
 Eindhoven University of Technology

MASTER

Improved reliability in parameter estimation of dynamic nonlinear systems with sparse data
incorporating a priori information

van Boxtel, S.

Award date:
2006

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/3e95eb6c-51b2-4f72-9d74-02d35b7fd2e7


Eindhoven University of Technology
Department of Electrical Engineering
Control Systems rUle technische

universiteit

eindhoven

Improved reliability in parameter estimation of
dynamic nonlinear systems with sparse data

incorporating a priori information

by

S. van Boxtel

Master of Science thesis

Project period: May 2006
Report Number: 06AJ07
Commissioned by: Prof.Dr.Ir. P.P.J. van den Bosch

Supervisor: Dr.Ir. N.A.W. van Riel

The Department of Electrical Engineering of the Eindhoven University of Technology accepts no
responsibility for the contents of M.Sc. theses or practical training reports



Improved reliability in parameter estimation of
dynamic nonlinear systems with sparse data

incorporating a priori information

A myocardial calcium handling case study

Sander van Boxtel

Abstract

This study deals with a new method to improve the reliability of parame
ter estimates in system identification of dynamic nonlinear systems that suffer
from sparse data. This technique consists of incorporating a priori information
from available secondary information sources concerning system variables into
the minimization algorithm. Additional 'data' is derived from this a priori in
formation and used together with the sparse experimental data in a weighted
objective optimization. As a representative example of a dynamic nonlinear
system with sparse data, the calcium handling of in vivo rat myocardia is used
as a case study, where the four model parameter estimates are highly unreliable
when only experimental data is used for system identification. This reliability
is relevant because in biomedical research there is an increasing need to study
intact systems, in contrast to in vitro research. The results show an increased
reliability of the estimated parameters. This reliability is measured with use of
properties from the Fisher information matrix. This study shows that incor
porating a priori information concerning system variables is a flexible approach
when dealing with sparse data, improving the reliability of model parameter
estimates.

1 Introduction

Parameter estimation and system identifica
tion are more and more common applied tech
nologies in a wide variety of research dis
ciplines nowadays. Based on experimental
data and observations dynamical nonlinear
systems are described in mathematical mod
els. These models give insight in the behavior
of the system. In clinical physiology models
are used for classification of important system
conditions (e.g. concerning health), where dif-
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ferent values of the estimated in vivo model
parameters indicate the different conditions.
Also the effects of for example medical treat
ments can be evaluated when looking at these
model parameters [Buijs, 2005].

In contrast to, for example, electrical and
mechanical systems, where (electrical) signals
can be measured relatively easy at various
points in the system, biomedical systems have
often only a few observations. Due to eth
ical, technological, but also financial limita
tions often not all the system's variables and



A nonlinear dynamic system with states x,
input u, output fJ and model parameters 8 is
generally described as follows;

with initial condition x(O, 8) = XQ. By solv
ing the dynamical differential equation nu
merically, the modeled system output fJ( t, 8)
is generated. This output can be compared to
available discrete noisy experimental data y in
a least squares algorithm. Assuming the sys
tem is in the model set, i.e. data does not con-

partment is available as experimental time
series data. This concentration is measured
by illuminating an isolated ex vivo beating
rat heart in which a fluorescent dye is loaded.
A non-linear differential equation is proposed
with four unknown modelparameters. Impor
tant a priori information is obtained from beat
to beat flux ratios between the compartments.

The outline of this article is as follows;
First, this article explains how the experimen
tal data and a priori information is combined
in one optimization criterion (section 2). Also
the methods to evaluate the model parameter
estimates are presented in this section. Sec
tion 3 presents the case study, where a model
of the calcium handling in the myocardium is
proposed, and an additional source of infor
mation for this case is introduced. To fur
ther improve the identifiability of SERCA,
changes in the experiment design were pro
posed, which is presented in section 4. The
results are presented in section 5, and this ar
ticle ends with a discussion to evaluate the
presented methods and results (section 6),
and the final conclusions (section 7). Addi
tional information concerning figures and ta
bles, and derivations of equations, as well as
the implemented source code, can be found in
the appendices.

Weighted objective optimization

(1)

TU/e

x(t,8) = f(x(t, 8), u(t), 8)
fJ(t, 8) = g(x(t, 8), u(t))
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conditions can be measured, covering merely
a limited part of the total system's dynam
ics. The lack of sufficient experimental mea
surements makes it difficult to properly iden
tify a system, and estimate model parameters
with sufficient accuracy. Despite these lim
itations accurate parameter estimates are of
high importance when classification depends
on it. For this, new techniques have to be
considered.

Besides using experimental data for sys
tem identification, possibly other data is
available from literature, that can be used
as an alternative source of information for
system identification. This so called a priori
information originates from conclusions of
former research about the actual behavior
of (separate parts of) the system. If this
a priori information is present, it can be
used as extra 'datapoints', in addition to the
experimental data in a combined objective
function. This function will be used in the
numerical optimization problem that has to
be solved to estimate the model parameters.

This study deals with the incorporation of
additional a priori information in the system
identification. The goal is to investigate if and
how the identifiability of the system and the
reliability of the estimated parameters can be
improved. When normal identification tech- 2
niques fail due to the scarcity of experimen-
tal data, it will be shown that the techniques
presented in this study can cope with this de
ficiency.

The presented techniques were applied to
the system identification of calcium handling
in the myocardium of an intact rat heart.
Calcium is the main regulator of the con
traction and relaxation of the heart's ven
tricles. The study of the calcium tran
sients in the myocardium involves the study
of the Sarcoplasmic Reticulum Ca2+-ATPase
(SERCA), which is known as the most impor
tant calcium extrusion pump. A three com
partment model was proposed, and the cal
cium concentration [Ca2+] of only one com-

Improved reliability in parameter estimation of dynamic nonlinear systems with sparse data
incorporating a priori information 2
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tain unmodeled dynamics, and the residual
vector ~ can be characterized as white noise
for 6 = 8 true , where 6 is the estimated pa
rameter vector and 8true is the true unknown
parameter vector, the cost function F I (6) can
be derived from the likelihood function of a
normal distribution [Damen, 2003];

K
~ 1 ~~ ~ 2

F I (8) = 2a2 . L)YI(k, 8) - YI(k, 8true ))
~1 k=1

(2)
where a~l is the variance of the residuals

6(k) = YI(k,6) - YI(k), with fh(k,6) the
simulated time-series model output at sample
k = tf fs (is is the sample frequency) with
model parameters 6 and YI (k, 8true ) the
experimental time-series system output at
sample k. See appendix A for this derivation.

Besides experimental time-series system
output, secondary sources of information can
be available. This a priori information q is
not necessary time-dependent, and can be as
sumed valid for all subjects under study. As
suming a periodic system, quite common for
biomedical systems, q can be a condition that
is valid every system cycle, for example. If
this quantity can also be derived from the
model as a periodic model output, a cost func
tion similar to equation 2 can be derived;

TU/e

multiple datasets, a priori information, or po
tential boundary conditions on parameter val
ues (as a penalty function).

Dimensional differences and differences in
priority between the objectives suggest the
use of weighting factors. This result in one
combined cost function;

Fisher information matrix

Properties of the Fisher information matrix
(FIM) can be used as criteria to evaluate
estimated model parameters and indicate
changes in the identifiability when models are
changed or experiments are redesigned. The
FIM provides measures about the amount
of information of a certain parameter com
bination, and its inverse indicates the lower
bound on parameter variances.

The FIM is a positive definite, square sym
metric n x n matrix (n is the number of pa
rameters). If J is the Jacobian, defined as the
n x D matrix of first derivatives of the residu
alvector to the parameters (D = K + M is the
total number of samples), the FIM for Ftot(O)

is constructed as follows [Flaherty, 2005];

FIM(6) = -+- .JT(6) . J(6) (5)
a~tot

Here, a~2 is the variance of the residuals

6(m) = Y2(m,6) - q, with Y2(m, 6) the
simulated time-series model output at sample
m.

M
~ 1 ~ ~ 2

F2(8) = -2 . L)Y2(m,8) - q)
2a6 m=1

(3)

The minimal uncertainty, defined as the
covariance matrix, is reciprocal to the FIM
lOber, 2002], and the minimal standard de
viation of the estimated model parameters is
calculated as the square root of this uncer
tainty;

(6)

When dealing with more optimization ob
jectives, the combination of the cost functions
can guide the model parameters in specific ar
eas of the solution space. Cost functions for
the various objectives can be constructed from

The positive definiteness of the FIM guar
antees that all eigenvalues Ai of the eigenvalue
decomposition are positive. The eigenvectors
V = [VI, ... , vn ] define the principal informa
tion directions in the n-dimensional param
eter solution space, and the eigenvalues and

Improved reliability in parameter estimation of dynamic nonlinear systems with sparse data
incorporating a priori information 3
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its inverse are a measure of the information,
respectively uncertainty in these principal di
rections. This can be explained by taking an
(hyper)ellipsoid and writing it in a quadratic
form [Hidalgo, 2000];

yTC-1y = 1

which equals the eigenvalue decomposition of
FIM, with Y the eigenvectors and C a di
agonal matrix with the square roots of the
eigenvalues Ai on the diagonal. In a two di
mensional case this approach can be graphi
cally represented by a two dimensional ellip
soid (figure 1).

-~5~-------O~-----~

e,

Figure 1: Graphical interpretation of two
dimensional FIM. This ellips shows the amount
of information for a certain estimated parameter
combination. The length and phase of the axes are
determined by the eigenvalues and eigenvectors of
the FIM.

Model-to-model identification

System identification deals with the compar
ison of simulated model output and real ex
perimental system output. The goal of this so
called model-to-data identification is the esti
mation of the model parameters.

To get a first glance at the possible prob
lem areas and identifiability issues of the sys
tem, the model can be presented also as a real
'system', only this time with a known set of
model parameters Otrue. This 'system' is in

rUle
the modelset, and when no noise is added,
the global minimum is known (namely, for
o = Otrue). This model-to-model identifica
tion can be used for example to draw two di
mensional contourplots for (}i and (}j (i i- j)
with the other parameters fixed, to show the
surroundings of the global minimum, which
can be very useful to show potential devia
tions and biasses on the model parameters.
This will be shown in section 5.

Implementation

All numerical methods where implemented in
Matlab 7.04 (R14) using a personal computer
with Windows XP Pro running on an Intel
Pentium 4 processor with 2.69 GHz and 1 Gb
of RAM. For solving the model's differential
equation a variable step ODE-solver (ode23)
was used, with predefined maximal step size
to assure proper step sizes. For the param
eter estimation the optimization toolbox
was used, where a Trust region method was
selected (lsqnonlin). With this method it
was possible to select parameter boundaries,
and a lower bound at zero was chosen for all
modelparameters. Other available algorithms
were Gauss-Newton and Levenberg Mar
quardt, but were less favorable here, because
their lack of boundary options.

3 Case study: calcium han
dling in myocardium

In this section an example is presented of a dy
namic nonlinear biomedical system that suf
fers from sparse data. The above described
technique of weighted objective optimization
is used on this case, and properties of the FIM
are used to evaluate the results.

The case deals with the calcium handling of
an intact rat myocardium. In this section, the
model is presented, and the available a priori
information is explained. Further, the result
section shows the results of the research on

Improved reliability in parameter estimation of dynamic nonlinear systems with sparse data
incorporating a priori information 4
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the case study.

Myocardium model

The working of the heart, with the contrac
tion and relaxation of the heart's ventricles
as most important function, is caused mainly
by the calcium transients through the various
organelles of the muscle fibers. The dynamics
of the calcium transients have been modeled
by a three compartment model, consisting of
the extracellular space (perfused with Krebs
Henseleit solution) with calcium concentra
tion [Ca2+]ex ([MD, the sarcoplasm reticu
lum (SR) with calcium concentration [Ca2+]sr
([MD and the sarcoplasm with the intracellu
lar free calcium concentration [Ca2+]i ([MD.
Figure 2 shows a schematic overview of this
model with the major in- and effiuxes. The
sarcoplasm is the compartment of interest, be
cause here the calcium stimulates the contrac
tile proteins, responsible for the contraction.
The following nonlinear dynamic model of the
sarcoplasm was proposed
[Riel, 2003];

. Iin(x)·u(t)-Ieu(x)
X = B(x)

Y1 = X

(8)

([M 18D is the total inflow in the sarcoplasm
and lei I = Incx + lserca ([MI 8D the total
effiux. The differential equation includes all
major calcium fluxes between the sarcoplasm
and other two compartments. Idhpr and Iryr
represent the inflow through the sarcolemma
(SL) (by dihydropyridine receptors) and SR
membrane (by ryanodine receptors), respec
tively. Both are activated by an input u,
which is a trigger signal resembling the ac
tion potential. The N a+ ICa2+ exchanger
(NCX) and SERCA are the two most impor
tant pumps (Incx and Iserca), causing the free
intracellular calcium concentration [Ca2+]i to
flow out of the cytoplasm to a steady state
level. In addition to the fluxes, calcium home
ostasis is attained with the presence of var
ious calcium buffers, represented in B ([-D.
This buffering has been described by the rapid
buffer approximation [Wagner, 1994];

[Bi]ki
B = 1 + L (ki + [Ca2+]d 2 (9)

with [B]i ([MD the concentration and ki
([MD the dissociation constants of calcium
buffer i. An overview of these values can be
found in literature [Balke, 1994].

_ Influx

- -. Efflux

The output Y1 is the free intracellular cal
cium concentration [Ca2+]i, lin = Idhpr + Iryr

Figure 2: Schematic overview of calcium flows
through myocardium. The three compartments
are visible (Extracellular space, SR and sar
coplasm), and also the major in- and effiuxes.

[Ca2+]~
Iserca = Vm . [Ca2+]~ + k;' (10)

In the physiological range NCX is modeled
as a linear function of the cytoplasmic calcium
concentration
[Hove-Madsen, 2001];

In("~ = kncx . [Ca2+]i (11)

with kncx ([8-1Dthe rate coefficient. The sep
arate influx mechanisms Idhpr and Iryr are de
pendent of respectively the SL and SR mem-

Incx and Iserca both depend on the total
free calcium concentration in the cytoplasm.
For modeling Iserca a Hill equation was pro
posed [Lytton, 1992], with a saturation flow
Vm ([MI8D, affinity coefficient km ([MD and
a Hill coefficient of 2.

~ Sarcolemma

...... .../ncx,
\

:~-~ \
\

Extracullar space

Improved reliability in parameter estimation of dynamic nonlinear systems with sparse data
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brane permeability and the calcium concen- is halfway. Above equations result in four un-
tration gradient (Fick's Law of Diffusion); known modelparameters, listed in table 1.

The halftime th can be approximated as the
moment the maximal total cytoplasmic flux

(15)

Par. Description Unity
Vm Max. SERCA flow Ms- 1

km Affinity coeff. SERCA M
kncx Rate coeff. NCX s-l

gl Permeability of SL/SR s-l

Table 1: The four model parameters with their
physiological meaning and unity.

rmT
A A JmT-tf Iserca dt
Y2(m,9) = mT (16)

fmT-tf I ncx dt

Here, c = {extracellular space, SR} are the
different compartments the calcium flows out
to and C = {ncx, serca} are the two pumps
responsible for the calcium transport. A sec
ondary model output ih(m,O) then looks as
follows;

A priori information

Bers [Bers, 2002] states that the removal of
calcium from the sarcoplasm is achieved by
several routes. In rat myocardia 92% of the
total free calcium concentration is removed by
the SERCA, and the remaining 8% by NCX
and other slow systems. This quantative in
formation is originating from estimates done
in [Bassani, 1994].

Besides the time-series data of intracellular
calcium concentrations, which is measured di
rectly from one heart, the efflux-ratio is a pri
ori information q, assumed to be valid inde
pendent of time and subject. To use this in
formation in the optimization procedure, the
simulated efflux-ratio has to be calculated for
each heart beat. The calcium concentration
that flows out through a pump with a flow
I(t) during a time tf equals the integral of
the flow over a time period t f.

(12)

(14)O<t'5:T( )
_ t 4

U t - 1 - t 4+t4
h

r = {dhpr,ryr}
c = {extracellular space, SR}

Here gr ([s-l]) is the permeability of respec
tively the SL and SR membrane, and [Ca2+]c
([M]) respectively the calcium concentration
in the extracellular space and the SR. I ryr is
initiated by Idhpr, which is called the calcium
induced calcium-release (CICR) mechanism
[Fabiato, 1983]. The time between inducing
and releasing is very small compared to the
total systolic time, and the CICR is therefor
omitted. Both channels can therefor be com
bined, with a lumped permeability gl ([s-l]);

lin = 91 . mean([Ca2+]ex, [Ca2+]sr) (13)

[Ca2+]i is neglected here, because both
the extracellular and SR concentration (rv
mM) are much bigger than the sarcoplas
mic concentration (rv p,M). The ex
tracellular calcium concentration [Ca2+]ex
was experimentally set at a constant value
[Ca2+]exo (1.5mM) [Riel, 2003]' and due to
several buffering proteins, the SR calcium
concentration [Ca2+]sr is kept nearly con
stant at [Ca2+]sro under normal conditions
[Bers, 2002]. The action potential u(t) ([-]) is
the electrical activity that stimulates the sar
colemmal membrane (and indirectly the SR
membrane) to let calcium through into the
cytoplasm. This action potential can be de
scribed as a 4th-order Sigmoid function, de
pendent of cardiac cycle time, with th ([s])
the moment the maximal influx is halfway
[Buijs, 2005].

Improved reliability in parameter estimation of dynamic nonlinear systems with sparse data
incorporating a priori information 6
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The only a priori information concerning
the model parameters directly is the non neg
ativeness of the parameters. Because the pa
rameters all represent a physiological quantity
which can not become negative, all four model
parameters have a lower bound of zero. A
physiological upper bound also exist, but no
information is available about this maximum,
so the model parameters are limited to the
range [0,00].

4 Optimal experiment design

Section 3 presented a kinetic model of SERCA
(equation 10), with a maximal calciumflux Vm

and affinity coefficient km as the unknown
model parameters. Estimating these kinetic
parameters is a difficult task, due to the low
identifiability of the pump. Given normal con
ditions, this system was shown not to be iden
tifiable, and estimates were very unreliable
(see the final results in section 5). Figure 3
shows the modeled kinetics of SERCA for a
simulated control situation, Le. without per
turbation.

X 10-.111 Kinetic plot of SERCA pump

10 12 14 16 16
ICa2+] x 10-7

Figure 3: Modeled SERCA kinetics of control ex
periment. The Hill equation (solid) was proposed
in section 3. Based on the experimental range (in
dicated by aeon) also a linear model can be pro
posed (dash-dot).

aeon is the range of the experimental cal
cium transients as the difference between end
systolic and end-diastolic concentrations. To

TU/e
reveal the complete kinetics of SERCA, this
range is not sufficient, as can be seen in the
plot. Given the small range of calcium con
centrations, a linear model seems appropriate,
where only one parameter is needed. The fact
that two parameters are used for modeling
SERCA can be seen as an overcompensation,
resulting in the low identifiability. Changes
in the experiment design can result in higher
transients, expected to overcome this prob
lem. With a bigger concentration range, the
linear relationship will not suffice, and the
model based on the two parameter Hill equa
tion will be better identifiable.

A larger amplitude is reached when Iso
proterenol is perfused in the myocardium.
Isoproterenol is a well known ,B-adrenergic
stimulator, increasing contractility of the
muscle fibers, caused by larger calcium
transients [Ruijs, 2006]. Looking at figure 3,
it is expected that a bigger amplitude will
improve the identifiability of SERCA.

Besides higher calcium concentrations, iso
proterenol also effects the heart rate. Fig
ure 4 shows a power spectral density plot of
the calcium transients of a control and stimu
lated rat myocardium, showing the main dif
ferences in amplitude and the smaller differ
ence in frequency. Eventually, a double effect
occurs. Besides an increased calcium concen
tration due to a change of SERCA, also the
higher heartrate (pacing) helps increasing the
end-diastolic concentration [Ruijs, 2006].

Caution has to be taken with the calcium
concentration in the SR. An increased work
ing of SERCA results in an increased influx
from the SR to the cytoplasm, due to a larger
concentration gradient (equation 12). This
larger concentration gradient is caused by an
enlarged SR calcium concentration [Ca2+]ST'
Originally, this was kept constant at [Ca2+]STo
(1 mM) [Bers, 2002], but needed to be recal
culated when isoproterenol was injected. For
this, the new concentration [Ca2+]sTl is cal
culated as a function of the ratio of influxes
between a control and isoproterenol perfused

Improved reliability in parameter estimation of dynamic nonlinear systems with sparse data
incorporating a priori information 7



Eindhoven University of Technology
Department of Electrical Engineering
Control Systems TU/e

Results

In section 2, a weighted objective cost func
tion was introduced (equation 15). For the
calcium handling case this becomes;

Weighting vector

ble 2 gives an overview of important data fea
tures of seven hearts, with their diastolic and
systolic levels in control situation as well as
isoproterenol situation and the dominant fre
quency (heartrate).

A peak detection algorithm was implemen
ted to calculate the cycle times T and halftime
th of the experimental data, and to determine
the start of each heartbeat (to activate the
modeled action potential). The found peaks
were also visually checked, to see if any peaks
were missed, or false peaks were returned.
From an experimental dataset 25 calcium cy
cles were visually selected.

Initial values of the parameters were chosen
as to be in the same range of earlier estima
tion results ([Riel, 2003], [Buijs, 2002]). To
check if the algorithm converges to unwanted
(local) minima, a large amount (N=250) of
parameter estimates were obtained, with var
ious initial values. Plots of these results can
be seen in figure 17, 18 and 19 of appendix C.
These plots show that there were no unwanted
local minima, and the solution converged to
one global minimum.

In total seven different datasets were used
for evaluating the methods. Three of them
were measurements done in 2002, and the re
maining four were from 2005. The measure
ments of 2005 revealed some new dynamics.
These dynamics were visible as a hump in the
diastolic period [Ruijs, 2006]. The 2002 mea
surements did not reveal these dynamics. The
three compartment model did not reckon with
these dynamics, visible in the frequency range
between 15 en 30 Hz. A low pass filter with a
cut-off frequency of 15 Hz was used therefor
to filter these unmodeled dynamics.

(17)

Power Spectral Density

-160

-190

iil
<!.! -170

c.

Experimental data

myocardium (equation 18).

Figure 4: Frequency spectrum of control and iso
proterenol heart. Difference in frequency is de
noted by Jf . The high peak is the dominant fre
quency that corresponds to the heartbeat.

Experimental data was obtained from isolated
intact Sprague-Dawley rat hearts. The hearts
were studied in a Langendorff system. The in
tracellulair free calcium concentration [Ca2+Ji
was determined with the Indo-l fluorescence
technique, and digitally stored with a sample 5
frequency of 200 Hz [Ivanics, 2001J. For the
isoproterenol perfused hearts, 5nM of isopro
terenol was perfused to increase calcium con
centration levels. All data was supplied by the
Institute of Human Physiology of the Semmel
weis University in Budapest (Hungary). Ta-

(18)
The ratio ~ is the relative increase of influx
due to the perfusion of isoproterenol, and can
be derived from estimates of the permeabil
ity gi, which can be estimated very reliable,
elucidated in section 5.

Improved reliability in parameter estimation of dynamic nonlinear systems with sparse data
incorporating a priori information 8
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Table 2: Overview of 7 experimental datasets

020920a 021015b 021016a 050914b 050920a 050921a 050922b
control

[Ca2+]min (mM) 141±4 104±5 173±6 175±6 126±8 168±9 135±7
[Ca2+]max (mM) 335±9 234±8 355±10 423±11 344±10 441±11 444±10

fhr (Hz) 4.88 4.79 4.88 5.08 4.49 4.88 4.59
isoproterenol

[Ca2+]min (mM) 419±26 380±29 343±19 280±9 344±11 324±12 294±11
[Ca2+]max (mM) 1260±108 801±55 670±42 879±34 856±36 772±18 864±30

fhr (Hz) 5.47 6.25 6.05 5.47 5.47 6.05 5.27

Determination of weighting value

Figure 5: Normalized costs of first (solid) and sec
ond (dashed) objective of weighted objective op
timization for various weighting values. The cost
functions are normalized to values of the cost func
tions for w --; 0 and w --; 00.

ilar to the so-called pareto-front can be seen
(figure 6). Calculating the pareto-front is a
highly computing extensive method that is
used in multi-objective optimization where no
weighting vector is available. A pareto-front is
a collection of points that are pareto-optimal.
In other words, each of these pareto-optimal
points can be seen as the best possible so
lution. It means that attempts of improving
one objective will result in deterioration of the
other. This study deals with a weighted ob
jective optimization problem, and parallel to
pareto-analysis, one point from the solution
front is selected as the final solution. Here,
this point is coupled to a certain weighting

1.5 2.5
w x1~

0.5

0.9

0.8

i 0.7
.!1§06

.5.0.5
J!l
§ 04

~ 0.3

0.2

0.1

o .'.

When these contributions are plotted as a
function of each other, a plot that looks sim-

Here, F I is the cost function incorporating
the experimental calcium concentration,
and F2 the cost function incorporating the
a priori known efRux-ratio. The question
arises how the different objectives have to be
weighted to one another. This weighting is
only relative, and in the two-dimensional case
of the calcium handling W = [WI, W2] = [w, 1]
is the weighting vector. When w is too small
(w ----t 0), the optimization algorithm only
uses the a priori information in the costfunc
tion, and when w is too large (w ----t 00), the
opposite occurs. To select a proper value for
w experimentally, the cost functions of both
objectives are calculated for optimization
runs of a single experimental setup with
different weighting vectors. Figure 5 shows a
part of these (normalized) contributions as a
function of weighting w. For small values of
w it is obvious that the contribution of the
cost function of the first objective to the total
error is big and that of the second objective
small. For large values of w it is exactly the
other way around. The cost functions are
normalized to values of the cost functions for
a very small weighting value (w ----t 0) and a
very large weighting value (w ----t 00).

Improved reliability in parameter estimation of dynamic nonlinear systems with sparse data
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Solution front

0.2

0.18 *
0.18

0.14 1<

0.12

*u.~ 0.1

0.08

*0.08

0.04 1<

0.02

,* 1< * *
o 0.02 004 0.08 0.08 0.1 0.12 0.14 0.18 0.18 0.2

F,

Figure 6: Solution front of weighted objective op
timization. This plot has close resemblance with
the pareto-front. Pareto is used to solve a multi
objective optimization problem without the use of
weighting. Here, the points are generated by dif
ferent weighting values, what makes it different
than pareto.

value, which is the weighting w selected for
the weighted costfunction.

Model-to-model identification

As a first step, a model-to-model identifica
tion approach was used, and two-dimensional
contourplots of the cost functions of the sepa
rate objectives where drawn, as a function of
the modelparameters. With these plots, it can
easily be seen where the problem areas are for
the identifiability. Figure 7 shows the first ob
jective contourplots of Vm versus km (left), Vm

versus gl (middle) and Vm versus kncx (right).
For the other combinations see appendix B.
Figure 8 shows the same combinations, but
now using only the a priori information in the
cost function (the second objective). The true
modelparameters (}true, which are known in a
model-to-model approach are indicated with
a cross.

When the separate contourplots are com
bined as was discussed in the weighted
objective optimization section (so optimizing
with use of experimental data and a priori
information), one can see the improvements
in the identifiability of the model parameters

rUle
(figure 9). Only the contour plot of SERCA
parameters Vm and km forms an exception.

Parameter estimation

Control case

For seven intact rat control hearts the model
parameters were estimated. With use of the
FIM a measure for the uncertainty was cal
culated as the relative standard deviation per
parameter. Figure 10 shows the estimation re
sults of one control heart (ID: 021016a) when
no a priori information is used (only experi
mental data) in the cost function, as well as
the weighted objective parameter estimation,
thus with the a priori information and exper
imental data, and when only the a priori in
formation is used in the cost function.

Estimated parameters of control case (ID:021016a)

30 Ti=c::======~==;-----------'

ffiexperimen'81 data
25 • exp. data + a prion info

II a priori information

20

15

10

-5

-10

-15~-----------------~

Figure 10: Estimates of the four model parameters
for control case (ID:021016a).

The results show more or less a numerical
representation of the model to model contour
plots. It is obvious that kncx can be estimated
with a much higher accuracy when experi
mental data and a priori information are in
corporated in the cost function compared to
the cost functions without. Without a pri
ori information it can be seen from figure 7
(right plot), and also from figure 14 in ap
pendix B (middle and right plot) that kncx

can hardly be estimated, resulting in large de
viations from the (unknown) true parameter.

Improved reliability in parameter estimation of dynamic nonlinear systems with sparse data
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Figure 7: Two dimensional model-to-model contourplots of Fl. Vm vs. km (left), Vm vs. glump

(middle), Vm vs. kncx (right). In model-to-model optimization the optimal minimum (for () = ()true)

is known (indicated with a cross). It is obvious that this optimum is far from well defined.
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Figure 8: Two dimensional model-to-model contourplots of F2 . Vm vs. km (left), Vm vs. glump

(middle), Vm vs. kncx (right). Also here the minimum (again indicated with a cross) is not well
defined.
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Figure 9: Two dimensional model-to-model contourplots of Ftot . Vm vs. km (left), Vm vs. mump

(middle), Vm vs. kncx (right). Combining F I and F2 in one weighted objective shows a much better
defined minimum (defined with a cross) for the middle and right plot. The left plot (Vm vs. km)
remains more or less bad unchanged.
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The right plots of figures 7, 8 and 9 show the
improvement of using a priori information by
a change from a long stretched bathtub like
minimum in figure 7 to a well defined con
vex minimum in figure 9. Another case is the
lumped permeability gt, which is already well
defined (figure 7 (middle plot) and figure 14
(left and right)). So, even without a priori
information, this parameter can be estimated
with a high reliability. Only the experimen
tal data is inevitable here. Without this data,
large deviations can be seen for gt.

The dependency between the two SERCA
parameters Vm and km becomes clear in the
left plot of figure 7. The contourplot of this
parameter combination allows different sets
of SERCA parameters that can be returned
from the optimization algorithm, depending
on initial values. The result of this are ex
tremely high uncertainties, up to several hun
dreds percents of the estimated value. A con
tourplot of the a priori information concern
ing the SERCA parameters (left plot of fig
ure 8) shows more or less the same behav
ior as the single-objective contourplot (figure
7). The minimal cost valley is somewhat nar
rower, which results in an increased estima
tion accuracy (see also figure 10). Still, there
remains a higher uncertainty than, for exam
ple, the other two parameters (kncx and gt) in
the weighted objective optimization.

Numerical results of the parameter estima
tion of the normal (only experimental data)
and weighted optimization of all control cases
can be seen in table 3 and 4 in appendix D.

Isoproterenol case

The optimal experiment design section (sec
tion 4) already discussed the difficulties with
the SERCA parameters. The model-to-model
contourplots from the previous (figure 7, 8
and 9) underline this problem. The same
long stretched 'bathtub' like valley of minima
in contourplots of both objectives indicated
a bad identifiability (the left plots of figure
7, 8 and 9), and although using the a priori

rUle
information improved this identifiability, the
uncertainty was still quite large.

00 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
lime (5)

Figure 11: Calcium transients of control (solid)
and isoproterenol infused heart (dashed). Differ
ences can be seen in amplitude and end-diastolic
and end-systolic calcium levels. Also the domi
nant frequency (heartbeat) differs a little bit.

By infusing isoproterenol in to the cyto
plasm, the diastolic and systolic levels of the
intracellular calcium concentration increases,
covering a larger dynamical range of the
SERCA kinetics (see section 4). Figure 11
shows the calcium transients in the cytoplasm
for a control heart and a heart perfused with
isoproterenol.

As was discussed in section 4, the SR
calcium concentration [Ca2+]sr for the
isoproterenol case was recalculated. For
the same control heart as used before (ID:
021016a) isoproterenol was infused and the
new SR concentration [Ca2+]srl was calcu
lated. For this case [Ca2+]srl was 2.05, which
means an increase in the SR concentration of
105%.

It is assumed that isoproterenol only has
effect on the working of SERCA, and there
for the SL/SR permeability gt and N a+ lea2+
rate coefficient kncx are kept fixed. SERCA
parameters Vm and km were re-estimated with
gt and kncx kept fixed. When isoproterenol
was injected, no a priori information about
the efRux-ratio is available anymore. Due

Improved reliability in parameter estimation of dynamic nonlinear systems with sparse data
incorporating a priori information 12
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to isoproterenol the amount of calcium that
flows through SERCA and NCX, and thus the
ratio is not necessarily valid anymore. So pa
rameter estimation must be done with single
objective optimization. Figure 12 shows the
re-estimated SERCA parameters for the same
heart as used before (ID: 021016a) where iso
proterenol was perfused in the myocardium.
An overview of all re-estimated SERCA pa
rameters, as well as the new SR concentration
can be found in Appendix E (table 5).

Uncertainty amps of SERCA parameters

R....tlm.18d SERCA perem.t.... (10:021016.)

pothesized that the quality of system iden
tification improves when using additional in
formation (if this a priori information is cor
rect), and this article elaborates extensively
how this could be achieved. Considering the
case study as a typical example of a dynamic
nonlinear system with sparse data, the re
sults demonstrated the positive effect of the
weighted objective optimization on the relia
bility of the parameter estimates.

When dealing with multi-objectives opti
mization, where several (conflicting) objec
tives have to be satisfied, several methods can
be used [Sendin, 2005]. When no weighting
factors are available to weigh the different ob
jectives, as is done in this study, an optimal
solution has to be selected from the pareto
front, which is the collection of pareto optimal
points. Creating this pareto-front is a very
time-consuming method. This study com
bines different objectives into one weighted
objective, where the weighting vector is de
termined a priori. This value is determined
experimentally based on a single dataset and
used for all experiments of the calcium han
dling case study. Calculating this value for
every experiment is very time consuming (just
like calculating the pareto front), which makes
this subjective approach more flexible. If any

Figure 13: Uncertainty ellips of SERCA param
eters of control (solid) and isoproterenol infused
heart (dashed). Improvements in the reliability
for isoproterenol can be seen in the smaller vol
ume of this ellips.

km (O.l~M/s)Vm (mMls)

0+-----'---

Figure 12: Re-estimated SERCA parameters of
isoproterenol perfused heart (ID:021016a).

6 Discussion

Compared to earlier estimates of the
SERCA parameters, parameter estimations of
the isoproterenol infused heart show a further
increase of the reliability, measured by the
standard deviation. The uncertainty can be
graphically presented as was explained in sec
tion 2 with the eigenvalues en eigenvectors of
the FIM (figure 13). The smaller uncertainty
ellips of the isoproterenol infused heart shows
that these SERCA estimates are more reliable
than the control case estimates.

4

Improving the reliability of the estimated
model parameters was achieved by incor
porating secondary information sources and
taken into account in a weighted objective op
timization. For the calcium handling case the
method proved to be successful. It was hy-
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6
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information concerning this relative weighting
is available, a more objective solution can be
guaranteed.

Intuitively, a constrained optimization algo
rithm could be suggested for incorporating a
priori information, where the a priori informa
tion restricts parameter solutions in the solu
tion space. Caution has to be taken when us
ing a constrained optimization for physiolog
ical applications. Obtaining a priori informa
tion from physiological systems results rarely
in exact facts about system variables. It is
more realistic to allow small deviations from
the a priori information. Also the flux ratio
presented in section 3 is based on estimates
of the integrated fluxes through the various
pumps [Bassani, 1994]. Bassani et al. already
suggested recommendations to refine the es
timates by better calibration of the fluores
cence technique and a more thorough knowl
edge of the physiology of the pumps. Incor
porating physiological information into a con
strained optimization setting is therefor not
recommended, because of these unknown de
viations which is more difficult to take into
account in constrained optimization.

Alternatively, a softer version of con
strained optimization is an approach which
uses penalty functions, that penalizes devi
ations from the quantitative measurements
that are too big, allowing small deviations.
Other studies already presented this way of
incorporating a priori information in the sys
tem identification of physiological models. In
[Riel, 2003], accounting a relative weighting
to indicate the importance of the penalty, as
well as the determination of the allowed devi
ations is determined rather arbitrary.

Other studies also use Bayes' theorem
for incorporating any information based on
the statistical information of parameters
to support the experimental (a posteriori)
data [Perttunen, 1989]. Bayesian approaches
incorporate information about the a priori
known distribution of the model parameters
as quantative information [Sparacino, 2000],
which is available for example from past

rUle
research. Depending on the kind of a priori
information that is available for system
identification, the weighted objective opti
mization approach elucidated in this study or
a Bayesian approach is preferable. A Baye
sian method needs (statistical) information
about the model parameters, whereas this
study will do with information concerning
variables of the system. A priori information
directly concerning the model parameters
is often more difficult to obtain, whereas a
priori system information can more or less
be information of any kind, which makes
the weighted objective optimization a more
generic approach.

Op den Buijs presented an overview of ref
erences with in vitro values of SERCA pa
rameters in different situations (page 21 of
[Buijs, 2002]). For isolated myocytes, simi
larities can be seen in the estimation of km

between the overview of Op den Buijs and
table 4, whereas Vm in the overview of Op
den Buijs is much smaller. These deviations
can be explained by the fact that the over
view deals with isolated myocytes, instead of
in vivo myocytes. With in vivo research, the
behavior of the system within its environment
is studied, which is favorable to discriminate
between conditions of the system, for exam
ple concerning health. In vitro research lacks
this environmental influence, which can be the
cause for the difference between parameter
values. So, the difficulty in obtaining reliable
parameter estimates pays off in the profit of
obtaining more clinical reliable values.

Perfusing the myocardium with isoprotere
nol resulted in the aimed for reliability im
provements of the SERCA model parame
ters Vm and km . The physiological interpre
tation of changes in parameters values be
tween the control and isoproterenol cases is
less clear. It is believed that infusing iso
proterenol result in an increased working of
SERCA [Kaasik, 2001]' visible by an increas
ing in both Vm and km. In all seven cases Vm
gives a lower estimate for the isoproterenol

Improved reliability in parameter estimation of dynamic nonlinear systems with sparse data
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estimation data, but the remaining transients
will do no good as validation data, as they
contain the same dynamics as the estimation
data. When the input can be changed, deriva
tions on the data can be used for validation,
but for obtaining in vivo measurements, not
much can be changed in the input. Pacing
was described earlier, and is a possibility for
input design. Unfortunately, the effects are
small, so validation remains very limited.

The aim of using minimal models like the
one in this study is to classify different system
conditions. The results already showed this
classification by a large diversity of estimated
model parameters. This diversity prevent the
option to use data of the different myocar
dia for validation. It is obvious that finding
descent validation techniques is very difficult,
and deserves a closer look for further research.

The goal of this study was to investigate if
and how the identifiability of dynamic non
linear systems that suffer from sparse exper
imental data could be improved and model
parameters could be estimated with higher
accuracy. To do this, secondary information
sources were obtained, from which a priori
information was derived and incorporated in
a weighted objective optimization, combining
the sparse available experimental data and a
priori information.

As a representative dynamic nonlinear ex
ample of systems that suffer from sparse
datasets, a biomedical system was taken as
a case study. A three compartment model
of the calcium handling in rat myocardia was
proposed, and with experimental data four
model parameters were estimated. With
out additional information only one param
eter could be estimated accurately. For a
better accuracy of the other three param
eters, information about flux ratio between
the three compartments was incorporated in
the weighted objective optimization. It was

Eindhoven University of Technology
Department of Electrical Engineering
Control Systems

perfused cases, and km show various changes
(both increasing and decreasing). At the mo
ment there is no (physiological) explanation,
and possibly a more physiological approach
can describe this phenomenon.

In some of the measurements (as explained
in section 4) a hump was detected in de down
slope of the calcium transients. This hump
was filtered out from the signal, because it
was not taken into account in the model. The
model of SERCA was not sufficient to de
scribe this phenomenon, and without the low
pass filter SERCA parameters drifted away
to extreme (non-physical) values. This makes
clear that the model needs adaption when this
hump is taken into account. A more physio
logical description of the phenomenon can be
found in [Jiang, 1998].

Isoproterenol was used in the experiment
design to achieve increased calcium concen
trations in the myocardium. Isoproterenol
is a ,a-adrenergic stimulator, known for 7
increasing contractility of the muscle fibers,
caused by larger calcium transients. The
results show an increased reliability of the
estimated SERCA parameters when isopro
terenol is used, compared to a normal control
case. Other possibilities to increase calcium
concentrations can be achieved by changes
in input (input design). Changes in the
frequency of the action potential (pacing)
also resulted in changes in concentrations
[Ruijs, 2006], but these changes where too
small to have effect on the reliability of the
SERCA parameters (results not shown).
Therefor isoproterenol was favorable for the
experiment design.

In system identification, validation is an im
portant step to evaluate if the model describes
the system well enough. For this, validation
data is the data that is not used to build
the model (estimation data). The problem
of the systems described in this article, is the
scarcity of the data. From one dataset (con
taining several hundreds of transients) only a
small number of transients (25) are used as

Conclusion

rUle
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shown that the reliability of the parameter es
timates was improved with weighted objective
optimization. This improvement was mea
sured as the standard deviation per model pa
rameter.

This study provided several key improve
ments. At first, it can be mentioned that the
weighted objective optimization proved to be
an intuitive and flexible method to combine
the sparse experimental data and a priori in
formation in the minimization algorithm.

Furthermore, it appeared to be very advan
tageous that information concerning system
variables could be used as quantitative a priori
information, whereas a typical Bayesian ap
proach needs parameter specific information.

Finally, a major advantage of the biomed
ical application in this study is the im
provement to do reliable in vivo research.
In biomedical research there is an increas
ing need to study how biological parameters
change as a result of disease or therapy in the
intact system. In vivo research is the favor
able method when the aim is to discriminate
between these system conditions. The draw
back of doing in vivo research is the scarcity of
data, which makes it more difficult to do reli
able parameter estimations. This study shows
that reliable estimates can be obtained, and
thus in vivo research can be done more reli
ably, despite its drawbacks.
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A Derivation of cost function
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If the residuals have a Normal distribution ~(k, 0) rv N(O, aV, and the samples are indepen

dently and identically distributed (i.i.d.), the probability density function p(~ (0)) is defined
as

K ( 1 )K _~K ~
p(~(O)) = II p(~(k, 0)) =..J2; . e k=l 2<7{

k=l 27raE

This can also be written as the likelihood function L(~(O))

(20)

(23)

(24)

L(~(O)) = IT p(~(k, 0)) = (_1_) K . e- 'Lf:=1 {(~~r (21)
k=l ..J2;aE

The likelihood function indicates the probability of occurrence of a measurement with a
possible set of parameters O. The maximum of this likelihood gives the eventually wanted
estimation of the parameters (j. This is called the Maximum Likelihood Estimator of O.

The maximum of the likelihood function L(~(0)) is equal to the minimum of -In(L(~(O))).
For that to be true the first derivative of L(~(O)) and -In(L(~(O))) both need to be zero,
and their second derivative need to be respectively negative and positive. The first derivative
of -In(L(~(O))) is

8(-ln(L)) 8(-ln(L))8L _~8L (22)
8{j 8L 80 L 80

Where both Land -In(L) has their extremum at zero. The second derivative of
-In(L(~(O))) can be written as

8
2

( -l~(L)) = 8
A

(_~ 8~) = _~ 8
2

A

L
802 80 8L 80 L 802

Which proves that the second derivatives of Land -In(L) have an opposite sign.

If the likelihood function L(~(0)) is transformed into its negative natural logarithm version,
the function becomes

K

-In(L(~(O))) =~L~(k, 0)2 + K .In(aE) + K In(27r)
2aE k=l 2

Because only the first part is dependent on the parameters 0, this part is looked upon for
further calculation. The final costfunction for the datafit F(0) is

A 1 ~ A 2 1 ~A A 2
F(O) = 2a2 ' L...~(k,O) = 2a2 ' L...(y(k,O) -y(k,Otrue))

E k=l E k=l

Where this function needs to be minimized to estimate the parameters 0 of the model

(25)

0= argmin{F(O)} (26)
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B Contourplots: Model-to-model identification
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Figure 14: Two dimensional model-to-model contourplots of Fl' km vs. g (left), km vs. kncx (middle),
g vs. kncx (right). The cross indicates the known true model parameterset (Jtrue.
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Figure 15: Two dimensional model-to-model contourplots of F2 . km vs. g (left), km VS. kncx (middle),
g VS. kncx (right). The cross indicates the known true model parameterset (Jtrue.
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Figure 16: Two dimensional model-to-model contourplots of Ftot . km VS. g (left), km VS. kncx

(middle), g VS. kncx (right). The cross indicates the known true model parameterset (Jtrue.
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C Estimation results: Different initial values
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Figure 17, 18 and 19 show the estimation results of two parameter combinations for various
initial values of one case (ID:021016a). These initial values where chosen from a rather large
range, randomly selected from a uniform distribution. The figures show once again the effect
of incorporating a priori information into the minimization criterion. Furthermore, these
figures show that their are no multiple (local) minima (in this range). So, their is no threat
that the optimization algorithm will get stuck in a (local) minimum rather than the right
(global) one.

100
k
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200

Figure 17: Estimation results of Vm versus kncx (left) and 91 versus kncx (right) for various initial
values, taken from a uniform distribution, when only experimental data is used in the optimization
algorithm.
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Figure 18: Estimation results of Vm versus kncx (left) and 91 versus kncx (right) for various initial
values, taken from a uniform distribution, when only a priori information is used in the optimization
algorithm.
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Figure 19: Estimation results of Vm versus kncx (left) and 91 versus kncx (right) for various initial
values, taken from a uniform distribution, when both experimental data and a priori information are
used in a weighted objective optimization.
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D Estimation results: Single and multi objective optimization

Table 3: Parameter estimates of control
hearts when using only experimental data in
the cost function

ID Par. value unity std(%)
020920a Vm 2.04 mM/s 13.27

km 0.53 I-LM 15.88
kncx 80.11 l/s 233.30
gl 0.80 l/s 5.24

021015b Vm 8.99 mM/s 174.45
km 0.91 I-LM 97.08
kncx 79.89 l/s 284.20
gl 0.66 l/s 0.93

021016a Vm 6.02 mM/s 130.71
km 1.14 I-LM 78.08
kncx 79.99 l/s 246.86
gl 0.71 l/s 0.75

050914b Vm 6.59 mM/s 62.49
km 1.10 I-LM 39.53
kncx 79.94 l/s 201.77
gl 1.00 l/s 0.71

050920a Vm 11.31 mM/s 218.00
km 1.42 I-LM 119.38
kncx 79.98 l/s 219.49
gl 0.83 l/s 0.90

050921a Vm 6.35 mM/s 50.27
km 1.08 I-LM 32.62
kncx 79.92 l/s 185.99
gl 1.09 l/s 0.71

050922b Vm 3.21 mM/s 14.97
km 0.72 I-LM 13.99
kncx 80.01 l/s 169.60
gl 1.13 l/s 0.61

Table 4: Parameter estimates of control
hearts when using a weighted objective op
timization

ID Par. value unity std(%)
020920a Vm 2.09 mM/s 4.89

km 0.55 I-LM 2.98
kncx 117.81 l/s 0.79
gl 0.79 l/s 0.45

021015b Vm 5.72 mM/s 118.96
km 0.90 I-LM 61.71
kncx 83.40 l/s 2.33
gl 0.44 l/s 1.74

021016a Vm 5.67 mM/s 22.63
km 1.11 I-LM 12.05
kncx 101.10 l/s 1.09
gl 0.71 l/s 0.64

050914b Vm 7.92 mM/s 18.45
km 1.25 I-LM 9.82
kncx 115.32 l/s 1.18
gz 0.99 l/s 0.63

050920a Vm 5.99 mM/s 28.03
km 1.05 I-LM 14.86
kncx 98.06 l/s 1.33
gl 0.80 l/s 0.77

050921a Vm 7.15 mM/s 14.92
km 1.18 I-LM 8.03
kncx 118.10 l/s 1.24
gl 1.07 l/s 0.62

050922b Vm 3.24 mM/s 5.63
km 0.74 I-LM 3.34
kncx 119.78 l/s 1.19
gl 1.11 l/s 0.53
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E Estimation results: Isoproterenol

rUle

Table 5: Re-estimated parameters of isoproterenol injected hearts, using only experimental data in
the cost function

ID [CaH]srl (mM) Par. value unity std(%)
020920a 3.15 Vm 1.42 mM/s 2.46

km 0.88 J.LM 2.59
021015b 3.08 Vm 2.04 mM/s 5.09

km 0.86 J.LM 3.92
021016a 2.05 Vm 4.08 mM/s 1.74

km 1.42 J.LM 1.00
050914b 2.63 Vm 2.46 mM/s 2.01

km 0.84 J.LM 1.62
050920a 2.35 Vm 1.74 mM/s 2.39

km 0.85 J.LM 1.93
050921a 1.55 Vm 3.22 mM/s 4.68

km 1.15 J.LM 3.01
050922b 1.70 Vm 2.87 mM/s 3.21

km 1.09 J.LM 2.20

Improved reliability in parameter estimation of dynamic nonlinear systems with sparse data
incorporating a priori information 22



Eindhoven University of Technology
Department of Electrical Engineering
Control Systems

F Matlab code

COST_CALCIUM

TU/e

%Estimates model parameters and reliability
function [theta,ts_meas,cin_meas,cin_mod,FIM,std_theta,RESIDUAL, ...
,Jacobian] = cost_calcium(theta_init,theta_fixed,position,obj_count,W,data_id,bnr)

global fs;

data=grab_data(data_id);
[T,dc,ts_meas,cin_meas,r_true,cinO,index_min,index_max]

u = siginput2(T,dc);

data_calcium(data,bnr);

options_lsq = optimset( 'Display',
,MaxFunEvals ' ,
'TolFun' ,
'TolX' ,
'LargeScale' ,

lb zeros(size(theta_init));
ub [] ;

'final', ...
400, .
le-3, .
le-8, .
'on'); %Trust region

[theta,resnorm,RESIDUAL,EXITFLAG ,OUTPUT,LAMBDA ,Jacobian] , ...
lsqnonlin('mod_calcium',theta_init,lb,ub,options_lsq,theta_fixed,position, ...
,u,ts_meas,cin_meas,cinO,r_true,obj_count,W,index_min,index_max);

%covariance is inverse of Fisher Information Matrix
FIM = Jacobian'*Jacobian/var(RESIDUAL);
covar = inv(FIM);
std_theta = sqrt(diag(covar));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

DATA_CALCIUM

%pre-processor for experimental data
function [T,dc,ts_meas,cin_meas,r_true, cinO ,index_min, index_max, dc_per]
data_calcium(data,bnr)

, ...

Ts = l/fs;
cfreq = 15;

%sample period [s]
%cut-off frequency for lowpass filter [Hz]

%filter data with lowpass filter
B = firl(20, cfreq/(fs/2)); %filter coefficients
cin meas raw filtfilt(B, 1, data);
cin_meas_raw = le-g * cin_meas_raw; %from M to nM
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%find local maxima/minima of calciumconcentration at end of systole/diastole
[index_min_raw,index_max_raw] = extrema(cin_meas_raw);

%select data with chosen timespan
cin_meas = cin_meas_raw(index_min_raw(bnr(1))+1

%select timevector
ts_meas = (1:length(cin_meas))./ fs;
ts_meas = ts_meas';
T = diff(index_min_raw(bnr(1):bnr(2)));

%a priori VNCX/VSERCA ratio
r_true = 92/8;

%DETERMINING DUTYCYCLE
[dc,dc_per] = dutycin(cin_meas_raw,index_min_raw(bnr(1):bnr(2)));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

SIGINPUT2

%model for action potential (input)
function u = siginput2(T,dc_rel)

for k=1:length(T)
dc(k) = dc_reI;
tlin = (1:T(k))/fs;
t_per = mod(tlin,T(k)+1);
th_up = 0.01;
u(sum(T(1:k))-T(k)+1:sum(T(1:k))) , ...

(t_per.-4./(t_per.-4 + th_up.-4)).*(1 - t_per.-4./(t_per.-4 + dc(k).-4));
end
u = u/max(u); %amplitude of inputfunction is 1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

MOD_CALCIUM

%calculates error, used for LSQNONLIN
function [e,d1,d2,cin_mod] = mOd_calcium(theta_var, theta_fixed, position, ...
, u, ts_meas, cin_meas,cinO, r_true,obj_count, W,index_min,index_max)
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theta_pos = set_par(theta_var, theta_fixed, position);

rUle

%Modeling of calcium transients, used for least squares methods (LSQNONLIN)
%use ODE23 solver (variable step)
OPTIONS = odeset('maxstep' ,le-3); %define maximal stepsize
[ts_mod,cin_mod]=ode23(~ode_calcium,ts_meas,cinO, OPTIONS, theta_pos, u);

[r_mod,int_VNCX_dias,int_VSERCA_dias] = obj_calcium2(theta_pos, cin_mod, ...
, index_min, index_max);

... = W;
dl le9*(cin_mod-cin_meas)';
d2 (r_mod-r_true);
el (1) * dl;
e2 (2) * d2;

if obj_count == 1
e = el;

elseif obj_count 12
e = [el e2];

else if obj_count 2
e = e2;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

EXTREMA

%determines minima and maxima
function [index_min,index_max] extrema (data)

%remove trend from data
bp= [] ;
ii=l ;
%select breakpoints to calculate trends
for i=l:length(data)

if(mod(i,80)==O)
bp(ii)=i;
ii=ii+l ;

end
end
data = detrend(data,'linear',bp);

%small extra filter to filter out local extrema
for k=3:length(data)-2

data(k) = data(k-l)+(data(k+l)-data(k-l))/2;
end
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s = 10;
res = floor(length(data)/s);
for k=1:s

max_est(k)=max(data(res*(k-1)+1:res*(k)));
min_est(k)=min(data(res*(k-1)+1:res*(k)));

end

%Introduce upper and lower threshold to selects peaks
thres = mean(data)-0.3*(mean(data)-mean(min_est));
thres2 = mean(data)+0.3*(mean(max_est)-mean(data));

index_min = [];
index_min2 = [];
imin = 1;
index_max = [];
index_max2 = [];
imax = 1;
iprev_min
iprev_max

%check first 2 datapoints for minima/maxima
if ((data(1)<thres)&&(data(1)<data(2))&&(data(1)<data(3)))

index_min(1) = 1;
elseif ((data(2)<thres)&&(data(1»data(2))&&(data(2)<data(3)))

index_min(1) = 2;
elseif ((data(1»thres2)&&(data(1»data(2))&&(data(1»data(3)))

index_max(1) = 1;
elseif ((data(2»thres2)&&(data(1)<data(2))&&(data(1»data(3)))

index_max(1) = 2;
end

%check rema1n1ng points (except last 3) for minima/maxima
ld = length(data);

rUle

for i = 3:ld-3
%find minima
if ((data(i)<thres)&&(data(i-1)<data(i-2))&&(data(i)<data(i-1)), ...

&&(data(i)<data(i+1))&&(data(i+1)<data(i+2))&&(data(i+2)<data(i+3)))

%if two minima are two close to each other, the right one has to be selected
if i-iprev_min < (fs/12)

%index_min(length(index_min)) = i;
[temp,itemp] = min([data(iprev_min) data(i)]);
index_min(imin) = iprev_min + (itemp-1)*(i-iprev_min);

else
index_min = [index_min; i]; %add new detected minimum to index
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end
imin = length(index_min);
iprev_min = i;

rUle

%find maxima
elseif «data(i»thres2)&&(data(i-1»data(i-2))&&(data(i»data(i-1)), ...

&&(data(i»data(i+1))&&(data(i+1»data(i+2))&&(data(i+2»data(i+3)))
%the latest detected minimum should replace previous
if i-iprev_max < (fs/12)

%index_min(length(index_min)) i;
[temp,itemp] = max([data(iprev_max) data(i)]);
index_max(imax) = iprev_max + (itemp-1)*(i-iprev_max);

else
index_max = [index_max; i]; %add new detected minimum to index

end
imax = length(index_max);
iprev_max = i;

end
end

%check last 3 datapoints for minima/maxima
if«data(ld)<thres)&&(data(ld)<data(ld-1))&&(data(ld)<data(ld-2)))

index_min = [index_min; ld];
elseif «data(ld-1)<thres)&&(data(ld-1)<data(ld-2))&&(data(ld-1)<data(ld)))

index_min = [index_min; ld-1];
elseif«data(ld-2)<thres)&&(data(ld-2)<data(ld-1))&&(data(ld-2)<data(ld)))

index_min = [index_min; ld-2];
elseif«data(ld»thres2)&&(data(ld»data(ld-1))&&(data(ld»data(ld-2)))

index_max = [index_max; ld];
elseif«data(ld-1»thres2)&&(data(ld-1»data(ld-2))&&(data(ld-1»data(ld)))

index_max = [index_max; ld-1];
elseif«(data(ld-2»thres2)&&(data(ld-2»data(ld-1))&&(data(ld-2»data(ld))))

index_max = [index_max; ld-2];
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

DUTYCIN

%calculates halftime for Sigmoid input function
function [dc,dc_per] = dutycin(cin_raw,index_min)

%cut data in single heartbeats
for k=l:length(index_min)-l

data = cin_raw(index_min(k):index_min(k+1));
data_dot = diff(data);
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%searched for point half of maximal influx
[data_dot_max,i_max] = max(data_dot);
dhalf = .5 * data_dot_max;

rUle

%interpolation to find dutycycle
for kk=i_max:length(data_dot)-l

if«data_dot(kk»data_dot(kk+l)) && (data_dot(kk» dhalf), ...
&& (data_dot(kk+l)< dhalf))

kk_star = kk + (data_dot(kk) - dhalf)/(data_dot(kk)-data_dot(kk+l));
end

end
dc(k) = 1.25 * kk_star/fs;
dc_per(k) = 1.25 * (100 * kk_star ./(index_min(k+l)-index_min(k)));

end
dc = mean(dc);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

SET_PAR

%set_par puts the fixed parameters and the parameters to be estimated in
%the right order.
function par_pos=set_par(par_var, par_fixed, position)

if nargin < 2
par_f ixed = [];
position = [1 2 3 4] ;

elseif nargin < 3
position = [1 2 3 4];

end

if length(par_temp) -= length(position)
error('number of parameters doesnt match');

end

for k=l:(length(par_var)+length(par_fixed))
par_pos(position(k)) = par_temp(k);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

OBJ_CALCIUM2

%determines experimental flux ratio
function [r_mod,int_VNCX_dias,int_VSERCA_dias] =, ...
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Vmaxserca
Kmserca
kncx

theta(1) ;
theta(2);
theta(4);

int_VNCX_dias [] ;
int_VSERCA_dias = [];

nmin
nmax

VNCX
VSERCA

length(index_min);
length(index_max);

kncx .* cin_mod;
Vmaxserca * (cin_mod.-ns ./(cin_mod.-ns + Kmserca.-ns));

%diastole
for k=l:min(nmin,nmax)-l

if(index_min(k) < index_max(k) && index_max(k) < index_min(k+l))
int_VNCX_dias(k) = sum(VNCX(index_max(k):index_min(k+l)));
int_VSERCA_dias(k) = sum(VSERCA(index_max(k):index_min(k+l)));

elseif(index_max(k) < index_min(k) && index_min(k) < index_max(k+l))
int_VNCX_dias(k) = sum(VNCX(index_max(k):index_min(k)));
int_VSERCA_dias(k) = sum(VSERCA(index_max(k):index_min(k)));

end
end

%wanted ratio of Vserca and Vncx is 92/8
r_mod = int_VSERCA_dias./int_VNCX_dias;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ODE_CALCIUM

%differential equation for model
function cin_dot = ode_calcium(t,cin,theta,u)

Vmaxserca
Kmserca
glump
kncx

theta(1) ;
theta(2);
theta(3);
theta(4);

%DHPR,
cexO
csrO =

RyR
1. 5e-3;
le-3;

%extracellular calcium concentration
%SR calcium concentration
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%Buffersystems
Kd = [O.51e-6 O.87e-6 O.38e-6 87e-6] ;
B = [70e-6 47e-6 24e-6 1124e-6];

u u(floor(t*fs));

G = glump * (mean([cexO csrO])) * u;

TU/e

%because cexO » cin and csrO » cin

%Pump flows
VNCX = kncx .* cin;
VSERCA = Vmaxserca * (cin.~ns /(cin.~ns + Kmserca.~ns));

%Calciumbuffers
for k=1:4

CaBi(k) = B(k) .* Kd(k)./(Kd(k) + cin).~2;

end
CaB = 1 + sum(CaBi);

(-VNCX - VSERCA + G)/CaB;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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