
 Eindhoven University of Technology

MASTER

Replay analysis in generic process modeling language

Nguyen, H.V.

Award date:
2011

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/57de2b15-0371-4948-a95c-dc9002955972

TECHNISCHE UNIVERSITEIT EINDHOVEN
Department of Mathematics and Computer Science

Architecture of Information System Group

Replay Analysis in Generic Process Modeling Language

Master thesis

 Nguyen Hong Viet

Supervisors:

 dr.ir. B.F.van Dongen

ir.Arya.Adriansyah

Eindhoven, January, 2010

Abstract

Process models are extensively used in many information systems not only as process descriptions,

but also as means of analysis. Typically, models are assumed to be fully conforms to operational

processes, but experience shows that this is not the case. To identify deviations between operational

process and its specification, log replay analysis is performed. Given a process model and process

executions recorded in an event log, log replay techniques confront the model to the log to extract

useful information for further analysis such as conformance, performance. However, the techniques

require models to be in specific modeling languages, which then limit their applicability.

In this thesis, we extend currently existing replay log techniques to be independent from any specific

process modeling languages. We propose a unification approach based on a generic process

modeling language that abstracts away the requirement of log replay to have a specific process

modeling language. We propose conversion methods from several process modeling languages to

the generic process modeling language that preserves essential information necessary for log replay.

Based on existing replay techniques, we develop a log replay technique that works on the generic

process modeling language and investigate its characteristics. To demonstrate the applicability of

our approach, we have implemented it in the ProM1 framework and tested it using simulated logs

and process models.

Keywords: Log Replay, Process Analysis; Conformance checking;

1
 See http://www.processmining.org

http://www.processmining.org/

 i Replay analysis in generic process modeling language

Preface

This master thesis is the result of my graduation project which completes my master Computer
Science & Engineering at the Eindhoven University of Technology. The project was performed
internally at the Architecture of Information Systems group of the Mathematics and Computer
Science department.

First of all, I would like to thank my graduation supervisor Boudewijn van Dongen and my graduation
tutor Arya Adriansyah for their advices and supports during my master project.

Furthermore, I would like to thank my parent, my brother and my girlfriend for supporting me all the
time. I also would like to thank Denny for helping me to deal with programming problems.

Hong Viet

Jan, 2011.

 ii Replay analysis in generic process modeling language

Contents

List of Figures .. v

List of Tables ... vii

1 Introduction .. 1

1.1 Thesis context ... 1

1.2 Project goal ... 1

1.3 Research questions ... 2

1.4 Research approach.. 3

2 Preliminaries ... 4

2.1 Process modeling languages ... 4

2.1.1 Petri net... 4

2.1.2 Yet another workflow language .. 5

2.1.3 Event driven process chain ... 6

2.1.4 Fuzzy model .. 7

2.2 Generic process modeling languages ... 8

2.2.1 Flexible model ... 9

2.2.2 Canonical process format ... 10

2.3 Event log.. 11

2.4 Process mining and ProM framework ... 11

3 Related Works... 13

3.1 Log replay .. 13

3.2 Petri net replay technique .. 13

3.2.1 Log replay on Petri net .. 13

3.2.2 Example ... 14

3.2.3 Limitation .. 15

3.3 Flexible model replay technique ... 16

3.3.1 Unsatisfied events ... 16

 iii Replay analysis in generic process modeling language

3.3.2 A * algorithm ... 17

3.3.3 Log replay on Flexible model .. 17

3.3.4 Example ... 19

3.3.5 Limitation .. 21

3.4 Fuzzy model replay technique .. 22

3.4.1 Log replay on Fuzzy model .. 22

3.4.2 Example ... 23

3.4.3 Limitation .. 23

4 Generalizing process modeling languages ... 25

4.1 Replay approach on variety of modeling languages. .. 25

4.2 Conversion aspect ... 26

4.2.1 Petri net to CPF ... 26

4.2.2 Flexible model to CPF .. 31

4.2.3 Yawl to CPF .. 32

4.2.4 EPC to CPF ... 35

4.2.5 Conversion to CPF in general .. 37

4.2.6 Conversion from CPF to other process models .. 37

5 Log replay on canonical process format .. 40

5.1 Requirement ... 40

5.2 Approach ... 40

5.3 Solution ... 41

5.4 Limitation .. 43

5.5 Implementation .. 43

6 Evaluation ... 50

6.1 Task ratio fitness ... 50

6.2 Parameter setting analysis .. 50

6.3 Case study ... 55

6.4 Conclusion ... 59

 iv Replay analysis in generic process modeling language

7 Conclusions ... 61

7.1 Limitations and future works .. 61

References .. 63

Appendix A ... 64

Appendix B ... 65

Appendix C.. 71

 v Replay analysis in generic process modeling language

List of Figures

2.1: An example of Petri net ... 5

2.2: An example of Yawl ... 6

2.3: An example of EPC ... 7

2.4: An example of Fuzzy model ... 8

2.5: An example of Flexible model .. 10

2.6: An example of CPF model .. 11

2.7: Process mining role .. 12

3.1: Petri net replay example ... 14

3.2: Replaying steps of trace A-B-D-F on the model given in Figure 3.1 .. 15

3.3: Result of replaying the event log in Figure 3.1 ... 15

3.4: A Petri net with two duplicate tasks to be replayed with trace A-B-C ... 16

3.5: A Petri net OR-split construct to be replayed with trace A-B-C ... 16

3.6: Trace A-C is replayed on the given Flexible model with C is an unsatisfied event 17

3.7: Trace A-B-C is replayed on the flexible model with pre-defined parameters ... 19

3.8: Search tree generated after replaying A-B-C contains an optimal path .. 20

3.9: An example of flexible model which proves the need of unhandled arc cost ... 22

3.10: An example of flexible model which shows the problem of using unhandled arc cost 22

3.11: Trace A-B-C-E is replayed on the given Fuzzy model .. 23

3.12: Fuzzy model converted from Petri net ... 24

3.13: A Fuzzy model which contains an invisible task Tau ... 24

4.1: A unification approach for Log Replay ... 25

4.2: OR-split/join modeled in Petri net compared to CPF notation ... 29

4.3: Straightforward mapping of OR-split/join from PN to CPF ... 30

4.4: Simple choice modeled in Petri net compared to CPF notations ... 30

4.5: Straightforward mapping of XOR-split from PN to CPF .. 31

4.6: A flexible mode with relaxed split and join pattern ... 31

4.6: Cancelation sets modeled in Yawl and the corresponding CPF model ... 35

4.7: Canonical representation of EPC elements .. 37

 vi Replay analysis in generic process modeling language

4.8: Canonical representation of EPC with ending Events following (X)OR-split ... 37

5.1: Flexible model contains a starting task node A .. 43

5.2: Search tree generated by replaying A-C-D contains an optimal path .. 44

5.3: Screenshot of choosing a plug-in for converting to CPF .. 44

5.4: Screenshot of choosing replay plug-ins .. 45

5.5: Screenshot of mapping step ... 45

5.6: Screenshot of choosing replay algorithm step .. 46

5.7: Screenshot of cost configuration step ... 47

5.8: Screenshot of selecting an event case step ... 47

5.9: Screenshot of replaying result ... 48

5.10: Screenshot of search tree .. 48

5.11: Screenshot of log replay result ... 49

6.1: A partial search tree generated during replaying trace A-B-C .. 51

6.2: Event trace A-B is replayed in the flexible model with Minv bigger than Us .. 52

6.3: Event trace A-C is replayed with Minv value of zero ... 52

6.4: Event trace B-C is replayed with Minv value of 2 and Us value of 5 ... 53

6.5: An event log is obtained by simulating the flexible model .. 54

6.6: Valid log is replayed in an invalid flexible model ... 54

6.7: A partial search tree obtained during replaying trace A-B-B ... 55

6.9: Result of replaying first case .. 57

6.10: Result of replaying second case ... 58

6.11: Result of replaying second case with cost Mr bigger than cost Us ... 58

6.12: Result of replaying third case .. 59

A.1: Meta-model of canonical process format .. 64

C.1: Flexible model of complaint handle procedure .. 70

 vii Replay analysis in generic process modeling language

List of Tables

3.1: Description of parameters required for Flexible model -based replay ... 18

4.1: Canonical representation of ten Petri net constructs ... 28

4.2: Canonical representation of eight Flexible constructs ... 32

4.3: Canonical representation of nineteen Yawl constructs36

4.4: Canonical representation of nine EPC constructs.. 40

4.5: Flexible representation of nine canonical constructs .. 40

6.1: Cost parameters setting ... 56

6.2: Description of first case together with expected executing sequence and case task ratio fitness 56

6.3: Description of second case together with expected executing sequence and case task ratio fitness 57

6.4: Description of third case together with expected executing sequence and case task ratio fitness 59

B.1: Mapping from Petri net elements to Canonical elements .. 65

B.2: Mapping from Flexible elements to Canonical elements .. 66

B.3: Mapping from Yawl elements to Canonical elements ... 67

B.4: Mapping from EPC elements to Canonical elements .. 68

B.5: Mapping from Canonical elements to elements of other process models ... 69

B.6: A list of different types of Yawl task .. 70

 Chapter 1: Introduction Master thesis

 1 Replay analysis in generic process modeling language

Chapter 1

Introduction

1.1 Thesis context

Nowadays, many organizations, either small or large, are using information systems to support their

operational processes. An operational process can be thought of a procedure containing a number

of activities taken to achieve certain goals. Examples of operational processes are a “Laptop repair

handling” process in a computer shop or “Order item processing” procedure in a web shop. Most of

operational processes are described in the so-called process models which are expressed in term of

process modeling languages. Process models usually describe activities and resources involved in

operational processes. Currently, there is a large number of process modeling languages ranging

from languages with relaxed semantic (e.g. Fuzzy model) to languages with strict semantic (e.g. Petri

Net). Each language has its own advantages and disadvantages. Therefore, organizations often use

more than one process modeling language to describe a single operational process.

As organizations always wish to improve their business, process analysis thus becomes an essential

part for increasing the business performance. Analysis is performed to identify possible faulty

behaviors, possible bottle necks or process patterns in a process or even to predict the outcome

result of a process execution. However, most of currently existing analysis techniques work only for

specific process modeling languages. This brings up problem when organizations want to perform

analysis over process models. For instance, given two models of the same process specified by two

different process modeling languages, one can ask a question which one conforms better to the

given process. This kind of question cannot be answered using existing analysis techniques that are

invented only for certain process modeling languages.

Instead of developing an analysis method for each process modeling language, this thesis proposes a

unification approach that alleviates the problem by abstracting all process models to a common

format. Analysis techniques will be then investigated based on this format.

1.2 Project goal

As discussed in the previous section, problem occurs when we wish to perform analysis of a process

based on different process models. In this thesis, we look at one typical analysis technique called Log

Replay. Log replay is used to analyze performance of a process model or to check conformance

between a given model and an event log. The Log Replay currently exists only on Petri Net, Fuzzy

model and Flexible model. There are no replay techniques invented for other existing process

modeling languages. Hence the goal of the project is concluded as follow:

Goal of the project: Enable the log replay on a variety of existing process modeling languages.

 Chapter 1: Introduction Master thesis

 2 Replay analysis in generic process modeling language

1.3 Research questions

In order to obtain the project goal, a couple of research questions are formulated. Each research

question is split up into several sub-questions. The answers of sub-questions lead up to the answer

of the main question.

Rather than creating a replay method for each process modeling language, the proposal approach is

to enable the log replay method based on a common type of process model which can abstract a

wide variety of process models. Translations into this new format are necessary to support replay

techniques on existing process modeling languages. Thus, the first step is to generalize different

exiting process models into a common process format. This brings up the following first research

question:

Research Question 1: What generalization techniques exist for process modeling languages?

This main question will be split up into the following sub-questions.

 Sub research question 1.1: What are the possible formats to which the process modeling

languages can be generalized and what are their structures?

 Sub research question 1.2: What information is preserved and what information is lost while

generalizing process models?

 Sub research question 1.3: How are the elements of existing models mapped to the elements

of new process format?

The initial step for answering this question is to find out all possible formats which we can use for

abstracting process models. Besides, understanding their structures, advantages and disadvantages

will help us to pick up the most appropriate one. It should be noticed that model transformation

does not always preserve information. Thus, we need to determine which information we have to

lose and which one we can keep when we perform generalizing. Moreover, the generic formats and

existing models have their own structures, notations and semantics. Therefore, it is important to do

correct mapping between abstracted models and generic models such that the important behavior is

preserved as much as possible.

After choosing a new model as a generic format, we need to apply the current existing replay

techniques on that model. The second research question is then brought to us as follow:

Research Question 2: How can the currently existing reply techniques used on the chosen

generalizing format?

The second question is also divided into three sub-questions. Answering these will provide us the

solution for the main one.

 Sub research question 2.1: What are the current replay techniques and how do they work?

 Sub research question 2.2: Which is the most applicable replay technique for the chosen format

and how it can be applied?

 Sub research question 2.3: What parameters are the most suitable for replaying on the generic

format?

At the moment, there are a number of reply methods. However, all of them work only for some

specific process models. Thus, it is essential to discover all available methods as well as their

supporting process models. Gaining knowledge of how do they work, what are advantages and

disadvantages will help us to choose the most applicable replay method. If the selected replay

 Chapter 1: Introduction Master thesis

 3 Replay analysis in generic process modeling language

technique requires some pre-configured parameters then it is desirable to perform some

experiments to find the most suitable parameter setting.

1.4 Research approach

The project goal can be achieved by executing a number of necessary steps in the following order

Step 1: Perform literature study and gather relevant information

The earliest step is to gain knowledge of some relevant subjects that are important to our project

work, such as the basic concepts of process modeling languages, process mining, event log, log

replay technique and ProM framework. The result of this literature study is presented in Chapter 2.

Step 2: Investigate currently existing replay methods

The next step is to perform an investigation on existing log replay techniques. We investigate how

they can be implemented, what advantages, problems or limitations they have. Furthermore, we

undertake an analysis to find out whether and how these replay techniques can be applied to the

selected format. The result of this step is the answer for question: what is the most applicable replay

technique. The detail of this step is provided clearly in Chapter 3.

Step 3: Generalize process modeling languages

The first phase of this step explained in Chapter 4 is to define the motivation to generalize process

modeling languages. Also in this step, a couple of possible generic formats that can be used for

abstract process models must be introduced. A comparison between those candidates needs to be

taken in order to find the most appropriate one. Next, we investigate how to convert existing

process models into selected generic format. At the end of this step, we implement conversions

from process modeling languages into the selected generic format using process mining framework

ProM.

Step 5: Design log replay on chosen generic format

In this step, we investigate how to perform log replay on the selected generic format. The replay

solution of generic format should be implemented in ProM. The detail of this step is presented in

Chapter 5.

Step 4: Perform case study experiments

The generic format might require pre-configured parameters for replay technique. Different settings

lead to different replay result. In order to obtain the most optimal parameter setting, a validation

needs to be taken by performing several case studies. This is demonstrated in Chapter 6.

Step 5: Conclude

The last chapter is the conclusion of this thesis. In this chapter, the project approach will be

evaluated to see whether or not the project‘s goal is achieve. This chapter also includes a discussion

concerning future works which are about to solve the remaining problems and to improve the result

of project.

 Chapter 2: Preliminaries Master thesis

 4 Replay analysis in generic process modeling language

Chapter 2

Preliminaries
This chapter introduces basic conceptual foundations which will be used throughout this thesis. The

chapter begins in Section 2.1 providing explanation about the process modeling languages. Also in

this section, some particular modeling languages are described in more detail. In next section,

Section 2.2, definition of semantic independent process modeling languages is given. Definition of

Event log and Log replay are introduced in Section 2.3. Finally, in Section 2.4 we introduce the notion

of process mining technique and ProM framework.

2.1 Process modeling languages

Many organizations use information systems to support their business operation. One of the core

elements of information systems is process models. Process models describe, often in some graphic

notations, how a certain process is composed from a number of different tasks, which resources are

involved to carry out these tasks and which objects are influenced in the process. Process models

can be used both within the context of IT deployment or for more business-oriented purposes. They

are often expressed using process modeling languages. Business Process Modeling Notation (BPMN),

Event-Driven Process Chains (EPC), Petri Net, Yet another Workflow Language (Yawl), BPEL (Business

process execution language) and Fuzzy model are examples of process modeling languages. All of

these process modeling languages vary in respect to their behavior, structure, graphic

representation and semantics. In this thesis, we will not introduce all of them. Instead, we choose to

describe four modeling languages related to our coming work, namely Petri net, Yawl, Fuzzy and

EPC. We select Petri net because it is one of the mostly investigated process model. Moreover, Petri

net currently support log replay technique that we are going to investigate. Fuzzy model is

investigated as there is already a log replay invented for it. EPC and Yawl are selected since EPC is

the most widely process modeling languages used in industry and Yawl is an expressive language to

describe complex process models and provides comprehensive support for workflow pattern [1].

2.1.1 Petri net

Petri net [2] is a process modeling language described in the form of directed bipartite graph
containing transitions, places and arcs. The role of transitions and place are defined as follow:

Transitions, which are denoted by rectangles in Petri net graph, correspond to activities that

occur in the process execution. Transitions are also used to indicate the “silent” steps that take

care of routing of control flow or to delay the activity execution.

Places, which are represented by circles, specify the pre/post- condition of a certain transition.
Places also indicate the start and end of a process model. Generally, a Petri net can contain
multiple starting/ending places.

 Chapter 2: Preliminaries Master thesis

 5 Replay analysis in generic process modeling language

Directed arcs link a place to a transition or vice versa, but never between transitions or between

places. Places with outgoing arcs pointing to a transition are called input places of the transition.

Places with incoming arcs running from a transition are called output places of the transition. Tokens

denoted by black dots define execution behavior of the model. Multiple tokens can be held in any

places, even in the same place. A transition is enabled as soon as there is at least one token in each

of its input places. If a transition is enabled, it may be fired. When a transition fires, it consumes a

token from each input place and produces a token in each output places. The distribution of tokens

over places is called a marking of the net. Petri net use notion of initial marking to indicate from

which transitions the process can start. Firing a transition creates a new marking by removing tokens

in input places and adding new tokens in output places. The execution of Petri net is non-

deterministic, i.e. when multiple transitions are enables at the same time, any one of them can be

fired in any order. Therefore, this makes Petri suitable for modeling concurrent behavior.

Petri net captures mostly used workflow patterns, such as: sequential pattern, parallel split pattern,

synchronization pattern, exclusive choice pattern and simple merge pattern. However, Petri net

does not support OR split/join patterns. To model OR split/join constructs, a number of extra

transitions which are not related to any activities in process are needed. These transitions are

regarded as invisible transitions or silent steps. An example of a Petri net model containing basic

control flow patterns is shown in Figure 2.1.

Figure 2.1: An example of Petri net

2.1.2 Yet another workflow language

Yet another workflow language (Yawl) [3] is specially developed to capture most of the existing

workflow patterns [1]. Since Petri net supports almost basic control patterns, it is taken as a starting

point for designing Yawl. Yawl extends Petri net by adding four new constructs, namely cancellation

set, OR-join, multiple instances activities and composite task. These constructs aim at supporting

some advanced workflow patterns that are not directly supported in Petri net, for instance

synchronized merge, multiple merge, cancellation pattern, discriminator or patterns involving

multiple instances. More detailed information about how Yawl supports those advanced patterns

can be found in [3]. Although, Yawl is invented based on Petri Net, it cannot be regarded as an

extended high level of Petri net. It is completely a new language with its own independent

semantics. Generally, the Yawl model consists of tasks, conditions and flows.

 Chapter 2: Preliminaries Master thesis

 6 Replay analysis in generic process modeling language

Tasks, denoted by rectangle boxes with task’s name inside, can be either atomic tasks or

composite tasks. Atomic tasks represent activities occurring in the process. Composite tasks refer

to other Yawl process model at low level in hierarchy. Especially, both composite tasks and atomic

tasks can have multiple instances.

Conditions, denoted by circles, can be interpreted as places in Petri net. Conditions are also used

to indicate the pre/post-condition before and after firing a task. Unlike Petri net, conditions can

be implicitly represented in Yawl, i.e. they can be hidden in between tasks. Yawl model must

contain exactly only one input condition marking the start of the process and only one output

condition marking the end of the process.

In contrast to Petri net, the flows can run directly from one task to other task without passing

through a condition in between. However, there is no flow in between conditions. Additionally, Yawl

provides extra syntactically elements to intuitively capture other workflow patterns which are not

available in Petri net, such as: simple choice, simple merge multiple choice and multiple merge.

These patterns are semantically bound to the task’s behavior, i.e. the behavior of parallel routing

patterns and execution of activities are together represented on a same construct. Figure 2.2 shows

an example of Yawl model with the same behavior as the Petri net in Figure 2.1.

Figure 2.2: An example of Yawl

2.1.3 Event driven process chain

Event driven process chain (EPCs) [4] is another type of workflow language used for business process

modeling. EPC is an industrial process mining language that is widely used by many companies for

modeling, analyzing and redesigning business process. An EPC graph consists of three types of

vertexes which are events, functions and connectors.

Events, represented by hexagons, describe in which states the process seize after executing a

function or under what circumstance a function is enabled. In general, an EPC model must start

with an event and end with an event. However, it is possible to have multiple starting events and

multiple ending events.

Functions, denoted by rectangles, are similar to tasks in Yawl and transitions in Petri net. They are

used to model activities executed in the process execution.

 Chapter 2: Preliminaries Master thesis

 7 Replay analysis in generic process modeling language

Connectors, denoted by circles, indicate the flow of control in EPC. Unlike Petri net and Yawl in

which split/join behaviors are bound to the task’s construct, in EPC these routing behaviors must

be represented separately in the so-called connector constructs. There are three types of

connectors, namely and-connector, exclusive-connector and or-connector. There is no explicit

semantic to define a connector as a split or join. It depends on the number of incoming arcs and

outgoing arc. For instance: an and-split connector has only one incoming arc and at least two

outgoing arcs. Whereas, an and-join connector has at least two incoming arcs and only one

outgoing arc. A connector can be either a split or join but cannot play both roles at the same time.

One should be noticed that there is no cycle containing connectors only in EPC model. Moreover,

events are not allowed to precede xor-split connector and or-split connector. Every arc connects two

different vertexes. Every vertex is on a path from a starting event to a final event. Events and

functions must alternate along the control flow path, i.e. there is no path with two functions without

an event in between and the other way around. An example of EPC is illustrated in Figure 2.3.

Figure 2.3: An example of EPC

2.1.4 Fuzzy model

Definition of Fuzzy model was first introduced in [5]. Fuzzy model is designed to visualize complex

process models (e.g. spaghetti process models) in an understandable way. The idea of Fuzzy model is

to abstract unimportant activities and aggregate highly related activitiess whose behavior are not

interesting into a cluster. Fuzzy model is represented by a graph consisting of nodes and arcs. Nodes

are specialized into cluster nodes and primitive nodes. While primitive nodes denoted by rounded

rectangle represent activities in process execution, cluster nodes denoted by octagons aggregate

events whose behavior is not of interest. Fuzzy model cannot be used to control process enactment

on workflow system since it only provides an efficient and simplified visualization of processes. The

main character of Fuzzy model is the relaxed execution semantics. Detailed description of relaxed

execution semantics in term of workflow pattern can be found in [5]. In this thesis, we only

summarize important execution semantics of Fuzzy model as follows:

 Branch semantics, every node in Fuzzy model has AND-split semantic. Whenever a node has

been executed, it will enable all its successors. However, enablement does not enforce

execution, thus the successors must not be executed. Moreover, if an enabled node has not

been executed, it’s enabling remains the same.

 Join semantics, every node in Fuzzy model has memory-less XOR-join semantic. A node is

enabled as soon as one of its predecessors has been executed. Thus a node can be enabled

 Chapter 2: Preliminaries Master thesis

 8 Replay analysis in generic process modeling language

multiple times by multiple predecessors. However, it does not keep track of how often it has

been enabled.

 Initialization, the process can start at any arbitrary node in Fuzzy model. Therefore starting

nodes can have multiple incoming arcs, i.e. there is no exclusive starting point.

 Termination, the process can terminate at any subset of node, i.e. there is no exclusive

ending point. Furthermore, the process is considered to be terminated if there is no further

execution of nodes in the model.

It is observed that, when a node in Fuzzy model has been executed, it enables all of its successors.

Any subset of enabled successors can be then executed. However, all of them are not forced to be

fired. Hence there is no explicit distinction between simple choice (XOR-split), multiple choice (OR-

split) and parallel split (AND-split). In Figure 2.4, we show an example of Fuzzy model compared to

the Yawl model in Figure 2.2. This is a simplified model, where task “K” has been abstracted and task

C, D, F, E and G has been hidden inside a cluster node.

A

B

J

H

Cluster

6 elements

No distinction between

multiple choice, simple

choice and parallel split

Figure 2.4: An example of Fuzzy model

2.2 Generic process modeling languages

Generic process modeling languages are invented for generalizing existing process models. The idea

of generalizing is to represent semantic independent from process modeling languages, i.e. it leaves

away semantics of existing process models such that analysis independent from specific semantic

can be performed. Generic process modeling languages are not intended to be yet another modeling

notation, it is rather be a language that captures the core split/join behaviors of process models

independent from modeling languages. There are two types of process models can be used to

generalize existing process models, namely Flexible model and Canonical Process Format.

Flexible model has been developed within Technical University of Eindhoven in the Netherlands. The

idea of flexible model is to perform log replay indirectly on any existing process models as long as

the models can be expressed as a flexible model.

 Chapter 2: Preliminaries Master thesis

 9 Replay analysis in generic process modeling language

Canonical Process Format (abbreviated as CPF) has been developed in Queensland University of

Technology in Australia. It is original used for supporting APROMORE [6] that is an advanced process

model repository. APROMORE helps organizations manage a massive collection of process models by

offering a rich set of advanced features such as maintaining, analyzing and exploiting the content of

process models. In the coming subsequent sections, we will introduce definition of flexible model

and canonical process format in more detail.

2.2.1 Flexible model

A flexible model [7] is a directed graph composed from tasks and arcs. Tasks denoted by rounded

rectangles represent either activities or silent steps performed in a process execution. Moreover an

activity can be represented by more than one task in a flexible model, i.e. duplicate tasks are

permitted in a flexible model. Arcs are used to connect tasks to each other. The term “flexible” is

used to emphasize that the model is able to accommodate different routing semantics ranging from

relaxed to strict semantic. Flexible model can capture all kinds of split/join patterns including the OR

split/join construct.

Each task in a flexible model has an input set and an output set. Input set of a task consists of

possible combinations of task’s predecessors, while its output set consists of possible combinations

of the task’s successors. Unlike EPC in which routing behaviors are explicitly represented in separate

nodes called connectors, routing behaviors are bound to task node in flexible model. Once a task is

executed, it enables alternative combinations of successors from its input set. In addition, a task is

only enabled if one of combinations from its output set is executed in front. Precise or relaxed split/

join behaviors depend on specifications of input/output sets.

In Figure 2.5, we illustrate a flexible process model containing some workflow patterns. As we can

see, the split/join flows are specified by the declaration of the input/output sets. For instance, the

output set of task A consists of exactly one set which contains both task B and C. This indicates the

AND-split routing, i.e. after task A is executed, task B and C are both enabled. Whereas, the output

set of B consists of two disjoint sets. One contains only task M and the other contains only task N.

This specifies the XOR-split behavior in task B, i.e. either M or N will be carried out after the

execution of B. The output set of task C declares an OR-split pattern, since it contains all alternative

combinations of task C’s successors. Task K indicates an OR-join construct since its input set consists

of all possible combinations of task K’s predecessors. The AND-join and XOR-join are specified by the

input set of task J and W, respectively. Furthermore, a more relaxed synchronization and choice

situation can also be expressed via the specification of input and output sets. For example, the

output set of D indicates that execution of D enables either G or both E and F. This kind of choice is

neither an OR-split nor a XOR-split, it is somewhat in between. Similarly, before task G can be

enabled, D must be executed or both E and F must be executed. Thus flexible is capable of modeling

different types of split/join semantics.

 Chapter 2: Preliminaries Master thesis

 10 Replay analysis in generic process modeling language

Figure 2.5: An example of Flexible model

2.2.2 Canonical process format

Canonical process format (CPF) [6, p.5-10] is a process format providing an unambiguous

representation of business processes captured in different notations. The main idea of CPF is to

represent only the structure characteristic of a process model that can be expressed in different

kinds of process modeling languages. In general, a CPF model is a directed attributed graph

consisting of two elements, nodes and edges both denoted by black circles.

Edges are similar to arcs in Petri net which are used to link nodes. Edges might contain an

attribute, namely “condition” used to represent the conditions upon which a choice is made.

Nodes can be either of type Routing or Work. Routing nodes are used only for capturing the

control flow in the process, i.e. no business perspective is performed in Routing nodes. Routing

nodes are classified into Split, Join and State nodes. Split is specialized to XOR-split, OR-split and

AND-split. Similarly, Join is composed from XOR-join, OR-join and AND-join. States are used to

indicate the state before an event-driven decision is made or after a merge. Splits have exactly

one incoming edge and at least two outgoing edges, Joins have at least two incoming edges and

exactly one outgoing edge, whereas States can have multiple incoming and outgoing edges. With

the existence of AND, OR and XOR split/join nodes, CPF is capable to capture core split/join

behaviors.

Different from routing nodes, Work nodes capture information that is involved in business

perspective. Work nodes contain at most one incoming edge and one outgoing edge and can be

partitioned into Tasks and Events. Tasks model some activities performed in business process.

Task nodes can be either atomic or composite tasks. Composite tasks refer to other CPF model in

low level hierarchy. Events are used to signal something happening during the process execution.

Event nodes can be divided into Message events (capturing a message being sent or receipt) and

Timer events (capturing a timeout or a delay of a task). Work nodes are often associated with

ResourceTypes and Objects. ResourcesTypes refer to something that carry out the tasks and can

either be human (e.g. people in the organization) or non-human resources (e.g. automatic

information systems). Objects refer to the business objects involved in the process and can be

physical objects (e.g. document, paper invoice) or information objects (e.g. file, digital document).

 Chapter 2: Preliminaries Master thesis

 11 Replay analysis in generic process modeling language

A meta-model of the canonical process format defined using UML notation is shown in Figure A.1 in

Appendix A. In Figure 2.6, we depict an example of canonical process format that describes the same

behavior as the Petri net model in Figure 2.1.

Figure 2.6: An example of CPF model

2.3 Event log

Information systems used by organizations usually recorded activities performed during process

execution into event logs. Whenever a process is started, it will trigger a process instance which is

called an event case. A process instance contains a trace of events that are executed for that case.

Each event refers to an instance of a certain activity performed during the process execution. In

addition, events are often associated with attributes such as timestamp attribute and resource

attribute. Timestamp indicates the moment when the event is executed. Resource indicates

something that carries the activity represented by the event and can be either a user or a system.

Moreover, events in a case are ordered to specify in which routine the activities have occurred. For

most of the cases, the order is defined according to the timestamp attribute of the event. Hence,an

event log can be defined as a collection of event traces. Event log is usually taken as the starting

point for process mining technique which will be introduced in the next section.

2.4 Process mining and ProM framework

 Organizations use information systems to support and control their operational activities. Over the

time, these systems record everything observed from real world into event logs. There are always

questions like “how does the actual operational process look like?”, “Does the process model

conform to some specifications?”, “are there any bottle-necks in the current process model?” etc.

Process mining comes up to answer such kinds of question by looking at event logs. Process mining is

defined as a technique that allows for extracting useful information from event logs. The basic idea

of process mining is to discover process models or indentify the deviation by comparing observed

events with some pre-defined models. As illustrated in Figure 2.7, process mining mainly focus on

Process discovery, Conformance and Extension.

 Discovery, aims at constructing new process models from existing event log when there is
no formal description of processes.

 Conformance, aims at analyzing the discrepancy between a log and a pre-defined model by
comparing that model with observed events.

 Extension, aims at improving existing models based on some extracted information (e.g.
improving the process’s performance, detecting the bottle-necks in the models).

 Chapter 2: Preliminaries Master thesis

 12 Replay analysis in generic process modeling language

Log Replay is an analysis technique invented in Process mining area, and mainly focuses on Extension
and Conformance.

Figure 2.7: Process mining role

One of mostly used framework to support process mining is the process mining framework ProM [8].

ProM is plug-in-based software that allows researchers to apply a wide variety of process mining

techniques in an extensive environment. ProM provides more than 250 plug-ins that support almost

kinds of process mining purposes, for instance, process discovery, conformance checking,

performance checking, process conversion and other research areas. ProM also provides an

advanced visualization and verification capability. In most of the cases, the initial input of ProM is an

event log. Currently, ProM accepts event logs in MXML format [9] and XES format [10]. More

information about process mining in general, ProM framework and the most recent researches

concerned in this area can be found in [11].

 Chapter 3: Related Works Master thesis

 13 Replay analysis in generic process modeling language

Chapter 3

Related Works
In this chapter, we introduce the notion of log replay technique. Additionally, we explain how the

replay technique is implemented on specific process modeling languages.

3.1 Log replay

Log replay is an analysis technique allowing to simulate event traces in an event log comparing to a

given process model. Log replay plays an important role in process mining. It can be used for many

analysis purposes within process mining area, for instance, detecting the fitness, behavior,

appropriateness between a process model and an event log or indentifying performance of a

process model. Process models are described in form of many process modeling languages.

However, log replay currently exists only on three modeling languages, namely Petri net, Flexible

model and Fuzzy model. In the following sections, we explain the log replay techniques of those

process models.

3.2 Petri net replay technique

3.2.1 Log replay on Petri net

The Petri net replay method was first introduced in [12]. Input for the replay is a Petri net and an

event log .Before the replay can start, events in log should be mapped to transitions in Petri net such

that each event is mapped to a transition that corresponds to the activity represented by this event.

Since duplicate transitions are allowed in Petri net, an event might be associated with more than one

transition in Petri net. Transitions which are not related to any activities are regarded as invisible

transitions used only for routing purpose. The log replay will simulate every event trace in the log.

Replaying a trace starts with the setting of initial marking for Petri net. Events from each case will be

replayed one by one in a chronological order. The present of tokens play an important role because

they specify execution behavior of transitions in Petri net. They indicate whether or not a transition

is executed with proper pre- condition.

 Once an event is replayed, one of its related transitions 2 is fired. When a transition is fired, a token

is removed from each of its input places and a token is produced in each of its output places. Firing

of a transition can be proper or improper depending on whether or not the transition is enabled in

advance. Generally, a transition is enabled whenever there is at least one token in each of its input

places. However, a Petri net may contain sequences of currently enabled invisible transitions

preceding the related transition. Executing these sequences will enable the execution of the related

transition. Thus, within the context of Petri net replay, a transition is said to be enabled if it is

2 Related transition: a transition is mapped from an event and corresponds to the activity
represented by this event.

 Chapter 3: Related Works Master thesis

 14 Replay analysis in generic process modeling language

enabled either by current marking or by preceding invisible transitions. In case that related task

cannot be enabled directly by current marking, it should be checked whether it can be enabled by

sequences of invisible tasks before considering it as a failed task (i.e. a task is executed improperly).

Whenever an event is replayed, elements from set of related transitions will be executed according

to heuristic rules defined in [12]. First, we denote the set of related transitions of the currently

replayed event as T . The following possibilities are considered based on heuristic.

 If all elements from T are not enabled by all means, an arbitrary transition will be fired by

adding artificial tokens into its input places. We refer these tokens as missing tokens. Hence

the transition is executed unsuccessfully, i.e. the current event is replayed improperly.

 If T contains only one transition that is enabled either by current marking or by sequences

of preceding invisible transitions or both, eventually it will be executed successfully. In the

first case, the transition will be fired directly if it is enabled by current marking only. In the

second case in which the related transition is enabled only by multiple sequences of invisible

transitions, heuristic chooses the shortest sequence to enable the related transition. If

transition is enabled by both current marking and sequences of invisible tasks, it will be

executed immediately rather than executing invisible transitions.

 If set T contains more than one enabled transition, the most suitable transition will be

chosen based on the method already presented in [12, p.90-94].

Furthermore, Petri net replay technique may create a number missing tokens and remaining tokens

after all events in a case are replayed. Missing tokens indicate number of tokens added artificially to

execute transitions without proper pre-condition. Remaining tokens are the tokens not consumed

completely and remain in process model after log relay is finished. The existence of missing tokens

and remaining tokens are important to calculate Petri net conformance fitness metric as defined in

[12, p.70].

3.2.2 Example

To illustrate the Petri net replay technique, we present an example in which an event log is replayed

on a Petri net as shown in Figure 3.1. The event log in this example contains only one event trace A-

B-D-F with frequency value of 5. The Petri net contains an invisible task and two duplicate tasks, F1

and F2. They both correspond to the same event F in the event trace. The replaying steps of trace A-

B-D-F are shown in Figure 3.2.

Start

A

C D

Ʈ B

F1

E F2

End
id trace freq.

1 A-B-D-F 5

Event log

Invisible task

Figure 3.1: Petri net replay example

 Chapter 3: Related Works Master thesis

 15 Replay analysis in generic process modeling language

Figure 3.2: Replaying steps of trace A-B-D-F on the model given in Figure 3.1

We observe that after event B is replayed, heuristic fires task D incorrectly and hence task F1 is

executed next instead of task F2. This produces five missing tokens in input place of task D and five

remaining tokens in output place of task B after the log replay is finished. The projected replay result

is shown in Figure3.3.

Start

A

C D

Ʈ B

F1

E F2

End

Remaining tokens

-5

+5

Missing tokens

Figure 3.3: Result of replaying the event log in Figure 3.1

3.2.3 Limitation

Problems might occur when Petri net contains either invisible or duplicate tasks. To deal with such

invisible and duplicate tasks, local heuristics are used to find the optimal decision for replaying

events, for instance, the shortest sequence of invisible transition is always selected to enable

execution of a transition that corresponds to the currently considered event and currently enabled

transitions must be chosen over un-enabled transitions from list of duplicate transitions. Since the

design decision is optimized locally, from the global point of view, there is no guarantee if the best

optimal replay result is always retrieved. There could be a case that firing transitions violating

heuristic rules (e.g. executing the longer sequence of invisible transitions or firing un-enabled

transitions rather than firing enabled transitions) would produce an executing sequence of tasks that

is compliant better to the observed behavior.

As an example, we replay the event trace A-B-C on the Petri net as shown in Figure 3.4. This Petri net

contains two duplicate tasks B1 and B2 both corresponding to the same event B. Using classical

approach to replay this event trace, there is one transition (C) that fires without proper pre-

condition. This is because the replay algorithm chooses to execute B1 rather than B2 after the

execution of A. When event C is replayed, an extra token must be added to execute C without

proper pre-condition. The existence of missing token leads to a conformance fitness metric less than

 Chapter 3: Related Works Master thesis

 16 Replay analysis in generic process modeling language

1 in this example. Therefore, executing sequence A- -B2-C is supposed to be selected as it produces

no missing tokens. However, this sequence is never executed due to local heuristic rules.

Figure 3.4: A Petri net with two duplicate tasks to be replayed with trace A-B-C

There is another serious problem concerning heuristic decision of invisible tasks which relate to OR-

Split construct. In Petri net, an OR-split construct is realized by a set of invisible transitions to model

all the possible combinations. Consider an example of Petri net OR-split construct given in Figure 3.5.

 Figure 3.5: A Petri net OR-split construct to be replayed with trace A-B-C

The problem occurs when trace A-B-C is replayed on this Petri net. After event A is replayed

correctly, heuristic approach is applied to select the shortest sequence of invisible transitions to

enable task B. We realize that any of sequences A- 1 and A- 2 can be fired randomly since all of

them have the same shortest length of invisible transitions and can both enable the transition B.

However, firing 1 would create an undesirable situation in which one missing tokens are added to

execute C without proper pre-condition. Whereas, execution of 2 would lead to a better optimal

result since no missing tokens and remaining tokens are created. Preferably, 2 should be executed

rather than executing 1 . However, the choice between these two invisible transitions is non-

deterministic by using classical Petri net replay method.

Therefore, the optimal replay result cannot be ensured using currently applied local heuristic. To

obtain the global optimal replay result, it is necessary to perform further analysis for each design

decision choice during the replay. However, the current Petri net replay technique is not invented to

support that.

3.3 Flexible model replay technique

Flexible model replay technique was first presented in [13]. Before we describe it in detail, notion of

unsatisfied events and A* algorithm are introduced first since they are essential in the flexible replay

technique.

3.3.1 Unsatisfied events

Given a Flexible model and a set of events to be replayed, an event in the set is said to be unsatisfied

if it is replayed incorrectly, i.e. its corresponding task in the flexible model fires without proper

condition. Consider an example in which a trace A-C is replayed on the flexible model shown in

Figure 3.6. The enabling of task C requires an execution of B in advance. However, no events

associated with task B appear in front of event C in the trace. Thus, during replaying trace A-C, task B

 Chapter 3: Related Works Master thesis

 17 Replay analysis in generic process modeling language

never be executed and hence task C cannot be enabled. To replay event C, the related task C has to

be fired without prior execution of task B. Therefore, we regard event C as an unsatisfied event. The

existence of unsatisfied during replay significantly affects the conformance task ratio fitness metric

for flexible model [7, p.8]. Note that the definition of unsatisfied events is similar to events that

cause missing tokens in Petri net replay.

A B C

in(A)={Ø}

out(A)={{B}}
in(B)={{A}}

out(B)={{C}}
in(C)={{B}}

out(C)={Ø}

id trace freq.

A-C 21

Event log

Figure 3.6: Trace A-C is replayed on the given Flexible model with C is an unsatisfied event

3.3.2 A * algorithm

A* algorithm [14] is a searching algorithm based on heuristics to find a least-cost path from a source

node to a set of target nodes in a weighted directed graph. The algorithm uses cost function f to

determine the order in which the search visit the nodes in the graph. Let n be a node in the graph,

function nf is defined as the sum of ng and nh , where ng is the least cost to go from the

source node to node n, nh is an admissible heuristic function returning the estimated cost to go

from node n to the closet target node. In order to find the optimal path from source to target,

function nh should not overestimate the actual cost to reach the closet target. The basic idea of

A* algorithm is that from the node currently visited, one of its successors n with the least nf is

visited next. The algorithm stops whenever a target node y is visited (i.e. 0yh) or no more

nodes to be explored.

3.3.3 Log replay on Flexible model

The flexible model replay technique takes a flexible model and an event log as inputs. Before the

replay can start, each event from the log must be mapped to a corresponding task in flexible model.

The flexible replay technique will simulates each event trace from the log one after one. For each

event trace, the replay algorithm creates a search tree containing an optimal path that reflects the

replayed events in the trace. The flexible model replay algorithm works by iteratively exploring

successors of nodes, starting from the source node. Each time of iteration, we keep track of paths

from initial node to each successor. To determine which successor is going to be explored in next

iteration, the algorithm calculates the cost nf of every successor and then selects the one whose

 nf is the smallest.

The log replay starts by creating an initial node first. After that the successors are generated based

on the following “move” types.

 Move on model only with invisible task: If there are some currently enabled invisible tasks

in the model, then this action will execute each of these invisible tasks without replaying any

events from the log. Every move on model only with invisible task will create a new node

instance in search tree. The purpose of move on model only with invisible task is to identify

the events that cannot be observed in reality. Executing these invisible tasks might enable

the task to which the currently considered event in the trace corresponds.

 Chapter 3: Related Works Master thesis

 18 Replay analysis in generic process modeling language

 Move on model only with real task: If there are some currently enabled real tasks in the

model, then this action will execute each of these real tasks without replaying any events

from log. Every move on model only with real task will create a new node instance in search

tree. The purpose of move on model only with real task is to identify the events that actually

happen in reality but not logged. Executing these real tasks might enable the task to which

the currently considered event in the trace corresponds.

 Move on log only: The currently considered event is removed from the log without firing any

tasks from the model. Some activities are logged more than one in event log. Therefore this

move will indentify the redundant events in the log. Each move on log only will create a

node instance in search tree.

 Move on both log and model: The currently considered event is replayed and its related

task is fired. If the current event is related to more than one task in the model. The move on

both log and model will happen for each of the related tasks of the current event. The

replayed event can be unsatisfied if the related task is fired improperly otherwise it is

satisfied. Every move on both log and model will also create a node instance in search tree.

The algorithm will select a successor node whose cost value nf is the smallest for the next

iteration. In the next iteration, the same procedure is applied. The log replay stops whenever the

target node is reached. The target node is usually obtained either by removing the last event from

the log, by replaying the last event correctly or by replaying the last event incorrectly. At the end, we

obtain an optimal path in which the number of unsatisfied event is the smallest. Each edge from this

path corresponds to a “move” type.

 Before we describe the cost function nf for each currently visited node n, a list of cost

parameters involved in nf is introduced first in Table 3.1:

Parameter Description

RE Cost of replaying an event successfully.

E Cost of a single event that still left in the case

Us Cost of replaying an unsatisfied event.

UnA Cost of an unhandled arc, i.e. arc connects to a task that is enabled after executing an

event.

Minv Cost of executing an invisible task

Mr Cost of executing a real task only without replaying the current selected event in the

log

Rem Cost of removing an event from the log

Table 3.1: Description of parameters required for Flexible model -based replay

 Chapter 3: Related Works Master thesis

 19 Replay analysis in generic process modeling language

Then nf is defined as the cost of the path running from source node to target node and passes

through current node n .

 nf is formulated as:

 nhngnf (1)

 nh is the estimate cost to go from current node n to the target node. Let L be the

number of events left in the event case at node n then ELnh .

 ng is the least cost to reach the current node n from the initial node. Under node n , let

A be the number of events replayed successfully so far. Let B be the number of created un-

handled arcs. Let C be the number of executed invisible tasks. Let D be the number of visible

tasks executed without replaying any events from the case. Let F be the number of events

removed from the case so far and let G be the number of unsatisfied events replayed. Then

 ng = A*RE + B*UnA + C*Minv + D*Mr + F*Rem+G*Us. Note that number of events

replayed successfully is increased by move on both log and model. Similarly, number of

unsatisfied event is increased by move on both log and model. The number of executed

invisible tasks is increased by move on model only with invisible task. The number of

executed visible tasks is increased by the move on model only with real task. And the

number of removed events is increased by move on log only.

 The cost value sf of the source node s is always equal to sh (i.e. sg =0). And the cost

value tf of the target node t is always equal to tg (i.e. 0th).

Before the replay can start, cost parameters listed in Table 3.1 must be provided with certain cost

values. For better understanding of flexible model replay method, an example is demonstrated in

the subsequent section.

3.3.4 Example

Given a Flexible model, an event log and values required for cost parameters as shown in Figure 3.7,

a search tree is constructed during replaying trace A-B-C as shown in Figure 3.8.

A B C

in(A)={Ø}

out(A)={{Tau}}

Tau

in(Tau)={{A}}

out(Tau)={{B}}
in(B)={{Tau}}

out(B)={{C}}
in(C)={{B}}

out(C)={Ø}

id trace Freq.

A-B-C1 2

Parameter Value

RE

E

UnA

Minv

Mr

Rem

1000

1000

1

1

2000

3000

Us 1500

Event log

Parameter setting

Figure 3.7: Trace A-B-C is replayed on the flexible model with pre-defined parameters

After initial node S is created, move on model only can happen on A since A is already enabled. This

creates the node instance 3. Move on log only removes event A and creates instance 1. Move on

both log and model replays event A and fires related task A simultaneously and results in instance 2.

 Chapter 3: Related Works Master thesis

 20 Replay analysis in generic process modeling language

A is said to be satisfied because related task A has been fired properly. Replay algorithm then

calculates cost value nf of each created instance using formula (1) described in Section 3.3.3.

Instance 2 with smallest cost value is then selected for next consideration.

We then apply the same procedure to find successors of instance 2. Event B in the log is going be

replayed. Move on log only removes event B and results in instance 2.1. Observed that execution of

A enables the invisible task Tau, moreover task A is always enabled at anytime. Thus move on model

now can happen both on invisible task Tau and again on task A. Move on both log and model will

replay event B and execute related task B. Event B is regarded as unsatisfied since task B has been

fired improperly (i.e. missing execution of Tau in prior). We observe that move on model on Tau

creates an instance (instance 2.4) whose cost value nf is the smallest, thus instance 2.4 is

selected for next iteration.

Figure 3.8: Search tree generated after replaying A-B-C contains an optimal path

The algorithm continues the same procedure until last event from the case is considered. At the end,

we obtained an optimal path which reflects the replay of each event from trace A-B-C. We observe

that the first edge from this path corresponds to replaying event A correctly. The second edge

corresponds to executing an invisible task. The third edge corresponds to replaying event B correctly

 Chapter 3: Related Works Master thesis

 21 Replay analysis in generic process modeling language

and the last edge corresponds to replaying event C correctly. In this path, all replayed events are

satisfied.

The initial node instance is always selected at the beginning of search tree. Apparently, the cost

value nf of initial node is always equal to its heuristic cost value nf . In our example the cost of

source node S is)(ShSf number of remaining event in the log * E=3*1000=3000. At every

currently explored node instance, the algorithm will try to implement all kinds of “move” described

above to create the successors. Note that move on log only happens at most one time as we can

only remove one event at a time. Number of occurrences of move on model only depends on the

number of currently enabled tasks, while move on both log and model depends on the number of

duplicate tasks related to currently considered event. The successor node with smallest cost value

 nf is always selected for next iteration. We continue the same procedure for next selected

instance until the last event is replayed.

3.3.5 Limitation

In contrast to Petri net replay in which the design decision is made based on local optimization,

flexible model replay will form different potential scenarios for each event to be replayed and

performs further analysis over those potential scenarios. Thus, global optimal scenario is always

guaranteed to be found.

However, there is a serious problem existing in flexible model replay method. This problem concerns

the fact that number of investigated instances during replay might be increased significantly. The

current flexible model does not have notion of starting tasks. Therefore, all flexible tasks which don’t

have predecessors will be treated as initial tasks. Initial tasks have empty input set3 and they are

always enabled at any time. Since they are always enabled, move on model only with every initial

task will always be taken at every currently explored node instance. For instances, in our example,

move on model only with A happens at every selected instance along the optimal path. This creates a

large number of new instances caused by moving only on A. Additionally, when duplicate tasks are

considered; each one of them forms a different scenario that requires further analysis to choose the

optimal one. Obviously, this also creates a lot of new instances. Thus, for the replay between a

model containing huge number of initial tasks, huge number of duplicate tasks and a long log trace,

the algorithm will explore a large number of instances. Hence it decreases the performance of log

replay.

There is another problem concerning unhandled arc cost. First of all, we introduce the purpose of

unhandled arc cost. The idea of unhandled arc cost is to avoid a special situation described as

follows. Given a flexible model in Figure 3.9, both sequences A- 1 -C-D and A- 2 -C-D are executed

correctly during replaying trace A-C-D. However, execution of 1 also enables task B. Thus when

trace A-C-D finishes replay, B remains enabled, i.e. this leads to an improper completion. It is similar

to the existence of remaining tokens in Petri net. Hence 2 should be executed rather than 1 . To

enforce 2 to be selected, we should add unhandled arc cost to the calculation of evaluation

3 For a certain node s, if its input set is in(s) = {} (Empty input set) then s is always enabled. If input

set is in(s) = (input set is null), then it is never enabled.

 Chapter 3: Related Works Master thesis

 22 Replay analysis in generic process modeling language

cost nf . The total cost nf to execute 2 is then smaller than the total cost to execute 1

because 1 creates 3 unhandled arcs whereas 2 creates only 2. Consequently, 2 is selected.

Figure 3.9: An example of flexible model which proves the need of unhandled arc cost

However, the existence of unhandled arc cost would produce another serious problem. As an

example, consider the flexible model given in Figure 3.10 and an event trace A-B-C. Both tasks B1

and B2 in the model represent the same event B. The expected executing sequence for replaying

trace A-B-C should be A-B1-C. However, the actual obtained sequence is the trace A-B2-C in which C

has been executed unsuccessfully, i.e. event C is unsatisfied. This is because the execution of B1

creates a massive number of unhandled arcs which is larger than the unsatisfied event cost Us. Thus

cost to execute the trace A-B1-C is bigger than cost to execute the trace A-B2-C. Hence the algorithm

chose to execute A-B2-C which is unexpected.

Figure 3.10: An example of flexible model which shows the problem of using unhandled arc cost

3.4 Fuzzy model replay technique

3.4.1 Log replay on Fuzzy model

The method for log replay on fuzzy model was first introduced in [5, p.199-203]. Inputs for fuzzy

model replay technique are an event log and a fuzzy model. Since fuzzy model supports activity

abstraction, activities whose behavior is not of interest will be discarded from model. Therefore,

events in the log whose activity abstracted are considered as unmappable events. The log replay

starts with a pre-processing phase in which unmappable events are removed from the log. Every

unmappable event is counted as a deviation. The term deviation refers either to an event whose

activity is abstracted or to an event whose corresponding task in fuzzy model is executed without

 Chapter 3: Related Works Master thesis

 23 Replay analysis in generic process modeling language

proper pre-condition. The number of deviations between a model and an event log are important to

calculate the fuzzy conformance metric [5, p.199].

The basic idea of fuzzy model replay technique is to subsequently transform sequence of events to

be replayed into an executing sequence of corresponding tasks in fuzzy model. Events whose related

tasks are contained in cluster nodes will be mapped to their corresponding cluster nodes. The replay

algorithm then executes each node from the executing sequence one by one. Each time a node

(primitive node or cluster node) is executed, it will be classified as valid or invalid. If the current node

has been enabled by previous executed nodes or it is the same cluster node observed directly

before, it is said to be valid. Otherwise, it is said to be invalid. All invalid nodes are regarded as

deviations. The detailed explanation of how to detect the validity of executed nodes is presented

clearly in [5, p.199-203]. In the next subsequent section, we illustrate a simple example of fuzzy

model replay technique.

3.4.2 Example

Consider an example in which we replay the trace A-B-C-E on a fuzzy model shown in Figure 3.11.

Since task B and C are grouped in cluster node CL. Trace A-B-C-E will be transformed to the executing

sequence A-CL-CL-E. The replay begins with execution of task A. The execution of task A is valid as

task A is enabled at any time during a process execution. After A has been executed, cluster node CL

from model is enabled. Thus this makes the execution of first cluster node CL from the sequence

valid. The execution of second cluster node CL is valid too because it is exactly the cluster CL

observed directly before. Execution of CL then enables D only. However, the next node to be

executed is node E. In this case, the execution of E is invalid since there is no execution of D before

to enable task E. Therefore the replay of trace A-B-C-E results in one deviation (i.e. E)

B CA D E

Cluster

CL

.Trace to be replayed: A-B-C-E

.Mapped sequence of related tasks: A-CL-CL-E

Invalid task

Fuzzy Model

Figure 3.11: Trace A-B-C-E is replayed on the given Fuzzy model

3.4.3 Limitation

There are several problems existing in the current fuzzy model. One of problems is that fuzzy model

replay is able to replay an invalid event trace correctly due to its relaxed execution semantics. As an

example, consider an example in which we replay the trace A-B-C-D in a Fuzzy model which

describes the same behavior as the one described in the Petri net depicted in Figure 3.12.

 Chapter 3: Related Works Master thesis

 24 Replay analysis in generic process modeling language

Figure 3.12: Fuzzy model converted from Petri net

Assume that this Petri net conform 100% to reality. Replaying the trace A-B-C-D in the Petri net

creates a fitness value less than 100%. Thus, this trace is regarded as invalid trace. However, due to

relaxed execution semantics of fuzzy model, this trace does not deviate from the fuzzy model during

the replay.

There is another problem concerning invisible tasks. Conceptually, Fuzzy model does not have notion

of invisible tasks. This is because fuzzy model can only be obtained by directly discovering from

event log. Obviously, invisible tasks are not recorded in event log. Therefore, the current fuzzy replay

technique was not designed to deal with invisible tasks. If any invisible tasks from any other process

models can be mapped to Fuzzy nodes, they will be regarded as real tasks. This brings up the

following problem. Consider a fuzzy model depicted in Figure 3.13 in which the trace A-B is replayed.

The fuzzy model contains a task Tau that is indeed an invisible task. However, task Tau is treated as a

real task in Fuzzy model. Hence during replaying trace A-B, the corresponding sequence A-B from the

given Fuzzy model is executed with one deviation, i.e. execution of B is invalid. This leads to a fuzzy

conformance metric less than 1 which is supposed to be 1.

A Tau B
Event trace to be replayed: A-B

Execution sequence of corresponding tasks: A-B

Figure 3.13: A Fuzzy model which contains an invisible task Tau

 Chapter 4: Generalizing process modeling languages Master thesis

 25 Replay analysis in generic process modeling language

Chapter 4

Generalizing process modeling languages
The broad application of business process models has stimulated organizations to create dozens of

process models based on different types of modeling languages. Apparently, an issue comes up on

how to deal with such large volumes of models, particularly when one needs to consults, customize

and re-use models. Over the years, there are a lot of techniques developed for process model

analysis. However, most of them look at process models in isolation, i.e. they work only on a specific

model rather than being applicable to a wide variety of process modeling languages. This problem is

including the log replay technique which has been invented for specific process modeling languages.

It is always desirable to perform replay on any types of modeling languages for process analysis

purpose. Thus, in this chapter, we present an approach for replaying an event log on various process

modeling languages. Also in this chapter, we introduce two generic process formats that are

essential in our replay approach.

4.1 Replay approach on variety of modeling languages.

Log replay allows for re-playing observed events against a given process model. Currently, log replay

exists only on some specific modeling languages, such as Petri net, fuzzy model and flexible model.

It could always happen when one takes any existing process models (e.g. EPC, Yawl) and wishes to

perform the log replay on them. This may require a new log replay method developed for such

process models. However, creating a new log replay is difficult and takes a lot of efforts. Therefore,

rather than developing a new replay technique for each process modeling language, we take the

idea of unified analysis approach which is similar to the one presented in [12, p.199]. The idea of this

approach is to develop a replay method on a generic process format that provides abstraction of

existing process models. This unification approach is described in Figure 4.1.

Figure 4.1: A unification approach for Log Replay

 Chapter 4: Generalizing process modeling languages Master thesis

 26 Replay analysis in generic process modeling language

This approach allows any existing process models to be replayed indirectly as long as they can be

expressed in the form of a generic process model. Generic process model is essential to enable log

replay on a wide variety of modeling languages. As the idea is to perform log replay independently

from specific semantics, generic process model is required to leave away specific semantics and to

capture the core split/join behaviors of existing process modeling languages. Thus, flexible model

and canonical process format introduced in Chapter 2 appear to be the two potential candidates for

our unification approach.

 It is important to realize that flexible model and CPF model can be obtained using several

approaches, e.g. by discovering directly from event log, by modeling them manually or by converting

existing process models. In current practice, Flexible model can only be obtained by modeling it

manually, while CPF model can be obtained from other process models using various conversional

methods [6]. With the lack of conversion methods available for flexible model, CPF seems to be a

better choice. Moreover, CPF is optimized to supports a wide range of analysis purposes [6, p.2-4]

such as quality analysis, correctness analysis, performance analysis, pattern-based analysis or

similarity search. Therefore, we choose CPF as a process modeling language to generalize existing

process models.

4.2 Conversion aspect

CPF models are obtained by mapping elements of other process models to elements of CPF model.

Currently there are conversion methods available for six different modeling languages, namely EPC,

BPMN, Protos, Yawl, WF-net and BPEL, as introduced in [6, p.7-10]. Apparently, mapping rules

described in [6] are not complete. They do not explain in detail how specific constructs of existing

process models can be mapped to CPF model. Therefore, in this section we explain mapping rules in

more detail and improve them as necessary to tackle several specific cases. However, we do not

describe mapping rules of all six modeling languages mentioned above. Instead, we choose to

explain the ones of Yawl and EPC as Yawl can capture almost workflow patterns [1] and contains

some advanced constructs (e.g. cancelation set, multiple-instances tasks, composite tasks) while EPC

is the mostly used modeling languages in industry. Additionally, we design the mapping rules for

Petri net and Flexible model.

4.2.1 Petri net to CPF

A typical Petri net graph consists of arcs, transitions and places. Places can be specialized into input

places, output places and normal places. Input places and output places are used to signal the

beginning and the end of a process, respectively. Normal place captures a state before an event-

decision is made or pre/post-condition of a transition. Furthermore, places can be partitioned into

either sese4- places or non-sese places. Aside from representing activities, transitions can be used to

route the control flow in process execution. Hence, we classify transitions into sese-transitions, AND-

join transitions, AND-split transitions and AND-join AND-split transitions. While sese- transitions are

only used to model activities, the others can also be used to express the split/join behaviors, such as

AND-join transitions indicate the synchronization, AND-split transitions indicate parallel branching

and AND-join AND-split transitions indicate both synchronization and branching.

4 sese: single entry single exist referring to a model element with at most one incoming arc and one
outgoing arc

 Chapter 4: Generalizing process modeling languages Master thesis

 27 Replay analysis in generic process modeling language

Table B.1 in Appendix B illustrates how Petri net elements are mapped to canonical elements. It is

observed that all of the Petri net elements can be converted to canonical elements. For instance

Petri net arcs are simply mapped to canonical edges. Sese-places are mapped to canonical events

whereas non-sese places are mapped to canonical states. In Petri, AND-join/split routing and task

behavior are semantically bound to a single transition node. However, in canonical representation,

we need to separate the task from its parallel routing behavior. Therefore, Petri net transitions are

mapped to canonical tasks while transition’s parallel split and synchronization must be mapped to

canonical ANDSplit node and canonical ANDJoin node, respectively.

In table 4.1, we show the conversion from Petri net to CPF in more detail by illustrating canonical

representation of ten Petri net constructs. The first construct represents mapping of a Petri net sese-

transition. In this case, we simply map it to a canonical task. The second construct illustrates

mapping of an AND-split transition. An AND-split transition is mapped to a canonical task followed

by a canonical ANDSplit node. Similarly, an AND-join transition in the third construct is mapped to a

canonical ANDJoin node followed by a task. The fourth construct represents mapping of a special

type of transition which involves both synchronization and parallel branching. In this situation, the

transition must be mapped separately to an ANDJoin node followed by a task which is then followed

by an ANDSplit node.

A sese-place which indicates something happening during the process execution is mapped to a

canonical event as shown in the fifth construct. However, non-sese place which captures simple

choice, simple merge or both must be mapped to a canonical state. A mapping of a non-sese place is

exampled in the sixth construct. Sese-input place and sese-output place must be mapped to a

canonical event as shown in the seventh and the eighth construct. Non-sese input places (or non-

sese output places) require an extra canonical state to indicate the state in which the event-driven is

made or to capture the final state before the process ends. The last two constructs show examples

in which a non-sese input place is mapped to an event followed by a state while a non-sese output

place is mapped to a state followed by an event.

 Petri net constructs Canonical representations

1

2

3

4

 Chapter 4: Generalizing process modeling languages Master thesis

 28 Replay analysis in generic process modeling language

5

6

7

8

9

10

Table 4.1: Canonical representation of ten Petri net constructs

Syntactically, Petri net does not have any elements to directly support multiple merge and multiple

join, whereas canonical process format do have the so-called ORSplit and ORJoin to represent such

patterns. To express OR-split/join behaviors in a Petri net, a network of extra silent steps must be

added (as shown in Figure 4.2.a and 4.2.b). Conceptually, multiple split and multiple join in Petri net

must be replaced by a canonical ORSplit and a canonical ORJoin, respectively. However, identifying

Petri net OR-split/join patterns is not an easy step in practice. For ease, we do not address such

patterns specifically and perform straightforward mapping for Petri net elements as described in

Table4.1. As an example, Figure 4.3 illustrates direct mappings of Petri net OR-split and OR-join into

corresponding canonical notations.

 Chapter 4: Generalizing process modeling languages Master thesis

 29 Replay analysis in generic process modeling language

Figure 4.2: OR-split/join modeled in Petri net compared to CPF notation

Figure 4.3: Straightforward mapping of OR-split/join from PN to CPF

 Chapter 4: Generalizing process modeling languages Master thesis

 30 Replay analysis in generic process modeling language

Based on [1], simple choice can be classified into exclusive choice and deferred choice. The difference

between these two types is concerning the moment when the routing decision is made. In exclusive

choice, the choice is decided immediately by the workflow system, whereas the deferred choice

delays the moment of choice as latest as possible and depends on outside environment. Figure 4.4

provides examples of exclusive choice and deferred choice in both Petri net and canonical format

notation.

Figure 4.4: Simple choice modeled in Petri net compared to CPF notations

States in CPF are used to capture the deferred choice in process execution, thus mapping of Petri

net’s deferred choice to CPF is done directly by replacing Petri net place with a canonical state as

shown in Figure 4.4.b. In general, exclusive choice pattern in Petri net should be replaced by a

canonical XORSplit node as illustrated in Figure 4.4.a. However it is not easy to indentify this pattern

in implementation. Without any additional information apart from the model, it is not possible to

indentify transitions that only exist to help routing of a process. For instance, it is impossible to

indentify the role of task “doA” and “doB” which is used to enforce the simple choice becomes

exclusive choice in our example. Therefore, the mapping will be done straightforwardly by directly

converting the related Petri net elements into the corresponding CPF elements as illustrated in

Figure 4.5. We observe that the place ”e1” which signals the choice in Petri net is mapped to a

canonical state which is used to indicate the deferred choice in CPF model. Therefore, the exclusive

choice in Petri net is converted to a deferred choice in CPF. This would be a drawback in which

information about the moment of choice cannot be preserved after the mapping. Another drawback

is that initial marking of Petri nets will be lost after mapping since CPF does not store information

about initial marking.

Figure 4.5: Straightforward mapping of XOR-split from PN to CPF

 Chapter 4: Generalizing process modeling languages Master thesis

 31 Replay analysis in generic process modeling language

4.2.2 Flexible model to CPF

Flexible model is described in form of a directed graph consisting of task nodes only. Flexible tasks

represent either activities or silent steps happening in a process execution. By definition, flexible

model can capture almost core split/join behaviors. It is even able to capture a more relaxed

synchronization/choice pattern. Consider an example in which a flexible model with more relaxed

split/join constructs is shown in Figure 4.6.

Figure 4.6: A flexible mode with relaxed split and join pattern

Observed that execution of A enables either D or both B and C. This type of split is neither multiple

choice (OR-split) nor exclusive choice (XOR-split). This is considered as a more relaxed choice whose

behavior is in between OR-split and XOR-split. Similarly, firing D is enabled by either execution of A

only or by B and C together. Unfortunately, current CPF model was not designed to capture such

kind of split/join patterns. Therefore, the mapping to CPF model assumes the original flexible models

do not contain such type of relaxed split/join constructs.

Table B.2 (Appendix B) describes how flexible model elements can be mapped to canonical

elements. Flexible arcs are mapped directly to canonical edges. Split/join behaviors in flexible model

are bound to task nodes and specified by task’ input/output set. In CPF model, they must be

represented in routing nodes. Thus, flexible tasks are mapped to canonical tasks while their split/join

behaviors are mapped separately into canonical split/join nodes.

In table 4.2, we explain the mapping in more detail by illustrating canonical representation of eight

flexible constructs. Flexible tasks which do not contain split/join behavior are mapped directly to

canonical tasks as shown in the first construct. The next three constructs represent mapping of

flexible tasks which contain only a split. In this case, flexible task must be mapped to a canonical task

followed by a canonical split. Type of canonical split depends on the type of split behavior bound in

the flexible task. If a flexible task contains only a join, it must be mapped to a canonical join followed

by a canonical task as illustrated in construct 5, 6 and 7. If a flexible task contains both split and join,

it must be mapped to a canonical join followed by a canonical task which is then followed by a

canonical split. The last construct shows a mapping example of a flexible task which contains both

join and split behaviors (e.g. OR-join and AND-split).

 Chapter 4: Generalizing process modeling languages Master thesis

 32 Replay analysis in generic process modeling language

 Flexible constructs Canonical representations

1

2

Task

 @:à A
Task

 @:à B

ANDSplit

 @:à As

Task

 @:à C

3

Task

 @:à A
Task

 @:à B

XORSplit

 @:à As

Task

 @:à C

4

5

6

7

8

Table 4.2: Canonical representation of eight Flexible constructs

4.2.3 Yawl to CPF

Yet Another Workflow Languages is represented by a graph consisting of tasks, conditions and flows.

Yawl conditions are specialized into: input conditions, output conditions and normal conditions. A

condition can be either sese or non-sese. In Yawl, control flow patterns such as simple choice, simple

merge, multiple choice, multiple merge, parallel branching and synchronization, are often bound

together in task node. In order to perform the correct mapping, we need to distinguish different

routing types inside task nodes. We categorize Yawl tasks into four main types: Atomic Task,

Multiple Instances Atomic Task (abbreviates as MI Atomic Task), Composite Task and Multiple

Instances Composite Task (MI Composite Task). Each of them can associate with different routing

patterns, for instance ANDJoin- atomic task is an atomic task containing only synchronization while

XORJoin-ORSplit atomic task contains both simple merge and multiple split. There is a list of different

types of Yawl task described in Table B.6 (Appendix B).

 Chapter 4: Generalizing process modeling languages Master thesis

 33 Replay analysis in generic process modeling language

Table B.3 (Appendix B) provides a general view of how the Yawl‘s elements are mapped to canonical

elements. Yawl flows are mapped directly to canonical edges. A Yawl condition can be mapped

either to a canonical event if it is sese, or to a canonical state if it is non-sese. Yawl atomic tasks are

mapped to canonical Tasks. A composite task must be exploited such that its sub-net should be

mapped to corresponding canonical notation. This is necessary since replay technique needs to

traverse all transitions during replaying. Routing behaviors inside tasks must be separated and

mapped to canonical split/join nodes.

Table 4.3 produces an insight into the mapping from Yawl elements to CPF elements by illustrating

the canonical representation of nineteen Yawl constructs. The first two constructs show that both

atomic and multiple-instances atomic tasks are be mapped directly to canonical tasks. The reason

we map multiple instances atomic tasks to canonical tasks is because CPF does not provide any

elements which can syntactically represent multiple-instances characteristics in an explicit way.

Therefore, information about multiple-instance characteristic in Yawl cannot be preserved when

mapping to CPF.

In Yawl, splits and joins must be represented inside task nodes but in canonical process format we

need to separate the task behavior from its routing behavior. Therefore, a yawl task associated with

a join must be mapped to a canonical join followed by a canonical task. The type of canonical join

depends on the type of join behavior associated inside the original yawl task. A task associated with

a split must be mapped to a canonical task followed by a canonical split. A yawl task associated with

both join and split must be mapped to a canonical join followed by a task which then links to a split.

In the next six constructs, we demonstrate examples of mapping (multiple-instances) atomic tasks

involving join and/or split.

Since Log replay needs to replay the entire process model including sub-net models, Yawl composite

tasks must be exploited completely in such a way that all elements of sub-net should be mapped to

corresponding CPF nodes. If the composite tasks contain split/join behavior, these routing must be

separated from task behavior and mapped to canonical split/join nodes. Similarly, multiple-instances

characteristic of composite task cannot be preserved in CPF model. In the next five constructs shows

examples of mapping composite tasks which possibly contain split/join behavior.

A Condition in Yawl is used to signal the start or the end of a process, or to capture something

happening in the middle of process execution. If the condition is sese, we simply map it to a

canonical event as shown in the construct 14, 16 and 17. If the condition is a non-sese input

condition, we map it to an event followed by a state as shown in the construct 18. If the condition a

non-sese output condition, it is mapped to a state followed by an event as shown in the last

construct. If the condition is only used for routing purpose, e.g. capturing the deferred choice or

simple merge, it should be mapped to a state only as shown in the construct 15.

Yawl supports a special construct called cancelation sets in which the execution of a task will remove

tokens from nodes irrespective to how many tokens there are. Figure 4.7.a shows the cancelation

sets is denoted by a dashed rounded rectangle. Enabling of task “Cancel” does not depend on tokens

in the dashed area. All remaining tokens in this area are removed at the moment task “Cancel” is

executed. Unfortunately, the currently canonical process format does not support this kind of

construct. Thus, information concerning when and what to be discarded within the process

execution cannot be preserved during mapping to CPF.

 Chapter 4: Generalizing process modeling languages Master thesis

 34 Replay analysis in generic process modeling language

Figure 4.7.b only depicts the corresponding CPF model converted from the Yawl model on the left

hand side using the mapping rules described in Table 4.4.

 Yawl constructs Canonical representations

1

2

3

4

5

6

7

8

9

10

11

12

 Chapter 4: Generalizing process modeling languages Master thesis

 35 Replay analysis in generic process modeling language

13

14

15

16

17

18

19

Table 4.3: Canonical representations of 19 Yawl constructs

Figure 4.7: Cancelation sets modeled in Yawl and the corresponding CPF model

4.2.4 EPC to CPF

Event-driven process chain is an industry process modeling language represented by an EPC

diagram. EPC diagram contains only three modeling elements to capture process control flow such

as functions, events and logical connectors. Table B.4 in Appendix B describes the mapping rules

from EPC elements to CPF elements. EPC functions are used only to represent activities and do not

involve any routing patterns. Therefore, functions should be mapped to canonical tasks. In EPC, the

flow of process is captured by logical connectors. Thus, EPC connectors should be mapped to

canonical splits and joins. Events in EPC describe under what circumstance a function works or which

state a process results in and they also indicate the beginning and the end of a process.

 Chapter 4: Generalizing process modeling languages Master thesis

 36 Replay analysis in generic process modeling language

EPC events are usually mapped to canonical events if they do not immediately follow an (X)OR-split.

Since in EPC, the events following an (X) OR-split are used to indicate the condition upon which the

choice is made. Therefore, events that follow immediately an (X)OR-split must be mapped to

canonical edges and the labels of the events are mapped to the labels of the canonical edges.

Table 4.4 describes mapping in more detail by illustrating canonical representation of nine EPC

constructs. The first three constructs represent mapping of EPC split-connectors. The next three

constructs represents mapping of EPC join-connectors. The seventh construct illustrates mapping of

an EPC function. The eighth construct illustrate mapping of an EPC event that does not immediately

follow an (X)OR-split. The last construct shows mapping of events that follow immediately an XOR –

split.

 EPC constructs Canonical representations

1

2

3

4

5

6

7

A

8
A E B

9

Table 4.4: Canonical representation of nine EPC constructs

 Chapter 4: Generalizing process modeling languages Master thesis

 37 Replay analysis in generic process modeling language

It should be noticed that there might be a situation in which ending events follow an (X) OR-split. In

this case, if we apply the mapping rules described in Table 4.4, the resulting CPF model will contain

open edges pointing to nowhere. Although this situation rarely happens in reality, this should be

avoided. Thus, for this specific case, a proposal is to add extra “silent” tasks following (X)OR-split as

shown in Figure 4.8.

Figure 4.8: Canonical representation of an EPC model with 2 ending events following an XOR-split

4.2.5 Conversion to CPF in general

According to [6], canonical elements are identified from an analysis of commonalities among various

process modeling languages. Thus canonical process format is able to capture structural

characteristics of many process models. Any existing process models that are common in the

majority of modeling languages can be mapped to CPF model using the following rules:

1. Each element from original model which represents an activity or a silent step is mapped to

a canonical task. If the element involves routing behavior, its routing behavior must be

separated and mapped to canonical split/join nodes.

2. Each element which indicates only routing behavior (e.g. EPC connectors) is mapped to a

canonical split or join depending on what kind of routing is described in the original element.

3. Each element that indicates something happening during the process execution or describes

under what circumstances the process works is mapped to a canonical event or state. If the

element has at most one incoming and/or outgoing arc, it is mapped to an event. If the

element has multiple incoming and/or outgoing arcs, it is mapped to a canonical state.

Those rules make it possible to create an equivalent CPF model of a process model described in

many types of process modeling languages. However, resulting CPF model may not be able to reflect

correctly the complete behavior of the original model since some characteristics of the original

models cannot be preserved in canonical process format such as multiple-instances tasks,

cancelation tasks or exclusive choice of Petri net.

4.2.6 Conversion from CPF to other process models

In the previous sections, we have explained the mapping rules of four different process models (e.g.

Petri net, Yawl, EPC and Flexible model) into an equivalent canonical process format. We observe

that each element of these process models has a corresponding canonical element. However, the

other way around is not true. As we can see from Table B.5 (Appendix B) which shows the mapping

rules of CPF elements, not all of the canonical elements can be mapped to a corresponding element

in each of these process models. Hence mapping from CPF model to the original process models may

be more difficult than mapping from the original models to CPF model.

 Chapter 4: Generalizing process modeling languages Master thesis

 38 Replay analysis in generic process modeling language

Furthermore, three of these process models require some strict structural constraints. Structural

constraints indicate requirements which the structure of a certain process model must satisfy. For

example, Petri net requires that there must be exactly one place in between any consecutive

transitions. Places are not allowed to connect to each other and every transition must have at least

one input place and one output place. Similarly, Yawl requires that there must be exactly one task in

between any two consecutive conditions and there must be exactly one input condition and one

output condition. Moreover, tasks without any predecessors are not allowed in Yawl model. In EPC,

functions and events must be alternate along a path. Events are not allowed to precede a (X) OR-

split and cycles containing logical connectors only are not allowed in an EPC graph. In contrast,

canonical process format does not have such requirements. Its structure varies depending on the

structure of the process models which it captures. Therefore, mapping from CPF to such process

models (i.e. Petri net, Yawl, and EPC) is difficult and takes a lot of efforts to guarantee the structural

constraints of target models.

Apparently, flexible model contains only one node type (Task node) and it does not require any

specific structural constraints. Hence, the mapping from CPF to flexible model seems to be easier

and can be performed straightforwardly in such a way that all canonical elements including those

which don’t have any corresponding flexible elements are mapped to flexible tasks. The mapping

rule is described as follows:

1. Each canonical task is mapped to a flexible task. No split and join behavior are involved in

the resulting flexible task.

2. Each canonical split or join is mapped to a flexible task which is regarded as an invisible task.

The split or join behavior is specified by the output set or input set of the resulting flexible

task.

3. Each canonical event including message event and timer event is forced to be mapped to a

flexible invisible task. The resulting flexible task does not contain split and join behavior.

4. Each canonical state is mapped to a flexible task and regarded as an invisible task. The XOR-

split and/or XOR-join behavior of the canonical state is specified by the output and/or input

set of the resulting flexible task.

In table 4.5, we describe the mapping in more detail by illustrating flexible representation of nine

canonical constructs. The first construct represents the mapping of canonical tasks without split/join

behavior. In the construct 2, 3 and 4, we show the mapping of canonical split nodes. The next three

constructs (5, 6 and 7) illustrate the mapping of canonical joins. The mapping of canonical event and

state are shown in construct 8 and 9, respectively.

 Chapter 4: Generalizing process modeling languages Master thesis

 39 Replay analysis in generic process modeling language

 Canonical constructs Flexible representations

1

2 Task

 @:à A
Task

 @:à B

ANDSplit

 @:à As

Task

 @:à C

3 Task

 @:à A
Task

 @:à B

XORSplit

 @:à As

Task

 @:à C

4

5

6

7

8

9

Table 4.5: Flexible representation of nine Canonical constructs

 Chapter 5: Log replay on canonical process format Master thesis

 40 Replay analysis in generic process modeling language

Chapter 5

Log replay on canonical process format
In Chapter 4, we define the motivation to generalize existing process modeling languages into

canonical process format. In this chapter, we discuss the log replay technique in canonical process

format. First of all, we specify some requirements for replay on CPF. Secondly, we introduce several

replay approaches that can be applied in CPF model and then we choose a solution that is most

suitable for CPF. At the end, we illustrate the implementation of the CPF replay approach in ProM

framework.

5.1 Requirement

Firstly, there must be an event log and a pre-defined CPF model available for log replay. Since replay

technique is implemented in ProM6, the format of event log must be either MXML or XES. Secondly,

we must undertake a mapping between events in log and tasks in CPF model. Each event will be

mapped to a related task in a way that they represent the same activity. An event can be mapped to

multiple task nodes. Events that do not correspond to any tasks should be removed from event log.

Tasks that do not have any related events must be mapped to invisible tasks or unmapped visible

tasks. Invisible tasks are used for routing purpose or for delaying the real tasks in process model

while unmapped visible tasks refer to activities which are not recorded in event log.

5.2 Approach

There are several approaches which can be used to enable log replay on CPF model. The first

approach is to replay event log directly on CPF model. However, there is a serious problem with this

approach. The canonical process format was originally developed without any execution semantics,

for example it does not use the notion of initial marking, notion of tokens or notion of input/output

sets (which is available in flexible model). As we realize that execution semantics are very important

for replaying an event log since it indicates from which tasks the process can start, which tasks will

be enabled by which tasks or which tasks are executed successfully, etc. In addition, the structure of

CPF model is not enforced to follow specific structural constraints, e.g. event must occur in between

tasks, events and tasks should alternate along a path or process model must start and end at events.

The idea of CPF model is to capture only the core split/join behaviors and structure characteristic of

existing process modeling languages. Therefore, CPF structure is flexible depending on what kind of

process model it captures. In order to perform the replay directly on CPF model, it is necessary to

extend the CPF with specific execution semantics such that they are suitable in current CPF

structure. This would create a lot of difficulties and take hard efforts. Thus, this approach seems not

to be a good choice for the moment.

The other approach is to replay event log indirectly via an intermediate notation. We have shown in

Section 3 that log replay currently exists on Petri net, fuzzy model and flexible model. Hence, log

replay can be performed indirectly by first converting CPF model to either Petri net, fuzzy model or

flexible model and then apply the existing log replay methods of these modeling languages. The

 Chapter 5: Log replay on canonical process format Master thesis

 41 Replay analysis in generic process modeling language

problem of how to replay an event log on CPF model becomes how to convert CPF model into Petri

net, fuzzy model or flexible model.

As we have indicated in Section 3.4.3, fuzzy model does not use notion of invisible tasks, any

invisible tasks from other process models if possible will be mapped to real tasks in fuzzy model.

Current fuzzy replay method was not invented to deal with invisible tasks. Apparently, without

execution of invisible tasks during replaying an event log, number of unsatisfied events will be

increased. Furthermore, there are no concrete conversion methods available for mapping from

exiting process models to fuzzy model. Thus, implementing log replay on CPF via Fuzzy model seems

not to be a good direction.

In Section 4.2, we have stated that mapping from CPF model to flexible model is easier than

mapping to Petri net. Besides, there is no conversion method invented for mapping from CPF model

to Petri net at the moment, whereas a method for mapping to flexible model from CPF model has

been introduced. Moreover, the current Petri net replay method contains some problems that can

be solved by flexible model replay technique. Thus, enabling replay on CPF model via flexible model

seems to be the promising approach.

5.3 Solution

We choose to perform log replay indirectly on CPF model by first converting it to an equivalent

flexible model then apply the existing flexible model replay technique. However, flexible model

does not use notion of starting task node. Every node without predecessors is regarded as initial

node. Initial nodes with empty input set are always enabled. Therefore, flexible model replay will

always execute initial nodes at every selected instance in search tree. This explores a massive

number of new created instances given a model with huge number of initial tasks and a long event

trace. Moreover, the existence of value UnA (an unhandled arc cost) in the calculation of cost

function nf potentially leads to a bad result as illustrated in Section 3.3.5. Therefore, we extend

the current flexible model replay technique to the following extents:

Notion of starting task nodes will be used. Starting task nodes are the nodes without

predecessors for which the input set is empty (i.e. in (s) =). This is different from a node for

which input set contains an empty set (i.e.in (s) = {}). By default, every starting task node is

enabled at the beginning of process. Once it is executed either by move on model only or move

on both log and model, it is no longer enabled under the term of starting task node. If starting

task nodes are not executed, their enabling remains available.

Unhandled arc cost (UnA) is removed from the calculation of cost function nf for any node n

in search tree. Precisely, unhandled arc cost (UnA) is not involved in the caluculation of

subpart ng of nf . The new cost function nf for each explored node n in search tree is

then defined as: nf = ng + nh , where:

 ELnh , where L is the number of events left in the case at node n and E is the cost of

an event left in the case.

 ng = A*RE + C*Minv + D*Mr + F*Rem + G* Us, where A is the number of events replayed

correctly so far, C is the number of executed invisible tasks, D is the number of visible tasks

executed without replaying any events from the case, F is the number of events removed

 Chapter 5: Log replay on canonical process format Master thesis

 42 Replay analysis in generic process modeling language

from the case so far and G is the number of events replayed incorrectly (i.e. unsatisfied

events). Re is the cost of replaying an event correctly, Minv is the cost of executing an

invisible task, Mr is the cost of executing a visible task, Rem is the cost of removing an event

from the case and Us is the cost of replaying an event incorrectly.

Obviously, the estimate heuristic cost function nh remains unchanged. The only change is in

the calculation of ng in which the number of unhandled arcs is not concerned any more. By

this way, we can prevent the problem illustrated in Figure 3.10. However, to avoid improper

completion as shown in Figure 3.9, we extend the replay algorithm in such a way that the

decision for selecting the next node to be explored is prioritized as follows. The one with

smallest value nf is always selected first. If there is more than one candidate whose

value nf is the smallest, we choose the one containing the smallest number of created

unhandled arcs so far. If there is more than one node satisfying both conditions, we pick up one

randomly for next iteration.

As an example, we illustrate the replay of trace DCA on a flexible model (Figure 5.1) with the

extended flexible model relay technique. The resulting search tree is shown in Figure 5.2

Figure 5.1: Flexible model contains a starting task node A

We observe that the costs to execute 1A and 2A are the same, i.e. the value of cost

function nf generated at instance1 and instance2 are the smallest (3001)2(1 insfinsf).

However, execution of task 1 creates three unhandled arcs whereas execution of task 2

produces only two unhandled arcs. Consequently, node instance2 is selected for next exploration.

This results in the optimal execution sequence DCA 2 as expected. Moreover, if the

starting task is executed, it will never been executed again under the term of starting task, neither

by move on model only nor move on both log and model. For instance, once the staring task A is

executed, execution of A will not be happened again along every paths starting from initial instance.

Therefore, a large number of new created instances caused by executing starting task A are

decreased. This certainly increases the performance of replay algorithm.

 Chapter 5: Log replay on canonical process format Master thesis

 43 Replay analysis in generic process modeling language

Figure 5.2: Search tree generated by replaying A-C-D contains an optimal path

5.4 Limitation

Although the use of starting task node can reduce a number of new created instances which need to

be explored and hence improve the performance. It cannot fix the problem completely. This is

because the problem still occurs if the replayed model contains a large volume of duplicate tasks.

Each one of the duplicated tasks generates a different scenario of task execution, thus the replay

algorithm still create a large number of new instances needed to be explored in search tree to find

the most optimal scenario.

5.5 Implementation

Our CPF replay approach is implemented in ProM framework. Besides, we also implemented plug-ins

that convert existing process modeling languages to CPF model. Figure 5.3 shows the screenshot of

choosing plug-ins for converting Petri net, fuzzy model, EPC and flexible model into CPF.

 Chapter 5: Log replay on canonical process format Master thesis

 44 Replay analysis in generic process modeling language

Figure 5.3: Screenshot of choosing a plug-in for converting to CPF

 We implemented replay on both a single case and a whole log. Figure 5.4 shows the screenshot of

choosing a plug-in for replaying a case or a whole log. It is required that a CPF model and an event

log must be available in ProM in advance. The CPF model can be obtained by importing from outside

or converting from other process model using the plug-ins described in Figure 5.3. The event log

must be imported from outside. We choose to perform replay on a single event case first using

“Replay a case on CPF model” plug-in. After selecting an event log and a CPF model, we click on

“Start” button to begin the replay. Once the “Start” button is clicked, the conversion from CPF model

to an equivalent flexible model is taken implicitly using mapping rules described in Section 4.2.6.

The initial step of the replay is to map events in log into tasks in CPF model as illustrated in Figure

5.5. Tasks which are not related to any events should be mapped to “invisible” or “visible but

unmapped”.

 Chapter 5: Log replay on canonical process format Master thesis

 45 Replay analysis in generic process modeling language

Plugin for

replaying an

event case

Plugin for

replaying whole

log

Figure 5.4: Screenshot of choosing replay plug-ins

Figure 5.5: Screenshot of mapping step

 Chapter 5: Log replay on canonical process format Master thesis

 46 Replay analysis in generic process modeling language

In the second step, we choose the desired replay algorithm from a list box as shown in Figure 5.6.

For our replay approach, we select “Extended Cost based A* heuristic log replay” algorithm. This

algorithm makes use of starting task nodes and removes unhandled arc cost from calculating total

cost nf for each instance to be evaluated in search tree.

Figure 5.6: Screenshot of choosing replay algorithm step

In the next step, we configure the cost of parameters required for calculating cost nf such as

unsatisfied event cost (Us), event to be replayed cost (E), replayed event cost (RE), move on log only

cost (Rem), move on model only with real task cost (Mr) and move on model only with invisible task

cost (Minv). Furthermore, we can set up the maximum number of instances can be explored in

search tree during replay. Figure 5.7 shows the cost configuration panel in which we adjust the slide

bar to change the cost value of each parameter. Next we choose an event case to be replayed as

shown in Figure 5.8.

 Chapter 5: Log replay on canonical process format Master thesis

 47 Replay analysis in generic process modeling language

Figure 5.7: Screenshot of cost configuration step

List of event

cases from log

List of events

from a case

Figure 5.8: Screenshot of selecting an event case step

Result of the replaying a case is illustrated in Figure 5.9. This view shows two traces on vertical axis.

The above trace represents sequence of replayed events in the case and the below trace represents

sequence of executed tasks comparing to the replayed events. Each trace is shown as a stream of

wedged-shaped segments. Each segment in the event sequence represents an event in the case and

colored in green, extending from left to right in their given order. Each segment in task sequence

represents an executed task in CPF model or a removed event in the case and has different colors.

Red segment corresponds to an invalid task, i.e. task is executed improperly, whereas green segment

corresponds to a valid task. Purple segment signals move on model only with real task and grey

segment signals move on model only with invisible task. Yellow segment indicates an event is

removed from the log. There is also a table containing case statistic of replaying a case, such as

 Chapter 5: Log replay on canonical process format Master thesis

 48 Replay analysis in generic process modeling language

number of unsatisfied events, number of move on model only with real/invisible task, number of

removed events, case task ratio fitness, computation times, etc. We can also view result of replaying

a case in form of a search tree (as shown in Figure 5.10) by selecting “Visualize Case Replay Result

(with instance)” from drop box. The search tree contains an optimal path denoted by yellow nodes.

Edges along optimal path correspond to execution of tasks and have different colors. The meaning of

color is similar to the meaning of segment’s color such as: red edges indicate invalid tasks whereas

green edges indicate valid tasks, etc.

Execution

sequence of

related tasks

Replay statistic

table
Event trace

from log

Figure 5.9: Screenshot of replaying result

Figure 5.10: Screenshot of search tree

 Chapter 5: Log replay on canonical process format Master thesis

 49 Replay analysis in generic process modeling language

We can also perform replay on a whole log using “Replay log on CPF model” plug-in. The steps to

perform replay on a log are similar to the ones of replaying a case except that we do not need to

select a case for replaying. Instead, the whole event log is relayed automatically. Furthermore, the

final result does not contain a search tree. The log replay result is shown in Figure 5.11 in which each

replayed case is represented by a pair of segment traces and a statistic table. Additionally, there is a

table containing information about log replay statistic such as: the total task ratio fitness, number of

events perfectly fitted, number of events finished replay, computational time, etc.

Execution

sequence of

related tasks

Event trace

from log

Statistic table

of replaying

whole log

Figure 5.11: Screenshot of log replay result

 Chapter 6: Evaluation Master thesis

 50 Replay analysis in generic process modeling language

Chapter 6

Evaluation
In Chapter 5, we introduced an approach to enable log replay on canonical process format. The idea

of this approach is to perform log replay indirectly by converting CPF model to an equivalent flexible

model and apply the existing flexible model replay technique which is extended with some new

features. Given a CPF model and an event log, we can obtain lots of useful information especially

related to the conformance by replaying the log on the CPF model. Based on [7], several

conformance metrics are derived from log replay. In this thesis, we analyze one important

conformance metric, namely task ratio fitness [7, p.8]. Thus, notion of task ratio fitness is introduced

first in this chapter. Next, we describe an analysis performed on cost parameters which are required

in the extended flexible replay to find the optimal task ratio fitness value. Finally, we present a case

study to evaluate the task ratio fitness.

6.1 Task ratio fitness

Task ratio fitness is defined as the percentage of events that are unsatisfied after replaying an event

log. Task ratio fitness is categorized into case task ratio fitness and log task ratio fitness. Given an

event case to be replayed, the extended flexible model replay technique creates a search tree in

which an optimal executing sequence of tasks is found. This optimal path contains a smallest

number of invalid tasks (i.e. tasks are executed unsuccessfully). An invalid task corresponds to an

unsatisfied event. Therefore, the number of unsatisfied events is equal to the number of invalid

tasks found in the optimal sequence. The case task ratio fitness and the log task ratio fitness are

then defined as follows:

 Case task ratio fitness 1,0rat

cf is defined as:
c

us

crat

c
E

E
f 1 where us

cE is the set of

unsatisfied events found from the optimal sequence after replaying the event case c and cE is

the set of events occurring in the event case c.
rat

cf indicates the percentage of unsatisfied

events after replaying the case c.

 Log task ratio fitness 1,0ratf is defined as:
C

f
f Cc

rat

crat where C is the event log.

ratf indicates the average sum of all case task ratio fitness of each case in the event log C.

6.2 Parameter setting analysis

The extended flexible model replay technique requires configuring values of cost parameters such as

cost of an event left in the case (E), cost of an event replayed correctly (RE), cost of an event

replayed incorrectly (Us), cost of executing an invisible task (Minv), cost of executing a visible task

 Chapter 6: Evaluation Master thesis

 51 Replay analysis in generic process modeling language

(Mr) and cost of removing an event from the case (Rem). We observe that different settings of cost

parameters lead to different task ratio fitness values. In order to achieve the optimal task ratio

fitness value, we need to find the most suitable setting of cost parameters. To do so, we define

several constraints required for the cost parameters as follows:

1) REEE 0

The cost of an event left in the case (E) must be less than or equal to the cost of replaying an

event correctly (RE). In order to understand how we got this inequality, we study an example in

which we replay event trace A-B-C in an arbitrary flexible model. Assume that we obtain a partial

search tree as shown in Figure 6.1. Node1 in the search tree is reached by replaying event A

correctly. The best possible scenario to reach the preferred target node from node1 is to replay

the event B and C properly. The lowest cost to reach the preferred target node from node1 is

now equal to two times of the cost of replaying an event correctly (2*RE). The estimate cost at

node1 is calculated by multiplying the number of events left in the case with the cost of an event

left in the case (i.e. Enodeh *2)1(). In order for A * algorithm to be able to find an optimal

path, the estimate cost)(nh of each explored node n in the search tree should not

overestimate the lowest cost to reach its preferred target. That is REE *2*2 .This

implies REE .

Figure 6.1: A partial search tree generated during replaying trace A-B-C

The cost E must be bigger than zero. If E equal to zero, the estimate cost)(nh of each explored

node n except the target node in the search tree will be always equal to zero (since

)(nh =number of events left in the case*E). This should not be allowed in A* algorithm.

Therefore, we must have 0E .

2) ,*0 UsMinvnMinv where n is the maximum possible number of invisible tasks

executed consecutively to enable execution of a real task in a flexible model.

Firstly, we observe that the cost of executing an invisible task (Minv) must be smaller than the

cost of replaying an event incorrectly (Us). Consider an example in which we replay the trace A-B

 Chapter 6: Evaluation Master thesis

 52 Replay analysis in generic process modeling language

in a flexible model containing one starting invisible task as shown in Figure 6.2, provided that

UsMinv .

During replaying trace A-B, the expected task executing sequence should be BA with

case task ratio fitness value of 1. However, the resulting executing sequence is A-B with case

task ratio fitness value of 0.5. The replay algorithm chooses to execute task A unsuccessfully

rather than executing invisible task since cost Us is smaller than cost Minv. This makes the

event A unsatisfied. Therefore, to enforce the execution of invisible task over execution of task

A, the cost Minv must be smaller than the cost Us.

Figure 6.2: Event trace A-B is replayed in the flexible model with Minv bigger than Us

Secondly, the cost Minv must be bigger than zero. If Minv is equal to zero, this could lead to an

unexpected situation in which the replay algorithm chooses to execute a loop of consecutive

invisible tasks indefinitely. As an example for this problem, we replay the trace A-C in a flexible

model as illustrated in Figure 6.3. After sequence 321 A is executed successfully,

replay algorithm chooses to execute 2 rather than executing C unsuccessfully or moving on

model only with B. This is because the cost of replaying an invisible task is zero which is always

smaller than the cost of replaying an event incorrectly and the cost of executing a real task.

Figure 6.3: Event trace A-C is replayed with Minv value of zero

Therefore, the replay algorithm executes an infinite sequence of invisible tasks indefinitely

(i.e. .232321 A). This situation must be avoided. If Minv is larger than

zero, at some point along the executing sequence, the total cost to execute a number of

consecutive invisible tasks becomes larger than the cost of replaying an unsatisfied event and

cost of moving on a real task. This forces the replay algorithm to quit executing loop of

consecutive invisible tasks. Hence, Minv must be bigger than zero (i.e. Minv >0)

 Chapter 6: Evaluation Master thesis

 53 Replay analysis in generic process modeling language

There exists another serious problem when the cost Minv is bigger than zero. Assume that we

replay event trace B-C in a flexible model (Figure 6.4) with Minv value of 2 and Us value of 5. The

expected case task ratio fitness value is 1 achieved by executing the sequence

CB 321 successfully. However, the cost to execute three consecutive invisible tasks

(2,1 and 3) is larger than the cost of replaying event B incorrectly (i.e. 52*3).

Consequently, the replay algorithm chooses to execute B unsuccessfully rather than executing

sequence of invisible tasks. This creates an unexpected executing sequence CB with B is an

unsatisfied event. Hence the obtained case task ratio fitness has value of 0.5 which is different

from the expectation. In order to replay event B correctly (i.e. task B is fired successfully), the

cost of replaying an unsatisfied event must be bigger than the cost of executing three invisible

tasks consecutively (i.e. MinvUs *3).

Figure 6.4: Event trace B-C is replayed with Minv value of 2 and Us value of 5

We observe that this serious problem might occur when we need to execute a complex long

sequence of invisible tasks to enable execution of a real task. Let n be the maximum possible

number of invisible tasks executed successively to enable a real task in an arbitrary flexible

model. The described problem can be avoided by setting the cost of replaying an unsatisfied

event bigger than the cost of executing n sequential invisible tasks (i.e. Us> n*Minv).

Furthermore, it is essential to construct an algorithm to find the value of n before the replay can

start. However, constructing such algorithm is difficult and beyond the scope of this thesis.

3) UsMr

In reality, there could always be the case that some activities were executed but not logged due

to some unknown reasons (e.g. technical problems or human mistakes). This constraint makes it

possible to identify those missing activities in the log during replay. Consider an example in

which we have a valid process model described in form of flexible model (Figure 6.5). This

process model conforms perfectly to the reality. An event log is obtained by simulating the

process model. Due to some reasons, executions of task A and B are not logged. Hence event A

and B are missing and only C was recorded in the log as illustrated in Figure 6.5.

Figure 6.5: An event log is obtained by simulating the flexible model

We replay the obtained event log in the flexible model. In the case that cost of replaying an

event improperly (Us) is smaller than cost of executing a real task (Mr), task C will be executed

unsuccessfully (i.e. event C is unsatisfied). This leads to the task ratio fitness value of 0.5 which is

supposed to be 1 in reality. Since A and B were actually executed in the process and hence C was

 Chapter 6: Evaluation Master thesis

 54 Replay analysis in generic process modeling language

fired successfully. Therefore, in order to fire C properly during the replay, task A and B must be

executed in prior. Task A and B are regarded as missing events during replay. This can only be

guaranteed if replay algorithm performs the step moving on model only with real task two times

which means the cost Us should be bigger than two times of cost Mr (i.e. UsMr *2). In a

more complex situation, we might need to execute more real tasks to enable execution of a

certain task. Let n be the minimum number of consecutive real tasks that might need to be

executed to enable a certain task. The cost Us should be bigger than n times of cost Mr (i.e.

UsMrn *). Generally, the value of n is often decided by the users before the replay can start.

4) Rem > Us+Re

Cost of removing an event should be bigger than sum of cost of replaying an unsatisfied event

and cost of executing a real task only. Consider an example in which we have an invalid flexible

model and a valid event log as shown in Figure 6.6. The invalid model does not conform

perfectly to reality such as an execution of task B which actually happens in reality is missing in

the model. The valid log is obtained from reality and contains only one trace A-B-B with

frequency of 100.

Figure 6.6: Valid log is replayed in an invalid flexible model

The expected executing sequence after replaying a case is A-B-B in which the last event B is

unsatisfied (i.e. task ratio fitness value is 0.5). Assume that we obtain a partial search tree during

replaying A-B-B as shown in Figure 6.7. Node1 is reached by replaying event A and first B

correctly. Let n be the number of events replayed so far and k be the number of events left in

the case at node1.

Figure 6.7: A partial search tree obtained during replaying trace A-B-B

Node2 is created by replaying the last B incorrectly and node3 is created by removing last B from

the log. The evaluation cost of node2 is UsEknnodef *)1(Re*)1()2(and the

 Chapter 6: Evaluation Master thesis

 55 Replay analysis in generic process modeling language

evaluation cost of node3 is Eknnodef *)1(Re*)()3(Rem. To enforce the replay

algorithm to execute last event B unsuccessfully, the evaluation cost of node2 must be smaller

than the cost of node3. That is EknUsEkn *)1(Re*)(*)1(Re*)1(Rem. This

implies Rem > Us+Re.

If the cost of removing an event is smaller than the sum of cost of replaying an unsatisfied event

and cost of executing a real task only, the resulting executing sequence is A-B in which the last

event B is not replayed (i.e. it is removed from the log). This leads to the task ratio fitness value

of 1 which is not correct since the model is invalid. Therefore, to avoid such situation, the cost

Rem should be bigger than the sum of Us and Re.

6.3 Case study

In this section, we describe a case study which involves a real life process as shown in Figure 6.8. This

process deals with a complaint handling process of a town hall in the Netherlands. We also have a

real life log recorded from this process.

Figure 6.8: the original description of the complaint handling process

Using process mining discovery technique on this log, we come up with process model expressed in

form of flexible model as depicted in Figure C.1 (Appendix C). Note that all split and join in flexible

model are of type exclusive choice (XOR-split) and simple merge (XOR-join). We are going to replay

the log in this flexible model to evaluate the task ratio fitness value, provided that all cost

parameters are configured based on the constraints presented in Section 6.2. The idea is to replay

each case from the log and compare the result obtained from replaying with value given by our

intuition. However, we don’t replay all cases. Instead, we select the first three cases for analyzing.

The configuration of cost parameters is given in Table 6.1.

 Chapter 6: Evaluation Master thesis

 56 Replay analysis in generic process modeling language

Cost parameter Value

Cost of replaying an event correctly(RE) 200

Cost of an event left in case(E) 200

Cost of moving on a invisible task(Minv) 1

Cost of moving on a real task(Mr) 250

Cost of removing an event from log(Rem) 550

Cost of an unsatisfied event(Us) 300

Table 6.1: Cost parameters setting

Using the extended flexible model replay algorithm (i.e. Extended Cost based A* heuristic log

replay), we obtain the following result for each replayed event case.

1. Event case 1.

Table 6.2 describes the detail of the first event case. From our intuition, there should be only

one unsatisfied event, BZ04 Inhoud, after replaying the case. This is because the enablement

of BZ08 Indhoud needs BZ04 Intake to be executed in prior. However, BZ04 Intake was

already fired to execute the first BZ08 Inhoud. Therefore, the second event BZ08 Inhoud

becomes unsatisfied and the case task ratio fitness is expected to be 0.929. Obviously, the

replaying result (Figure 6.9) matches our intuition in which the second BZ08 Inhoud is

actually the only one unsatisfied event and the case task ratio fitness is 0.929.

Case ID Event trace(14 events) Expected executing sequence Expected
rat

cf

04301ESWM183483 Case start - BZ02 Verdelen -

BZ04 Intake - BZ08 Inhoud -

BZ09 Secretaris - BZ10 Agenderen -

BZ08 Inhoud - BZ09 Secretaris -

BZ10 Agenderen - BZ12 Hoorzitting -

BZ14 Voorstel - BZ16 Wacht Besluit -

BZ18 Termijn Beroep - BZ28

Administratie

Case start - BZ02 Verdelen -

BZ04 Intake - BZ08 Inhoud -

BZ09 Secretaris - BZ10 Agenderen

- BZ08 Inhoud - BZ09 Secretaris -

BZ10 Agenderen - BZ12

Hoorzitting - BZ14 Voorstel - BZ16

Wacht Besluit - BZ18 Termijn

Beroep - BZ28 Administratie

0.929

Table 6.2: Description of first case together with expected executing sequence and case task ratio

fitness

 Chapter 6: Evaluation Master thesis

 57 Replay analysis in generic process modeling language

Figure 6.9: Result of replaying first case

2. Event case 2.

The detail of second case is described in Table 6.3. We expect the executing sequence after

replaying the case to contain only one unsatisfied event, BZ16 Wacht Besluit. Furthermore,

we expect two missing events (BZ08 Inhoud and BZ12 Hoorzitting) are identified in the

executing sequence. The expected case task ratio fitness should be 0.942. Figure 6.10 shows

result of replaying the second event case. We observe that result fits our intuition in which

the case task ratio fitness has value of 0.941 and two missing events (BZ08 Inhoud and BZ12

Hoorzitting) are identified.

Case ID Event trace(17 events) Expected executing sequence Expected
rat

cf

04349ESWM205386 Case start-BZ02 Verdelen-BZ04

Intake-BZ02 Verdelen-BZ04 Intake-

BZ02 Verdelen-BZ04 Intake-BZ09

Secretaris-BZ10 Agenderen-BZ14

Voorstel-BZ16 Wacht Besluit-BZ18

Termijn Beroep-BZ16 Wacht Besluit-

BZ18 Termijn Beroep-BZ20 Beh.

Beroep-BZ18 Termijn Beroep-BZ28

Administratie

Case start-BZ02 Verdelen-BZ04

Intake-BZ02 Verdelen-BZ04

Intake-BZ02 Verdelen-BZ04

Intake-BZ08 Inhoud-BZ09

Secretaris-BZ10 Agenderen-BZ12

Hoorzitting -BZ14 Voorstel-BZ16

Wacht Besluit-BZ18 Termijn

Beroep-BZ16 Wacht Besluit-

BZ18 Termijn Beroep-BZ20 Beh.

Beroep-BZ18 Termijn Beroep-

BZ28 Administratie

0.942

Table 6.3: Description of second case together with expected executing sequence and case task ratio

fitness

 Chapter 6: Evaluation Master thesis

 58 Replay analysis in generic process modeling language

Figure 6.10: Result of replaying second case

In order to identify the missing events during replay, cost of executing a real task must be

smaller than cost of an unsatisfied event. If this condition does not hold, some events will

become unsatisfied while they are supposed to be satisfied in reality. We have shown that

with the cost parameters given in Table 6.1, missing events were captured during relaying

the second case.

We now increase the cost of executing a real task such that it is bigger than cost of an

unsatisfied event (e.g. Mr=301 and Us=300).The executing sequence after replaying the

second case is then expected to have three unsatisfied events, which are BZ09 Secretaris,

BZ14 Voorstel and BZ16 Wacth Besluiy. And the case task ratio fitness value is expected to

be 0.824. Indeed, the replay result (Figure 6.110) shows that there exist three unsatisfied

evens and the case task ratio is 0.824 as expected.

Figure 6.11: Result of replaying the second case with cost Mr is bigger than cost Us

 Chapter 6: Evaluation Master thesis

 59 Replay analysis in generic process modeling language

3. Event case 3.

The detail of the third case is shown in Table 6.3. From our intuition, we expect that the

missing event BZ12 Hoorzitting will be captured and there is no unsatisfied event. The

expected case task ratio fitness is 1. The replay result depicted in Figure 6.12 proves that our

assumption is true. The missing event BZ12 Hoorzitting is actually executed and the case

task ratio fitness has value of 1 as expected.

Case ID Event trace(14 events) Expected executing sequence Expected
rat

cf

05011ESWM217434 Case start-BZ02 Verdelen-BZ04 Intake-

BZ02 Verdelen-BZ04 Intake-BZ08 Inhoud-

BZ09 Secretaris-BZ10 Agenderen-BZ14

Voorstel-BZ16 Wacht Besluit-BZ18 Termijn

Beroep-BZ20 Beh. Beroep-BZ18 Termijn

Beroep-BZ28 Administratie

Case start-BZ02 Verdelen-BZ04 Intake-

BZ02 Verdelen-BZ04 Intake-BZ08

Inhoud-BZ09 Secretaris-BZ10

Agenderen- BZ12 Hoorzitting -

BZ14 Voorstel-BZ16 Wacht Besluit-

BZ18 Termijn Beroep-BZ20 Beh.

Beroep-BZ18 Termijn Beroep-BZ28

Administratie

1

Table 6.4: Description of third case together with expected executing sequence and case task ratio

fitness

Missing events

BZ12

Hoorzitting
Case task

ratio fitness

Figure 6.12: Result of replaying third case

6.4 Conclusion

In this chapter, we define some constraints for configuring cost parameters to obtain an optimal task

ratio fitness value. We also illustrate a case study in which a real log is replayed in a mined process

model. In this case study, we set up the cost parameters according to the defined constraints. We

obtain results of replaying that quite match our intuitions. However, there are still several existing

problems which can only be solved by performing further analysis.

Firstly, we stated that the cost of unsatisfied event must be bigger than n times of the cost of moving

on an invisible task. The value of n is defined as the maximum number of invisible tasks executed

consecutively to enable firing a certain task in an arbitrary flexible model. Detecting the value of n is

 Chapter 6: Evaluation Master thesis

 60 Replay analysis in generic process modeling language

a problem of interest. It is desirable to construct an optimal algorithm which is able to identify the

value of n. However, this is difficult and takes lots of efforts.

Secondly, there is a serious problem related to the constraints involving cost of executing a real task

(Minv) and cost of an unsatisfied event (Us). Consider an example in which we have an invalid

flexible model and a valid event log as shown in Figure 6.13. This invalid model does not conform

perfectly to reality such as the execution of task A does not actually happen in reality, whereas the

valid event log is recorded from reality and contains one event trace B-C with frequency value of

100.

Figure 6.13: Valid event log is replayed in an invalid flexible model

We replay this event log in the flexible model. According to the constraint (i.e. Minv < Us), the

resulting executing sequence is A-B-C with task ratio fitness value of 1. This result seems not to be

correct since the model is assumed to be invalid (i.e. execution of A does not occur in reality)

Therefore, we might need to extend the current case task ratio fitness such that it involves the

number of “move on model only with real task” steps during replay.

Finally, a unique activity in a process model may be logged unexpectedly more than one in event

logs. Thus, the step “move on log only” during replay will remove the redundant events occurring in

the log. As we observe that the step “move on log only” is mainly decided by the cost of removing an

event. Therefore, further analysis on the relation between the cost of removing an event and other

cost parameters needs to be taken to capture redundant events during replay.

 Chapter 7: Conclusions Master thesis

 61 Replay analysis in generic process modeling language

Chapter 7

Conclusions
In this thesis, we investigated an approach to make log replay applicable on a variety number of

process modeling languages. The occurred problem is the limitation of log replay techniques which

work only on some specific process modeling languages. Instead of developing a new log replay for

each existing process modeling languages, in Chapter 4, we proposed a unification approach that

abstracts away the need of having specific process modeling languages. The idea of this approach is

to convert any process models, regardless of their modeling language, into a generic process format

and deploy a replay technique for that generic process format. We chose the canonical process

format (CPF) as a general process format and extended existing conversions from various process

modeling language to CPF such that they preserve necessary information needed for replay log

analysis.

After tackling the dependency on specific process modeling languages problem, the next problem

we tackled is the problem of replaying logs on the selected generic process format. In Chapter 5, we

proposed a log replay technique on CPF by extending the A*-based log replay technique that

currently works for Flexible models. This solution requires a transformation from CPF to an

equivalent flexible model. Therefore, we also proposed a mapping rule for converting from CPF to

flexible model in advance in Chapter 4.

Finally, in Chapter 6, we took an analysis on cost parameters required in the extended flexible model

replay technique. We came up with several constraints between cost parameters to obtain the

optimal replay result (i.e. optimal task ratio fitness value). Furthermore, we performed a case study

in which a real life log was replayed in a mined process model. In this case study, we used the

extended flexible model replay technique and set up the cost parameters based on the defined

constraints. We obtained the replay result which matched well our pre-defined intuition.

With the proposed approach, we believe that log replay is applicable in any existing process

modeling languages as long as they can be expressed in an equivalent canonical process format.

7.1 Limitations and future works

There are several existing issues which should be noticed. The first issue is related to conversion

from Yawl to CPF in which multiple-instances characteristic cannot be preserved in CPF. This is

because canonical process format is not able to capture multiple-instances characteristic. Moreover,

the current flexible model and flexible replay technique were not invented to deal with multiple-

instances. As we chose to enable the replay on CPF indirectly via flexible model, loosing information

involving multiple-instances potentially leads to an unexpected replay result. Thus, it is essential to

extend CPF, flexible mode and flexible model-based replay technique such that multiple-instances

characteristic can be identified.

 Chapter 7: Conclusions Master thesis

 62 Replay analysis in generic process modeling language

The second issue is concerning the cost parameters required in the flexible model replay technique.

We have already mentioned in Section 6.4 it is necessary to construct an algorithm to indentify the

longest number of invisible tasks executed consecutively in an arbitrary flexible model. Moreover, it

is also essential to perform further analysis on the cost parameters such that redundant events in

event logs can be identified.

Finally, in this thesis, we only introduced mapping rules for converting to CPF of four process

modeling languages such as Petri net, Yawl, EPC and Flexible model. Thus, it is desirable to design

mapping rules of other process modeling languages (e.g. BPMN, Protos, Staffware or WS-BPEL).

References Master thesis

 63 Replay analysis in generic process modeling language

References

1. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow
Patterns. Distributed and Parallel Databases, 14(1):5-51, 3002.

2. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets : Basic Models, volume 1491of
Lecture Notes in Computer Sceince. Springer-Verlag, Berlin, 1998.34.

3. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow Language.
Information Systems, 30(4):245-275, 2005.

4. W.M.P. van der Aalst. Formalization and Verification of Event-driven Process Chains.
Information and Software Technology, 41(10):639{650, 1999.

5. C.W. Gunther. Process Mining in Flexible Environments. PhD thesis, Department of
Technology Management, Technical University Eindhoven, 2009.

6. Marcello La Rosa, Hajo A. Reijers, Wil M.P. van der Aalst, Remco M. Dijkmanb, Jan Mendling,
Marlon Dumas, Luciano Garcıa-Banuelos. APROMORE: An Advanced Process Model
Repository.

7. Adriansyah, B.F. van Dongen, and W.M.P van der Aalst. Towards robust conformance
checking. In (To appear) Proceedings of the 6th International Workshop on Business Process
Intelligence (BPI 2010), 2010.

8. W.M.P. van der Aalst, B.F. van Dongen, C. G¨unther, A. Rozinat, H.M.W. Verbeek, and
A.J.M.M. Weijters. ProM: The Process Mining Toolkit, volume 489 of CEUR-WS.org. Ulm,
Germany, 2009.

9. B.F. van Dongen and W.M.P. van der Aalst. A Meta Model for Process Mining Data. In
Conference on Advanced Information System Engineering, volume 161, Porto, Portugal,
2005.

10. J.C.A.M. Buijs. Mapping Data Sources to XES in a Generic Way. Master thesis, 2010.

11. Process mining main website. http://www.processmining.org/.

12. A.Rozinat. Process Mining: Conformance and Extension. PhD thesis. Pages 64-134.
Eindhoven University of Technology, Eindhoven, 2010.

13. A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst. Reliable Log Replay for
Conformance Checking, 2010.

14. P. E. Hart, N. J. Nilsson, and B. Raphael. A Formal Basis for the Heuristic Determination of
Minimum Cost Paths in Graphs. IEEE Trans. Syst. Sci. and Cybernetics, SSC-4(2):100{107,
1968.

http://www.processmining.org/

Appendix A Master thesis

 64 Replay analysis in generic process modeling language

Appendix A

Meta-model of canonical process format

Figure A.1: Meta-model of Canonical Process Format

Appendix B Master thesis

 65 Replay analysis in generic process modeling language

Appendix B

Tables of mapping rules of Petri net, Flexible model, Yawl and EPC

Table B.1: Mapping from Petri net elements to Canonical elements

Petri net elements Canonical elements

Net Net

Arc Edge

Transition Task

 Sees - input place,
 Sese - output place,
 Sese - normal place.

Event

 Message Event

 Timer Event

Transition’s AND-split ANDSplit

 ORSplit

 XORSplit

Transition’s AND-join ANDJoin

 ORJoin

 XORJoin

Non-sese (input/output) Place State

Appendix B Master thesis

 66 Replay analysis in generic process modeling language

Table B.2: Mapping from Flexible elements to Canonical elements

Flexible elements Canonical elements

Net Net

Arc Edge

Task(including invisible task) Task

 Event

 Message Event

 Timer Event

Task’s AND-split ANDSplit

Task’s OR-split ORSplit

Task’s XOR-split XORSplit

Task’s AND-join ANDJoin

Task’s OR-join ORJoin

Task’s XOR-join XORJoin

 State

Appendix B Master thesis

 67 Replay analysis in generic process modeling language

Table B.3: Mapping from Yawl elements to Canonical elements

Yawl elements Canonical elements

Net Net

Flow Edge

Task (Atomic) Task

Task(Composite) Sub-net

 Sese - input condition,
 Sese - output condition,
 Sese - normal condition

Event

 Message Event

 Timer Event

Task’s AND-split ANDSplit

Task’s OR-split ORSplit

Task’s XOR-split XORSplit

Task’s AND-join ANDJoin

Task’s OR-join ORJoin

Task’s XOR-join XORJoin

Non-sese (input/output) Condition State

Appendix B Master thesis

 68 Replay analysis in generic process modeling language

Table B.4: Mapping from EPC elements to Canonical elements

EPC elements Canonical elements

Net Net

Arc, Events subsequent to (X)OR-split connector Edge

Function Task

Event not subsequent to (X)OR-split connector Event

 Message Event

 Timer Event

AND-split connector ANDSplit

OR-split connector ORSplit

XOR-split connector XORSplit

AND-join connector ANDJoin

OR-join connector ORJoin

XOR-join connector XORJoin

 State

Appendix B Master thesis

 69 Replay analysis in generic process modeling language

Table B.5: Mapping from Canonical elements to elements of other process models

Canonical

elements

Petri net Flexible elements Yawl EPC

Net Net Net Net Net

Edge Arc Arc Flow Arc

Task Transition Task Task Function

Event Place Condition Event

Message Event

Timer Event

ANDSplit Task’s AND-split Task’s AND-split

Task’s AND-split AND-split

connector

ORSplit Task’s OR-split Task’s OR-split OR-split connector

XORSplit Task’s XOR-split Task’s XOR-split XOR-split

connector

ANDJoin Task’s AND-join Task’s AND-join Task’s AND-join AND-join

connector

ORJoin Task’s OR-join Task’s OR-join OR-join connector

XORJoin Task’s XOR-join Task’s XOR-join XOR-join

connector

State Place Condition

Appendix B Master thesis

 70 Replay analysis in generic process modeling language

Table B.6: A list of different types of Yawl task

Atomic Task MI 5Atomic Task Composite Task MI Composite Task

 Tasks don’t have routing:
Atomic task

Tasks have only join pattern:
ANDJoin-Atomic task

XORJoin-Atomic task

ORJoin-Atomic task

Tasks have only split pattern:
ANDSplit-Atomic task

XORSplit-Atomic task

ORSplit-Atomic task

Tasks have join-split pattern:

ANDJoin-ANDSplit Atomic task

ANDJoin-XORSplit Atomic task

ANDJoin-ORSplit Atomic task

XORJoin-ANDSplit Atomic task

XORJoin-XORSplit Atomic task

XORJoin-ORSplit Atomic task

ORJoin-ANDSplit Atomic task

ORJoin-XORSplit Atomic task

ORJoin-ORsplit Atomic task

Tasks don’t have routing:
 MI Atomic task

Tasks have only join pattern:
ANDJoin- MI Atomic task

XORJoin-MI Atomic task

ORJoin-MI Atomic task

Tasks have split pattern:
ANDSplit-MI Atomic task

XORSplit-MI Atomic task

ORSplit-MI Atomic task

Tasks have join-split pattern:

ANDJoin-ANDSplit MI Atomic task

ANDJoin-XORSplit MI Atomic task

ANDJoin-ORSplit MI Atomic task

XORJoin-ANDSplit MI Atomic task

XORJoin-XORSplit MI Atomic task

XORJoin-ORSplit MI Atomic task

ORJoin-ANDSplit MI Atomic task

ORJoin-XORSplit MI Atomic task

ORJoin-ORsplit MI Atomic task

Tasks don’t have routing:
Composite task

Tasks have only join pattern:
ANDJoin-Composite task

XORJoin-Composite task

ORJoin-Composite task

Tasks have split pattern:
ANDSplit-Composite task

XORSplit-Composite task

ORSplit-Composite task

Tasks have join-split pattern:

ANDJoin-ANDSplit Composite task

ANDJoin-XORSplit Composite task

ANDJoin-ORSplit Composite task

XORJoin-ANDSplit Composite task

XORJoin-XORSplit Composite task

XORJoin-ORSplit Composite task

ORJoin-ANDSplit Composite task

ORJoin-XORSplit Composite task

ORJoin-ORsplit Composite task

Tasks don’t have routing:
 MI Composite task

Tasks have only join pattern:
ANDJoin- MI Composite task

XORJoin-MI Composite task

ORJoin-MI Composite task

Tasks have split pattern:
ANDSplit-MI Composite task

XORSplit-MI Composite task

ORSplit-MI Composite task

Tasks have join-split pattern:

ANDJoin-ANDSplit MI Composite task

ANDJoin-XORSplit MI Composite task

ANDJoin-ORSplit MI Composite task

XORJoin-ANDSplit MI Composite task

XORJoin-XORSplit MI Composite task

XORJoin-ORSplit MI Composite task

ORJoin-ANDSplit MI Composite task

ORJoin-XORSplit MI Composite task

ORJoin-ORsplit MI Composite task

5
 MI: Multiple instances

Appendix C Master thesis

 71 Replay analysis in generic process modeling language

Appendix C

Mined process model for case study

Figure C.1: Flexible model of the complaint handling procedure

	Abstract
	Preface
	Contents
	List of figures
	List of tables
	1. Introduction
	2. Preliminaries
	3. Related works
	4. Generalizing process modeling languages
	5. Log replay on canonical process format
	6. Evaluation
	7. Conclusions
	References
	Appendix A
	Appendix B
	Appendix C

