
 Eindhoven University of Technology

MASTER

Computational methods for particle tracking in isotropic turbulence

van Hinsberg, M.A.T.

Award date:
2011

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/02d1b810-e6d0-40d0-a6ac-0667daf55dc9

Supervisors : Dr. Ir. J.H.M. ten Thije Boonkkamp

Dr. Ir. B.J.H. van de Wiel

Prof. Dr. H.J.H. Clercx

Computational methods for particle

tracking in isotropic turbulence

M.A.T. van Hinsberg

R-1777-A

10 Januari, 2011

Abstract

The hydrodynamic force exerted by a fluid on small isolated rigid spherical particles are usually
well described by the Maxey-Riley (MR) equations. In order to be able to simulate a large number
of particles the methods for solving the MR equations need to be fast and accurate. The most
time-consuming contribution in the MR equations is the Basset history force which is a well-known
problem for many-particle simulations in turbulence. In this study a novel numerical approach is
proposed for the computation of the Basset history force based on the use of exponential functions
to approximate the tail of the Basset force kernel. Typically, this approach not only decreases
the cpu time and memory requirements for the Basset force computation by more than one order
of magnitude, but also increases the accuracy by an order of magnitude. The method has a
temporal accuracy of O

(
∆t2

)
which is a substantial improvement compared to methods available

in the literature. Furthermore, the method is partially implicit in order to increase stability of the
computation.

Another important aspect in numerical simulations of particle laden turbulent flows is the
interpolation of the flow field. For the interpolation many different approaches are used. Where
some studies use low order linear interpolation others use high order spline methods. This study
focuses on estimating the error made by the interpolation method and compares it with the error
made in the discretisation of the flow field. In this way one can balance the errors in order
to achieve an optimal result. As a spin-off, a practical method is proposed that enables direct
estimation of the interpolation error from the energy spectrum. Furthermore, it is shown how the
energy spectrum is changed due to the interpolation. Because high order interpolation methods
are computationally expensive, a numerical method is proposed for fast computation.

A third part of the present study considers the Faxén corrections which are first order cor-
rections in the MR equations for increasing particle radii. In most studies these corrections have
been implemented by using the Laplacian of the flow field. Recently it has been shown that using
volume and surface averages for the calculation of the Faxén corrections give more reliable results
for larger particle radii. In this study a method is proposed that does the averaging exactly in
spectral space. Besides that our method is more accurate it is also faster.

Contents

1 Introduction 1

2 An efficient, second order method for the approximation of the Basset history
force 3
2.1 Introduction . 3
2.2 Particle tracking . 4
2.3 Approximation of the tail of the Basset force . 5
2.4 Numerical approximation . 9
2.5 Validation of the Basset force integration . 11
2.6 Light particles in isotropic turbulence . 14
2.7 Conclusions . 17

3 Interpolation schemes in DNS simulations of turbulence: error estimates and
implementation 19
3.1 Introduction . 19
3.2 Interpolation error . 20
3.3 Approximation of the interpolation error . 21
3.4 Interpolation methods . 23
3.5 Implementation . 25
3.6 Results . 27
3.7 Conclusions . 29

4 Conclusions 31

Acknowledgements 33

A Faxén corrections 35

B Flow field for circular particle trajectories 39

C Time dependent velocity field 41

D Proof: Uk − Ũk are orthogonal 43

E Proof of optimal polynomial function 45

Bibliography 47

iii

iv

Chapter 1

Introduction

The increase in computational power has made it possible to tackle more complex problems. One
of these complex problems involves the study of particle transport in turbulent flows. As a result
of the wide availability of computational power a dramatic increase in Lagrangian computations
with dispersed particles is recently observed [1]. The study of particle transport in turbulent
flow is of practical importance. For example in the atmosphere various types of particles can be
encountered. A topic that receives a lot of attention nowadays is air pollution in industrialized
areas by high concentrations of aerosols that affect human health and weather systems. Also in
oceans several types of particles are transported. One could think of algae and plankton. An
interesting aspect is the fact that some algae can adjust their density as a function of the received
light intensity. As such they become active particles [2, 3].

Maxey and Riley [4] introduced the equations of motion for small (dp ≪ η, with dp the
particle diameter and η the Kolmogorov length scale) isolated rigid spherical particles in a non-
uniform velocity field u(x, t). An important assumption is that the particle Reynolds number
Rep = dp|u − up|/ν ≪ 1, with up the velocity of the particle and ν the kinematic viscosity
of the fluid. As we consider small particle diameters and small volume fractions of particles we
ignore the effect of two-way and four-way coupling. When considering two-way coupling also fluid-
particle interactions are incorporated. Four-way coupling includes particle-particle interactions as
well. Time integration of the hydrodynamic force in order to compute particle trajectories is an
expensive, time- and memory consuming job. In this study three different aspects are investigated.
The three different aspects are: computation of the Basset history force, interpolation of the
velocity field and the computation of the Faxén corrections. The different aspects of this study
are presented in article style, which makes some repetition unavoidable. Chapter 1 deals with
the Basset history force and this part of the study is completed. It is accepted for publication in
”Journal of Computational Physics” [5]. Chapter 2 deals with the interpolation. This part of the
study is not yet completed. The basis for this article is ready but more simulations need to be
done in order to finish this part. The text is not yet up to the desired level of a journal paper due
to the limited time available. The goal is to submit this part as well, when completed. Finally,
a method for the implementation of the Faxén corrections is proposed. Although this part of the
study is far from completed, it provides an attractive starting point for further research. We have
therefore decided to include these results in Appendix A and not in a separate chapter. Next we
will give a short introduction to the three different aspects.

Let us first reconsider the Basset history force, the term most often neglected is the Basset
history force because of its numerical complexity. Many recent studies underline the importance
of the Basset force compared to the other forces contributions in the Maxey-Riley equations for
particle transport in turbulent flows, see Refs. [6, 7, 8, 9]. Moreover, it can affect the motion of a
sedimenting particle [10] or bed-load sediment transport in open channels, where the Basset force
becomes extremely important for sand particles [11, 12]. It also might alter the particle velocity in
an oscillating flow field [13] or modify the trapping of particles in vortices [14]. Fast and accurate
computation of the Basset force is far from trivial. Although several attempts have been made

1

[15, 16, 17], the computation of the Basset force is still far more time consuming and less accurate
than the computation of the other forces in the MR equations. Therefore in Chapter 2 we present
a new method that saves time, memory costs and is more accurate.

Second, the interpolation step can be very time consuming and memory demanding as well.
Some studies use low order linear interpolation, where others use high order spline interpolations
[18, 19]. These high order spline interpolations have the disadvantage of being more computational
expensive. Therefore, it is important that they give a significant more accurate result. In order
to choose the most appropriate interpolation method for a particular case one needs to compare
errors: the interpolation error is compared with the discretisation error of the flow field. In this way
one can prevent unnecessary computations. This important aspect is however not often taken into
account. In order to estimate the interpolation error different methods are proposed. Further we
introduce a general framework for different interpolation methods. Making use of this framework
an algorithm is proposed for fast computation of the interpolation. This can easily save an order
of magnitude in computing time compared with other algorithms.

Finally we propose a method for the implementation of the Faxén corrections. The Faxén
corrections are first order corrections in the MR equations for increasing particle radii. Recently it
has been shown that using volume and surface averages for the calculation of the Faxén corrections
allows for larger particle radii [20, 21]. In Appendix A a method is proposed that does the averaging
exactly in spectral space. Besides that the method is more accurate it is also faster.

2

Chapter 2

An efficient, second order method

for the approximation of the

Basset history force

2.1 Introduction

The turbulent dispersion of small inertial particles plays an important role in environmental flows,
and in this work we focus on small particles with densities of the same order as that of the
surrounding fluid. Examples of such particles that may be present in well-mixed or in density
stratified estuaries are plankton, algae, aggregates (all with densities similar to the fluid density)
or resuspended sand from the sea bottom (particle densities in this case several times that of the
fluid). Particle collisions and the formation of aggregates of marine particles or sediment depend
on the details of the small-scale trajectories of the particles in locally homogeneous and isotropic
turbulence. At these scales the details of the hydrodynamic force acting on (light) inertial particles
are relevant.

Maxey and Riley [4] introduced the equation of motion for small (dp ≪ η, with dp the particle
diameter and η the Kolmogorov length scale) isolated rigid spherical particles in a non-uniform
velocity field u(x, t). An important assumption is that the particle Reynolds number Rep =
dp|u − up|/ν ≪ 1, with up the velocity of the particle and ν the kinematic viscosity of the fluid.
As we consider small particle diameter and small volume fraction of particles we ignore the effect of
two-way and four-way coupling. The relative importance of the terms in the hydrodynamic force
depends on the ratio of particle-to-fluid density and the particle diameter. The computation of
all the different forces in the Maxey-Riley equation is an expensive time- and memory consuming
job. Therefore, assumptions are often made regarding the forces that can be neglected in the
study of particle dispersion. The number of studies underpinning these assumptions, however, is
rather limited due, for example, to the lack of efficient algorithms to take into account the effects
of the Basset history force with sufficient numerical accuracy. This term was first discovered by
Boussinesq in 1885. An elaborate overview of the work on the different terms in the Maxey-
Riley equation and their numerical implementation can be found in the paper by Loth [22] and a
historical account of the equation of motion was given in a review article by Michaelides [23].

The term most often neglected is the Basset history force because of its numerical complexity.
Many recent studies underline the importance of the Basset force compared to the other forces
contributions in the Maxey-Riley equation for particle transport in turbulent flows, see Refs. [6,
7, 8, 9]. Moreover, it can affect the motion of a sedimenting particle [10] or bed-load sediment
transport in open channels, where the Basset force becomes extremely important for sand particles
[11, 12]. It also might alter the particle velocity in an oscillating flow field [13] or modify the
trapping of particles in vortices [14].

3

Fast and accurate computation of the Basset force is far from trivial. Although several attempts
have been made [15, 16, 17], the computation of the Basset force is still far more time consuming
and less accurate than the computation of the other forces in the MR equation. Therefore we
present a new method that saves time, memory costs and is more accurate.

The MR equation and the subtlities with regard to the computation of the Basset history force
are introduced in Section 2.2. Next, in Section 2.3 and 2.4, the new method is introduced, where
Section 2.3 focuses on the approximation of the tail of the Basset history force and Section 2.4 on
the numerical integration of the Basset history force. Thereafter, validation of the method using
analytical solutions is discussed in Section 2.5. A simulation of isotropic turbulence, with light
inertial particles embedded in the flow, has been performed. In Section 2.6 we compare the results
from this simulation with the new implementation of the full MR equation with the old version
used by van Aartrijk and Clercx [8]. Finally, concluding remarks are given in Section 2.7.

2.2 Particle tracking

Particle trajectories in a Lagrangian frame of reference satisfy

dxp

dt
= up, (2.1)

with xp the particle position and up its velocity. According to Maxey and Riley [4] the equation
of motion for an isolated rigid spherical particle in a nonuniform velocity field u is given by

mp
dup

dt
= 6πaµ

(
u− up +

1

6
a2∇2u

)
+mf

Du

Dt
− (mp −mf)gez

+
1

2
mf

(
Du

Dt
− dup

dt
+

1

10
a2 d

dt

(
∇2u

))
+ 6a2ρ

√
πν

∫ t

−∞
KB(t− τ)g(τ)dτ

= FSt + FP + FG + FAM + FB. (2.2)

The equation of motion includes time derivatives of the form d/dt taken along the particle path
and derivatives of the form D/Dt taken along the path of a fluid element. The particle mass is
given by mp, a is the radius of the particle, µ = ρν is the dynamic viscosity, ρ and ν are the density
of the fluid and its kinematic viscosity, mf is the mass of the fluid element with a volume equal to
that of the particle and ez is the unit vector in the opposite direction of the gravitational force. The
forces in the right-hand side of this equation denote the Stokes drag, local pressure gradient in the
undisturbed fluid, gravitational force, added mass force and the Basset history force, respectively.
The Faxén correction proportional to ∇2u has been included in the Stokes drag, added mass and
Basset force [24]. According to Homann et al. [21] these corrections reproduce dominant finite-size
effects on velocity and acceleration fluctuations for neutrally buoyant particles with diameter up
to four times the Kolmogorov scale η. For the added mass term the form described by Auton et

al. [25] is used. Moreover, the history force convolution function g(t) and its kernel are

g(t) =
df(t)

dt
, f(t) = u − up +

1

6
a2∇2u , KB(t) =

1√
t
. (2.3)

Equation (2.2) is valid when a ≪ η, but, as mentioned above, the Faxén correction can weaken
this condition. Furthermore, the particle Reynolds number must be small (Rep ≪ 1), as are the
velocity gradients around the particle. Finally, the initial velocity of the particle and fluid must
be equal, if this is not the case a second term appears in the Basset history force [17]. The coupled
system (2.1) and (2.2) is in principle suitable for integration by any standard method, e.g. the
fourth order Runge-Kutta method.

The Basset history force FB presents additional challenges. First, the evaluation of the Basset
force can become extremely time consuming and memory demanding. This is due to the fact that

4

every time step an integral must be evaluated over the complete history of the particle. Several
attempts have been made to solve this problem. Michaelides [17] uses a Laplace transform to find
a novel way for computing the Basset force. This procedure can be used for linear problems, but
is not suitable for space dependent velocity fields for which the coupled system (2.1) and (2.2)
is nonlinear. Another solution is provided by Dorgan and Loth [16] and Bombardelli et al. [15].
In these papers the integral is evaluated over a finite window from t − twin until t. This can be
represented by a change in the kernel of the Basset force. The window kernel is thus defined as

Kwin(t) =

{
KB(t) for t ≤ twin,

0 for t > twin.
(2.4)

The kernel of the Basset force is decreasing very slowly for t→ ∞, thus twin must be chosen rather
large. For Bombardelli et al. [15] this problem turned out to be less important because they used
a different kernel, which decreases faster for t → ∞. Although the application of the window
kernel saves CPU time, the computation of the Basset force is still far more expensive than the
evaluation of the other forces in the MR equation. It turns out to be approximately 100 to 1000
times more time consuming depending on the application.

A second issue concerns the kernel of the Basset force, which is singular for t→ 0. A standard
approach to deal with the singularity of the Basset kernel is to employ specific quadrature rules
such as the second order Euler-Maclaurin formula [26]. Another approach is presented by Tatom
[27] who uses a fractional derivative method. This approach was tested by Bombardelli et al. [15].
From their results it can be easily shown that the integration method with specific quadrature rules
has only temporal accuracy O(

√
∆t) and that the fractional derivative approach has a temporal

accuracy O(∆t). In computations of turbulent flows with particles, other discretization methods
involved are at least second order. Therefore, it is not sufficient to have a first order integration
method for the Basset force.

Our goal is to derive a robust and efficient method for the computation of the Basset force that
overcomes all the problems mentioned above and to find an approach that is suitable for different
forms of the kernel. Furthermore, our method must be stable and at least second order accurate
in time. A third requirement is that it should be less time consuming and memory demanding
than previous methods.

2.3 Approximation of the tail of the Basset force

To get a better understanding of the Basset force we will first show that the contribution of this
force is finite at any given time. To do this, some restrictions on f(t) and g(t) = d

dt f(t) should be
made. First, f(t) must be a continuous function and its derivative must exist almost everywhere.
Further, f(t) and g(t) must be in the L∞space with norm B1 and B2, respectively. The restrictions
on f(t) and g(t) are thus:

f ∈ C0, ‖f‖∞ = B1, ‖g‖∞ = B2, (2.5)

where ‖ · ‖∞ is defined as:

‖f‖∞ = inf{C ≥ 0 : |f(t)| ≤ C almost everywhere}, (2.6)

and | · | is the usual length of the vector. We assume that for particles in (turbulent) flows with
f(t) = u − up + 1

6a
2∇2u these conditions are satisfied as both the flow field and its Laplacian

satisfy these conditions. With the conditions in (2.5) it is possible to find an upper bound for FB.
The integral is split into two parts, in order to control both the singularity in the Basset kernel

5

and the tail of the integral. This yields

∣∣∣∣
FB

cB

∣∣∣∣ =

∣∣∣∣
∫ t

−∞
KB(t− τ)g(τ)dτ

∣∣∣∣

=

∣∣∣∣∣

∫ t−B1
B2

−∞

g(τ)√
t− τ

dτ +

∫ t

t−B1
B2

g(τ)√
t− τ

dτ

∣∣∣∣∣

≤

∣∣∣∣∣∣

[
f(τ)√
t− τ

]t−B1
B2

−∞
−
∫ t−B1

B2

−∞

f(τ)

2(t− τ)3/2
dτ

∣∣∣∣∣∣
+

∫ t

t−B1
B2

|g(τ)|√
t− τ

dτ

≤
√
B1B2 +

B1

2

∫ t−B1
B2

−∞

1

(t− τ)3/2
dτ +B2

∫ t

t−B1
B2

1√
t− τ

dτ

= 4
√
B1B2. (2.7)

Here cB = 6a2ρ
√
πν is introduced for convenience. We now consider the window kernel for

calculation of the Basset force FB-win. In the limit of twin → ∞ the difference between FB and
FB-win must vanish. Using integration by parts, one can derive

∣∣∣∣
FB − FB-win

cB

∣∣∣∣ =

∣∣∣∣
∫ t

−∞
KB(t− τ)g(τ)dτ −

∫ t

−∞
Kwin(t− τ)g(τ)dτ

∣∣∣∣

=

∣∣∣∣
∫ t−twin

−∞

g(τ)√
t− τ

dτ

∣∣∣∣ ≤
2B1√
twin

. (2.8)

The error made by using the window kernel instead of the Basset kernel is indeed becoming
negligibly small for twin → ∞. Unfortunately, this convergence is very slow, implying that twin

must be very large, and a better approach for the computation of the Basset force must be found.
This is done by introducing a new kernel with a modified tail, in short the modified Basset kernel
Kmod(t), as follows

Kmod(t) =

{
KB(t) for t ≤ twin

Ktail(t) for t > twin

lim
t→∞

Ktail(t) = 0. (2.9)

This new kernel also implies a modified history force denoted by FB-mod. For now Ktail(t) is not
yet defined but must be chosen such as to approximate the Basset kernel as close as possible.
Using integration by parts in the last step, the upper bound for the error induced by the modified
Basset force FB-mod becomes:

∣∣∣∣
FB − FB-mod

cB

∣∣∣∣ =

∣∣∣∣
∫ t

−∞
KB(t− τ)g(τ)dτ −

∫ t

−∞
Kmod(t− τ)g(τ)dτ

∣∣∣∣

=

∣∣∣∣
∫ t−twin

−∞
(KB −Ktail)(t− τ)g(τ)dτ

∣∣∣∣

≤ B1

{∣∣∣KB(twin) −Ktail(twin)
∣∣∣

+

∫ ∞

twin

∣∣∣∣
d(KB −Ktail)(t)

dt

∣∣∣∣ dt
}
. (2.10)

As the upper bound in relation (2.10) depends on twin, it turns out to be beneficial to rescale the
time and kernel as follows:

K̃tail(t̃) =
Ktail(t)

KB(twin)
, t̃ =

t

twin
. (2.11)

6

Applying the same scaling to KB(t) = 1/
√
t we find

K̃B(t̃) =
KB(t)

KB(twin)
= KB(t̃). (2.12)

Note that this cannot be done for a general kernel. Eq. (2.10) can now be reformulated as

∣∣∣∣
FB − FB-mod

cB

∣∣∣∣ ≤
B1√
twin

{∣∣∣1 − K̃tail(1)
∣∣∣+
∫ ∞

1

∣∣∣∣∣
d(KB − K̃tail)(t̃)

dt̃

∣∣∣∣∣ dt̃
}
. (2.13)

When comparing (2.8) and (2.13) one can see that a good approximation K̃tail(t̃) of the tail reduces
the error in (2.13) significantly in comparison with (2.8).

In order to find a good approximation K̃tail(t̃) we start with (2.10). The right hand side of
(2.10) can be minimized and thereby minimizing the error in FB-mod. When determining Ktail(t)
it is important that computation time is kept low. In order to achieve this, exponential functions
are used because they can be implemented in a recursive way as explained later on. At first we
start with one exponential function as follows,

Ktail(t) = a exp (−bt) . (2.14)

Here a and b are two positive constants. As a first guess we require that Ktail(twin) = KB(twin)
and d

dtKtail(twin) = d
dtKB(twin) in order to determine a and b. In this way Kmod(t), defined in

(2.9), is continuously differentiable. Doing this results in

Ktail(t) =

√
e

twin
exp

(
− t

2twin

)
. (2.15)

Fig. 2.1 shows several kernels, where the modified Basset kernel is given by (2.15). The error

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

t

Basset kernel
Window kernel
Modified Basset kernel

Figure 2.1: Basset kernel (solid line), window kernel (dots) and the modified Basset kernel (dashed
line) for twin = 2.

by applying the modified Basset kernel is obviously smaller compared to the error for the window
method. In order to minimize the error even more, multiple exponential functions can be used.
Relation (2.15) provides an ansatz for the choice of a and b. Thus we write Ktail(t) as

Ktail(t) =

m∑

i=1

aiKi(t), Ki(t) =

√
e

ti
exp

(
− t

2ti

)
, (2.16)

7

Table 2.1: Coefficients ai and t̃i in K̃tail(t̃) with m = 10

t̃i ai

0.1 0.23477481312586
0.3 0.28549576238194
1 0.28479416718255
3 0.26149775537574
10 0.32056200511938
40 0.35354490689146
190 0.39635904496921
1000 0.42253908596514
6500 0.48317384225265
50000 0.63661146557001

with ai and ti positive constants. The functions Ki(t) satisfy the following properties: Ki(ti) =
KB(ti) and d

dtKi(ti) = d
dtKB(ti). Combining (2.11) and (2.16), we obtain the following dimen-

sionless representation for the tail:

K̃tail(t̃) =

m∑

i=1

aiK̃i(t̃) , K̃i(t̃) =

√
e

t̃i
exp

(
− t̃

2t̃i

)
, t̃i =

ti
twin

. (2.17)

The coefficients ai and t̃i should be chosen in such a way that the upper bound in (2.13) is
minimized. However, Newton iteration will not work for this problem, and instead we consider
the expression

(
1 − K̃tail(1)

)2

+

∫ ∞

1

t̃

(
d(KB − K̃tail)

dt̃

)2

dt̃, , (2.18)

which provides a good indication for the optimal values of ai and t̃i. In (2.18) an extra multipli-
cation with t̃ is introduced to correct for the change in norm. After minimizing the expression in
(2.18), we can verify whether the error in (2.13) is of the same order. Since K̃i(t̃i) = KB(t̃i) and
d
dt̃
K̃i(t̃i) = d

dt̃
KB(t̃i), the function K̃i(t̃) approximate KB(t̃) very well around t̃i. The kernel KB

must be approximated over a large range of t̃-values and as a consequence t̃i must also have a large
range. Furthermore, KB is changing slowly for large t̃ so the small t̃i must be close to each other
whereas the large t̃i can be far apart. The approach for finding ai and t̃i is thus the following.
First, make a reasonable choice for t̃i, and second, calculate ai by minimizing (2.18). Finally,
determine the term between brackets from (2.13). Another slightly different set of t̃i-values can be
chosen to see if a better approximation can be made. In Table 2.1 the result is shown for m = 10.
Here one can see that some values of t̃i are smaller than 1. This is surprising because the kernel
KB is not being approximated below t̃ = 1. When tuning the t̃i-values we found, however, that
this improves the approximation.

From Fig. 2.2 it can be seen that K̃tail approximates KB relatively well over a wide range of
t̃. From Fig. 2.3 one can see that the error decays for large t̃ (note the huge range of t̃ in both
figures).

Using (2.17) in combination with Table 2.1 for K̃tail(t̃) the part between brackets in (2.13) can
be calculated

∣∣∣1 − K̃tail(1)
∣∣∣+
∫ ∞

1

∣∣∣∣∣
d(KB − K̃tail)(t̃)

dt̃

∣∣∣∣∣ dt̃ ≈ 9.5 · 10−3. (2.19)

Comparing this result with the window method (2.8) a factor of more than 200 is gained in
accuracy. When keeping the same accuracy but changing the window, twin can be decreased by a
factor of 2002 = 40000.

8

10
0

10
2

10
4

10
6

10
8

10
−4

10
−3

10
−2

10
−1

10
0

10
1

KB

K̃tail

t̃

Figure 2.2: The kernels KB(t̃) and K̃tail(t̃).

10
0

10
2

10
4

10
6

10
8

10
10

10
−6

10
−5

10
−4

10
−3

10
−2

 ∣∣∣KB − K̃tail

∣∣∣

t̃

Figure 2.3: The error
∣∣∣KB − K̃tail

∣∣∣.

2.4 Numerical approximation

In this section the numerical integration is discussed. First, the integration of the window and
tail kernels are elaborated. Second, the overall numerical scheme for solving Eq. (2.1) and (2.2)
is explained.

The integration of the Basset force with the modified kernel (2.9) and (2.16) is split into two
parts, the window kernel and the tail of the kernel as follows,

FB-mod(t) = cB

∫ t

−∞
Kmod(t− τ)g(τ)dτ

= cB

∫ t

t−twin

KB(t− τ)g(τ)dτ + cB

∫ t−twin

−∞
Ktail(t− τ)g(τ)dτ

= FB-win(t) + FB-tail(t). (2.20)

In the following, methods are described for the calculation of FB-win and FB-tail.

First, we consider the Basset force due to the window kernel FB-win. The kernel of the Basset
force is singular for t → 0 which impedes use of the ordinary trapezoidal rule. In order to deal
with the singularity we introduce an alternative, trapezoidal-based method, referred to as the
TB-method. The idea is as follows. The trapezoidal rule is based on linear interpolation of the
integrand on each subinterval. In our approach g(t) is approximated by its linear interpolant
P1(t), and subsequently the integration of KB(t − τ)P1(τ) is done exactly. For the numerical
implementation we start with the discretization of the interval [t − twin, t], given by τn = t −
n∆t, n = 0, 1, 2, · · · , N with ∆t = twin/N . Now the integral can be split as

FB-win(t) = cB

N∑

n=1

∫ τn−1

τn

g(τ)√
t− τ

dτ . (2.21)

The next step is to approximate g(τ) by its linear interpolant on each subinterval, which yields

FB-win(t) ≈ cB

N∑

n=1

∫ τn−1

τn

gn + (gn−1 − gn)(τ − τn)/∆t√
t− τ

dτ, (2.22)

where gn ≡ g(τn). After the change of variable τ ′ = t− τ this integral can be evaluated and the

9

following result1 is obtained:

FB-win(t) ≈ 4

3
cBg0

√
∆t+ cBgN

√
∆t
(
N − 4

3

)

(N − 1)
√
N − 1 + (N − 3

2)
√
N

+cB
√

∆t

N−1∑

n=1

gn

(
n+ 4

3

(n+ 1)
√
n+ 1 + (n+ 3

2)
√
n

+
n− 4

3

(n− 1)
√
n− 1 + (n− 3

2)
√
n

)
. (2.23)

From the result above one can see that three inner products must be calculated each time step,
one inner product for each spatial dimension. One vector contains all the values gn which must
be shifted by one index each time step. The other vector containing the coefficients in (2.23)
is calculated once at the start of the computation. In this way the computational time is kept
minimal. The part with g0 will be treated in a different way as explained later on in order to
improve stability.

Next, the numerical integration of the tail of the Basset force is discussed. The idea is to find a
recursive formulation in order to minimize computation efforts. Using expression (2.16) for Ktail,
FB-tail becomes:

FB-tail(t) =

m∑

i=1

aicB

∫ t−twin

−∞
Ki (t− τ) g(τ)dτ =

m∑

i=1

aiFi(t) , (2.24)

Here, Fi represents the contribution of the i-th exponential function. Now Fi is split into two
parts, as follows.

Fi(t) = cB

∫ t−twin

t−twin−∆t

Ki(t− τ)g(τ)dτ + cB

∫ t−twin−∆t

−∞
Ki(t− τ)g(τ)dτ

= Fi-di(t) + Fi-re(t) , (2.25)

where we have to compute Fi-di directly and where Fi-re can be computed recursively. For Fi-di

the same procedure is followed as with the window kernel. Using this procedure the following
result2 can be obtained:

Fi-di(t) ≈ cB

√
e

ti

∫ twin+∆t

twin

exp

(
− τ ′

2ti

)(
gN +

twin − τ ′

∆t
(gN − gN+1)

)
dτ ′ = 2cB

√
eti

exp

(
− twin

2ti

){
gN

[
1 − ϕ

(
−∆t

2ti

)]
+ gN+1 exp

(
−∆t

2ti

)[
ϕ

(
∆t

2ti

)
− 1

]}
, (2.26)

where ϕ(z) = (ez − 1)/z = 1 + 1
2z+ 1

6z
2 +O

(
z3
)
. Finally, Fi-re can be easily calculated using the

value of Fi at the previous time step:

Fi-re(t) = cB

∫ t−twin−∆t

−∞

√
e

ti
exp

(
− t− τ

2ti

)
g(τ)dτ

= exp

(
−∆t

2ti

)
cB

∫ t−twin−∆t

−∞

√
e

ti
exp

(
− t− ∆t− τ

2ti

)
g(τ)dτ

= exp

(
−∆t

2ti

)
Fi(t− ∆t) . (2.27)

In this last part the overall numerical scheme is discussed. To solve equation (2.1) and (2.2)
numerically the second-order Adams-Bashforth (AB2) method is implemented. For a differential
equation dy

dt = h(t,y) the scheme reads yn+1 = yn + ∆t
2

(
3hn − hn−1

)
, where hn = h(tn,yn).

1This formulation is preferred to avoid loss of significant digits in the computation of FB-win.
2Note that in equation (2.26) Taylor series must be used for ϕ

(
−

∆t

2ti

)
when ∆t ≪ ti.

10

Equation (2.1) can be directly integrated with this scheme but for equation (2.2) some modifica-

tions are needed. In order to have a stable scheme, the
dup

dt term in the added mass force is treated
in an implicit way instead of explicit. Moreover, it turned out that the AB2-method has poor
stability properties for the calculation of the Basset force using the window method. Extremely
small time steps must be taken in order to have a stable solution. An alternative method circum-
venting stability problems is to bring a part of the Basset force (the contribution

dup

dt evaluated
at t) to the left hand side. Eq. (2.2) is then reformulated as

(
mp +

1

2
mf +

4

3
cB

√
∆t

)
dup

dt
= FSt + FP + FG + F′

AM + F′
B , (2.28)

with F′
AM = 1

2mf

(
Du
Dt + 1

10a
2 d

dt (∇2u)
)

and F′
B = FB − 4

3cB
√

∆t
dup

dt . In this way the Basset
force becomes partially implicit instead of completely explicit. Finally, as only the time derivative
along the particle path du

dt is available, the time derivative along the path of a fluid element Du
Dt is

computed according to

Du

Dt
=
∂u

∂t
+ uj

∂u

∂xj
=
∂u

∂t
+ up,j

∂u

∂xj
+ (uj − up,j)

∂u

∂xj
=

du

dt
+ (uj − up,j)

∂u

∂xj
. (2.29)

2.5 Validation of the Basset force integration

In this section four test cases are presented in order to validate the methods for the integration
of the Basset force. The first example tests the trapezoidal-based (TB) method and compares the
results with the semi-derivative (SD) approach by Bombardelli et al. [15]. Example 2 and 3 test
the the overall numerical scheme. Here both stability and convergence are tested for the explicit
and the partially implicit TB-method. Finally, example 4 shows the efficiency of the Basset force
using the tail kernel.

Example 1: Basset integral for a given convolution function
In order to demonstrate the advantages of the TB-method, the convergence of this method is
compared with the SD-approach of Bombardelli et al. [15]. To that end the arbitrary test function
g(τ) = cos τ is used. The exact Basset integral is given by

FB(t) = cB

∫ t

0

cos τ√
t− τ

dτ = 2cB

∫ √
t

0

cos(t− σ2)dσ

= cB
√

2π
(
C(
√

2t/π) cos t+ S(
√

2t/π) sin t
)
, (2.30)

with σ =
√
t− τ and C(t) and S(t) the Fresnel cosine and sine functions [28], respectively.

The Basset integral FB was evaluated at t = 50π with different numbers of points N uniformly
distributed in the interval [0, 50π]. The results for both the SD-approach and the TB-method
are presented in Table 2.2. Here, it can be seen that the error of the TB-method is substantially
smaller than that of the SD-approach. When increasing the number of points N it can be seen that
the TB-method is second-order accurate in time (in agreement with analysis that can be done by
using Taylor series), whereas the SD-approach is first-order accurate in time. More methods have
been compared by Bombardelli et al. [15] but these methods have even lower order of convergence
than the SD-approach.

Example 2: Space-dependent steady velocity field
In order to test the overall numerical scheme for the computation of particle trajectories we have
implemented a particular space-dependent steady velocity field. The particle trajectory is a circle
and given by (x(t), y(t)) = (r cosωt,−r sinωt), where r and ω denote the radius and the angular
velocity, respectively. The velocity field and its derivation is given in appendix B. For the test case,
exactly one revolution is simulated, from t = 0 until t = 2π. In order to test the stability of the

11

Table 2.2: Relative error and order of convergence for the Basset integral, for the SD-approach
[15] and the TB-method.

Relative error Order Relative error Order
points N SD SD TB TB
81 4.03 · 10−1 1.34 · 10−1

243 1.37 · 10−1 1.0 2.54 · 10−2 1.5
729 4.66 · 10−2 1.0 3.29 · 10−3 1.9
2,187 1.56 · 10−2 1.0 3.93 · 10−4 1.9
6,561 5.22 · 10−3 1.0 4.54 · 10−5 2.0
19,683 1.74 · 10−3 1.0 5.15 · 10−6 2.0
59,049 5.80 · 10−4 1.0 5.80 · 10−7 2.0
177,147 1.93 · 10−4 1.0 6.49 · 10−8 2.0
531,441 6.45 · 10−5 1.0 7.24 · 10−9 2.0
1,594,323 2.15 · 10−5 1.0 8.06 · 10−10 2.0

overall scheme two different approaches have been tested. One with the completely explicit time
integration procedure for the Basset force and the other with the partially implicit procedure,
see Section 2.4. For both the implicit and explicit method the Basset force is computed with
the TB-method and show second-order convergence in ∆t. The relative error is computed with
xp(2π). The results are presented in Table 2.3 and clearly indicate that the explicit scheme is very
unstable when the number of time steps is smaller than 256. Even when taking 256 time steps the
explicit procedure may be unstable and the data in Table 2.3 are put in parenthesis to indicate
this uncertainty. The partially implicit scheme remains stable even with the number of time steps
as small as 16.

Table 2.3: Relative error and order of convergence for the overall numerical scheme, tested for the
trajectory of a small particle in a space dependent steady velocity field.

number of Relative error Order Relative error Order
time steps explicit explicit implicit implicit
16 unstable 3.63 · 10−1

32 unstable 8.32 · 10−2 2.1
64 unstable 2.09 · 10−2 2.0
128 unstable 5.28 · 10−3 2.0
256

(
4.80 · 10−2

)
1.33 · 10−3 2.0

512 3.05 · 10−4 3.33 · 10−4 2.0
1024 7.68 · 10−5 2.0 8.34 · 10−5 2.0
2048 1.93 · 10−5 2.0 2.09 · 10−5 2.0
4096 4.84 · 10−6 2.0 5.21 · 10−6 2.0

Example 3: Time-dependent velocity field
The trajectory of a spherical particle in an arbitrary time-dependent velocity field can rather
straightforwardly be computed as long as the velocity field is smooth enough. The derivation of
the particle trajectory uses Laplace transforms and the analytical procedure is given in appendix
C. The overall numerical scheme is tested by computing the trajectory of a particle in the following
one-dimensional, time-dependent velocity field

u(t) =
(mp −mf)g

6πaµ
cos 2t . (2.31)

The total force on the particle is zero at t = 0, i.e, FSt and FG are in balance. In order to compute
the Basset force the implicit TB-method is used. The integration is carried out from t = 0 until

12

t = 2π. The relative error is computed for up(2π) and is presented in Table 2.4, where once again
second-order time accuracy is confirmed. From these test cases, using both a time-dependent and
a space-dependent velocity field for the computation of particle trajectories, we can conclude that
the (partially implicit) TB-method is stable and second-order accurate in time, and conjecture
that this remains the case for particles in arbitrary time- and space-varying flow fields.

Table 2.4: Relative error and order of convergence for the overall numerical scheme, for the velocity
field (2.31).

time steps Relative error Order
16 9.96 · 10−2

32 2.38 · 10−2 2.1
64 5.57 · 10−3 2.1
128 1.31 · 10−3 2.1
256 3.13 · 10−4 2.1
512 7.56 · 10−5 2.0
1024 1.84 · 10−5 2.0
2048 4.53 · 10−6 2.0
4096 1.12 · 10−6 2.0

Example 4: Computational efficiency due to modified kernel integration
In this example the computational savings when using the modified tail kernel, given in (2.9) and
(2.16), is investigated based on analysis of the number of flops per time step, per particle and per
space dimension. For the window kernel this is N + 1 flops because only one vector dot product
is calculated. For each exponential function three extra flops are needed. To see how efficient the
tail kernel works the upper bound (2.13) for the error is plotted as a function of the computation
time, Fig 2.4. Different numbers (indicated by m) of exponential functions are taken into account.
The results are plotted in Fig 2.4. Here it can be seen that the best choice for m depends on the
particular situation. Because the computation time is directly connected with N as mentioned
above, N must be chosen optimally. From Fig 2.4 one can see that N must be chosen small,
otherwise increasing m would be a better option. Because twin = N∆t this immediately gives an
optimal value for twin. Furthermore, the results show a significant saving in computation time.
This can easily be a factor of 100 or more. When looking to the memory requirements the results
are even better. For the window method as many memory locations as flops are needed whereas
each exponential function only takes one memory location instead of 3 flops. So using the tail
kernel not only saves time but also memory.

Typically, the use of the tail kernel reduces the computational costs of the Basset force by more
than an order of magnitude, whereas the memory requirement is even reduced more. Furthermore,
the error is reduced by more than an order of magnitude. The question remains, of course, whether
the computational savings directly result in faster simulations. This depends on the remaining
part of the simulation. Although the other force contributions in (2.28) can be calculated much
faster than the Basset force this does not have to hold for the interpolation of the velocities in
a turbulence simulation. The velocity of the flow field is only computed at the grid points and
an interpolation must be carried out to compute the velocity at the particle position. This may
be very time consuming and it can become the new bottleneck. The reduction of CPU-time
might then not be as big as expected but it remains significant. Additionally, the decrease in
memory requirement may become essential when increasing the number of particles in turbulence
simulations.

13

10
0

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

number of flops

er
ro

r

m=0
m=3
m=10
m=20

Figure 2.4: Upper bound for the error in the approximation of the Basset force as a function of
the number of flops for different number of exponential functions (indicated by m).

2.6 Light particles in isotropic turbulence

In this section a brief statistical analysis of velocities of particles, released in an isotropic turbulent
flow, is provided. The isotropic turbulence simulation is performed by means of direct numerical
simulations. The numerical code consist of two parts. First the Navier-Stokes equations with
the Boussinesq approximation are solved on a triple periodic domain using a pseudo-spectral
code [2, 3] (Eulerian approach). Second, the particle trajectories are obtained by the Lagrangian
approach as explained in the previous sections. The simulation is performed on a 1283 grid. The
number of (light) particles is 20,000 and the particle-to-fluid density ratio ρp/ρf = 4 (thus all
terms in the MR equation are relevant, see Refs. [8, 9]). The integral-scale Reynolds number is
Re = UL/ν = 1333, with U the typical root-mean-square velocity and L the integral length scale.
The Stokes number St is typically in the range 0.1 ≤ St ≤ 1.0 [9] and particles are tracked for a
period of approximately two eddy turnover times.

Two simulations have been carried out under exactly the same flow conditions and particle
tracking is either based on the classical approach (window method) or on the novel integration
method (exponential method) for the Basset kernel. In the first simulation only the window kernel
(2.4) has been used, where the number of time steps in the window is n = 500. The other one uses
the modified window kernel, given in (2.9) and (2.16). In this case only five time steps are taken
into account in the window, so n = 5. For the tail of the Basset kernel the number of exponential
functions m = 10.

In order to study a particle trajectory we start with considering the energy spectrum of the
particle. To obtain the energy spectrum, we first need to calculate the autocorrelation R(τ) of the
velocity, which is defined by

R(τ) =
〈up(t)up(t+ τ)〉

〈up(t)2〉
. (2.32)

Here, 〈·〉 denotes the average in over the different particles. The particles are embedded in a
homogeneous isotropic turbulent flow and no gravitation is applied. Therefore, we are allowed
to average over the components of the velocity vector of all particles. No time averaging has
been applied for the present velocity data as this run covers only one or two eddy turnover
times. The results for the autocorrelation of the velocity are shown in Fig.2.5 and we see that
the results for both the window method and the exponential method are comparable. The energy
spectrum obtained from the particle velocities can be calculated by taking the cosine transform
of the autocorrelation function, and is shown in Fig.2.6. Although the results are similar we are

14

0 5 10 15
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
au

to
 c

or
re

la
tio

n
of

 v
el

oc
ity

exponential method
window method

τ

Figure 2.5: Autocorrelation of the particle ve-
locity up. The solid line represents the re-
sult from the exponential method and the dots
those from the window method.

10
−1

10
0

10
1

10
2

10
−10

10
−5

10
0

en
er

gy
 s

pe
ct

ru
m

exponential method
window method

ω

Figure 2.6: Energy spectrum of the particle
velocity. The graph of the window method
(dashed line) is shifted downward with respect
to the spectrum from the exponential method
(solid line) by a factor of 100 for clarity.

interested in possible differences between the two spectra. If these differences have an overall
trend this would mean that statistical properties can be influenced by the different methods of
evaluating the Basset kernel. However, to observe any error in the evaluation of the Basset force
kernel the differences should be larger than the statistical noise.

A starting point for an analytical evaluation of possible differences between the window method
and the exponential method consists of the response of a single particle in a uniform oscillating flow
field. We are therefore interested in the periodic solution up of a spherical particle responding to an
oscillating velocity field u = cosωt (or u = R[exp(iωt)], with i the imaginary unit and R denoting
the real part of this expression). The particle velocity can then be expressed as up = R[V exp(iωt)]
with V a complex amplitude, which is dependent on the method chosen to evaluate the Basset
force kernel. For the window method and the exponential method we introduce Vwin and Vexp,
respectively. For Vexp the exact solution Vex is used since the error of the exponential method is
assumed to be negligibly small, see also Fig. 2.3. In general, |Vwin| 6= |Vex| which means that some
frequencies are suppressed with the window method while others may be amplified. This should
become visible in the energy spectrum of particle velocities.

In order to find Vwin Eq. (2.2) should be solved for u = R[exp(iωt)] and up = R[V exp(iωt)],
resulting in the following integro-differential equation:

iωmpVwin = 6πaµ (1 − Vwin) +
iω

2
mf (3 − Vwin)

+ iωcB(1 − Vwin)

∫ t

t−twin

e−iω(t−τ)

√
t− τ

dτ . (2.33)

Here, we used the fact that the velocity field is uniform, one dimensional and that no gravity is
applied. Applying the change in variables σ =

√
(t− τ)ω, allows us to find an expression for Vwin

i.e.,

Vwin = 1 +
(mf −mp)iω

6πaµ+
(

1
2mf +mp

)
iω + cB

√
2ωπQ(

√
2twinωπ)

, (2.34)

where Q(t) = S(t) + iC(t), with C(t) and S(t) the Fresnel cosine and sine functions, respec-
tively [28]. Vex can now be found by taking Vex = limtwin→∞ Vwin which results in

Vex = 1 +
(mf −mp)iω

6πaµ+
(

1
2mf +mp

)
iω + cB

√
ωπ
2 (1 + i)

. (2.35)

15

0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
au

to
 c

or
re

la
tio

n
of

 a
cc

el
er

at
io

n

exponential method
window method

τ

Figure 2.7: Autocorrelation of the particle ac-
celeration ap = dup/dt. The solid line repre-
sents the result from the exponential method
and the dots those from the window method.

10
0

10
1

10
2

10
−6

10
−4

10
−2

10
0

sp
ec

tr
um

 o
f t

he
 a

cc
el

er
at

io
n

exponential method
window method

ω

Figure 2.8: Spectrum of the particle accelera-
tion. The graph of the window method (dashed
line) is shifted downward with respect to the
spectrum from the exponential method (solid
line) by a factor of 10 for clarity.

Inspection of the energy spectrum displayed in Fig. 2.6 reveals that the noise becomes more
important for increasing ω. The effects from the different methods for the computation of the
Basset force kernel turned out to be most important for ω ≥ 1. Unfortunately, the noise in
the energy spectrum is already larger than predicted for the differences between the window and
exponential method. One way of decreasing the error would be averaging over time, but with the
limited number of eddy turnover times in the present simulation this is not feasible. However, an
alternative approach exists in comparing the autocorrelation of the particle acceleration.

10
0

10
1

0.85

0.9

0.95

1

1.05

1.1

ra
tio

 b
et

w
ee

n
sp

ec
tr

a
of

 a
cc

el
er

at
io

n

window method/exponential method
Theoretical

ω

Figure 2.9: The theoretical ratio
(

|Vwin|
|Vex|

)2

(dashed line) compared with a similar ratio of the

particle acceleration spectra (solid line).

The autocorrelation of the particle acceleration is plotted in Fig. 2.7. Here, the typical time
scale is much shorter than that of the particle velocity, therefore it is possible to also average over
time. The spectrum is calculated by taking the cosine transform of the autocorrelation acceleration
function and is displayed in Fig. 2.8. Because the particle acceleration is used instead of the
particle velocity, higher frequencies (shorter time scales) become more important. In this way
deteriorating influence of the noise on the spectrum is shifted to higher frequencies. Nevertheless,
the computed spectrum should still be affected by the method that is chosen for the evaluation

16

of the Basset force kernel. In order to observe the differences the best approach is to plot the
ratio of the two spectra as function of frequency. When no essential difference exists between the
window and exponential method their ratio would be equal to one with some noise added to it.
However, the window method suppresses some frequency components while others are amplified,
so the deviation from one is a measure for the error in the window method. In Fig. 2.9 the ratio

of both spectra is shown in combination with the theoretical ratio defined by
(

|Vwin|
|Vex|

)2

. From

Fig. 2.9 it can be seen that the theoretical ratio predicts the ratio obtained from the simulation,
including the local maxima and minima quite well, provided the frequency is not too high. For
higher frequencies the noise becomes larger but the theoretical and computational ratios still seem
to have the same trend. The novel exponential method to evaluate the Basset force kernel might
be considered as an excellent and efficient method for tracking of many particles in turbulent flows.

2.7 Conclusions

We have introduced a novel method for the evaluation of the Basset force kernel and analysed
several aspects of its implementation. The tail of the Basset force kernel is approximated by
exponential functions. The contribution of these exponential functions can be calculated in a
recursive way which makes it very efficient. Typically the use of the tail kernel reduces the
computational costs of the Basset force by more than an order of magnitude, whereas the memory
requirement is reduced even more. Furthermore, the error in the tail of the Basset force is also
reduced by more than an order of magnitude in comparison with the traditional window method.

A trapezoidal-based method is developed in order to deal with the singularity of the Basset
force. This method has a temporal accuracy of O

(
∆t2

)
where other methods only have a temporal

accuracy of O (∆t) or lower. This method is made partially implicit in order to make it more stable.
The method has been implemented in a tracking algorithm for (light) inertial particles in

turbulent flows. The isotropic turbulence simulation shows that the error made by the window
method can influence statistics on the particle trajectories. This has been illustrated with the
velocity and acceleration spectra. Therefore, the novel exponential method is preferred over the
classical window method. Because the new implementation is much faster than the classical one,
more particles can be taken into account in simulations, which opens possibilities for further
research.

17

18

Chapter 3

Interpolation schemes in DNS

simulations of turbulence: error

estimates and implementation

3.1 Introduction

Maxey and Riley [4] introduced the equations of motion for small (dp ≪ η, with dp the particle
diameter and η the Kolmogorov length scale) isolated rigid spherical particles in a non-uniform
velocity field u(x, t). An important assumption is that the particle Reynolds number Rep =
dp|u − up|/ν ≪ 1, with up the velocity of the particle and ν the kinematic viscosity of the fluid.
As we consider small particle diameters and small volume fractions of particles we ignore the effects
of two-way and four-way coupling. An elaborate overview of the different terms in the Maxey-
Riley equations and their numerical implementation can be found in the paper by Loth [22] and a
historical account of the equations of motion was given in a review article by Michaelides [23]. Time
integration of these equations to compute particle trajectories is an expensive, time- and memory
consuming job. First, the computation of the Basset history force can be computationally very
expensive. However, a significant reduction can be obtained by fitting the diffusive kernel of the
Basset history force with exponential functions, as recently shown by Hinsberg et al. [5]. Second,
the interpolation step can be very time consuming and memory demanding as well. Where some
studies use low order linear interpolation others use high order spline interpolations [18, 19]. These
high order spline interpolations have the disadvantage of being more computational expensive.
Therefore, it is important that they give a significantly more accurate result.

The turbulent flow is approximated by means of direct numerical simulations. Our numerical
code consist of two parts. First, the Navier-Stokes equations with the Boussinesq approximation
are solved on a triple periodic domain using a pseudo-spectral code [2, 3] (Eulerian approach).
We consider an incompressible flow, which results in a divergence free velocity field. Second, the
particle trajectories are obtained by a Lagrangian approach using the Maxey-Riley equations. For
this last step the fluid velocity and its first derivatives must be known at the centers of the par-
ticles. Because we use a pseudo-spectral code these can be calculated everywhere. Unfortunately
this would be far too expensive and in practice only small amounts of particles can be tracked
O(10). Therefore, the velocity is usually represented on a finite rectangular grid and an inter-
polation should be carried out. In order to choose the most appropriate interpolation method
for a particular case one needs to compare errors: the interpolation error is compared with the
discretisation error of the flow field. In this way one can prevent unnecessary computations.

In this study we focus on comparing errors in order to make a well-founded choice for the
interpolation method. First, Sections 3.2 and 3.3 give practical methods on how to estimate the
interpolation error. Section 3.2 focuses on calculating the interpolation error off-line. In this

19

way only statistics are needed of the turbulent flow without having to compute interpolations.
In Section 3.3 an even more practical method is proposed. This method only needs the energy
spectrum to predict the interpolation error. Further, different interpolation methods are discussed
in Section 3.4 and a general framework is proposed for them. Section 3.5 discusses some algorithms
on how to calculate the interpolation efficiently. Thereafter, the results are shown in Section 3.6.
Finally, concluding remarks are given in Section 3.7.

3.2 Interpolation error

In order to avoid unnecessary computations it is important that the interpolation error has the
same order of magnitude as the discretisation error of the flow field. This section focuses on the
estimation of the interpolation error. Furthermore, it is important to estimate the magnitude of
the error in order to say something about the accuracy of the generated data. In this section we
focuss on how to calculate the interpolation error off-line. In this way only statistics are needed of
the turbulent flow without having to compute interpolations, which results in an efficient method.

In general the center of a particle will follow a path xp(t) and the flow velocity field is given
by u(x, t). Say that we need to find the velocity at the center of the particle, i.e. u(xp(t), t), but
instead we find the approximation ũ(xp(t), t), which is due to the interpolation. Let Φ be the
interpolation operator that maps u onto ũ, so ũ = Φ[u]. The relative interpolation error ǫ can be
computed by the L2-norm like

ǫ = lim
T→∞

√√√√
∫ T

0
|u − ũ|2(xp(t), t)dt
∫ T

0
|u|2(xp(t), t)dt

, (3.1)

where | · | denotes the usual 2-norm. In principle this relation could be used to calculate the inter-
polation error because u(xp(t), t) can be calculated from its Fourier components. Unfortunately
this would be far too expensive and in practice only small amounts of particles can be tracked
O(10). Instead Equation (3.1) will be used to validate the following steps.

We assume that the system is ergodic which means that the ensemble average is equal to the
time average. Therefore ǫ does not depend on the choice of the particle and an average over
particles can be taken. Furthermore, we assume that the particle has no preferential location in
order to replace the particle average by a space average. Now we can average over space and time,
where 〈·〉T denotes the average over time, i.e,

〈f(t)〉T =
1

T

∫ T

0

f(t)dt. (3.2)

In practice the time average should be taken over several large eddy turnover times. The space
average is taken over the whole domain V which is (0, 1)3 in dimensionless units. In this way one
finds

ǫ2 =

〈∫∫∫
V
|u− ũ|2(x, t)dx

〉
T〈∫∫∫

V |u|2(x, t)dx
〉

T

. (3.3)

We introduce the following inner products and corresponding norms:

〈f,g〉1 =

∫ 1

0

f · g∗(x)dx, ‖f‖2
1 = 〈f, f 〉1 =

∫ 1

0

|f(x)|2dx ,

〈f,g〉3 =

∫ 1

0

∫ 1

0

∫ 1

0

f · g∗(x)dxdydz, ‖f‖2
3 = 〈f, f 〉3 =

∫ 1

0

∫ 1

0

∫ 1

0

|f(x)|2dxdydz. (3.4)

Here f ·g denotes the usual inner product and g∗ denotes the complex conjugate of g. These inner
products and norms are also used for scaler fields like f and g where they change in a reduce to

20

the ordinary product fg∗. The velocity field is expanded in a three-dimensional Fourier series, so

u(x, t) =
∑

k∈Z3

ck(t)Uk(x),

Uk(x) = e2πik·x = Ukx(x)Uky(y)Ukz(z),

Uk(ξ) = e2πikξ, (k = kx, ky, kz, ξ = x, y, z). (3.5)

Here k is the wavenumber. The complex valued functions, Uk, constitute to an orthonormal basis
with respect to the inner product 〈·, ·〉3. We introduce the interpolant of Uk: Ũk = Φ[Uk]. When
the interpolation operator Φ is linear, we find

ǫ2 =

〈∥∥∥
∑

k ck(Uk − Ũk)
∥∥∥

2

3

〉

T∑
k 〈|ck|2〉T

. (3.6)

Note that also high order interpolation methods can have a linear operator Φ. In Appendix D we
prove that all Uk − Ũk are orthogonal for different k with respect to the inner product 〈·, ·〉3. In
this case we get:

ǫ2 =

∑
k ǫ

2
k〈|ck|2〉T∑

k〈|ck|2〉T
, ǫk = ‖Uk − Ũk‖3. (3.7)

Now ǫk can be calculated without having to do a simulation. Next, we require Φ to satisfy the
property

Ũk = Φ[Uk] = Φ[UkxUkyUkz] = ϕ[Ukx]ϕ[Uky]ϕ[Ukz] = ŨkxŨkyŨkz , (3.8)

which is the case for almost all interpolation methods. ϕ[·] is the one dimensional variant of the
operator Φ[·]. Property (3.8) is used to prove the continuity of the interpolation field. Furthermore,
it is used to build the three-dimensional interpolation out of one-dimensional interpolations, which
saves computing time. Using that ‖Uk‖1 = 1, ǫ2k can be written as

ǫ2k = 1 + s1(kx)s1(ky)s1(kz) − 2s2(kx)s2(ky)s2(kz), (3.9)

with

s1(k) = ‖Ũk‖2
1,

s2(k) = 〈Ũk, Uk〉1. (3.10)

Now combining (3.7) with (3.9) and (3.10) gives us a method for the calculation of the interpolation
error. This method is based on the assumptions that the system is ergodic and that there is no
preferential position for the particles. Because we consider isotropic turbulence the system should
be ergodic. The second assumption is not always true. Some particles will cluster depending on
the size and the density of the particles. However, fluid particles are not able to cluster due to
the fact that we consider incompressible flows. The advantage of this method over using relation
(3.1) is that no simulations of turbulence have to be done when

〈
|ck|2

〉
T

is known.

3.3 Approximation of the interpolation error

In this section the error estimate ǫ is further simplified. In (3.7) a summation must be taken over
the three-dimensional vector k. In order to evaluate only a one-dimensional sum one can use that
the flow is isotropic, i.e., 〈|ck|2〉T = 〈|ck|2〉T for k = |k|. In the end this results in a practical
method that only needs the energy spectrum to predict the interpolation error. If the flow is

21

isotropic the three-dimensional energy spectrum is spherically symmetric, 〈|ck|2〉T = 〈|ck|2〉T . We
can use this to write the interpolation error like

ǫ2iso =

∑
k ǫ

2
kk

2〈|ck|2〉T∑
k k

2〈|ck|2〉T
, ǫ2k = [ǫ2k]|k|=k. (3.11)

where [·]|k|=k denotes the space average over the surface of a sphere in k-space with radius k.
Here the approximation is made that k-space is continuous instead of discrete. This is a good
approximation for large k, because many modes have |k| = k. For small k this approximation is
less accurate but these modes have a small contribution to the interpolation error because they are
very well approximate. These functions are very slowly changing and therefore the interpolation
gives small errors. Note that k2〈|ck|2〉T is proportional to the energy of the modes with k = |k|.
In this way the integrated energy spectrum in combination with ǫk is sufficient to calculate the
error. In order to be able to compute [ǫ2k]|k|=k easily, the following derivation is made. Starting

from the second relation in (3.7) and introducing ek = Uk − Ũk one finds

ǫ2k = ‖UkxUkyUkz − (Ukx − ekx)(Uky − eky)(Ukz − ekz)‖2
3. (3.12)

We assume that the error is relatively small compared to the actual Fourier component. Under
this assumption we have that ‖ek‖1 ≪ ‖Uk‖1 and only the lowest powers of ek need to be taken
into account. Using that ‖Uk‖1 = 1 one finds

ǫ2k ≈ ‖ekxUkyUkz + UkxekyUkz + UkxUkyekz‖2
3

≤ ‖ekx‖2
1 + ‖eky‖2

1 + ‖ekz‖2
1. (3.13)

The ≤ sign is due to the triangle inequality of a norm ‖f+g‖ ≤ ‖f‖+‖g‖. We restrict ourselves to
interpolations based on polynomial functions and we define the order n of the method as follows.
n is the highest degree of a polynomial function for which the interpolation is still exact. When
the order of the interpolation method is known the following approximation can be made

‖ek‖2
1 ≈ ck2(n+1), (3.14)

where c is some constant. The reason for this formula is the following. Given that a method has
order n the amplitude of ek is proportional to the (n+ 1)−th derivative of Uk. From this one gets
that ek is proportional to kn+1. This is also shown by Figure 3.4 in Section 3.6. Using this one
finds that

ǫ2k ≈ ck2(n+1)
x + ck2(n+1)

y + ck2(n+1)
z . (3.15)

Next, the average needs to be taken over a spherical surface, [ǫ2k]|k|=k. Because of symmetry

reasons we only need to calculate the contribution of ck
2(n+1)
z . The contribution of the other

terms are equal to the contribution of this term. The calculation for the surface average is done
in spherical coordinates k = k(sinφ cos θ, sinφ sin θ, cosφ) as follows,

1

3
[ǫ2k]|k|=k ≈ c[k2(n+1)

z]k=|k| =
c

4πk2

∫ π

0

∫ 2π

0

(k cos(φ))2(n+1)k2 sin(φ)dθdφ

=
ck2(n+1)

4π

∫ π

0

∫ 2π

0

cos2(n+1)(φ) sin(φ)dθdφ =
ck2(n+1)

2n+ 3
. (3.16)

Thus we obtain:

ǫ2k = [ǫ2k]|k|=k ≈ 3

2n+ 3
ck2(n+1) ≈ 3

2n+ 3
‖ek‖2

1. (3.17)

Combining equation (3.11) with (3.17) results in a practical method that only needs the energy
spectrum to predict the interpolation error. Note that some approximations are needed and
therefore the result will be less accurate than in the previous section.

22

3.4 Interpolation methods

In this section different interpolation methods are discussed. In order to describe them, a general
framework is presented. Further we show in Appendix E a special optimality property for some
of the interpolation methods.

We restrict ourselves to interpolation methods that obey property (3.8) and have a linear
operator Φ. We consider the one-dimensional case first. Three-dimensional interpolation methods
can be constructed from the one-dimensional versions using that Φ is linear and relation (3.8).
Let u be a one-dimensional velocity field and ũ its interpolant: ũ = ϕ[u].

In general the particle position is between two adjacent grid points and an interpolation needs
to be carried out. In this section we assume that u(x) is exactly described by a finite Fourier
series. In practice these Fourier series are computed by our pseudo-spectral code. A Fast Fourier
Transform (FFT) can be executed in order to find u(x) exactly on a grid with constant grid
size ∆x. Using the information from adjacent grid points an interpolated velocity field can be
constructed. The interpolated velocity field ũ is piecewise polynomial. For each interval (xj , xj+1)
we have

ũ(x) =

N−1∑

j=0

ajx
j = aT x̄, x ∈ (xj , xj+1), x̄ =

1
x
x2

...
xN

. (3.18)

Here vector a depends on the interval investigated and aT denotes the transpose of a. Further, N
is the length of vector a which is one more than the degree of the polynomial. In this way we get
the restriction n ≤ N − 1. So in general the particle position xp is between two neighboring grid
points (xj , xj+1). Without loss of generality we can translate and rescale x so that xp lies in the
unit interval [0, 1]. For a Hermite spline interpolation the values ũ(x) and of its derivatives up to
the order of m ≡ N/2 − 1 must coincide with those of the original function at x = 0 and x = 1,
i.e.,

dlũ

dxl
(0) =

dlu

dxl
(0),

dlũ

dxl
(1) =

dlu

dxl
(1), l = 0, ..,m. (3.19)

These derivatives are known exactly because the Fourier coefficients of u are known. Unfortunately
this has the drawback that more FFTs need to be executed. Another option is to approximate the
derivatives by using finite deference methods on neighboring grid points like is done by Lalescu
et al. [19]. In this way no extra FFTs need to be computed, unfortunately this method is less
accurate.

Next, we will present the general framework, and it is illustrate with an example. The example
is Hermite spline interpolation with N = 4 and m = 1. So the interpolation uses the value and the
derivative in two neighboring grid points to construct the interpolation polynomial. We will refer
to the example with the subindex ex attached to the variables. We have chosen for this method
because it has a special property. For this interpolation method the second derivative becomes a
piecewise linear function. Comparison with the actual second derivative shows that this piecewise
linear function is optimal with respect to the L2-norm, which is shown in Appendix E. Because
the second derivative is related to viscous effects it is important that this is approximated well.

First, the discrete values of u and possible derivatives need to be computed on the grid. The
vector b contains these discrete values of the velocity field. In general (and for the example) we
have

b = f[u], fex[u] =

u(0)
u(1)
du
dx (0)
du
dx (1)

 . (3.20)

23

Here f depends on the interpolation method and is an operator that maps a function onto a vector.
Second, the coefficients aj of the polynomial basis need to be computed. Because ϕ is a linear

operator, we can write without loss of generality,

aT = bTM, Mex =

1 0 −3 2
0 0 3 −2
0 1 −2 1
0 0 −1 1

 . (3.21)

Here M is the matrix that depends on the interpolation method.
Finally, substituting relation (3.21) into (3.18) gives

ϕ[u](xp) = ũ(xp) = aT x̄p = bTMx̄p. (3.22)

In order to compute the derivative of ũ(x) the polynomial basis functions should be differentiated.
This can be done by multiplying a by the differentiation matrix D, so

a(1)T = aTD, D =

0 · · · · · · · · · 0

1
. . .

...

0 2
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 N 0

(3.23)

where a(1) contains the coefficients for the derivative. Now we have,

dũ

dx
(xp) = a(1)T x̄p = bTMDx̄p. (3.24)

In this way we have created a theoretical framework that can describe the interpolation methods.
This framework can be used to implement the interpolation methods in a straight forward way.
In Section 3.5 it is used to generate fast algorithms for the implementation of the method. Next
we are going to extend the method to the three-dimensional case.

The three-dimensional interpolation for a scalar field is carried out applying three times one-
dimensional interpolations, see Figure 3.1. The interpolation consists of three steps, in which the
three spatial directions are interpolated one after each other. The order in which the spatial direc-
tions are interpolated does not matter. Furthermore, splitting the three-dimensional interpolation
into one-dimensional versions can be done for all interpolation methods as long as two conditions
are met. First, the interpolation method must have a linear interpolation operator Φ and, second,
condition (3.8) must be met. Since the interpolation operator is linear, if a property holds for one
arbitrary mode than this property carries over to the complete solution. When considering one
mode we can use condition (3.8) to see that one dimensional interpolations can be done in the way
shown by Fig. 3.1. From this equation one can also see that it does not matter which direction
is interpolated first. With the same reasoning one can easily show that the three-dimensional
interpolation has the same degree of smoothness as the one-dimensional case.

The extension for the general framework to the three dimensional case goes as follows. The
vector b becomes a three dimensional tensor like

B = (fz ◦ fy ◦ fx)[u], (3.25)

where ◦ represents the vector outer product [29], like

A = a(1) ◦ a(2) ◦ a(3), Ai1i2i3 = a
(1)
i1
a
(2)
i2
a
(3)
i3
. (3.26)

Similar as before, ũ(xp) can be represented by

Φ[u](xp) = ũ(xp) = B×̄3(Mx̄p)×̄2(Mȳp)×̄1(Mz̄p), (3.27)

24

Figure 3.1: Graphical description of the three-dimensional interpolation, using three times one-
dimensional interpolations for N = 4. First N2 one-dimensional interpolations are carried out in
the x-direction (crosses). Second N interpolations are carried out in y-direction (dots in the right
figure) and from these N results finally one interpolated value is derived in z-direction (triangle).[2]

where ×̄n denotes n-mode vector product [29], like

A = B×̄nf, Ai1···in−1in+1···iN =
∑

in

Bi1···iN fin
, (3.28)

where N denotes the dimension of tensor B. For the derivative ∂ũ
∂x (xp) one gets

∂ũ

∂x
(xp) = B×̄3(M

(1)x̄p)×̄2(Mȳp)×̄1(Mz̄p), (3.29)

where M(1) = MD. Likewise also the derivatives ∂ũ
∂y (xp) and ∂ũ

∂z (xp) can be computed. When

the scaler field u(x) becomes a vector field u(x), tensor B becomes four dimensional where the
last dimension contains the three components of u.

3.5 Implementation

For a fast calculation the algorithm used is essential. In this section we show fast change for the
interpolation. When even a little difference is made in the algorithm the efficiency can drop easily
by a factor of two or even more.

Relations (3.27) and (3.29) provide in a good starting point for an efficient implementation

of the interpolation. The matrices M and M(1) only need to be computed once which can be
done first. Second vectors x̄p, ȳp and z̄p can be computed which only needs to be done once for
each position. In Table 3.1 we keep track of all the computed quantities. One flop denotes one
multiplication with one addition. Further we show the number of flops for the general case and
for N = 4. In this case we look at the three-dimensional velocity field u(x). Because u is now a
vector, tensor B becomes one dimension larger. Now tensor B is four dimensional where the last
dimension contains the three components of u. For the Maxey and Riley equations [4] also all
the derivatives are needed so they are computed as well. Table 3.1 shows a fast algorithm for the
overall computation of these components. The main idea is to reduce the dimension of the tensors
as soon as possible in order to generate an efficient method.

25

Table 3.1: Algorithm for interpolation, with computational costs

Computed Number of flops Number of flops
for N= 4

x̄p, ȳp and z̄p 3N 12
Mx̄p, Mȳp and Mz̄p 3N2 48

M(1)x̄p, M(1)ȳp and M(1)z̄p 3N(N − 1) 36
B×̄3(Mx̄p) 3N3 192

B×̄3(M
(1)x̄p) 3N3 192

B×̄3(Mx̄p)×̄2(Mȳp) 3N2 48

B×̄3(Mx̄p)×̄2(M
(1)ȳp) 3N2 48

B×̄3(M
(1)x̄p)×̄2(Mȳp) 3N2 48

B×̄3(Mx̄p)×̄2(Mȳp)×̄1(Mz̄p) 3N 12

B×̄3(Mx̄p)×̄2(Mȳp)×̄1(M
(1)z̄p) 3N 12

B×̄3(Mx̄p)×̄2(M
(1)ȳp)×̄1(Mz̄p) 3N 12

B×̄3(M
(1)x̄p)×̄2(Mȳp)×̄1(Mz̄p) 3N 12

Total: 6N3 + 15N2 + 12N 672

In order to see how efficient this algorithm is one can compare the computational costs with a
lower bound. The lower bound we use is the size of B which is 3N3. In order to be able to use all
the information in tensor B also 3N3 flops are needed for the computation. For large N one finds
that the algorithm of Table 3.1 is only a factor 2 less efficient than this lower bound. Note that
there might be higher lower bounds and therefore this factor can be less. When the derivatives
are not needed, less needs to be calculated and the algorithm becomes as efficient as the lower
bound for the case that N goes to infinity.

Now we examine the Hermite spline interpolation with N = 4. We are going to compare our
algorithm with the algorithm proposed by Lekien and Marsden [18]. First we need to show that
their method is equivalent to ours. This can be easily seen by the fact that their multiplication
matrix is equal to MT

ex ⊗MT
ex ⊗MT

ex after some columns are swapped. The swapping of columns
is due to the definition of vectors. Further the superscript T denotes the transpose and ⊗ is the
Kronecker tensor product. The method of Lekien and Marsden is based on the fact that they first
calculate the coefficients for the polynomial basis once. After this is done they can calculate the
actual velocity or derivatives at many points in the interval evaluated. According to Lekien and
Marsden this method is beneficial when the derivatives are needed or the interpolation needs to be
done multiple times for one element. Our algorithm already involves the derivatives, therefore this
does not matter. Because the coefficients of the polynomial basis still have all the information, the
tensor containing these coefficients has again size 3N3. This means that even after the calculation
of the polynomial basis the method is bounded by 3N3 flops. Further their study does not provide
in an algorithm that combines the calculation of the different derivatives. This means that these
derivatives have to be calculated separately and the lower bound becomes 12N3 flops. Note that
our algorithm of Table 3.1 is already faster. But even when all interpolations need to be done in
one interval and an algorithm similar to ours would be constructed that combines the calculation of
the derivatives it would be only a factor of 1.14 faster. Further the computation of the coefficients
of the polynomial basis could be done a factor 5 faster by calculating it like B×3 M×2 M×1 M.
Here ×n denotes the n-mode product [29]. For our proposed algorithm this is not needed therefor
we do not go into details.

Our algorithm of Table 3.1 is only a factor 3.5 less efficient than our lower bound for N = 4.
When for example methods of Lalescu et al. [19] are implemented in a straight forward way
without checking that unnecessary computations are avoided, 18N4(N + 1) flops are needed. For
the case that N = 4 it is a factor 120 less efficient than our lower bound. This explains the large
factors found by Lekien and Marsden [18]. In our case the computation time is reduced by a factor
34 compared with the most straight forward implementation of the same interpolation method.

26

Apart from the advantages of the Hermite spline interpolations, there is also the disadvantage
that exact derivatives are needed. This means that more FFTs must be carried out in order to
compute these derivatives. In order to fill tensor B (3.25) for Hermite spline interpolation with
N = 4 the following quantities at the grid are needed:

u,
∂u

∂x
,
∂u

∂y
,
∂u

∂z
,
∂2u

∂x∂y
,
∂2u

∂x∂z
,
∂2u

∂y∂z
,

∂3u

∂x∂y∂z
. (3.30)

This means that 8 full three-dimensional FFT-s must be carried out. In practice a full three
dimensional FFT is carried out in the following way:

u = F[U] = FxFyFz[U],
∂u

∂x
= F∂x[U] = F∂xFyFz[U]. (3.31)

Here F denotes the the full three-dimensional FFT, and Fx is a full one-dimensional FFT in
x-direction. Further the index ∂x denotes the partial derivative. In order to compute one full
three-dimensional FFT three full one-dimensional FFT-s are done after each other in where the
order of these full one-dimensional FFT-s does not matter. In this way 24 full one-dimensional
FFT-s must be carried out. Avoiding double computations we start with computing Fz [U] and
F∂z [U]. After this, the operators Fy an F∂y act on the results. Finally the operators Fx an F∂x

act on the last results and all the quantities of (3.30) are computed. In this way only 2+4+8=14
full one dimensional FFT-s must be carried out. This saves a factor of 24/14 ≈ 1.7 in computation
time.

3.6 Results

In this section results are shown. First the discretisation error is computed. Second the interpo-
lation error is computed for different interpolation methods. These errors are computed in the
proposed ways to show if these methods give comparable results. Further the energy spectrum is
calculated for the interpolated field.

We start with the calculation of the discretisation error ε. Because we need to compare it with
the interpolation error the same norm must be taken for both. This would mean that,

ε2 =
〈‖u − û‖2

3〉T
〈‖û‖2

3〉T
(3.32)

needs to be computed, where û is the exact velocity field. Unfortunately this will not work.
Because of the chaotic behavior of turbulence even the smallest change can eventually result in a
completly different velocity field. Because of this one can only look at statistical data and estimate
the error from this. Therefore the following is used

ε2 =
(〈‖u‖3〉T − 〈‖û‖3〉T)

2

〈‖û‖2
3〉T

. (3.33)

Now u can be expanded in a Fourier series like is done before and the following result is found

ε2 =

∑
k (〈|kck|〉T − 〈|kĉk|〉T)

2

∑
k〈k2|ĉk|2〉T

. (3.34)

Now one can use the energy spectrum like before to compute this error as well. The advantage
of using the energy spectrum is that the error becomes mode dependent. This discriminates the
contribution of different modes to the total error. In this way one can see which modes have the
biggest contribution to the error.

For the computation of the discretisation error two simulations need to be done. In order to
simulate approximate the exact field a simulation is done with double spatial resolution, here the
discretisation error is that much smaller that it can be neglected. This is due to the fact that the

27

10
0

10
1

10
2

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

k

en
er

gy

64
128

0 10 20 30 40 50
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

k

en
er

gy

64
128

Figure 3.2: Energy spectra plotted in log-log scale and log-lin scale.

smallest scales with the highest wave numbers are in the viscous range, where exponential decay is
expected. For the two simulations everything is kept the same apart from the resolution. Further
time steps are small enough in order to be able to neglect the time integration error as well. This
is verified by running two simulations where one has double resolution in time compared with the
other one. The difference could be neglected and we continued our simulations with the highest
time resolution. This is done in order to be sure that errors are due to the spatial discretisation
error.

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−6

e2

k

Figure 3.3: discretisation error ε computed by (3.34) by using the data from Figure 3.2.

The two simulation are computed on a 643 and 1283 cubed grid with the dimensionless viscosity
0.032 and dimensionless time step ∆t = 0.0016. The simulations are carried out for around 100
large eddy turnover times in order to get reliable statistical data. Further in order to avoid aliasing
in the nonlinear term kmax∆x/2 = 2

3 , where kmax is the maximal wave number. The energy spectra
are given by Fig. 3.2. Here it can be seen that the biggest relative error is made in the highest
wave numbers. This is also expected because they are most influenced by the resolution. Next
Fig. 3.3 gives the discretisation error ε computed by (3.34). Here one can see that suddenly two
local maxima appear in the error. The left maxima is due to the statistical error. The lowest
modes have the biggest contribution to the statistical error because they contain most energy.
Further, because the energy spectra changes over many orders of magnitude this statical error is
still visible. Running longer simulations would reduce this statistical error, therefor we dismiss

28

this part of the error. So for the contribution of the discretisation error we consider the modes:
k ∈ (15, kmax). In this way we found that the discretisation error ε was 1.88 · 10−3.

Table 3.2: Interpolation error for different methods

method ǫ ǫiso n N continuity description
1 9.01 · 10−3 7.00 · 10−3 1 2 c0 linear interpolation
2 1.30 · 10−3 1.28 · 10−3 2 4 c1 appr. derivative
3 3.91 · 10−4 4 6 c2 appr. 1st and 2nd derivative
4 1.02 · 10−4 3 4 c1 real derivative
5 0 0 ∞ ∞ c∞ FFT

For the computation of the interpolation error ǫ the different proposed methods for computing
the error can be used. First we calculate the error with relations: (3.7), (3.9) and (3.10). Second
it is calculated by (3.11) and (3.17). The results are shown in Table 3.2. For the second method,
‖ek‖2

1 needs to be calculated and it is shown by Fig. 3.4. From Table 3.2 several things can be
observed. First we see that our practical method, that only uses the energy spectrum is useful
to predict the correct order order of magnitude. Second the order of the interpolation method
does not give all the information. One can see that not in all cases a higher order method gives
smaller errors. When comparing the discretisation error with the interpolation error one can see
that linear interpolation is not good enough for this case. Higher order methods have to be chosen
to make the errors comparable.

10
0

10
1

10
−20

10
−15

10
−10

10
−5

10
0

k

e2 k

method 1
method 2
method 3
method 4

Figure 3.4: Error from interpolation method ǫ2k computed by (3.17)

Using the theory from Appendix D one can even construct the energy spectrum after the
interpolation is done. This is shown in Fig. 3.5. Here one can see that two things are changed.
First the energy in the highest modes is lower after the interpolation. Second energy in modes
higher than kmax is introduced due to the interpolation method. Note that the newly introduced
energy in the higher modes is relatively small compared with the total energy in the spectrum.

3.7 Conclusions

We have introduced different practical methods for computing the interpolation error. First we
have introduced an accurate method that uses the full three dimensional energy spectrum to
compute this error. Second we introduced a practical method that only needs the one dimensional
energy spectrum to compute the same error. These methods are validated by full turbulent
simulations and it is shown that they give comparable results.

29

10
0

10
1

10
2

10
−8

10
−6

10
−4

10
−2

10
0

10
2

k

en
er

gy

method 1
method 2
method 5

Figure 3.5: energy spectrum after carrying out the interpolation

Further a general framework is proposed for different interpolation methods. Making use of
this framework an algorithm is proposed for fast computation of the interpolation. This can easily
save an order of magnitude in computing time compared with other algorithms. It is shown that
that the number of flops needed for this algorithm is close to a theoretical lower bound.

In order to avoid unnecessary computations the discretisation and interpolation error should
be of the same order of magnitude. The methods introduced give a practical way of estimating the
errors. Comparison of these errors shows that linear interpolation is not always sufficient. Further
it is show how the energy spectrum is changed due to the interpolation.

30

Chapter 4

Conclusions

In this study we have investigated three different topics concerning particle tracking in turbulence.
We have investigated the Basset history force, the interpolation and the Faxén forces. In short we
will repeat the main conclusions.

For the Basset history force, we have introduced a novel method for the evaluation of the Basset
force kernel and analysed several aspects of its implementation. The tail of the Basset force kernel
is approximated by exponential functions. The contribution of these exponential functions can be
calculated in a recursive way which makes it very efficient. Typically the use of the tail kernel
reduces the computational costs of the Basset force by more than an order of magnitude, whereas
the memory requirement is reduced even more. Furthermore, the error in the tail of the Basset
force is also reduced by more than an order of magnitude in comparison with the traditional window
method. Further a trapezoidal-based method is developed in order to deal with the singularity
of the Basset force. This method has a temporal accuracy of O

(
∆t2

)
where other methods only

have a temporal accuracy of O (∆t) or lower. This method is made partially implicit in order
to make it more stable. Thereafter the method has been implemented in a tracking algorithm
for (light) inertial particles in turbulent flows. The isotropic turbulence simulation shows that
the error made by the window method can influence statistics on the particle trajectories. This
has been illustrated with the velocity and acceleration spectra. Therefore, the novel exponential
method is preferred over the classical window method. Because the new implementation is much
faster than the classical one, more particles can be taken into account in simulations, which opens
possibilities for further research.

For the interpolation we have introduced different practical methods for computing the interpo-
lation error. First we have introduced a very accurate method that uses the full three-dimensional
energy spectrum to compute this error. Second we have introduced a practical method that only
needs the one-dimensional energy spectrum to approximate the same error. These methods are
validated by full turbulence simulations and it is shown that they give comparable results. Further
a general framework is proposed for different interpolation methods. Making use of this framework
an algorithm is proposed for fast implementation of the interpolation. It is shown that the number
of flops needed for this algorithm is close to a theoretical lower bound. This algorithm can easily
save an order of magnitude in computing time compared with other algorithms. In order to avoid
unnecessary computations the discretisation and interpolation errors should be of the same order
of magnitude. The methods introduced give a practical way of comparing them. Further it is
show how the energy spectrum is changed due to the interpolation. Comparison of the errors for
our test case shows that linear interpolation is not sufficient.

Finally in Appendix A we propose a method for the implementation of the Faxén corrections
by changing the velocity field. This method is based on exact integration and not on a finite
order approximation of ka as is done in most studies. Recently, it has been shown that these
exact averages for the calculation of the Faxén corrections give more reliable results for further
increasing the particle radii. This new method provides a fast and exact way of computing them.

31

32

Acknowledgements

This report marks the completion of a journey in obtaining my degree in both Applied Physics
and Industrial & Applied Mathematics. I would not have come this far without the help and en-
couragements of many people. Therefore I would like to thank the following persons in particular:

Foremost, I would like to express my sincere gratitude to my supervisors: Prof. Dr. Herman
Clercx, Dr. Ir. Jan ten Thije Boonkkamp and Dr. Ir. Bas van de Wiel. My first scientific publica-
tion would not have gone this smoothly without the help of Herman and Jan. Where Herman was
always there for the clear physical explanation, Jan made sure that all the mathematical details
were correct. And although it is almost impossible to replace Herman, Bas was always there to
ask questions and to give comments if necessary. I will always remember the nice talks about your
ongoing work.

Besides my direct supervisors I am grateful to my future promoter Prof. Dr. Federico Toschi.
Thanks to you and Herman I got the possibility to go to the international school ”Fluctuations
and Turbulence in the Microphysics and Dynamics of Clouds” in Porquerolles. This school gave
me new ideas for my study. Furthermore, we had interesting conversations about the topics of this
thesis. This has definitely helped me to understand some physical aspects. You, together with
my supervisors, formed a team in which many different disciplines are represented. Without this
team I could not have made such progress in this field.

Besides my advisors, I would like to thank the rest of my graduation committee: Dr. J.D.R.
Harting and Dr. S.W. Rienstra for their contribution to the committee.

I would like to thank Marleen van Aartrijk for helping me to understand the numerical code.
Whenever I had a problem, she always provided me with an answer to my e-mails. Further I
would like to thank Ben van den Broek for contributing to the derivation of the analytical solution
presented in Appendix C.

I thank my colleagues at TU/e for the enjoyable time. Especially to my friends from my
office for providing a stimulating environment. Only the panpipe music with Christmas did not
contribute to this, but hiding the L.P. provided a good solution.

I wish to thank my friends from All Terrain for all the support and helping me to get through
difficult times. Sporting has always helped me to clear my mind. In this way one can start with
a fresh mind on the next day.

Last but not the least, I am grateful to my family for their support and motivation during my
study. To my sister Esther for helping me creating some of the figures. To my parents Fons and
Netty for their motivation, (financial) support and providing a loving environment throughout my
study.

33

34

Appendix A

Faxén corrections

In this appendix we propose a method for the implementation of the Faxén corrections. The
Faxén corrections are first order corrections in the MR equations for increasing particle radii. In
most studies these corrections have been implemented by using the Laplacian of the flow field.
This gives more reliable results for increasing particle radii compared to simulations without
these corrections[21]. Recently it has been shown that using volume and surface averages for the
calculation of the Faxén corrections allows for even larger particle radii [20]. In this section a
method is proposed that does the averaging exactly in spectral space. Besides that the method is
more accurate it is also faster.

The Faxén corrections are realized by changing the velocity field. The changed velocity field is
computed by multiplying the Fourier components of the original velocity field by predetermined
factors. How to compute these factors and why this can be done is explained in this appendix.

We start with a stationary velocity field u(x), for now this velocity field consists of only one
single Fourier component with wavenumber k, u(x) given by

u(x) = cos(kz). (A.1)

The particles are treated by one-way coupling and in a Lagrangian way. Due to Faxén corrections
the field should be averaged over the surface or over the volume of the particle depending on the
term in the Maxey and Riley equations. The particle has radius a and its center is located at xp.
In the limit of small particles i.e. ka≪ 1, the surface averaged field [u]s becomes

[u]s(xp, a) = cos(kzp)

(
1 − 1

6
(ka)2

)
+ O

(
(ka)4

)
, (A.2)

which is a third order approximation. When ka ≥ 1 also higher order terms need to be included.
Employing the Taylor series of u(x) around xp, we get

u(x) =

∞∑

n=0

(−1)nk2n

(2n)!
cos(kzp)(z − zp)

2n +

∞∑

n=0

(−1)nk2n+1

(2n+ 1)!
sin(kzp)(z − zp)

2n+1. (A.3)

The odd functions are dismissed because they will average to zero due to symmetry reasons. The

35

integration over the surface of the particle is done in spherical coordinates, as follows,

[u]s(xp, a) =
1

4πa2

∫ ∫

|x−xp|=a

u(x)dS,

=
cos(kzp)

4π

∫ π

0

∫ 2π

0

∞∑

n=0

(−1)nk2n

(2n)!
(a cosφ)2n sin(φ)dθdφ,

=
cos(kzp)

2

∞∑

n=0

(−1)n(ka)2n

(2n)!

∫ π

0

cos2n(φ) sin(φ)dφ,

= cos(kzp)

∞∑

n=0

(−1)n(ka)2n

(2n+ 1)!
. (A.4)

The surface average can also be written as

[u]s(xp, a) = cos(kzp)
sin(ka)

ka
. (A.5)

In order to find the volume average [u]v(xp) we integrate the surface average like

[u]v(xp, a) =
1

4
3πa

3

∫ ∫ ∫

|x−xp|≤a

u(x)dV,

=
3

4πa3

∫ a

0

4πr2[u]s(xp, r)dr,

= cos(kzp)
3

ka3

∫ a

0

sin(kr)rdr. (A.6)

Integration by parts gives

[u(xp)]v = cos(kzp)
3

k3a3

(
sin(ka) − cos(ka)ka

)
. (A.7)

The general velocity modes in Fourier space will have the following form

u(x) = cos(kxx) cos(kyy) cos(kzz). (A.8)

Because the averages are taken radially symmetric the general case can be easily deduced from
the special case by the relation.

k2 = k2
x + k2

y + k2
z . (A.9)

Fig. A.1 shows the multiplication factors for the Fourier components for the surface and the
volume averages. All curves have a multiplication factor of 1 in the limit of low ka which is
expected. In this case the particle radius is much smaller than the wave length and taking the
local average does not change the wave. For high ka different limits are found for the different
curves. Where the actual averages go to zero, the finite order methods go to plus or minus infinity.
From a physical point of view it is expected that this limit is zero. When the particle is much
larger than the wavelength one expects that the contribution of this wave averages out and becomes
negligible. This is found for the exact averages but not for finite order methods. Because these
exact averages have the right limit for high ka it is expected that they give more reliable results.
This is supported by the results of Calzavarini et al. [20].

36

10
−1

10
0

10
1

10
2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

ka

3−th order
5−th order
7−th order
exact

10
−1

10
0

10
1

10
2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

ka

3−th order
5−th order
7−th order
exact

Figure A.1: multiplication factors for the Fourier components for the surface (left) and volume
(right) averages.

37

38

Appendix B

Flow field for circular particle

trajectories

In this appendix the space dependent velocity field is derived that allows a circular particle tra-
jectory as solution of the MR equation. Suppose the particle trajectory and velocity is given
by

xp = rR
[
e e−ikt

]
, up = −rkR

[
ie e−ikt

]
, (B.1)

with e = ex − iey. For the flow velocity field we are looking for solutions of (2.2) of the form

u = −R [s(x+ iy)e] + 2αzez , (B.2)

with s = α + iβ a complex constant. For β = 0 the velocity field represents a sink flow u =
(−αx,−αy, 2αz) and for α = 0 it represents solid body rotation: u = (βy,−βx, 0). A spherical
particle released in the plane z = 0 will remain there due to the symmetry of the flow. Substituting
(B.1) and (B.2) (assuming z = 0) in equation (2.2), and taking into account that no gravity is
applied, the Faxén corrections are 0 for a linear velocity field and Du

Dt = R
[
s2(x + iy)e

]
, yields

the following quadratic relation for s:

−ω2

(
mp +

1

2
mf

)
= 6πaµ(−s+ iω) +

3

2
mfs

2

+cB

√
ωπ

2
(ω + is)(1 + i) . (B.3)

There are two solutions for s, but one of the solutions of s results in an unphysical particle
trajectory and is therefore discarded.

39

40

Appendix C

Time dependent velocity field

In this appendix the particle trajectory is derived given the uniform, time dependent velocity field
(2.31). The particle is released with an initial velocity up(0). For a uniform velocity field Eq.
(2.2) can be simplified to

−
(
mp +

1

2
mf

)
dw

dt
= 6πaµw + (mf −mp)

du

dt
− (mp −mf)gez

+ cB

∫ t

0

KB(t− τ)
dw(τ)

dτ
dτ, (C.1)

where w = u−up. The velocity field u will be expanded in a Fourier series, u(t) =
∑∞

n=−∞ une
inωt.

The Laplace transform of w is given by W(s) =
∫∞
0 e−stw(t)dt, and the Laplace transform of

equation (C.1) reads

−
(
mp +

1

2
mf + cB

√
π

s

)
(sW− w(0)) = 6πaµW− (mp −mf)

s
gez

+ (mf −mp)

∞∑

n=−∞
un

inω

s− inω
. (C.2)

Using spitting in partial fractions this yields for W(s)

W(s) =
c√
s

(
c+√
s+ c−

− c−√
s+ c+

)(
w(0) − mp −mf

6πaµ
gez

)
+
mp −mf

6πaµ

g

s
ez

+

∞∑

n=−∞
cn

{
1

(c+ +
√
inω)(c− +

√
inω)(s− inω)

+

√
inω(c+ + c−)

(c2+ − inω)(c2− − inω)
√
s(
√
s+

√
inω)

+
c√
s

(
c+

(c2+ − inω)(
√
s+ c+)

− c−
(c2− − inω)(

√
s+ c−)

)}
, (C.3)

with c+, c−, c and cn constants given by

c± =
cB

√
π ±

√
c2Bπ − 12πaµ(2mp +mf)

2mp +mf
,

c =
2mp +mf

2
√
c2Bπ − 12πaµ(2mp +mf)

,

cn =
inω(mp −mf)un

mp + 1
2mf

. (C.4)

41

Transformation back to physical space results in

w(t) = c
[
c+ψ

(
c−

√
t
)
− c−ψ

(
c+

√
t
)](

w(0) − mp −mf

6πaµ
gez

)
+
mp −mf

6πaµ
gez

+
∞∑

n=−∞
cn

{
1

(c+ +
√
inω)(c− +

√
inω)

einωt +

√
inω(c+ + c−)

(c2+ − inω)(c2− − inω)
ψ
(√

inωt
)

+
cc+

c2+ − inω
ψ
(
c+

√
t
)
− cc−
c2− − inω

ψ
(
c−

√
t
)}

, (C.5)

with ψ(z) = exp
(
z2
)
erfc (z).

42

Appendix D

Proof: Uk − Ũk are orthogonal

In this Section we prove that all Uk − Ũk are orthogonal for different k with respect to the inner
product 〈·, ·〉3. In order to show this we start with a one-dimensional linear interpolation. In the
end it can be extended to a more general case.

ϕ[·] is the one dimensional variant of the interpolation operator Φ[·]. The idea is to write the
operator ϕ with some basic operations on functions. This can be done in the following way:

Ũk = ϕ[Uk] = (UkD) ∗ C. (D.1)

Here D represents the discretisation on the grid. The function D is a train of delta functions
with a distance ∆x between them. Further C is the convolution function that represents the
interpolation method and * represents a convolution. So each interpolation method has a unique
function C. We show the functions for linear interpolation in Fig. D.1.

In order to show that all Uk − Ũk are orthogonal we take the Fourier transform denoted by
F [·] of Ũk.

F [Ũk] = F [(UkD) ∗ C] = (F [Uk] ∗ F [D])F [C]. (D.2)

For linear interpolation these functions are shown by Fig. D.1. Because F [Uk] is one delta function,
a convolution with this function results in a shift. Further F [D] is again a train of delta functions.
Now they are separated by (∆x)−1. Concluding, F [Uk] ∗ F [D] is still a train of delta functions.

Multiplying it with F [C] only changes the amplitude which means that F [Ũk] still consists of a

discrete set of Fourier components. Because they are separated by exactly (∆x)−1, different Ũk do

not share any frequency components. This means that Ũk is orthogonal. Because the frequency
Uk is also in Ũk, the functions Uk − Ũk are also orthogonal.

The extension to the three dimensional case is rather straightforward and is therefore not done
here. The basic idea is to create the three dimensional functions out of a multiplication from one
dimensional components.

43

real(Uk) F(Uk)

F(D)

real(UkD) F(UkD)

F(C)

real((UkD)*C) F((UkD)*C)

C

D

0

0

0

0

0

1

0

-1

1

k k+ 1
--x

1
--x

k k+ 1
--x

1
--x

1
--x

1
--x

1

0 1
--
k

1

-1

k

0

1

0-

1

0

1

Figure D.1: Linear interpolation. The pins represent delta functions with the hight equal to the
prefactor.

44

Appendix E

Proof of optimal polynomial

function

In this section we show some special properties that hold for Hermite spline interpolations. Espe-
cially we examine the case where N = 4. For this case the second derivative becomes a piecewise
linear function. Comparison with the actual second derivative shows that this piecewise linear
function is optimal with respect to the L2 norm.

We start by examining the first derivative. When looking at the interpolation one can see that
N conditions are needed to make it CN/2−1 and the order of the polynomial function is N − 1.
For the derivative the order of polynomial function decreases with one. Therefore one condition
less is needed, the new conditions become:

∫ 1

0

dũ

dx
dx =

∫ 1

0

du

dx
dx

dlũ

dxl
(0) =

dlu

dxl
(0)

dlũ

dxl
(1) =

dlu

dxl
(1)

l = 1, ..,m (E.1)

The first condition has a special property. To see this one needs to transform the polynomial basis
into a orthogonal polynomial basis B with respect to the inner product 〈〉1. This is done by Gram
Schmidt orthogonalization. Now one gets

dũ

dx
=

N−2∑

j=0

â
(1)
j Bj(x). (E.2)

B0 = 1

B1 =
√

3(2x− 1)

B2 =
√

5(6x2 − 6x+ 1)

B3 =
√

7(20x3 − 30x2 + 12x− 1)

(E.3)

45

Now one can show that â
(1)
0 is chosen optimally with respect to the L2 norm.

d

dâ
(1)
0

∫ 1

0

(
dũ

dx
(x) − du

dx
(x)

)2

dx = 0

∫ 1

0

2

(
dũ

dx
(x) − du

dx
(x)

)
d

dâ
(1)
0

dũ

dx
(x)dx = 0

∫ 1

0

2

(
dũ

dx
(x) − du

dx
(x)

)
B0dx = 0

∫ 1

0

dũ

dx
dx =

∫ 1

0

du

dx
dx (E.4)

Next we are going to look at the second derivative. Now we only consider the case of N = 4,
the theory could be extended for more N but it is not done here. Because we are looking at the
second derivative only two conditions are left, namely:

∫ 1

0

d2ũ

dx2
dx =

∫ 1

0

d2u

dx2
dx,

∫ 1

0

∫ α

0

d2ũ

dx2
dxdα =

∫ 1

0

∫ α

0

d2u

dx2
dxdα. (E.5)

Now one can show that â
(2)
0 is chosen optimally, in the same way as before. Further not only â

(2)
0

is chosen optimal but also â
(2)
1 . This means that there is no better approximation in the L2 norm

of this second derivative with a linear function. The proof goes as follows:

d

dâ
(2)
1

∫ 1

0

(
d2ũ

dx2
(x) − d2u

dx2
(x)

)2

dx = 0

∫ 1

0

2

(
d2ũ

dx2
(x) − d2u

dx2
(x)

)
d

dâ
(2)
1

d2ũ

dx2
(x)dx = 0

∫ 1

0

(
d2ũ

dx2
(x) − d2u

dx2
(x)

)
(2x− 1)dx = 0

∫ 1

0

(
d2ũ

dx2
(x) − d2u

dx2
(x)

)
xdx = 0

α

∫ α

0

(
d2ũ

dx2
(x) − d2u

dx2
(x)

)
dx

∣∣∣∣
α=1

α=0

−
∫ 1

0

∫ α

0

(
d2ũ

dx2
(x) − d2u

dx2
(x)

)
dxdα = 0

∫ 1

0

∫ α

0

d2ũ

dx2
dxdα =

∫ 1

0

∫ α

0

d2u

dx2
dxdα. (E.6)

In the derivation several times the first relation of equation (E.5) is used. Further integration by
parts is used in the second last step.

So for the Hermite spline interpolation with N = 4 we have shown that the second derivative
is still a good approximation of the actual second derivative. Even stronger, there is no better
piecewise linear function for the approximation of this second derivative with respect to the L2

norm.

46

Bibliography

[1] F. Toschi and E. Bodenschatz. Lagrangian properties of particles in turbulence. Annu. Rev.

Fluid Mech., 41:375–404, 2009.

[2] M. van Aartrijk. Dispersion of inertial particles in stratified turbulence. PhD thesis, Eindhoven
University of Technology, 2008.

[3] M. van Aartrijk, H.J.H Clercx, and K.B. Winters. Single-particle, particle-pair, and mul-
tiparticle dispersion of fluid particles in forced stably stratified turbulence. Phys. Fluids,
20:025104 1–16, 2008.

[4] M.R. Maxey and J.J. Riley. Equation of motion for a small rigid sphere in a nonuniform flow.
Phys. Fluids, 26:883–889, 1983.

[5] M.A.T. van Hinsberg, J.H.M. ten thije Boonkkamp, and H.J.H Clercx. An efficient, second
order method for the approximation of the Basset history force. J. Comput. Phys., 2011.

[6] R. Mei, R.J. Adrian, and T.J. Hanratty. Particle dispersion in isotropic turbulence under
Stokes drag and Basset force with gravitational settling. J. Fluid Mech., 225:481–495, 1991.

[7] V. Armenio and V. Fiorotto. The importance of the forces acting on particles in turbulent
flows. Phys. Fluids, 13:2437–2440, 2001.

[8] M. van Aartrijk and H.J.H Clercx. Vertical inertial particle dispersion in stably stratified
turbulence: The influence of the Basset force. Phys. Fluids, 22:013301 1–9, 2010.

[9] M. van Aartrijk and H.J.H Clercx. The dynamics of small inertial particles in weakly stratified
turbulence. J. Hydro-Envir. Res., 4:103–114, 2010.

[10] Y.D. Sobral, T.F. Oliveira, and F.R. Cunha. On the unsteady forces during the motion of a
sedimenting particle. Powder Technol., 178:129–141, 2007.

[11] I. Niño and M. Garćıa. Using Lagrangian particle saltation observations for bedload sediment
transport modelling. Hydrolog. Process, 12:1197–1218, 1998.

[12] N. Mordant and J.F. Pinton. Velocity measurement of a settling sphere. Eur. Phys. J. B,
18:343–352, 2000.

[13] D.J. Vojir and E.E. Michaelidis. Effect of the history term on the motion of rigid spheres in
a viscous fluid. Int. J. Multiphase Flow, 20:547–556, 1994.

[14] P. Tanga and A. Provenzale. Dynamics of advected tracers with varying buoyancy. Physica

D, 76:202–215, 1994.

[15] F.A. Bombardelli, A.E. González, and Y.I. Niño. Computation of the Particle Basset Force
with a Fractional-Derivative Approach. J. Hydr. Div., 134:1513–1520, 2008.

[16] A.J. Dorgan and E. Loth. Efficient calculation of the history force at finite Reynolds numbers.
Int. J. Multiphase Flow, 33:833–848, 2007.

47

[17] E.E. Michaelides. A novel way of computing the Basset term in unsteady multiphase flow
computations. Phys. Fluids A, 4(7):1579–1582, 1992.

[18] F. Lekien and J. Marsden. Tricubic interpolation in three dimensions. Int. J. Numer. Meth.

Engng, 63:455–471, 2005.

[19] C.C. Lalescu, B.Teaca, and D.Carati. Implementation of high order spline interpolations for
tracking test particles in discretized fields. J. Comput. Phys., 229:5862–5869, 2010.

[20] E. Calzavarini, R. Volk, E. Lévêque, J.-F. Pinton, and F. Toschi. Impact of trailing
wake drag on the statistical properties and dynamics of finite-sized particle in turbulence.
ArXiv:1008.2888v1, 2010.

[21] H. Homann and J. Bec. Finite-size effects in the dynamics of neutrally buoyant particles in
turbulent flow. J. Fluid. Mech, 651:81–91, 2010.

[22] E. Loth. Numerical approaches for motion of dispersed particles, droplets and bubbles. Prog.

Energ. Combust., 26:161–223, 2000.

[23] E.E. Michaelides. Hydrodynamic Force and Heat/Mass Transfer From Particles, Bubbles,
and DropsThe Freeman Scholar Lecture. J. Fluids Eng., 125(2):209–238, 2003.

[24] H. Faxén. Die Bewegung einer starren Kugel längs der Achse eines mit zäher Flüssigkeit
gefüllten Rohres. Ark. Mat. Astron. Fys., 17:1–28, 1923.

[25] T.R. Auton, J.C.R. Hunt, and M. Prud’homme. The force exerted on a body in inviscid
unsteady non-uniform rotational flow. J. Fluid Mech., 197:241–257, 1988.

[26] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical recipes. Cam-
bridge University Press, New York, 1992.

[27] F.B. Tatom. The Basset force as a semiderivative. Appl. Sci. Res., 45:283–285, 1988.

[28] A. Jeffrey. Handbook of mathematical formulas and integrals, pages 245–248. Elsevier, United
Kingdom, 2004.

[29] T.G. Kolda and B. W. Bader. Tensor Decompositions and Applications. Siam Review,
51(3):455–500, 2009.

48

	Abstract
	Contents
	1. Introduction
	2. An efficient, second order method for the approximation of the Basset history force
	3. Interpolation schemes in DNS simulations of turbulence: error estimates and implementation
	4. Conclusions
	Acknowledgements
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Bibliography

