
 Eindhoven University of Technology

MASTER

Diagnostics for model checking

Linssen, C.A.P.

Award date:
2011

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/6ee5c565-fd3a-4cf0-987c-80e4c94d7993

Diagnostics for Model Checking

Charl A.P. Linssen

January 2011

Table of Contents

0 Abstract . 1

1 Labelled Transition Systems 3

2 The Modal Mu-Calculus 4
2.1 Subsections of the Mu-Calculus 4
2.2 The Modal Mu-Calculus 5
2.3 Syntax . 5
2.4 Semantics . 7
2.5 The Regular Mu-Calculus 8

3 Boolean Equation Systems 10
3.1 Syntax . 10
3.2 Semantics . 11
3.3 Restricted Forms . 13
3.4 Dependency Graphs for Simple Form 14
3.5 Structure Graphs . 15

Problems with a Trivial Implementation 15
Definition of Structure Graph 16
Derivation Rules . 17

4 Model Checking . 21
4.1 Model Checking using Boolean Equation Systems 22
4.2 The Model Check Design Cycle 23

Abstraction Refinement 25

5 Classes of Diagnostics . 27
5.1 Basic Properties of Diagnostics 27

Counterexamples and Witnesses 27
Composition and Reduction 28

5.2 Linear Paths . 29
5.3 Branching Paths . 31
5.4 Labelled Transition Systems 33
5.5 Tableaux Proofs . 34
5.6 Interactive Parity Games 37
5.7 Extended Boolean Graphs 42
5.8 Support Sets . 45
5.9 Correspondences between Classes 47

Mu-Calculus Dependencies 47
A Common Diagnostic Structure 50

6 Supporting Methods . 55
6.1 Generation of Diagnostics 55
6.2 Vacuity Detection . 55
6.3 Presentation and Visualisation 56

7 The Diagnostic Graph . 61
7.1 Requirements . 61
7.2 Incorporation in the Model Check Design Cycle 62
7.3 The Diagnostic Graph . 65

State-Formula Annotations 65
Motivating the Model Check Outcome 66
A High Level of Detail 68
Generating the Diagnostic Graph 69

7.4 Effectless Fixpoints for Extra Detail 70
Grammatical Restrictions 71
Generating the Diagnostic Graph 73

7.5 BES Annotations for Extra Detail 75
7.6 Exploration of the Diagnostic Graph 80
7.7 Path Extraction . 86

Automated Exploration 88
7.8 Reduced LTS Extraction 89

8 Conclusion . 93
Future Work . 93

References . 94

0 Abstract

Model checking is the process of provably verifying claims about computer pro-
cesses. These processes are modelled as finite transition systems, while claims
about them are expressed in a temporal logic. Several temporal logics are used in
practice, such as CTL and the mu-calculus. The modal mu-calculus in particular
allows highly complex properties to be formulated, and will be the focus of this
work. A model check problem is the combination of a model and a claim about
the model, and can be solved using an (automated) model checker, which de-
livers a simple answer, namely a Boolean constant indicating whether the claim
holds over the model or whether it does not.

In practice, models can be very large, with the number of states exceeding
astronomical figures. When a model checker delivers an unexpected result, for
example that a deadlock exists in the system, it does so by returning the value
false. This answer in and of itself does little to help the user in debugging the
model (or sometimes the specification). It provides no leads to indicate in which
section of the model the fault lies, or how this fault is related to the (potentially
complex) claim. Commonly, the user will have to engage in an iterative process
to pinpoint the source of the fault, for example by re-running the model check on
a limited section of the model or by simplifying the claim. Due to the potentially
very large size of the model, this method leads to severe time penalties, as solving
a model check problem can easily take hours or days, even on very powerful
computers.

To aid the user in tracing the source of an unexpected outcome, various forms
of diagnostics may be used. These may be implemented in model checkers, as an
improvement over the simple yes/no answer. However, some forms of diagnostic
are more useful than others. The goal of a diagnostic is usually to provide the
(human) user with insight into the source of the fault. Some approaches are
more successful at this than others; in particular, the user should not have to
be concerned with the internal data structures used by the model checker, but
would like a diagnostic in terms of the (familiar) model and mu-calculus claim.
This is a central requirement for us, as it is essential to the user-friendliness of
a diagnostic.

Several classes of diagnostic will be evaluated for their practicality (e.g. in
terms of efficient generation) and most importantly for their contribution to the
insight of the user. A number of different techniques exist for solving the model
check problem; each gives rise to its own class of diagnostic, but some of these
classes are of a more universal nature, such as a path through the transition
system that exemplifies the failure.

Because each model check technique considered here verifies claims expressed
in the same temporal logic (the mu-calculus) over the same kind of model (tran-
sition systems), there is a high degree of correspondence between the classes
of diagnostic associated with each method. These correspondences will be ex-
plored, and are then used as the basis for a new class of diagnostic developed
in this work. This new class will avoid many of the shortcomings of the other
diagnostics, and was developed with three requirements in mind: most impor-

1

tantly, being intelligible by the end user; secondly, being able to explain any
fault regardless of the details of the model or claim; and finally being efficiently
generable due to the potentially large model size.

Some issues arising on the sidelines are also considered, such as pointing
out when the user has formulated a specification that holds trivially or is a
tautology, as well as the presentation of a diagnostic. Given the importance of
user-friendliness in this work, the presentation and visualisation of a diagnostic
is essential in permitting quick interpretation and giving the user the ability
to navigate a large diagnostic by targeted exploration or search. We will also
introduce the possibility to extract a more simple form of diagnostic, such a
failure path, from the more complete (and thus more complex) class of diagnostic
developed here—again in the interest of empowering the user with methods for
the quick, simple and intuitive analysis of a diagnostic.

2

1 Labelled Transition Systems

In this work, we shall be concerned with making statements about the behaviour
of computational processes. All possible behaviour of a process is captured in a
data structure called a transition system. A transition system consists of a set
of states and a set of transitions, which can be visualised as a directed graph
with the states as vertices and the transitions as (labelled) edges. At any point
in time, the process is said to be “in” a certain state, where it can perform one
of the actions possible in that state, leading to the same or another state. Only
finite (nondeterministic) transition systems will be considered here.

Definition 1.1 (Labelled Transition System). A labelled transition system
or LTS is a tuple T = 〈S, s0, L, δ〉, where S is a finite set of states, s0 ∈ S is
the initial state, L is the set of labels and δ ⊆ S×L×S is the transition relation.
The notation s

a−→ s′ will be used for 〈s, a, s′〉 ∈ δ. ut

A model is defined in the context of a set Q of atomic propositions, which
includes true and false. In each state, a number of propositions may hold. The
valuation function V maps a proposition to the set of states in which it holds.

Definition 1.2 (Valuation Function). Given a labelled transition system T =
〈S, s0, L, δ〉 and set of atomic propositional variables Q, the valuation function
V : Q 7→ P(S) assigns a set of states to every atomic proposition Q ∈ Q, such
that Q holds for every state in this set. V(true) = S and V(false) = ∅. ut

The combination of a labelled transition system T , the associated set of atomic
propositions Q and the valuation function V is termed a model, denoted M.
A model is deemed to be a complete description of the computational process
under investigation.

3

2 The Modal Mu-Calculus

2.1 Subsections of the Mu-Calculus

The word “modal” refers to modal operators. Modalities were introduced by
[Hennessy, Milner 80], and allow one to make statements about the existence or
non-existence of certain designated paths, starting from the initial state. The
basic existential modality is denoted by a transition label inside a diamond, and
its universal dual inside a box. This is followed by the expression which is bound
by the operator. The expression 〈a〉ϕ thus claims “there exists an a-transition
in the current state (leading to, say, state s′) such that ϕ holds in s′.” In turn,
the formula ϕ may contain nested modalities. The box operator is equivalent to
a universal quantifier, so that [a]ϕ means that ϕ should hold for each outgoing
a-transition from the current state. Note that if no a-transitions exist, the box
operator expression is true by default, while the diamond defaults to false. The
logic thus described is Hennessy-Milner logic, abbreviated HML.

Example 2.1 (Hennessy-Milner Logic).

• 〈a〉 true: It is possible to perform an a-action.

• [a] false: It is not possible to perform an a-action.

• 〈a〉([b] false ∨ [c] false): It is possible, via an a-action, to arrive in a state in
which neither a b or c-action is possible.

• [a] 〈b〉 [c] false: After every a-action, it is possible to perform a b-action which
will leave the system unable to do a c-action.

ut

Propositional dynamic logic or PDL is an extension of Hennessy-Milner logic
which allows regular expressions over the atomic actions inside the modal op-
erator. A regular expression of this sort is called a program, and is inductively
defined as an atomic action, or the result of applying one of the following oper-
ators to programs: composition (e.g. a · b means “do a followed by b”), nonde-
terministic choice (e.g. a + b means “do a or b”) and repetition (e.g. a∗ means
“repeat a a nondeterministically chosen number of times”).

An alternative enrichment of HML is the inclusion of other modalities. Com-
putation Tree Logic or CTL extends HML in this way, by temporal operators
such as Until, Next and Globally. Each of these operators is preceded by a uni-
versal or existential quantifier, resp. A and E. For example, A(ϕ U ψ) holds if
and only if every run of the system has the property ϕ U ψ. ACTL and ECTL
are those sections of CTL restricted to universal and existential quantification,
respectively.

CTL in turn has further enhancements and enrichments such as CTL*

[Emerson, Lei 86], which allows free mixing of quantifiers and temporal op-
erators, e.g. A(P U FQ) is not in CTL because the F operator is not directly
preceded by a quantifier.

4

2.2 The Modal Mu-Calculus

The modal mu-calculus subsumes all temporal logics mentioned above, that is,
any formula in those logics can also be expressed in the mu-calculus. Following
[Bradfield, Stirling 06], Lµ will denote the modal mu-calculus, considered as a
logical language. Lµ allows the formulation of assertions about labelled transition
systems. Proving these assertions for a specific LTS can then be done using
traditional proof methods or algorithmic means.

The defining feature of Lµ is the use of fixed point or fixpoint operators.
We can provide semantics for Lµ by interpreting an Lµ-expression as valid in
a set of states, i.e. elements from P(S), telling us in which states the formula
holds. These expressions are allowed to contain variables with interpretations
also ranging over P(S). We can thus view the semantics of an Lµ-formula ϕ(X)
with a free variable X as a function ϕ : P(S)→ P(S). All functions expressible in
Lµ with the given grammar can be shown to be monotonic. Due to this property,
they are known to have a unique minimal and maximal fixed point, i.e. a value
for X such that ϕ(X) = X.

Fixpoint operators can be most easily understood as recursion. Consider the
formula νX. P ∧ [L]X, where ν denotes the maximal fixpoint operator (its dual
minimal operator is denoted µ). It should be read as “νX . . . is true if P∧[L]X is
true, which is true if the proposition P holds in this state and X holds wherever
we go next.” It is the last part that gives rise to recursion: after performing any
action in the modality (in this case any action in L), the formula νX . . . has to
hold in the subsequent state. This formula thus expresses the CTL equivalent
AGP or “P holds in all states.” The difference between the minimal fixpoint
operator µ and the maximal operator ν is to be understood as µ enforcing finite
recursion, while we may loop through ν forever.

Lµ has strictly more expressive power than CTL* or any of the previously
mentioned logics. One of its major strengths is the possibility to alternate be-
tween fixpoint operators, i.e. mix minimal and maximal fixpoints in a formula
with mutual recursion. Again, the expressive power can be seen to strictly in-
crease with the alternation degree (the number of alternations).

2.3 Syntax

The syntax of Lµ is defined in a relatively standard manner, following e.g. [Stir-
ling 96]. Atomic propositions are allowed to hold in sets of states, making use of
the valuation function from the previous chapter. We will use σ to range over
the fixpoint operators {µ, ν}. A fixpoint operator binds a fixpoint variable in the
same way as a predicate logic quantifier does. An occurrence of variable X is
said to be free if it is outside the scope of a binding operator σX.

The given syntax does not include Boolean negation. All expressions with
negations can be transformed to positive form (i.e. without negations except
on atomic propositions), using e.g. DeMorgan’s laws and identities on modal
operators and fixpoints (refer to [Bradfield, Stirling 06] for an overview). Nega-
tions can be “worked inwards” until they occur only on atomic propositions. We

5

assume that for every atomic proposition Q ∈ Q, the negation of Q is also a
proposition in Q. Excluding negation is then without loss of generality.

Definition 2.2 (Syntax of Lµ). A modal mu-calculus formula is given by the
following grammar:

Φ ::= true | false | Q | Φ ∧ . . . ∧Φ | Φ ∨ . . . ∨Φ |
X | [a]Φ | 〈a〉Φ | µX. Φ | νX. Φ

where Q ∈ Q is an atomic proposition and X ∈ X̃ is a fixpoint variable. ut

Modal operators have a higher precedence than Boolean operators, whereas fix-
point operators have the lowest precedence. This makes the fixpoint binding
extend as far to the right as possible.

The set of formulas that can be generated with this grammar is denoted
Lµ(X̃), which shows the dependency on the set of variables.

Given a certain base (also root) formula Φ, there exists a partial order on the
bound variables in Φ, so that X < ΦY (“X is shallower than Y ”) if the formula
σY. . . is within the expression bound by σ′X. The lowest element in this order
is called the shallowest.

The following lemma will be useful later on, where we will benefit from
inserting “effectless” fixpoint operators, i.e. where the bound variable is not
used in the subsequent expression.

Lemma 2.3 (Effectless Fixpoint). A formula ϕ can be transformed into a
semantically equivalent formula σX. ϕ by addition of an effectless fixpoint oper-
ator, where X is fresh in ϕ. ut

The function form retrieves the subformula of the specification that falls under
the scope of a given mu-calculus variable. For example, given a formula Φ =
µX. νY. ϕ∧ψ, then form(Φ, Y) = νY. ϕ∧ψ. To make this work, all bound fixpoint
variables in the mu-calculus formula should be uniquely named. This is without
loss of generality, as variables with the same name that do not occur in each
other’s scope can be renamed to a fresh identifier. For example, in an expression
(µX. ϕ)∧(νX. ψ) the X variables are distinct in ϕ and ψ, so one of them can be
renamed to e.g. Y , resulting in the semantically equivalent (µX. ϕ)∧(νY. ψ[X :=
Y]).1 If the context is clear, the first argument will be omitted.

Definition 2.4 (Subformula Retrieval). The partial function form : Lµ(X̃)×
X̃ 7→ Lµ(X̃) retrieves the mu-calculus expression associated with the given vari-
able. The value of form(ϕ, X) is defined only if X is bound in ϕ.

1 Where ψ[X := Y] denotes the syntactic replacement of all occurences of X in ψ with
Y .

6

form(σY. ϕ, X) =

{
σY. ϕ if X = Y
form(ϕ, X) otherwise

form(ϕ1 ∧ . . . ∧ ϕn, X) = form(ϕi, X) for X bound in ϕi
form(ϕ1 ∨ . . . ∨ ϕn, X) = form(ϕi, X) for X bound in ϕi

form([a]ϕ, X) = form(ϕ, X)
form(〈a〉ϕ, X) = form(ϕ, X)

ut

2.4 Semantics

The semantics of an Lµ formula ϕ is given by an interpretation function, which
gives the set of states of a transition system T satisfying that formula. In ad-
dition, the interpretation function takes a third argument: an environment θ
(explained below). It is fully written [[ϕ]] Tθ , but may be abbreviated by omitting
the LTS and environment.

The satisfaction relation, written |=, is defined in terms of the interpretation
function. We shall write s |= Φ if and only if s ∈ [[Φ]] , and s 6|= Φ otherwise. This
notation extends to transition systems: T |= Φ if and only if the initial state s0
of T is in the set [[Φ]] .

We have seen that the context for interpretation contains an environment in
addition to the transition system. An environment is a function θ : X̃ → P(S)
which assigns a set of states to free variables in an expression. We shall use
the notation θ[X := ς] to denote the environment that is equivalent to θ for all
variables except X, i.e. θ(Y) = (θ[X := ς])(Y) for Y 6= X and θ[X := ς](X) = ς
(with ς ∈ P(S)). This operation has precedence over all other operators.

Definition 2.5 (Semantics of Lµ). The semantics of Lµ is inductively defined
in the context of a model M = 〈T , Q, V〉.

[[true]] Tθ = S
[[false]] Tθ = ∅
[[Q]] Tθ = V(Q)
[[¬Q]] Tθ = S \ V(Q)
[[ϕ1 ∧ . . . ∧ ϕn]] Tθ = [[ϕ1]] Tθ ∩ . . . ∩ [[ϕn]] Tθ
[[ϕ1 ∨ . . . ∨ ϕn]] Tθ = [[ϕ1]] Tθ ∪ . . . ∪ [[ϕn]] Tθ
[[X]] Tθ = θ(X)

[[[a]ϕ]] Tθ = {s ∈ S | ∀s′∈S . s
a−→ s′ =⇒ s′ ∈ [[ϕ]] Tθ }

[[〈a〉ϕ]] Tθ = {s ∈ S | ∃s′∈S . s
a−→ s′ ∧ s′ ∈ [[ϕ]] Tθ }

[[µX.ϕ]] Tθ =
⋂
{S′ ⊆ S | S′ ⊇ [[ϕ]] Tθ[X:=S′]}

[[νX.ϕ]] Tθ =
⋃
{S′ ⊆ S | S′ ⊆ [[ϕ]] Tθ[X:=S′]}

ut

Example 2.6 (Modal Mu-Calculus). Some examples of Lµ formulas are
[Bradfield, Stirling 06]:

• νX. Q ∨ (P ∧ [a]X): On every a-path, P holds until Q holds.

7

• µX. Q ∨ (P ∧ [a]X): On every a-path, P holds until Q holds, and Q
eventually holds.

• µX. [a] false ∨ 〈a〉 〈a〉X: There exists a maximal a-path of even length.

• µX. νY. (P ∧ [a]X) ∨ (¬P ∧ [a]Y): P is true only finitely often on any
a-path.

ut

2.5 The Regular Mu-Calculus

In section Section 2.1, the use of regular formulas inside modal operators was
shown in the logic PDL. This feature is now formalised for the modal mu-calculus
following [Mateescu, Sighireanu 00]. The resulting logic is called the regular mu-
calculus, and has the same expressive ability as the “vanilla” mu-calculus defined
earlier. Modalities are of the general form [R]ϕ or 〈R〉ϕ where R is a regular
expression.

Definition 2.7 (Regular Expression Syntax). An action formula α defines
a set of actions. A regular formula R allows the use of regular expressions over
action formulas.

α ::= L | a | α | α ∪ α | α ∩ α
R ::= α | R ·R | R+R | R∗

ut

α denotes the set complement of α. The operator · stands for sequential compo-
sition, + stands for nondeterministic choice and ∗ for repetition (i.e. the Kleene
star). The semantics of regular formulas is now made precise.

Definition 2.8 (Regular Expression Semantics). First, the interpretation
of an action formula α, written |[α]| ⊆ L gives the set of action labels in α:

|[L]| = L
|[a]| = {a}
[α]	= L \	[α]		
[α ∪ α′]	=	[α]	∪	[α′]
[α ∩ α′]	=	[α]	∩	[α′]

Second, the interpretation of a regular formula R, written ||R|| ⊆ S × S gives

those state pairs 〈s, s′〉 for which the label l in the transition s
l−→ s′ is in α:

||α|| = {〈s, s′〉 ∈ S × S | ∃a∈ |[α]| . s
a−→ s′ ∈ δ}

||R1 ·R2|| = ||R1|| ◦ ||R2||
||R1 +R2|| = ||R1|| ∪ ||R2||
||R∗|| = ||R|| ∗

where ◦ denotes the composition and ∗ the transitive-reflexive closure of binary
relations.

8

Finally, the intepretation of regular modal operators can be defined:

[[[R]ϕ]] Tθ = {s ∈ S | ∀s′∈S . 〈s, s′〉 ∈ ||R|| =⇒ s′ ∈ [[ϕ]] Tθ }
[[〈R〉ϕ]] Tθ = {s ∈ S | ∃s′∈S . 〈s, s′〉 ∈ ||R|| ∧ s′ ∈ [[ϕ]] Tθ }

ut

Note the slight abuse in notation for the symbol L, which is not only used for
the set of all actions but also in the syntax of an action formula to refer to this
set. Some authors prefer to use true instead or leave the action formula blank.

Some examples of formulas in the regular mu-calculus are 〈a∗〉 true, which
expresses that an a-sequence of any length is possible, [L∗] 〈L〉 true, which states
the absence of deadlock, and [send] 〈L∗ · receive〉 true, which says that after a
send-action, a receive-action is attainable.

9

3 Boolean Equation Systems

3.1 Syntax

Essentially, a Boolean equation system is a finite sequence of fixpoint equations
over Boolean variables. Propositional operators (∧,∨, etc.) may be used in the
right-hand side of each equation.

Definition 3.1 (Grammar of a Boolean Equation System). A Boolean
equation system E is given by the following grammar:

E ::= ε | (µX = f) E | (νX = f) E
f ::= true | false | X | f ∧ f | f ∨ f

where ε is the empty BES and X ∈ X is a fixpoint variable. Each f : Bk → B
for some k ∈ N is a proposition. ut

We only consider equation systems that are well-formed, i.e. those in which a
fixpoint variable occurs at the left-hand side in at most a single equation. In the
remainder, σ ∈ {µ, ν} will be used to refer to an arbitrary fixpoint symbol.

Definition 3.2 (Bound Variables). For any equation system E, the set of
bound variables bnd(E) ⊆ X is the set of all variables occurring on the left-hand
side of equations in E:

bnd(ε) = ∅
bnd((σX = f) E) = bnd(E) ∪ {X}

ut

An ordering C is defined on bound variables, so that Xi C Xj indicates that the
equation for Xi precedes the equation for Xj . The lowest element according to
this ordering (i.e. the variable in the leftmost equation) is called the shallowest
variable. We will colloquially use the terms “shallow” and “deep” to refer to this
ordering, indicating variables near the top respectively near the bottom of the
equation system.

Definition 3.3 (Occurring Variables). For any equation system E, the set of
occurring variables occ(E) ⊆ X is the set of variables occurring on the right-hand
side of all equations in E, defined as follows:

occ(ε) = ∅
occ((σX = f) E) = occ(E) ∪ occ(f)

10

where occ(f) is inductively defined as follows:

occ(true) = ∅
occ(false) = ∅
occ(X) = {X}

occ(f ∧ g) = occ(f) ∪ occ(g)

occ(f ∨ g) = occ(f) ∪ occ(g)

ut

Note that the occ function may be used to obtain the occurring variables in the
whole BES, or those in a single equation, depending on the context.

A variable is called bound if it is in bnd(E), and is called free if it is not bound
by any fixpoint operator in the equation system: free(E) = occ(E) \ bnd(E). An
equation system E is said to be closed when there are no free variables, i.e.
free(E) = ∅.

An equation system may be divided into blocks. A block is a sequence of consec-
utive equations having the same fixpoint operator. The number of alternations
between these blocks is useful as a measure of the complexity of the equation
system, and indeed occurs as a measure of the computational complexity of some
of the algorithms for solving equation systems [Keiren 09].

An ordinal called the rank is assigned to each bound variable to identify in
which block its defining equation occurs. The rank of a variable will be useful
for solving the equation system using parity games (more about this later in
Section 5.6, see also ibid.). Counting proceeds in reverse order, so that the deepest
variable (the greatest according to C) will have the lowest rank, equal to 0 if its
fixpoint operator is maximal and 1 if it is minimal. The rank of a variable is odd
if and only if its fixpoint operator is minimal.

Definition 3.4 (Variable Rank). Given a Boolean equation system E, the
rank of a variable X ∈ bnd(E), notation rankE(X), is defined as follows:

rank(σY=f)E(X) =

{
rankE(X) if X 6= Y
blockσ(E) otherwise

where blockσ(E) is defined as:

blockσ(ε) =

{
0 if σ = ν
1 otherwise

blockσ((σ′Y = f)E) =

{
blockσ(E) if σ = σ′

1 + blockσ′(E) if σ 6= σ′

ut

3.2 Semantics

The Boolean expressions in an equation system are evaluated in the context of an
environment, denoted η. An environment is a function η : X → B which assigns

11

a Boolean constant to free variables in an expression. The result of applying
a Boolean function f to an environment η, denoted f(η), is the value of the
function f after substituting each free variable X in f by η(X). Environments
are not necessarily complete, i.e. they may not assign a value to each free variable
in a function.

We shall use the notation η[X := b] to denote the environment that is equiv-
alent to η for all variables except X, i.e. η(Y) = (η[X := b])(Y) for Y 6= X and
η[X := b](X) = b. Equivalent notations used in the literature are η[b/X] (com-
mon), and, confusingly, η[X/b] (less common). This operation has precedence
over all other operators.

For readability, we shall not syntactically distinguish between a semantic
Boolean value and its representation.

Definition 3.5 (Interpretation). Let η : X → B be an environment. The
interpretation [[f]] η maps a propositional formula to true or false:

[[X]] η = η(X)

[[true]] η = true [[ϕ ∧ ψ]] η = [[ϕ]] η ∧ [[ψ]] η

[[false]] η = false [[ϕ ∨ ψ]] η = [[ϕ]] η ∨ [[ψ]] η

ut

If an equation system E is closed, its solution is invariant with respect to the
environment, i.e. [[E]] η = [[E]] η′ for all η, η′. We will thus omit the environment
when dealing with closed equation systems, and simply write [[E]] .

The following lemma relates the semantics for open equation systems to that
of closed equation systems. Following the notation for environments, we will
write E [X := b] where X 6∈ bnd(E) and b ∈ B for the equation system in which
every syntactic occurrence of X has been replaced by b.

Lemma 3.6 (Relation Between Closed and Open Equation Systems).
Let E be an equation system, and let η be an arbitrary environment. Assume
X 6∈ bnd(E) is a propositional variable, and let b ∈ B be such that η(X) = b.
Then [[E]] η = [[E [X := b]]] η. ut

Various techniques have been developed for solving a BES. Intuitively, a solution
is a valuation for all left-hand side variables, such that each equation is satisfied,
and furthermore that the minimality and maximality conditions dictated by the
fixpoint operators are satisfied. Note that the fixpoint signs of shallow equations
dominate those that follow. This phenomenon is a result of the nested recursion
for evaluating the right-hand side equation of the shallowest variable. As a con-
sequence, the solution is order-sensitive: the solution to (µX = Y)(νY = X),
yielding all false, is different from the solution to (νY = X)(µX = Y), yielding
all true. The complexity of a solution arises from this recursive definition.

12

Definition 3.7 (Characterisation of Solution). The solution to a Boolean
equation system is characterised by the following inductive definition. Given an
environment η,

[[ε]] η = η

[[(σX = f) E]] η =

{
[[E]] (η[X := [[f]] ([[E]] η[X := false])]) if σ = µ
[[E]] (η[X := [[f]] ([[E]] η[X := true])]) if σ = ν

ut

A global solver computes the valuation of all bound variables in the equation
system. On the other hand, when a local solver is asked to solve for a single
variable (most likely the shallowest variable), it may not compute the valuation
for all variables. Although this does not agree with the previous definition, where
η was said to be a complete function, we prefer to leave this as is to reduce
unnecessary complication of many subsequent references to this function. Where
the distinction between global and local solvers is relevant, it will be discussed
as a “special case,” i.e. a trichotomy between true, false and “not evaluated.”

3.3 Restricted Forms

An equation system is said to be in simple form when its right-hand side equa-
tions do not contain free variables or nested formulas (as in (ϕ1 ∧ϕ2)∨ϕ3). The
standard form further restricts the size of the right-hand side formulas to two.
This is formalised below. Finally, recursive form prohibits the use of constants
on the right-hand side of equations.

Definition 3.8 (Standard Form). A Boolean equation system E is in stan-
dard form if each right-hand side expression consists of a conjunction Xi ∧Xj,
a disjunction Xi ∨ Xj, a single variable Xi or a constant true or false, with
Xi, Xj ∈ bnd(E). ut

Definition 3.9 (Simple Form). A Boolean equation system E is in simple
form if each right-hand side expression consists of a finite series of conjunctions
Xi ∧ · · · ∧Xj, a finite series of disjunctions Xi ∨ · · · ∨Xj, a single variable Xi

or a constant true or false, with Xi, Xj ∈ bnd(E). ut

Definition 3.10 (Recursive Form). A Boolean equation system is in recur-
sive form if none of its right-hand side formulas contain constants. ut

If an equation is both in standard and recursive form it will be said to be in
standard recursive form. Note that constants can be eliminated in linear time (in
the size of the equation system) such that the solution is preserved. The same
goes for free variables when a suitable environment is given.

Any equation system can be transformed into standard form by creating addi-
tional equations in the equation system to represent nested formulas. For ex-
ample, E = (µX = (a ∨ b) ∧ c) can be transformed to the standard form
E ′ = (µX = X ′ ∧ c)(µX ′ = a ∨ b). The number of additional variables is linear
in the size of the right-hand side expressions in E .

13

Theorem 3.11 (Conversion to Standard Form). Any equation system E
can be rewritten to an equation system E ′ in standard form, preserving the solu-
tion. This is accomplished by applying the following identity until standard form
is obtained:

(σX = ϕ1 ⊕ · · · ⊕ ϕn) E =

(σX = ϕ1 ⊕ · · · ⊕ ϕn−1 ⊕ X ′) (σ′X ′ = ϕn) E

where ⊕ ∈ {∧,∨}, X ′ is a fresh variable (i.e. X ′ /∈ occ(E)) and σ′ can be either
µ or ν without changing the solution.

Proof. Using straightforward application of the definition of the semantics. It is
assumed that X ′ does not occur on the right-hand side of E or in ϕi for any i.

[[(σX = ϕ1 ⊕ · · · ⊕ ϕn−1 ⊕X ′) (σ′X ′ = ϕn) E]] η
= [[(σ′X ′ = ϕn) E]] (η[X :=

[[ϕ1 ⊕ · · · ⊕ ϕn−1 ⊕X ′]] ([[(σ′X ′ = ϕn) E]] η[X := f(σ)])]) (1)

= [[(σ′X ′ = ϕn) E]] (η[X :=

[[ϕ1]] ([[(σ′X ′ = ϕn) E]] η[X := f(σ)])

⊕ · · · ⊕
[[X ′]] ([[(σ′X ′ = ϕn) E]] η[X := f(σ)])]) (2)

= [[(σ′X ′ = ϕn) E]] (η[X :=

[[ϕ1]] ([[E]] (η[X := f(σ);X ′ := [[ϕn]] ([[E]] η[X := f(σ);X ′ := f(σ′)])])

⊕ · · · ⊕
[[X ′]] ([[E]] (η[X := f(σ);X ′ := [[ϕn]] ([[E]] η[X := f(σ);

X ′ := f(σ′)])]))] (3)

= [[(σ′X ′ = ϕn) E]] (η[X :=

[[ϕ1]] ([[E]] (η[X := f(σ)]))

⊕ · · · ⊕
[[ϕn]] ([[E]] (η[X := f(σ)]))]) (4)

= [[(σ′X ′ = ϕn) E]] (η[X := [[ϕ1 ⊕ · · · ⊕ ϕn]] ([[E]] η[X := f(σ)])]) (5)

= [[E]] (η[X := [[ϕ1 ⊕ · · · ⊕ ϕn]] ([[E]] η[X := f(σ);X ′ := . . .])]) (6)

= [[E]] (η[X := [[ϕ1 ⊕ · · · ⊕ ϕn]] ([[E]] η[X := f(σ)])]) (7)

= [[(σX = ϕ1 ⊕ · · · ⊕ ϕn) E]] η (8)

where f(σ) =

{
true if σ = ν
false if σ = µ

Q.E.D. ut

3.4 Dependency Graphs for Simple Form

A useful auxilary data structure when working with a Boolean equation system
is its dependency graph. It shows the interdependencies and nesting structure of

14

variables in the equation system. The vertices in this graph represent the bound
variables in the BES. An edge Xi → Xj means that Xj occurs in the right-hand
side of the equation for Xi, indicating that Xi depends upon Xj . We begin by
defining these graphs on equation systems in simple form.

Definition 3.12 (Dependency Graph). Let E be a Boolean equation system
in simple form. The dependency graph of E is a tuple GE = 〈V, ∆〉 where

• V = bnd(E) ∪ B is a set of vertices;

• ∆ ⊆ V × V is the set of edges such that for all Xi ∈ bnd(E) :

◦ 〈Xi, Xj〉 ∈ ∆ for all Xj ∈ occ(fi);

◦ 〈Xi, true〉 ∈ ∆ if fi = true;

◦ 〈Xi, false〉 ∈ ∆ if fi = false.

ut

We will now define some properties of dependency graphs.

Definition 3.13 (Paths in Dependency Graphs). A path of length n in a
dependency graph GE = 〈V, ∆〉 is a sequence [v0, v1, . . . , vn−1] such that vi ∈ V
for all 0 ≤ i < n and 〈vi, vi+1〉 ∈ ∆ for all 0 ≤ i < n − 1. The path is said to
begin from v0 and end at vn−1. ut

Definition 3.14 (Reachability). A vertex vj is reachable from vi in a depen-
dency graph GE if there is a path in GE from vi to vj. ut

Based on the definition of reachability, we say that a variable Xi in the equation
system depends on variable Xj if the vertex Xj is reachable from Xi in the
dependency graph. Variables Xi and Xj are said to be mututally dependent if
Xi depends on Xj and vice versa.

Definition 3.15 (Cycles). A path [v0, . . . , vn] in a dependency graph GE is a
cycle if v0 = vn. ut

Definition 3.16 (Lasso). A path [v0, . . . , vn] in a dependency graph GE is a
lasso if vn = vj for some 0 < j ≤ n. ut

3.5 Structure Graphs

Problems with a Trivial Implementation

We would now like to extend the concept of a dependency graph to Boolean
equation systems in general, i.e. without the simple form restriction. Lifting this
restriction means that we should be able to deal unambiguously with nested
formulas like (ϕ1 ∧ ϕ2) ∨ ϕ3 but also (ϕ1 ∨ ϕ2) ∨ ϕ3 and (ϕ ∨ ϕ) ∨ ϕ. A trivial
set of rules might, in the last example, create an extra vertex for the subformula
(ϕ ∨ ϕ), which is then given an outgoing edge to ϕ.

15

This issue is illustrated in the figure below, where the semantically equivalent
formulas X∧(Y ∧Z) and (X∧Y)∧Z produce two dissimilar dependency graphs:

X ∧ (Y ∧ Z)

X

Y ∧ Z

Y

Z

(Y ∧X) ∧ Z

Y ∧X

Y

Z

X

This is not an ideal situation, and we would prefer the semantic equivalence
of the two formulas to be reflected as two equivalent dependency graphs. We
are thus looking for a set of derivation rules that forego the precise syntactic
structure of the formula, in return for the standard logical equivalences to hold.

Definition of Structure Graph

An elegant solution for the ambiguity problem, due to [Keiren, Reniers, Willemse
10], uses Structural Operational Semantics to generate what is called a structure
graph. This is equivalent to the notion of a dependency graph defined earlier,
but extends it with a number of decorations, such as the rank of bound fixpoint
variables. These decorations are for instance useful when parity games are used
to solve a Boolean equation system. These “games” work by traversing the de-
pendency graph, and will be explored in more depth in Section 5.6. In addition to
decorations, another important extension introduced by structure graphs is the
concept that formulas can also be vertices in the graph, instead of just fixpoint
variables.

We will now give the definition of structure graphs, and use this term to refer
to dependency graphs in general from now on. We will then give a set of Struc-
tural Operational Semantics (SOS) deduction rules, which will be demonstrated
to meet the criteria outlined in the previous section.

Definition 3.17 (Structure Graph). Let E be a BES, and let X be its set of
variables, that is, X = occ(E) ∪ bnd(E). A structure graph over X is a vertex-
labelled graph GE = 〈V, v0, ∆, d, r,↗〉, where:

• V is a finite set of vertices;

• v0 ∈ V is the inital vertex;

• ∆ ⊆ V × V is a dependency relation;

• d : V 7→ {N,H, true, false} is a vertex decoration mapping;

• r : V 7→ N is a vertex ranking mapping;

• ↗: V 7→ X is a free variable mapping.

ut

16

Intuitively, the decoration mapping d reflects whether the top symbol of a propo-
sitional formula is true, false, a conjunction or a disjunction; represented respec-
tively by true, false, N and H. The vertex ranking mapping r indicates the rank
of a vertex. The free variable mapping indicates whether a vertex represents a
free variable. Note that each vertex can have at most one rank, at most one
decoration and at most one free variable.

For readability, we introduce some shorthand notations. The predicate v ↗X
represents ↗ (v) = X. The predicate v t n represents r(v) = n. For ? ∈
{N,H, true, false}, v? represents d(v) = ?. The notation v 6t represents ¬(v t n)
for all n ∈ N, i.e. the vertex v is not ranked.

To get a feeling for the nature of structure graphs, an example is shown
below, where a structure graph is derived from the BES on the left. Observe
that the term X ∧ Y is shared by the equations for X and Y , and appears only
once in the structure graph as an unranked vertex. There is no equation for
Z; this is represented by the term Z, decorated only by the label ↗ Z. The
subterm Z ∨W in the equation for W does not appear as a separate vertex in
the structure graph, since the disjunctive subterm occurs within the scope of
another disjunction, and is thus “flattened” by the derivation rules.

Example 3.18. A BES (left) and its structure graph (right).

µX = (X ∧ Y) ∨ Z
νY = W ∨ (X ∧ Y)
µW = Z ∨ (Z ∨W)

〈X, E〉 H 3 〈Z, E〉 ↗ Z〈X ∧ Y, E〉 N

〈Y, E〉 H 2 〈W, E〉 H 1

ut

Derivation Rules

Plotkin-style Structural Operational Semantics rules [Plotkin 04] are given in
Figure 3.1 which allow the structure graph to be derived from a Boolean equation
system. These rules are taken to define what relationships hold—namely those
we can establish from the rules. The format of these rules is in the traditional
premiss
conclusion style, where the premiss is a set of formulas and the conclusion is a
positive formula. Each formula is of the form 〈ϕ, E〉 where E can be seen as the
background store or context.

Some rules include negative premises. A negative premiss is true when its
positive form cannot be derived, or equivalently, when one of its positive com-
plements can be derived. For example, the premiss ¬〈f, E〉N, used below, holds
when the vertex f is labelled with an element in the complement of the set {N},
namely {H, true, false}. For a review of negative premises see [Mousavi, Reniers,
Groote 07].

17

As discussed earlier, a big advantage of using these deduction rules is that the
associativity, commutativity and (a restriced form of) idempotence properties of
propositional operators are implicitly covered by the rules.

Finally, a structure graph can be normalised so that each vertex that has
successors will be ranked. A normalised structure graph induces a BES in simple
form; note that a BES in simple form also yields a normalised structure graph.
The normalisation process can take place by applying a number of SOS deduction
rules (for details refer to [Keiren, Reniers, Willemse 10]).

18

Vertex decoration. Straightforward decoration axioms.

(1)
〈true, E〉true

(2)
〈false, E〉false

(3)
〈f ∧ f ′, E〉N

(4)
〈f ∨ f ′, E〉H

Free variable labelling. Free variables are labelled as such.

(5)
X 6∈ bnd(E)

〈X, E〉 ↗X

Bound variable ranking. Vertices representing bound variables are labelled
with a natural number representing the rank of the variable in the equation
system.

(6)
X ∈ bnd(E)

〈X, E〉 t rankE(X)

Flattening. If a subformula has the same top-level operator and is not ranked,
dependencies of that subformula apply to the whole formula.

(7)
〈f, E〉N 〈f, E〉 6t 〈f, E〉 → 〈g, E〉

〈f ∧ f ′, E〉 → 〈g, E〉
(8)
〈f ′, E〉N 〈f ′, E〉 6t 〈f ′, E〉 → 〈g′, E〉

〈f ∧ f ′, E〉 → 〈g′, E〉

(9)
〈f, E〉H 〈f, E〉 6t 〈f, E〉 → 〈g, E〉

〈f ∨ f ′, E〉 → 〈g, E〉
(10)
〈f ′, E〉H 〈f, E〉 6t 〈f ′, E〉 → 〈g′, E〉

〈f ∨ f ′, E〉 → 〈g′, E〉

Change of operator. If a subformula has a different top-level operator, that
subformula gets its own vertex.

(11)
¬〈f, E〉N

〈f ∧ f ′, E〉 → 〈f, E〉
(12)

¬〈f ′, E〉N

〈f ∧ f ′, E〉 → 〈f ′, E〉

(13)
¬〈f, E〉H

〈f ∨ f ′, E〉 → 〈f, E〉
(14)

¬〈f ′, E〉H

〈f ∨ f ′, E〉 → 〈f ′, E〉

Subterm is a bound variable. If a bound variable occurs in a formula, there
is a dependency on it.

(15)
〈f, E〉 t n

〈f ∧ f ′, E〉 → 〈f, E〉
(16)

〈f ′, E〉 t n

〈f ∧ f ′, E〉 → 〈f ′, E〉

19

(17)
〈f, E〉 t n

〈f ∨ f ′, E〉 → 〈f, E〉
(18)

〈f ′, E〉 t n

〈f ∨ f ′, E〉 → 〈f ′, E〉

Introduction of fixpoint variables. Allows vertices to be derived and ap-
propriately labeled for bound fixpoint variables in the BES.

(19)
σX = f ∈ E 〈f, E〉N 〈f, E〉 6t

〈X, E〉N
(20)

σX = f ∈ E 〈f, E〉H 〈f, E〉 6t

〈X, E〉H

Dependency on constant or free variable. Introduce dependency on true
or false.

(21)
σX = f ∈ E ¬〈f, E〉H ¬〈f, E〉N 〈f, E〉 6t

〈X, E〉 → 〈f, E〉

Direct dependency on bound variable. This rule covers formulas of the
form σX = Y .

(22)
σX = f ∈ E 〈f, E〉 t n

〈X, E〉 → 〈f, E〉

Top-level dependencies. If the right-hand side formula f of an equation ∈ E
has a dependency, then the fixpoint variable X associated with this formula has
that dependency.

(23)
σX = f ∈ E 〈f, E〉 → 〈g, E〉 〈f, E〉N 〈f, E〉 6t

〈X, E〉 → 〈g, E〉

(24)
σX = f ∈ E 〈f, E〉 → 〈g, E〉 〈f, E〉H 〈f, E〉 6t

〈X, E〉 → 〈g, E〉

Fig. 3.1. SOS deduction rules for deriving the structure graph from a Boolean
equation system.

20

4 Model Checking

The primary strength of formal modelling of computer systems is the possibility
to provably verify claims about these systems. Formalisation of a system gener-
ally begins with making a minimal model that captures all salient behavioural as-
pects of the system. The type of model used here is that introduced in Section 1,
based on labelled transition systems. A system model may be very complex, as in
the case when multiple subprocesses are operating concurrently. For this reason,
modelling is often carried out in a higher language, such as mCRL2 [Groote 08].
This language allows the use of many constructs which make the life of the mod-
eller easier. For example, concurrent subprocesses can be entered separately, and
afterwards composited into a single whole (a single LTS). Interaction between
the subprocesses can be made explicit using dedicated operators. mCRL2 also
supports the use of typed parameters, making it possible to express not just to
express the action receive, but the action receive(data) where data : DataType.

After the system under consideration has been entered in a higher language,
a finite labelled transition system is automatically generated by the toolchain.
The use of LTSes (or, equivalently, Kripke structures) as low-level system models
is a de facto standard. The details of how a high-level model is translated into
an LTS are beyond the scope of this text, but an important thing to note is that
parallel processes will cause an exponential growth in the number of states in
the transition system, with respect to the number of processes. This gives rise
to the so-called state-space explosion problem: the composition of n processes of
size k yields kn states. We will come back to this issue later.

Now that we have a formal model in the form of a labelled transition system,
we can proceed to make claims about this model. These claims say things like
“the process cannot deadlock” or “every receive action is eventually followed by
a send action.” Statements such as these will be referred to as (formal) specifica-
tions, and we have already seen in Section 2 how they can be formulated in the
mu-calculus. Many useful properties can also be expressed in other temporal log-
ics, such as HML and CTL, but recall that the expressiveness of the mu-calculus
is greater than that of all these logics. In the following chapters, work by other
authors is explored which is sometimes restricted to less expressive logics, but
in the rest of this work only the full mu-calculus shall be considered.

Model checking is the process of validating or verifying that a given temporal
logic specification holds for a given model. The process by which this is carried
out can take on many forms. A number of these will be briefly described in Chap-
ter 5. We will see later that despite the use of various model check algorithms,
the use of mu-calculus in combination with labelled transition systems will give
rise to a similar type of diagnostic. The main focus here is the use of Boolean
equation systems to perform the actual model check operation. The final result
of any model check is a single Boolean value, true or false, which says whether
the given specification holds for the model (or equivalently whether the given
model satisfies the specification).

21

Fig. 4.1. Model checking using Boolean equation systems.

4.1 Model Checking using Boolean Equation Systems

A popular method of verifying whether a specification holds over a model is to
encode this problem in the form of a Boolean equation system. The model check
problem is encoded in the form of an equation system by use of the function
E. This function maps subexpressions of the Lµ specification onto states of the
LTS (see Figure 4.1). The function actually consists of two parts: a linearisation
function E, and a set of functions Ei which are related to states si in the LTS
(see Figure 4.2). The former is responsible for assigning each fixpoint in the spec-
ification to each state in the LTS. For example, given a formula µX . . . (νY . . .),
the output of the E function will be a set of equations µXi = . . . and νYi = . . .
for each state 0 ≤ i < |S|. Each right-hand side expression is given by the Ei

function, which evaluates the given subexpression in state si.

Formally, the mapping function E(Φ, M) maps a model and a specification
to a Boolean equation system, but the second parameter will be omitted for
readability. The number of equations in the resulting BES is bound by O(|Φ| ·
|M|).

After the BES has been generated, it is solved to arrive at an answer for the
model check problem. The equivalence of solving the model check problem and
solving a Boolean equation system is formalised in the following theorem: a state
in the model satisfies a property if and only if the corresponding variable in the
derived Boolean equation system is true (this essential result is due to [Mader
96, Theorem 5.1]).

Theorem 4.1 (Transformation to BES Preserves Semantics). Let Φ =
σX. ϕ be a mu-calculus specification, M = 〈T , Q, V〉 be a model and si a state
of T . Then for any environment ηV :

si |=M Φ ⇐⇒ ([[E(Φ, M)]] ηV)(Xi) = true

ut

The full mu-calculus specification will consistently be denoted with a capital
letter (Φ) and subformulas of it with lower case letters (ϕ,ψ).

22

E(Q) = ε

E(X) = ε

E(ϕ ∧ . . . ∧ ψ) = E(ϕ) . . . E(ψ)

E(ϕ ∨ . . . ∨ ψ) = E(ϕ) . . . E(ψ)

E([a]ϕ) = E(ϕ)

E(〈a〉ϕ) = E(ϕ)

E(σX.ϕ) = (σX0 = E0(ϕ)) · · · (σXn−1 = En-1(ϕ)) E(ϕ)

Ei(Q) =

{
true if si ∈ V(Q)

false otherwise

Ei(X) = Xi

Ei(ϕ ∧ . . . ∧ ψ) = Ei(ϕ) ∧ . . . ∧Ei(ψ)

Ei(ϕ ∨ . . . ∨ ψ) = Ei(ϕ) ∨ . . . ∨Ei(ψ)

Ei([a]ϕ) =

true if @j . si

a−→ sj∧
si

a−→sj

Ej(ϕ) otherwise

Ei(〈a〉ϕ) =

false if @j . si

a−→ sj∨
si

a−→sj

Ej(ϕ) otherwise

Ei(σX.ϕ) = Xi

Fig. 4.2. The mapping function E.

4.2 The Model Check Design Cycle

Model checking is most commonly employed before or during the design of the
product. Using model checking post-hoc, on a completed design, is also possible,
but the additional effort is less likely to pay off, as changes to the product
become more costly later on in the design process. The cost of changes during
development can be up to 6× as high as during design, while changes after
release can be up to 100× as costly [Pressman 97]. Formal methods often have
high start-up costs, mostly due to the specialised knowledge their usage requires.
However, the potential benefits in complex and critical systems (e.g. aeronautics,
medical) are unsurpassed by any software engineering method.

Professional software engineering tends to follow a certain process model that
describes the tasks that should be carried out, in which order, to arrive at the end
product. The end product is rarely a piece of software in isolation; documentation
and some sort of quality assurance are also part of the product. There have been
many process models developed, some generic, others for certain niches, one more

23

Fig. 4.3. The “cleanroom” software engineering process flow.

complex than the other. Most processes begin with requirements elicitation and
end with a product release. The most simple linear sequential model iterates
this route once, but e.g. the spiral and prototyping process models can iterate
any number of times.

Some process models lend themselves better to the use of formal methods
than others. It is beyond the scope of this work to perform an in-depth analysis,
but we can make some general statements about the use of formal methods,
and specifically diagnostics during software engineering. The cleanroom process
model in particular is well suited for this. The philosophy behind this is to write
incremental features right the first time, instead of relying on defect removal late
in the process. Formal methods can be easily integrated due to the modularity
of this process: each increment can be verified relatively independently before
being added to the complete system (see Figure 4.3).

Diagnostics have an important role within the formal design and verification
stages in each increment. A failure in a model check can be due to any of the
following:

• A mistake in the specification;

• A mistake during modelling of the system under investigation, e.g. inaccurate
modelling or incorrect use of abstraction (see below);

24

• An actual mistake in the system under investigation.

Given the generally accepted difficulty of applying formal methods, the first
two points are common occurrences during the formal modelling and verification
process. The model is often a strong simplification of the actual system, predom-
inantly due to the state space explosion problem. The model will therefore have
to be modified repeatedly, irrespective of whether the specification holds over
the actual system. In the cleanroom process flow, this gives rise to a feedback
loop between the “Formal Design” and “Correctness Verification” boxes. Only
the third point is the real merit of formal modelling, when an actual fault is dis-
covered in the design. How faults like these are handled depends on the process
flow that is used. In the cleanroom model, minimal effort is wasted because only
the abstract specification has to be modified, followed by a re-modelling and
re-verification. In other process flows, e.g. where the model has been distilled
from code, changes further back in the process are required, so that more effort
will be spent re-doing the later steps.

Diagnostics have been called the most valuable product of model checking. A
diagnostic produced by the model checker is much more easily understood than
the corresponding error occurring in a detailed simulation trace. These errors
are much more difficult to detect and diagnose either in simulation or in testing
the actual product [McMillan 94]. Without diagnostics, mistakes in the product
are very difficult to localise; after all, the only output of the model checker is a
single Boolean value. This issue continuously grows in importance, as modern
computers with more processing power allow larger and larger models to be
verified. Lacking diagnostics, users have to rely on techniques like abstraction
to cull the model and re-verify it, thereby learning whether the error was in
the abstracted part or the remainder. This back-and-forth process can be quite
costly in terms of time, even in simple cases where the model check takes no
longer than, say, 10 minutes.

Instead, a good diagnostic allows the user to immediately pinpoint the loca-
tion and nature of the error. This is no guarantee that an actual error (point
3 above) is easy to solve, but should make mistakes in the specification (point
1) much more obvious, and a decreased reliance on abstraction and other model
simplification techniques will also reduce the incidence of mistakes during mod-
elling (point 2). What makes a diagnostic “good” will be explicated in subsequent
chapters.

Abstraction Refinement

In industrial-size model checking cases, the state-space explosion problem is a
major difficulty. When the state space becomes unmanagably large, a potential
solution is the use of abstraction. Abstraction amounts to omitting or simplify-
ing sections of the model that are not relevant to verifying the property under
consideration. The result of this is a (possibly very large) reduction in size of
the state space, with obvious benefits.

25

The difficulty with abstraction is the decision which sections of the model can
be safely pruned, i.e. without changing the model check result. There are sev-
eral abstraction methods. Over-approximation progressively releases constraints,
leading to a larger state space, while under-approximation removes behaviour
from the original model. These may be used in conjunction with each other and
other abstraction methods.

Abstraction is often a manual process which requires significant insight into
the system model. An automated version of this process is called counterexample-
guided abstraction refinement [Clarke et al. 03]. This particular method begins
with a skeleton model, and computes increasingly accurate approximations of the
full model. It accomplishes this by extracting information from false negatives,
which are a result of the over-approximation. In case of a false negative, the
information contained in this so-called spurious counterexample is used to refine
the abstractions made.

Counterexample-guided abstraction refinement is an example where informa-
tion from the diagnostic is used to modify not the model or the specification, but
the level of abstraction. This is a valuable merit for any diagnostic, because of
the necessity of using abstraction for real-world models. Although the role of di-
agnostics for abstraction refinement will not be discussed in detail here, it should
be clear that certain types of diagnostic can be more useful in this regard than
others. In the next chapter, we will explore several classes of diagnostics, some of
which have a limited applicability in this area (such as linear paths) while others
carry specific information about the subsection of the model in which the failure
lies. Information from the diagnostic can then be used to refine the abstraction,
for example by expanding upon the failing state or section.

26

5 Classes of Diagnostics

5.1 Basic Properties of Diagnostics

We have seen that the goal of model checking is to determine whether a formula
encoding a property holds for the initial state of a transition system. Because
we are using Boolean equation systems, the result of this operation is encoded
as a Boolean fixpoint variable. A positive answer to the model check question
results in this variable getting the value true, and a negative answer will result
in false. To formalise this, say that we are verifying a mu-calculus specification
Φ = σX. ϕ over an LTS with initial state s0. Call the first BES variable result-
ing from this mapping X0. The model check theorem (Theorem 4.1) says that
the result of the model check is equivalent to the truth value of this variable:
s0 |= Φ⇐⇒ X0 = true.

When the automated model check tool returns its answer (true or false), its
job is essentially done. However, this result in and of itself is not very insightful
for the user. Especially given the LTS size of complex models, a single Boolean
outcome usually does little to help the user with development. What is needed
is a diagnostic, explaining how the tool arrived at the particular outcome. The
diagnostic can take on a variety of forms, depending on the requirements and
the methods used.

The end user is not concerned with the methods used to arrive at the yes
or no result. All the user needs to be aware of is the specification (expressed in
the mu-calculus or some other temporal logic) and the model (in the form of a
labelled transition system). Although Boolean equation systems are used as an
intermediate data structure by the tool, this need not and should not be relevant
to the user. Therefore, a diagnostic is preferred that is entirely in terms of the
mu-calculus specification and the LTS.

Counterexamples and Witnesses

Diagnostics come in two forms. In case the result of the model check operation
was positive (i.e. the property holds in the initial state of the LTS), this result
can be backed by a witness. In case the result was negative (i.e. the property
does not hold), it can be proven by a counterexample. Both forms are needed so
that the verification tool can fully motivate the outcome of the operation. We
will see that each class of diagnostic discussed here has this duality, so that the
same type of diagnostic can be used regardless of the model check outcome (this
holds as well for the type of diagnostic introduced in Chapter 7: The Diagnostic
Graph).

Explaining why a property Φ holds (using a witness) is equivalent to explain-
ing why property ¬Φ fails to hold (using a counterexample). This is thanks to
the fact that closed formulas in the mu-calculus are closed under negation.

Theorem 5.1 (Satisfiability of Negation). Given a model M and a mu-
calculus formula Φ, it holds that M 6|= Φ⇐⇒M |= ¬Φ. ut

27

For example, take the CTL formula EFϕ, “there exists a transition sequence lead-
ing to a ϕ-state.” If this property holds over an LTS, it can be demonstrated by
a witness, namely a particular transition sequence leading to a ϕ-state. As a sec-
ond example, take the formula AFϕ, “all transition sequences lead to a ϕ-state.”
If this property fails over the LTS, it can be demonstrated by a counterexample,
namely a transition sequence leading to deadlock or to a loop without reaching
a ϕ-state.

Now, take again the example AFϕ, but suppose this time the property holds.
What should be the witness in this case? The witness should convey that there
are no paths that do not lead to a ϕ-state. Trivially, we can return the subpart
of the transition system leading up to ϕ-states, but this subpart is potentially
very large and with a high degree of branching, so it will do little to further the
understanding of the user. The same goes for the existential example: if there
exist no paths, the counterexample is the entire transition system. This issue
arises in the mu-calculus as it does for CTL, although in the former there is no
such clear-cut distinction between universal and existential quantification.

Composition and Reduction

Usually, we are looking for a reduced or minimal diagnostic: one that is as concise
as possible in explaining the failure. On the other hand, we want the diagnostic
to be as complete as possible: it should fully explain the point(s) of failure in the
model. These conflicting goals are compounded by the fact that forcing either
may impact understandability. Furthermore, [Clarke et al. 95] show that for CTL
formulas, finding a minimal linear path satisfying a set of constraints is NP-hard,
so computing a minimal diagnostic may be computationally intractable.

If a disjunctive formula fails, each of its disjuncts necessarily fails, so we
are usually looking for an explanation for the failure of each disjunct. These
individual diagnostics combined can then be presented as a unified whole. In case
a conjunctive formula fails, we have the option of finding diagnostics for all its
failing conjuncts, or selecting a single one from them to further investigate. When
the emphasis is on minimal size, the latter is obviously preferred (this is indeed
the choice taken in Section 7.8: Reduced LTS Extraction). However, the decision
can also be made on the basis of user requirements, technical implementation of
the model checker and duration of the model check. For example, assume that
we want some property to hold each time a “request” action occurs. Because
this action occurs in several places in the transition system, a potential witness
has to show that the property holds for each occurrence in order to be complete.
However, this may be costly to compute, and the user may already be convinced
after seeing a diagnostic for one of the occurrences (for example because of
insight into the model; like knowing that all sections following a “request” are
homologous).

28

5.2 Linear Paths

Typically, a diagnostic is given in terms of states and transitions of the labelled
transistion system. In its simplest form, these are given as a linear (i.e. non-
branching) sequence1: a finite or infinite path through the LTS. In the case of
an infinite path, a finite representation is given.

A path π in an LTS T = 〈S, s0,L, δ〉 is of the form [s(0)
l0−→ s(1)

l1−→ · · · ln−1−−−→
s(n−1)] such that s(i) ∈ S, li ∈ L and 〈s(i), li, s(i+1)〉 ∈ δ for all 0 ≤ i < n. (The
subscript brackets are used to distinguish between states in S and states in the
sequence: s0 does not necessarily correspond to s(0)). Often, transition labels
are omitted, in which case the path can be written [s(0), s(1), . . . , s(n−1)]. The
notation π[i] is used to extract the (i+ 1)-th element from the sequence, so that
the first element s(0) has index 0.

The path π induces a labelled transition system Tπ, which forms a subpart
of the original LTS T , that is: those states, transitions and labels in T that also
occur in π are in Tπ. In the ideal case, the path itself is sufficient to disprove the
property, i.e. all information needed to disprove that T 6|= Φ is contained in π,
so that T 6|= Φ ⇐⇒ Tπ 6|= Φ. In this case, the path is known as a counterpath.

Example 5.2 (Counterpath). Let T be the LTS given below:

s0s1 s2a
b b

b

The property we wish to verify is Φ = µX. [L]X ∨ (νY. 〈a〉 true∧ [L]Y), which
expresses that “it will eventually be possible to always do an a-action.”

It is clear that the property fails over this LTS. This can be demonstrated
by the path π = [s0, s2, s2, . . .], because an a-action cannot be done for every
state π[i] for i ≥ 0. The path π is by itself sufficient to disprove Φ: we do not
have to consider states or transitions outside Tπ to show that T 6|= Φ. Thus π is
a counterpath. ut

The modal mu-calculus, but also CTL variants allow expression of comprehen-
sive, nested formulas, for which linear diagnostics are inadequate. This is illus-
trated by the following two examples.

Example 5.3 (Complex CTL Diagnostic). Consider the CTL formula
AFAXϕ, which expresses that in all paths, we will eventually meet a state whose
immediate successors all satisfy ϕ. A counterexample for this formula has to
show the existence of an infinite path such that every state in the path has at
least one immediate successor for which ¬ϕ holds. Thus, the path itself is not
sufficient: in addition, the diagnostic has to include the fact that each state in
this path has at least one ¬ϕ successor. ut
1 Some equivalent terms used in the literature are sequence, trace and (linear) path.

29

Example 5.4 (Insufficiency of Linear Path Diagnostic). This example is
due to ibid. Given the following labelled transition system:

s0 s1 s2

a

τ τ

a

Consider again the mu-calculus specification µX. [L]X ∨ (νY. 〈a〉 true∧ [L]Y).
This property fails over the given transition system, because it is possible to
continuously loop in s0, i.e. π = [s0

a−→ s0
a−→ . . .] This violates the least

fixpoint, causing the failure.

However, π by itself is not a complete counterexample. Consider the LTS Tπ
induced by π:

s0

a

The specification does not fail over this structure. To fully demonstrate the
failure, we also need to show that from each π[i] (i.e. s0), it is possible to go to
a state (namely, s1) in which an a-transition is not possible. We will return to
this example later on.

ut

The fragment of the mu-calculus that is guaranteed to admit counterpaths is
very weak. Linear temporal logics, such as LTL and the linear subset of the mu-
calculus (known as the Linear Time Mu-calculus LµTL) are known to admit
counterpaths. This is the case because linear formulas are model checked along
single paths. Counterpaths for these logics will in general be in the shape of a
lasso, i.e. of the form ϕψω [Clarke, Draghicescu 89]. For higher logics such as
ACTL, it becomes NP-hard to decide whether a given model check problem
admits a linear diagnostic and PSPACE-hard to recognise whether an arbitrary
formula admits a linear diagnostic [Buccafurri et al. 01]. This leads ibid. to
investigate the use of (ACTL) formula templates, instances of which are known
to induce counterpaths. Because ACTL ⊂ Lµ, it is clear that template methods
are inadequate as a general diagnostic because of their lacking coverage of the
full mu-calculus.

A path is easy to interpret, so users have come to rely on this form of diag-
nostic as a quick pointer to the general location of a problem. However, for the
reasons discussed, they are often insufficient to unambiguously identify the exact
source of the problem: the diagnostic path returned by a model checker is often
not a counterpath. Despite their limitations, the simplicty of linear path diagnos-
tics has led to relatively widespread implementation and continuing popularity,
for example in the SMV and FDR model checkers [McMillan 93]. They can often
be extracted from more complex diagnostics (as we will see in Section 7.7).

30

5.3 Branching Paths

The limitations of linear paths lead us to their natural extension, namely to
augment them with branching structure. The previous examples showed that it
can be necessary to consider further paths, starting from states in π, to show why
the specification does not hold in that state. The resulting tree is called a multi-
path, and has the original path π as its back-bone. This back-bone has branches
at appropriate points, which in turn can branch out further. Multi-paths model
nested paths in a labelled transition system.

Definition 5.5 (Multi-Path). Let T = 〈S, s0,L, δ〉 be a labelled transition
system.

• For every state s ∈ S, Π = [s] is a finite multi-path in T with origin
or(Π) = s;

• If Π0, Π1, . . . are countably infinitely many multi-paths in T and

〈or(Πi), li, or(Πi+1)〉 ∈ δ then Π = [Π0
l0−→ Π1

l1−→ . . .] is a multi-path in
S with origin or(Π) = or(Π0).

ut

As with paths, the notation Π[i] is used to extract the (i + 1)-th element from
the sequence, so that the first element has index 0. Also, labels are sometimes
omitted in the multi-path, so that it is written Π = [Π0, Π1, . . .]

Definition 5.6 (Main Path). For any multi-path Π, the main path of Π =

Π0
l0−→ Π1

l1−→ . . ., denoted main(Π), is:

• s if Π = s;

• The path [or(Π[0])
l0−→ or(Π[1])

l1−→ . . .] otherwise.
ut

Note that the main path of a multi-path corresponds to the linear paths we
reviewed in the previous section.

Example 5.7 (Multi-path). Assuming a suitable model, the diagram in Fig-

ure 5.1 represents a multi-path with main sequence π0 = [s0
a−→ s2

b−→ s0
a−→

s2
b−→ . . .] on the right side in bold, and paths π1 = [s0

c−→ s1
d−→ s1

d−→ . . .]

branching off at every even index. The complete multi-path Π = [π1
a−→ s2

b−→
π1

a−→ s2 . . .] ut

Multi-paths are in principle sufficiently expressive to serve as a diagnostic for the
entire modal mu-calculus. To see this, note that Lµ has the tree model property :
if a formula has a model, it has a (potentially infinite) model that is in the
shape of a tree1. We have also seen that, if a model does not satisfy a property

1 Just unroll the original model (see below for an explanation of unrolling), thereby
preserving bisimulation [Bradfield, Stirling 06].

31

s0

s2

s0

s2

s0

s2

s1

s1

s1 s1

s1

s1 s1

· · ·

· · · · · · · · ·

c

d

d

d

a

b

a

b

a

b

c

d

d

d

c

d

Fig. 5.1. Multi-path for Example 5.7. The main path is indicated in bold.

Φ, it satisfies its negation (Theorem 5.1). Let us assume that our model fails the
specification, i.e. T 6|= Φ. We are looking for a counterexample, in this setting
a multi-path, which demonstrates that T |= ¬Φ. The tree model property says
that ¬Φ will be satisfied by a model in the form of a tree T ′ which is a subset
of the original model. This tree can be directly interpreted as a multi-path.

Example 5.8 (Multi-Path as Counterexample). Reconsider the LTS and
specification from Example 5.4. A multi-path demonstrating the failure is Π =
[[s0, s1], [s0, s1], . . .] The branches [s0, s1] demonstrate the failure of the sub-
formula νY. . . in state s1. The main sequence shows that the least fixpoint is
violated. Thus, the multi-path Π is a complete counterexample. ut

For ACTL, a symbolic, inductive definition of multi-path counterexamples is
given by [Buccafurri et al. 01]. However, this method is only applicable to a
subset of Lµ ∩ACTL according to a set of templates. It is not clear how this
can be extended to the entire mu-calculus, because not all formulas will exhibit
the “neat” nesting structure of ACTL.

Furthermore, a difficulty with multi-path diagnostics is their interpretation.
As we have seen earlier, linear path diagnostics are generally easy to understand
when they are applicable. Multi-paths form an extension of linear paths where
these are not sufficient. This means that the main sequence in the multi-path
can only be understood as part of the whole multi-path, and not independently
as with a linear path. The multi-paths in examples 5.7 and 5.8 give pause for
thought, but if the branches of the main sequence have a nested branching struc-
ture, any intuitive understanding that the user may obtain from the diagnostic
is lost.

32

5.4 Labelled Transition Systems

The idea to return a labelled transition system as a diagnostic is closely related to
that of branching trees. In fact, an infinite multi-path as defined in the previous
section can be straightforwardly and efficiently generated from an LTS using an
“unrolling” process. Colloquially, this works as follows: suppose one begins in
state s0. The possible transitions from this state to other states si, . . . , sj are
added to a tree as branches s0 → si, . . . , s0 → sj . The process is then repeated
for the newly added states. A single state may thus be repeated multiple times
in the tree, so a self-loop in the LTS results in an infinite branch in the tree
s→ s→ . . .

Example 5.9 (Unfolding). The multi-path in Example 5.7 can be created by
unfolding the following LTS:

s0 s1

s2

c

a

d

b

ut

The sufficiency of this form of diagnostic is demonstrated by observing that the
original model can always serve as a diagnostic—albeit not a very useful one.
Ideally, the diagnostic would be a minimised version of the original LTS that
violates the specification: the only requirement is that failure or success of the
minimised LTS implies, respectively, failure or success of the original.

Definition 5.10 (Validity of Reduced LTS). Let Φ be a temporal logic spec-
ification, and let Tr be the reduced or minimised counterpart to T with respect
to the specification Φ. Then T |= Φ⇐⇒ Tr |= Φ. ut

[Clarke et al. 02] give a symbolic algorithm for generating ACTL counterex-
amples and ECTL witnesses. This algorithm returns what they call “tree-like”
diagnostics: those labelled transition systems that can be obtained by glueing
finite cycles to leaves of a tree and glueing finite trees to vertices in the cycles.
The fact that this form of counterexamples is complete for ACTL is due to the
“neat” nesting of temporal operators.

Colloquially, the method works as follows. Assume that the model check
failed. By virtue of Theorem 5.1, it is known that the model satisfies the negated
formula, so this negated formula can be used as a proof for the outcome of
the model check. Therefore, the specification is negated and the negation is
worked inwards using equalities (e.g. ¬AGx = EF¬x). The authors then show
that models for these formulas are of a tree-like form.

33

Example 5.11 (Tree-Like ACTL Counterexample). Assume that the ACTL
specification Φ = AF(¬P ∧ AX¬Q) fails on a model M. Then a counterexample
for this model check problem is a labelled transition system that is a model of
¬Φ = EG(P ∨EXQ), an outline of which is shown below. The grey box indicates
the section pertaining to the outer EG formula and the dashed boxes pertain to
the inner EX subformula. Note that this LTS is “tree-like.”

P

P

Q Q

ut

The computation of a counterexample for a formula Φ may be reduced to that of
violated subformulas of Φ. This is demonstrated for an extension of ACTL, and
an algorithm for computing the counterexample is given in ibid. This algorithm
is not guaranteed to deliver minimal diagnostics, and in general, minimising the
size of these counterexamples is NP-hard [Clarke et al. 95].

As with the multi-path algorithm discussed in the previous section, it is not
immediately clear how the method here can be extended to cover the entire mu-
calculus. The mu-calculus does not exhibit the neat nesting structure of ACTL,
for example in alternating fixpoint formulas. However, this does not imply that
this class of diagnostic is not viable for the mu-calculus, only that the resulting
reduced transistion systems will not necessarily be tree-like.

The use of labelled transition systems as diagnostic, reduced in some way
to focus on the source of the failure, are an improvement over the branching
paths introduced in the previous section, mostly because they are more concise
and therefore easier to interpret. Although a symbolic algorithm for Lµ is not
available, this class of diagnostic is provided as a feature of the diagnostic method
developed in Chapter 7 (see Section 7.8).

5.5 Tableaux Proofs

A requirement of any diagnostic is that it serves as a mathematically rigorous
proof of failure. In the previous forms of diagnostic we have studied, the proof is
only given as an end result: as a path or structure upon which the specification
can be seen to fail. To see that the specification does indeed fail, we essentially
need to repeat the model checking process on the returned diagnostic. The di-
agnostic is thus not as much a “proof” as it is an exemplar of failure in the
model.

34

Proof-based diagnostics, on the other hand, use the semantics of the mu-
calculus to arrive at a detailed, step-by-step proof structure. A proof of this
sort is generated by applying derivational rules in the form of tableaux to the
negation of the specification ¬Φ. Because the verification of the specification
failed, its negation holds, and furthermore this is justified because every step of
the derivation is explicit.

Below, we reproduce a set of rules for Lµ, modified for simplicity from [Stir-
ling, Walker 89]. (Note that a variety of rule-sets exist, e.g. for CTL [Gurfinkel,
Chechik 03] and the negation-free [Dong, Ramakrishnan, Smolka 03] and full
Lµ [Cleaveland 90].) The proof rules operate on sequents of the form s |=M∆ ϕ,
which are proof-theoretic analogues of s ∈ [[ϕ]] TV . The satisfaction relation is
defined relative to a model M and an environment ∆ (not related to a Boolean
equation system environment). The function of ∆ is to keep track of fixpoint
expansion, so that fixpoint operators are not infinitely recursed resulting in an
infinite tableau. This will be further explained below. The superscript M may
be omitted for readability.

Tableaux-based derivation proceeds top-down, and accordingly, the rules are
written with conclusions appearing above premises, and are of the form:

(name)
s |=M∆ Φ

s1 |=M∆ Φ1 · · · sn |=M∆ Φn

C

where n ≥ 1 and C is a Boolean condition. The rule is only applicable if the
condition holds.

Axioms

(prop)
s |=∆ P

s ∈ V(P) (nprop)
s |=∆ ¬P

s 6∈ V(P)

(infrecurs)
s |=∆ νX.Φ

〈s, νX. Φ〉 ∈ ∆

Basic Logic

(doubleneg)
s |=∆ ¬¬Φ

s |=∆ Φ
(and)

s |=∆ Φ ∧ Ψ

s |=∆ Φ s |=∆ Ψ

(nand1)
s |=∆ ¬(Φ ∧ Ψ)

s |=∆ ¬Φ
(nand2)

s |=∆ ¬(Φ ∧ Ψ)

s |=∆ ¬Ψ

35

Modal Operators

(box)
s |=∆ [a]Φ

s1 |=∆ Φ s2 |=∆ Φ . . .
∀s a−→ si (diamond)

s |=∆ 〈a〉Φ

s′ |=∆ ¬Φ
∃s a−→ s′

Fixpoint Operators

(maxunroll)
s |=∆ νX.Φ

s |=∆′ Φ[νX. Φ/X]
〈s, νX. ϕ〉 6∈ ∆ with ∆′ = ∇∪ 〈s, νX.Φ〉

(minunroll)
s |=∆ µX.Φ

s |=∆′ Φ[µX. Φ/X]
〈s, µX. ϕ〉 6∈ ∆ with ∆′ = ∇∪ 〈s, µX.Φ〉

where ∇ = ∆− {〈s′, ϕ〉 | σX. Φ ≺ ϕ}

Fig. 5.2. Tableau rules for Lµ.

The axioms (prop), (nprop) say that a state satisfies an atomic proposition if
and only if it occurs in the valuation of P . Rule (infrecurs) says that a maximal
fixpoint is satisfied when it is evaluated for a second time in the same state, i.e.
it is possible to recurse forever. Note that a fourth “axiom” is rule (box) when
no applicable outgoing transitions exist.

The logic rules are self-explanatory (negations can be worked inwards onto
atomic propositions Q). Rules (box) and (diamond) describe the modal opera-
tors. Finally, (maxunroll) and (minunroll) describe the expansion of fixpoint
operators, which say that νX.ϕ is satisfied in state s if ϕ is satsfied in that
state, where all occurrences of X in ϕ are prepended by a fixpoint operator.
This method of syntactic expansion (also unrolling or unfolding) is a simple yet
effective method to iteratively describe the semantics of fixpoint operators. Note
that ¬νX.ϕ(X) = µX.¬ϕ(¬X), so that a rule for dealing with minimal fixpoints
is redundant and can be derived from the others.

We are now in a position to detail the environment ∆. The environment is
a set of state-formula tuples 〈s, σX. ϕ〉 which encode the fact that fixpoint X
has been unrolled in state s. Recursion through a fixpoint in the same state is a
stopping condition, per rules (infrecurs), (maxunroll) and (minunroll). Note
the use of the set ∇, which removes those tuples from the set where the current
formula (in the premiss) occurs as a subformula. This is important to capture
that recursion in some inner fixpoint is interrupted by recursion of the outer.
(An example of this can be seen later, in Section 5.9). Removing formulas from
the environment is called discharging.

36

A proof tree is called a tableau when it is maximal, that is, when no rules
apply to sequents in leafs of the tree. A tableau is successful if the last rule
applied in all leafs is an axiom. Every proof tree is of finite depth due the fact
that fixpoint expansion is kept track of in the environment ∆, so that it can be
used as a stopping condition.

Theorem 5.12 (Soundness and Completeness). s |=M Φ has a successful
tableau if and only if s ∈ [[Φ]] TV . ut

Theorem 5.13 (Finite Proof). Every proof tree for s |=M Φ is finite. ut

Subformulas are explictly named in every sequent of the tableau. The derivation
rules follow closely the semantics of the mu-calculus, and are are in themselves
very easy to understand. Combined with step-by-step derivation, this makes
tableaux-based diagnostics insightful to the user and in principle allow a fault
to be traced quickly and accurately to its origin.

The downside to the tableaux method is its limited applicability to model
checking using Boolean equation systems. Generating a proof tree is a model
checking operation in itself. It is difficult to re-use the results from the model
check using Boolean equation systems. Although the annotations that we will
introduce later on the BES should make this a little easier, the differences in
method between tableaux-based and BES-based model checking stand in the way
of somehow unifying the two. However, we will see later that the two methods do
share a common structure, and that it is possible to reproduce the advantages
of the tableaux-based method.

5.6 Interactive Parity Games

We have seen that the model checking process can be carried out using a variety
of methods. Parity games form one such method, and can be seen to offer some
advantages over the use of Boolean equation systems. The size of an equation
system can blow up exponentially in the number of variables involved during
solving when using Gauß Elimination (see [Mader 96, section 6.4.2]). In addition,
BES semantics can be hard to understand. Parity games use a graph structure
which allows more insight into the problem and usage of additional algorithms.
The complexity of solving the model checking problem is still exponential (using
algorithms known at the time of writing).

We will first briefly review the way in which parity games allow us to solve the
model checking problem. A parity game is played by two players on a directed
graph. The players are often known as Odd and Even, and each player owns a
set of vertices in the graph. A player does a step in the game if a token is on a
vertex owned by that player. A play, denoted π, is a finite or infinite sequence
of steps. Finally, a priority function assigns a natural number to each vertex.

Definition 5.14 (Parity Game). A parity game is a four-tuple Γ = 〈V,E, p,
〈VEven, VOdd〉〉 where 〈V,E〉 is a directed graph with vertices V and total edge
relation E, p : V → N is a priority function, and 〈VEven, VOdd〉 is a partitioning
of V . ut

37

A play is won by player Even if the highest1 priority occuring infinitely often
in a play π is even, and dually for player Odd. A strategy for a player is a
partial function ψPlayer : V ∗VPlayer 7→ V that decides the vertex the token is
played to based on the history of the vertices that has been visited2. A strategy
is winning for a player from set W ⊆ V if every play starting from a vertex
in W , given Player’s strategy, is winning for that player. It is well-known that
for winning strategies, it suffices to look at history-free strategies, i.e. strategies
ψPlayer : VPlayer 7→ V in which a vertex always gets the same successor, independent
of the path by which it was reached.

Parity games correspond to Boolean equation system in simple recursive form
(see Definition 3.9 and 3.10). We can construct a parity game from a Boolean
equation system by constructing its dependency graph: the game graph is the
dependency graph for the equation system with a number of extensions.

Definition 5.15 (Parity Game from BES). Let E be a Boolean equation
system in simple recursive form and let 〈V, ∆〉 be its dependency graph.
The corresponding parity game graph ΓE = 〈V,E, p, 〈VEven, VOdd〉〉 is given by:

• E = ∆;

• p(Xi) = rankE(Xi) for all bound variables in E;

• VOdd = {Xi | fi = ϕ ∧ . . . ∧ ψ}, so all conjuctive equations are assigned to
player Odd;

• VEven = V \ VOdd, so all other equations are assigned to player Even.
ut

Parity games are equivalent to Boolean equation systems, in the sense that both
methods can be used to solve the model check problem. The following theorem
formally establishes this equivalence [Mader 96, Theorem 8.7]; as a result, we
can conclude that M |= Φ if and only if player Even has a winning strategy for
the corresponding game.

Theorem 5.16 (Equivalence Between BES and Game). Player Even has
a winning strategy for the game on ΓE with initial vertex X0 if and only if
([[E]] η)(X0) = true. ut

To illustrate the equivalence between an (alternating) Boolean equation system
and a parity game, Figure 5.3 shows a BES and its game graph side-by-side.

Parity games have been introduced as a method for solving the model check
problem. The gamelike nature of this method gives rise to an interactive form
of diagnostic. Observe that the model check tool always has a winning strategy,
regardless of whether the outcome of the model check is positive or negative: in
the latter case, it will have a strategy for player Odd, otherwise for Even. This

1 This is the typical definition for max-parity games, for min-parity games replace
highest with lowest [Keiren 09].

2 Where * is the Kleene star.

38

µX = X ∧X ′
µX ′ = Y ∨ Z
νY = W ∨ Y ′
νY ′ = X ∧ Y
µZ = Z ′

µZ ′ = Z ′

µW = Z ∨ (Z ∨W)

1X

1X ′

2 Y

2 Y ′

3

Z
3Z ′ 3 W

Legend.
Odd Even

Fig. 5.3. An example BES and its corresponding parity game.

follows from Theorem 5.16 and Theorem 4.1: M |= Φ ⇔ Even has a winning
strategy. The player playing against the tool is thus destined to lose, but reaching
a configuration that is winning for the tool may take any number of moves (see
Figure 5.5: Winning Conditions).

A diagnostic of this form is thus a play π between the computer (the model
check tool) and the user. The user was expecting the opposite outcome from the
tool, and is thus convinced to be able to beat the tool. But of course, every time
the user makes a move, the existence of the winning strategy for the tool ensures
that it can make an appropriate countermove.

Each vertex in the play corresponds to a bound variable in the Boolean
equation system. Therefore, each vertex corresponds to a state in the model
and a subformula of the specification. (We shall have more to say about these
correspondences in Section 5.9.) The play generally starts in the initial vertex
X0, associated with the initial LTS state s0 and specification Φ. For readability,
vertices will be denoted by their corresponding state and subformula.

The interactive nature of the diagnostic allows the user to steer the process
by following a certain path in the transition system. This allows the user to
apply domain knowledge of the model to limit the size and complexity of the
diagnostic. Also, in combination with a suitable tool, an (initial) section of the
game may be fully automated, releasing control of the losing player to the user
when a section of interest is reached.

Depending on the outcome of the model check operation, the tool chooses
whether it will play for player Even (the model check was successful) or player
Odd (the model check failed). The user may make the moves for the other player.
Suppose the token is currently on vertex vi corresponding to 〈si, ϕi〉. Depend-
ing on the form of ϕi, a fixpoint may need to be unwound, which is when an
expression of the form σX.ψ is unwound to ψ. In this case, there are no choices,
and it is said that the “referee” moves (by unwinding the fixpoint). Recall that
conjunctive equations are assigned to player Odd. When a token is on a vertex
owned by Odd, we know that the corresponding formula was ϕ ∧ ψ. Odd is thus

39

• If ϕi = ψ1 ∧ ψ2 then Odd chooses ϕi+1 to be either ψ1 or ψ2, and s(i+1) is s(i);

• If ϕi = ψ1 ∨ ψ2 then Even chooses ϕi+1 to be either ψ1 or ψ2, and s(i+1) is s(i);

• If ϕi = [R]ψ then Odd chooses a transition s(i)
a−→ s(i+1) with a ∈ R and ϕi+1 is

ψ;

• If ϕi = 〈R〉ψ then Even chooses a transition s(i)
a−→ s(i+1) with a ∈ R and ϕi+1 is

ψ;

• If ϕi = σX. ψ then ϕi+1 is X and s(i+1) is s(i);

• If ϕi = X and X is bound by σX. ψ then ϕi+1 is ψ and s(i+1) is s(i).

Fig. 5.4. Rules for the next move.

Odd wins.

• The play is 〈s(0), ϕ0〉 · · · 〈s(n), ϕn〉 and ϕn = false;

• The play is 〈s(0), ϕ0〉 · · · 〈s(n), ϕn〉 and ϕn = 〈R〉ψ and ¬∃s : s(n)
a−→ s for a ∈ R;

• The play 〈s(0), ϕ0〉 · · · 〈s(n), ϕn〉 · · · has infinite length and the unique variable X
which occurs infinitely often identifies a least fixed point subformula µX. ψ.

Even wins.

• The play is 〈s(0), ϕ0〉 · · · 〈s(n), ϕn〉 and ϕn = true;

• The play is 〈s(0), ϕ0〉 · · · 〈s(n), ϕn〉 and ϕn = [R]ψ and ¬∃s : s(n)
a−→ s for a ∈ R;

• The play 〈s(0), ϕ0〉 · · · 〈s(n), ϕn〉 · · · has infinite length and the unique variable X
which occurs infinitely often identifies a greatest fixed point subformula νX. ψ.

Fig. 5.5. Winning conditions.

offered the choice between moving to the vertex corresponding to ϕ or the vertex
for ψ. The same goes for a formula of the form [a]ϕ. Complementary to this,
player Even gets to choose between disjunctive terms and transitions for 〈a〉ϕ.
The complete set of rules is given in Figure 5.4.

Interactive game diagnostics have been implemented in the Edinburgh Concur-
rency Workbench (ECW) [Stevens, Stirling 98]. The process proceeds as de-
scribed above, with the addition of a terminating condition when the same con-
figuration is entered for a second time. This prevents the user from having to
evaluate infinite paths. For illustration, we repeat an example offered by ibid.

Example 5.17 (Interactive Game-Based Diagnostic). The following is an
abbreviated dialogue between a user and the Edinburgh Concurrency Work-
bench. The labelled transition system is given below, and the property we wish
to verify is νX.µY.(P ∧〈L〉X)∨〈L〉Y , i.e. “there is some path on which P holds
infinitely often,” where P = 〈a〉 true∧ [a] false, i.e. “a is the only action possible.”

40

A

BC D

a
a

a

c b

b

The user may have made an error in the model, where a transition D
b−→ A was

intended instead of D
b−→ B. In addition, the user likely has a path in mind, for

instance always following a b transition when possible, and expecting P to be
true only at A. The following game against the tool may ensue (this is verbatim,
with the exception of markup and omitted pause messages at each referee move):

Would you like to play (and lose!) a game against the CWB? (y or n) y

The CWB will choose Odd’s moves. You can choose Even’s.

1. Current position: 〈A,X〉
The referee unwinds the fixpoint.

2. Current position: 〈A, Y 〉
The referee unwinds the fixpoint.

3. Current position: 〈A, (〈a〉 true ∧ [a] false ∧ 〈L〉X) ∨ 〈L〉Y 〉
Your turn (playing Even)

1. 〈A, 〈a〉 true ∧ [a] false ∧ 〈L〉X〉
2. 〈A, 〈L〉Y 〉
Which move? 1

4. Current position: 〈A, 〈a〉 true ∧ [a] false ∧ 〈L〉X〉
CWB’s turn (playing Odd)

5. Current position: 〈A, 〈L〉X〉
Your turn (playing Even)

1. 〈B,X〉
Which move? 1

6. Current position: 〈B,X〉
The referee unwinds the fixpoint.

7. Current position: 〈B, Y 〉
The referee unwinds the fixpoint.

8. Current position: 〈B, (〈a〉 true ∧ [a] false ∧ 〈L〉X) ∨ 〈L〉Y 〉
Your turn (playing Even)

1. 〈B, 〈a〉 true ∧ [a] false ∧ 〈L〉X〉
2. 〈B, 〈L〉Y 〉

41

Which move? 2

9. Current position: 〈B, 〈L〉Y 〉
Your turn (playing Even)
1. 〈D,Y 〉
2. 〈C, Y 〉
Which move? 1

10. Current position: 〈D,Y 〉
The referee unwinds the fixpoint.

11. Current position: 〈D, (〈a〉 true ∧ [a] false ∧ 〈L〉X) ∨ 〈L〉Y 〉
Your turn (playing Even)
1. 〈D, 〈a〉 true ∧ [a] false ∧ 〈L〉X〉
2. 〈D, 〈L〉Y 〉
Which move? 2

12. Current position: 〈D, 〈L〉Y 〉
Your turn (playing Even)
1. 〈B, Y 〉
Which move? 1

13. Current position: 〈B, Y 〉
The CWB (playing Odd) won, because of a repeat

Another game? (y or n) n

ut

5.7 Extended Boolean Graphs

The use of Boolean equation systems can be taken as central to the generation
of a diagnostic. We have already seen how the dependencies between variables
in an equation system provide a basis for the justification of the model check
outcome. The present diagnostic method is also based on revealing these inter-
dependencies, by removing superfluous information from the BES. The result is
a dependency graph with as few edges as possible, which captures the minimum
set of dependent variables that are “responsible” for the outcome.

In case of a diagnostic for a variable X, we are looking for a subset E ′ of the
Boolean equation system E under the condition that by solving E ′ we obtain the
same value for X as by solving E . Note that E ′ may be open (i.e. containing free
variables) even if E was closed. To make sure that the value for X is consistent,
it should not depend on the environment of E ′ (where one such environment is
that imposed by E , which assigns truth values to variables that are free in E ′
but were bound in E). A Boolean equation system that meets this condition is
called solution-closed.

[Mateescu 00] extends the notion of a dependency graph with a conjuc-
tive/disjunctive vertex labelling and a frontier , which is the set of vertices to
which new edges may be added when the graph is embedded in another graph.
The frontier corresponds to free variables in E ’.

42

Definition 5.18 (Extended Dependency Graph). Let E be a Boolean equa-
tion system in simple form. The extended dependency graph of E is a tuple
GE = 〈V,E,L, F 〉 where V is the set of vertices, E ⊆ V × V is the set of edges,
L : V 7→ {∧,∨} is the vertex labelling and F ⊆ V is the frontier. V corresponds
to variables in the equation system and E to dependencies between them as in a
normal dependency graph (see Definition 3.12). L(true) = ∧ and L(false) = ∨.

ut

Note that ibid. foregoes labelling the vertices with their fixpoint operator {µ, ν}
because his exposition only considers alternation-free equation systems. The fol-
lowing therefore applies only to alternation-free equation systems. For simplicity,
BES are assumed to be in simple form.

The extended dependency graph of a solution-closed BES will also be called
solution-closed. We can use the graph to determine whether its corresponding
BES is solution-closed, by looking at vertices in its frontier:

Theorem 5.19 (Solution-Closed Extended Dependency Graph). An Ex-
tended Dependency Graph is solution-closed if and only if (1) all conjuctive ver-
tices in its frontier are false, and (2) all disjunctive vertices in its frontier are
true. ut

An extended dependency graph GE induces an LTS TE such that each bound
variable is a state, the transition relation is the dependency relation between
variables, and transitions are not explicitly labelled. We can use this LTS to
characterise the solution of the Boolean equation system using the following
formulas:

Definition 5.20 (Example and Counterexample formulas). The follow-
ing formulas are called, respectively, example formula and counterexample for-
mula:

Ex = µX.(P∨ ∧ 〈L〉X) ∨ (P∧ ∧ [L]X)
Cx = νX.(P∨ ∧ [L]X) ∨ (P∧ ∧ 〈L〉X)

where s |= Pop ⇐⇒ L(s) = op ut

The satisfiability of these formulas on the induced LTS TE is equivalent to the
outcome of the model check operation:

Theorem 5.21 (Characterisation of BES Solution). Let E be a closed
Boolean equation system and let TE be its associated LTS. Then [[E]] (Xi) = true
⇐⇒ Xi |=TE Ex for all left-hand side variables (or states) Xi. ut

We can now use Extended dependency graphs to reason about diagnostics, in-
stead of the Boolean equation systems they are derived from.

43

Example 5.22 (Extended Dependency Graph Diagnostic). Consider the
following closed Boolean equation system and its Extended dependency graph:

µX0 = X1 ∧X4

µX1 = X2 ∨X3 ∨X5

µX2 = X0 ∧X1

µX3 = true
µX4 = X1 ∨X3 ∨X7

µX5 = X6 ∨X9

µX6 = X3 ∧X7

µX7 = X3 ∧X8

µX8 = X4 ∧X6 ∧X9

µX9 = false

X0

X2 X1

X4

X3 X6 X5 X9

X7 X8

Legend. Variables in the left dashed box are
true while those in the right box are false.

Conj. Disj.

A potential diagnostic showing why X0 is true (i.e. a witness for X0) is the sub-
system in the left dashed box, consisting of the vertices {X0, . . . , X4}. Similarly, a
counterexample for X5 showing why it is false could be the subsystem in the right
box, formed by the vertices {X5, . . . , X9}. These two subsystems can be solved
independently and the truth value obtained for X0 and X5 would be the same.
Another potential diagnostic for X0 is the subsystem {X0, . . . , X4, X6, X7, X8}.
Note that all mentioned subsystems meet the conditions for solution-closedness.

ut

From the previous example, it is clear that minimal diagnostics are preferred.
Minimality is defined with respect to a subgraph relation, and thus (via the
number of vertices) with respect to the number of bound variables in the cor-
responding equation system. This notion is formalised below for witnesses; the
dual for counterexamples (i.e. in case [[E]] (X) = false) is obtained by replacing
disjunction with conjunction.

Definition 5.23 (Minimal Witness Diagnostic). Let E be a Boolean equa-
tion system and let GE = 〈V,E, L, F 〉 be a diagnostic for X ∈ V . Then GE is
minimal if and only if the following conditions hold:

• [[E]] (X) = true (i.e. the diagnostic is a witness);

• All disjunctive vertices in V have exactly 1 outgoing edge;

44

• All vertices in V are reachable from X;

• The frontier F contains only disjunctive vertices.

ut

The definition of a minimal diagnostic in this context is similar to a parity
game diagnostic. The last requirement in particular is important. Recall that
disjunctive vertices in the dependency graph are assigned to player Even. In
the given case (where the diagnostic is a witness), player Even is controlled by
the model checker, and tasked with preventing the token from reaching a false
vertex. This is easy, because as per the second requirement above, there is always
precisely one outgoing edge, which will lead to a true vertex. It is in the interest
of player Odd to try to reach a false vertex. The only way Odd is able to do
this, is by choosing an edge that will lead outside of V . But all vertices in V
with outgoing edges to false vertices are in the frontier. If we require that no
conjunctive vertices may be in the frontier, we take away any possibility for Odd
to foul the play. The definition of minimality above thus implies the existence of
a winning strategy for the model checker on the “game graph” GE (playing Even
in case of a witness, and Odd in case of a counterexample).

Extended dependency graphs form a compact and easy to interpret class of di-
agnostic. However, as outlined in the requirements earlier, the user is only aware
of the transition system and specification, and need not be concerned with the
use by the tool of Boolean equation systems. This does not mean that Extended
dependency graphs cannot be used as the underlying formalism for diagnostics,
but an additional presentational layer should output the diagnostic in a way
that is more familiar to the user. In the CADP toolset, where this type of diag-
nostic is implemented, diagnostics can be returned in the form of an Extended
boolean (sub)graph or the labelled transition system TE it induces [Mateescu
06]. However, this LTS turns out not to be always valid, i.e. Definition 5.10 may
be violated, depending on the search strategy used. This seems to indicate a bug
in this version of the toolset (bcg open v1.5).

More importantly, the core theorems above are only applicable to the alternation-
free segment of the mu-calculus. The use of alternation is essential to the powerful
expressive power of Lµ, so providing diagnostics for the entire calculus is a hard
requirement, placing this class of diagnostic at a serious disadvantage.

5.8 Support Sets

Support sets were introduced by [Tan, Cleaveland 02] and are tailored to model
checking using Boolean equation systems. The purpose of a support set is to
function as a type of generic evidence-collecting data structure that may be
used by model checkers of various types. This evidence may then be used post-
hoc as a basis for a user-presentable diagnostic, or to verify (certify) the model
checking result.

45

The basic idea is to define a support set for one or more left-hand side vari-
ables in the BES. A support set contains information that can be used to support
the truth value the model checker found for that variable. In particular, the set
supports the outcome of that variable in terms of other variables. For example, a
support set for fixpoint variable X contains an environment Ξ(X), such that the
interpretation of X under this environment is equal to the value which resulted
from solving the BES, i.e. [[X]] (Ξ(X)) = [[E]] (X).

Definition 5.24 (Support Set). Let E be a closed Boolean equation system
with X = lhs(E), X ∈ X and r ∈ {0, 1} is the truth value of X (resp. false, true).
Then a support set for r and X is a tuple Γ = 〈r,X,Ξ〉 where Ξ : X 7→ P(X)
is a partial function such that Ξ(X) is defined. Furthermore, for each Xi where
Ξ(Xi) is defined, the following properties hold:

• Direct Inference: [[fi]] (Ξ(Xi)) = r, i.e. under the interpretation Ξ(Xi), fi
evaluates to r, the Boolean result of the support set;

• Inclusion: If (Ξ(Xi))(Xj) = r then Ξ(Xj) is defined, i.e. all variables on

which Xi depends are in the domain of Ξ. The notation Xi
Γ−→ Xj means

(Ξ(Xi))(Xj) = r;

• Circularity Restriction: If there exists a circular dependency ρ = Xi
Γ−→

· · · Γ−→ Xi and Xj is the shallowest variable on ρ, then r = 1⇒ σj = ν and
r = 0⇒ σj = µ.

ut

A support set may be reduced or minimised, so that it holds no extraneous infor-
mation. A minimised support set is similar to a minimised Extended dependency
graph (but recall that EDGs are defined only for alternation-free equation sys-
tems in simple form). Assume a support set for Xi. The reachability condition
for EBGs is translated to the requirement that all variables in the environment
Ξ must affect Xi. In case the model check result was positive, all disjunctive
vertices in a minimised EGB have only one outgoing edge (dually for conjunctive
vertices in case the result was negative). This is translated to a requirement on
the size of the environment, namely that |Ξ(Xi)| = 1 for disjunctive fi (dually
conjunctive).

The final requirement is on the frontier of the EBG. Recall that the frontier
contains those vertices with free variables, including variables that have become
free due to the fact that the minimisation process eliminated their binding equa-
tions. This requirement is not explicitly formulated for support sets, but follows
from the definition. For EBGs, the requirement was that all vertices in the
frontier are disjunctive for a positive model check result. This translates to the
following. Assume a positive model check result (r = 1). Then for every variable
Xi in the domain of Ξ that has free right-hand side variables, its equation fi
is disjunctive. If the converse were true, the variable Xi would be conjunctive,
meaning that all its conjuncts also have r = 1 (otherwise it would itself not be
true). This implies that the environment Ξ would then also be defined for all

46

conjuncts (per the first and second point in the definition), so that Xi is not in
the frontier.

In the next section, we will see that the use of a graph as a common data
structure lies closer to the various individual methods. The use of an “abstract
proof structure” like support sets is an alternative, but more limited and some-
what contrived manner of performing the same function.

5.9 Correspondences between Classes

In this section, we will highlight the correspondences between different classes
of diagnostics studied in the sections above. To formalise these correspondences,
we will need the concept of a mu-calculus dependency, which will be introduced
first.

Mu-Calculus Dependencies

Mu-calculus dependencies describe the nesting structure of mu-calculus formulas.
As an introduction, consider propositional logic, and the equation ϕ = ψ1∨ . . .∨
ψn. The value for ϕ can be seen to depend upon the values for ψ1 . . . ψn. This
simple notion of dependency can be formalised as follows.

Definition 5.25 (Propositional Logic Dependency). The dependency set
of a propositional logic formula ϕ is the minimal set ⊆ Lp × Lp (where Lp
indicates propositional logic) that fulfills the following conditions. The notation
ϕ ψ will be used for 〈ϕ, ψ〉 ∈ . The dependency set of ϕ is given by ϕ

• If ϕ = ψ1 ∧ . . . ∧ ψn then ϕ ψi for all 1 ≤ i ≤ n;

• If ϕ = ψ1 ∨ . . . ∨ ψn then ϕ ψi for all 1 ≤ i ≤ n. ut

The transitive closure of the dependency relation is denoted +, and is the
set union of all transitive dependencies of a formula ϕ. For example, if the
dependency set of ϕ is {〈ϕ, ψ〉} and the dependency set of ψ is {〈ψ, ξ〉} then
ϕ += {〈ϕ, ψ〉, 〈ψ, ξ〉}.

The definition of dependencies can be extended to the mu-calculus in much
the same way. A complication here is the recursion that is inherent to the mu-
calculus. Recursion to a fixpoint results in a cyclic dependency, but there are a
number of different syntactic methods to evaluate these cycles.

Most simply, when a term of the form X is encountered, it is taken to refer
to or stand for form(Φ, X), in other words σX. ϕ, the expression in which X was
bound. This is called unwinding or unfolding of a fixpoint. However, there are
some variations on this. For example, in the model checking approach described
in [Stevens, Stirling 98], formulas of the form σX. ϕ are first evaluated to X and
next to ϕ.

47

Another variation is the so-called unrolling of fixpoints. This is a technique
used by e.g. tableau-based model checking. If a formula of the form σX. ϕ is
encountered, all occurrences of X in ϕ are replaced with the full expression
σX. ϕ, i.e. σX. ϕ −→ ϕ[X := σX. ϕ]. The expression ϕ[X := σX. ϕ] is said
to be the unrolling of σX. ϕ. This essentially replicates the entire formula at all
positions where the bound variable occurs.

These variations in how formulas are evaluated during model checking are
not essential. They are merely different syntactic methods to deal with recursion.
We will see in a later chapter how mu-calculus dependencies appear in derivation
trees and equation systems used for model checking. As described above, different
model check methods will evaluate mu-calculus formulas in slightly different
ways. These differences are reflected in the dependencies that can be found in
the proof trees and equation systems.

Instead of artificially fitting the dependencies found “in the field” to a rigid
definition of mu-calculus dependency, we acknowledge the variations that in-
evitably arise when different model check methods are used, by introducing
variations in the definition of mu-calculus dependency. It is convenient to use a
type of mu-calculus dependency that lies closest to what we will encounter while
model checking. The fact that the various model check methods are essentially
equivalent (in the sense that they obey the semantics of the mu-calculus) allows
us this luxury; the types of mu-calculus dependency are also essentially equiva-
lent. They vary only in how fixpoints are dealt with: by unrolling or unwinding,
in one or two steps, etc.

Because Boolean equation systems are the central topic of this work, a notion
of mu-calculus dependency that uses unwinding instead of unrolling is central.
Two other variations are formalised in the interest of capturing the correspon-
dences between different types of diagnostics in a later chapter. Which type of
dependency is actually used depends on the context and application.

For simplicity, we only consider closed formulas. A subscript Φ is now added to
the dependency relation to indicate the base formula. This is necessary for
unwinding of fixpoints: a fixpoint variable X can only refer to a full formula
σX . . . in the context of a formula Φ that contains σX . . . The subscript will be
dropped when the base formula is clear from context.

Definition 5.26 (Mu-Calculus Dependency—Full Unwinding Type).
The dependency set of a mu-calculus formula ϕ is the minimal set Φ⊆ Lµ×Lµ
that fulfills the following conditions and the propositional logic conditions in
Definition 5.25.

• If ϕ = [a]ψ then ϕ ψ;

• If ϕ = 〈a〉ψ then ϕ ψ;

• If ϕ = σX. ψ then ϕ X;

• If ϕ = X then X ψ where form(Φ, X) = σX. ψ. ut

48

Definition 5.27 (Mu-Calculus Dependency—Tableau/Unrolling Type).
The dependency set of a mu-calculus formula ϕ is the minimal set Φ⊆ Lµ×Lµ
that fulfills the following conditions and the propositional logic conditions in Def-
inition 5.25.

• If ϕ = [a]ψ then ϕ ψ;

• If ϕ = 〈a〉ψ then ϕ ψ;

• If ϕ = σX. ψ then ϕ ψ[X := ϕ]. ut

Definition 5.28 (Mu-Calculus Dependency—BES Type). The depen-
dency set of a mu-calculus formula ϕ is the minimal set Φ ⊆ Lµ × Lµ that
fulfills the following conditions.

• If ϕ = ψ1 ∧ . . . ∧ ψn then for all 1 ≤ i ≤ n: ϕ

{
form(Φ, X) if ψi = X
ψi otherwise

• If ϕ = ψ1 ∨ . . . ∨ ψn then (similar).

• If ϕ = [a]ψ then ϕ

{
form(Φ, X) if ψ = X
ψ otherwise

• If ϕ = 〈a〉ψ then (similar).

• If ϕ = σX. ψ then

◦ If ψ = Y , then ϕ form(Φ, Y);

◦ If ψ = σ′Y. . . or |Ξ| = 0, then ϕ ψ;

◦ Otherwise, ϕ ξi for all ξi ∈ Ξ.

where Ξ is the dependency set of ψ, i.e. Ξ = ψ ut

It is natural to express dependencies in graph form, so that each subexpression
corresponds to a vertex and an edge from vertex ϕ to ψ means that the value
for ϕ depends on the value for ψ.

Definition 5.29 (Formula Dependency Graph). The Formula dependency
graph of a formula Φ is a directed graph GΦ = 〈V, E〉 where V is a set of vertices
and E is a set of edges ⊆ V ×V that contains all reachable dependencies starting
from Φ.

• V = {Φ} ∪ {ψ | Φ +
Φ ψ};

• ϕ→ ψ ∈ E if and only if ϕ Φ ψ. ut

49

The set of vertices in the graph GΦ is called the closure of Φ, denoted cl(Φ) ⊆
Lµ. The closure of a closed formula is finite, so the formula graph will be finite
as well (even in the case of unrolling [Fischer, Ladner 79]).

Example 5.30 (Formula Dependency Graph). The Formula dependency
graph of νX.µY. [a]X ∧ 〈b〉Y can take on different forms, determined by the
type of dependency used.

Tableau Type:

Φ = νX.µY. [a]X ∧ 〈b〉Y

Ψ = µY. [a]Φ ∧ 〈b〉Y

[a]Φ ∧ 〈b〉Ψ

[a]Φ 〈b〉Ψ

BES Type:

νX.µY. [a]X ∧ 〈b〉Y

µY. [a]X ∧ 〈b〉Y

[a]X 〈b〉Y

ut

A Common Diagnostic Structure

The classes of diagnostics introduced in the previous sections appear rather
different at first sight, in particular Extended boolean graphs, interactive (parity
game) diagnostics and tableaux. However, these types of diagnostic can in fact
be expressed in the same way, namely in the form of a graph. This graph is
formalised in this section as a generic structure, so that it is independent not
only of the model check method, but also of the particular diagnostic type (e.g.
one of the three just mentioned). Instead, the use of a different diagnostic type
or model check method can reveal itself by differences in the exact form of the
graph. For example, as we shall see below, the use of tableaux will result in more
detail than vanilla Boolean equation systems.

This type of generic diagnostic will be referred to as the Generic diagnostic
graph. This graph will be defined precisely below. However, because this (hypo-
thetical) data structure is intended to capture the common basics of any model
check diagnostic, the specification leaves some room for variation. Any graph of
this form can be interpreted in a specific and clear-cut manner, regardless of the
level of detail it contains.

The pervasiveness of this generic form is of course no accident. All of the
mentioned model check methods considered verify mu-calculus formulas over
labelled transition systems. The semantics of the mu-calculus causes formulas to

50

be evaluated in the same way during the mapping to the LTS, regardless of the
process by which this is carried out. For example, when using tableaux, box and
diamond modalities are evaluated as the derivation proceeds: in case a sequent
of the form s |= [a]ϕ is encountered, the next step is to inspect the outgoing
transitions of state s. In case this state has no outgoing a-transitions, an axiom
can be applied, terminating the branch.

Conversely, when using Boolean equation systems, modal operators have al-
ready been evaluated during the mapping operation, courtesy of the mapping
function E. Consider again the case that the state has no outgoing a-transitions.
Then the BES that was the output of E would simply not include any equations
for a-transitions in that state. The evaluation of the box modality has already
taken place while evaluating the E function, and needs not be calculated “on
the fly” as in tableaux. A resulting difference between the two discussed model
check methods in this case will be that the BES diagnostic lacks these branch
“stubs” that the tableau will have.

One and the same model checking problem may thus give rise to a variety of
Generic diagnostic graphs. A key way to characterise the correspondences be-
tween them is dependency analysis. Dependency analysis has already been in-
troduced for Boolean equation systems, giving rise to the dependency graph
(Section 3.4), and for the mu-calculus, giving rise to the Formula dependency
graph (Section 5.9). The Generic dependency graph can be seen as an extension
of the BES dependency graph, with a subjugate role for the Formula dependency
graph.

Consider a normal Boolean equation system dependency graph. In a depen-
dency graph, each vertex corresponds to a fixpoint variable in the BES. Some
extra information is now added to each vertex: a tuple 〈s, ϕ〉 where s ∈ S is a
state in the labelled transition system and ϕ ∈ cl(Φ) is a subexpression of the
mu-calculus specification. This tuple captures the semantics of a Boolean equa-
tion system variable, as stated earlier in Theorem 4.1, which says the following.
Suppose the specification was of the form Φ = σX. ϕ. The fixpoint variable X
is mapped to all states s0, . . . , s|S|−1 of the transition system. A resulting BES
variable Xi can then be said to encode the validity of ϕ in state si. In other
words, if Xi is true, then si |= ϕ whereas si 6|= ϕ in case Xi is false. The truth
value of the BES variable thus says whether a subexpression of the mu-calculus
specification holds in a specific state. The state for variable Xi is simply si, and
the subexpression is given by the subpart of the specification that is bound by
σX (how to derive these annotations from a BES will be formalised in a later
chapter; see Section 7.3).

Other model checking methods can also yield a graph where vertices are
labelled with state-formula tuples, and where edges encode causal dependencies.
This is a result of the model check process. Model checking the modal mu-
calculus with respect to a labelled transition system generally occurs by mapping
the formula, or subsections of it, to states in the LTS. Every model checker (of
interest here) will use some variation of this method. The result of the mapping

51

is a set of tuples that is a subset of S × cl(Φ). Tuples in this set will correspond
to vertices in the graph.

Above, we saw how mu-calculus dependencies express how the truth value of
an expression depends on the truth values of one or more of its subexpressions.
This is the same causal relation as is represented by edges in the Generic di-
agnostic graph between the state-formula tuples. It should come as no surprise
that, like the state-formula tuples for vertices, the edge relation is essentially the
same for various model check methods.

Definition 5.31 (Generic Diagnostic Graph). Given a mu-calculus speci-
fication Φ and a labelled transition system, a Generic diagnostic graph is any
graph G = 〈V, E〉 for which the following hold:

• Vertices have a state annotation s and formula annotation ϕ, so that to each
vertex corresponds a state-formula tuple 〈s, ϕ〉 with s ∈ S and ϕ ∈ cl(Φ);

• There is an initial vertex 〈s0, Φ〉 ∈ V ;

• There are special vertices true and false ∈ V which do not have annotations;

• An edge 〈s, ϕ〉 → 〈s′, ψ〉 ∈ E implies both

◦ s = s′ or 〈s, s′〉 ∈ δ; and

◦ A mu-calculus dependency ϕ +
Φ ψ exists.

• A solution function assigns a truth value to each vertex, so that s |= ϕ if and
only if the vertex 〈s, ϕ〉 has the value true. ut

As outlined above, the vertices in the dependency graph of a Boolean equation
system can be augmented with a state-formula annotation, yielding a Generic
dependency graph. This graph encodes some generic basics of the model checking
problem, which apply to any model check method: each, after all, will need to
evaluate the dependent clauses in a mu-calculus expression to arrive at a truth
value for that expression. This follows from the semantics of the mu-calculus. By
using Boolean equation systems, these tuples are encoded as bound variables, so
that these variables appear on the vertices of the dependency graph. The Generic
diagnostic graph only requires the presence of state-formula tuples, which can
also be found if other model check methods are used (other than BES solving).
This motivates the “generic” nomer.

To show how the same model checking problem can give rise to variations in
the Generic diagnostic graph when different model check methods are used, the
following problem is solved using both tableaux and Boolean equation systems.
Diagnostic graphs will then be constructed for each method, after which the
correspondences and differences between the two will be pointed out.

Example 5.32 (Generic Diagnostic Graph). Consider the mu-calculus for-
mula Φ = νX. µY. [a]X ∧ [b]Y and the following labelled transition system
(this example is due to [Cleaveland 90]):

52

s0 s1

a

b

Using tableaux.
The abbreviation Ψ = µY. [a]Φ ∧ [b]Y is used for readability; this is the first
unrolling of Φ. The environments are abbreviated as follows (note the discharge
of 〈s0, Ψ〉 in ∆3):

∆1 = {〈s0, Φ〉}
∆2 = ∆1 ∪ {〈s0, Ψ〉}
∆3 = ∆1 ∪ {〈s1, Φ〉}
∆4 = ∆3 ∪ {〈s1, Ψ〉}
∆5 = ∆4 ∪ {〈s0, Ψ〉}

The tableau is:

s0 |= Φ

s0 |=∆1 Ψ

s0 |=∆2
[a]Φ ∧ [b]Ψ

s0 |=∆2
[a]Φ

s1 |=∆2
Φ

s1 |=∆3 Ψ

s1 |=∆4 [a]Φ ∧ [b]Ψ

s1 |=∆4
[a]Φ

(box)
s1 |=∆4

[b]Ψ

s0 |=∆4
Ψ

s0 |=∆5
[a]Φ ∧ [b]Ψ

s0 |=∆5
[a]Φ

s1 |=∆5 Φ
(infrecurs)

s0 |=∆5
[b]Ψ

(box)

s0 |=∆2
[b]Ψ

(box)

Turning the tableau into a Generic diagnostic graph is slightly nontrivial
due to the environment ∆. In principle, the tableau tree can be converted one-
to-one to a Generic diagnostic graph, because each sequent includes a tuple
〈s, ϕ〉, an (implicit) valuation (all sequents are true in this example), and because
horizontal lines correspond to dependencies. The set of vertices in the Generic
diagnostic graph is thus the set of sequents, while the edges go from each premiss
to its conclusions directly below the horizontal line.

In a tableau, fixpoints are unfolded, and the environment ∆ is used to detect
recursion. The success due to infinite recursion of the outer fixpoint is represented
as a stopping condition that becomes asserted. This occurs in the leaf labelled
with (infrecurs). Application of this axiom corresponds to the existence of a
cycle both in the LTS and in the mu-calculus dependency chain. In the Generic
diagnostic graph, this can be represented as a cycle. Application of other axioms,
such as (box), should be represented as a dependency on the true-vertex.

53

Note the existence of a duplicate vertex in the Generic diagnostic graph: the
tuple 〈s0, Ψ〉 occurs twice under different environments ∆1 and ∆4. This does
not warrant application of a recursion axiom due to the discharge mentioned
earlier. Although this should not in principle impair tracing the reason for the
model check result, it may be slightly confusing to the user. However, because the
main focus of this work is Boolean equation systems, working out these details
is beyond the scope. Suffice it to say that suitable presentation, perhaps made
possible by tableaux-specific extensions to the Generic diagnostic graph, should
bring satisfactory insight to the end user.

Using Boolean equation systems.
The Boolean equation system encoding the same model check problem is given
below, as is its dependency graph. The abbreviation ΦY will be used for the
subformula µY. [a]X ∧ [b]Y (note that we cannot use Ψ from the tableaux
example because of the unrolling of νX).

νX0 = Y0
νX1 = Y1
µY0 = X1

µY1 = Y0

X0 : s0 |= Φ

Y0 : s0 |= ΦY

X1 : s1 |= Φ

Y1 : s1 |= ΦY

The dependency graph has been annotated with the relevant state-formula
tuples, so that it is already in the form of a Generic diagnostic graph.

Clearly, this graph contains much less detail than the one derived from the
tableau. However, in spite of these differences, both graphs convey the same
essential information. Each vertex in the BES GDG is also in the tableau GDG.
Both contain a cycle with Φ as the most shallow formula, so that, due to the lack
of a blantantly true or false configuration, the conclusion may be drawn in both
cases that the success of the model check operation is due to infinite recursion
of the maximal fixpoint. ut

The procedure for drawing conclusions like the above from a Generic diagnostic
graph will be elaborated in Section 7. However, at this point the value of even a
raw Generic diagnostic graph should be clear: it allows tracing of the causality
of the model check outcome in terms of the labelled transition system as well as
the mu-calculus formula.

54

6 Supporting Methods

6.1 Generation of Diagnostics

The diagnostic may be generated independently from the model check operation,
but if possible, re-use of (intermediate) data structures generated by the model
checker during the model check process is preferred. However, in doing so, the
form of the diagnostic may become constrained by the algorithm or specifics
of the implementation. This may hamper the comprehension of the diagnostic,
because it requires the user to know a great deal about the internals of the model
checker and toolchain. This was discussed earlier for Boolean equation systems
(Section 5.7).

The size of a diagnostic is in general polynomial in the size of the model,
but this size can easily reach millions of states due to the state-space explosion
problem, i.e. the fact that the number of states in a model is exponential in
the size of the system description. Generating a diagnostic of considerable size
independently of the model checker will therefore likely result in an unacceptable
delay in the design cycle. Apart from time spent on generation, the diagnostic
(or at least the data structure from which the diagnostic is computed) may
be of such size that it exceeds the internal computer memory capacity, so any
operations carried out on this data structure must be carefully considered.

6.2 Vacuity Detection

As we have seen, a great advantage of model checking is the ability of the tool to
support a negative outcome by a counterexample, namely some structure that
demonstrates the failure. On the other hand, when the outcome is positive, the
result is rarely supported by a witness. Since a positive outcome means that
the spefication holds over the model, this seems reasonable. However, it is not
a guarantee that there are no mistakes in either. For example, a specification
may be a tautology, making it trivially true over any model. Thus, also in case
of a positive model checking outcome, the specification and model should be
“suspect” [Kupferman, Vardi 99].

A classical example of this (due to [Beatty, Bryant 94]) is verifying a system
with respect to the CTL specification AG(req → AFack) (“every request is even-
tually followed by an acknowledge”). This implication can suffer from antecedent
failure in case requests never occur in the model. The formula then holds triv-
ially because the pre-condition (antecedent) of the formula is not satisfyable in
the model. The model is said to vacuously satisfy the specification.

According to [Beer et al. 97], working in the IBM Haifa Research Laboratory,
“Several years of experience [. . .] have shown us that during the first formal
verification runs of a new hardware design, typically 20% of formulas are found
to be trivially valid, and that trivial validity always points to a real problem
in either the design of its specification or environment.” Vacuity suggests an
unexpected property of the system, namely the absence of a behaviour which was
expected to have occurred. Satisfaction due to vacuity should thus be indicated

55

to the user. If it is not, the usefulness of formal verification is compromised, since
a trivially valid formula is not intentionally part of a specification, and therefore
indicates an error in the model or specification.

Of course, vacuity may be due to causes other than antecedent failure. We
would like to capture the same problem in the semantically equivalent formula
where P → Q is replaced by ¬P ∨Q. We are dealing with temporal logic, so we
would also like the notion of vacuity to include a temporal aspect. Consider the
following examples by ibid.: AG(P → AX(Q → AXϕ)). If P never occurs, then
the formula holds trivially due to antecedent failure. Even if P does occur, the
formula may be vacuous due to the fact that Q never occurs in a state directly
following P . Another example is AG(request→ A(¬data valid U write enable))
holds vacuously in case there are no states in which ¬data valid holds, i.e. when
a request is accompanied by a write enable. To cover all these cases, vacuity is
defined as follows (in two steps):

Definition 6.1 (Affect). A subformula ϕ of formula Φ affects Φ in model M
if there is a formula ψ such that the truth values of Φ and Φ[ϕ := ψ] are different
in M. ut

Definition 6.2 (Vacuity). Formula Φ is vacuous in model M if there is a
subformula ϕ of Φ such that ϕ does not affect Φ in M. ut

Ibid. proceeds to show how vacuity detection can be accomplished for logics
like CTL* with complexity O(|Φ| · CM (|Φ|)) where CM (n) is the complexity of
checking a formula of size n in model M. Note that this complexity stems from
the definition, which requires checking all subformulas ϕ of Φ (it turns out that
we need only consider replacement of ϕ by constants true and false, so we do not
need to search for suitable replacement formulas ψ [Kupferman, Vardi 99]). The
complexity can be decreased to O(CM (|Φ|)) by restricting specification formulas
to a subset of ACTL.

The user can often discover quickly that a specification holds vacuously by
inspecting the witness. The user is of course under no obgligation to perform
this inspection or may fail to observe the source of the failure in a complex
specification. Vacuity detection should therefore preferably be automated and
thus implies a third output option in addition to generating a counterexample
and generating a witness: in case a formula is vacuously true, this should be
indicated as such to the user as a special case.

The type of diagnostic developed in Chapter 7 supports quick insight into
potential vacuous satisfaction. This is thanks to “formula annotations” in the
graph, which show (in a user-friendly manner as described in the next section)
that the antecedent failure of Q is responsible for satisfaction.

6.3 Presentation and Visualisation

From the previous expositions, we have seen that the user-friendly presentation
or visualisation of a diagnostic can be as important as details about its underlying

56

formalism. In Section 4.2, we discussed the merits of diagnostics in the design
cycle. Now that we know more about the nature of diagnostics and how a specific
notion of diagnostic constrains the feedback given to the user, we can evaluate
in more detail what this feedback should look like.

We do this by reviewing a tool called the Evidence Explorer , which was
developed to assist the user in interpreting, navigating and manipulating the
diagnostic generated by a model checker. The purpose of the tool is to improve
the usability of model checking diagnostics in production environments. The
tool accepts a diagnostic, in this case a directed graph of tuples 〈s, ϕ〉, which
represent the assertion that s satisfies ϕ. Edges in the graph define dependencies
between these assertions. This is of course the general form that could be derived
from many of the diagnostic classes reviewed in the previous chapter, and was
formalised in Section 5.9 as the Generic diagnostic graph.

An important property of models—and thereby model check diagnostics—
is their sheer size. This makes single-step traversal of the graph prohibitively
expensive. To assist the user as described in the previous paragraph, Evidence
Explorer has a number of features:

• The diagnostic can be observed from various viewpoints called views, which
will be described below;

• The scope of the exploration can be reduced according to some criterion of
interest;

• Since a specification is usually small with respect to the model, formula-
specific patterns may repeat themselves throughout the tree. The tool can
visualise these homologies;

• The user may “jump” to any vertex in the tree by using an index;

• The user can search for paths containing certain actions and states with
certain properties;

• Finally, a trace can be extracted from the selected portion, yielding a more
succint type of diagnostic.

Views allow the user to observe the same diagnostic structure from different
viewpoints, making it easy to locate interesting sections. The primary view is
a simple treelike display of the vertices in the graph, i.e. with the root vertex
at the top and dependencies branching out toward the bottom. The currently
inspected vertex is called the focal vertex and is shown highlighted at all times,
along with its immediate neighbourhood. The focal node is the main indicator
of the position in the diagnostic. In addition to this view, a secondary window
provides a strongly “zoomed out” view of the same graph, allowing the user to
observe the global structure in the wider neighbourhood of the focal vertex. The
scope of exploration may be restricted according to some criterion of interest.

Two more views are provided by Evidence Explorer, namely the source code
view and the state view. The former highlights the line of code in the source file
(e.g. Java) that the current state in the model corresponds to. Depending on the
model check toolset used, this view may not always be available, since it requires
the toolchain to keep track of which state in the LTS corresponds to which line

57

of code. The state view lists properties of the focal state, such as the value of
source code variables in that state.

The user can use three operations to restrict the navigation of the diagnostic:

• Manual selection of a subset of vertices. Those outside the selection cannot
be reached in the evidence exploration. This allows focusing on an interesting
or representative section.

• Projection allows the user to focus on vertices with certain properties. For
example, if the user is interested in a subformula of the specification, the
subformula can be selected. This causes all vertices annotated with this
subformula to be highlighted, and is known as a formula projection.
A second type is a state projection, where vertices are highlighted based on
their state properties. In addition to selection based on propositions that
hold in a state, Evidence Explorer also allows vertices to be selected based
on their position in the graph. This allows the user to select those states
lying on the shortest path from root to focal node.

• Grouping partitions the graph. This allows the user to apply insight into
the model by structuring the diagnostic. The diagnostic can afterwards be
navigated by jumping between groups instead of individual vertices. Group-
ing can be done manually, or through referencing vertex attributes as in
projections. Grouping can be nested, creating a hierarchy.

The mu-calculus specification is shown in its own window. What is actually
shown is the Formula dependency graph of the specification (see Definition 5.29).
For easy visual identification, extensive styling is used:

• The top-level operator of a subformula determines the shape of a node, e.g.
a square for the box operator, a circle-plus for disjunctions, and a double
circle for fixpoints;

• The binding scope of fixpoint operators divide the vertices into groups, which
are coloured differently;

• The truth value of a formula vertex determines the border colour of a node;

• When a formula does not occur in a diagnostic, the colour of the corre-
sponding vertex in the formula graph is set to transparent, so that the user
immediately sees that the formula is vacuous (see Section 6.2. Vacuity De-
tection).

Use of the tool is exemplified by two screenshots. These screenshots show a
stage in the model check process of (an abstract model of) a Java Virtual Ma-
chine component. Two specifications are checked separately, the first deadlock

(Figure 6.1) and the second livemon (Figure 6.2). The former property holds,
as there is no deadlock in the system. The model checker thus has to visit every
state in the system, leading to a diagnostic of maximal size (note the branching
structure in the graph). The latter property is violated, so a counterexample
exists. This counterexample is mostly linear with cycles at regular points due to
nesting of fixpoints in the property (note the linear structure of the graph).

58

Evidence Explorer demonstrates the advantages of a powerful tool for the
visualisation and interpretation of any model checking diagnostic that conforms
to the form of the Generic diagnostic graph. The tool was designed to be ex-
tensible, making it easy to define new views and methods for manipulation. For
example, a new view might be developed to colour states in a transition system
according to which subformulas hold. Unfortunately, at the time of writing, the
source nor any executable of Evidence Explorer is publically available [Chechik,
Garfunkel 05].

59

Fig. 6.1. A counterexample for the deadlock property.

Fig. 6.2. A counterexample for the livemon property.

60

7 The Diagnostic Graph

7.1 Requirements

In Chapter 4, we reviewed the model check process. The transition system un-
der investigation is combined with a specification, yielding a Boolean equation
system which encodes the model checking problem. The BES is then solved, re-
sulting in a yes or no answer to whether the specification holds for the model.
We now explain how the model check process can be augmented to deliver not
only a Boolean result, but also a valuable diagnostic. If a diagnostic is to be
useful, it has to meet three main criteria [Clarke et al. 02]:

• Completeness: The class of diagnostic should be complete for the modal
mu-calculus, i.e. each violation of a specification is witnessed by a suitable
diagnostic. Vacuous satisfaction should be indicated as a special case (see
Section 6.2: Vacuity Detection).

• Intelligibility : The diagnostic structure should be simple and specific enough
to be analysed by human engineers, possibly with the aid of automated tools
and suitable annotations (see Section 6.3: Presentation of Diagnostics).

• Efficiency : There should exist efficient (possibly symbolic) algorithms for
generating and manipulating diagnostics of this class.

In an earlier chapter, we reviewed different classes of diagnostic. All classes sat-
isfied some of these requirements, but could also be seen to suffer from various
drawbacks, such as their lacking coverage of Lµ or the fact that they do not focus
on user-friendly presentation. The type of diagnosic developed in this chapter,
the Diagnostic graph, takes elements from the studied classes to fulfill all re-
quirements in full. The correspondences with the relevant classes in Chapter 5
will be pointed out as the Diagnostic graph is introduced.

The fundamental element in our definition of a diagnostic is the structure graph
of a Boolean equation system. As discussed previously, the structure graph shows
the interdependencies and nesting structure of an equation system. Evaluating
the dependencies of a variable in the equation system is a natural way to find
the chain of causality that led to the result for that variable. However, in a
previous example of the Generic diagnostic graph (Example 5.32) we saw the
drawbacks this method can have: due to the way in which mu-calculus formulas
are mapped onto the LTS, the information that can be extracted from a Boolean
equation system is coarse-grain. Details, such as which clause provided the path
to success or failure, may not be available. This is in contrast to a tableau, in
which each atomic step is meticulously represented in the proof tree. In this
chapter, we will see how a model check process that uses Boolean equation
system can be augmented so as to provide this type of fine-grain information to
the user, permitting a maximal degree of understanding and analysis.

Thanks to the increased level of detail of the diagnostic, imposed by these
augmentations, it can no longer be called generic. It is specifically tailored to

61

the use of Boolean equation systems, but more importantly, the extra informa-
tion allows us to draw conclusions beyond those that we could from a Generic
diagnostic graph. For these reasons, we drop the “generic” nomer, so that this
type of diagnostic is designated Diagnostic graph. The new conlusions we can
draw from it give rise to other types of diagnostic. Several classes that we saw
in Chapter 5, such as linear paths and reduced labelled transition systems, can
be readily extracted from a Diagnostic graph. These are the subject of sections
7.7 and 7.8, respectively.

The final sections of this chapter, including 7.7 and 7.8, demonstrate how the
information contained in a Diagnostic graph can be presented to the end user.
The most rudimentary way of inspecting the diagnostic is to browse the raw
Diagnostic graph. For large, real-world problems, this is best carried out using a
visualisation tool such as Evidence Explorer (see Section 6.3). In principle, diag-
nostics for smaller cases with a limited size can also be explored manually. The
intelligibility of the diagnostic in this “low-level,” vertex-by-vertex exploration
is an important metric for its intelligibility in general (the second requirement
above). The other half of the coin is how well this understanding scales to diag-
nostics of much greater size.

Even on this low level, inspection of the Diagnostic graph takes place only via
a dedicated presentational layer. This layer sits between the data and the user,
formatting the data in a user-friendly manner and translating user input and
directions to operations on the data. The presentational layer, in combination
with the other classes that can be extracted from the Diagnostic graph, forms
the user-facing part of the diagnostic.

7.2 Incorporation in the Model Check Design Cycle

Ordinarily, when encoding the model checking problem into a BES, some in-
formation about the original formula and transition system is abstracted from.
This information is not relevant to solving the equation system (or, therefore, to
the model check result). However, if we wish to present the diagnostic in terms
with which the user is familiar (i.e. the Lµ formula and the transition system),
we need to keep track of some of this information that is normally discarded.

Generally speaking, there are two ways to do this. One option is to retrieve
this information post-hoc, i.e. after the model check is complete. This involves
relating sections of the Boolean equation system to sections of the specification
and LTS. However, this is not necessarily possible for arbitrary BES. We shall
see below that doing this requires some constraints on the structure of a Boolean
equation system, but is without loss of generality in terms of the model or the
mu-calculus specification. After the model check is complete, the diagnostic can
be constructed by combining information from the data structures that make up
the model check process. This is illustrated by the squiggly arrows in Figure 7.1.

A second option for constructing the diagnostic is by storing the required
extra information in a suitably augmented Boolean equation system. In this
case, some elements of the BES are annotated, indicating to which parts of

62

Fig. 7.1. Various elements in the model check process can contribute to the
diagnostic.

the specification and model they relate. This allows the diagnostic to be built
using only information contained in the BES (in addition to its solution). Nor-
mally, the equation system is the output of a mapping function E that combines
the transition system and specification into one (this function was defined in
Section 4.1). The BES can be derived directly and straightforwardly from the
specification and model using this function. But in the equation system, these
origins are not explicit: we can tell very little, given a BES, about the structure
of the specification or the shape of the transition system it was derived from. Of
course, it is exactly these in terms of which we want to present any user-facing
diagnostic. To enable us to relate a BES back to these ingredients, we augment
the mapping function to output a suitably annotated BES. An annotation in
this context means simply that elements of the equation system will carry extra
“labels.” In an object-oriented programming environment, an annotation might
be implemented as an extra data field in a class.

The extended mapping function that produces a BES with the necessary
annotations is named F, as pictured in Figure 7.2, where the presence of anno-

Fig. 7.2. Annotating the Boolean equation system.

63

tations is indicated by the @-symbol. This type of Boolean equation system is
an extension of plain BES, so it can be solved by an unmodified model checker,
which simply ignores the annotations. Note that if the model check is carried
out using parity games, the equation system will first be converted into a game
graph. As we shall see below, the Diagnostic graph is very similar to a game
(structure) graph, so much of the data structure can be re-used. Doing so will
mean that the annotations from the BES will have to be carried over to the struc-
ture graph; this can be formalised by using a modified set of SOS rules (recall
the use of SOS rules to generate the game graph from a BES from Section 3.5).

The processes depicted and described above are of course simplified; in particu-
lar, they omit any simplification or rewriting steps of the BES. The game graph
will commonly be normalised before play begins, potentially introducing more
vertices (and with that, bound variables). Simplification strategies may do the
opposite and remove vertices and edges. Such rewriting techniques are seen here
as computational optimisations, not affecting the Diagnostic graph. However,
the Diagnostic graph relies on finding “chains of causality” that led to the out-
come for the variable of interest. Where simplifications omit sections of the BES,
they cripple the power of the diagnostic. It is therefore crucial that the solution
of a simplified (or otherwise optimised) equation system can be related back to
a solution of the original. As an extreme example, if the solver only returns the
truth value of the requested fixpoint variable (say Xi; usually the most shallow
variable X0), there is far too little information for a meaningful diagnostic. To
analyse the dependencies of Xi adequately, many if not all of their truth values
have to be known. Missing information will result in an incomplete diagnostic.

Note that this does not conflict with the use of local solvers. Recall that
local solvers do not in general compute a truth value for each bound variable,
but stop as soon as the value for the requested variable is known. For example,
given an equation µXi = ϕ∧ψ, a local solver will not evaluate ψ if it has already
determined that ϕ = false. Although the value for all dependent variables may
not be known, there will always be at least one chain of causality that led to the
result for Xi; in this case via ϕ. The value of ψ is not known, so even if it would
have contributed to the diagnostic, i.e. when it had also been false, that part of
the diagnostic is rendered inexplorable by the user. In case this is of concern,
the value of these vertices should be described as a special “not evaluated” case
which comes in addition to true, false, and should be indicated as such to the
user.

At this point, we have our Diagnostic graph and a solution for the BES. Now
that the diagnostic data is known, we would like to return it to the user. How-
ever, the Diagnostic graph is intimately related to the BES. Earlier we pointed
out that the fact that our model checking tool uses Boolean equation systems
internally should be concealed from the user. This apparent conflict is resolved
by separating the concept of a diagnostic into a static, underlying data structure,
and user-facing diagnostics that are generated based on this data. The Diagnos-

64

Fig. 7.3. The master diagnostic data structure can give rise to various types of
user-facing diagnostic.

tic graph data structure is available at the end of the model check operation, but
is not returned to the user as such. Instead, it remains the underlying structure
for future exploration and generation of user-facing diagnostics. We already read
about a presentational layer that formats the graph in a user-friendly, intuitive
manner, while also allowing operations such as “zooming in” on a specific section
of the graph (see Section 6.3: Presentation and Visualisation). A layer of this
sort enables a dynamic exploration process that allows the user to interactively
investigate the causal chains that led to the model check outcome. In addition,
different classes of diagnostic such as linear paths and reduced labelled transi-
tion systems can be generated based on the Diagnostic graph using appropriate
algorithms. These are the subject of sections 7.7 and 7.8, respectively. In this
way, a single Diagnostic graph can actually give rise to a multitude of different
ultimate, user-facing diagnostics (depicted in Figure 7.3).

7.3 The Diagnostic Graph

State-Formula Annotations

We saw in Section 5.9 that the Generic diagnostic graph can be generated by
performing dependency analysis on a Boolean equation system. The Generic
diagnostic graph is essentially the structure graph of the BES, extended with
a state-formula tuple on each vertex. In a structure graph, vertices correspond
to bound variables in the BES, which in turn are related to the model and
specification. This relation is made explicit by adding a tuple 〈s, ϕ〉 to each
vertex, where s ∈ S is a state in the labelled transition system and ϕ ∈ cl(Φ) is a
subexpression of the mu-calculus specification. The tuple captures the semantics
of a BES variable, as stated earlier in Theorem 4.1; briefly, a BES variable Xi can
be said to encode the validity of ϕ in state si, so that si |= σX. ϕ⇔ Xi = true,
where ϕ is the subexpression of the specification that is bound by σX. We will
now formalise how the formula annotation can be obtained for each vertex.

The function form was defined earlier for mu-calculus variables (see Defini-
tion 2.4). It is first extended to accept bound BES variables X in addition to
mu-calculus variables X̃ . The function name is “overloaded” to prevent clutter;

65

it will be clear from the variable type of the parameter which implementation is
intended (compare e.g. form(X) and form(X42)). The following definition makes
use of the fact that mu-calculus variables retain their name when mapped to
BES variables. The BES variable name is resolved to that of the original mu-
calculus variable by simply stripping the underscore. If this similarity in naming
is not available, the BES mapping can be straightforwardly modified so as to
retain a relation between each BES variable and the mu-calculus variable it was
derived from.

Definition 7.1 (Subformula Retrieval (BES variable)). The function form :
Lµ(X̃) × X 7→ Lµ(X̃) retrieves the mu-calculus expression that falls under the
scope of the fixpoint operator that binds the mu-calculus variable associated with
the given bound BES variable.

form(ϕ, Xi) = form(ϕ, X)

ut

In a BES mapping, the granularity of formula annotations is limited by the
number of fixpoints. This is a consequence of how the mapping function E works:
it generates a BES with variables X0, . . . , X|S|−1 for each fixpoint variable X in
the mu-calculus specification. Assume for a moment that the expression bound
by σX gives rise to an equation system in simple form. As defined above, the
formula annotation associated with vertex Xi is form(Xi). This variable may
depend on right-hand side constants and other variables. If the user tries to
trace the origin of a failure, at some point these dependencies may need to be
inspected. Given a dependency Xi → Yi, it is not immedately clear what the
source of this relation was. It may have arisen because, in the formula forX, there
was a recursion to Y ; because of a nested fixpoint σ′Y or because of a modal
operator followed by Y (and in case of multiple candidate modal operators:
which?) Likewise, for a dependency on a Boolean constant, the source could
have been any atomic property or some other expression. If the assumption on
simple form is lifted, even more possibilities arise.

Motivating the Model Check Outcome

The purpose of the Diagnostic graph is to analyse the causal relationship between
state-formula tuples. The Boolean outcome of the model check corresponds to the
tuple 〈s0, Φ〉. The motivation for this outcome is given in terms of other tuples
by analysing their interdependencies: colloquially speaking “s 6|= ϕ because its
dependency s′ 6|= ψ.” Clearly, a motivation of this sort can only explain a false
outcome in terms of dependencies that are also false; a true dependency cannot
contribute to a false outcome. The converse is also true: a true outcome can only
be motivated in terms of true dependencies. This is thanks to the lack of negation
in our mu-calculus grammar, and implies that the only vertices of interest in the

66

Diagnostic graph are those that have the same truth value as the initial vertex.
The others are not relevant for the diagnostic and can be ignored or pruned.1

In the definition of the Diagnostic graph that follows, vertices with either
truth value are preserved. The value is not inspected until the generation of
a user-facing diagnostic. Preserving all vertices allows a maximum degree of
freedom for the user in exploring the diagnostic. An unexpected model check
outcome may be due to a complicated set of factors, leading to unexpected
truth values for various parts of the model: some parts that were expected to
hold do not, and some parts that were expected to fail may unexpectedly hold.
For example, given two mutually exclusive properties, the “wrong one” may be
found to hold in a certain section of the model. Inspecting why the “wrong”
property holds may consist of a witness search for this property. This allows a
user to skip straight to a vertex of interest, regardless of its truth value, and
perform a counterexample or witness analysis based on the truth value of that
selected initial vertex. We will therefore defer inspection of truth values to the
user-facing diagnostic extraction algorithms.

Indefinite recursion through a fixpoint can also be grounds for the success or
failure of the model check. In the absence of a direct dependency on true or
false (which occurs for instance due to a property not holding or the lack of an
outgoing transition in some state), the possibility of recursion through a minimal
fixpoint will lead to failure, while recursion through a maximal fixpoint will lead
to success.

The potential for indefinite recursion corresponds to the existence of a cycle
in the Diagnostic graph. This in turn implies the existence of a cycle s→ . . .→ s
in the labelled transition system and a cyclic mu-calculus dependency ϕ + ϕ.
The fixpoint recursed indefinitely is the most shallow on the formula annotations
in the cycle. We saw this before in Example 5.32, where there was a cycle Y0 →
X1 → Y1. Both X and Y are bound fixpoint variables, but X is the shallowest
of the two, so this is the fixpoint that is recursed indefinitely. We say that the
cycle in the (Generic) Diagnostic graph is dominated by X.

Definition 7.2 (Domination). Let 〈s(i), ϕi〉 → . . .→ 〈s(n), ϕn〉 be a cycle in
the (Generic) Diagnostic graph, i.e. s(i) = s(n) and ϕi = ϕn. Then the cycle is
said to be σ-dominated if the outermost (shallowest) fixpoint with respect to Φ
occurring on ϕi, . . . , ϕn is σ. ut

Above, we pointed out that vertices with a truth value different from the ini-
tial vertex are to be ignored. This is because the diagnostic should not contain
elements that are irrelevant to the model check outcome. Some cycles can also
be irrelevant. Indefinite recursion through a maximal fixpoint could not have

1 Note that if the use of negation is supported by the model checker, the story becomes
slightly more complex, as the failure of an expression ¬ϕ can be motivated in terms
of the success of ϕ. This means that the counterexample search for ¬ϕ may consist
in part of a witness search for ϕ.

67

contributed to the failure of the model check (and vice versa). ν-dominated cy-
cles should therefore have no part in counterexamples, while µ-dominated cycles
should have no part in witnesses.

Eliminating these cycles a priori is in general not possible. This is illustrated
in Figure 7.4. Assume that the model check failed, so all vertices have the value
false. There are two cycles in the graph: (a) highlights the least fixpoint cycle,
and (c) the greatest fixpoint cycle. (b) highlights a path that leads directly
to failure, without any cycles. Because the user is after a counterexample, the
ν-cycle is irrelevant, as it did not contribute to the failure of the model check.
However, trying to remove this cycle from the graph runs into trouble: we cannot
eliminate v4, because then the valid path in (b) can no longer be explored, and
the edge v3 → v0 cannot be eliminated because this would destroy the µ-cycle
in the process.

Due to these problems, the strategy of eliminating these cycles is discarded
in favour of avoiding them. This will necessarily take place during the generation
of user-diagnostics from the Diagnostic graph, so we will come back to this issue
later on.

A High Level of Detail

One of the requirements on our diagnostic is intelligibility. To achieve this goal,
detailed information should be provided about the precise path of causality. The
desired level of detail is akin to tableaux, which capture every atomic evaluation
step of the mu-calculus specification in combination with the LTS. This level
of detail was not enforced in the Generic diagnostic graph, owing to its generic
nature. In the definition of a Generic diagnostic graph, the requirement was that
an edge between two vertices implies the existence of a transitive mu-calculus de-
pendency between the formula annotations on the respective vertices. This is now
made stricter: every single mu-calculus dependency is required to be included
in the Diagnostic graph. This not only ensures the desired level of detail, but

v0

v4v3 v1

v2

v5

(a) µ-cycle

v0

v4v3 v1

v2

v5

(b) Path to failure

v0

v4v3 v1

v2

v5

(c) ν-cycle (illegal)

Fig. 7.4. Permissible paths through the Diagnostic graph for a failed model check.

68

also that the mu-calculus expression that was at the source of a dependency can
be recovered. Consider for example a dependency Xi → Yi and the mu-calculus
formula [a]Y ∨ Y . The dependency could have resulted from either disjunct,
but by enforcing that each mu-calculus dependency is included in the Diagnos-
tic graph, this ambiguity can now be resolved. After all, the formula has two
immediate dependencies: one on [a]Y , and another on Y . Had the dependency
on Yi resulted from the former, then the vertex Yi would have been annotated
with the disjunct [a]Y . Instead, it is annotated with form(Yi) = form(Y), so this
dependency is concluded to have arisen due to the latter disjunct Y .

Definition 7.3 (Diagnostic Graph). Let E be the BES encoding the model
check problem of verifying Φ overM. Let η be a solution environment for E.Then
the Diagnostic graph is a tuple DE = 〈V, ∆, η, @〉 where V is a set of vertices,
∆ ⊆ V × V is a set of directed edges and @ : V 7→ S × cl(Φ) is a diagnostic
annotation function such that:

• There are special vertices true and false ∈ V which do not have annotations;

• There is a distinct initial vertex X0 ∈ V such that @(X0) = 〈s0, Φ〉;
• Every mu-calculus dependency is included in the graph. That is, for any

vertex v ∈ V with @(v) = 〈s, ϕ〉 the following holds: for each ψ such that
ϕ Φ ψ, either:
◦ There exists a vertex v′ ∈ V with @(v′) = 〈s′, ψ〉 such that v → . . .→ v′;

or

◦ The previous point does not hold, and v → true or v → false.

where v → v′ has been used as shorthand for 〈v, v′〉 ∈ ∆. ut

In the following, the notation v@〈s, ϕ〉 will be used for @(v) = 〈s, ϕ〉. It will also
be combined with other statements, e.g. the notation v@〈s, ϕ〉 ∈ V will mean
v ∈ V ∧@(v) = 〈s, ϕ〉.

Generating the Diagnostic Graph

The annotation function @ has been specified as a partial function. This ac-
commodates vertices for true and false, but more importantly is related to the
existence of unranked vertices. Recall that only equation systems in simple form
have a dependency graph; equation systems in general have a structure graph.
The reasons for this were explained in Section 3.5. Briefly, a formula such as
Xi ∧ (Yj ∨ Zk) results in an additional (unranked) vertex for the nested expres-
sion Yj ∨Zk in the structure graph. Vertices like these are problematic for both
the state and formula annotation. The state annotation can be straightforwardly
derived from a vertex Xi, where it is simply si, but what the state annotation
should be for a vertex Yj ∨ Zk is not clear. The same goes for the formula an-
notation: for a vertex Xi it is simply form(Xi), but again for Yj ∨ Zk it is not
clear.

Ideally, in this example, the state annotation for unranked vertices would be
that of the fixpoint which ultimately binds it. However, an unranked vertex may

69

have more than one incoming edge. For example, if the BES contains equations
(µXi = (Xi ∧ Yj) ∨ Zk)(νYj = Q ∨ (Xi ∧ Yj)) then the vertex Xi ∧ Yj has
incoming edges from both Xi and Yj . Resolving the state annotation without
further information is impossible here. Likewise, for the formula annotation, the
formula associated with Xi ∧ Yj would ideally be X ∧ Y , which is expected to
be a subformula of µX in the mu-calculus specification. However, as explained
above, this is not necessarily the case, because the mapping function E is not
injective: a different expression, say X ∧ [a]Y , may also give rise to the same
BES expression.

A strategy for resolving these ambiguities is required. One solution is to
accommodate the necessary extra information by annotating Boolean equation
systems. In this strategy, the required information is injected into the BES by
using a modified version of the mapping function E. The extra information is
then carried over to the Diagnostic graph using suitable SOS rules. Finally, the
function @ for finding the state and formula annotation of a vertex should be
changed to make use of the additional information. This strategy is the subject
of Section 7.5.

First, a simpler method is used to achieve the desired result. The problems
with unranked vertices are sidestepped by using only Boolean equation systems
in simple form. Although this may sound restrictive, we will see that this is
without loss of generality. This is the subject of the following section.

7.4 Effectless Fixpoints for Extra Detail

The goal of the Diagnostic graph is to capture a large amount of detail, which
can then be used to support the model check outcome. In a previous example
(Example 5.32) we saw that the Generic diagnostic graph associated with a
BES can be quite lacking in detail, in other words, can be very coarse-grain.
This low level of detail makes fault tracing more difficult. Consider the mu-
calculus fragment (Q ∧ [a]Y) ∨ (¬Q ∧ 〈a〉Y) and assume a single a-transition

exists si
a−→ sj . Then the BES expression for this fragment in si is of the form

Yj . This expression bears no information about whether the first or the second
disjunct holds in si. The ambiguity is a direct consequence of how the mu-
calculus formula is mapped using the E-function, which, as discussed earlier, is
not injective. The Diagnostic graph proposes to provide more detail, but how
this extra detail should be extracted from the BES is not yet clear at this point.

In this section, a method will be introduced that provides the required extra
detail. In order to capture each atomic derivation step (i.e. each step associated
with a single mu-calculus dependency), a trick is used. Note that each fixpoint
variable in the mu-calculus specification is mapped to |S| bound variables in
the BES. For each of these variables, finding the associated state and formula
annotation is easy: the state annotation for a variable Xi is simply si, while
the formula annotation is given by form(Xi). The level of detail that is “accessi-
ble” in this way is limited by the number of fixpoints in the specification. This
presents a simple solution for increasing the level of detail found in the BES

70

(and by extension the Diagnostic graph): simply place additional fixpoints in
the specification. This is exactly the approach taken here. Sufficient (effectless)
fixpoints are inserted to ensure that each mu-calculus dependency is represented
by one or more edges in the graph.

This approach turns out to yield Boolean equation systems in simple form,
so it solves two problems at once. In the first place, this approach will yield the
desired level of detail. In the second, we no longer need to deal with finding
state-formula annotations for unranked vertices, because the fact that a BES is
in simple form implies that each vertex in the associated structure graph that
has successors is ranked [Keiren, Reniers, Willemse 10].

Grammatical Restrictions

The details of inserting additional fixpoints into the mu-calculus specification are
now formalised by introducing some restrictions on the grammar of mu-calculus
formulas. The presence of fixpoint operators will be enforced in several places in
an expression. These restrictions lead to formulas where each clause is preceded
by a fixpoint. These freshly introduced fixpoints may be “effectless,” meaning
that the fixpoint variable does not occur in the expression that is bound. The
introduction of effectless fixpoints is without loss of generality in terms of the
model or the mu-calculus specification, because effectless fixpoints do not change
the semantics of a formula (Lemma 2.3).

Definition 7.4 (Restricted Syntax of Lµ). A modal mu-calculus formula in
restricted form is given by Φσ as follows:

Φσ ::= σX. Φ
Φ ::= true | false | Q | ¬Q | X | Φσ |

[a]Φσ | 〈a〉Φσ | Φσ ∧ . . . ∧Φσ | Φσ ∨ . . . ∨Φσ

where Q ∈ Q is an atomic proposition and X ∈ X̃ is a fixpoint variable. ut

Theorem 7.5 (Restricted Grammar Induces BES in Simple Form).
Mu-calculus formulas given by the restricted grammar Φσ induce Boolean equa-
tion systems in simple form. This is proven by induction on formulas.

Base cases: The equation systems given by E(Q) and E(X) are in simple form.
The expressions given by Ei(Q) and Ei(X) are in simple form.
Induction hypotheses: (IH1): E(Φ) gives an equation system in simple form.
(IH2): Ei(Φ) gives an expression in simple form.
To prove: Any derived BES is in simple form (by case distinction on the shape
of Φ, which follows the restricted grammar Φσ):

• E(σX. Φ) = (σXi = Ei(Φ))E(Φ) is in simple form, since Ei(Φ) gives an
expression in simple form (IH2), so the equation will be in simple form; and
E(Φ) is in simple form (IH1).

• E(Φ1∧ . . . ∧Φk) = E(Φ1) · · ·E(Φk) is in simple form (IH1 on all conjuncts).

71

• E([a]Φ) = E(Φ) is in simple form (IH1).

• Ei(Φ1∧ . . . ∧Φk) = Ei(Φ1)∧ . . . ∧Ei(Φk) = Ei(σX. ϕ1)∧ . . . ∧Ei(σY. ϕk) =
Xi ∧ . . . ∧ Yi is in simple form.

• Ei([a]Φ) =
∧

si
a−→sj

{Ej(Φ) | si
a−→ sj} =

∧
si

a−→sj

{Ej(σX. ϕ) | si
a−→ sj} =∧

si
a−→sj

{Xj | si
a−→ sj} is in simple form.

Results for the diamond modal operator and disjunctive equations are analogous.
Q.E.D. ut

Additional inserted effectless fixpoints will be highlighted with a grey background
for ease of reading.

Example 7.6 (Additional Fixpoints). This short example demonstrates the
advantage of introducing additional fixpoints. Consider the simple HML for-
mula [a] 〈a〉 〈a〉 true and the transition system �s0

a−−→s1
a−−→s2. We can encode

this model checking problem in the normal way using the mapping function E
(which requires prepending a single effectless fixpoint), resulting in the following
equation system (where irrelevant equations have been omitted):

(µX0 = false)

. . .

The diagnostic information we can extract from this BES is minimal, as the
initial variable is immediately found to be false. The motivation for this Boolean
constant is nonexistent.

Now, additional effectless fixpoints are added to the specification as prescribed by
the restricted grammar. The specification is in this case changed to
µX. [a]µY. 〈a〉µZ. 〈a〉 true and the resulting BES is shown on the left, and the
derived Diagnostic graph on the right (the effectless fixpoints X,Y, Z are omitted
from the formula annotations).

(µX0 = Y1)

(µY1 = Z2)

(µZ2 = false)

. . .

s0 6|= [a] 〈a〉 〈a〉 true

s1 6|= 〈a〉 〈a〉 true

s2 6|= 〈a〉 true

false

72

A lot more can now be said about the failure of the model check. The fault can
be traced to its origin using the Diagnostic graph. The state annotations and
formula annotations tell us that the ultimate failure was due to s2 6|= 〈a〉 true, in
other words the lack of outgoing a-transitions in state s2.

In addition, the annotations allow us to follow the causal path that led up to
the failure, permitting the conclusion that we got up to s0

a−→ s1
a−→ s2, but the

specification ultimately failed because of the lack of an outgoing a-transition in
state s2. ut

Generating the Diagnostic Graph

To turn a dependency graph into a Diagnostic graph, each vertex has to be
annotated with a suitable state-formula pair 〈s, ϕ〉 with s ∈ S and ϕ ∈ cl(Φ).
Recall that the meaning of this annotation is that the formula holds in that
state if and only if a valuation function assigns the value true to that vertex.
The task is thus, given a vertex Xi, to find a suitable state annotation and
formula annotation. The state annotation is now trivial thanks to the fact that
all vertices are ranked, so each vertex is a bound variable of the form Xi. As
explained earlier, the state annotation for this vertex is simply si while the
formula annotation is form(Φ, Xi). These annotations now cover each vertex in
the graph, unlike before.

The following conjecture says that combining a BES dependency graph with
an annotation function as described above yields a Diagnostic graph. If this is
to be the case, then each mu-calculus dependency should occur in the graph, i.e.
for each mu-calculus dependency ϕ Φ ψ ∈ Φ Φ there are vertices v@〈s, ϕ〉
and v′@〈s′, ψ〉 such that v → . . .→ v′.

Conjecture 7.7 (Diagnostic Graph via Effectless Fixpoints). Let E be the
BES encoding the model check problem of verifying Φ over M where Φ conforms
to the restricted grammar Φσ, let η be a solution environment for E and let
GE = 〈V, ∆〉 be the dependency graph of E.
The annotation mapping @ is defined by @(Xi) = 〈si, form(Φ, Xi)〉.
Then DE = 〈V, ∆, η, @〉 is a Diagnostic graph. ut

Example 7.8 (Diagnostic Graph via Effectless Fixpoints). This contin-
ues Example 5.32.
Consider the mu-calculus formula Φ = νX. µY. [a]X ∧ [b]Y and the following
labelled transition system:

s0 s1

a

b

The formula Φ does not conform to the restricted grammar, so additional fix-
points are inserted yielding Φσ = νX. µY. (µV. [a]µV ′.X) ∧ (µW. [b]µW ′. Y).

73

νX0 = Y0
νX1 = Y1
µY0 = V0 ∧W0

µY1 = V1 ∧W1

µV0 = V ′1
µV1 = true
µV ′0 = X0

µV ′1 = X1

µW0 = true
µW1 = W ′0
µW ′0 = Y0
µW ′1 = Y1

s0 |= νX. µY. [a]X ∧ [b]Y

s0 |= µY. [a]X ∧ [b]Y

s0 |= [b]Y s0 |= [a]X

s1 |= X

s1 |= νX. µY. [a]X ∧ [b]Y

s1 |= µY. [a]X ∧ [b]Y

s1 |= [a]X s1 |= [b]Y

s0 |= Y

true

true

Fig. 7.5. The Boolean equation system and Diagnostic graph for the model check
problem in Example 7.8. Effectless fixpoints are hidden from vertex annotations.

The BES generated by E(Φσ,M) is shown in Figure 7.5 on the left, and its cor-
responding Diagnostic graph on the right. Note that in the formula annotations,
effectless fixpoints have been omitted for readability (we will come back to this
practice below).

ut

Omitting effectless fixpoints when displaying the formula annotations to the user
improves readability. In practice, the addition of effectless fixpoints may take
place using an automated process, so that names of the inserted variables are not
known to the user. If this is the case, the use of these mu-calculus variables should
be kept in the background instead of being disclosed to the user, just as BES
variables are never displayed. However, in case the same subexpression occurs
more than once in the specification, confusion may arise as to which occurrence
is intended. This can be solved straightforwardly by a suitable presentational
layer, e.g. one in which the specification is shown in full, but where the relevant
subexpression is highlighted (this can even be done in a text-only environment
with some ASCII creativity).

74

Note that the restricted grammar enforces even more detail than is required:
some mu-calculus dependencies ϕ ψ span multiple vertices, v@〈s, ϕ〉 → . . .→
v′@〈s′, ψ〉. It is thus safe to go back and make the restricted grammar some-
what more lenient, e.g. by also allowing expressions such as 〈a〉 true, [a] false and
(a)X. The specification from the previous example could then take on the form
Φ′σ = νX. µY. (µV. [a]X) ∧ (µW. [b]Y), resulting in a one-to-one correspon-
dence: there would be a mu-calculus dependency ϕ ψ if and only if there are
two connected vertices v@〈s, ϕ〉 → v′@〈s′, ψ〉. For the sake of consistency, the
restricted grammar as defined earlier will be used as-is in subsequent sections.

7.5 BES Annotations for Extra Detail

Inserting additional fixpoints to yield more detail has the obvious disadvantage
of increasing the size of the equation system. Each additional fixpoint operator
will yield |S| equations, so the growth due to this method will be considerable.
The increase in BES size corresponds to an increased running time and memory
use for the model check algorithm. The exact growth depends on the algorithm
used, but tends to be polynomial in the size of the BES because the number of
priorities does not change (the extra fixpoints are, after all, effectless).

Nevertheless, even a polynomial growth in time and space can be prohibitive
due to the potentially very large state space of real-world models. Therefore,
we introduce an alternative approach to obtaining the Diagnostic graph in this
section. This approach uses annotations (or “labels”) on elements of the Boolean
equation system instead of additional fixpoints in the specification, so that the
the grammatical restriction on mu-calculus specifications may be lifted. This
implies two things: first, the number of vertices and edges in the structure graph
will be the same as for a vanilla model check (as opposed to containing many
more vertices for the effectless fixpoints method). Secondly, the equation systems
encoding the model check problem can no longer be assumed to be in simple
form. As we saw in the previous section, this complicates finding the state-
formula annotation for each vertex. To obtain this essential Diagnostic graph
information from an unrestricted BES, the BES annotations are used.

Recall that the state-formula annotation on vertices in the Diagnostic graph
allow us to relate the diagnostic information to the user in familiar terms, i.e. the
model and mu-calculus specification. In the present scheme, these state-formula
annotations will be derived from annotations on elements of the BES. To permit
this, BES annotations record how BES expressions were derived: from which
state in the model and from which subexpression of the specification. This is
somewhat akin to a parse tree. Derivation here means generating a BES E based
on a model M and specification Φ, i.e. E = E(Φ, M). This mapping function
E and its shortcomings for our purposes have been discussed earlier. To amend
these shortcomings, the mapping function will be augmented to yield a BES with
suitable annotations. The augmented function is called F: Lµ×M→ E@, where
the @ superscript indicates the presence of annotations on BES of this type. The
function F is defined in Figure 7.6. The dot · indicates sequential composition,
so that an ordered sequence of formulas is written ϕ1 · ϕ2 · . . .

75

ΦF(Q) = ε
ΦF(X) = ε

ΦF(ϕ ∧ . . . ∧ ψ) = Φ · ϕ ∧ . . . ∧ ψ F(ϕ) . . . Φ · ϕ ∧ . . . ∧ ψ F(ψ)
ΦF(ϕ ∨ . . . ∨ ψ) = Φ · ϕ ∨ . . . ∨ ψ F(ϕ) . . . Φ · ϕ ∨ . . . ∨ ψ F(ψ)

ΦF([a]ϕ) = Φ · [a]ϕF(ϕ)
ΦF(〈a〉ϕ) = Φ · 〈a〉ϕF(ϕ)
ΦF(σX.ϕ) = (σX0 = 〈s0, Φ · σX. ϕ〉F0(ϕ))

...

(σXn−1 = 〈sn−1, Φ · σX. ϕ〉Fn-1(ϕ)) Φ · σX. ϕF(ϕ)

〈si, Φ〉Fi(Q) =

{
〈si, Φ ·Q〉 true if si ∈ V(Q)
〈si, Φ ·Q〉 false otherwise

〈si, Φ〉Fi(X) = 〈si, Φ ·X〉Xi

〈si, Φ〉Fi(ϕ ∧ . . . ∧ ψ) =

〈si, Φ · ϕ ∧ . . . ∧ ψ〉 (〈si, Φ · ϕ ∧ . . . ∧ ψ〉Fi(ϕ)

∧ . . .∧
〈si, Φ · ϕ ∧ . . . ∧ ψ〉Fi(ψ))

〈si, Φ〉Fi(ϕ ∨ . . . ∨ ψ) =

〈si, Φ · ϕ ∨ . . . ∨ ψ〉 (〈si, Φ · ϕ ∨ . . . ∨ ψ〉Fi(ϕ)

∨ . . .∨
〈si, Φ · ϕ ∨ . . . ∨ ψ〉Fi(ψ))

〈si, Φ〉Fi([a]ϕ) =

〈si, Φ · [a]ϕ〉 true if @j . si

a−→ sj ∈ δ
〈si, Φ · [a]ϕ〉

(∧
si

a−→sj

〈si, Φ · [a]ϕ〉Fj(ϕ)

)
otherwise

〈si, Φ〉Fi(〈a〉ϕ) =

〈si, Φ · 〈a〉ϕ〉 false if @j . si

a−→ sj ∈ δ
〈si, Φ · 〈a〉ϕ〉

(∨
si

a−→sj

〈si, Φ · 〈a〉ϕ〉Fj(ϕ)

)
otherwise

〈si, Φ〉Fi(σX. ϕ) = 〈si, Φ · σX.ϕ〉Xi

Fig. 7.6. The augmented mapping function F yields an annotated BES.

It can be seen that state-formula annotations are recorded as the derivation
proceeds. An annotation on a BES formula ψ, say 〈s, ϕ〉ψ has the same meaning

76

as before: ψ = true ⇔ s |= ϕ. The difficulty is now in the fact that right-hand
side expressions are no longer in simple form, so annotations may appear nested
as in 〈s, ϕ〉(〈s

′, ϕ′〉ψ).

Example 7.9 (Annotated BES). Consider again the mu-calculus specifica-
tion µX. ([a]X ∧ [τ]X)∨ (νY. 〈a〉 true∧ [a]Y ∧ [τ]Y) and the LTS from Exam-
ple 5.4, repeated here:

s0 s1 s2

a

τ τ

a

The following abbreviations will be used:

α = [a]X ∧ [τ]X
β = νY. γ
γ = 〈a〉 true ∧ [a]Y ∧ [τ]Y

The annotated BES E@ = F(Φ, M) encoding this model check problem is as
follows:

µX0 = 〈s0, Φ · α ∨ β〉 (
〈s0, Φ · α ∨ β · α〉 (
〈s0, Φ · α ∨ β · α · [a]X〉 (〈s0, Φ · α ∨ β · α · [a]X ·X〉X0)

∧ 〈s0, Φ · α ∨ β · α · [τ]X〉 (〈s1, Φ · α ∨ β · α · [τ]X ·X〉X1))

∨ 〈s0, Φ · α ∨ β · β〉 Y0)

µX1 = 〈s1, Φ · α ∨ β〉 (
〈s1, Φ · α ∨ β · α〉 (
〈s1, Φ · α ∨ β · α · [a]X〉 true

∧ 〈s1, Φ · α ∨ β · α · [τ]X〉 (〈s2, Φ · α ∨ β · α · [τ]X ·X〉X2))

∨ 〈s1, Φ · α ∨ β · β〉 Y1)

µX2 = 〈s2, Φ · α ∨ β〉 (
〈s2, Φ · α ∨ β · α〉 (
〈s2, Φ · α ∨ β · α · [a]X〉 (〈s2, Φ · α ∨ β · α · [a]X ·X〉X2)

∧ 〈s2, Φ · α ∨ β · α · [τ]X〉 true)
∨ 〈s2, Φ · α ∨ β · β〉 Y2)

µY0 = 〈s0, Φ · α ∨ β · β · γ〉 (
〈s0, Φ · α ∨ β · β · γ · 〈a〉 true〉 true
〈s0, Φ · α ∨ β · β · γ · [a]Y 〉 (〈s0, Φ · α ∨ β · β · γ · [a]Y · Y 〉 Y0)
〈s0, Φ · α ∨ β · β · γ · [τ]Y 〉 (〈s1, Φ · α ∨ β · β · γ · [τ]Y · Y 〉 Y1))

77

µY1 = 〈s1, Φ · α ∨ β · β · γ〉 (
〈s1, Φ · α ∨ β · β · γ · 〈a〉 true〉 false
〈s1, Φ · α ∨ β · β · γ · [a]Y 〉 true
〈s1, Φ · α ∨ β · β · γ · [τ]Y 〉 (〈s2, Φ · α ∨ β · β · γ · [τ]Y · Y 〉 Y2))

µY2 = 〈s2, Φ · α ∨ β · β · γ〉 (
〈s2, Φ · α ∨ β · β · γ · 〈a〉 true〉 true
〈s2, Φ · α ∨ β · β · γ · [a]Y 〉 (〈s2, Φ · α ∨ β · β · γ · [a]Y · Y 〉 Y2)
〈s2, Φ · α ∨ β · β · γ · [τ]Y 〉 true)

ut

We now again face the problem of finding state-formula annotations for each
vertex in the structure graph. Because the equation systems are no longer in
simple form, there may be (unranked) vertices in the graph that correspond to
nested right-hand side expressions. For those vertices Xi that are ranked, the
function form(Xi) can be used to obtain the formula annotation, while the state
annotation is simply si (this is the same as for the effectless fixpoints method;
see Conjecture 7.7).

Finding the state-formula annotation for unranked vertices that correspond
to nested expressions is more difficult. Recall the example given earlier, where a
BES contains the following equations.

µXi = (Xi ∧ Yj) ∨ Zk
νYj = Q ∨ (Xi ∧ Yj)

In the first equation, the state annotation for the nested expression (Xi ∧ Yj)
should be si and in the second sj . This is because of the purpose of the state
annotation: the truth value of the nested expression encodes whether a certain
subexpression of the mu-calculus specification holds in the state given by the
state annotation (see Definition 5.31: Generic Diagnostic Graph). Clearly, it is
impossible to give a unique state annotation for this nested expression, because
a different one is required for each occurrence.

The relevant vertex Xi ∧ Yj will have incoming edges from both Xi and Yj .
The desired state-formula annotation depends on which edge was used to reach
it. This offers a solution to the problem: place the BES annotations on edges, and
use these to derive the annotation of connected vertices. If a vertex is reachable
via multiple edges, each edge will get a distinct annotation. In the given example,

there would be edges Xi
〈si, ϕ〉−−−−→ (Xi∧Yj) and Yi

〈sj , ψ〉−−−−→ (Xi∧Yj) for nonspecified
formula annotations ϕ,ψ. The state-formula annotation for vertex (Xi ∧ Yj) is
finally given by the annotation on the edge by which it was reached.

A complication with placing the relevant annotations on edges is linking
outgoing to incoming edges. Recall that the purpose of the Diagnostic graph
is to include every mu-calculus dependency (see Definition 7.3). Therefore, if a
vertex Xi was reached via an edge carrying the annotation @〈s, ϕ〉, and there is

78

true ∧X2

X2true true X2

@〈s1, Φ · α ∨ β · α〉 @〈s2, Φ · α ∨ β · α〉

@〈s1, Φ · α ∨ β · α · [a]X〉 @〈s2, Φ ·
α∨β ·α ·
[τ]X ·X〉

@〈s2, Φ · α ∨ β · α · [a]X ·X〉@〈s2, Φ·
α∨β ·α·
[τ]X〉

Fig. 7.7. Part of the Diagnostic graph with edge annotations from Example 7.9.
Exploration of the graph follows mu-calculus dependencies. When coming in from
an edge with a blue annotation, the only outgoing edges that may be traversed
are those that also have a blue annotation.

a dependency ϕ ψ, we would expect any outgoing edge to have an annotation
of the form @〈s′, ϕ · ψ〉. However, this does not necessarily hold if there are
two incoming edges with different annotations ϕ,ϕ′ because each would have its
own set of dependencies. Therefore, it may be illegal to traverse certain outgoing
edges, based on the edge by which the vertex was reached. This is illustrated in
Figure 7.7, where it is illegal to traverse an outgoing edge with a different colour
from the incoming edge.

In the next sections, various algorithms for exploring and extracting informa-
tion from the Diagnostic graph will be discussed. These algorithms can relatively
easily be modified to accept edge annotations as an intermediate for vertex an-
notations. The Diagnostic graph (with vertex annotations, as defined in Defini-
tion 7.3) is then reconstruced on-the-fly as the algorithm explores the graph with
edge annotations (by whatever search strategy). To prevent traversal of edges
with the wrong annotation, the “parse tree” formed by the BES annotations can
be used as a constraint.

Placing state-formula annotations on edges rather than on vertices will require
an alternative (incompatible) definition of the Diagnostic graph and associated
differences in the exploration algorithms to follow. The remainder of this chap-
ter will therefore be based on the original definition of the Diagnostic graph
(Definition 7.3).

The effectless fixpoints method requires only minimal changes to the model
checking toolchain and is compatible with other software that can manipulate
this kind of diagnostic (such as Evidence Explorer). In a strongly optimised

79

toolchain, where running time and memory use are of crucial importance, the
BES annotations method may provide a better candidate, but will require more
extensive modification of the software.

7.6 Exploration of the Diagnostic Graph

After the Diagnostic graph has been obtained from the BES, it is immediately
ready for user exploration. Recall the distinction we made between the Diag-
nostic graph as a data structure for diagnostic generation, and the user-facing
diagnostics that can be generated based on the graph. This distinction shields
the user from having to deal directly with the underlying Boolean equation sys-
tem. In the following sections, we will see other exploration methods which yield
user diagnostics that have no visible relation at all to the Boolean equation sys-
tem, namely path extraction (7.7) and minimised LTS extraction (7.8). In this
section, we still keep relatively close to the BES, as we interpret dependencies
between variables as causal relations.

The general idea for exploring a graph of this form has already been described
in Section 6.3. These exploration methods are applicable to all diagnostics that
conform to the Generic diagnostic graph format: briefly, those where the vertices
correspond to tuples 〈s, ϕ〉, directed edges encode dependency and where a truth
function on vertices asserts that s |= ϕ if and only if the truth value of that vertex
is true. The Diagnostic graph is a specific type of diagnostic that conforms to the
Generic diagnostic graph format, and is thus suitable for this type of exploration.

In establishing the requirements for a suitable type of diagnostic, we hinted at
the possibility of manual exploration of the graph. It should be clear that this is
rarely a suitable approach in general for trying to comprehend a diagnostic. The
sheer size of real-world models prohibits this. However, we also pointed out that
how well this manual exploration contributes to understanding of the diagnostic
is an important metric for its usefulness in general. Specialised exploration tools
exist for navigating a large evidence, which significantly automate (part of) the
process (such as Evidence Explorer). The primary advantage of these tools is the
ability to focus on a small section of the diagnostic, in other words “zooming in”
on the salient and interesting parts of the diagnostic. Once the relevant section
has been identified, local analysis still tends to proceed manually, with extensive
examination of the fine-grain local details. How well the diagnostic performs
on small “toy” problems is therefore very much relevant to its performance on
real-world cases.

Manual, interactive exploration of the Diagnostic graph is very similar to playing
a parity game. An interactive diagnostic session of this sort, with application to
game-based model checking, was previously discussed in Section 5.6, where we
saw an example of its implementation in the Edinburgh Concurrency Workbench.
The format of the dialogue between the user and the model checker there is
quite similar to the format here, due to the equivalences in the underlying data
structure (both the game and the Diagnostic graph can be reduced to Generic
diagnostic graphs).

80

Recall that parity games are played on the dependency (game) graph of a
Boolean equation system, of which the Diagnostic graph is an extension. A to-
ken is placed on a vertex, indicating the current position. The player owning the
vertex on which the token lies may then select an outgoing edge, after which the
token is moved along the edge to the connected vertex. There are several termi-
nation conditions, such as reaching the vertex true or false, and the possibility
of infinite recursion.

The user diagnostic is, through the interactive process, generated “on the
fly,” that is, the sequence in the Diagnostic graph is shaped by the choices the
user makes as the dialogue unfolds. Different choices may lead to different user
diagnostics; a single Diagnostic graph can thus give rise to a multitude of distinct
user-facing diagnostics.

A straightforward process or algorithm is shown below for computer-guided ex-
ploration of the Diagnostic graph. The focus in this section will be on the user
making choices where possible; the next section will focus on automating these
choices. A choice exists whenever more than one dependency was responsible for
the failure, e.g. two failing conjuncts (we will assume a negative outcome in the
rest of this section for brevity; witness search is dual). During exploration, the
algorithm keeps track of the traversed path in the LTS. This can be used as an
exemplar of failure. The next section will elaborate on the function and merit of
this path.

The exploration process is simple. We begin at the initial vertex, i.e. that
vertex for which the diagnostic annotation is 〈s0, Φ〉. Depending on the shape of
the formula annotation, a number of decisions can be made as to which section
of the diagnostic to explore next. When there is only one option, the selection
can be made automatically.

The termination conditions correspond to termination conditions for the
model check: either reaching a blatantly false configuration, such as a property
that does not hold or the absence of an outgoing transition, or the possibility of
indefinite recursion through a minimal fixpoint. Indefinite recursion is detected
by keeping track of visited vertices, and terminating when the same vertex is
visited twice. Upon reaching a termination condition, a user diagnostic has been
generated, so the exploration process has finished. An alternative possibility is to
backtrack to the previous choice point, where the user is then allowed to choose
a different sequence. This would allow the user to explore every possibility in
a single session. This is supported by the algorithm in [Stevens, Stirling 98].
To keep track of choices that have already been explored, their algorithm keeps
track of these visited choices at each vertex in the traversed sequence. Although
the exploration algorithm given below can be extended in this way without much
difficulty, this extension has not been investigated because the user should al-
ready have applied insight towards exploring the most interesting causal chain;
the user is not interested in an exhaustive demonstration of the winning strategy
of the model checker.

81

The sequence taken through the Diagnostic graph can be one of two gen-
eral forms: linear, leading up to the vertex true or false, or lasso-shaped, due
to indefinite recursion of a fixpoint. Note the following: detection of recursion
relies on checking whether a vertex has been visited at some earlier point in the
dialogue. Due to this detection method, recursion may be detected in a vertex
associated with another fixpoint. If the recursion of σX (which dominates the
cycle) is detected in v@〈s, ϕ〉 then the formula annotation ϕ is not necessarilly
of the form σX . . . If desired, the sequence can be automatically completed to
the vertex with the formula σX . . . by duplicating part of the lasso.

Earlier, we discussed the trouble with eliminating irrelevant cycles. In the
present case of a counterexample, ν-cycles should be avoided, i.e. the user should
not be permitted to explore a sequence that goes through a ν-cycle, because
recursion through this fixpoint did not contribute to the failure of the model
check. We saw that it is not in general possible to remove these cycles a priori.
Instead, exploring them will be avoided: the user will be disallowed from making
choices that lead to an undesired cycle. In other words, if the sequence through
the Diagnostic graph is in the shape of a lasso, the dominating fixpoint on that
cycle is not allowed to be ν (in the present case of a counterexample) or µ (in
the case of a witness).

Unfortunately, avoiding these cycles can be computationally expensive. The
goal is to prevent the user from making a choice at a branching point in the
graph that will inevitably lead to the completion of a ν-cycle. The pseudocode

Inputs: current vertex v,
possible move v → v′ with η(v) = η(v′),

exploration sequence Σ = [v0, . . . , v]

1 func inevitableσcycle(v, v′, Σ) : B
2 if (v′ has no outgoing edges)

3 return false

4 else if (v′ occurs in Σ at position i)
5 if (dom([vi, . . . , v]) = σ)
6 return true

7 else

8 return false

9 fi

10 else

11 return
∧
v′→v′′ : η(v′′) = η(v)⇒

12 inevitableσcycle(v′, v′′, Σ ◦ v′)
13 fi

14 endfunc

Fig. 7.8. Pseudocode for determining whether an exploration move v → v′ will
inevitably lead to the traversal of a σ-cycle.

82

algorithm in Figure 7.8 answers the following question: from the current position
v, will a move to v′ lead inevitably to a ν-cycle? If this is the case, then that
move should be excluded from the options presented to the user.

Due to the recursion on line 12, calculating the return value may take a
significant amount of resources. Improving the average-case complexity may be
beneficial in practice, for example by marking vertices with a direct dependency
on true or false as “safe,” and then transitively marking all their predecessors as
safe. However, optimisations like these will not do anything for the worst-case
complexity, so the Efficiency requirement on our diagnostic is violated.

An alternative is to relinquish avoidance, so that the user can indeed traverse
the unwanted cycles. Once this is detected (which can be done in negligible time),
the user is informed that a meaningless sequence was chosen in the context of
this diagnostic, and the algorithm backtracks to a previous choice point. Clearly,
this is confusing to the user, because it lays bare a deficiency in the exploration
algorithm.

A second alternative can only be used when the model checker uses parity
games, and the strategy it has computed can be inspected. The model checker
has of course already computed a winning strategy that avoids these cycles. If
we can somehow access this strategy, the information can be re-used for avoiding
them. This is essentially the approach taken in [Stevens, Stirling 98]: the model
checker first calculates a winning strategy, which is then used in playing a game
against the user. The re-use of the strategy prevents the model checker from
having to backtrack during an interactive session.

However, the downside here is that the strategy calculated by the model
check algorithm usually consists of only one option per vertex. Recall that the
strategy function ψOdd : VOdd 7→ V decides which vertex the token is moved
to based on the current vertex. For each vertex that is winning for the model
checker (i.e. all vertices in VOdd), there is a single edge along which the token is
to be moved, even though moving along a different edge may also have resulted
in a win. Ideally, this function would record all possible options that result in a
win, i.e. it would map to P(V) instead of V . Because this is not the case, the
user will not be able to control the moves by the model checker, because for
each vertex VOdd owned by the model checker, there is only one possible choice
ψ(VOdd). This seriously impacts the ability of the user to exercise control over
the diagnostic exploration. It is not immediately clear how existing parity game
algorithms should be modified to produce the required extra information, but
the impact such a modification would have on their running time is likely severe.

We shall leave the choice between these alternatives open here. If possible,
integration with the model check algorithm will be the best solution because
the allows previously computed information to be re-used. Otherwise, a choice
has to be made between the other two alternatives. This choice can be left open
as an invocation parameter of the diagnostic exploration tool, so that the user
may enable unwanted cycle avoidance for relatively small problems, and disable
it otherwise.

83

Definition 7.10 (Exploration Algorithm). Let E be the Boolean equation
system encoding the model check problem of verifying Φ over the LTS T =
〈S, s0,L, δ〉, and let DE = 〈V, ∆, η, @〉 be its Diagnostic graph.
A play on the Diagnostic graph is a finite sequence of vertices Σ = [v0, . . . , vn]
following the rules below.
The diagnostic information displayed to the user is shown within framed boxes.

Assume that the model check failed, i.e. we are looking for a counterexample. The
case for witness search is dual.

(1) Initialise.
Begin exploration at the initial vertex: v0 := X0@〈s0, Φ〉
Initialise the LTS path π = [s0] and exploration sequence Σ = [v0].

The model check failed. Begin causality analysis.

(2) Check termination conditions.

• vi = false. Successful termination. Display the path leading up to the
failure.

Path leading up to the failure: π.

• vi has already been visited, i.e. there is some vi−k with k > 0 such that
vi = vi−k. Let vi−k, . . . , vi be dominated by the fixpoint µXα.
Then µXα can be recursed indefinitely. This is grounds for failure of the
model check.

The minimal fixpoint σαXα can be recursed indefinitely via

the path π.

Successful termination.

(3) Case distinction on the form of the formula annotation.
The vertex currently containing the token is vi@〈s, ϕ〉.

Expression ϕ does not hold in state s.

Case distinction on the form of ϕ:

• Atomic Property. ϕ is of the form Q. There is only one dependency
vi → false. Select vi+1 = false.

The property Q does not hold in state s.

• Conjunction.

ϕ is conjunctive. At least one dependency does not hold.

84

Allow the user to select one of the failing dependencies.
Please select a failing conjunct to investigate:

For each dependency vi → v′@〈s, ψ〉 such that η(v′) = false, present a
choice:

• ψ

(User selects some v′ for vi+1)

• Disjunction. No dependency holds. Allow the user to select one of
them. (Dual to conjunction.)

• Diamond Modality.

ϕ is a diamond modality expression.

Either:

◦ There is only one dependency vi → false due to the absence of suit-
able outgoing transitions from state s. Select vi+1 = false.

There are no outgoing transitions in state s that match

the modal operator.

◦ No dependency holds.

Allow the user to select one of the failing dependencies.
Please select a failing dependency to investigate:

For each dependency vi → v′@〈s′, ψ〉 such that η(v′) = false, present
a choice:

• ψ (in state s′)

(User selects some v′ for vi+1)

Let ϕ = 〈a〉ψ and vi+1@〈s′, ψ〉. Then π := π ◦ a−→ s′

Path so far: π

• Box Modality. At least one dependency does not hold. Allow the user
to select one of the failing dependencies. (Dual to diamond modality.)

• Fixpoint Operator.

ϕ is a fixpoint expression.

Either:

◦ There is only one dependency vi → v′@〈s, ψ〉 and ψ is of the form
σY. . .

There is a dependency on a nested fixpoint.

Select the dependency vi+1 = v′

85

◦ The previous condition does not hold. Pretend that the formula an-
notation on the current vertex vi was of the form ψ instead of σX. ψ.
Go to (2), but skip (4): do not increment i or change s.
Skipping the outermost fixpoint.

• Fixpoint Variable.

ϕ is of the form X and there is only one outgoing dependency v →
v′@〈s, form(X)〉. Select the dependency vi+1 = v′.

(4) Set up variables for the next iteration. i := i + 1. Set s and ϕ such
that @(vi) = 〈s, ϕ〉, and Σ = Σ ◦ vi. Go to (2).

Example 7.11 (Exploration Dialogue). Consider again the mu-calculus spec-
ification µX. ([a]X ∧ [τ]X) ∨ (νY. 〈a〉 true ∧ [a]Y ∧ [τ]Y) and the following
LTS from Example 5.4. (We will forego the details related to extra fixpoints for
brevity.)

s0 s1 s2

a

τ τ

a

Previously, we found that no single path could by itself suffice as a full coun-
terexample. In the dialogue between the user and the model checker (Figure 7.9),

the user will follow the (by itself insufficient) path [s0
a−→ s0

a−→ . . .] while also
receiving information about the mu-calculus expressions that cause this path to
lead to failure. ut

7.7 Path Extraction

A key goal for diagnostics is to provide the user with insight into the behaviour
of the system. This insight may arise through a number of different methods.
We have already seen how a Diagnostic graph can be explored interactively in
a game-based manner, and visually using a specialised tool, which can provide
insight into a potentially very large diagnostic. An alternative to this manual
exploration is the automated extraction of a single path through the transition
system demonstrating the failure.

Many existing model checking toolsets provide at least this type of diagnostic.
Due to its simplicity and pervasiveness, it can be called a common denominator
between the various model checking toolkits. Its simplicity is both a strength and

86

The model check failed. Begin causality analysis. π = [s0]

(1) Expression ϕ = µX. ([a]X ∧ [τ]X)∨ (νY. 〈a〉 true∧ [a]Y ∧ [τ]Y) does

not hold in state s0.
Skipping the outermost fixpoint.

ϕ is disjunctive. None of the dependencies hold.

Please select a failing disjunct to investigate:

• [a]X ∧ [τ]X
• νY. 〈a〉 true ∧ [a]Y ∧ [τ]Y

(User selects the first disjunct)

(2) Expression ϕ = [a]X ∧ [τ]X does not hold in state s0.
ϕ is conjunctive. At least one dependency does not hold.

Please select a failing conjunct to investigate:

• [a]X

(User selects the only possible conjunct)

(3) Expression ϕ = [a]X does not hold in state s0.
ϕ is a box modality expression. At least one dependency does not

hold.

Please select a failing dependency to investigate:

• µX. ([a]X ∧ [τ]X) ∨ (νY. 〈a〉 true ∧ [a]Y ∧ [τ]Y) (in state s0)

(User selects the only possible dependency)

Path so far: π = [s0
a−→ s0]

(4) Expression ϕ = µX. ([a]X ∧ [τ]X)∨ (νY. 〈a〉 true∧ [a]Y ∧ [τ]Y) does

not hold in state s0.
The minimal fixpoint σX can be recursed indefinitely via the

path:

π = [s0
a−→ s0].

Successful termination.

Fig. 7.9. A dialogue that may ensue between the user and model checker for
Example 7.11.

a weakness. It has been demonstrated that a linear path may be insufficient to, by
itself, fully demonstrate failure or success of the model check (see Example 5.4).
On the other hand, a path is very easy to understand, relatively concise (again
due to its simplicity) and can easily be intepreted by the user. Even when a

87

linear path is not technically adequate, it will often provide enough direction
to the user so that, with some additional domain knowledge, the cause of the
failure can be understood.

Thanks to the extra information contained in the Diagnostic graph, a linear
path can be annotated with the point of failure. This essentially uses the explo-
ration algorithm defined above as the workhorse, but omits all output except
for the termination condition and of course the path. For example, failure due
to a property that does not hold in a certain state is given by a path leading
up to that state and the message that “property Q (or so) failed to hold in the
last state in the path.” Failure due to indefinite recursion of a minimal fixpoint
operator would result in a path in the shape of a lasso, with the message that
“failure was due to indefinite fixpoint recursion.” A single path thus returned to
the user should not be taken as the reason for failure of the model check: there
may be multiple equally valid paths.

Automated Exploration

During interactive exploration, the user will make choices that lead to an inter-
esting and nonobvious path of failure. A certain clause in the specification may
be known (and intended) to fail in some state(s). Take for example two mutually
exclusive properties P and Q, and a specfication of the form (P ∧ϕ)∨ (Q∧ψ). If
P is known to fail in some area of the model, then failure of the model check will
be due to a failure of the second disjunct; that is, the real or interesting failure
will be due to some other chain of causality, which lies behind a different choice
at some point in the dialogue. The user provides insight to steer the search in this
interesting direction by informed decisions. This insight is not available when the
exploration is automated, and is another limitation of linear path diagnostics in
general.

An advantage of automated exploration is optimisation based on a set of
criteria. This can partially compensate for the mentioned limitation by allowing
the user to direct the path extraction algorithm towards potentially interesting
sections. An obvious concrete criterion is for a path to be of minimal length, but
in principle any constraint can be used, such as minimising the number of times
a certain action label occurs on the path, or perhaps a hard constraint like “a
read-action occurs on the path.”

Optimisation for length can easily be accomplished using a breadth-first ex-
ploration of the Diagnostic graph. BFS investigates all possible choices at every
vertex (so long as potential hard constraints are satisfied), and terminates when
any one of these paths leads to a termination condition. This one path is then
returned as the shortest. Alternatively, the search can continue, as a result of
which all possible paths of any length (satisfying the hard constraints) will be
computed. The one path optimising the soft criteria can then be returned. The
worst-case complexity of BFS is O(|V | + |E|). In case variables other than the
length need to be optimised, for example the number of times a certain action oc-
curs on a path, BFS is insufficient and heuristic algorithms become an attractive
option due to their running time.

88

7.8 Reduced LTS Extraction

When extracting a path from the Diagnostic graph, a single choice is made at
each choice point. If a disjunctive expression is seen to fail, a single disjunct is
selected for exploration, and a failure path will be generated according to that
choice. When the purpose is instead to extract a reduced labelled transition
system, information from multiple available options needs to be used, so no
single choice can be made. Instead, the information resulting from a number of
options is merged to form a single transition system. The goal in principle is to
arrive at an LTS of minimal size (with as few states and transitions as possible),
but as before, another possibility is to produce transition systems that meet hard
or optimise soft criteria.

The dirty work of the exploration, by which the reduced LTS is produced,
is done by the algorithm defined earlier (Definition 7.10). We shall refer back
to this algorithm instead of repeating much of it here, because it already does
most of what is needed, such as maintaining an internal state and checking
termination conditions. To allow multiple options to be explored in one run, the
entire algorithm process, including its internal state, will be forked (replicated)
at each choice point for each option that needs to be explored. Each instance
then proceeds to explore one of them, until the next choice point, where another
fork occurs, or until a termination condition is reached.

For our purposes, there are two types of choice points: those that are disjunc-
tive (due to a disjunctive expression or a diamond modal operator) and those
that are conjunctive (due to a conjuntive expression or a box modal operator).
As discussed earlier in Chapter 5, if a disjunctive formula fails, each of its dis-
juncts necessarily fails, so we would like an explanation for the failure of each
disjunct. Dually, in case a conjunctive formula fails, we have the option of finding
diagnostics for all its failing conjuncts, or selecting a single one from them to
further investigate. The emphasis here is on finding a reduced LTS, so as few
options as possible should be explored to keep the size to a minimum. Thus, for
each disjunctive choice point the algorithm should fork to explore all options,
but in case of a conjunctive node there is still the possiblity of user input (for
the present case of counterexamples; the dual for witnesses is to explore all con-
junctive options but select one from each disjunctive option). To ensure that
separate instances make the same choice at each vertex, a global variable should
keep track of visited vertices. When an instance of the exploration algorithms
arrives at a vertex that another instance has already visited, it may terminate.

User input is therefore still possible, and in fact instrumental in determining
the final outcome: one choice may lead to a reduced LTS of only 10 states,
whereas another to an LTS orders of magnitude larger. As before, these choices
can be left to the user, but can also be made by an appropriate (heuristic)
algorithm.

Definition 7.12 (Reduced LTS). Let E be the Boolean equation system en-
coding the model check problem of verifying Φ over the LTS T = 〈S, s0,L, δ〉,
and let DE = 〈V, ∆, η, @〉 be its Diagnostic graph. Explore DE according to

89

the algorithm in Definition 7.10 with the additional termination condition: if the
current vertex v has already been visited (i.e. v ∈ Σi for any instance i), then
terminate successfully.

When faced with a choice point:

• If the choice is disjunctive and the model check failed, or the choice is con-
junctive and the model check was a success: fork, i.e. create a separate in-
stance for each option v;

• If the choice is conjunctive and the model check failed, or the choice is
disjunctive and the model check was a success: select one option v (either
through user input or some given strategy).

Each instance i will terminate with a finite nonempty path πi.

The reduced LTS is T ′ = 〈S′, s0, L′, δ′〉 where S′ ⊆ S, s0 ∈ S′, L′ ⊆ L and
δ′ ⊆ δ such that:

• s ∈ S′ if s occurs in any path πi;

• l ∈ L′ if l occurs in any transition in any path πi;

• s a−→ s′ ∈ δ′ if the transition s
a−→ s′ occurs in any path πi.

ut

The labelled transition systems resulting from this method are valid as defined
in Definition 5.10.

Conjecture 7.13 (Validity of Reduced LTS). Let E be the Boolean equation
system encoding the model check problem of verifying Φ over the LTS T , and let
T ′ be its reduced counterpart. Then T |= Φ⇐⇒ T ′ |= Φ. ut

Example 7.14 (Reduced LTS). Consider again the mu-calculus specification
Φ = µX. ([a]X ∧ [τ]X)∨ (νY. 〈a〉 true∧ [a]Y ∧ [τ]Y) and the LTS from Exam-
ple 5.4. The abbreviation Ψ = νY. 〈a〉 true ∧ [a]Y ∧ [τ]Y will be used.

s0 s1 s2

a

τ τ

a

The Diagnostic graph associated with this model check problem is given in Fig-
ure 7.10. As discussed earlier, failure is due to the possibility of indefinite recur-
sion through the outermost least fixpoint, so an example of failure is [s0, s0, . . .].
This path is not a complete counterexample, because the LTS it induces consists
only of s0 and an a-loop. Compare the following reduced LTS, which has been
extracted from the Diagnostic graph:

s0 s1

a

τ

90

s0 6|= Φ

s0 6|= [a]X ∧ [τ]X

s0 6|= [a]X

s0 6|= X

s0 6|= Ψ

s0 6|= [a]Y

s0 6|= Y

s0 6|= [τ]Y

s1 6|= Y

s1 6|= Ψ

s1 6|= 〈a〉 true

false

Fig. 7.10. Diagnostic graph for Example 7.14. Vertices that have a different
truth value from the initial vertex X0 are omitted and effectless fixpoints are
hidden.

The specification fails over this reduced model (as predicted by Conjecture 7.13).
Note that the unrolling of this LTS is the multi-path from Example 5.8, which
was concluded to be a complete counterexample. ut

Example 7.15 (Reduced LTS Alternatives). This example demonstrates
how the same Diagnostic graph can give rise to two different reduced transition
systems. Consider the following model, and the specification Φ = µX. [L]X ∧
[req](µY. [ack]Y ∧ 〈L〉 true), which says that an acknowledgement should even-
tually occur after a request.

s0 s1 s2

req

ack

req

τ

As we can see, the desired property is violated in two ways: by livelock in s1 and
by deadlock in s2. Exploration of the Diagnostic graph based on this model check
problem presents two choice points, one of which is invariant to the resulting
LTS. The remaining choice is between the request loop in s1, which violates the
minimal fixpoint Y , and the path to failure in state s2. The former will result

91

in the reduced LTS on the left, while the latter results in the LTS on the right.
Note that the original specification fails on both reduced transition systems.

s0 s1
req

req

Reduced LTS showing livelock

s0 s1 s2
req τ

Reduced LTS showing deadlock

ut

92

8 Conclusion

The Diagnostic graph has been presented as a diagnostic data structure tailored
to model checking using the mu-calculus and Boolean equation systems. It em-
ploys elements from various classes of diagnostics, in order to most efficiently
convey diagnostic information to the end user. The type of information that is
most effective in doing this is in the end based on the preference of the user,
who may be helped most by a simple linear path diagnostic at one stage of
development, and a detailed causality analysis at another stage.

The Diagnostic graph supports these and other “user-facing” diagnostics be-
cause it contains an abundance of detail about the model check process. This
also permits future extensions, such as a state colouring according to which sub-
formulas hold (as mentioned in Section 6.3: Presentation of Diagnostics). The
Diagnostic graph serves as a central data structure, which can be generated
in multiple ways (even when different model check techniques are used), and
supports the derivation of myriad user-facing diagnostics.

Future Work

There are a number of conveniences that have not been incorporated in the Diag-
nostic graph. The regular mu-calculus was introduced as a shorthand notation.
In fact, notation using regular expressions (e.g. [L]ϕ) has been used throughout
this work because it promotes the readability of intricate formulas. It should not
be difficult to add support for regular expressions in the Diagnostic graph, as
any regular formula can be rewritten to the plain mu-calculus.

Computer processes are assumed to be modelled as labelled transition sys-
tems here. This is a type of model that is almost universal, but is often generated
automatically from some higher language. We already saw this in the Edinburgh
Concurrency Workbench example, where states were designated with more read-
able names and higher-level operators such as sequential composition (·) and
alternative composition (+) were used. This is a level of representation which
provides a better overview of a complex model than a (potentially very large)
transition system. Therefore, the diagnostic should ideally also be in terms of
this higher language. To accomplish this, there will have to be a method for
relating states and transitions in the LTS back to the higher-level expressions
from which they originate. This relation can then be used when presenting the
diagnostic information by translating the states and transitions back into the
language with which the user is familiar.

Finally, we have discussed the breadth-first search algorithm for extracing
paths of minimal length from the Diagnostic graph, and only briefly touched
upon heuristic algorithms. The extraction of user-facing diagnostics from the
Diagnostic graph is important, because of the impact it can have on the un-
derstandability of the presented diagnostic. The user may want to obtain only
paths or other user-facing diagnostics that meet a number of hard or optimise a
number of soft criteria. However, computational complexity is a significant issue
in this area. Heuristic algorithms are popular for this kind of optimising search,

93

due to their managable complexity. The right search strategy can significantly
contribute to the value of any user-facing diagnostic, because it is a way for the
user to apply her insight and domain knowledge of the model to limit the size
and complexity of the diagnostic.

94

References

[Beatty, Bryant 94] D. Beatty and R. Bryant, Formally verifiying a microprocessor
using a simulation methodology, in Design Automation Conference ’94, p. 596–
602.

[Beer et al. 97] I. Beer, S. Ben-David, C. Eisner and Y. Rodeh, Efficient Detection of
Vacuity in ACTL formulas, in Proc. 9th Conference on Computer Aided Verifica-
tion vol. 1254 of LNCS, p. 279–290 (1997).

[Bradfield, Stirling 06] Julian Bradfield and Colin Stirling, Modal mu-calculi, in P.
Blackburn, J. van Benthem and F. Wolter (eds.), The Handbook of Modal Logic
p. 721–756. Elsevier (2006).

[Buccafurri et al. 01] Francesco Buccafurri, Thomas Eiter, Georg Gottlob and Nicola
Leone, On ACTL Formulas Having Linear Counterexamples, in Journal of Com-
puter and System Sciences 62, p. 463–515 (2001).

[Chechik, Garfunkel 05] Marsha Chechik and Arie Garfunkel, A Framework for Coun-
terexample Generation and Exploration, in Lecture Notes in Computer Science
vol. 3442, p. 220–236 (2005).

[Clarke, Draghicescu 89] E. M. Clarke and I. A. Draghicescu, Expressibility Results for
Linear-Time and Branching-Time Logics, in REX Workshop, vol. 354 of Lecture
Notes in Computer Science (1989).

[Clarke et al. 95] E. Clarke, O. Grumberg, K. McMillan and X. Zhao, Efficient Gen-
eration of Counterexamples and Witnesses in Symbolic Model Checking, in 32nd
Design Automation Coference (DAC 95), p. 427–432, San Francisco, CA, USA
(1995).

[Clarke et al. 02] Edmund Clarke, Somesh Jha, Yuan Lu and Helmut Veith, Tree-Like
Counterexamples in Model Checking, in Proceedings of the 17th Annual IEEE
Symposium on Logic in Computer Science (LICS ’02).

[Clarke et al. 03] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu and Hel-
mut Veith, Counterexample-Guided Abstraction Refinement for Symbolic Model
Checking, in Journal of the ACM, vol. 50, No. 5, September 2003, p. 752–794.

[Cleaveland 90] Rance Cleaveland, Tableaux-Based Model Checking in the Proposi-
tional Mu-Calculus, in Acta Informatica vol. 27, p. 725–747 (1990).

[Dong, Ramakrishnan, Smolka 03] Yifei Dong, C.R. Ramakrishnan and Scott A.
Smolka, Model Checking and Evidence Exploration, in Proc. 10th IEEE Interna-
tional Conference and Workshop on the Engineering of Computer-Based Systems,
p. 214–223 (2003).

[Emerson, Lei 86] E. A. Emerson and C. L. Lei, Efficient Model Checking in Fragments
of the Propositional Mu-Calculus, in Proc. 1st IEEE LICS 267-278 (1986).

[Fischer, Ladner 79] Michael J. Fischer and Richard E. Ladner, Propositional Dynamic
Logic of Regular Programs, in Journal of Computer and System Science, 18(2) p.
194–211 (1979).

[Gurfinkel, Chechik 03] Arie Gurfinkel and Marsha Chechik, Proof-like Counter-
Examples, in Tools and Algorithms for the Construction and Analysis of Systems,
p. 160–175 (2003).

[Groote 08] Jan Friso Groote, Jeroen Keiren, Aad Mathijssen, Bas Ploeger, Frank
Stappers, Carst Tankink, Yaroslav Usenko, Muck van Weerdenburg, Wieger Wes-
selink, Tim Willemse and Jeroen van der Wulp, The mCRL2 toolset, in Proc. In-
ternational Workshop on Advanced Software Development Tools and Techniques
(WASDeTT 2008).

95

[Groote, Reniers 09] Jan Friso Groote and Michel Reniers, Modelling and Analysis of
Communicating Systems (revision 1478), Eindhoven Technical University (2009).

[Hennessy, Milner 80] M. Hennessy and R. Milner, On Observing Nondeterminism and
Concurrency, in Procs. ICALP 1980 Lecture Notes in Computer Science 85 p. 295–
309 (1980).

[Keiren 09] Jeroen Keiren, An Experimental Study of Algorithms and Optimisations
for Parity Games, with an Application to Boolean Equation Systems Eindhoven
Technical University (2009).

[Keiren, Reniers, Willemse 10] Jeroen Keiren, Michel A. Reniers and Tim A.C.
Willemse, Structural Analysis of Boolean Equation Systems, to appear in Trans-
actions on Computational Logic (submitted 2010).

[Kupferman, Vardi 99] Orna Kupferman and Moshe Y. Vardi, Vacuity Detection in
Temporal Logic Model Checking, in Proc. of the 10th IFIP WG 10.5 Advanced Re-
search Working Conference on Correct Hardware Design and Verification Methods
(1999).

[Mader 96] Angelika Mader, Verification of Modal Properties Using Boolean Equation
Systems, Dieter Bertz Verlag (1996).

[Mateescu 00] Radu Mateescu, Efficient Diagnostic Generation for Boolean Equation
Systems, in Lecture Notes in Computer Science 1785, p. 251–265 (2000).

[Mateescu 06] Radu Mateescu, CAESAR SOLVE: A Generic Library for On-The-Fly
Resolution of Alternation-Free Boolean Equation Systems, in Springer Interna-
tional Journal on Software Tools for Technology Transfer (STTT) 8(1), p. 37–56
(2006).

[Mateescu, Sighireanu 00] Radu Mateescu, Mihaela Sighireanu, Efficient On-the-Fly
Model-Checking for Regular Alternation-Free Mu-Calculus, in Proc. of the 5th In-
ternational Workshop on Formal Methods for Industrial Critical Systems (FMICS)
Berlin, Germany (April 2000).

[McMillan 93] K.L. McMillan, Symbolic Model Checking, Kluwer Academic (1993).
[McMillan 94] K.L. McMillan, Fitting Formal Methods into the Design Cycle, in 31st

ACM/IEEE Automation Conference (1994).
[Milner 80] Robin Milner, A Calculus of Communicating Systems, in Lecture Notes in

Computer Science vol. 92, Springer (1980).
[Mousavi, Reniers, Groote 07] Mohammad Reza Mousavi, Michel A. Reniers and Jan

Friso Groote, SOS Formats and Meta-Theory: 20 Years After, in Theoretical Com-
puter Science, vol. 373, p. 238–272 (2007).

[Plotkin 04] Gordon D. Plotkin, A Structural Approach to Operational Semantics, in
Tech. Rep. DAIMI FN-19, Computer Science Department, Aarhus University,
Aarhus, Denmark (1981); Reprinted with corrections in J. Log. Algebr. Program.
60-61: 17-139 (2004).

[Pressman 97] Roger S. Pressman, Software Engineering: A Practicioner’s Approach
(4th ed.), McGraw-Hill (1997).

[Stevens, Stirling 98] Perdita Stevens and Colin Stirling, Practical Model Checking us-
ing Games, in Lecture Notes in Computer Science vol. 1384, p. 85–101 (1998).

[Stirling 96] Colin Stirling, Modal and Temporal Logics for Processes, Lecture Notes in
Computer Science vol. 1043, Springer Berlin /Heidelberg (1996).

[Stirling, Walker 89] Colin Stirling and David Walker, Local Model Checking in the
Modal Mu-Calculus, in Proceedings of TAPSOFT ’89, Lecture Notes in Computer
Science 351, Springer-Verlag, Berlin (1989).

[Tan, Cleaveland 02] Li Tan and Rance Cleaveland, Evidence-Based Model Checking,
in Computer-Aided Verification, p. 455–470, Springer-Verlag (2002).

96

	0 Abstract
	1 Labelled Transition Systems
	2 The Modal Mu-Calculus
	3 Boolean Equation Systems
	4 Model Checking
	5 Classes of Diagnostics
	6 Supporting Methods
	7 The Diagnostic Graph
	8 Conclusion
	References

