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Abstract 

This thesis considers a special version of the Vehicle Routing Problem (VRP) where a 

homogeneous fleet of vehicles with limited capacity may encounter stochastic disruptions on 

their way, which can be buffered by a series of time windows. In our problem – called VRP with 

self-imposed time windows (VRP-SITW), delivery time windows should be quoted by the route 

planners to their customers instead of being quoted by customers themselves, making our 

problem different from the traditional VRP with Time Windows (VRPTW). The vehicle must 

wait if it arrives before the time window opens and be penalized proportional to the tardiness if it 

arrives after the time window closes. In addition, returning to the depot after the shift time causes 

an overtime cost proportional to the lateness. The objective of this problem is to assign vehicles 

to feasible routes and make robust schedules that minimize the total costs, including travel cost, 

expected penalty cost for tardiness, and expected overtime cost. In this thesis, we describe an 

algorithm TSLPE to solve the problem, which develops a Tabu Search (TS) heuristic 

incorporated with a linear programming (LP) exact cost evaluation and an approximate cost 

evaluation. The basically designed TS is improved by adding a diversification procedure at a 

later stage. TSLPE is tested on a number of benchmark instances. Results show that the 

algorithm provides good quality solutions to our problem, while consuming reasonable 

computational efforts. 

 

Keywords: vehicle routing problem; vehicle scheduling; disruptions in travel times; tabu search; 

linear programming 
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Executive Summary 

In recent years, numerous distribution centers have been constructed, aiming at reducing 

transportation costs. In order to improve the efficiency of distribution, the vehicle routing 

planners play a key role in the distribution system. The Vehicle Routing Problem (VRP) thus has 

received a lot of attention.  

 

The VRP aims at designing a set of vehicle routes through several customer locations with 

minimum costs, in conditions that each route starts and ends at the depot, and each customer 

must be visited only once by one vehicle. Some side constraints may need to be satisfied, like the 

time windows during which it is allowed to service the customers, which constitutes an 

important variant of the VRP – the Vehicle Routing Problem with Time Windows (VRPTW). 

The VRPTW is one of the central problems that have been extensively studied by researchers in 

distribution management and operations research.  

 

The problem we consider in this thesis – called VRP with self-imposed time windows (VRP-

SITW) – is a particular version of the VRP, where a homogeneous fleet of vehicles with limited 

capacity may encounter stochastic disruptions on their way, which can be buffered by a series of 

time windows. However, VRP-SITW is different from the well-studied VRPTW in two aspects. 

On the one hand, delivery time windows should be quoted by the route planners to their 

customers instead of being quoted by customers themselves (like in VRPTW). On the other 

hand, the VRP-SITW mixes the features of two important variants of the VRPTW – the VRP 

with Hard Time Windows (VRPHTW) stipulates that the service must start within the time 

window, and the vehicle can wait at no cost if it arrives too early, and the VRP with Soft Time 

Windows (VRPSTW) allows violation on both upper and lower bounds of the time windows 

with penalty proportional to the earliness or the tardiness. In VRP-SITW, the vehicle must wait 

at no cost if it arrives before the time window and be penalized proportional to the tardiness if it 

arrives after the time window closes. In addition, returning to the depot after the shift time causes 

an overtime cost proportional to the lateness. The objective of this problem is to assign vehicles 

to feasible routes and make robust schedules that minimize the total costs, including travel cost, 

expected penalty cost for tardiness, and expected overtime cost.  

 

The VRP-SITW arises in a number of practical contexts where disruptions during travel might 

occur due to weather, human, or other unexpected factors. Thus distributors are motivated to 

impose time windows at customer locations to deal with these uncertainties. The time windows 

are often relaxed to allow for early or late arrivals at customer locations in practice. In 

applications where to increase customer satisfaction level is much more important (i.e., to respect 

the time windows as much as possible), the penalty for tardiness should be minimized. When 

costs on drivers are fixed during a shift, it is not necessary to associate penalty cost to the 

earliness. On the other hand, the distributors also want to minimize the travel cost and overtime 

cost for their self-interests. This problem is important because it can be used to model numerous 

problems in practice faced by distributors worldwide, e.g., newspaper delivery, postal delivery, 

and school bus routing. However, VRP-SITW has received little attention in the literature despite 

its importance in practice. A solution of the VRP-SITW includes three parts – the route planning, 

the service scheduling, and the expected total costs (evaluation). The objective of this thesis is to 

develop an algorithm to solve this problem, and evaluate its competitiveness through 

experiments.  
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VRPTW is a hard combinatorial optimization problem, and can rarely be solved to optimality for 

instances with large sizes within reasonable computation time. The same happens to VRP-SITW 

as well. We are therefore interested in using heuristics to solve this problem.  

 

The algorithm we propose – called TSLPE – uses the ideas of Tabu Search (TS) heuristic, but 

incorporates problem-specific features. We construct a linear programming (LP) model to insert 

buffers (time windows) into the routes, in order to cope with the uncertainties and make a robust 

schedule. The objective function of the LP is used to exactly evaluate solution. However, since 

simply computing the objective function for all candidate solutions is computationally expensive, 

an approximation function has to be used to evaluate possible neighbors of a given solution, and 

then assist to select the best one as a new current solution. Consequently, the exact evaluation is 

only used on those selected elite solutions.  

 

Specifically, TSLPE can be split into three parts, in order to obtain the three parts of the 

problem: 

(1) The route planning method – the design of the TS framework 

The TS is designed on six key factors. The initial solution is found through a Nearest Neighbor 

constructive heuristic. And the 2-opt and 2-opt* exchange operators generate the neighborhood. 

All the candidates generated are then evaluated using the approximation function, from which 

the one with the best value is selected as the „current solution‟. Afterwards, the exact function is 

computed to reevaluate the current solution. The tabu list records best moves from every 

iteration and has a variable length, and the memory structure contains both short-term and long-

term memories. The aspiration criterion to allow the tabu status to be overridden requires that the 

exact value of a forbidden solution is better than the best value found so far. Finally, the 

termination criteria include the total number of iterations as well as the maximum number of 

non-improving iterations. 

(2) The service scheduling method – the construction of the LP model 

(3) The evaluation method – the construction of exact and approximate evaluation functions 

The exact evaluation function summates the total travel time and the objective function of the LP 

model which computes the expected costs for tardiness and overtime. In addition, a self-adjusted 

penalty term is added to evaluate the infeasibility during the search. We consider two extreme 

situations and build two functions accordingly. The relationship between these functions and the 

real approximation function is examined using multiple regression technique. 

 

TSLPE is tested on ten benchmark instances for VRP. The approximation evaluation and the 

neighborhood searching strategies for the TS design are determined through the experiments, and 

then some TS parameters are tuned on one randomly selected instance. Sensitivity analysis 

indicates that the effects of these parameters on solution quality are not large. Hence this new 

parameter setting is used for all datasets in later experiments. The TS procedure is improved by 

adding the long-term memory as a diversification method to pursue better solutions at a later 

stage. Comparisons are made between our results and the known optimal values in terms of the 

total distance. Results show that the improved algorithm provides good quality solutions to our 

problem, while consuming reasonable computational efforts, and is robust over penalty cost rate 

changes. 
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The contributions of this project include several aspects:  

(1) The first to study on such a specifically defined VRP – VRP-SITW.  

(2) The LP evaluation based on the buffer allocation model is once cooperated with TS in the 

machine scheduling problem, but never in the VRP. We propose a new method to incorporate the 

buffer allocation model into the process of TS for VRP-SITW, which provides satisfactory 

solutions.  

(3) Presenting a practical and statistical way that is easily computed to estimate the objective 

function value constituted partly by the LP objective function which costs much computational 

effort during the mediate searching and proving its validation.  

(4) One advantage of the proposed TSLPE lies in its flexibility. By raising the overtime cost rate, 

the shift duration becomes a hard constraint on the feasibility of the routes. By raising the 

penalty cost rate, hard time window cases may also be addressed. Other features can easily be 

handled too, such as assigning bounded vehicles, using multiple depots, allowing hierarchical 

routes, and so forth.  

 

There are many perspectives that are worthy of receiving further investigation in future.  

(1) First, as the parameters of the TS have been tested, the procedures of the other essential TS 

factors are also worth a try, e.g., more alternative strategies of generating an initial solution, 

more sophisticated neighborhood exploration to enrich the neighborhood, different memory 

structures, different aspiration criteria, more sophisticated diversification and intensification 

methods, post-optimization procedures, etc. The more successful implementations of TS often 

make use of better initial solutions and neighborhood structures, and a balance between 

intensification and diversification. More complicated strategies are likely to yield better 

solutions, but at the same time require additional computational effort. It should be remarked that 

the improvement of algorithms should strike a good balance between the quality of solutions and 

computational efficiency.  

(2) Second, techniques that can speed up the search and improve the robustness and the quality 

of the solutions, such as multi-search meta-heuristics, or parallel computation, have been 

increasingly used in recent research, and may become a direction of future research.  

(3) In addition, though lying out of the boundary of this project, the other parameters which are 

not directly related to the algorithm itself may find their optimized combination from a broader 

managerial view in order to further reduce the total costs of the whole business. For example, the 

effect of the shift duration or the penalty cost rate can be explored. Hence, many managerial 

insights can be taken into the tricky decision of the three cost rates and the shift duration in this 

way.   
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Table of Notations 
Table 1 the table of notations 

Parameters Explanation 
  The self-adjusting coefficient of the penalty term for the infeasibility, its initial value 

is set to  0  

ri  Set of discrete disruption scenarios for customer i
 
on route r.  ri M

 rr R  

rijk
 

The delay in the starting time of serving customer i beyond the time window (e.g. the 

delay time that is punished) due to a disruption according to scenario k of the unique 

disruption at customer j. , , 0r r rjr R i j M i j i k      

max  The largest observed absolute difference between the objective function values 

obtained at two successive iteration 

A Percentage of the total nodes that determines the size of neighborhood 

B The parameter used for updating   

b0,b1,b2,b3 Coefficients in the regression model 

Co Non-negative additional cost per unit time of overtime after the duration time 

Cp Non-negative penalty cost to pay the customer per unit time of delay at each 

customer after the time window 

Ct Non-negative traveling cost per unit time/distance of traveling 

      th largest disruption time in scenario set ri
 
at customer (or starting depot) i on 

route r, ri M . rik
 rr R  

maxd  The longest disruption time over all disruption scenarios for all customers 

rijkD  The delay in the starting time of serving customer i or the delay at the starting depot 

due to a disruption according to scenario k of the unique disruption at customer j. 

,r r rjr R i j M i j k     

e Prediction error in the regression model 

F The fixed common shift duration 

 F S  The evaluation function of current solution S (feasible or not) 

 'F S
 

The evaluation function of the improved algorithm 

*

1F  The best value of  F S  so far for feasible solutions 
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*

2F  The best value of  F S  so far for infeasible solutions 

 aF S  The approximated evaluation function of any solution (feasible or not) 

 1aF S
 

The first approximation function 

 2aF S
 

The second approximation function 

1a oF
 

The overtime cost for the first approximation function 

2a oF
 

The overtime cost for the second approximation function 

2a pF
 

The penalty cost for tardiness for the second approximation function 

*

aF  The best value of aF  so far for all candidate neighbors 

 cF S
 

The cost function 

 oF S
 

The objective function in the LP model 

 uF v
 

The evaluation of the best solution found, which has the searching procedure fed by 

Cp=u but the evaluation function fed by Cp=v 

vf  
The number of times move v has been moved, divided by the iteration number 

g Scaling factor 

 rig
 

Probability-mass function of disruption time at customer i on route r. rikg is 

shorthand for  ri rikg d . 1
ri

rikk
g




 
ri M
 rr R  

GAMA The initial value of   

H The frequency of updating   

I Counter of the total iterations 

I_FEASIBLE Counter of the continuous iterations with feasible current solutions 

I_INFEASIBLE Counter of the continuous iterations with infeasible current solutions 

INF A large number standing for the concept of “infinity” 

MAX_I The maximum number of iterations the search is allowed to perform 

MAX_NII The maximum number of iterations the search is allowed to perform without 

improvement 

MAX_L Upper bound of the tabu tenure 

MIN_L Lower bound of the tabu tenure 

Mr A set of    customers and the depot,                 in the route  . Vertex 0 

denotes the depot. The original index of the customers are forgotten after the route is 

defined; instead, the customers are reassigned with new index from 1 to    

according to their sequence. rr R  

NII Counter of the continuous iterations without improvement 
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N_SIZE The size of neighbors that each vertex is allowed to be moved with. The number is 

some percentage of the total number of customers. 

rip  The probability that customer (or starting depot) i is the uniquely disrupted customer 

in route r, conditional on exactly one service being disrupted. 1
r

rii M
p




  
rr R  

Q Capacity of a vehicle 

qri Demand of the (index-reordered) customer i on route r.
 ri M

 rr R  

Rr A set of   routes (vehicles),                 , where   is the total number of 

vehicles 

S The current solution (feasible or not) 

S* The best feasible solution so far 

TABU_LENGTH The length of the tabu list 

tri Travel time (distance) between (index-reordered) customer (or starting depot) i and 

its next customer i+1 (or returning depot) in sequence on route r.
 ri M

 rr R  

riT  The pre-scheduled time interval between customer (or starting depot) i and its next 

customer i+1 in sequence on route r, after each pre-scheduled time point, the lateness 

of arrival can be w at maximum without a penalty charge ,r ri M i m 
 rr R . 

Once all riT
 
are determined, the schedules for all customers are fixed. 

W The length of the self imposed time window for all customers 

Υrjk
 

The delay of the tour r beyond the shift duration F due to the disruption of scenario k 

at j. r r rjr R j M k  
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1 Introduction 

In recent years, numerous distribution centers have been constructed, aiming at reducing 

transportation costs. In order to improve the efficiency of distribution, the vehicle routing 

planners play a key role in the distribution system. The Vehicle Routing Problem (VRP) thus has 

received a lot of attention. The VRP aims at designing a set of vehicle routes through several 

customer locations with minimum costs, in conditions that each route starts and ends at the depot, 

and each customer must be visited only once by one vehicle. Some side constraints may need to 

be satisfied, like the time windows during which it is allowed to service the customers, which 

constitutes an important variant of the VRP – the Vehicle Routing Problem with Time Windows 

(VRPTW). The VRPTW is one of the central problems that have been extensively studied by 

researchers in distribution management and operations research. 

The problem we consider in this thesis – called VRP with self-imposed time windows (VRP-

SITW) – is a particular version of the VRP, where a homogeneous fleet of vehicles with limited 

capacity may encounter stochastic disruptions on their way, which can be buffered by a series of 

time windows. However, VRP-SITW is different from the well-studied VRPTW in two aspects. 

On the one hand, delivery time windows should be quoted by the route planners to their 

customers instead of being quoted by customers themselves (like in VRPTW). On the other hand, 

the VRP-SITW mixes the features of two important variants of the VRPTW – the VRP with 

Hard Time Windows (VRPHTW) stipulates that the service must start within the time window, 

and the vehicle can wait at no cost if it arrives too early; and the VRP with Soft Time Windows 

(VRPSTW) allows violation on both upper and lower bounds of the time windows with penalty 

proportional to the earliness or the tardiness. In VRP-SITW, the vehicle must wait at no cost if it 

arrives before the time window and be penalized proportional to the tardiness if it arrives after 

the time window closes. In addition, returning to the depot after the shift time causes an overtime 

cost proportional to the lateness. The objective of this problem is to assign vehicles to feasible 

routes and make robust schedules that minimize the total costs, including travel cost, expected 

penalty cost for tardiness, and expected overtime cost.  

The VRP-SITW arises in a number of practical contexts where disruptions during travel might 

occur due to weather, human, or other unexpected factors. Thus distributors are motivated to 

impose time windows at customer locations to deal with these uncertainties. The time windows 

are often relaxed to allow for early or late arrivals at customer locations in practice. In 

applications where to increase customer satisfaction level is much more important (i.e., to respect 

the time windows as much as possible), the penalty for tardiness should be minimized. When 

costs on drivers are fixed during a shift, it is not necessary to associate penalty cost to the 

earliness. On the other hand, the distributors also want to minimize the travel cost and overtime 

cost for their self-interests. This problem is important because it can be used to model numerous 

problems in practice faced by distributors worldwide, e.g., newspaper delivery, postal delivery, 

and school bus routing. However, VRP-SITW has received little attention in the literature despite 

its importance in practice. This objective of this thesis is to develop an algorithm to solve this 

problem, and evaluate its competitiveness through experiments. 

VRPTW is a hard combinatorial optimization problem, and can rarely be solved to optimality for 

instances with large sizes within reasonable computation time. The same happens to VRP-SITW 
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as well. We are therefore interested in using heuristics to solve this problem. The algorithm we 

propose – called TSLPE – uses the ideas of Tabu Search (TS) heuristic, but incorporates 

problem-specific features. We construct a linear programming (LP) model to insert buffers (time 

windows) into the routes, in order to cope with the uncertainties and make a robust schedule. The 

LP evaluation based on the buffer allocation model is once cooperated with TS in the machine 

scheduling problem (Finke,D.A., D.J. Medeiros, and M.T. Traband, 2007), but never in the 

VRPTW, at least at the author‟s knowledge. The objective function of the LP is used to exactly 

evaluate a solution. However, since simply computing the objective function for all candidate 

solutions is computationally expensive, an approximation function has to be used to evaluate 

possible neighbors of a given solution, and then assist to select the best one as a new current 

solution. Consequently, the exact evaluation is only used on those selected „elite‟ solutions. Our 

algorithm is tested on a number of benchmark instances. The approximation evaluation and the 

neighborhood searching strategies for the design of TSLPE are determined through the 

experiments, some TS parameters are tuned, and the solution quality is checked. The TS 

procedure is improved by adding the long-term memory as a diversification method at a later 

stage. Results show that the improved algorithm provides good quality solutions to our problem, 

while consuming reasonable computational efforts.  

The remainder of this report is arranged as follows. In chapter 2, a brief literature review of 

related topic is provided. In chapter 3, the problem of the project is defined and described. In 

chapter 4, 5 and 6, the algorithm followed by the model and evaluation is proposed. In chapter 7, 

the experiments and the results are presented and analyzed. And finally, the discussion and the 

conclusion are the subject of the last chapter.  
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2 Literature Review 

In this chapter the literature review of related topics is presented. In a broader sense, the concept 

of VRP and approaches used in literature are introduced. And in a more specific sense, our main 

interests, namely VRPTW and TS, are studied as well.  

2.1 VRP and VRPTW 

In general, the VRP is described as the problem of designing optimal delivery or routes from one 

or several depots to a number of geographically scattered cities or customers, subject to side 

constraints (Laporte, 1992). However, there does not exist a single universally accepted 

definition of the VRP because of the diversity of constraints, such as vehicle capacity, route 

length, time windows, precedence relations between customers, etc (Laporte, 2007).  

The VRP is NP-hard because it includes the Traveling Salesman Problem (TSP) as a special case 

when there is only one vehicle and the capacity is infinite. In early research (e.g. (Gendreau,M., 

A. Hertz, and G. Laporte, 1994)), solutions of the VRP are sometimes transformed into the TSP 

by replication of the depot. The most sophisticated exact algorithms for the VRP can only solve 

instances of up to about 100 customers, and with a variable success rate (R. Baldacci, N. 

Christofides, and A. Mingozzi, 2008). This explains to a large extent why most of the research 

effort has concentrated on heuristics. Another reason is the fact that heuristics tend to be 

considerably more flexible than exact algorithms and can be more readily adapted to deal with 

the diversity of variants arising in practice. For an introduction of different approaches refer to 

2.2.  

One important variant of the VRP is the Vehicle Routing Problem with Time Windows (VRPTW) 

where each customer has a given time window which needs to be respected. The VRPTW can be 

described as the problem of designing least cost routes from one depot to a set of geographically 

scattered points. The routes must be designed in such a way that each point visited only once by 

exactly one vehicle within a given time interval, all routes start and end at the depot, and the total 

demands of all points on one particular route must not exceed the capacity of the vehicle 

(Braysy,O. and M. Gendreau, 2005a). 

Many researchers, such as Braysy and Gendreau (2005b), consider that the VRPTW has multiple 

objectives in that the goal is to minimize not only the number of vehicles required, but also the 

total travel time or total travel distance incurred by the fleet of vehicles. A hierarchical objective 

function is defined such that the number of routes is first minimized and then for the same 

number of routes, the total traveled distance or time is minimized. However, this research will 

consider problems with a different objective function which will be discussed later in this report.  

2.2 Solution Approaches  

A wide variety of exact and approximate algorithms have been proposed for solutions of 

VRP/VRPTW. Exact algorithms, based on branch-and-bound techniques, can only solve 

relatively small problems (at most 100 customers), but a number of approximate algorithms have 

proved very satisfactory for large problems. The NP-hardness of the VRPTW requires heuristic 

solution strategies for most real-life instances.  

Approximate algorithms include classical heuristics and metaheuristics.  
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 (1) Classical Heuristics  

The classical heuristics have improvement steps that always proceed from a solution to a better 

one in its neighborhood until no further gain is possible. They can be divided into constructive 

heuristics and improvement heuristics.  

The most popular constructive heuristics is the Clarke and Wright savings algorithm (Clarke,G., 

and J.V. Wright, 1964), which puts every customer himself with the depot on one route at first, 

and then iteratively merges the two routes that cause the most saving unless the constraints are 

violated. Other important classes include, e.g., petal heuristics, the sweep algorithm (Gillett,B.E., 

and L.R. Miller, 1974), a heuristic based on a two-phase decomposition procedure (Fisher,M.L., 

and R. Jaikumar, 1981).  

Improvement heuristics include intra-route and inter-route heuristics. Intra-route heuristics post-

optimize each route separately by means of a TSP improvement heuristic; inter-route heuristics 

consist of moving vertices to different routes (Laporte,G., and F. Semet, 2002). The performance 

of classical improvement heuristics is often not so good. They are best used as building blocks 

within metaheuristics.  

(2) Metaheuristics  

In practice, metaheuristics is the core of many recent developments of solution methodologies 

for VRPTW, which allows the consideration of non-improving and even infeasible intermediate 

solutions, so that the exploration of the solution space beyond the first local minimum 

encountered is possible. All metaheuristics embed procedures borrowed from classical 

construction and improvement heuristics. Although it requires more computation time than 

classical heuristics, but given the vast improvements in solution quality, the extra computational 

effort is well justified (Gendreau,M., A. Hertz, and G. Laporte, 1994). Their solutions may be 

better than local optimum and sometimes even equal to the global optimal solution . 

Metaheuristics can be classified into three categories: local search, population search, and 

learning mechanisms.  

Tabu Search (TS) is one of the most successful local search methods to address the VRP in 

recent years, and is of particular interest to us. An introduction of TS is in 2.3. 

2.3 Tabu Search  

Tabu search (TS) is a local search metaheuristic introduced by Glover (1986). TS explores the 

solution space by moving at each iteration from a solution to the best solution in a subset of its 

neighborhood iteratively until a termination criterion is satisfied. The current solution may 

deteriorate from one iteration to the next in order to avoid local minima. New, poorer solutions 

are accepted only to avoid paths already investigated. This insures new regions of a problem‟s 

solution space will be investigated with the goal of avoiding local minima and ultimately finding 

the desired solution. To avoid cycling, solutions possessing some attributes of recently explored 

solutions are temporarily declared tabu or forbidden. The tabu status can be overridden if certain 

conditions are met. Various intensification and diversification techniques are often employed to 

guide the search process.  
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There are four basic elements in TS:  

(1) Initial solution: typically created with some cheapest insertion heuristic. The most common 

is Solomon‟s I1 insertion heuristic (Solomon, 1987).  

(2) Neighborhood generation method: some exchange operators are widely used to improve 

the solutions, e.g. 2-opt, Or-opt, 2-opt*, relocate, exchange, and CROSS-, GENI-, and λ-

exchanges. To reduce the complexity of the search, some authors propose special strategies for 

limiting the neighborhood. Another frequently used strategy to speed up the search is to 

implement the proposed algorithm in parallel on several processors. To cross the barriers of the 

search space, created by time window constraints, some authors allow infeasibilities during the 

search. The violations of constraints (load, duration, time windows) are penalized in the cost 

function, and the parameter values regarding each type of violation are adjusted dynamically.  

(3) Stopping conditions: total number of iterations and number of iterations without an 

improvement in the objective function value.  

(4) Tabu list: include a simple single list strategy using a short-term list (recency-based memory) 

with a long-term list (frequency-based memory) for intensification and diversification, and using 

flexible memory structures where the list size changes over time. To save time and memory, it is 

customary to store not the tabu solutions themselves, but one of their attributes (Gendreau,M., 

G.Laporte, R.Seguin, 1996). Frequency can be integrated with recency to provide a composite 

memory structure. 

Several tabu search implementations have been highly successful, starting with the algorithm of 

Taillard (1993) and its enhancement consisting of the use of an adaptive memory (Rochat,Y., 

and E.D. Taillard, 1995). These two algorithms have yielded some of the best known solutions 

on standard test instances. Other successful tabu search implementations include the Unified 

Tabu Search Algorithm (UTSA) which is highly flexible and applies to a wide variety of routing 

problems (Cordeau, J.-F., G. Laporte, A. Mercier, 2001), and Taburoute (Gendreau,M., A. Hertz, 

and G. Laporte, 1994) often produces the best known solutions, and also very flexible. Taillard et 

al. (1997) provide several approximations during the TS procedure, from which good exchanges 

are kept in the memory for further consideration, and then the best one according to the exact 

evaluation of those solutions are selected as the new current solution. Our current study 

incorporates many of the design features of Gendreau et al. (1994) and Taillard et al. (1997). 

A general and basic TS framework given by James et al. (2009) is shown in Figure 1. 

 
Figure 1 General Tabu Search Framework 
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2.4 Buffer Allocation Model 

One should notice that most successful methods combine several methodologies. Except TS, the 

method we propose is also based on the buffer allocation model. The buffer allocation problem is 

well-defined in the scheduling literature in the context of project and machine scheduling. It 

considers pursuing a stable and robust schedule with a common deadline for machines or 

projects in uncertain, disruptive environments. Buffers are inserted to deal with the uncertainties. 

Detailed descriptions about this problem and model are well documented in literatures, e.g., 

Herroelen and Leus (2004), Leus and Herroelen (2005), Leus and Herroelen (2007), and 

Ballestin and Leus (2008). The buffer allocation problem shares some common features with our 

problem. In the context of a machine scheduling problem, the jobs and the single machine can be 

compared to the customers and the vehicle on one route of a VRPTW. Therefore, a mathematical 

programming model is built in light of the buffer allocation model for our problem. In particular, 

a Linear Programming (LP) model has to be solved in order to evaluate the objective function of 

the problem.  
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3 Problem Analysis 

In this chapter, the statement of the problem in our context is provided with notations, 

assumptions, the objective function and the relative constraints. At last, methodologies of the 

specific implementation are proposed.  

3.1 Problem Statement  

3.1.1 Notations and Definitions  

A set of n customers N={1,…,n} is to be assigned to several routes. Vertex 0 represents the depot, 

and every route must originate from the depot and end at the depot. A fleet of K identical 

vehicles with a fixed capacity Q and a fixed shift duration F are available to serve the customers 

and each customer i has a demand qi (not more than Q). In this problem, the number of vehicles 

to be assigned is a fixed value rather than a decision variable, which is motivated by the 

applications where the routes followed by drivers have to remain almost the same from day to 

day. A traveling time tij which may include service time at customer i is associated to each arc 

between customer i and j. A self-imposed time window with length w is quoted to each customer. 

For each customer i or the depot discrete disruptions with length dik happen with a distribution 

given a scenario set Ψi and probability-mass function gi(·).If the vehicle arrives too early, it 

must wait up to the lower bound to begin its service. If the vehicle is too late, a penalty for 

lateness is incurred. There are three fixed cost rates in the problem. A cost of Ct in practice 

relates to the unit cost of travel on the routes. A cost of Cp is associated to punish every unit time 

of tardiness later than the time window at each customer. A cost of Co is associated to punish 

every unit time of delay over the shift duration finally after the tour is finished, which practically 

could refer to the overtime pay for the drivers after their shifts. All the above parameters are 

fixed and predefined. Their combination of values might be optimized in practice but this issue is 

out of the scope of this project. Decisions have to be made on both assigning customers to a set 

of routes, and scheduling a set of time intervals Tij to each arc between successive vertices i and j 

so that the schedule of each vehicle can be determined. Other parameters are also necessary to be 

defined for modeling purpose. A comprehensive definition of all parameters is given in Table 1.  

3.1.2 Assumptions  

We make several assumptions: 

(1) The travel time between two vertices is undirected and is proportional to travel distances. 

Furthermore, the triangle inequality is satisfied for the travel times.  

(2) The service time of each customer is identical regardless the demand and thus can be ignored, 

or seen as included in the travel time. In the modeling, it is set to 0.  

(3) All vehicles are identical. All t  

(4) On every route, only one service time disruption can happen at a time. This assumption 

implicitly ignores the interactive effects between disruptions and provides the model with less 

complexity and is consistent with the assumption in the buffer allocation model. In practice, this 

model is useful when the disruption is sparse and spread over time, so that the disruptions are 

independent and can be considered separately. 
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(5) The lower bound of the time window constitutes an earliest starting time for the service 

operations. Arrival before the scheduled window is permitted, and the vehicles wait at no cost 

until service becomes possible. The arrival after the window or after the shift duration is also 

permitted, but with a cost proportional to the tardiness.  

3.1.3 Objective and Constraints 

The objective is to find a set of closed routes, such that the total weighted average cost is 

minimized, and the vehicles are not overloaded. The cost is a combination of three factors: the 

delays over the time windows, the overtime of the shift duration, and overall travel time,  

 There are several constraints: 

(1) Each customer is visited exactly once by exactly one vehicle.  

(2) All vehicle routes start at the depot and end at the depot as well.  

(3) The total demand of all customers on any route cannot exceed the capacity of a vehicle. This 

constraint defines the feasibility of a route. 

(4) The demand of any customer cannot be split. 

(5) The starting time of a service cannot be earlier than the time window. 

3.2 Methodology 

To achieve the objective of the problem, a solution with the total costs as small as possible has to 

be given. The solution includes three parts – the route planning, the service scheduling, and the 

expected total costs (evaluation). 

To provide all these parts, the methodologies are stated as follows. 

(1) The Route Planning Method 

The initial solution is formed by some specific route construction method. Afterwards, a Tabu 

Search algorithm is used for a certain number of cycles to pursue the improvements of the routes. 

Chapter 4 elaborates on this method. 

(2) The Service Scheduling Method 

When a solution is selected as the “current solution”, the service schedule is to be made with an 

LP model. The decisions are made to minimize the expectation of the total costs possibly 

occurring given the solution. The derived LP model for this problem is developed in Chapter 5. 

(3) The Evaluation Method 

To evaluate a solution, the exact result can only be obtained from the LP model due to the 

complexity of the problem. However, when selecting the best solution from all candidates (i.e. 

the neighborhood of the current solution), it is not possible to evaluate all of them with the LP 

model due to the extremely long time of computation. Therefore, reasonable substitutions which 
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can spare the LP model are aspired to. Finally an exact evaluation function and some 

approximate evaluation functions are used. The details of this part are elaborated in Chapter 6. 
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4 Algorithm 

A Tabu Search metaheuristic is used to assign each customer to a route. It has been extensively 

used for solving VRPs and offers the main framework of TSLPE. A related research review has 

been presented in Chapter 2. The algorithm of TS is described with a flow chart (Figure 4), part 

of which is developed from the steps stated by Finke et al. (2007). 

4.1 TS Design 

By nature, TS is a metaheuristic that must be tailored to the shape of the particular problem 

(Gendreau,M., A. Hertz, and G. Laporte, 1994). There are six basic elements of TS which are of 

particular significance: the initial solution, the neighborhood generation method, the neighbor 

evaluation method, the tabu list architecture, the aspiration criteria and the termination criteria. 

These elements are key factors to the success of finding good solutions. The design of TS in this 

study is largely inspired by Taillard (1993) and Gendreau et al. (1994). 

4.1.1 Initial Solution 

If the initial solution is not available beforehand, several initial solution generation methods can 

be found in past studies, like Solomon‟s I1 heuristic and modification of sweep heuristics 

(Cordeau, J.-F., G. Laporte, A. Mercier, 2001). In this project we use a fast and easy constructive 

algorithm – the Nearest Neighbor heuristic for the initial solution, such that it starts every route 

from the depot, by each time finding the nearest unvisited customer as long as all the restrictions 

are met, and then starts another tour. Finally all vehicles are assigned with a tour in this way. 

Figure 2 presents the procedure of the construction of one route. 

4.1.2 Neighborhood Generation Method 

The neighborhood of a solution contains all solutions that can be reached by moving nodes with 

some neighborhood generation methods. A number of neighborhood generation methods are 

available in literatures, including both intra-route exchange operators (e.g., 2-opt, Or-opt) and 

inter-route exchange operators (e.g., 2-opt*, Relocate, Exchange, CROSS-exchange, GENI-

exchange). In this project two easy and cheap operators – 2-opt (see figure 3) and 2-opt* (see 

figure 4) operators are implemented. The size for exploring neighborhood can be either complete 

(i.e., all the vertices can be moved) or partial (i.e., only part of the vertices can be moved). In this 

project partial neighborhood is selected as candidates. More specifically, 50% of the nearest 

vertices are allowed to be exchanged, since the other neighbors are more unlikely to yield 

improvements.  

4.1.3 Neighbor Evaluation Method 

The algorithm works with two different objective functions. First, a simplified evaluation 

function (i.e. the approximation function) is used to estimate the total expected cost of the 

solution since computing the exact value of the objective is very costly in a stochastic setting. 

There are two options in selecting the current solution. In this project the one with smallest 

evaluation value is selected as the current solution. One may also select the one that provides the 

first improvement on the current value. Since infeasible solutions are also allowed as candidates 

for selection to help avoid local optima, the objective function includes a coefficient associated 

to the overload to penalize the infeasibility. The penalty coefficient is self-adjusted so that the 

current solutions found in a number of iterations are a mix of feasible and infeasible solutions. 

Second, after the best solution (i.e. the current solution) in neighborhood is selected, the value 
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function of the LP model is calculated as part of the evaluation values of the current solutions. 

Chapter 6 specifies this issue. 

                          
Figure 2 Pseudo-code of the Nearest Neighbor heuristic 

i j

i+1j+1

i j

j+1 i+1

 

Figure 3 2-opt exchange operator  

(replace edge (i,i+1) and edge (j,j+1) with edge (i,j) and edge (i+1,j+1)) 

Loop While (there is unvisited customer) 

          Find the nearest unvisited customer; 

          If total demand>capacity 

                   While (there is unvisited customer) 

                               Find the next nearest unvisited customer; 

                               If total demand<capacity 

                                       Include the customer into the route; 

                               End if 

                   End while 

          Else 

                   Include the customer into the route; 

           End if 

End Loop 



12 

 

i j+1

i+1j

i j+1

i+1j

 
Figure 4 2-opt* exchange operator  

(replace edge (i,i+1) and edge (j,j+1) with edge (i,j+1) and edge (j,i+1)) 

4.1.4 Tabu List Architecture 

In this project at first a short-term list which is recency-based is used to avoid cycling in the 

search. And later, a long-term list which is frequency-based is applied as a diversification 

method to explore more searching space. Instead of recording full solutions, one of the attributes 

are usually recorded by TS designers, which can save the bookkeeping on the one hand, and at 

the same time avoid cycling of similar solutions on the other. The content of the tabu list can be 

vertices that were ever modified in some move, the pair of moves, or the move with its sequence. 

For the tabu list, the more specific information it holds, the less restrictive it is. In this project the 

pair of moves is the format stored in the tabu list. The length of the tabu list can be fixed or 

dynamic. In this project we set a dynamic tabu list (i.e., variable tabu tenures), which was an idea 

concluded to be able to reduce the probability of cycling by Taillard (1993). 

4.1.5 Aspiration Criteria 

An aspiration criterion is a rule that allows the tabu status to be loosed in cases where the 

forbidden movement exhibits desirable properties, including best so far, best in neighborhood, 

high influence, etc. In this project we choose to set the aspiration criterion that the tabu move 

which produces better result than the best solution (feasible or not) found so far is aspired from 

the tabu list and allowed to move. 

4.1.6 Termination Criteria  

When the number of non-improving moves reaches the limit or the TS has performed a certain 

number of iterations, then the search terminates and outputs the best configuration found so far.  
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4.2 Procedure 

4.2.1 Steps 

(1) Step 0: Initialization 

Set     
0   

          
* *

1 2F F 
 

           I = 1 

Decide the collection of the N_SIZE closest neighbors of each vertex 

Clear the tabu list 

(2) Step 1: Initial Solution 

Generate the initial routes by searching for the nearest unvisited customer unless the route is 

infeasible.  

Set the initial solution as the current solution S. 

Compute  F S  

Update  *

1F F S , *S S . 

(3) Step 2: Neighborhood Search 

Consider all candidate moves for all vertices, using certain neighborhood searching procedures. 

For each move, check the following: 

If the move is tabu, it is disregarded unless S is feasible and   *

1F S F , or S is infeasible and 

  *

2F S F . Otherwise, compute the value assigned using the approximated evaluation method, 

and the move yielding the least value is identified as the current move. In other words, set the 

current solution S with 
*

a aF F . 

Compute  F S . 
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(4) Step 3: Update 

Declare the current move tabu and update the tabu list 

Update 
* * *

1 2, ,F F S
 

If 
* *

1 2,F F
 are improved, set NII=0; otherwise set NII= NII +1 

Set I=I+1 

(5) Step 4: Penalty Adjustment 

When performing each searching iteration, check whether all previous H solutions were feasible 

with respect to capacity. If so, set 
B


  ; if they were all infeasible, set B  .  

(6) Step 5: Termination Check 

If 
*

1F
 and 

*

2F
 have not decreased for the last MAX_NII iterations, stop. 

If the total iteration number reaches MAX_I, stop. 

The best solution is 
*S , the best value is 

*

1F
. 

Otherwise, repeat step 2. 
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4.2.2 Flow Chart 
START

MAX_I;

MAX_NII;

TABU_LENTH;

N_SIZE;

H; B;      

Clear the tabu list

I=1

NII=0

F1*=F2*=infinite

I_FEASIBLE=0

I_INFEASIBLE=0

Start from S, exchange each node with nodes 

that are its N_SIZE nearest neighbors

Compute Fa of each candidate solution and find 

the move with the lowest value

Is the move tabu?

END

S*; F1*

Is S feasible?

Find the move with 

next best Fa

Declare the move tabu

Update the tabu list

S=the solution obtained by the move

Compute F(S)

I>=MAX_IStop

NII>=MAX_NII I=I+1

0

0 

Find the initial solution

S*=S=initial solution

F=evaluation of initial route

F1*=F(S)

F(S)<F1*

F(S)<F2*

S=the solution obtained 

from this move

Compute F(S)

YES

Delete this move 

from the tabu list 

and update it

F1*=F(S)

S*=S

NII=0

Is S feasible?

F(S)<F2*F(S)<F1*

YES NO

YES

F2*=F(S)

NII=0

YES

NII=NII+1

I_FEASIBLE=

I_FEASIBLE+1

I_INFEASIBLE=0

I_INFEASIBLE=

I_INFEASIBLE+1

I_FEASIBLE=0

NO NO

I_INFEASIBLE>=H

I_FEASIBLE=0

B


 

I_INFEASIBLE=0

B 

NO

YES YES

YES

NO

NO

NO

I_FEASIBLE>=H

YES YES

NO

YES

NO

YES

STEP 0

STEP 1

STEP2

STEP 3

STEP 4

STEP 5

 

Figure 5 The flow chart of the TS algorithm 
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5 LP Model 

5.1 Assumptions 

For computational reasons, we assume that only one disruption happens at a time in each route, 

and all the customers and the depot have a probability to encounter a disruption. In practice the 

possibilities of this disruption means, for example, prolonged customer service time, or a delay 

in departure of vehicles. The restricted model is especially useful when disruptions are sparse 

and spread over time. For simplicity we assume service time for all customers to be zero and 

there are no disruptions during the travel (no penalty cost caused by travel). Assume  unit 

velocity of all vehicles , so the travel time and the travel distance are equivalent. 

5.2 Model Formulation 

For a given route r with its all related information (customers on the route, distance, disruption 

distribution), we have: 

Object function 

0

min
r r rj r rj

p rj rjk rijk o rj rjk rjk

j M i M k j M k
i j
i

C p g C p g Y
    




     
 (1) 

Subject to 

0 ,rijk r rjD i j M i j k   
  (2) 

, ,rijk rjk r rjD d i j i j M k   
  (3) 

ri ri rT t i M 
  (4) 

, 1, , , 1 , 1 , ,rijk r i j k r i r i r rjD D t T i j i j M k       
  (5)

0 , 0rijk r rji j M i i j k     
 (6) 

0 ,rijk rijk r rjD w i i j i j M k      
 (7) 

0rjk r rjY j M k  
  (8) 

r r

r

r

rjk ri rm jk rm r rj

i M
i m

Y T D t F j M k



        (9)
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To put this model a simpler and nonlinear way for easier understanding: 

Object function 

0

min
r r rj r rj

p rj rjk rijk o rj rjk rjk

j M i M k j M k
i j
i

C p g C p g Y
    




     
 (10) 

Subject to 

ri ri rT t i M 
  (11) 

, ,rijk rjk r rjD d i j i j M k   
  (12) 

 , 1, , , 1 , 1 , ,rijk r i j k r i r i r rjD D t T i j i j M k


       
  (13) 

  0 ,rijk rijk r rjD w i i j i j M k


      
 (14) 

r r

r

r

rjk ri rm jk rm r rj

i M
i m

Y T D t F j M k






 
      
 
 
 


  (15)

 

 

Explanation: 

The model optimizes the schedule for a given route r which belongs to Rr.  

The objective function (1) (or (10)) minimizes the mathematical expectation of the total penalty 

costs according to all the disruption scenarios and their probabilities. The first term is the 

weighted penalty costs to pay the customers when the arrival/starting service is beyond the 

bound of time window at the customer; and the second term is the weighted overtime costs to 

pay the drivers when the arrival at the returning depot is beyond the shift duration.  

The constraints (2) and (5) (or constraint (13)) indicate that the delay time of each possibility at 

each customer and the depot can be either 0 (when there is no delay of arrival) or a positive value 

depending on the delay time and time interval previously occurred.  

The constraint (3) (or constraint (12)) indicates that the delay time at a customer caused by the 

disruption happening on the way coming to himself is exactly equal to this disruption time. 
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The constraints (6) and (7) (or constraint (14)) indicate that the delay time of each possibility at 

each customer beyond the time window can be either 0 (when the delay does not exceed the time 

window) or a positive value depending on the delay time after arrival at the customer and its time 

window. 

The constraint (4) (or constraint (11)) ensures that the time interval does not exceed the travel 

time. 

Finally, (8) and (9) (or constraint (15)) indicate that the delay time beyond the shift duration is 

either 0 (when the total duration does not exceed the shift duration) or the difference between the 

total scheduled time duration and the shift duration (when the total duration exceeds the shift 

duration). 

See Figure 6 for illustration. 

Depot

0
1 i-1 i i+1

Depot

0

Route r 
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Figure 6 illustration of the LP model 
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6 Evaluation 

With the searching procedure of Tabu Search, feasible or infeasible solutions are formed. For 

any solution selected, the LP model is used to determine the optimal time schedule and calculate 

the objective function of each route. Now that the decision making is done, the next step is the 

evaluation of the solutions. To evaluate a solution, the total costs of all routes should be added 

up.  

6.1 Cost Structure 

There are two kinds of costs in this problem that are of our concern. 

6.1.1 Travel Cost 

The travel cost is the cost taking place during the traveling process, including the cost of vehicles 

and energy, the labor cost, etc. It is reasonable to regard the travel cost proportional to the travel 

time and travel distance. Hence, in this problem we view these three concepts as equivalent. The 

cost rate is Ct. This cost accounts for most of the total costs and cannot be avoided. But 

endeavors can be made to reduce it through dexterous route arrangements. 

6.1.2 Penalty Cost 

Penalty costs are separated into three parts. 

(1) The delay costs to pay the customers: the delay time over the time window at each customer 

is penalized. The cost rate is Cp. 

(2) The overtime costs to pay the drivers: the overtime beyond the shift duration within which 

the drivers are expected to work is penalized. The cost rate is Co. Allowing violation of the shift 

duration with a penalty cost happens quite often in practice.  

(3) The “virtue” costs to penalize the infeasibility, i.e. the excessive demands over the capacity 

of the vehicles. This cost does not really take effect at the end, because the final solution must be 

feasible; but it is only used in the evaluation function during the intermediate searching process, 

to help eliminate infeasible solutions as the cost rate is adjusted. There is another option, that is, 

to regard the excessive demands as feasible. In this case, this cost becomes “real” and can be 

explained by the “lost sales”, or the penalty for being unable to fulfill the customer orders. 

However we decide to take the excessive demands as infeasible. 
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6.2 Exact Evaluation 

Let‟s call the exact evaluation function of any solution S (feasible or not) F(S).  

If we denote the objective function in the LP model of a solution S (infeasible or not)  oF S , 

then  

0

r r r rj r rj
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For any feasible solution S, the total cost function is 
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   calculates the total travel costs of the solution

 
For any infeasible solution S, a penalty term is added, so the evaluation function is rewritten as 
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   penalizes the infeasible route which contains the total demand 

exceeding the vehicle‟s capacity 

So the evaluation function is 
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Notice that when the solution S is feasible,  F S and  cF S

 

coincide. Therefore, we use  F S

 
as the exact evaluation function for both feasible and infeasible solutions. 

6.3 Approximate Evaluation 

When the route is fixed, we want to compute the objective function by solving the LP model. 

However, the computation costs considerable time given the large problem size. Hence an easy-
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to-compute approximate evaluation function must be used to substitute it without solving the LP 

model. 

The difficulties in solving the LP model lie in the decision making on the time schedule (i.e. the 

variables of time intervals, Tri) which cannot be done by hand but only with the help of a 

computer. Hence, if we want to drop the constraints related to Tri and save the LP model, to pre-

decide the schedule without any intelligent calculation is worth a try. But first of all think about 

the role Tri is playing in the evaluation and its possibilities. The essential role of Tri is the buffer 

to deal with disruptions. Although there are time windows also playing as buffers, they may be 

not enough or too much, and they are fixed. Then these flexible time intervals in some sense 

prolong or shorten the buffers and thus make the time windows become kind of “flexible”. 

Two suggestions are proposed considering two extreme situations. 

6.3.1 One Extreme Situation 

One extreme is to make scheduling decisions such that each time interval together with the time 

window can cover the maximum possibility of disruption time. In other words, the time intervals 

are maximized and they work their best as buffers. In this case no penalty would ever happen. 

But the penalty term of excessive time over shift duration tend to be the largest because of too 

much waiting time wasted. Define 
maxd as the longest disruption time over all disruption 

scenarios for all customers.  

maxri ri r r rT t d w r R i M i m     
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The evaluation function is:  

   1 max 1
r r r rj r r
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6.3.2 The Other Extreme Situation 

The other extreme is to minimize the time intervals and assign them the same value of the 

traveling times, which means the “buffers” would totally vanish. Once any disruption occurs, its 

effect is propagated till the end of the tour with the same length of time. In this case, the total 

penalty of delay at customers becomes the largest, while at the same time the penalty term of 

excessive time over shift duration tends to be the smallest because of no waiting time wasted. 
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The evaluation function is:  
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6.3.3 Approximate Evaluation Function 

However both these two ways may not be intelligent enough to approximate the exact cost 

function. In real circumstances compromise should be made between these two situations. 

Denote the approximation of F(S) as  aF S
.
 We separate different kinds of costs (delay cost and 

over time cost) and associate weights to the two approximations. 

 1aF S
 and 

 2aF S
 have a common part – 

r r r

t ri ri

r R i M i M

C t q Q



  

  
   
   

    

For  1aF S , there is no delay cost. Denote its overtime cost Fa1o. So 

 1 max 1
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For  2aF S , there are both delay cost and overtime cost parts. Denote the delay cost Fa2p and the 

overtime cost Fa2o. So 



24 

 

 2

0

r r r rj

a p p rj rjk rjk

r R j M i M k
i j
i

F C p g d w


   



 
 

  
 
  

     

2

r r rj r

a o o rj rjk ri rjk

r R j M k i M

F C p g t d F



   

  
    
   

     

 2 2 2

r r r

a a o a o t ri ri

r R i M i M

F S F F C t q Q



  

  
      
   

    

We assume the approximate evaluation has a linear relationship with all parts of  1aF S and 

 2aF S . Then 

  1 1 2 2 3 2 0
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where b1, b2 and b3 are coefficients associated with each cost part of the two approximate 

functions, and b0 is a constant. 

In particular, statistical analysis is executed to determine coefficients. And the validation of the 

linear assumption is also ensured by experiments. See Chapter 7.3. 
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7 Experiments 

In this chapter, our approach has been tested on a few benchmark data sets. Three purposes guide 

the computational experiments: firstly, to determine the best strategies used in the design of 

TSLPE; secondly, to tune the TS parameters; and thirdly, to verify the quality of the algorithm 

and try to improve it. The three stages are depicted in a flow chart (see figure 7). In the 

following, the test problems are first introduced. Then several experiments are conducted to 

determine the approximation function and the neighborhood structure. Next the performance of 

TS procedure is improved by tuning variable parameters involved in the procedure. In addition, 

we identify the impact that the parameters have on the final solution using sensitivity analysis. 

Finally, the algorithm is improved by determining the diversification strategy and the quality of 

the solution is assessed. The implementation of the algorithm was coded using Visual C++ 2008 

Express Edition, and exactly evaluated in the application of Gurobi Optimizer 3.0. Experiments 

ran on an HP Compaq 8510w Mobile Workstation with an Intel® Core™2 Duo CPU 2.50 GHz 

processor, and an operating system of Windows Vista™ Enterprise. Computation times are in 

seconds. 

7.1 Test Problems 

Our algorithm was tested on ten problem instances originated from Augeat et al. (1998), seven of 

which have a bit small sizes and the other three are larger problems. The summary of the 

characteristics of each instance is displayed in Table 2.  

Table 2 the summary of the test problem instances 

Problem Instance Number of Customers Number of Vehicles 

n32k5 31 5 

n33k5 32 5 

n36k5 35 5 

n37k5 36 5 

n37k6 36 6 

n38k5 37 5 

n39k5 38 5 

n53k7 52 7 

n60k9 59 9 

n69k9 68 9 

 

In each problem instance, all the vertices are recorded with their identifiers, their locations 

defined on a Euclidean plane so that distances between arbitrary pair of vertices can be 

calculated, and their demands. Vertex 0 stands for the depot, and the demand of the depot is 0.  
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Figure 7 the procedure of the experiments 
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7.2 Initial Input Parameter Setting 

The initial parameter setting is presented in the following tables. 

7.2.1 Fixed parameters 
Table 3 fixed parameter setting 

Parameter Value Explanation 

Q 100 Capacity per vehicle  

F 230 Shift duration 

W 30 Length of the time window 

Cp 4 Penalty cost per unit of time after time windows 

Ct 1 Travel cost per unit of time 

Co 5 Overtime pay per unit of time after shift duration 

A 0.5 Percentage of the total nodes that determines the size of 

neighborhood 

MAX_I 1000 Maximum number of total iteration 

MAX_NII 100 Maximum number of non-improving iteration 

INF 10000 A large number standing for the concept of “infinity” 

N Varies from case to case The number of vertices (customers plus the depot) 

K Varies from case to case The number of the vehicles (routes) 

 

Table 4 disruption time distribution 

Scenario 1 2 3 4 

Probability 0.5 0.3 0.1 0.1 

Disruption Time 10 20 30 60 

 

7.2.2 Initial setting of Variables 
Table 5 initial setting of variable parameters 

Parameter Value Explanation 

MAX_L 12 Upper bound of the tabu tenure 

MIN_L 5 Lower bound of the tabu tenure 

GAMA 4 The initial value of coefficient γ 

B 3 The multiple for updating γ 

H 10 The frequency for updating γ 

 

The fixed parameter values are given for all problem sets, while the variable parameter values 

can be tuned at a later stage to get the solutions closer to the global optimality. A priori values 

from this project or from other researchers were selected as their initial settings. Among these 

parameters, initial values of MAX_L, MIN_L, GAMA, and B were obtained by some 

preliminary tests; they do not necessarily fit the current problems but still can provide a good 

start to try. And it was proposed by Gendreau et al. (1994) that it was proper to assign 10 to the 

parameter H.  
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7.2.3 Initial Approximation Function 

Initial values of the coefficients mentioned in 6.3.3 are assigned with an initial guessed value 0.5, 

implying no preference for either of the approximation functions – Fa1 and Fa2. 

Hence, the initial approximation function tested to be improved is 
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7.3 Determination of the Approximation Strategy 

In Section 6.3 we have discussed the necessity of substituting the evaluation function with an 

approximation function. Two situations from which derive the two functions Fa1 and Fa2 and they 

seem contribute two extreme decisions between which one would possibly make with the LP 

model. They are both assumed to be related to the exact evaluation to some extent. In this 

section, we use a statistical technique of Multiple Regression Analysis (MRA) to analyze the 

relationship between a single dependent variable and several independent variables. The 

objective is to use independent variables whose values are known to maximize the overall 

predictive power of the independent variables (Hair,J.F., W.C.Black, B.J.Babin, R.E.Anderson, 

2009). The implementation of MRA is in Microsoft Office Excel 2007, and is following the steps 

described in the sections below. 

7.3.1 The Introduction of MRA 

Before we apply MRA, a few issues should be concerned: 

(1) The appropriateness for the problems to apply MRA method: four rules are checked and the 

appropriateness to use MRA in the problems is proven. See Appendix for details. 

(2) Sample size: no specific guidelines determine how large the sample size is most suitable. 

Rules of Thumb suggest a minimum sample of 50 and preferably 100 observations for most 

research situations. And the minimum ratio of observations to variables is 5:1, but the preferred 

ratio is 15:1 or 20:1. As a result, each experiment includes 200 observations (observations are 

taken every time from the 1
st
 iteration to the 200

th
 iteration in a single experiment) in this case to 

fulfill the requirements of large enough sample size. 

(3) Assumptions of MRA: there are four assumptions to fulfill in order to validate the method of 

MRA – linearity of the phenomenon measured; homoscedasticity; independence of the error; 

normality of the error distribution. These assumptions were tested respectively on all data sets 
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after the execution of MRA, with which the applicability of the method is supported. And the 

results and conclusions can be referred in Appendix. 

7.3.2 Estimating the Regression Model and Assessing Overall Model Fit 

 (1) Regression Model 

Unlike F(S), Fa, Fa1, and Fa2 which were defined in Chapter 6, we now split any of the functions 

into two parts – the penalty cost due to delay at customers (later called “Delay Part”) and the 

penalty cost due to the overtime at the returning depot (later called “Overtime Part”). Thus, Fp, 

Fa1p, Fa2p stand for the Delay Parts of the evaluation function, the first approximation function 

and the second approximation function respectively. Similarly, Fo, Fa1o, Fa2o stand for the 

Overtime Parts of the evaluation function, the first approximation function and the second 

approximation function respectively. 

Now which variables should be included in the model is analyzed. Recall the two approximation 

functions. 
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in which Fa1o and Fa2o are variables while Fa2p is a fixed value given a solution, since in our 

tested problems, it is assumed that the disruption distribution and the disruption scenarios do not 

vary from customer to customer (i.e. all customers are identicle to encounter disruptions). In 

other words, there is no predict power on the Penalty Part due to the special situation and the 

limitation of the approximation functions. However, when this assumption is loosed, Fa2p should 

be various and included in the regression model.

 

Hence, Fa is the dependent variables and Fa1o, Fa2o are the independent predictors. 

The multiple regression equations are: 

0 1 1 2 2a a o a oF b b F b F e     

The multiple regression variates are: 

0 1 1 2 2a a o a oF b b F b F    

where 

b0 = intercept (constant) 

b1 = regression coefficient  

b2 = regression coefficient 

e = prediction error (residual) 

These above four values can be determined during the experiments. 
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Specifying the regression model to be estimated is usually done with the method of Least 

Squares. 

(2) Identify the outliers 

Through the observations we found that the first few iterations can always improve solutions 

dramatically, on both Delay Part and Overtime Part. So these early observations are taken as 

“outliers”. Although more specialized diagnostic methods can be used to detect the outliers, they 

are often easily identifiable. Here the outliers are selected simply by personal diagnosis. And also 

since the sample size is large enough, even wrongly taking a few more observations as the 

outliers is not a problem. The outliers of each set of experiments are identified as in Table 5 and 

the figure illustrations can be referred in Appendix .  

(3) Assess the statistical significance of the overall model 

Significance of the overall model is tested by the Coefficient of Determination (R
2
), which 

reflects the percentage of explained variance in the dependent variable. The value lies between 0 

and 1; the closer it is to 1, the more percentage of variance is explained, thus the better the future 

outcomes are likely to be predicted by the model. According to rules of thumb, in physical and 

life sciences, at least a value 0.60 is required for R
2
. 

Table 6 the total sample size and outliers of each data set 

Data Set Total Observations Outliers 

n32k5 200 The first 16 observations 

n33k5 200 The first 6 observations 

n36k5 200 The first 26 observations 

n37k5 200 The first 5 observations 

n37k6 200 The first 4 observations 

n38k5 200 The first 7 observations 

n39k5 200 The first 5 observations 

n53k7 200 The first 10 observations 

n60k9 200 The first 14 observations 

n69k9 200 The first 11 observations 

 

7.3.3 Results and Analysis 

When comparing regression models, the most common standard used is overall predictive fit. R
2
 

provides us with this information.  
Table 7 the results of the regression models 

Set Coefficients Statistics 

b0 b1 b2 R
2
 Significance F 

n32k5 129.3353 0.0065 0.9493 0.9838 9.1712E-163 

n33k5 -24.5450 0.0314 1.9703 0.9604 2.0737E-123 

n36k5 125.0459 0.0118 0.9495 0.9864 3.1983E-160 

n37k5 -206.2414 0.0763 1.2008 0.9758 2.7381E-154 

n37k6 -102.1116 0.0563 0.9513 0.9917 8.6743E-202 

n38k5 -140.7119 0.0563 1.2632 0.9829 1.2098E-168 

n39k5 -195.4873 0.0701 1.0338 0.9878 1.7051E-184 

n53k7 -145.5856 0.0521 1.0251 0.9474 2.7155E-120 

n60k9 -241.5826 0.0627 0.9312 0.9907 1.0147E-186 

n69k9 -225.0355 0.0517 1.1195 0.9861 1.8543E-173 
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The coefficients of the models are determined by MRA for each set. Coefficients b1 and b2 are 

positive for all sets, implying positive relationship between either of the independent variables 

and the dependent variable. Values of b1 are around 0 while values of b2 are around 1, indicating 

that Fa2o has a much stronger relevance with Fa, as inferred by the line plots before the 

experiments (see Appendix). Most b0 values are negative except in the cases of n32k5 and 

n36k5. Notice that when solving the models, constant parts, namely the travel costs, do not affect 

the prediction power and thus haven‟t been included in the models. Also note that the minimal 

possible values of Fao2 and Fao2 are 0 in theory (when there is no overtime even in radical 

situations). Apparently, the fact that observed b0 values, which are obtained by making Fao1 and 

Fao2 equal to 0 at the same time, are mostly negative implies the fact that in most practices 

overtime costs cannot be avoided in all situations (especially extreme situations), as a negative 

total penalty cost is not possible. However, it is possible to design routing that yield 0 penalty 

cost, while for cases with positive b0, the penalty cost is always positive too. Statistics indicate 

that the model presents good predictive power and statistical significance on all data sets. A 

comprehensive output report of all models is in the Appendix, with more data to support the 

statistical analysis. The variables line fit plots and the overall model fit plots are presented in 

Appendix. 

Notice from preliminary tests that the variable Fa2o in the second approximation function has 

very good linear relationship with F(S) while the relationship between Fa1o and F(S) is much 

weaker (see figures in Appendix). It is natural to think about how it can perform with Fa2 itself as 

the predictor.  

Since the real goal of this series of experiments is to replace the LP objective function with a 

more computational inexpensive function while at the same time enable the searching process to 

reach the best candidate solution (note that when making the choice, the constant part of the 

function can be ignored). From this point, the function of best fit is of course good, but it is too 

hasty to deduce that the model with less fit does not fulfill the goal. Therefore, another set of 

experiments are conducted to find out their real effects on the outcome of the algorithm 

procedure. See Table 8 for comparisons. 
Table 8 outcome of different value function substitution strategies 

Data Sets Regression Model Only Fa2 
Percentage of 

Improvement 

n32k5 1340.47 1268.84 -5.65% 

n33k5 770.03 757.41 -1.67% 

n36k5 1086.85 1110.97 2.17% 

n37k5 816.30 832.21 1.91% 

n37k6 1263.72 1310.02 3.53% 

n38k5 909.55 893.57 -1.79% 

n39k5 1041.78 1042.08 0.03% 

n53k7 1305.26 1257.69 -3.78% 

n60k9 1667.4 1783.89 6.53% 

n69k9 1352.96 1386.66 2.43% 

 

The last column “Percentage of Improvement” stands for the evaluation improvement of 

regression model over Fa2. From the table, we can see that the regression model slightly excels 

the other strategy in these problems.  Preliminary tests show that Fa2 provides good estimation on 

F(S) but not better than the regression model. Yet it yields in some cases better results than the 

regression model. The reason may be that the alternative substitution strategy sometimes can 



32 

 

lead to different searching space and happen to increase the diversity of solutions. In addition, it 

is found that none of the gaps between these two strategies is very large – they both produce 

close final values. As a result, however, we decide to use the multiple regression model to 

predict the value function in the following experiments. 

7.4 Determination of Neighborhood Searching Strategy 

In section 4.1.2 we have discussed the neighborhood generation methods – the 2-opt operator is 

used for intra-route searching and the 2-opt* operator is used for inter-route searching. However, 

the issue that how these two operators take action has not been discussed yet. In this section 

experiments are run with two different implementations: one option is that the two operators 

switch every five iterations and each time only one operator takes effect; the other is that the two 

operators are implemented at the same time at every iteration, by means of the searching 

following a path and judging the strategy to use at every searching node. 

From Table 9, the switch strategy in most cases performs better than the combine strategy, and 

even if it is worse, the gap is not large. One exception is the set of n32k5 (a large gap of more 

than 10% emerges and the reason is not clear up to now).  

In the following experiments, decision is made that a switch strategy is going to be used though. 
Table 9 comparison of different neighborhood searching strategy 

Data Set Switch Strategy Combine Strategy % Difference 

n32k5 1272.32 1139.46 -10.44% 

n33k5 769.03 782.04 1.69% 

n36k5 1131.09 1207.16 6.73% 

n37k5 833.96 866.21 3.87% 

n37k6 1291.48 1330.75 3.04% 

n38k5 854.56 844.95 -1.12% 

n39k5 1046.84 1121.82 7.16% 

n53k7 1283 1264.86 -1.41% 

n60k9 1701.52 1768.84 3.96% 

n69k9 1323.31 1411.56 6.67% 
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7.5 Parameter Tuning 

In this section, we randomly select a data set to show the procedure of tabu parameter tuning. 

The data set to experiment on is restricted to n36k5. 

There are two sets of parameters to tune – self-adjusted penalty coefficient and the tabu tenure. 

7.5.1 Self-adjusted Penalty Coefficient 

Three parameters are involved. 

(1) GAMA and B 

From experiments we found that the parameters GAMA and B are closely related – the optimal 

value of B is largely dependent on the optimal value of GAMA. So the performance should be 

observed under the interactions between these two variables, using the initial parameter setting 

and the approximation function determined in section 7.3. 
Table 10 results on GAMA and B 

 B 

1.5 2 3 4 5 10 

GAMA 1 1178.87 1073.18 1116.49 1110.89 1081.18 1193.88 

2 1157.46 1084.29 1218.62 1156.86 1202.63 1125.08 

6 1092.04 1273.39 1083.32 1134.23 1113.3 1111.34 

10 1113.18 1143.17 1075.14 1120.95 1154.49 1102.71 

20 1139.45 1158.69 1143.62 1168.37 1086.59 1114.5 

 

 
Figure 8 surface chart of GAMA and B 

The choices are taken on GAMA=1 and B=2, according to the results. 

 (2) H 

Use initial parameter setting and the approximation function determined in section 7.3, except 

changing GAMA and B to 1 and 2. 
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Table 11 results on H 

H 5 8 9 10 11 12 15 18 20 

value 1144.54 1099.34 1083.32 1073.18 1262.8 1062.56 1079.34 1092.88 1074.35 

 

Hence, H=12 is selected as the optimal setting. 

7.5.2 Tabu Tenure 

Using initial parameter setting and the approximation function determined in section 7.3, except 

changing GAMA, B and H to 1, 2 and 12. 
Table 12 results on tabu tenure 

Lmin,Lmax (5,10) (5,12) (11,15) (5,15) (8,12) (8,15) (16,20) (21,25) (21,30) 

value 1111.97 1062.56 1090.49 1121.14 1088.19 1123.35 1088.19 1126.86 1122.22 

 

Furthermore, Tabu lists with static length and dynamic length are both tested, which 

demonstrates the proposed preference for the dynamic tabu length.  

As a result, a dynamic tabu list with length randomly assigned from 5 to 12 is decided. 

7.5.3 Conclusion 

The optimal (variable) parameter setting for n36k5 is 
Table 13 optimal parameter setting for n36k5 

Parameter Value Explanation 

MAX_L 12 Upper bound of the tabu tenure 

MIN_L 5 Lower bound of the tabu tenure 

GAMA 1 The initial value of coefficient γ 

B 2 The multiple for updating γ 

H 12 The frequency for updating γ 

 

7.6 Sensitivity Analysis 

In this section, a series of sensitivity analysis is executed on variable parameters (i.e. GAMA, B, 

H, (Lmin, Lmax)), to compare the relative importance of parameters on the final evaluation. Put 

another way, through the sensitivity analysis, decisions are made whether the optimal parameter 

setting of problem n36k5 is still robust when it turns to other different but similar problems. It 

also gives a hint on how much density is appropriate when adjusting parameters to find the 

optimal values. 

The baseline values of the parameters are obtained in 7.5.3. For the ranges that values of each 

parameter can differ, we refer to the proposed reasonable value ranges in the literatures. other 

parameters remain fixed. See Table 14. 
Table 14 parameter changing ranges 

Parameter Range 

GAMA 1 ~ 20 

B 2 ~ 8 

H 5 ~ 20 

Tabu Tenure 5 ~ 30 
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For each parameter, 4 values other than the baseline value from its suggested range are selected 

and results are compared. Since variables GAMA and B behave reactively, they are considered 

jointly. See Table 15. 
Table 15 experimental data 

Parameters value Max Min range % 

(GAMA,B) (1,2) 1073.18 1086.59 1073.18 13.41 1.25% 

(2,2) 1084.29 

(6,3) 1083.32 

(10,3) 1075.14 

(20,5) 1086.59 

H 5 1144.54 1144.54 1062.56 81.98 7.72% 

9 1083.32 

12 1062.56 

15 1079.34 

20 1074.35 

(Lmin,Lmax) 5~12 1062.56 1126.86 1062.56 64.3 6.05% 

11~15 1090.49 

16~20 1088.19 

21~25 1126.86 

26~30 1085.25 

 
 

 
Figure 9 Tornado Diagram of sensitivity analysis 

The right column computes the percentage of degree that the worst value is worse than the best 

value in its own category. The Tornado Diagram is a special type of Bar Chart which is useful 

for sensitivity analysis. From the table and the chart, all variables keep relatively low sensitivity 

(under 10%). This suggests these parameters may well remain the same values as optimal to 

sample n36k5 when testing other similar samples without costing too much more from the 

optimality. As the decision, after tuning the parameters for n36k5, the optimal parameter setting 

will be applied on other data sets too. 
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7.7 Solution Quality 

7.7.1 Algorithm Robustness 

In this following experiment, each set is tested on three evaluations – called E1, E2, and E3. 

To assess the algorithm, final evaluations are investigated with the penalty cost rate of its 

original value (Cp=4) and its double value (Cp=8). 

Define Fu(v) –  the evaluation of the best solution found, which has the searching procedure fed 

by Cp=u but the evaluation function fed by Cp=v. Both u and v have two options of values – 4 

and 8. 

Thus, E1, E2 and E3 are defined such that when Cp=4, E1= F4(4); when Cp=8, E1= F8(8); when 

Cp=4, E2= F4(8) ; when Cp=8, E2= F8(4); when Cp=4, E3= F8(8) ; when Cp=8, E3= F4(4). 

A series of experiments are conducted on the ten data sets. The results are shown in Table 16. 
 

Table 16 self-assessment of the algorithm 

Set 
Initial 

Setting 

Initial 

Value 
E1

a
 E2

b
 E3

c
 

Average 

Difference
d
 

Running 

Time 

n32k5 Cp=4 1891.38 1272.8 1407.73 1407.73 0.00% 126.5 

Cp=8 2033.4 1407.73 1272.8 1272.8 127.1 

n33k5 Cp=4 1193.42 754.76 802.44 811.23 1.05% 333.4 

Cp=8 1289.26 811.23 762.48 754.76 314.9 

n36k5 Cp=4 2181.04 1143.14 1261.31 1207.67 3.85% 336 

Cp=8 2309.43 1207.67 1105.85 1143.14 395.5 

n37k5 Cp=4 1771.21 819.53 891.16 885.89 0.36% 511.8 

Cp=8 1908.32 885.89 820.6 819.53 562.9 

n37k6 Cp=4 1949.11 1332.61 1450.77 1450.77 0.00% 202.7 

Cp=8 2101.22 1450.77 1332.61 1332.61 196.3 

n38k5 Cp=4 1843.45 884.6 957.42 957.42 0.00% 433.2 

Cp=8 1963.09 957.42 884.6 884.6 458.8 

n39k5 Cp=4 1884.85 1181.16 1310.23 1310.23 0.00% 246.4 

Cp=8 2059.34 1310.23 1181.16 1181.16 638 

n53k7 Cp=4 1807.3 1242.89 1364.9 1364.9 0.00% 782.6 

Cp=8 1958.77 1364.9 1242.89 1242.89 767.5 

n60k9 Cp=4 3050.98 1824.66 1973.08 1966.62 0.40% 540.6 

Cp=8 3285.49 1966.62 1815.9 1824.66 733.8 

n69k9 Cp=4 2184.23 1351.18 1454.14 1446.78 0.44% 589.8 

Cp=8 2383.39 1446.78 1346.24 1351.18 620.2 

 a: when Cp=4, E1= F4(4); when Cp=8, E1= F8(8). 

 b: when Cp=4, E2= F4(8) ; when Cp=8, E2= F8(4). 

 c: when Cp=4, E3= F8(8) ; when Cp=8, E3= F4(4). 

 d: the difference (%) is calculated by 
2 3

3

100%
E E

E


  for both Cp=4 and Cp=8, and then 

make the average of these two percentages. 

From the table, a few sets appear no difference with the two ways of starting penalty cost rates, 

while the others show a little bit difference. When the latter happens, it implies that the algorithm 

fails to reach the equally good solution when the penalty cost rate alters in a rational range; in 
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other words, one way must outperform the other on both E1 and E2. Since the gap is quite small, 

the algorithm is thus robust to the parameter of Cp which may be a flexible parameter to 

determine according to various practical situations.  

7.7.2 Comparison with Benchmarks 

In this section, the solution quality is further tested by comparing its results with the optimal 

solutions solved by an exact algorithm of Branch-And-Cut (Ralphs, 2010). See Table 17. 

Table 17 comparison with benchmark 

Sets Optimality (distance) TSLPE (distance) TSLPE/Optimality(%) 
n32k5 784 1005.38 128.24% 
n33k5 661 683.13 103.35% 
n36k5 799 907.49 113.58% 
n37k5 669 703.08 105.09% 
n37k6 949 1080.36 113.84% 
n38k5 730 771.60 105.70% 
n39k5 822 906.77 110.31% 
n53k7 1010 1040.60 103.03% 

n60k9 1354 1494.57 110.38%  

n69k9 1159  1201.51 103.67%  

Average   109.72% 

 

Some of the instances using our algorithm present relatively large gaps with the benchmark 

values (more than 10%), implying a risk that the algorithm may be not good enough. Therefore, 

it is necessary to seek a way to improve the algorithm. 

7.8 Algorithm Improvement 

A main problem of the local search is being trapped in local optima. To cope with this problem, 

some diversification strategies which transform one solution to a radically different solution are 

often added to TS. The diversification strategy is an important aspect in the design of a TS 

algorithm. There are many strategies proposed in related researches. They may be complicated or 

relatively simple, but all the main idea is to lead the searching to a different or dissimilar 

direction. Effective diversification is particularly supported by certain forms of long-term 

memory (Glover,F., and R.Martí, 2006). In this project, we will apply a diversification strategy 

modified from the one proposed in Taburoute algorithm by Gendreau et al. (1994). In the search, 

vertices that have been moved frequently are penalized by adding to the objective function of the 

candidate solution a term proportional to the absolute frequency of a pair of movement. In this 

way, a long-term memory is formed to guide the diversification procedure. This is done through 

the incorporation of penalties in the evaluation of movements. Taillard (1993) suggests using a 

constant equal to the product of three factors: a factor equal to the absolute difference value 

between two successive values the objective function; the square root of the neighborhood size; a 

scaling factor g. We set g to 0.01 as proposed by Gendreau et al. (1994). Taburoute explains the 

first factor into max vf , where by definition in our problem max  is the largest observed absolute 

difference between the objective function values obtained at two successive iteration, and vf  is 

the number of times move v has been moved, divided by the iteration number. 
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Hence, the objective function F(S) is added by an additional penalty term. The new objective 

function for the diversified algorithm is: 

   '

max _vF S F S f g N SIZE   

Table 18 comparison between the original and diversified algorithm 

Set Algorithm 
Initial 

Value 

Final 

Value 
%Improve

a
 

Total 

Distance 
%Improve

a
 

Running 

Time 
%Increase

b
 

n32k5 

original 
1891.38 

1272.80 
14.25% 

1005.38 
14.99% 

126.5 
514.70% 

diversified 1091.47 854.71 777.6 

n33k5 

original 
1193.42 

754.76 
0.30% 

683.13 
0.79% 

333.4 
114.91% 

diversified 752.53 677.71 716.5 

n36k5 

original 
2181.04 

1143.14 
1.68% 

907.49 
4.11% 

336.0 
157.19% 

diversified 1123.88 870.19 864.2 

n37k5 

original 
1771.21 

819.53 
1.09% 

703.08 
1.88% 

511.8 
78.33% 

diversified 810.56 689.83 912.7 

n37k6 

original 
1949.11 

1332.61 
4.27% 

1080.36 
4.57% 

202.7 
315.54% 

diversified 1275.71 1030.97 842.3 

n38k5 

original 
1843.45 

884.60 
1.25% 

771.60 
1.37% 

433.2 
94.02% 

diversified 873.57 761.01 840.5 

n39k5 

original 
1884.85 

1181.16 
0.99% 

906.77 
-3.35% 

246.4 
326.95% 

diversified 1169.50 937.11 1052.0 

n53k7 

original 
1807.30 

1242.89 
0.00% 

1040.60 
0.00% 

782.6 
85.63% 

diversified 1242.89 1040.60 1452.8 

n60k9 

original 
3050.98 

1824.66 
7.07% 

1494.57 
6.85% 

540.6 
161.00% 

diversified 1695.72 1392.18 1410.9 

n69k9 

original 
2184.23 

1351.18 
0.29% 

1201.51 
-0.21% 

589.8 
192.47% 

diversified 1347.21 1204.00 1725.0 

 

 a: the percentage of improvement of the diversified algorithm over the  original algorithm 

 b: the percentage of added running time of the diversified algorithm over the  original 

algorithm 

From the table, results of all sets but one prove the advantage of the diversified strategy over the 

original algorithm and only one set (n53k7) remains the same solution. The computing time has 

different degrees of increase on different sets with the diversified strategy, but the duration is still 

within a reasonable and acceptable range. 

Therefore, we can conclude that implementing this diversification strategy can improve the 

algorithm. 
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Table 19 comparison with benchmarks 

Sets 
Benchmark 

(distance) 
TSLPE (distance) - 

original 

TSLPE (distance) - 

improved 
%Improvement 

n32k5 784 1005.38 128.24% 854.71 109.02% 19.22% 

n33k5 661 683.13 103.35% 677.71 102.53% 0.82% 

n36k5 799 907.49 113.58% 870.19 108.91% 4.67% 

n37k5 669 703.08 105.09% 689.83 103.11% 1.98% 

n37k6 949 1080.36 113.84% 1030.97 108.64% 5.20% 

n38k5 730 771.60 105.70% 761.01 104.25% 1.45% 

n39k5 822 906.77 110.31% 937.11 114.00% -3.69% 

n53k7 1010 1040.60 103.03% 1040.60 103.03% 0.00% 

n60k9 1354 1494.57 110.38% 1392.18 102.82% 7.56% 

n69k9 1159 1201.51 103.67% 1204.00 103.88% -0.21% 

Average   109.72%  106.02% 3.70% 

 

From the table, we can see that after improving the algorithm, it generates longer distances on all 

sets than the benchmark. Most sets have small gaps with the benchmark. The improved TSLPE 

performs well on most sets, and mostly obtains a reduced total distance from the original TSLPE. 

One exception is the set n39k5, whose total distance has a bit large gap with the benchmark 

value (14%), and is worse than the original algorithm. However, this does not necessarily 

indicate our new algorithm is not good. Firstly, the benchmark problem is different from our 

problem – it is only capacitated VRP and does not take time windows, penalty cost and overtime 

cost into consideration. Secondly, out problem is more complicated considering penalty cost and 

overtime cost whose value and searching procedure can be affected in many ways. Hence, it is 

understandable that longer distances are probably caused by more constraints in our problem. In 

our problem, shorter distance does not always yield less total costs. For example, the two optimal 

solutions found by the two algorithms on set n39k5 are presented below.  

Table 20 an example: set: n39k5 

 Original Algorithm Improved Algorithm 

Final value 1181.16 1169.50 

Total distance 906.77 937.11 

 

In this example, the first experiment by the original algorithm has larger final value (1181.16), 

but smaller total distance (906.77). There are many other examples found during the experiments 

to support this point. This suggests that in our problems, the optimal total cost is not necessarily 

associated with optimal distance although most time it is. The standard of total distances given 

by the benchmark values thus is not totally justified to evaluate our metaheuristics in this case, 

because the main concern in our problem is the final value of the objective cost function, not the 

total distance. However, it can indicate that as far as the total distance is the main concern, the 

improved TSLPE can provide solutions quite close to the optimality. 
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8 Discussion and Conclusion 

In this thesis we have described a methodology to solve a special class of VRP – VRP-SITW. 

VRP-SITW can be viewed as a mixed problem of VRPHTW and VRPSTW, with capacity 

constraints and penalty for violation of the upper bound but not the lower bound of the time 

windows and penalty for the overtime, but it is still different from the classic VRPTW in that the 

time windows are quoted by the route planners instead of customers. The approach is based on 

the most popular metaheuristics for solving VRP – the Tabu Search. An LP evaluation method is 

incorporated in the framework of TS, making a new proposed procedure – TSLPE. A basic 

TSLPE procedure is proposed first, and then is improved by a diversification strategy using a 

long-term memory structure. The experiments on ten benchmark problem instances pursue better 

configuration of the TS procedure and tuning the values of parameters related to the TS 

procedure. Sensitivity analysis indicates that the effects of these parameters on solution quality 

are not considerable. And experimental results show good performance in terms of solution 

quality, computational effort, and robustness over penalty cost rate changes. 

The contributions of this project include aspects that rarely appear in the past literatures, at least 

to the author‟s knowledge: 

(1) First studying on such a specifically defined VRP – VRP-SITW. 

(2) Proposing a new method to apply the buffer allocation model which is used extensively in 

machine scheduling environment in VRP, and incorporate it into the process of TS which 

provides satisfactory solutions 

(3) Presenting a practical and statistical way that is easily computed to estimate the objective 

function value which costs much computational effort during the mediate searching and proving 

its validation 

(4) One advantage of the proposed TSLPE lies in its flexibility. By raising the overtime cost rate, 

the shift duration becomes a hard constraint on the feasibility of the routes. By raising the 

penalty cost rate for tardiness, hard time window cases may also be addressed. Other features can 

easily be handled too, such as assigning bounded vehicles, using multiple depots, allowing 

hierarchical routes, and so forth. 

 

There are many perspectives that are worthy of receiving further investigation in future study.  

(1) First, as the parameters of the TS have been tested, the procedures of the other essential TS 

factors are also worth a try, e.g., more alternative strategies of generating an initial solution, 

more sophisticated neighborhood exploration to enrich the neighborhood, different memory 

structures, different aspiration criteria, more sophisticated diversification and intensification 

methods, post-optimization procedures, etc. The more successful implementations of TS often 

make use of better initial solutions and neighborhood structures and a balance between 

intensification and diversification. More complicated strategies are likely to yield better 

solutions, but at the same time require additional computational effort. It should be remarked that 

the improvement of algorithms should strike a good balance between the quality of solutions and 

computational efficiency. 

(2) Second, techniques that can speed up the search and improve the robustness and the quality 

of the solutions, such as multi-search  meta-heuristics, or parallel computation, have been 

increasingly used in recent research, e.g., (Le Bouthillier,A., T.G.Crainic, 2005), and may 

become a direction of future research.  

(3) In addition, though lying out of the boundary of this project, the other parameters which are 

not directly related to the algorithm itself may find their optimized combination from a broader 
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managerial view in order to further reduce the total costs of the whole business. For example, 

experiment in 7.7.1 can reflect some effects of the parameter Cp. As another example, the effect 

of the shift duration F can also be explored. Table 21 tests larger F of 300 and makes comparison 

with the original F of 230. From the table, we know that if the shift duration is prolonged, then: 

i) the initial values become smaller; ii) the final value may become smaller or larger; iii) the 

traveling cost may become smaller or larger; and iv) the penalty and overtime cost must become 

smaller.  Hence, as this example, other managerial insights can be taken into the tricky decision 

of the three cost rates and the shift duration in similar ways. 
Table 21 results with different shift duration 

Set Initial Value Final Value Traveling Cost 
Penalty+Overtime 

Cost 

n32k5 F=230 1891.38 1091.47 854.71 236.77 

F=300 1174.69 862.92 802.13 60.79 

n33k5 F=230 1193.42 752.53 677.71 74.82 

F=300 959.47 756.44 729.44 27.00 

n36k5 F=230 2181.04 1123.88 870.19 253.69 

F=300 1517.41 912.08 851.87 60.21 

n37k5 F=230 1771.21 810.56 689.83 120.73 

F=300 1257.21 742.69 708.63 34.06 

n37k6 F=230 1949.11 1275.71 1030.97 244.74 

F=300 1335.18 1030.64 972.93 57.71 

n38k5 F=230 1843.45 873.57 761.01 112.56 

F=300 1194.74 784.90 748.82 36.08 

n39k5 F=230 1884.85 1169.50 937.11 232.39 

F=300 1213.26 889.45 838.08 51.37 

n53k7 F=230 1807.30 1242.89 1040.60 202.29 

F=300 1393.44 1098.25 1040.98 57.27 

n60k9 F=230 3050.98 1695.72 1392.18 303.54 

F=300 2068.35 1461.69 1392.77 68.92 

n69k9 F=230 2184.23 1347.21 1204.00 143.21 

F=300 1703.85 1325.33 1265.43 59.90 
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APPENDIX 

The Appropriateness of Applying MRA 

The appropriateness for the problems to apply MRA method depends on four aspects. 

(1) The objective of the experiments. The applications of MRA fall into two broad classes of 

research problems: prediction and explanation. Our regression model should have a function of 

prediction that involves the extent to which the regression variate can predict the dependent 

variable.  

(2) Specification of a statistical relationship. MRA is appropriate when the researcher is 

interested in a statistical, not a functional, relationship. We aim mainly at finding an appropriate 

substitution of the value function, and care less about the practical meaning of the regression 

model. 

(3) Selection of the dependent and independent variables. The dependent and independent 

variables should be properly identified before any regression is constructed, which in this case 

are the exact evaluation and the two approximate evaluations of the problem. 

(4) The data in this problem is metric. 

To sum up, it is appropriate to use MRA as a tool to determine the approximation value function 

which is able to well predict the exact value function. 
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Assumptions of Multiple Regression Analysis 

Four assumptions have to be made in order to validate the method of multiple regression 

analysis. They will be tested after the model is estimated. 

(1) Linearity of the phenomenon measured 

(2) Homoscedasticity (constant variance of the error terms) 

These two assumptions can be tested through residual plots of each independent variable. 
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n37k5: 

  
n37k6: 

  
n38k5: 
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n53k7: 

  
n60k9: 

  
n69k9: 

  
From the figures, almost all data sets meet the assumption of linearity but some may appear a 

little heteroscadasticity, e.g. n33k5, n36k5.  
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(3) Independence of the error terms. We assume in regression that each predicted value is 

independent, which means that the predicted value is not related to any other prediction. 

n32k5:                                                                               n33k5: 

  
n36k5:                                                                              n37k5: 

  
n37k6:                                                                              n38k5: 
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       n39k5:                                                              n53k7: 

  
        n60k9:                                                              n69k9: 

  
Generally speaking, the data is independent with time. 
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(4) Normality of the error term distribution 

    n32k5:                                                                                 n33k5: 

 
    n36k5:                                                                                  n37k5: 
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    n37k6:                                                                                 n38k5: 

 
    n39k5:                                                                                 n53k7: 

 
 

     n60k9:                                                                                n69k9: 
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(5) Multicollinearity 

Multicollinearity creates „shared‟ variance between variables, thus decreasing the ability to 

predict the dependent measure. Hence high multicollinearity should be avoided. 
Table 22 examine the multicollinearity of the variables 

Sets r Value Cutoff value of r 

n32k5 0.0980 

r=0.9 

n33k5 0.8476 

n36k5 0.7187 

n37k5 0.3734 

n37k6 0.2942 

n38k5 0.1340 

n39k5 0.4709 

n53k7 0.4208 

n60k9 0.8163 

n69k9 0.7920 

 

The Correlation Coefficient (r value) indicates the strenth of the association between any two 

metric variables. A common cutoff threshold is an r value of 0.90. The presence of higher 

correlations is the first indication of substantial multicollinearity. The r value of all data sets does 

not exceed the cutoff value. However, this does not ensure a lack of collinearity. It is 

recommended though also challenged for a researcher to determine her own acceptable degree of 

collinearity. At this stage, we accept the 0.90 cutoff threshold despite existence of some large r 

values (>0.80), mainly because of the irrelavence of the two variables from a theoretical (instead 

of statistical) point of view. Moreover, multicollinearity is harmful in reducing the overall R
2
 that 

can be achieved, and negatively affecting the statistical significance tests of coefficient. But 

since the R
2 

and statistical significance are satisfactory according to the experimental results, it is 

concluded that the effects of multicollinearity is not significant. (Hair,J.F., W.C.Black, 

B.J.Babin, R.E.Anderson, 2009) 

 

As a conclusion, the MRA is suitable to be used in our problems. 
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Identification of Outliers 

The following figures depict the error values versus the first 100 observations. The red dots label 

the breaking points before which the observations are identified as outliers. 

n32k5: 
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n37k5: 

 
n37k6: 

 
n38k5: 

 
n39k5: 
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n53k7: 

 
n60k9: 

 
n69k9: 
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Summary Output of MRA 

 

n32k5: 

Regression Statistics 

Multiple R 0.9919 
R Square 0.9838 
Adjusted R Square 0.9836 
Standard Error 2.7875 

Observations 184 
 

ANOVA 
       df SS MS F Significance F 

Regression 2 85406.2943 42703.15 5495.732 9.17E-163 
Residual 181 1406.4131 7.7702 

  Total 183 86812.7074       
 

  Coefficients Standard Error t Stat P-value 

Intercept 129.3353 6.4675 19.9976 1.05E-47 
X Variable 1 0.0065 0.0015 4.4299 1.63E-05 

X Variable 2 0.9493 0.0091 103.8084 3.2E-163 
 

 

n33k5: 

Regression Statistics 

Multiple R 0.9800 
R Square 0.9604 
Adjusted R Square 0.9599 
Standard Error 2.0806 

Observations 178 

 

ANOVA 
       df SS MS F Significance F 

Regression 2 18363.5951 9181.7975 2121.025 2.07E-123 
Residual 175 757.5652 4.3289 

  Total 177 19121.1603       

 

  Coefficients Standard Error t Stat P-value 

Intercept -24.5450 13.8729 -1.7693 0.0786 
X Variable 1 0.0314 0.0040 7.7658 6.55E-13 

X Variable 2 1.9703 0.0711 27.7290 6.08E-66 
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n36k5: 

Regression Statistics 

Multiple R 0.9932 
R Square 0.9864 
Adjusted R Square 0.9862 
Standard Error 2.8568 

Observations 174 
 

ANOVA 
       df SS MS F Significance F 

Regression 2 100979.7009 50489.8504 6186.4936 3.20E-160 
Residual 171 1395.5829 8.1613 

  Total 173 102375.2837       
 

  Coefficients Standard Error t Stat P-value 

Intercept 125.0459 26.9794 4.6349 7.06E-06 
X Variable 1 0.0118 0.0048 2.4303 0.0161 

X Variable 2 0.9495 0.0120 79.0748 1.4E-136 
 

 

n37k5: 

Regression Statistics 

Multiple R 0.9878 

R Square 0.9758 
Adjusted R Square 0.9756 
Standard Error 2.6634 

Observations 193 

 

ANOVA 
       df SS MS F Significance F 

Regression 2 54380.2954 27190.1477 3833 2.74E-154 
Residual 190 1347.8029 7.0937 

  Total 192 55728.0983       

 

  Coefficients Standard Error t Stat P-value 

Intercept -206.2414 9.4304 -21.8698 8.78E-54 
X Variable 1 0.0763 0.0024 32.3529 3.27E-79 

X Variable 2 1.2008 0.0182 65.9836 6.3E-133 
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n37k6: 

Regression Statistics 

Multiple R 0.9959 
R Square 0.9917 
Adjusted R Square 0.9917 
Standard Error 3.6027 

Observations 196 
 

ANOVA 
       df SS MS F Significance F 

Regression 2 301126.5656 150563.2828 11600.35 8.67E-202 
Residual 193 2504.9859 12.9792 

  Total 195 303631.5515       
 

  Coefficients 
Standard 

Error t Stat P-value 

Intercept -102.1116 5.6354 -18.1197 1.63E-43 
X Variable 1 0.0563 0.0011 51.1926 2.99E-114 

X Variable 2 0.9513 0.0063 152.1692 6.02E-203 

 

 

n38k5: 

Regression Statistics 

Multiple R 0.9914 
R Square 0.9829 
Adjusted R Square 0.9827 
Standard Error 4.1645 

Observations 193 

 

ANOVA 
       df SS MS F Significance F 

Regression 2 189648.6527 94824.3263 5467.549 1.21E-168 
Residual 190 3295.1917 17.3431 

  Total 192 192943.8444       

 

  Coefficients Standard Error t Stat P-value 

Intercept -140.7119 8.4402 -16.6715 4.87E-39 
X Variable 1 0.0563 0.0019 29.6479 3.41E-73 

X Variable 2 1.2632 0.0132 95.4044 1.9E-162 
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n39k5: 

Regression Statistics 

Multiple R 0.9939 
R Square 0.9878 
Adjusted R Square 0.9877 
Standard Error 7.9845 

Observations 195 
 

ANOVA 
       df SS MS F Significance F 

Regression 2 992497.0669 496248.5335 7783.957 1.71E-184 
Residual 192 12240.5253 63.7527 

  Total 194 1004737.592       
 

  Coefficients Standard Error t Stat P-value 

Intercept -195.4873 40.2745 -4.8539 2.50E-06 
X Variable 1 0.0701 0.0078 8.9769 2.56E-16 

X Variable 2 1.0338 0.0098 105.5571 5.48E-172 
 

 

n53k7: 

Regression Statistics 

Multiple R 0.9733 

R Square 0.9474 
Adjusted R Square 0.9468 
Standard Error 4.1073 

Observations 190 

 

ANOVA 
       df SS MS F Significance F 

Regression 2 56786.9248 28393.4624 1683.117 2.72E-120 
Residual 187 3154.6093 16.8696 

  Total 189 59941.5340       

 

  Coefficients Standard Error t Stat P-value 

Intercept -145.5856 15.1082 -9.6362 4.26E-18 
X Variable 1 0.0521 0.0024 21.2756 7.96E-52 

X Variable 2 1.0251 0.0256 40.0130 1.29E-93 
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n60k9: 

Regression Statistics 

Multiple R 0.9954 
R Square 0.9907 
Adjusted R Square 0.9906 
Standard Error 4.2025 

Observations 186 
 

ANOVA 
       df SS MS F Significance F 

Regression 2 345247.9041 172624 9774.4506 1.01E-186 
Residual 183 3231.9139 17.6607 

  Total 185 348479.8181       
 

  Coefficients 
Standard 

Error t Stat P-value 

Intercept -241.5826 9.7864 -24.6856 3.88E-60 
X Variable 1 0.0627 0.0017 37.9291 1.26E-88 

X Variable 2 0.9312 0.0199 46.7675 1.02E-103 

 

 

n69k9: 

Regression Statistics 

Multiple R 0.9930 
R Square 0.9861 
Adjusted R Square 0.9860 
Standard Error 3.1372 

Observations 189 

 

ANOVA 
       df SS MS F Significance F 

Regression 2 100979.7009 50489.8504 6186.4936 3.20E-160 
Residual 171 1395.5829 8.1613 

  Total 173 102375.2837       

 

  Coefficients Standard Error t Stat P-value 

Intercept -225.0355 9.5217 -23.6340 6.40E-58 
X Variable 1 0.0517 0.0013 40.5412 2.85E-94 

X Variable 2 1.1195 0.0334 33.5410 8.45E-81 
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Variables Line Fit Plots 
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n39k5: 

 

 
 

n53k7: 

 

 
 

 

 

 

0
200
400
600

5000 5100 5200 5300 5400 5500 5600

Y

X Variable 1

X Variable 1 Line Fit  Plot

0
200
400
600

0 100 200 300 400

Y

X Variable 2

X Variable 2 Line Fit  Plot

0

200

400

600

6200 6400 6600 6800 7000 7200

Y

X Variable 1

X Variable 1 Line Fit  Plot

0

200

400

600

0 50 100 150 200

Y

X Variable 2

X Variable 2 Line Fit  Plot



67 

 

n60k9: 
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Model Line Fit Plots 
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