526** .540** .534** .377** .377** .377** .375** .378** .377**

P983 .335** .348** .342** .329** .352** .341** .217** .196** .207** .212** .201** .207** .224** .210** .217** .199** .234** .217** .998** .998** .999** .995** 1 .999** .538** .541** .540** .535** .544** .540** .378** .375** .377** .377** .377** .377**

P984 .326** .340** .333** .320** .344** .333** .207** .186** .196** .202** .191** .197** .218** .204** .211** .193** .228** .211** .999** .999** 1.000** .999** .999** 1 .537** .537** .537** .531** .543** .537** .378** .377** .378** .377** .378** .378**

P985 .449** .457** .453** .452** .452** .453** .388** .375** .382** .390** .373** .382** .269** .261** .265** .258** .272** .265** .534** .538** .537** .534** .538** .537** 1 .997** .999** .997** .999** .999** .561** .557** .559** .567** .550** .559**

P986 .446** .454** .450** .450** .448** .450** .386** .373** .380** .389** .369** .380** .265** .257** .261** .255** .267** .262** .536** .537** .537** .532** .541** .537** .997** 1 .999** .999** .997** .999** .555** .547** .552** .562** .540** .552**

P987 .448** .456** .452** .451** .451** .452** .387** .374** .381** .390** .371** .381** .267** .259** .263** .256** .270** .264** .536** .538** .537** .534** .540** .537** .999** .999** 1 .999** .999** 1.000** .559** .552** .556** .565** .545** .556**

P988 .453** .461** .457** .457** .455** .457** .395** .383** .389** .398** .380** .390** .272** .265** .269** .263** .274** .269** .530** .532** .531** .526** .535** .531** .997** .999** .999** 1 .997** .999** .565** .557** .561** .572** .550** .562**

P989 .442** .451** .447** .445** .446** .446** .378** .365** .372** .381** .362** .372** .261** .253** .257** .249** .265** .258** .541** .544** .543** .540** .544** .543** .999** .997** .999** .997** 1 .999** .552** .547** .550** .558** .540** .550**

P990 .448** .456** .452** .452** .451** .452** .387** .374** .381** .390** .372** .381** .267** .259** .263** .256** .270** .264** .536** .538** .537** .534** .540** .537** .999** .999** 1.000** .999** .999** 1 .559** .552** .556** .565** .545** .556**

P991 .628** .626** .628** .634** .620** .628** .602** .603** .603** .602** .602** .603** .466** .464** .465** .464** .465** .465** .371** .384** .378** .377** .378** .378** .561** .555** .559** .565** .552** .559** 1 .997** .999** .998** .998** .999**

P992 .626** .625** .626** .632** .619** .626** .601** .600** .601** .600** .599** .601** .468** .465** .467** .465** .467** .467** .369** .384** .376** .377** .375** .377** .557** .547** .552** .557** .547** .552** .997** 1 .999** .998** .998** .999**

P993 .627** .626** .627** .633** .620** .627** .602** .602** .602** .602** .601** .602** .467** .465** .466** .464** .467** .466** .370** .384** .377** .377** .377** .378** .559** .552** .556** .561** .550** .556** .999** .999** 1 .999** .999** 1.000**

P994 .628** .627** .628** .635** .620** .628** .603** .603** .603** .603** .600** .603** .468** .465** .467** .466** .466** .467** .369** .383** .376** .375** .377** .377** .567** .562** .565** .572** .558** .565** .998** .998** .999** 1 .995** .999**

P995 .626** .624** .625** .630** .618** .625** .598** .600** .600** .598** .599** .600** .465** .463** .464** .461** .465** .464** .371** .384** .378** .378** .377** .378** .550** .552** .545** .550** .540** .545** .998** .998** .999** .995** 1 .999**

P996 .628** .626** .627** .633** .620** .627** .602** .602** .602** .602** .601** .602** .467** .465** .466** .464** .466** .466** .370** .384** .378** .377** .377** .378** .559** .552** .556** .562** .550** .556** .999** .999** 1.000** .999** .999** 1

**. Correlation is significant at the 0.01 level (2-tailed).



 

 
 

65 

Appendix II. Threshold level 

 

Table 37 shows the parameter values at the failure instant. The threshold level is determined 

according to the minimum parameter value at that time. 

Table 37: Parameter Values at the Failure Instant 

MACHINE 

NR 

Machine 

Type 
Site ID P1 P2 P3 P4 P5 P6 

Threshold 

Level 

=Min(P1...P6) 

M0005 T0007 S1058 -8.960 -6.435 0.158 1.048 -8.534 -2.277 -8.960 

M0006 T0009 S1243 -3.071 -1.329 -2.444 -7.354 -5.994 -1.616 -7.354 

M0017 T0007 S1178 -6.784 -3.120 -5.332 -5.012 -9.392 -5.267 -9.392 

M0018 T0006 S1289 -2.705 -8.336 -3.801 -1.913 -3.090 0.297 -8.336 

M0021 T0014 S159 1.974 1.572 -6.784 2.339 2.387 0.867 -6.784 

M0029 T0007 S1177 -5.449 -2.057 -2.452 -2.063 -5.756 -1.987 -5.756 

M0034 T0008 S1199 0.582 1.004 0.134 3.194 -6.816 2.260 -6.816 

M0041 T0011 S1058 -1.975 -1.904 -0.944 -5.531 -9.275 -1.702 -9.275 

M0051 T0008 S1178 1.762 1.240 0.261 -5.712 -6.884 -0.160 -6.884 

M0067 T0009 S1243 -4.524 -6.386 -3.221 -5.712 -7.381 -6.389 -7.381 

M0741 T0007 S992 -2.844 -2.180 -3.303 -7.705 -9.278 -6.245 -9.278 

M1004 T0006 S358 0.776 0.203 1.070 -2.748 -9.565 -5.170 -9.565 

M1186 T0005 S366 -3.032 -0.469 -2.281 -7.315 -2.827 -0.415 -7.315 

M1321 T0003 S364 -5.558 -6.835 -5.788 -1.420 -3.832 -4.796 -6.835 

M1358 T0018 S366 -6.680 -3.295 -1.642 -7.066 -1.332 -4.106 -7.066 

M1771 T0016 S1239 -2.051 -1.539 -4.028 -3.528 -4.116 -7.227 -7.227 

M1828 T0010 S1243 -1.027 -0.091 -0.825 -5.399 -4.024 -4.734 -5.399 

M1887 T0007 S992 -5.521 -1.815 -9.540 -0.042 -2.782 -3.545 -9.540 

M1937 T0005 S366 -5.779 -4.856 -9.396 -0.905 0.856 -4.178 -9.396 

M1959 T0010 S1058 -0.810 0.658 -6.629 1.629 2.222 -2.485 -6.629 

M2232 T0016 S1441 -9.173 -5.026 -4.509 -3.084 -1.597 -2.157 -9.173 

M2252 T0018 S1105 -2.262 -1.168 -5.365 -5.128 -6.091 -6.198 -6.198 

M2417 T0010 S1247 0.093 -5.080 -0.445 -2.030 -1.039 0.310 -5.080 

M2601 T0011 S366 -6.815 -7.794 -2.933 -3.174 -3.658 -4.952 -7.794 

M2683 T0020 S1163 0.645 1.322 2.885 1.260 -6.256 2.123 -6.256 

M2789 T0010 S1243 -0.916 -2.248 -6.452 0.591 2.005 2.170 -6.452 

M3083 T0010 S364 0.896 -2.017 -6.495 -4.018 -0.639 0.598 -6.495 

M3398 T0011 S1177 -6.647 -8.660 -4.918 -1.075 -1.906 -3.963 -8.660 

M3407 T0009 S1243 -8.521 -7.523 -6.402 -2.225 -3.176 -3.607 -8.521 

M3411 T0015 S1291 -9.534 -3.900 -7.526 -7.832 -1.237 -8.893 -9.534 
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As seen from the Table 37, the threshold level changes between -5 and -9.6. Figure 20 

illustrate the changes in the threshold level. 

 

Figure 20: Variability of Threshol Level for 30 failure Cases 

 

 

 

 

Failure percentage refers to the cumulative probability which shows the percentage of failure 

cases occurs before the lower threshold limit. To explain the relation between the failure 

percentage and the threshold level, piecewise linear regression, 2nd order polynomial 

regression and logarithmic regression methods were used. Adjusted R square was used to 

evaluate the methods.  

 

  

-12.000

-10.000

-8.000

-6.000

-4.000

-2.000

0.000

Threshold Level

mean:-7.6

UL:-5.08

LL:-9.6

0
10
20
30
40
50
60
70
80
90

100

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5

F
a

il
u

re
 P

e
rc

e
n

ta
g

e

Parameter Value

Upper 

Limit 

Lower 

Limit 

 

Observed 

Instances Prob. 

Cum. 

Prob. 

-9 -9.6 8 0.267 1 

-7.8 -9 5 0.167 0.73 

-7 -7.8 5 0.167 0.56 

-6.6 -7 5 0.167 0.4 

-6 -6.6 4 0.133 0.23 

-5 -6 3 0.1 0.1 

4 -5 0 0 0 



 

 
 

67 

Modelling to Explain changes in Failure Percentage with the Threshold Level 

 

Failure percentage (dependent variable) is defined as a function of threshold level 

(independent variable).  

 

Threshold Level Failure Percentage  

-9.6 1 

-9 0.73 

-7.8 0.56 

-7 0.4 

-6.6 0.23 

-6 0.1 

4 0 

 

 

1. Piecewise Linear Regression 

Piecewise linear regression is used to explain abrupt changes of the response function. 

Independent variable is partitioned into intervals in which it exhibits different relations 

between the dependent variable. 
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“-6” is the breakpoint for the threshold level. Two linear regression models have been 

developed to explain the relation between failure percentage and threshold level. First one is 

valid when the threshold value is less than -6 and the other is valid when threshold value is 

equal or greater than -6.  

If TL<-6   

 
 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. 

95.0% Confidence Interval for 

B 

B Std. Error Beta Lower Bound Upper Bound 

1 (Constant) -128.108 14.299  -8.960 .001 -167.807 -88.409 

TL -23.275 1.839 -.988 -12.654 .000 -28.382 -18.168 

a. Dependent Variable: percent 

 

If TL>=-6 

  
 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. 

95.0% Confidence Interval for 

B 

B Std. Error Beta Lower Bound Upper Bound 

1 (Constant) 4.000 .000  . . 4.000 4.000 

TL2 -1.000 .000 -1.000 . . -1.000 -1.000 

a. Dependent Variable: Percent2   

 

If   TL<-6                          Percentage=-128.1-23.2 TL    R
2

a=97% 

If  TL>=-6         Percentage=4-TL     R2
a=100% 

  

TL 

TL 
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2. 2nd order Polynomial Regression 

 

 

 

 

 

 

Percentage=-32.28+1.706 TL+1.584 TL
2     R2

a =96.8% 
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3. Logarithmic regression 

In order to apply logarithmic regression, it is required to transform negative values to positive 

values. Therefore TL+10 is used instead of TL 

 

 

 
 

 
 

Percentage=70.28-30.5*ln(TL+10)       R2
a =89.9% 
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Appendix III. Effect of the Environmental Factors 

 

Sample Size for Each Group: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Customer 

ID 

Machine 

Number 

C1 7 

C1665 5 

C1146 3 

C188 3 

C6 2 

C3231 2 

C386 2 

C13 1 

C1416 1 

C169 1 

C218 1 

C3841 1 

C4208 1 

Site ID 

Machine 

Number 

S1243 5 

S366 4 

S1058 3 

S1177 2 

S1178 2 

S364 2 

S992 2 

S1105 1 

S1163 1 

S1199 1 

S1247 1 

S1239 1 

S1289 1 

S1291 1 

S1441 1 

S159 1 

S358 1 

Machine 

Type 

Machine 

Number 

T0007 5 

T0010 5 

T0009 3 

T0011 3 

T0005 2 

T0006 2 

T0008 2 

T0016 2 

T0018 2 

T0003 1 

T0014 1 

T0015 1 

T0020 1 
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Appendix IV. Neural Network Model-MLP 

 

Neural network was built by using multilayer perceptron function. The model parameters 
were tuned to obtain the better model.  

Inputs: P1...P6 

Network Parameters: LR=0.7, M=0.2, NHL=a 

Output: A/B/C 

 

Figure 21: Screenshot WEKA NN-MLP model 

=== Classifier model (full training set) === 

Sigmoid Node 0 

    Inputs    Weights 

    Threshold    0.04368478839871569 

    Node 3    -5.241075085065454 

    Node 4    -9.626191787137266 

    Node 5    4.4206423031749305 

    Node 6    2.278513263179502 

Sigmoid Node 1 

    Inputs    Weights 

    Threshold    -12.09741926200117 
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    Node 3    3.5755479916929227 

    Node 4    6.108590741274521 

    Node 5    -4.3281772778173595 

    Node 6    10.195975922401853 

Sigmoid Node 2 

    Inputs    Weights 

    Threshold    -0.8124151450850194 

    Node 3    14.193319884462513 

    Node 4    17.524941264738253 

    Node 5    -0.268217928006194 

    Node 6    -15.69786641196598 

Sigmoid Node 3 

    Inputs    Weights 

    Threshold    7.72978523021964 

    Attrib P1    -11.698292773666923 

    Attrib P2    -4.796585835949385 

    Attrib P3    22.29758616110523 

    Attrib P4    -7.965837437162937 

    Attrib P5    21.239280023619646 

    Attrib P6    24.623343898716197 

Sigmoid Node 4 

    Inputs    Weights 

    Threshold    -26.51472811845105 

    Attrib P1    0.49914609884105976 

    Attrib P2    1.9354300306975871 

    Attrib P3    -7.633429587144298 

    Attrib P4    13.29814564317826 

    Attrib P5    -19.570666393350827 

    Attrib P6    -48.006511218252754 

Sigmoid Node 5 

    Inputs    Weights 

    Threshold    13.431278695996594 
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    Attrib P1    6.0693263945342375 

    Attrib P2    2.10646609764955 

    Attrib P3    53.542584995024036 

    Attrib P4    -23.32121054466619 

    Attrib P5    12.33589227891096 

    Attrib P6    -24.519208368505797 

Sigmoid Node 6 

    Inputs    Weights 

    Threshold    26.00831697869943 

    Attrib P1    -8.376349735430326 

    Attrib P2    9.371008413228056 

    Attrib P3    49.05966593354248 

    Attrib P4    -15.474705726268073 

    Attrib P5    29.175124929933087 

    Attrib P6    -23.954276761667806 

Class A 

    Input 

    Node 0 

Class B 

    Input 

    Node 1 

Class C 

    Input 

    Node 2 
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=== Evaluation on test set === 

=== Summary === 

 

Correctly Classified Instances          157               51.4754 % 

Incorrectly Classified Instances        148               48.5246 % 

Kappa statistic                           0.1789 

Mean absolute error                       0.3619 

Root mean squared error                  0.5244 

Relative absolute error                  91.2221 % 

Root relative squared error             102.8869 % 

Total Number of Instances               305      

 

=== Detailed Accuracy By Class === 

 TP Rate      FP Rate    Precision Recall  F-Measure    ROC Area   Class 

 0.876 0.679 0.513 0.876 0.647 0.632 A 

 0.036 0.081 0.143 0.036 0.058 0.473 B 

 0.4 0.073 0.68 0.4 0.504 0.643 C 

Weighted 

Average 
0.515 0.347 0.459 0.515 0.447 0.592  

 

 

 

=== Confusion Matrix === 

 

   a    b    c   <-- classified as 

 120   17    0 |   a = A 

  64    3   16 |   b = B 

  50    1   34 |   c = C 
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Appendix V.  Neural Network Model-RBF  

Inputs: P1...P6 

Outputs: A/B/C 

Radial basis function network 

(Logistic regression applied to K-means clusters as basis functions): 

Logistic Regression with ridge parameter of 1.0E-8 

Coefficients... 

                  Class 

Variable              A         B 

================================ 

pCluster_0_0     0.2036    0.4052 

pCluster_0_1     0.0766   -0.0711 

pCluster_0_2    -0.3067   -0.3568 

Intercept             1.889     0.205 

 

Odds Ratios... 

                  Class 

Variable              A         B 

================================ 

pCluster_0_0     1.2258    1.4997 

pCluster_0_1     1.0796    0.9314 

pCluster_0_2     0.7359    0.6999 
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=== Evaluation on test set === 

=== Summary === 

 

Correctly Classified Instances          137               44.918  % 

Incorrectly Classified Instances        168               55.082  % 

Kappa statistic                           0      

Mean absolute error                       0.3971 

Root mean squared error                  0.5071 

Relative absolute error                 100.108  % 

Root relative squared error              99.5054 % 

Total Number of Instances               305      

 

=== Detailed Accuracy By Class === 

 TP Rate      FP Rate    Precision Recall  F-Measure    ROC Area   Class 

 1 1 0.449 1 0.62 0.711 A 

 0 0 0 0 0 0.407 B 

 0 0 0 0 0 0.662 C 

Weighted 

Average 
0.449 0.449 0.202 0.449 0.278 0.614  

 

 

                 

=== Confusion Matrix === 

 

   a    b    c   <-- classified as 

 137    0    0 |   a = A 

  83    0    0 |   b = B 

  85    0    0 |   c = C  



 

 

78 

Appendix VI.  Combined

Figure 

Data sets were divided into two groups:
threshold level is smaller than 
Separate decision trees were developed

1) Decision Tree for Hard Failures 

Combined Decision Tree Model 

Inputs: P1...P6 

Minimum Number of Records: 20 

Outputs: A/B/C 

Figure 22: Screenshot of KNIME Decision Tree Model 

Data sets were divided into two groups: The first group includes the hard failures of which 
level is smaller than -9 and the second group includes the soft and medium failures.

parate decision trees were developed for each group. 

Decision Tree for Hard Failures  

 

hard failures of which 
soft and medium failures. 

 



 

 

2) Decision Tree for Medium and Soft Failure
 

 

 

 

 

Decision Tree for Medium and Soft Failures  
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Decision Tree for Medium and Soft Failure

 

Decision Tree for Medium and Soft Failures (continued) 
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Appendix VII. Simple CART Model 

Inputs: P1...P6 

Minimum Number of Objects: 10 

Outputs: A/B/C 

 

P3 < -5.276999999999999 

|  P1 < -1.6444999999999999 

|  |  P1 < -5.2735 

|  |  |  P3 < -9.362: C(14.0/1.0) 

|  |  |  P3 >= -9.362 

|  |  |  |  P5 < -9.216000000000001: C(11.0/0.0) 

|  |  |  |  P5 >= -9.216000000000001 

|  |  |  |  |  P5 < -8.8215: B(22.0/2.0) 

|  |  |  |  |  P5 >= -8.8215 

|  |  |  |  |  |  P2 < -3.4185: B(21.0/22.0) 

|  |  |  |  |  |  P2 >= -3.4185: A(28.0/6.0) 

|  |  P1 >= -5.2735: A(60.0/4.0) 

|  P1 >= -1.6444999999999999 

|  |  P3 < -6.0905000000000005: C(31.0/2.0) 

|  |  P3 >= -6.0905000000000005: B(35.0/4.0) 

P3 >= -5.276999999999999 

|  P2 < -7.763 

|  |  P5 < -2.8935: C(24.0/0.0) 

|  |  P5 >= -2.8935: B(13.0/1.0) 

|  P2 >= -7.763 

|  |  P6 < -6.058999999999999 

|  |  |  P5 < -7.263: C(13.0/3.0) 

|  |  |  P5 >= -7.263 

|  |  |  |  P6 < -6.5280000000000005: B(16.0/4.0) 

|  |  |  |  P6 >= -6.5280000000000005: A(18.0/7.0) 
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|  |  P6 >= -6.058999999999999 

|  |  |  P1 < -8.582: C(10.0/4.0) 

|  |  |  P1 >= -8.582 

|  |  |  |  P5 < -9.175: B(7.0/8.0) 

|  |  |  |  P5 >= -9.175 

|  |  |  |  |  P4 < -2.0945: A(960.0/90.0) 

|  |  |  |  |  P4 >= -2.0945 

|  |  |  |  |  |  P3 < -2.3979999999999997: B(32.0/15.0) 

|  |  |  |  |  |  P3 >= -2.3979999999999997 

|  |  |  |  |  |  |  P5 < -0.3635 

|  |  |  |  |  |  |  |  P5 < -1.082 

|  |  |  |  |  |  |  |  |  P2 < 0.6719999999999999: A(117.0/10.0) 

|  |  |  |  |  |  |  |  |  P2 >= 0.6719999999999999 

|  |  |  |  |  |  |  |  |  |  P1 < 1.102 

|  |  |  |  |  |  |  |  |  |  |  P1 < 0.806: C(10.0/0.0) 

|  |  |  |  |  |  |  |  |  |  |  P1 >= 0.806: B(9.0/1.0) 

|  |  |  |  |  |  |  |  |  |  P1 >= 1.102: A(31.0/2.0) 

|  |  |  |  |  |  |  |  P5 >= -1.082 

|  |  |  |  |  |  |  |  |  P2 < -2.709: C(19.0/0.0) 

|  |  |  |  |  |  |  |  |  P2 >= -2.709 

|  |  |  |  |  |  |  |  |  |  P1 < 0.799: B(20.0/0.0) 

|  |  |  |  |  |  |  |  |  |  P1 >= 0.799: A(11.0/0.0) 

|  |  |  |  |  |  |  P5 >= -0.3635: A(141.0/1.0) 

 

Number of Leaf Nodes: 25 

 

Size of the Tree: 49 
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=== Evaluation on test set === 

=== Summary === 

 

Correctly Classified Instances          152               49.8361 % 

Incorrectly Classified Instances        153               50.1639 % 

Kappa statistic                           0.2178 

Mean absolute error                       0.3369 

Root mean squared error                   0.4965 

Relative absolute error                  84.9225 % 

Root relative squared error              97.4202 % 

Total Number of Instances               305      

 

=== Detailed Accuracy By Class === 

 

 TP Rate      FP Rate    Precision Recall  F-Measure    ROC Area   Class 

 0.737 0.286 0.678 0.737 0.706 0.76 A 

 0.602 0.468 0.325 0.602 0.422 0.583 B 

 0.012 0.005 0.5 0.012 0.023 0.722 C 

Weighted 

Average 
0.498 0.257 0.532 0.498 0.438 0.701  

 

 

=== Confusion Matrix === 

 

   a    b    c   <-- classified as 

 101   35    1 |   a = A 

  33   50    0 |   b = B 

  15   69    1 |   c = C 
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Appendix VIII. KNN Model

 

Figure 

 

 

KNN Model 

Inputs: P1...P6 

K=4 

Outputs: A/B/C 

 

 
Figure 23: Screenshot of KNIME-KNN model 
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Appendix IX. Neural Network Model-MLP  

Inputs: P1...P6 

LR:0.4, M:0.1, NHL:a 

Output: Remaining time in days 

 

Figure 24: Screenshot WEKA NN-MLP model 

 

Linear Node 0 

    Inputs    Weights 

    Threshold    0.006480936361519446 

    Node 1    -1.107611043391414 

    Node 2    -0.7771267932603714 

    Node 3    -1.5184527261069822 

Sigmoid Node 1 

    Inputs    Weights 

    Threshold    -27.56772289921536 

    Attrib P1    -20.299756378388704 

    Attrib P2    11.757303415103786 

    Attrib P3    14.15104798143839 

    Attrib P4    -1.8769185504764276 

    Attrib P5    -31.48160008262188 
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    Attrib P6    23.132209678316983 

Sigmoid Node 2 

    Inputs    Weights 

    Threshold    -13.626780162857127 

    Attrib P1    -3.8258135394781094 

    Attrib P2    5.4235318762705536 

    Attrib P3    4.185245202412306 

    Attrib P4    -6.684922811212388 

    Attrib P5    1.618173646549513 

    Attrib P6    -26.34678352783777 

Sigmoid Node 3 

    Inputs    Weights 

    Threshold    -2.6938131303318196 

    Attrib P1    -0.5182833586246139 

    Attrib P2    -1.7289733470104356 

    Attrib P3    -3.012523523759215 

    Attrib P4    0.19482925777786173 

    Attrib P5    1.9575018737115757 

    Attrib P6    2.6106362640698935 

Class  

    Input 

    Node 0 

=== Evaluation on test set === 

=== Summary === 

Correlation coefficient                   0.357  

Mean absolute error                      68.3287 

Root mean squared error                  80.3588 

Relative absolute error                  94.1922 % 

Root relative squared error              95.7458 % 

Total Number of Instances               305      
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Appendix X. Neural Network Model-MLP (given threshold level) 

 

This model has been developed to analyze the effect of threshold level as an input on the 
remaining useful life prediction. 

 

Inputs: P1...P6, Threshold Level 

LR:0.3, M:0.2, NHL:a 

Output: Remaining time in days 

 

Figure 25: Screenshot WEKA NN-MLP model 

=== Classifier model (full training set) === 

Linear Node 0 

    Inputs    Weights 

    Threshold    0.6217563641164013 

    Node 1    -1.900795736043391 

    Node 2    -1.2149732515097276 

    Node 3    -1.5839876684844776 

    Node 4    -1.3164716815883042 

Sigmoid Node 1 
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    Inputs    Weights 

    Threshold    -2.297902554953836 

    Attrib Threshold Level    3.6258768839385147 

    Attrib P1    -0.06761636079786001 

    Attrib P2    -1.1378440995381143 

    Attrib P3    -2.819718163736291 

    Attrib P4    0.26856504230787626 

    Attrib P5    2.8246296610789634 

    Attrib P6    -0.13034164441028415 

Sigmoid Node 2 

    Inputs    Weights 

    Threshold    -6.325628001580753 

    Attrib Threshold Level    1.9475374761518525 

    Attrib P1    -1.2032274924139537 

    Attrib P2    -0.32954057852118657 

    Attrib P3    4.2387383937142555 

    Attrib P4    2.907984572078976 

    Attrib P5    -5.254859808293894 

    Attrib P6    -13.890320584461264 

Sigmoid Node 3 

    Inputs    Weights 

    Threshold    -10.69038541206472 

    Attrib Threshold Level    7.6540208490448265 

    Attrib P1    2.3402318693174458 

    Attrib P2    -0.7963118974934503 

    Attrib P3    7.37721168430417 

    Attrib P4    2.145597838689219 

    Attrib P5    -11.56354043575375 

    Attrib P6    2.886801807574954 

Sigmoid Node 4 
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    Inputs    Weights 

    Threshold    -7.86553023228846 

    Attrib Threshold Level    -5.2563511593691405 

    Attrib P1    -11.34746626444243 

    Attrib P2    -6.184661814615738 

    Attrib P3    -8.032996082044976 

    Attrib P4    -9.663792372046991 

    Attrib P5    -1.5702259028481504 

    Attrib P6    14.427915918690703 

Class  

    Input 

    Node 0 

=== Evaluation on test set === 

=== Summary === 

Correlation coefficient                      0.1925 

Mean absolute error                          74.6245 

Mean absolute error in last 30 days before failure  74.47 

Root mean squared error                    105.487  

Relative absolute error                    102.8711 % 

Root relative squared error                125.6855 % 

Total Number of Instances                   305      

 

Threshold level does not improve RUL prediction in MLP model.  
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Appendix XI. Project Timeline

 

This appendix has been prepared to give an overview about project timing. 

the time spent on each project steps. 

 

 

 

 

 

4 weeks 
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Project Timeline 

This appendix has been prepared to give an overview about project timing. 

the time spent on each project steps.  

Figure 26: Project Timeline 
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This appendix has been prepared to give an overview about project timing. Figure 26 shows 
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