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Abstract 
 
From the highest level of perspective, the system under study is a multiprocessor system where 
several processing blocks share access to a level two (L2) cache memory. The audio processing 
block of the PNX4010 is composed of two Dual REAL RD16025 Audio DSPs. The audio 
solution for the PNX4010 contemplates the use of level one (L1) cache memories. Cache memory 
is a small, fast memory unit located between the DSP and the next levels of memory. Dynamic 
behaviour of caches makes them difficult to apply in real-time DSP applications. This thesis 
focuses on the L1 cache performance in this context. Trace-driven simulation is a type of 
simulation where a trace record derived from an application execution is applied to a cache 
profiler (C model). With this type of simulation, it is possible to explore a wide range of cache 
configurations, isolate cache events and perform a study at a cycle level in a single processor 
context. The application traces used in the study were developed in such a way that they do not 
consider the presence of the cache in the system. The simulations produced accurate figures for 
the cache performance within a specific context. When the scope increased for real-time 
execution, factors like scheduling and interrupts caused by external agents should be taken into 
account. This was not achieved using trace-driven simulation. The decision was to move onto 
Instruction Set Processor Simulation (ISS Simulation) were the application is under our control 
and allows extending the scope of the study to a multiprocessor context. The streaming 
applications are modelled with SDF graphs. The SDF graph can be transformed to an HSDF and 
it is shown that the HSDF graph can be used to derive the minimal throughput of the system. 
Simple streaming applications are simulated in the ISS simulator assuming that external sources 
copy and read blocks of data to and from the data memory.   
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Chapter 1 
Introduction  
 
A memory hierarchy is organized into several levels – each smaller, faster, and more expensive 
than the next level. The levels of the hierarchy usually subset one another. All data in one level 
can also be found in the level below, and so on until we reach the bottom of the hierarchy. The 
importance of memory hierarchy has increased with advances in performance of processors. The 
memory hierarchy is used to overcome the processor-memory performance gap. Consumer 
electronics devices like smart phones are incorporating all sorts of applications like for example 
personal information management applications with mobile phone capabilities. All these different 
applications are mapped onto a heterogeneous multiprocessor system. From the highest level of 
perspective the system under study is a multiprocessor system composed of several distinct 
processing blocks: an ARM processor, a Trimedia processor and an audio processing block 
composed of two DSP processors. The processing blocks share the access to a level 2 cache via a 
bus.  
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IO arbiter

IO

SDRAM
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System
Cache

Other cores: TMV, ARM11, Gfx

arbiter
arbiter

L1I$

DMAC
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IO arbiter

IO

arbiter
arbiter

 
Figure 1 - RD16025C1 Memory Hierarchy PNX4010 

 

The first part of this thesis focuses in the L1 cache performance of the audio processing block. It 
describes the model of the cache using a stand-alone profiler, which is a C program that mimics 
the behaviour of the cache. A trace application is applied to the profiler. From the simulation 
results conclusions can be drawn about the cache architecture and cycle behaviour for audio 
streaming applications. 
 
The second part extends the scope and describes the modelling and simulation of a streaming 
infrastructure mapped onto a multiprocessor system. Analysis techniques are used to derive the 
temporal behaviour of the streaming application, which is described as a Synchronous Data Flow 
(SDF) graph and it is constructed in such a way that the worst-case arrival times of data can be 
observed. The guaranteed minimal throughput of the system is derived from the SDF graph using 
Maximum Cycle Mean (MCM) Analysis. An Instruction set simulator is used to verify the cycle 
true implementation. From the simulation results it can for example be concluded how the 
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performance of the application can be improved by applying different mappings of the 
application.  
 
This work builds on existing programming environments, cache profiler and ISS Simulator 
available and developed at the DSP-Innovation Centre of Philips Semiconductors. 
 

1.1 Background 
 
While caches are familiar in RISC processors they have only been recently introduced in the 
world of DSPs. The main reason why caches have not been used in DSP processors is because 
they bring a fair amount of unpredictability into hardware systems. As DSP applications became 
more powerful and larger, there is a need to improve the memory system. The use of caches in 
DSP processors can be motivated partly by cost as a relatively small amount of cache memory 
can approximate the performance of a much larger local memory at a significantly lower cost. 
Thus, DSPs can become cost-effective solutions for a much wider range of applications.  
 
Cache memory is a small, fast memory unit located between the CPU and the main storage unit. 
The cache makes use of the principle of locality; it typically stores the most recently used 
instructions and data and hence, increases the probability of finding information locally without 
having access the main memory. Classic concerns when using a cache is to maintain coherence 
between cache and main memory, and the criteria needed to refresh cache memory as the 
program is executed. Typically two cache architectures are used: the Harvard, where instructions 
and data caches are separate; and the Von Neumann, where instructions and data are unified.  
 
The DSP Saturn has a double Harvard architecture with two data memory spaces (X, Y), and one 
program memory space (P). These three memory spaces are completely independent. 
The DSP can perform three different tasks: 

• Control the program flow 
• Calculate data-memory addresses and access data memory, 
• Execute the operations on the actual data. 

 
As these tasks are relatively independent from each other, the DSP architecture is divided into 
three main blocks to support these activities and it is shown in Figure 2.  
 

PMEM

Program Control

Data Computation

Address
Calculation
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Figure 2 –Block diagram of the DSP 
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According to [1], two factors reduce the utility of caches in DSP applications: the data access 
patterns and real-time constraints. DSP applications tend to process large amounts of data and 
usually DSP applications display very strong locality in instructions accesses. Dynamic behaviour 
of caches makes them difficult to apply in real-time DSP applications. From the programmer 
viewpoint, it is hard to know what will be in the cache at the moment his program is executed. 
 
Some caches provide features to help programmers design real-time applications, for example, 
the possibility to pre-load and lock segments of the cache. Using such a feature, portions of the 
cache can be loaded with specified blocks of instructions and data, and then locked so that the 
loaded instructions or data cannot be removed from the caches. Once portions of the cache have 
been locked portions become deterministic. The trade-off is that the effectiveness is reduced for 
the remaining instructions and data because the remaining cache size available is reduced. 
 
DSP applications execution is typically dominated by a number of loops, making instructions 
caches appear attractive. Consumers typically have high expectation about the quality delivered 
by multimedia devices like DVD-players, audio, and television sets. These devices process data 
streams and have strict throughput and latency requirements. In order to meet these requirements 
the system must behave in a predictable manner such that it is possible to reason about its timing 
behaviour. The use of analytical methods is desirable because simulation can only be used to 
demonstrate that the system meets its timing requirements given a particular set of input stimuli. 
The design and programming of these real-time multiprocessor systems should be such that the 
real-time constraints are met, and the desired audio and video quality is delivered. 
 
For performance and power-efficiency reasons, more than one processor often performs the 
processing in these systems. In many of these systems the input data is often provided by an 
external source, which provides a new input sample with a certain periodicity. This source can be 
an A/D converter and similarly and after processing the data is consumed by a D/A converter. 
These systems are often designed as hard real-time systems because input samples must be 
processed in time and output samples must be produced in time, since otherwise the input buffer 
overflows or the output buffer under-runs.  
 
The analysis techniques that are described in this thesis are applicable for multiprocessor systems 
that execute applications described as Synchronous Data Flow (SDF) graphs. In [2] the temporal 
behaviour of the system is derived by constructing a SDF graph of the application that not only 
models the computation and the communication, but also, the effects on run-time arbitration. The 
guaranteed minimal throughput of the system is derived from the SDF graph by using Maximum 
Cycle Mean analysis [3]. 
 

1.2 Problem Definition 
 
There are several goals in this thesis: 
 
Trace-driven L1 cache simulation (single processor context): 

• Assess the L1 cache architecture.  
• Derive L1 cache performance figures. 
• Derive the cycle behaviour for a single and multitask simulation. 

 
Model and Simulation (ISS simulation) of streaming applications (multiprocessor system 
context):  
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• Shared memory multiprocessor architecture. 
• Study alternative architecture.  
• Derive predictability of the systems and reason about system parameters. 
• Implement test cases to show benefits and drawbacks of both architectures and model of 

computation. 

1.3 Outline of the thesis 
 
This thesis is organized as follows. In the next Chapter, the trace-driven cache profiler is 
described. Chapter 3 presents a case study; from the simulation results, conclusions and proposals 
are derived. Chapter 4 describes the ISS simulator. In Chapter 5, the multiprocessor architecture 
is introduced along with the model of computation that is used to describe the streaming 
application. In Chapter 6, an example-streaming infrastructure is implemented and simulated. 
Finally, in Chapter 7 conclusions are drawn and recommendations are given.     
 

1.4. References of Chapter 1 
 
[1] Lapsley Phil, Bier Jeff, Shoham Amit and Lee Edward. DSP Processor Fundamentals: 

Architectures and Features. IEEE Press. 1997. 
 
[2] Marco Bekooij, Orlando Moreira, Peter Poplavko, Bart Mesman, Milan Pastrnak, Jef L. 

van Meerbergen: Predictable Embedded Multiprocessor System Design. SCOPES 2004: 
77-91] 

 
[3] F Bacelli, G Cohen, G.J. Olsder, and J-P. Quadrat, Synchronization and Linearity, John 

Wiley & Sons, Inc., 1992 
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Chapter 2 
Trace-driven L1 cache profiler 
 
Caches are very important to embedded computer systems, especially due to the performance gap 
between microprocessors and memories is continuously becoming wider and the memory plays 
an important part in the overall performance. Simulation is an indispensable tool in the design of 
any computer system and can take many forms. Trace-driven cache simulation is frequently 
used to evaluate memory hierarchy performance and has been especially useful to evaluate cache 
performance. With this method, a software model of the cache being simulated is driven with a 
trace of memory references and can be used for system architecture study, determining cache 
miss-rates, bus traffic levels, or effective memory access times et al.  

 
In Trace-driven simulation, a trace of instructions executed by the processor is recorded in a file 
and then later interpreted by the simulator. For memory hierarchy studies it is desirable to use 
long address traces that are accurate representations of real workloads. The software model is 
written in C and is open for modification – given enough time it can be created with whatever 
level of detail is needed to obtain results with the desired precision. In contrast, there is no control 
over the accuracy or completeness of the input trace data. The simulations are repeatable and 
allow cache design parameters to be varied so that effects can be isolated.  
 
This chapter focuses in the cache profiler developed at the DSP-IC centre and is organized as 
follows. Section 2.1 describes the trace file format of the trace applications used in the 
simulations. Section 2.2 explains the simulator set-up and the simulation options. Section 2.3 
describes the features modelled in the stand-alone profiler. In Section 2.5, the simulation 
assumptions are stated. The metrics used in the simulation are presented in Section 2.6. Finally, a 
small example illustrates the cache simulation.  
 

2.1 Application trace file 
 
A trace data record is a packet of information produced each time a traced event occurs during 
execution of an application, examples of traced events are a Read and Write. Trace data records 
contain metrics, which are relevant to a particular event. For example a time stamp, an event 
identifier and a memory address. The trace must contain enough information to reproduce the 
application behaviour. 
 
According to [3], the process of generating a trace file can be difficult. In order to generate a trace 
file that can guarantee that the simulation is accurate several requirements must be fulfilled: 
 

• The simulation must be correct.  
 
• The simulator must also consider the behaviour of hardware components interacting with 

the processor, including peripheral devices. 
 
• The simulator must take into account the timing of each instruction. This is necessary so 

that interrupts caused by external agents and timer ticks can be processed at precisely the 
right moments. 

 
• The software being simulated requires real-time execution.  
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In the cache profiler, the program reads trace input from stdin. Each line of the trace file contains 
one record with following format:  

[Timestamp][Memory][Type of access][Memory Address] 
 
Exemplified as follows 
… 
8787 ZM R 011A 
8787 YM R 6FF5 
8787 XM W 9FF5 
… 
 
Where Z refers to the program memory, X and Y to the data memory, R for read access and W 
for write access. The address is a hexadecimal byte-address between 0 and FFFF. It is important 
to notice that the DSP processor can issue references to the three memories in the same cycle.     
 

2.2 The stand-alone profiler 
 
The profiler reads the new request arrivals from the trace file. When the request arrives in the 
profiler it checks the contents of the cache to see whether the corresponding content is present. If 
yes, the cache is left unchanged, otherwise the reference of the file corresponding to the request is 
fetched into the cache, which corresponds to a hit miss. If needed some data or instruction lines 
are removed from the cache according to a predefined removal policy. The simulator behaves in 
such a way that the output numbers realistically represent the cache events.  
 
Figure 3 illustrates the simulation set-up. Simulation results are determined by the input trace and 
the cache parameters, which are the input of the simulator in the format of a trace file and 
parameter file that specifies the cache configuration  
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Figure 3 – Simulation set-up 

 
 
The L1 cache parameters are set with a parameter file, which specifies: 
 

• One or more application traces. 
• Output result file 
• Cache prefetch 
• Number of ways 
• Number of sets 
• Line size 
• Way locking 
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Through the command line it is possible to setup simulation alternatives. It is possible to explore 
the cache memory model by defining the data cache shared or separated for X and Y data; set the 
cache line replacement algorithm for three possible options; specify if the profiler uses one or 
more trace files, which means that a task-switching scenario is simulated. The profiler can 
produce extensive debug information. For each address related with a cache event can be 
associated a label. For example, a label that indicates if it is a read or write miss, the way, the set 
allocated, etc.   
 

2.3 Cache model in the stand–alone profiler 
 
The profiler models the behaviour of the cache. 
 
2.3.1 Block placement, replacement and identification. 
 
The data block is placed in the cache according to (block address) MOD (Number of sets in the 
cache). The cache has a tag address on each cache line that gives the block address. The tag of 
every cache line that might contain the desired information is checked to see if it matches the 
block address from the DSP. Also verified are some special bits. There is a way to know that the 
cache line does not contain valid information, the use of a valid bit (V) indicates if the entry 
contains valid data. In addition, the line also has a lock bit (L), which indicates whether a cache 
line is locked or unlocked, and in the case of the data cache a dirty bit (D), which indicates 
whether the data in the cache differs from its associated contents in the L2 memory. The number 
of bits for each field is dependent on the size of the cache. For example, a cache with 128 sets and 
with a line size of 8 words has 7 bits (27 = 128) in the set index field and 3 bits (23 = 8) for the 
offset field. The remaining ones are used for the tag in the tag field. Figure 4 illustrates the cache 
set allocation. 
 

Tag Set index Word offset

Tag 0 V L D
Tag 1 V L D

DSP address

Tag n V L D

Word 0 Word 1 Word n 

TAG Section Data Section

Word 0 Word 1 Word n 

Word 0 Word 1 Word n 

Cache set 0
Cache set 1

Cache set n

Tag Set index Word offset

Tag 0 V L D
Tag 1 V L D

DSP address

Tag n V L D

Word 0 Word 1 Word n 

TAG Section Data Section

Word 0 Word 1 Word n 

Word 0 Word 1 Word n 

Cache set 0
Cache set 1

Cache set n  
Figure 4 – Cache allocation according to the DSP address 

 
A line replacement algorithm has to be implemented in order to allocate a new cache line if n>1 
(i.e. cache is a n-way set associative). Three different cache line replacement algorithms can be 
set: first in fist out (FIFO), least recently used (LRU) and pseudo least recently use (PLRU). In 
FIFO the oldest cache line is discarded, this method is easier to implement when compared with 
the other two. In LRU, accesses to lines are recorded and the line discarded is the one that has 
been least-recently used. This method relies in corollary of locality: if recently used blocks are 
likely to be used again, then a good candidate for disposal is the least recently used. It is the most 
difficult method to implement because it can be complicated to calculate the LRU. An easier 
method to implement is the PLRU because it is based in a binary decision tree. For example, if 
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the data cache is four way-set associative, each cache set contains 3-bit PLRU table. Each table 
entry stores PRLU data and is updated on each read and write access to the associated cache set. 
Figure 5 illustrates the PLRU algorithm according to a 4-way set-associative cache. 
 

[0]b0[1]

[0]b1[1] [0]b2[1]

Way 3 Way 2 Way 1 Way 0

b2 b1 b0

PRLU table per cache set

 
Figure 5 – PLRU cache line replacement algorithm 

 
On a cache hit the values for b0, b1, and b2 are updated in the PLRU table. If for instance a cache 
hit occurs in way 3, then b0 and b1 in the PLRU table are both reset. Therefore, a PLRU entry 
indicates the most recently used way. On a cache miss, the least recently used is allocated, in 
order to do so the information contained by a PLRU entry is inverted.  
 
2.3.2 Memory Management Unit 
 
The behaviour of the cache can be controlled by means of the Memory Management Unit 
(MMU). The cache MMU allows partitioning of the external L2 memory into segments and for 
each segment an individual set of attributes can be programmed. A segment is defined by its 
lower and upper segment address boundaries. The MMU is programmed by application code in 
order to set an individual set of attributes to the segments defined. The simulator models the 
integration of a memory management unit for both Icache and Dcache and the effect of this 
configuration setting can be reproduced. Inside the model the address as read from the application 
trace is compared to a predefined address range. If the address maps into a segment area, the 
corresponding segment behaviour is carried out according to the predefined attributes. 
 
The following attributes are modelled and can be applied to MMU data memory mapped 
segments:  
 

• Division in cached/non-cached memory areas 
 
• Data write mode - The data write mode determines which data write policy is applied to a 

cached segment. Data can be written according to a write-through or a write-back policy. 
 
• Memory sharing - Memory sharing determines whether an MMU mapped data memory 

segment is shared or non-shared memory space. 
 
• Locking, flushing, invalidating cache lines and excluding and locking cache ways.  
 
• Program and data hardware prefetching - is the process of loading and temporary storing 

of the nearest next cache line from L2 memory into a prefetch buffer, in parallel with the 
data or program of the cache line currently being fetched from the cache (see Figure 6). 
The prefetch buffer stores only a single cache line. Only two prerequisites must be 
fulfilled to start a hardware prefetch: prefetching is enabled and a cache miss occurs 
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Figure 6 - Prefetching 

 
2.3.3 Write policies 
 
The writing behaviour to an MMU mapped data segment depends on the caching attributes that 
are applied to the segment. If the address does not match, the record is bypassed. If the address 
maps into the cached area, the corresponding write behaviour is carried out. Figure 7 illustrates 
the functional model used in the simulator.  
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Figure 7 – Write functional model 

 
The write-through buffer consists in a number of programmable entries (one to four), containing a 
whole cache set. The entry stores the cache address (the TAG and the index part of the logical 
address) and the corresponding cache line data. The write-through buffer entry is written when 
new write reference is issued by the DSP, all writes are buffered, regardless of whether they hit or 
miss in the Dcache. If the write-through buffer is full, the entry is first flushed and subsequently 
re-allocated to the new write reference. The use of the write-though buffer allows the processor to 
continue execution as soon as data is written to the buffer, thereby overlapping processor 
execution with memory updating.  
 
In write-through mode, the Dcache is looked up for data reads and writes. Read misses cause a 
cache line replacement. Read hits cause the data to be read directly from Dcache and writes that 
hit update the Dcache. Since the data is simultaneously written to the write-through buffer, the 
Dirty bit will not be set. Write through is easier to implement than write back. The cache is 
always clean and the next level of memory has the most current copy of data.  
 
In write-back mode, the Dcache is looked up for data reads and writes. Read and write misses 
cause a cache line replacement. Read hits cause the data to be read directly from Dcache. For 
writes that hit in the Dcache the dirty bit is set to ‘1’ and the data is not written to the write-
through buffer. A victimized cache line is written back to the main memory, only if it is dirty. 
The use of write back reduces the traffic to the memory traffic.   
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2.4 Cache performance issues 
 
According to [2], the techniques used to improve the cache performance are categorized in four 
groups: reducing cache miss rate, reducing cache miss penalty, reducing cache penalty or miss 
rate via parallelism and reducing cache hit time.  
 

CACHE PERFORMANCE DESIGN 

SPACE EXPLORATION

1.REDUCING MISS PENALTY

• Multilevel caches

• Critical word first and early restart

• Giving priority to read misses over writes

• Merging write buffer

• Victim caches

2.REDUCING MISS RATE

• Larger caches

• Large line sizes

• Higher associativity

• Way prediction and pseudoassociative caches

• Compiler Optimizations

3.REDUCING MISS PENALTY OR 

MISS RATE VIA PARALLELISM

• Nonblocking caches to reduce stalls on cache misses

• Hardware prefetching of instructions and data

• Compiler controlled perfetching

4.REDUCING HIT TIME

• Small and simple caches

• Avoid address translation during indexation of cache

• Pipelined cache access

• Trace caches

 
Figure 8 – Cache performance design space exploration 

 
Figure 8 shows 17 possible measures divided in 4 sub-sets. Some of these techniques are 
addressed in the next with a brief explanation and possible trade-offs.  
 
One method to evaluate cache performance is through the miss rate, which is simply the fraction 
of cache accesses that result in a miss. Reducing the miss rate is a classical approach for 
improving the cache performance but it is obvious that the miss rate is not the only component 
that should be considered. The time that it takes to fetch data from L2 memory upon a miss (i.e. 
the miss penalty) is just equally important as the miss rate. The hit time or the time that is 
necessary to access the cache is important because this time can limit the clock cycle rate. 
 
As mentioned in Chapter one, the system being studied has three processing blocks sharing the 
access to the L2 memory. The miss penalty is dependent on the conflicts on the memory ports of 
the L2 memory, which relies on misses of other caches. There is no knowledge about the miss 
rate of other parties and hence, it is assumed an average time for L2 access. The focus is on the 
L1 miss rate, which is easier to evaluate in this context. The hit time requires a lot of knowledge 
about the physical implementation, which is out of the scope of this thesis. 
 
The profiler is an open environment, which means that it can be modified. The profiler is an 
abstract model of the L1 cache that can be modified to incorporate many of the techniques shown 
above. A trade-off between design time, simulation time, scope and goals of the study confines 
this work.  
 
The focus of the cache performance is on the miss rate and hence, the techniques that are 
modelled in the profiler are related with the improvement of the miss rate figure. But not all the 
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techniques to improve the miss rate are considered in the model, either because there was not 
enough time to be incorporated (e.g. way prediction) or simply because they are not possible to 
model (e.g. compiler optimizations). Various techniques shown in Figure 8 are modelled in the 
profiler and they are explained in the next section.   
 
In [2] a summary table shows the impact on the cache performance and the implementation 
complexity for each technique. Table 1 shows an illustration of some of the performance trade-
offs to consider: +, - and 0 means that the technique improves, hurts and has no meaning in the 
factor, respectively. The complexity is ranked from 0 to 3, easiest to the hardest, respectively. 

 

Technique Miss penalty Miss rate Hit time Hardware 
complexity 

Multilevel caches +   2 
Critical word first and early 

restart +   2 

Giving priority to read misses 
over writes +   1 

Merging write buffer +   1 
Victim caches + +  2 

Larger block size - +  0 
Large cache size  + - 1 

Higher associativity  + - 1 

Way-predicting caches 
 

Pseudoassociative 
 

+ 
 
 

+ 

 

2 
 
 

2 
Compiler techniques to 

reduce cache misses  +  0 

Nonblocking caches +   3 

Hardware prefetching of 
instructions and  data + +  

2 for 
instructions 
3 for data 

Compiler-controlled 
prefetching + +  3 

Small and simple cases  - + 0 
Avoiding address translation 

during index of the cache   + 2 

Pipelined cache access   + 1 
Trace cache   + 3 

Table 1 – Summary of cache optimization techniques 
 
2.4.1 Techniques modelled in the profiler 
 
The techniques shown in Figure 8 that are modelled in the profiler are: 
 

• Reducing miss rate (Larger caches, larger line sizes, higher associativity). 
 
• Reducing miss penalty (write-through buffer). 
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• Reducing miss penalty or miss rate via parallelism (hardware prefetching of data and 
program). 

 
The model that is presented in [2] states that there are three causes for cache misses: 
 

• Compulsory misses – The first access to a cache line is always a miss, so the line must be 
brought into the cache. These are also called cold-start misses. 

 
• Capacity misses – if the cache cannot contain all the lines needed during the execution of 

a program, capacity misses occur because of blocks being discarded and later retrieved.  
 

• Conflict misses – Also called collision misses of interference misses. Will occur because 
of a cache line maybe be discarded and later retrieved if too many blocks map to the 
same set. Occur when too many lines map to the same set.    

 
The most obvious way to reduce the cache miss rate is by increasing the size of the cache. This 
will reduce the capacity misses but incurs in a higher cost because the area of the memory is 
larger. Larger line sizes will reduce compulsory misses because it takes advantage of the principle 
of spatial locality (i.e. there is high probability that other word in the same line will be needed 
soon). The trade-off is that increases the miss penalty because larger blocks take more time to be 
fetched from L2 memory. At the same time, larger lines can increase conflict misses and even 
capacity misses if the cache is small. There is no benefit in reducing the miss rate if increases the 
penalty for accessing an L2 memory. Via higher associativity follows the two rules of thumb. The 
first states that an eight-way set associative cache is for practical purposes as effective in reducing 
miss rates as a fully associative cache. The second called 2:1 cache rule of thumb states that a 
direct-mapped cache size N has about the same miss rate as two-way set associative cache of size 
N/2. Higher associativity comes with the cost of higher hit time, which is the price for using more 
hardware. 
 
When a cache is in write through mode, a write buffer is needed to reduce the miss penalty, which 
allows the processor to continue as soon as the data is written to the buffer, thereby overlapping 
processor execution with memory updating. The cache line present in the write buffer will be 
flushed when replaced by other line.  
 
Hardware prefetching of instructions and data uses the prefetch of items before the processor 
requests them. The processor fetches two lines on a miss; the requested line and the next 
consecutive line. The requested line is placed in the cache and the prefetched line is placed in the 
prefetch buffer. The prefetch occurs when a cache miss occurs, first it is checked whether the 
requested cache line is already kept in the prefetch buffer. If so, it will be moved to the chosen 
victim in the cache. Then, the TAG file is updated. If the requested cache line not kept in the 
prefetch buffer, it will be loaded and written from the L2 memory into the chosen victim in cache. 
The potential success of prefetching is either lower miss penalty, or if it is started far in advance 
of needed, reduction of miss rate. This ambiguity makes this technique be considered in a 
separate section. 
    
2.4.2 Techniques not modelled in the profiler 
 
The techniques not contemplated are explained briefly and based on the descriptions given in [2].  
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• Critical word first – the missed word is requested from the memory first and it is sent to 
the processor as soon as it arrives, allowing the processor to continue execution.  

 
• Early restart – fetches the words in normal order but as soon as the requested word from 

the block arrives, sends it to the processor in order to continue execution. These last two 
techniques only benefit designs with large blocks. Given spatial locality, there is more 
than random chance that the next miss is to the rest of the block.  

 
• Merging write buffer – this technique involves the write buffer and improves the buffer 

efficiency. With write merging, the writes correspondent to different lines are merged in 
one entry. This optimization reduces stalls because the buffer does not fill so quickly and 
hence, it is not flushed so often.  

 
• Victim caches – this buffer holds victim lines that are discarded from the cache because 

of a miss. On a miss the victim cache is verified to see if it contains the desired data. This 
measure is usually more effective with small and direct mapped caches. 

 
• Way prediction - extra bits are kept in the cache to predict the way within the set of the 

next cache access.  
 

• Compiler optimizations – This measure does not imply hardware changes. This technique 
uses the principle that software can be rearranged without affecting correctness. 
Techniques like loop interchange, where exchanging the nesting of loops can make the 
code access the data in the order that is stored. In this case more sequentially is obtained 
and hence, spatial locality is explored. Another example is blocking, where temporal 
locality is explored. This technique is used in dealing with arrays; the blocks within the 
array are formed in order to maximize the access the data present in the cache.  

 
• Non-blocking caches are used to reduce stalls on misses - allows the data cache to 

continue to supply cache hits during a miss. The miss penalty is reduced but it requires 
out-of-order execution CPU.  

 
• Pseudo associative caches - where accesses proceed just as in the direct-mapped cache 

for a hit. On a miss, however, before going to the next lower level of memory hierarchy, 
a second cache entry is checked to see if it matches there.  

 
• Compiler-controlled prefetch – the compiler inserts prefetch instructions to request data 

before they are needed.  
 

• Small and simple caches – One of the time consuming tasks on a cache access is to 
compare the index portion of the address and compare it with the address. Smaller and 
simple caches help the hit time. 

 
• Pipelined cache access – pipeline cache accesses so that the effective latency of a first-

level cache hit can be multiple clock cycles, giving fast cycle time and slow hits. 
 

• Trace caches – A trace cache finds a dynamic sequence of instructions including taken 
branches to load into a cache block.  
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2.5 Cache model assumptions 
 
Assumption 2.1 – Stalls of program and data cache are added unconditionally 
 
The stalls of program and data cache are added unconditionally, but in reality some of the miss 
events can overlap. The model does not take into account that a stall from program and data cache 
can happen at the same time, and have overlap in time. In this specific sense, the profiler gives 
worst-case scenario because the numbers of stalls caused by program and data cache misses are 
summed.  
 
Assumption 2.2 – Not all the stall events are taken into consideration 
 
Stalls caused by the use of the write buffer are not modelled. The addresses with the same tag/set 
value are allocated to the buffer. A write reference cannot be stored in the buffer if the write’s 
tag/set value does not match. Then the buffer has is flushed. At this moment the data is moved to 
the L2 memory, this is not counted as a stall-giving event. This can increase the stall figure.  
 
A write queue can be placed in front of the write through buffer that allows scheduling of the 
flushing process with other L2 memory accesses, this it is not modelled in the profiler. This 
would prevent the stalling of the core because the writes could be stored in the queue while the 
write-through buffer is still busy with flushing or waiting for L2 access. This can improve the 
utilization of the L2 bandwidth.  
 
In addition, the use of a write-queue buffer could signify that a data write miss or a data write 
back does not always have to give a stall. In this case a write is first stored in a write-queue 
before it finds place in the cache, and a write-back (=a victimized line which is dirty) is first 
stored in a victim buffer, which is moved to the memory in conjunction with the read buffer. 
These are all separate processes managed by a cache controller, which only stall the core when 
there is a conflict. Especially the execution of write backs can be done in background so the core 
will not be stalled. 
 
The write-backs could be delayed as outstanding writes to L2 memory, which can take place in 
the background of the replacement progress in some cases. In that case, no stalls will be 
introduced. In the profiler, the write-backs are added to the miss rate equation. 
 
Assumption 2.3 – The average number of stall cycles is 3.5 
 
The number of stall cycles in case of a cache line refill depends on the synchronization between 
the L1 and L2 domain, it can be 3 or 4 cycles depending if it is an odd or even cycle.  
 

2.6 Cache Metrics 
 
The simulator outputs the number of misses: Prm (program read misses); Drm (data read misses); 
Dwm (write misses) and Dwb (data write backs). The results are used to compute the miss rates 
in the following way:  
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2.7 Simulation Example 
 
The following example is used to study the model accuracy. Two small trace files identified as 
task1 and task2 are used, the task switch occurs every five CPU cycles. The caches are of 64 
words size (64 x 16 bits) with the configuration seen bellow in Figure 9. The Dcache is working 
in write back mode is a dual ported with shared X and Y data. The cache line replacement 
algorithm being used is the PLRU. 
 

Way 3
Way 2

Way 1

Cache set 0
Cache set 1

Tag 0 V L D
Tag 1 V L D

Word 0 Word 1 Word 7 
Word 0 Word 1 Word 7 
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Way 1

Cache set 0
Cache set 1

Tag 0 V L
Tag 1 V L

Word 0 Word 1 Word 7 
Word 0 Word 1 Word 7 

Way 0

Tag 2 V L
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Word 0 Word 1 Word 7 
Word 0 Word 1 Word 7 
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Way 1

Cache set 0
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Tag 0 V L D
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Cache set 0
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Tag 0 V L
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Word 0 Word 1 Word 7 
Word 0 Word 1 Word 7 

Way 0

Tag 2 V L
Tag 3 V L

Word 0 Word 1 Word 7 
Word 0 Word 1 Word 7 

Data Cache

Instruction Cache

Cache set 2
Cache set 3

 
Figure 9 – Icache and Dcache configuration of the example 

 
  
Figure 10 shows the predicted behaviour for a simulation using the example traces. The profiler 
is set-up to use a dual ported unified XY cache and the output results for X and Y memory will be 
summed and denoted with X reference.  
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task1 event way set word stall cycles task2 event way set word stall cycles

1 ZM R 9000 miss 0 0 0 3.5 1 ZM R EE00 miss 1 0 0 3.5
1 XM R A000 miss 0 0 0 3.5 1 XM R AA00 miss 2 0 0 3.5
1 YM R C000 miss 2 0 0 3.5 1 YM R BB00 miss/wback 0 0 0 7
2 ZM R 9001 hit 0 0 1 2 ZM R EE01 hit 1 0 1
2 XM R A0D0 miss 1 0 0 3.5 2 XM R CC00 miss 3 0 0 3.5
2 YM R C0D0 miss 3 0 0 3.5 2 YM R DD00 miss/wback 1 0 0 7
3 ZM R 9002 hit 0 0 2 3 ZM R EE02 hit 1 0 2
4 ZM R 9003 hit 0 0 3 4 ZM R EE03 hit 1 0 3
4 XM W A003 hit 0 0 3 4 XM W AA03 hit 2 0 3
5 ZM R 9004 hit 0 0 4 5 ZM R EE04 hit 1 0 4

5 XM W A0D5 hit 1 0 5
6 ZM R 9005 hit 0 0 5 5 XM W CC05 miss 1 0 5 3.5

6 ZM R EE05 miss 1 0 5 3.5
6 YM W C006 miss 0 0 6 3.5 7 YM W BB06 miss/wback 2 0 6 7
7 ZM R 9006 miss 0 0 6 3.5 8 ZM R EE06 hit 1 0 6

7 YM W C0D5 miss 3 0 5 3.5 8 YM W DD05 miss/wback 0 0 5 7
8 ZM R 9007 hit 0 0 7 9 ZM R EE07 hit 1 0 7

8 YM W CCCC miss 0 1 4 3.5 9 YM W CACA miss 1 1 2 3.5
9 ZM R 9008 miss 0 1 0 3.5 10 ZM R EE08 miss 1 1 0 3.5
9 XM R AAAA miss 2 1 2 3.5 10 XM R ACAC miss 3 1 4 3.5
10 ZM R 9009 hit 0 1 1 11 ZM R EE09 hit 1 1 1
11 ZM R 900A hit 0 1 2

switch to task  1

switch to task 2

switch to task 2

 
Figure 10 - Cache simulation example 

 
Figure 11 shows the expected events of the cache and has the following numbers: Prm = 6, Drm 
= 10, Dwm = 7, Dwb = 4. The output of the simulator validates the results as it is shown bellow. 
 
RESULTS OF CACHE RUN 
. . . 
RESULTS OF MEMORY X 
. . . 
number of X reads         = 10 
number of X writes        = 10 
number of X read misses   = 10 
number of X write misses  = 7 
number of X write backs   = 4 
 
. . .  
RESULTS OF MEMORY Z 
. . . 
number of Z reads         = 21 
number of Z read misses   = 6 
. . .  

Figure 11 – Output results of the cache simulator 
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Chapter 3 

Level 1 Cache profiling 
 
This chapter describes the process of L1 cache profiling using trace-drive simulation. L1 cache 
profiling has three major goals. First, assess the cache architecture in order to derive a reference 
configuration that can provide the basis for further performance improvement. Second, derive 
performance figures for the cache. Third, perform an analysis at a cycle level. This means 
evaluation of the cache performance as function of execution time. 
 
The starting point of the L1 cache profiling was that there was little knowledge about the 
application. The applications were developed without taking in consideration the presence of the 
cache and hence, so are the traces used in this work. The MST-BB Philips department in 
Nuremberg provided the traces. The manuals and helpful information provided by Nuremberg 
proved to be important in this study.  
 
While the idea of trace-driven simulation is simple, it is time consuming since the simulation time 
is proportional to the length of the trace. For real applications, the traces can easily exceed 
millions of references. The time spent in simulating and the correctness of the evaluation are 
essential factors. Trace-driven profiling can easily lead to wrong assumptions, results and 
conclusions. The profiling process is highly application dependent, which means that knowledge 
about the application is essential. There are several and very important factors to consider when 
doing the profiling investigation. Among the key aspects are drawing assumptions regarding the 
applications, defining how to explore the architecture, evaluation of the accuracy of the trace, 
assessing the results and evaluate what are the sources of uncertainty in case they exist. These 
issues are developed in this chapter.  
 
The chapter is organized as follows. Section 3.1 presents a study case based in the MP3 decoder 
and AAC decoder application traces. The following sections describe the knowledge acquired in 
the study case. Section 3.2 addresses the application and trace analysis. Section 3.3 describes the 
approach taken in order to explore the cache architecture. Section 3.4 explains briefly the iterative 
process between the profiling process and the development of the model. Section 3.6 reflects on 
what to consider when addressing the cache behaviour. Finally conclusions of the study are 
derived. 
 

3.1 Case study 
 
Two audio application trace files are used in the profiler simulations: the MP3 decoder [1] and the 
Advanced Audio Coding (AAC) decoder [2]. The MST-BB Philips department in Nuremberg 
provided the traces. The implementation of the algorithms is out of the scope of this thesis. The 
overview description of the algorithm presented in this section is based on the user manuals also 
provided by Nuremberg. The study addresses the goals referred above and describes the process 
of profiling.  
 
3.1.1 MP3 and AAC decoder application and trace analysis 
 
In the MP3 Decoder three main functions are defined, which are called by the DSP main 
program: MP3_Init, MP3_Synchronize and Mp3_Process (granule based processing). The 
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function MP3_Init initialises all static variables of the MP3 decoder and it is only called once at 
the very beginning of MP3 decoding phase. The initial synchronization is done by function 
MP3_Synchronize. This function is called repeatedly until synchronization is achieved or the end 
of the bit stream is reached. After successful synchronization, the function Mp3_Process performs 
header and side information decoding as well as data processing until the end of the bit stream is 
reached or an error condition occurs. Mp3_Process performs a granule (sub-frame) based 
processing and generates per call and per stereo channel 576 output samples (1152 words of 16 
bits). The MP3 decoder required memory resources (in 16 bit words) are shown in Table 2.  
 
In the AAC Decoder two main functions are defined, which are called by the DSP main program: 
AAC_Init and AAC_Process. AAC_Init is called once before playing a new AAC file. It may 
already decode a header found in the input buffer and request more data before calling 
AAC_Process. The AAC_Process procedure decodes one block of data and produces 1024 stereo 
output samples (2048 words of 16 bits). The required memory resources (in 16 bit words) for the 
AAC decoder application are shown in table Table 3. 
 
The Data types of the applications are defined, according to [3] the data types present in the traces 
are: 
 
Input/Output – This part of RAM is used for storage of input/output parameters and streaming 
data of the application.  
 
Static RAM – This part of the RAM remains unchanged between successive procedure calls. 
Different procedures inside a package (e.g. speech encoder or speech decoder) may use different 
static RAM sections.  
 
Scratch Data RAM – This part of the RAM is commonly by the subroutines used of all 
applications and stores intermediate results. No data is kept between successive calls. Scratch 
data is located in two different RAM banks, called SCRATCH_A and SCRATCH_B. 
 
Data ROM – The ROM area is used to store constant values or tables. 
 
Program ROM – The ROM area is used to store program.  
 
Stack – in respect to an object allocated on the stack in connection with a subroutine call. 
 
It is possible to track the procedure calls present in the traces by knowing the program address of 
those calls. This address search is performed in the trace file. This gives a more clear idea about 
what is present in the trace: what are the functions executed in the trace, how many times they are 
executed and their duration. The analysis reveals that the MP3 decoder trace contains one call to 
the initialisation procedure, one to the synchronization procedure and eight calls to the process 
procedure as shown in Figure 12. 
 

MP3_init MP3_sync MP3_process

8

start

Sync 
found

End of bit 
stream 
reached endMP3_init MP3_sync MP3_process

8

start

Sync 
found

End of bit 
stream 
reached end

 
Figure 12 – MP3 decoder flow diagram 
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The AAC trace contains one call to the initialisation procedure and six calls to the process 
procedure, as illustrated in Figure 13. 
 

AAC_init AAC_process

6

start

End of bit 
stream 
reached endAAC_init AAC_process

6

start

End of bit 
stream 
reached end

 
Figure 13 – AAC decoder flow diagram 

 
The memory references present in the traces give some insight about how the algorithms were 
developed. Using a small program to count the number of reference locations present in the 
traces, the number for each memory is obtained, the results are shown in Table 4. “ZM R” is the 
number of program reads, which is a number equivalent to the number of DSP clock cycles. The 
table shows that there is a levelled number between X and Y references which can lead to the 
conclusion that the algorithm does not explicitly divide X and Y data as in many DSP 
applications where for example Y data is used for filter coefficients. The same program is used to 
count the number of different memory references in the traces, Table 5 confirms the situation. 
This may be proven to be a decisive factor in the data cache memory model to use and can lead to 
decisions of using a XY shared data cache model or a separated X and Y model. 
 
An analysis in the trace files reveals the number of samples that are consumed and produced by 
the algorithms. The MP3 decoder application reads a different number of input data samples in 
each call of the MP3_Process procedure, as shown in the Figure 14 below.   
 

MP3_init MP3_sync MP3_p1 MP3_p2 MP3_p3 MP3_p4 MP3_p5 MP3_p6 MP3_p7 MP3_p8

1152   output samples per MP3_process call

 
Figure 14 – MP3 decoder trace 

 
For the AAC trace, 
 

AAC_init AAC_p1 AAC_p2 AAC_p3 AAC_p4 AAC_p5 AAC_p6

2048   output samples per AAC_process call

 
Figure 15 - AAC decoder trace 

 
An inspection of the memory events in the input and output buffer data address range show that:  
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• The cache lines correspondent to the input data samples are not invalidated before a new 
block is processed (i.e. before a new process routine execution). The analysis shows that 
the same data is from the input buffer segment read. The profiler includes invalidation 
and it is unpractical to solve use it because the number input samples read by the MP3 
decoder differs from process call to process call. This number must be estimated because 
new input samples causes cache misses.  

 
• The output data segment is used for intermediate storage of computation results and it is 

difficult to know at what point in time the output data block is produced just by looking 
at the trace. The cache lines corresponding to the output samples are not flushed when the 
data output block processing is produced. The cache lines corresponding to the output 
data must be updated in the memory once a frame is produced in the end of each call and 
the data correspondent to the cache lines must be invalidated. Knowing the expected 
number of output samples (1152 for MP3 and 2048 for AAC), an estimation of the 
number of cache lines to be flush can be obtained.  

 
For the input stream, the miss rate is for a worst-case situation estimated.  
 
For the MP3 decoder, 977 new data input samples is the worst-case situation, per routine call.  
 
977 / 8 = 122.125       // 8 words is the size of a cache line size assumption 
122.125 * 8 = 977 misses      // 8 is the number of frames produced in the trace 
977 / 655734 = 0.15%       // 655734 is the number of DSP clock cycles in the trace 
 
The estimation of the number of cache line flushes considering a number of 1152 output samples 
is: 1152 / 8 = 144 cache line flushes. 
 
For the AAC decoder, 1024 new data input samples is the worst-case situation, per routine call.  
 
1024 / 8 = 128       // 8 words is the size of a cache line size assumption 
128 * 6 = 768 misses      // 6 is the number of frames produced in the trace 
768 / 1711445 = 0.045 %   // 1711445 is the number of DSP clock cycles in the trace 
 
The estimation of number of cache line flushed considers 2048 output samples.   
2048 / 8 = 512 cache line flushes. 
 
The trace does not consider the invalidation and the flushing of the input/output data samples and 
hence, the program does not consider the interaction with the cache. The conclusion derived from 
the estimations is that the I/O data stream may not introduce a big uncertainty in the miss rate and 
in the stall percentage. The estimation must be used to correct the performance miss rate figure 
result. 
 
For real-time execution, there is the assumption that a periodic source produces (i.e. transfers to 
the input buffer) samples, and a periodic sink and consumes samples (i.e., reads from the input 
buffer), respectively. This can have impact in the cache behaviour and is an uncertainty in the 
analysis. For example, interrupts coming from an external source that produces (e.g. A/D 
converter) or consumes (e.g D/A converter) must be considered in the real-time execution 
because data must be supplied and consumed. No interrupt code is present in the trace, the 
unpredictability of an interrupt could have consequences that are not easy to estimate because it 
not possible to predict when the interrupt is going to occur, what happens and what is the impact 
in the cache performance.  
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The conclusion here is that the applications perform a block read and write operation to data 
already available in memory, and is not involved in data IO by interrupt. 
 
From the analysis of the application traces, the following conclusions are stated: 
 
Application trace 3.1:  there is no explicit X and Y data, i.e. the applications uses both with a 
similar weight. This factor influences the memory model.  
 
Application trace 3.2: the MP3 trace has duration of 655734 DSP clock cycles correspondent to 
3.27 ms of CPU time (200 MHz). Each call to the main routine reads a varying number of 
samples and produces 1152 samples. 
 
Application trace 3.3: the AAC trace has duration of 1171445 DSP clock cycles correspondent to 
5.85 ms of CPU time (200 MHz). Each call to the main routine reads a 1024 input samples and 
produces 2048 samples. 
 
Application trace 3.4: the uncertainties related with the I/O stream can be estimated. The 
estimation showed that the impact from I/O stream is not significant.  
 
Application trace 3.5: the trace does not contain interrupt code and does not consider the 
interaction with the cache. The application was developed not taken into account the presence of 
the cache. The simulation assumes that the data is already available in memory.   
 
3.1.2 Cache architecture exploration 
 
The first decision about the cache architecture respects the data memory model. Therefore, it is 
important to confront different cache memory models. For the study case the following cache 
models are confronted: 

• XY shared cache memory space (double ported memory). 
• Separated X data cache and Y data cache memory (one port memory). 

 
Table 6 shows the results of the simulations using the two models for fixed total sizes of 8Kw and 
16Kw. The results show that a data cache model with a shared XY data has a lower miss rate 
when compared with a separated X and Y data cache model. The double-ported data memory 
model achieves better performance for several cases when the size is the same.  
 
The conclusions from the results is that in case of separate X$ and Y$, a write to X can never be 
read by Y (and vice-versa) so it gives a miss. This can be done in shared XY, and the current 
applications exploit this feature, which was confirmed by the application trace analysis for the 
MP3 or AAC case and this is the reason for the higher miss rate. For the following simulations a 
share XY$ data model is used.  
 
Profiling supports the decision on parameters for the cache architecture. The three basic 
parameters of a cache are the size, the line size, and degree of associativity. In cache designs, the 
problem often resides in the choice of these three parameters. In order to derive the reference 
cache architecture some basic parameters are kept fixed and the focus is on these three 
parameters. It is not reasonable to analyze at this point every possible cache configuration and the 
focus is on the cache basic parameters. For the simulations, the cache line replacement algorithm 
is the PLRU and the MMU is programmed in order to set write-back policy for all memory range. 
In order to get data on the miss rate, a stand-alone trace profiler processes the traces over a wide 
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range of cache configurations. In order to simulate several cache configurations in a single run, a 
script file programmed in perl is used. The program and data cache have the same configuration 
for each data point. The results are shown in Figure 51-56. 

 
The following observations can be derived from the Figure 51 and 52: 
 

• The miss rate decreases with bigger the cache line. This is the result of less compulsory 
misses. We can conclude that there is locality applications 

 
• Decreases with the bigger cache sizes. This is the result of less capacity misses. 

 
• The increase of the cache associativity has a bigger impact with a cache size of 8 Kword 

(I$=D$). This is the result of less conflict misses. 
 
• A direct-mapped cache size 8Kw has about the same miss rate as two-way set associative 

cache of size 4kw for cache line size of 2, 4 and 8w. For cache lines bigger than 8w, the 
miss rate of a direct-mapped cache size 8Kw is higher than a n-way set associative cache 
of size 4kw. This is the result of the increase in conflict misses.  

 
• The flat line indicates that the application fits in the cache and hence. This is the result of 

compulsory misses. 
 
From figures Figure 53-6 
 

• The data cache contributes the most to the overall miss rate percentage (i.e. the data 
cache misses are dominant). 

 
• The misses of program and data cache are added unconditionally, but in reality some of 

the miss events can overlap. The model in the profiler does not take into account that a 
stall from program and data cache can happen at the same time, and can overlap in time.  

 
3.1.3 Reference cache architecture 
 
A working assumption for the cache architecture is chosen based on the profiling results and a 
physical implementation study, which is out of the scope of this thesis. This working assumption 
leads to an 8 Kw size 4 way-set associative for Dcache and 8 Kw size 2 way-set associative for 
Icache. The cache line size is 8 words (8×16 bits). The cache architecture is shown in Figure 16. 
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Figure 16 – Reference cache architecture 

 
The conclusions for the basic cache architecture configuration: 
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Cache architecture 3.1: The model for the data cache is a shared X and Y data double ported 
memory. 
 
Cache architecture 3.2: Instruction cache is a 8Kw size 2 way-set associative memory and the 
data cache is a 8Kw size 4 way-set associative double ported memory with shared X and Y data. 
The cache line size is 8 words. 
 
3.1.4 Algorithms dynamic behaviour 
 
The performance impact of each procedure from both algorithms is verified. The simulation is 
done with the reference architecture. It is possible to track the procedure calls present in the traces 
by knowing the program address of the process calls. This address search is performed in the 
trace files. By knowing this, it is possible to know the duration of each process computation. By 
doing post-processing in the debug data produced by the profiler it is possible to filter the miss 
rate for each main procedure of the applications.    
 
The results are shown in Table 7-8 and Figure 57-58 and they show clearly that there is a peak in 
the miss rate at the start of the execution, which is the consequence of a cold start (i.e. 
compulsory misses). The cache is empty when the initialisation procedure is executed in and 
noticeable is the dynamic behaviour because there is a significant variation in each process 
execution, which visible by the fluctuation of the miss rate. 
 
 
The worst-case execution time of an application is dependent on the input data and sources of 
dynamism present in the algorithm (e.g. condition statements, data-dependent iterations). The 
highest and lowest miss rate value per process computation of the applications is: 

• MP3 decoder – highest value 2.08%, minimum value 0.89% 
• AAC decoder – highest value 2.60%, minimum value 1.99% 

 
One conclusion is that the worst-case execution time of a task can be estimated with the worst-
case value of the miss rate assuming a fixed penalty.  

 

3.1.5 Impact of data types 
 

The profiler produces debug information of the cache events. With the knowledge about the 
memory structure of the application, post-processing is executed in the debugged data.  The 
addresses and events are filtered and is possible to know the influence of each application data 
type in the data miss rate figures. The results are shown in Table 9-10 and Figure 59-60. The x-
axis of the figures denotes the segment data type and range. In the MP3 application the static data 
and data Rom are dominant in the overall MP3 miss rate results. In the AAC application, the 
output buffer and data Rom are responsible in the overall AAC miss rate results..  
 
A possible recommendation for cache operation configuration optimisation: 

• For MP3, lock in one of the cache ways data referent with the static data 
• For AAC, lock in one of the cache ways data referent with the data ROM  

 
This is achievable by configuring a specific address range (i.e. MMU model inside the cache) to 
be locked in some way of the cache. 
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3.1.6 Performance as function of execution time 
 
The simulation is performed in a task-switch context. Every time a miss occurs, the period is 
extended to 3.5 cycles. When a task switch occurs, the entire data and instruction cache are 
invalidated and this incurs in extra stall cycles (1 cycle per cache line). Furthermore, the dirty 
lines present in the cache are flushed and updated in the memory. It is possible to use the profiler 
in order to obtain information on the number of dirty lines present in the cache when a task-
switch occurs. The number of number dirty lines in a task-switch shows that approximately 70% 
of the data cache lines have to be flushed.  
 
In the first simulation the task switch occurs every 1 Mcycles of execution time (cpu cycles + 
stall cycles), The DSP miss rate is 1.9%. In the second simulation The task switch occurs every 1 
Mcycles of execution time (cpu cycles + stall cycles), The DSP miss rate is 3.5%. This is the 
result of the cache cold starts (i.e. the cache is empty), the tasks have to be initialized each time a 
task-switch occurs and this as impact in the cache miss rate. Figure 17 shows the result. 
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Figure 17 – Task-switching simulation as function of execution time  

 
There is a problem in this simulation that affects its accuracy. In order to perform this simulation, 
the trace files were concatenated in order to have longer duration (1M cycles execution time), 
which means that the same data is being used. Still there are important details that are illustratable 
from Figure 62. Notable are the peaks when a task switch occurs and the fluctuation of the miss 
rate during the execution of the tasks.  
 
It is clear that the effect on the miss rate is small for a budget period of 5ms, which is proven to 
have no significant impact on the miss rate value. If the budget for each task decreases, the miss 
rate will increase as a consequence of more frequent cold starts.  
 
In Round Robin the approach is at a frame granule level. The tasks may be chosen to execute 
once or more, for example task one may execute 2 times while task 2 executes just once, or the 
opposite. The approach is easier and the controlling task just needs to verify if the tasks have the 
necessary requirements to execute. The execution will stop when a process routine has finished 
executing the number of times that was predetermined to run.  
 

3.2 Application and trace analysis 
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It was shown that the cache profiling process is highly dependent on the application trace running 
in the system and that there is difficulties to obtain knowledge about the application itself. There 
was no prior knowledge about the application because it was not developed at the DSP-IC 
department. The study is done without access to the code and there is no knowledge about the 
behaviour of the algorithm. It is very important to have a certain degree of knowledge about the 
application because this could mean less time spent on simulation and more importantly, avoid 
wrong assumptions and conclusions. Hence, it may be required to perform several analyses in the 
trace in order to obtain that data. 
 
The basic knowledge starts by the duration of the trace, it may happen that the application trace 
file only contains a few milliseconds of simulation and this may not represent the worst-case 
execution of some application algorithm. The designer must know what main procedures are in 
the applications and at which point they are executed. By knowing this, it is possible to know the 
duration of each procedure execution and make individual performance estimations in each of the 
procedures. Some insight about the algorithm behaviour can be derived from this analysis. In 
streaming applications a number of samples are consumed in each execution of the application 
and a number of samples are produced. Knowing the number of samples it is possible to quantify 
the impact of I/O streaming in the overall cache performance. A similar idea is to verify the 
impact of each of the data types of the application. An application has predefined number of data 
memory map segments. Knowing the memory requirements of the application and the boundaries 
of the memory map, the profiler produces debug information in order to verify the performance of 
each data segment in the overall cache performance.  
 
The DSP processor is able to issue up to three memory references per processor cycle. The 
situation does not happen in every cycle but it is important to analyse the frequency and quantify 
the memory references present in the traces. Usually Y data in DSP applications are used for 
example for filter coefficients and this usually means that the occurrence of different X data 
references is much higher. This can be a decisive factor in the data cache memory model to use 
and can lead to decisions of using a XY shared data cache model or a separated X and Y model. 
Optionally, it can lead to the decision of a smaller cache memory size for Y and a bigger for X.  
 
The analysis leads to a number of conclusions that could be very useful in the analysis and limit 
the time spent in doing simulations and drawing conclusions about the boundaries of the analysis.  
 

3.3 Cache architecture 
 
The simulation of trace applications in the profiler supports the decision about the cache 
architecture configuration. Choices about the memory model and the cache configuration 
parameters are looked into. The process can be divided in two, first to derive a cache reference 
configuration and secondly the optimisation of the configuration. 
 
The most logical step is to start by the cache memory model and evaluate the cache parameters 
that dominate the cache performance, the cache size, the degree of associativity and the line size. 
Options to consider in the memory model are for example to use a separated memory for X and Y 
data with different sizes and perhaps configurations, or a shared XY data memory with one or 
two ports. The decision-making is naturally the result of the trade-off between performance and 
cost (i.e. area and power consumption). The basic cache parameters (size, associativity, line size) 
should be the main focus of analysis when assessing the cache basic architecture. This means that 
other parameters should remain fixed for a wide range of cache simulations with these three 
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changing parameters. Other configuration options may be in a later stage explored. For example, 
using cache way locking to keep data that is frequently used in one of the cache ways should be 
used for optimization evaluation of the cache performance.  
 

3.4 Debug information produced by the profiler 
 
Detailed information on the operation of the cache model can aid the analysis; this is supported 
by the profiler and it can be modified and adapted in order to help the profiling process. More, the 
debug information produced by the profiler can be subjected to post processing in case it helps 
the study. For example, in order to evaluate the impact of each data types (see section 3.1.5) the 
profiler produces debug information that associates an address with a cache event (e.g. read or 
write miss). The profiler produces this debug information, and post processing can be used in 
order to find how many misses are associated with a certain address range. First by filtering the 
addresses corresponding to an address range (equivalent to a memory segment from a certain data 
type) and then counting the number of misses associated with that range. Then, knowing the 
number of DSP cycles that are present in the trace it is possible to calculate the miss rate of each 
data type.  

3.5 Cache performance 
 
The miss rate figure is independent of the cache penalty and consequently these are two separate 
components developed in the model. The execution time is dependent on both miss rate and cache 
penalty, which makes it more complex to model. The percentage of stall cycles is dominated by 
the penalty caused by the fetching data to the L2 memory and in this model is considered to be 
fixed. But there are other factors that cause stalls as seen in the case study. The model in the end 
should accurately mimic the cache behaviour and give detailed debug information because they 
are essential in the development, accuracy and correctness of the conclusions of the study.  
 
The focus of the cache performance is on the miss rate. The first goal is to derive a miss rate 
figure and the second is to address real time execution. The assumption of a fixed penalty when a 
miss occurs is due to the fact that the cache performance of other processing blocks is not known. 
Their cache performance will influence the latency but because there is no information available 
at this stage the latency is kept static. The miss rate figure gives insight about the stall percentage 
of the processor. The performance as function of execution time allows investigating for example 
if the application has dynamic behaviour. It can give the idea if the miss rate has for example 
behaviour with bursts, their duration and peak values. Important is to derive the execution time 
for certain granularity or the response time of a task that is running concurrently with one or more 
other tasks. In this case scheduling must be addressed. 
 
The execution order of a program influences decisively the program miss rate figure. If the 
program contains many jumps to sub routines means a higher number of misses or by the 
contrary, if the program is relatively sequential means a less number of misses. The impact is 
often even bigger in the data because the data is not usually accessed sequentially and this means 
that the probability for a higher number of misses is higher.  
 
The cycle behaviour is difficult to evaluate. First, it requires that the trace represents accurately 
the run of an application in the processor and it should contain all the interaction with the 
hardware peripherals and must take into account the timing of each instruction. This is necessary 
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so that interrupts caused by external agents and timer ticks can be processed at precisely the right 
moments. Secondly, the stall events must be modelled correctly in the simulator in such a way 
they happen at the exact point in time as they would in the implementation. The stalls caused by 
fetching a cache line from the L2 cache, the cache invalidation in case a task switch occurs or the 
input data samples have been consumed, flushing the cache in case new data has been produced 
et al. This is in the hands of the designer and with time all the stall events can be incorporated in 
the model.  
 
The question that must be answered is until what extent (limits) we can assess accurately the 
cache performance based in trace-driven simulation and the profiler described in chapter two. The 
answer is depends on several factors:  
 

• Does the profiler accurately mimic the cache behaviour?  
 
• Does the trace application reflect the worst-case behaviour of the application?  

 
• Does it accurately reflect the application running in the system?  

 
• Does it consider the behaviour of hardware peripherals interacting with the processor?  

 
• Does it contain the interrupts cause by external agents?  

 
If the trace reflects accurately the application running in the system in a worst-case situation, the 
cache configuration can be explored in order to derive an accurate miss rate figure. If the model 
considers all the stall events at the correct point in time we can model the performance as 
function of time.  
 
However, if the answer is no and the trace does not represent accurately the application running 
in the processor we must clearly point to what must be investigated further and what are the 
points of inaccuracy. Is possible to estimate with a certain degree of accuracy the results produced 
by this uncertainty? If yes we can give a fairly accurate number for the miss rate. The cache 
behaviour as function of time is more difficult to assess because there are many more factors to 
consider. For example the interaction with peripherals, interruption of execution, consumption of 
data produced and real time execution. 
 

3.6 Cache Behaviour 
 
The execution time of a task depends on number of processor stall-cycles, which depends on the 
miss rate and the miss penalty. The cache miss rate is dependent on the state of the cache after 
task switch (in case more than one task is running in the processor) and the input data values. The 
cache miss penalty depends on conflicts on memory port, which depends on misses of other 
caches. The execution time of a task depends on number of processor stall-cycles, which depends 
on the miss rate and the miss penalty. The cache miss rate is dependent on the state of the cache 
after task switch (in case more than one task is running in the processor) and the input data 
values. The cache miss penalty depends on conflicts on the next level memory port, which 
depends on misses of other clients (see Figure 1). In order to study real time execution other 
factors must be taken into account. 
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3.6.1 Supply and consumption of data samples 
 
It is assumed that this system processes data streams where the input data is provided by an 
external source, which provides a new input sample with a certain periodicity. This source can be 
an A/D converter and similarly and after processing the data is consumed by a D/A converter into 
an analogue signal. This last situation is illustrated in Figure 18 with the MP3 decoder serving as 
example.   
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Figure 18 – Consumption of data by D/A task  

 
These systems are often designed as hard real-time systems because input samples must be 
processed in time and output samples must be produced in time, since otherwise the input buffer 
overflows or the output buffer under-runs. 
 
The real time execution is considered for the MP3 decoder in the following way.  
 
The MP3 decoder: 

• MPEG-1, Mono 44.1kHz, 64 kbit/s 
• 8 calls to Mp3_Process 
• Each call generates an output block of 1152 samples (16-bit, stereo) 
• 576/44.1kHz = 13 ms per call, *8 = 104.5 ms real-time 
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Figure 19 - Real time execution for MP3 decoder 

 
The MP3 trace produces 8 blocks of 2×512 samples in a certain amount of execution time. Those 
samples have to be consumed from a buffer located in the memory. The D/A converter consumes 
one sample at a strict frequency from the output buffer, this is not considered in the trace and 
hence, the D/A task is not considered in the execution. This task may cause the interruption of the 
execution of the program running in the processor and may be another source of stalls in the 
execution. Furthermore, Figure 19 shows that the processor will be inactive most of the time 
since execution time for producing the 8 blocks are likely to be much less than the 104.5 ms of 
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real time. We want to increase the load of the processor by running two or more tasks in parallel 
and consequently the scheduling of tasks be taken into account.  
 
3.6.2 Execution time and Response time 
 
The definition of actor is introduced. An actor is a task with well-defined properties. An actor has 
a worst-case execution time and in this time consumes a fixed number of data from every input 
and produces a fixed amount of data on every output. During every execution of the actor the 
same amount of tokens are consumed and produced. 
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Figure 20 - Execution time of an actor 

 
It is possible to assign more than one actor to a processor. Actors assigned to the same processor 
are executed successively. The notion of response time (RT) is defined for an actor, as described 
in Figure 21. The data-dependent response time of a task that is mapped onto a processor and 
receives input data is defined as the time it takes from when the task is enabled (i.e. when it has 
all necessary data to compute) until it is finished. The task may have to wait for the processor to 
get free before it can start and it can be interrupted several times during its response. This waiting 
time depends on which actors can be enabled at the same time. Not only the task’s processing 
time, but also the waiting time and interruption time must include in the response time. 
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Figure 21 - Response time of an actor 
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3.6.3 Scheduling approach 
 
The scheduling approach also plays an important role in the system analysis. Various methods 
have been developed to tackle the problem of making run-time choices. Examples are Round 
Robin and Time Division Multiple Access (TDMA). In Round Robin tasks are checked 
consecutively, if a task is enabled, it is executed immediately. TDMA uses a fixed period (time 
wheel) of which each task gets a predefined time slot (see Figure 22). During this time slot, a task 
has the opportunity to execute until the end of the slot. When the task is not enabled, because it 
has no data, the processor is idle for the remaining time in the slot. TDMA requires pre-emption 
to allow the execution of tasks to span over multiple time slots. The power of this method is that 
the execution of tasks (or jobs) can be decoupled, as if they were running on separate processors: 
if two tasks do not depend on each other’s data they cannot influence each other’s timing. Pre-
emption, however, needs additional hardware and introduces task-switching overhead. 
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Figure 22 – Time wheel TDMA 

 

3.7 Results, Conclusions and Proposals 
 
3.7.1 Cache architecture 
 
The Figures show the saturation point of the miss rate as function of the cache size for the two 
applications. The value of the miss rate shown in the graph refers to the input stream data, which 
was estimated in section 3.1. 
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The increase of the line size improves the miss rate figure; this is shown in appendix A. 
 
A reference configuration for the cache was derived from the trade-off analysis between 
performance, power consumption and cost. This is out of the scope of this thesis.   
 
The cache reference configuration is: 
 

• Data cache – double ported memory, 8Kw size, 4-way set associative and 8 words for the 
cache line size. 

 39



 
• Instruction cache – one ported memory, size of 8Kw, 2-way set associative and 8 words 

for line size. 
 
3.7.2 Miss rate 
 
The value of the miss rate is accurate. The value refers for a specific granularity; there are two 
uncertainties that can have an impact in the value: 

• I/O stream data (estimated). 
• Interrupt code (the traces derived from a simulation were data input samples are available 

in memory) 
 

The MP3 decoder for a granularity of 8 frames and for the reference architecture configuration 
has a value of 1.5%. 
 
The AAC decoder for a granularity of 6 frames and for the reference architecture configuration 
has a miss rate of 2.3%. 
 
The values shown above include the impact of I/O stream data calculated in section 3.1. The 
values have little impact in the miss rate performance. 
 
3.7.3 Processor Stall percentage 
 
The processor stall percentage for the reference cache configuration and for the MP3 decoder is 
1.5% × 3.5 = 5.25%  
 
The processor stall percentage for the reference configuration and for the AAC decoder is 2.3% × 
3.5 = 8.05% 
 
The processor stall percentage value is restricted by the assumption that the latency is fixed. 
 
3.7.4 Dynamic behaviour 
 
The variation of the miss rate values for process execution in both algorithms is derived from the 
simulation described in Section 3.1.3. The worst-case behaviour of the application is dependent 
on the input data and sources of dynamism present in the algorithm (e.g. condition statements, 
data-dependent iterations). The highest and lowest value per process computation is shown below 
 

• MP3 decoder – highest value 2.08%, minimum value 0.89% 
• AAC decoder – highest value 2.60%, minimum value 1.99% 

 
3.7.5 Task-switching Execution 
 
For a task-switching simulation of the MP3 trace and AAC trace, where each task as a budget of 
1 million cycles of execution time, the miss rate is 1.91%. For a task budget of 100Kcycles the 
miss rate increases to 3.5%  
 
3.7.6 Trace-driven simulation 
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Evaluating the cache architecture through trace-driven simulation seems to be a good solution; it 
allows exploring wide range of cache configurations and memory models. Using trace-driven 
simulation, it was found that there are certain  properties that must be known in order to improve 
the analysis (eg. input-invalidate/output-flush/IO-handling/data memory map). These items will 
be included in the applications when it is adapted to run in a cache based DSP. An extensive trace 
application analysis helped this process and it allowed estimating uncertainty that exists in the 
trace regarding I/O data stream. In this system context, the miss penalty is dependent in other 
cache miss rate and it is assumed fixed and hence, the focus was on the miss rate. 
 
Difficult to evaluate real time execution:  

• production and consumption of I/O samples by strict periodic sources not considered ⇒ 
I/O by interrupt . 

 
3.7.7 Recommendation 
 
A possible recommendation for cache operation configuration optimisation: 

• For MP3, lock in one of the cache ways data referent with the static data 
• For AAC, lock in one of the cache ways data referent with the data ROM  

 
This is possible in the profiler by configuring a specific address range (i.e. MMU model inside 
the cache) to be locked in some way of the cache.  
 
3.7.8 Proposal 
 
Based on the findings, a decision was made in order to move to ISS processor simulation. The 
goals are stated in Chapter 1. 
 

3.8. References of Chapter 3 
 
[1] “MP3 Decoder Package User Manual”, Dietmar Gradl, Dietmar Lorenz, Cliff 

Parris, 11-May-2004. 
 
[2] “AAC Decoder Package User Manual”, Alex Stenger, 18-Mar-2004.  
 
[3]  “Software Creation Process Annex D26_1 -  R.E.A.L. Assembler Coding Standards”,  

Peter Meyer, Arthur Tritthart, 19-Aug-2004 
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Chapter 4 

Instruction Set Simulator 
 
Simulation is recreating an environment in enough detail that desired effects of a real system 
could be observed. Instruction-Set Simulation is simulating a processor at the instruction-set 
level. Instruction-set simulation is a type of simulation that is detailed enough to run executable 
programs intended for the machine being simulated. In this simulation environment it is possible 
to extend the scope of the study to a multiprocessor context. The applications are under our 
control and can be adapted in such a way that the applications can be simulated as the assumption 
stated in Section 3.6.1.   
 
This chapter introduces the simulation environment used for processor simulation of the Adelante 
RD 1602X family of DSPs. The environment is targeted at embedded applications that require 
data processing, for instance, telecom and medium to high-end audio applications. The simulation 
produces simulation results that are bit-true and cycle-true accurate. Cycle-true means that values 
are produced at corresponding times and bit-true means that a value produced in simulation is bit-
for-bit identical to the corresponding value produced in hardware. 
 
The chapter is organized as follows. The first Section gives an overall description of the most 
significant features of the development environment, how to develop, debug and simulate an 
application in the environment. Section 4.2 describes the hardware resources applicable in the 
experiments described in later chapters. 
 

4.1 Integrated Development Environment 
 
4.1.1 Basic Design Flow 
 
Figure 23 illustrates the typical design flow to create an executable that is developed for the 
Saturn core. 
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Figure 23 – Design flow 
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The environment enables to test and verify the DSP application. The Simulation C-Compiler 
converts the DSP-C code into ANSI C source code and produces a bit-accurate executable using a 
host compiler. Running this executable on a PC emulates the behavior of the DSP code on a 
Saturn core, enabling to functionally test and verify the code. The final version of the application 
source serves as the reference source for the target C-compiler. The target C-compiler converts 
the reference source into a Saturn optimized executable.  
 
4.1.2 Development flow 
 
The development flow is show in the Figure 24 bellow. 
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Figure 24 –Development flow 

 
The Integrated Development Environment (Atmosphere IDE) developed at the DSP-Innovation 
Centre of Philips Semiconductors is particularly suited for the Saturn DSP-core. The Atmosphere 
IDE is part of the Saturn Atmosphere tool chain. Atmosphere IDE is a graphical user interface 
integrating all Saturn tools: C compiler, assembler, linker, simulator and the emulator. It has a 
Graphics User Interface (GUI) that consists of a number of windows, which is divided in the 
category of general windows and the core specific debug windows. The IDE is a GUI front-end 
that can interface with multiple simulator engines, also referred to as core DLLs.  
 
The Atmosphere IDE enables build, develop, debug and simulate DSP applications. Applications 
are project-based and can be comprised of C and/or ASM source files. DSP cores can be loaded 
as simulator engines or core-DLLs into the IDE, allowing for multi-core simulation. Peripherals 
can be loaded as peripheral DLLs, enabling simulation of a DSP sub-system in any possible 
configuration. Atmosphere IDE is specifically designed for the Windows operating system. It 
takes advantage of the Windows multitasking capabilities, to continue working on other 
applications while running a simulation session in the Atmosphere IDE. 
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The simulator loads and runs C/ASM translated executables on the simulated DSP cores. While 
debugging, various debug windows enable comprehensively analyse and troubleshoot the 
application. To simulate and debug an application, a number of powerful integrated functions are 
at disposal. Several variants of memory and register breakpoints can be set to halt program 
execution for evaluation purposes. The Atmosphere IDE supports profiling, which in order to 
optimise and detect performance, bottlenecks in the source code.  
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Figure 25 – Simulation compiler 

 
The design flow to generate an executable designed for the Saturn core is shown in Figure 25. 
Normally an executable file (.exe) is created based on C- and/or assembly coded files, after it is 
compiled, assembled and linked by the respective tools.  
 
4.1.3 Summary of IDE main features 
 
The Atmosphere IDE debugging features are broad. It allows source code level, assembly code 
level and clock cycle level debugging. Event level and asynchronous clock cycle level debugging 
in a multi-core environment. During simulation, it is the possibility of stepping into, over and out 
of functions, subroutines and macros. The values of variables can be examined and changed. The 
memory and register output can be redirected on reading and/or writing and setting read and/or 
write protection to memory cells. It supports the memory paging mechanism applicable to Saturn 
DSP-cores. It is possible comprehensive troubleshooting during assembling, compilation and 
building of applications by relating error and warning messages to their corresponding source 
code line. A summary of the IDE features is given: 
 

• Integrated Development Environment (IDE) for Saturn DSP cores, integrating a C 
compiler, an assembler, a linker, a simulator, an emulator and a profiler in a project-based 
environment. 

 
• Usage of configuration files to consistently describe a DSP-core’s memory configuration. 

 
• Multi-DSP core simulation and inter-core communication. 

 
• Program and register breakpoints in several variants, including predefined conditions and 

actions. 
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• Instructions, operations and cycles timing counters. 

 
• Importing and exporting of instructions and data, in various formats, from and to external 

files. 
 

• Special support for expanding and stepping in assembly macros. 
 

• Profiling to support the optimisation of source code. 
 

• Multiple formats for displaying memory and register values. 
 

• Application Program Interface (API) supporting the connection of peripheral user-DLLs. 
 

4.2 Supported Hardware Resources 
 
4.2.1 DSP subsystem 
 
The Saturn has a double Harvard architecture: the DSP has two data memory spaces (X, Y), and 
one program memory space (P), as shown in Figure 26. These three memory spaces are 
completely independent. The DSP can perform three different tasks: 

• Control the program flow. 
• Calculate data-memory addresses and access data memory. 
• Execute the operations on the actual data. 

 

PMEM

YMEM
XMEM

data-memory

addressing

pointer updates

looping

branching

interrupts

instruction

decoding

PROGRAM CONTROL

ADDRESS CALCULATION

DATA COMPUTATION

 
Figure 26 – Saturn DSP block Diagram 

 
The Program Control Unit (PCU) takes care of instruction decoding and of the instructions that 
can influence the program flow. These are instructions like branching, looping, and interrupt 
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handling. The Data Computation Unit (DCU) contains the actual data path. In this unit the logic 
and arithmetic operations are executed. The Address Calculation Units (XACU, YACU) handle 
the addressing of the X and Y data memories. The Saturn DSP subsystem, illustrated in Figure 
27, also contains a DMAC (DMA Controller) and an MPU (Memory Paging Unit). Configuring 
these blocks should be done via the configuration file. 
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DMA

 
Figure 27 – DSP Subsytem 

 
The simulator provides configurable memory simulation. By default, the simulator does not 
provide any memory mapping specific to the device or processor. Adding memory blocks using 
the simulator configuration file can simulate all the memory blocks in Program, Data, and I/O 
space. For example, for on-chip memories, the simulator takes care of the number of cycles 
required to access memory depending on wait states specified by the simulator configuration file. 
 
4.2.2 Peripherals 
 
Usually, the DSP is attached, through the I/O-bus, to one or more hardware peripheral blocks. A 
number of relevant hardware peripherals are also available as software peripheral. The DSP code 
can cooperate with one or more peripheral blocks, enabling simulation and debug of the 
application. The peripheral blocks are implemented in software by dynamic link libraries (DLL 
files) and can be added to the simulator. A DLL is a small, executable program that, when 
needed, is called on by a running application and loaded to perform a specific function, such as 
transfer data to a file. DLL files are dynamically linked with the program that uses them. 
Dynamic links help the programs to use resources, such as peripherals. DLLs are used by 
applications to store functions and data required for proper operation. Adding a peripheral 
software module to the simulator is best done via the configuration file. The most efficient way to 
run a simulation is to make use of command files. 
 
The peripherals that are used by the simulator and that are relevant for this thesis are:  
 

• The Direct Memory Access Controller (DMAC) allows (for) fast data transfer between 
memory and a peripheral without the intervention of the DSP core. For the data transfer 
one of the available DMA channels can be used. 

 
• Data cache (Dcache) is used to reduce the effective memory access time. It is a 4-way 

set-associative dual-ported 4 KW SRAM, it has a cache line width of 8 words (128 bits). 
Uses the PLRU cache line replacement algorithm. The Dcache features an integrated 
MMU, the MMU operates in the resulting address space of the paging done by the MPU. 
The MMU allows partitioning of the main data memory into a maximum of 8 segments. 
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For each segment an individual set of attributes can be programmed. The Dcache 
supports sharing of X and Y memory segments. The Dcache can be controlled through 8 
cache management instructions (CMI). They can be issued from the DSP core or from an 
external DMA host. The Dcache supports cache line locking and cache way exclusion. 
The Dcache supports two programmable write-policies: write-back and write-through 
mode. 

 
• Instruction cache (Icache) is used to reduce the effective memory access time. The Icache 

is a 2-way set-associative single-ported 4 KW SRAM. The Icache has a cache line width 
of 8 words (128 bits). The Icache uses the PLRU cache line replacement algorithm. The 
Icache features an integrated MMU. The MMU allows partitioning of the L2 program 
memory into a maximum of 8 segments. For each segment an individual set of attributes 
can be programmed. The Icache supports hardware prefetching from the L2 program 
memory. Hardware prefetching caches the requested cache line, and simultaneously 
stores ‘near’ cache lines in a prefetch buffer. Prefetching can be used to reduce the 
percentage of cache misses. The Icache can be controlled through 4 cache management 
instructions (CMI). They can be issued from the DSP core or from an external DMA 
host. The Icache supports cache line locking and cache way exclusion. 

  
• The Performance Profiling Unit (PPU) provides data that can be used by a programmer to 

gather information on the real-time behaviour of a cached application. The information 
can be used to enhance cache behaviour and speed up execution times, by improving the 
DSP program structure. 

 
• The Memory Paging Unit (MPU) – Paging is done by MPU unit of the DSP core itself. It 

is used to increase the memory space available by using a paging mechanism. 
 

• The Test Input Output (TIO) enables communication between the DSP’s I/O space and 
an external host. 

 

4.3 Profiling 
 
The environment can be used to measure the runtime performance of application code. For this 
purpose, the profiler generates profiling data, based on an executable file (.x) and at least one 
binary trace file (.bin).  
 
On instruction level the generated profiling data indicates, for each instruction: 
 

• The number of times an instruction is executed. 
 
• The average number of clock cycles consumed by an instruction. 

 
• The memory start address at which an instruction is stored. If paging is used, also the 

page number is indicated.  
 

• For an instruction containing a function call, also the number of clock cycles consumed 
by the call is indicated. 
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On function level, the profiler accumulates the instruction level data. The profiling data generated 
on function level, indicates, for each function: 
 

• The total number of clock cycles consumed by a function (both in- and excluding calls). 
 
• The relative number of clock cycles consumed, as a percentage, of the total number of 

clock cycles consumed by the program (both in- and excluding calls). 
 

• The memory address range at which a function is stored. If paging is used, also the page 
number is indicated.  

 
• The number of times a function has stalled. 

 
• The average number of clock cycles wasted during each stall. 

 
• A description describing the reason or cause of a stall 

 
• The number of times a function is called (both in- and excluding calls). 

 
• The minimum number of clock cycles consumed per function call (if a function is called 

multiple times; including calls). 
 

• The maximum number of clock cycles consumed per function call (if a function is called 
multiple times; including calls). 

 
• The average number of cycles consumed per function call (both in- and excluding calls). 

 
• The percentage of function lines that were executed at least once, during a program run. 

 
• The total size of a function, indicated as a number of (16-bit) words. 

 
The Saturn Atmosphere generates static and/or dynamic profiling data accordingly. All profiling 
data is represented in tabular form. The profiling tables generated are listed below.  

 
• File information table - lists general information about the profiling process, such as the 

used input files and the generated output files and the version of the profiler. 
 

• Program information table - static and dynamic profiling information on program level. 
The table lists the name of the executable, the number of program executions, the average 
number of clock cycles consumed by the program, the percentage of the program lines 
that are executed during a program run and the size of the program as a number of 16-bit 
words (size). 

 
• Static function information table - lists for each function contained by the program, the 

function name, the size as a number of 16-bit words and the start and end address of the 
function in memory. 

 
• Function information table (excluding callees and interrupts) - dynamic profiling 

information on function level. The table lists for each function, excluding callees, the 
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function name, the size of the function as a number of 16-bit words, the percentage of the 
function lines that are executed during a program run, the number of times the function is 
called, the average number of clock cycles consumed per call, the total number of clock 
cycles consumed per call, the relative number of clock cycles and the start and end 
address of the function in memory. 

 
• Timing information table (calls, IRQs and traps (in/excluding interrupts))1 – dynamic 

profiling information on function level. The table lists for each function, including 
callees, the function name, the average number of clock cycles consumed per call, the 
relative number of clock cycles, the total number of times the function is called, the 
minimum and maximum number of clock cycles consumed per call. 

 
• Assembly instruction information table - dynamic profiling information on function and 

instruction level. The table lists for each function, the name of an instruction label, the 
name of a function, the assembly instruction(s) contained by the program/function, the 
number of times an instruction or function is executed, the average number of clock 
cycles consumed by an instruction, the number of times a function has stalled, the 
average number of clock cycles lost during each stall, the stall reason, the memory 
address range occupied by the function and the memory start address of the memory 
occupied by the instruction. 

 

4.4. References of Chapter 4 
 
User and Reference Manuals: 

• Saturn Atmosphere Getting Started Manual 
• Saturn RD16024 Programmer's and Reference Manual 
• RD 16025 Technical Reference Manual 
• Saturn Atmosphere IDE Manual 
• Saturn Atmosphere Dynamic Peripheral Manual  
• Saturn Atmosphere Peripherals API Manual 
• Saturn Atmosphere profiler API Manual 
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Chapter 5 

Processor Architecture, Model of Computation, 
communication & Scheduling 
 
The communication between two processes running in different processors is examined. A 
Synchronous Data Flow is introduced in which computation, communication and run-time 
arbitration is expressed. It is possible to transform SDF graph in a HSDF graph. The most 
important properties of an HSDF graph are shown and an example illustrates how to derive the 
minimal throughput of the system.  
 
The chapter is organized as follows. First the processor template will be introduced. In Section 
5.2 the terminology is explained and the communication between processes running in different 
processors. Section 5.3 introduces the formal model. 
 

5.1 The Processor Template 
 
The processor template that is available in the DSP-Innovation Centre of Philips Semiconductors 
is shown in Figure 28. 
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Figure 28 – Processor template 

 

This template is used for a homogeneous multiprocessor system and represents a tile. The cache 
can be added as an application specific execution unit (AXU DLL) and in this case the access to 
the memory incurs in extra cycles. There is an arbiter to access the memory that gives priority to 
the DMA. In the tile there is a direct memory access controller (DMAC) capable of transferring 
data between the memory and a peripheral connected to the tile.  
 

5.2 Actors and communication 
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Tasks with well-defined properties are called actors. One of the properties is that an actor can’t be 
blocked internally and thus has a worst-case execution time. In this time, it consumes a fixed 
number of tokens from every input and produces a fixed number of tokens on every output. A 
token is defined as a container in which a fixed amount of data can be stored. During the 
execution of the actor, the fixed amount of tokens are consumed and produced. 
 
Two processes can only communicate with each other if a connection exists between them. The 
connection between two processes is done via a FIFO buffer, either located in the data memory or 
added as a peripheral. When two processes are on different processors and the communication is 
done via a shared memory, the FIFO is implemented in the data memory. Optionally, the 
communication is done via a DMA channel connecting a peripheral FIFO to two processors.  
 
5.2.1 Communication via shared memory 
 
In a multiprocessor system where the communication between actors is done via shared memory 
the multiprocessor architecture in the simulation environment corresponds to Figure 29. 
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Figure 29 – Communication via shared memory 

 
Each processor has is own port to access the main memory. The shared memory location is where 
the communication between actors takes place. The shared location may be defined with different 
memory locations for each of the processors.  
 
5.2.2 Communication via DMA 
 
In a multiprocessor system where the communication between actors is done via FIFO buffer the 
multiprocessor architecture in the simulation environment corresponds to Figure 30. 
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Figure 30 – Communication via DMA 

 
This optional architecture approach uses a FIFO buffer to connect the two cores using a DMA 
channel. 
 
5.2.3 C-heap protocol 
 
The FIFO buffers needed for the communication between the actors are implemented in software 
using the C-heap protocol. Figure 31 exemplifies how the protocol works.  
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Figure 31 – C-heap protocol example 

 
The FIFO is implemented as a circular buffer, when a pointer reaches the last position it is reset 
and points to the first position. The variables wrappers are used to verify if the buffer is full or 
empty. A comparison is performed between the pointers in order to verify if there is space or data 
available in the buffer, depending if the action is to write or read.   
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5.3 Model of computation, Communication and 
Scheduling 

 
This section is based on the work described in [1][2][4] 
  
5.3.1 Synchronous Dataflow 
 
The SDF graphs are used in this thesis to derive the worst-case temporal behaviour.  An example 
of an arbitrary SDF graph is depicted in Figure 32. The nodes in an SDF graph are called actors. 
Actors have well-defined input/output behaviour because they produce and consume a number of 
tokens. A token is depicted in the figure as a black dot. If more than one token is present on an 
edge then the number of tokens is specified next to the dot. An actor is enabled after a predefined 
number of tokens are available on every input of the actor. The number of required tokens is 
specified at the head of the data edge of every incoming edge of the actor. The number at the tail 
of an edge denotes the number of tokens an actor produces. Actors with internal state are 
modelled in an SDF with a self-edge, like the self-edge of actor A4 in Figure 32. The self-edge 
has one initial token such that the next execution cannot start before the previous execution of the 
actor is finished. The Response Time (RT) of an actor is the time interval between the time that 
the actor is enabled and the time that the actor finishes its execution. The response time of an 
actor can depend on the values in the token that are consumed by the actor. 
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Figure 32 - SDF graph 

 
5.3.2 Homogeneous Synchronous Dataflow and monotonic execution 
 
An SDF graph can be transformed into a Homogeneous Synchronous Data Flow (HSDF) graph 
on which analysis is performed. An algorithm, which transforms any SDF graph into an HSDF 
graph, is described in [3]. The HSDF graph obtained after transformation of the SDF in Figure 32 
is shown in the Figure 33. 
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Figure 33 – HSDF graph obtained after transformation of the SDF in Figure 32 

 
An HSDF graph is a special case of an SDF graph in which the execution of an actor results in the 
consumption of one token from every incoming edge of the actor and the production of one token 
on every outgoing edge of the actor. After it is started, an actor in the implementation finishes its 
execution within the WCET.  
 
An HSDF graph can be executed in a self-timed manner, which is defined as a sequence of firings 
of HSDF actors in which the actors start as soon as they are enabled. In the case that the HSDF 
graph is a strongly connected graph and a FIFO ordering is maintained for the tokens, then the 
self-timed execution of the HSDF graph has some important properties. A FIFO ordering is 
maintained if the next execution of the same actor cannot start before the previous execution is 
finished. 
 
The properties of the self-timed execution of HSDF graphs are: 
 

• The HSDF is deadlock-free if there is on every cycle of the graph at least one initial 
token.  

 
• The execution of the HSDF graph is monotonic, decreasing actor execution times result 

in non-increasing actor start times. 
 
• A HSDF graph will always enter a periodic regime. More precisely, there exist a K ∈ , 

an N ∈  and a λ ∈ , such that for all actors v ∈ V, given k > K the start time s(v, k + N) 
of actor v in iteration k + N is described by: 

 
NkvsNkvs .),(),( λ+=+                (5.1) 

 
Equation 5.1 states that the execution enters a periodic regime after K executions of an actor in 
the HSDF graph and the time one period spans is λ.N. The number of firings of an actor v in one 
period is denoted by N. Thus, λ is equal to the inverse of the average throughput measured over 
period. Hence, a periodic regime will be entered and consequently a simulation can be stopped 
after the first period of the periodic regime. 
 
The Maximum Cycle Mean (MCM) [3] of an HSDF, which is equal to λ, is given by equation: 
 

)(max)( cCMGMCM
GCc∈

=      (5.2) 

 

 54



The Cycle Mean (CM) of a simple cycle c in the HSDF graph G is given by equation: 
 

∑= )(/)()( cdvWCETcCM      (5.3) 
 
In this equation d(c) denotes the number of initial tokens on the edges in a cycle c. The WCET of 
actor v is denoted by WCET(v). The MCM of an HSDF graph can be derived with a pseudo 
polynomial algorithm [5][6]. 
 
The worst-case start-times of the actors during the transition state as well as the steady state can 
be derived by simulation. During this simulation, all actors must have an execution time equal to 
their worst-case execution time. The start-times observed during this simulation are equal to the 
worst-case start times of the actor due to the monotonicity of the HSDF.  
 
Since the HSDF graph is monotonic, decreasing actor execution times result in non-increasing 
actor start times. The reason is that a shorter response time of an actor results in an earlier 
production of tokens, and an earlier production of tokens results in an earlier arrival of tokens. An 
earlier arrival of tokens cannot result in a later enabling and start of an actor. Due to monotonicity 
tokens will arrive later during self-timed execution of the SDF graph than in the implementation, 
given that the response time of an actor in the implementation is smaller or equal than the 
response time of the actor in the SDF graph. 
 
5.3.3 Timing analysis example 
 
In [1] the temporal behaviour of a system is derived by constructing an SDF graph of the 
application that not only models the computation and the communication, but also the affects of 
run-time arbitration. The example given in [1] illustrates the analysis techniques that are used to 
derive the temporal behaviour of a system. The example uses a simple multiprocessor architecture 
(see Figure 35) and the streaming application is represented by a HDSF graph shown in Figure 
34.  
 

A1

WCET1=5ms

A2 A3
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A1

WCET1=5ms

A2 A3

WCET2=5ms WCET3=5ms  
Figure 34 – streaming application described as an HSDF graph 

 
The streaming application is executed in the multiprocessor architecture comprised of two 
processors and each one has an instruction memory. The bus arbiter grants access to the data 
memory and the execution time of the actor takes into account the worst case time to access the 
data memory.  
.  
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Figure 35 – multiprocessor system with centralized data memory 

 
Assume as example that actors A1 and A3 are executed on processor 1 and actor A2 on processor 
2. The actors that are executed in the same processor are invoked in an infinite while loop. When 
the actor is invoked, it checks if there are tokens available in each of its inputs and if there is 
space available in each of the outputs, otherwise returns. The Round-Robin arbitration of the 
actors A1 and A3 is modelled in the Worst-case response time (WCRT) of the actors. The WCRT 
of an actor is the maximum interval between that the actor is enabled and that the actor finishes 
its execution. Given Round-Robin arbitration, the WCRT of actor A1 is the sum of the WCET of 
A1 and A3 actors (the same is for A3). The implementation-aware HSDF given RR arbitration for 
actor A1 is shown in Figure 36. 
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Figure 36 – Implementation-aware HSDF graph of A1 given RR arbitration 

 
In the example it is assumed that at most two tokens can be stored in the FIFO (represented with 
two dots). The minimal throughput of the system is equal to the throughput during self-timed 
execution of the HSDF graph in Figure 37, given that all actors have a response equal to their 
WCRT. The MCM of the HSDF graph in Figure 37 is determined by the WCRTs of the actors on 
the cycle A1, A2, A3, and the number of tokens on the edges of this cycle. Hence the MCM of 
this HSDF graph is (10 + 5 + 10)/2 = 12.5ms, and the minimum throughput 1/12.5ms=80 
tokens/s. 
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Figure 37 – implementation-aware HSDF graph 

 
The minimum throughput can also be verified by self-timed execution of the HSDF graph. All the 
state changes of the HSDF graph is depicted in Figure 38. The figure shows that the first time 
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two states are identical is at t = 50ms. The state t = 50ms is equal to the state t = 25ms. The 
period between those two states is 50-25 = 25 ms and is equal to λ.N. It is shown that N=2 (The 
number of firings of an actor v in one period) so λ (MCM) is equal to 12.5ms.  
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Figure 38 – The state changes of an HSDF graph from the example 
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5.3.4 Interaction with the environment 
 
The MCM of the HSDF graph in Figure 37 equals the inverse of the guaranteed minimal 
throughput of the system. This throughput is obtained without taking into account interaction with 
the environment. For systems that do interact with the environment it should be guaranteed that 
no data is lost due to overflow or underflow of the buffers between the system and the 
environment. A typical example of such a system is a system in which the input data is provided 
by a strict period external source like an A/D converter and consumed by a strict period external 
sink like a D/A converter. In [2] it is proven for this example that if the source and sink actor 
execute strictly periodically during self-time execution of the HSDF graph then the input buffer 
of the system will not overflow and the output buffer of the system will not underflow. In order to 
verify whether the FIFOs at the input and output of the system do not overflow or underflow it is 
needed that the strict period source and sink are modelled as actors in the HSDF graph as is 
shown in Figure 39.  
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Figure 39 – HSDF graph that is used to prove that, given a strict periodic source and sink, the 

FIFO buffers at the input and at the output have sufficient capacity. 

 
The source and sink actors are given a WCETA1 equal to the length of period of the A/D’s and 
D/A’s strict periodic clock. The self-edge with one initial token ensures that the next execution of 
the source and sink actor cannot start before the previous execution is finished. If the source and 
sink actor execute strict periodic it is guaranteed that, in an implementation of the system, the 
FIFO between source and the system never overflows and the FIFO between the system and the 
sink never underflows. The reason is that, due to monotonicity, tokens will not arrive and depart 
later in the implementation than during a simulation run in which all actors have an execution 
time equal to their worst-case execution time. If tokens do not depart later than during the 
simulation run, then this results in the same or less tokens in the FIFO between the source and the 
system. If tokens do not arrive later than during the simulation run, then a greater or equal 
number of tokens are in the FIFO between the system and the sink in the implementation.  
 
5.3.5 Other arbitrations 
 
In [1] it is shown that an implementation-aware HSDF can be constructed for other arbitration 
policies. An arbitration policy is predictable if the maximum interval can be defined between the 
moment in time that an actor is enabled and the moment in time that the actor is invoked by the 
arbiter (Figure 21). Examples of other arbitration policies are TDMA and RMS if a period T is 
invoked by a timer in the system. After invocation the actor polls if there are sufficient tokens in 
its input FIFO before it executes. The actors can be considered independent because they do not 
block but return if sufficient tokens are available. The value of Twait is equal to the period T of the 
timer because the maximum time between the arrival of a token such that the actor is enabled and 
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the invocation of the actor is equal to period T. The interval Tproc for TDMA is equal to the 
WCET of the actor in the case that the WCET of the actor is smaller than T.  
 
The implementation-aware HSDF graph for an actor that is executed on a processor with TDMA 
arbitration or RMS is shown in Figure 40. 
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Figure 40 – implementation-aware HSDF if TDMA or RMS is applied 

 
 In [1] an example is given. Figure 41 shows the implementation-unaware SDF graph. Actors 
A1 and A2 produce two tokens per execution and actors A2 and A3 should be executed 2 and 4 
times respectively. The multiprocessor architecture is shown in figure 8, actors A1 and A3 are 
mapped into processo1 and actor A2 is mapped to processor 2. 
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Figure 41 – implementation-unaware SDF graph 

 
If RMS scheduling is applied, actor A1 is invoked with a period of 1ms, A3 with 0.25ms and A2. 
This results in the HSDF shown in Figure 42.  
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Figure 42 - HSDF graph obtained after transformation of the implementation-unaware SDF of 

Figure 41 
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This last figure serves to illustrate that the complexity in the analysis of the HSDF graph grows 
rapidly, a data flow program (SDF simulator) is required to compute the MCM (and hence the 
minimum throughput) for several FIFO buffer sizes.  
 

5.4 Conclusions 
 
The analysis techniques presented in this chapter showed that the minimal throughput of the 
system is derived with maximum cycle mean analysis (MCM). The minimal throughput of the 
system is equal to the throughput during self-timed execution of the HSDF, given that all actors 
in this HSDF graph have a response time equal to their WCRT. The analysis also showed that a 
strict periodic source (e.g. an A/D converter) and a sink periodic can be included as actors in the 
HSDF graph of the application.  
 
In order to use this type of models, an upper bound must be derived on the execution time of an 
actor in the target processor. It is clear by the results obtained in chapter 3 (regarding the 
dynamism of the algorithms MP3 and AAC) that the execution time of an actor must be done in 
such a way that considers the dynamic behaviour.  
 
The analysis of more complex graphs and schedules requires the use of a data flow simulator to 
compute the MCM (Throughput), FIFO capacity and simulate a Dataflow graph. 
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Chapter 6 

Simulation of Streaming Applications in the ISS 
Simulator  
 
This chapter describes the simulation of simple streaming applications mapped onto a single and 
multiprocessor architecture using the simulator environment available at the DSP-IC centre. The 
streaming applications are modelled with the graphs introduced in chapter 5 and the processor 
simulation environment introduced in chapter 4.  
 
The goal is to try to investigate the predictability of the two multiprocessor architectures 
introduced in chapter 5 (Figure 29 and Figure 30). In addition, to identify possible bottlenecks of 
the system and problems in the simulation environment that could introduce inaccuracy in the 
study. This chapter assumes a streaming infrastructure where the input samples are provided and 
consumed by external sources. The actors are simple computations; unfortunately there was no 
time to implement a similar set-up with real applications. The initial idea was to start with small 
examples and move towards a real case study. Still, the simple examples explained here can be 
related with case study presented in chapter 3.  
 
The chapter is organized as follows. In Section 6.1, the inclusion of a strict periodic source in the 
simulation environment is described. In Section 6.2 a streaming application is simulated in a 
multiprocessor architecture. At the end conclusions are stated. 

6.1 Single processor simulation 
 
6.1.1 Streaming application with strict periodic source and sink 
 
Figure 39 (Chapter 5) shows an HSDF graph that is used to prove that, given a strict periodic 
source and sink, the FIFO buffers at the input and at the output have sufficient capacity. In order 
to the FIFO buffers at the input and at the output of the system not overflow or underflow, the 
source and sink actors are given a frequency of 1/WCET of the actor mapped onto the processor. 
The FIFO capacity is two tokens; the expected timeline of the execution of the three actors in the 
HSDF is shown in Figure 43. 
 

So

A1

Si

WCETA1

t  
Figure 43 – timeline representing the execution of the HSDF graph of figure 5.12 
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It is easy to verify that the minimum throughput of the system is 1 token/WCETA1.  
 
6.1.2 ISS simulation of periodic source  
 
For better understanding of this experiment it considers only the source actor. The analyses are 
analogous for both source and sink and hence, here it is explained an application that has a 
periodic source actor and an actor A1 executed in the DSP processor. The peripheral that supplies 
the samples is added in the simulation environment, the architecture is illustrated in Figure 44. 
The TIO (source actor) is connected to the DMA in one side and to a file in the other. The TIO 
supplies a sample at a programmable frequency; it requests the use of the DMA channel at that 
frequency and transfers a sample from the file to the FIFO buffer in the memory. When a 
predetermined number of samples (corresponding to a token) are transferred to the buffer an 
interrupt is produced. If the actor is executing at this point, the program will be interrupted and 
the processor will execute the interrupt routine.  
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Figure 44 –Processor connected to peripheral TIO 

 
The DMA is not autonomous, which means that the processor has to program the number of 
samples that are to be transferred to memory and the target location. The DMA has priority over 
the processor when accessing the memory, which means that the processor is stalled when a 
simultaneous access to the memory happens. The SDF graph can be represented as shown in 
Figure 45 assuming that buffer1 has the space to hold 2 tokens. The actor DMA triggers the 
execution of A1. 
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Figure 45 – SDF graph 
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The actors represented in the graph perform the following actions: 
 

• TIO – reads one sample from the file (the input stream) at a pre-defined frequency. After 
it transfers a number of samples equivalent to a token through a DMA channel to the 
buffer in memory it generates an interrupt. 

 
• DMA – it is invoked when the interrupt is activated (i.e., it is the interrupt routine). It 

updates the FIFO buffer write pointer, verifies if there is space available in the buffer. If 
there is space available reprograms the DMA, otherwise returns. 

 
• A1 – The actor running in the DSP verifies if there is data available in the buffer, if yes 

executes and updates the read pointer, if not it returns. Further, it verifies if the DMA is 
active, if not calls the DMA routine.  

 
The frequency of the TIO is programmable and consequently, it can happen that the TIO is 
programmed to read more than one token while the A1 actor is executing. The WCET has to be 
reviewed considering the number of samples that are transferred.   
 
The Worst-case execution time of the actor A1 is 
 
WCETA1 = Exec_timeA1withouth_stalls + StallMem_access + Timeprogram_DMA + N_Tokens×StallsDMA_access
 
StallMem_access = Miss Rate × Miss Penalty × Exec_timeA1withouth_stalls
 
StallsDMA_access = number_of_samples × 1clock cycle 
 
In order to ensure that the FIFO buffer in memory does not underflow or overflow the TIO has to 
be programmed with the frequency equal to number_of_samples/WCETA1. The time line 
illustrates the execution of the actors.  
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Figure 46 –Timeline execution of actors 

 
6.1.3 Dynamic behaviour of A1 
 
The timeline shown in Figure 46 assumes that the execution time of actor A1 is fixed, which in 
streaming applications is not true (this was verified in the study case presented in chapter 3). The 
MP3 and AAC decoder showed a dynamic behaviour because the execution time changes 
according to the input samples values. This can have consequences in the execution and it is 
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illustrated in the Figure 47. The figure shows that it may happen that actor A1 is still executing 
when the interrupt routine is triggered and this will make the input buffer underflow because the 
DMA transfer will be stopped. In order to restart the DMA transfer, actor A1 has to verify that 
there is no more data in the buffer and has to call the DMA routine to reprogram the DMA.  
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interrupted

No space in buffer 1⇒ DMA transfer stops

Execution 
A1 restarts

A1 reprograms DMA

 
Figure 47 -– timeline execution of actors when problem occurs  

 
The case study presented in chapter 3 showed the dynamic behaviour of the applications. It was 
verified that the execution time changes in each main process execution. With trace-driven 
analysis it was verified the dynamism but there is no knowledge if the application traces used in 
this study represent the worst-case execution time.  
 

6.2 Multiprocessor Simulation with communication via 
shared memory 

 
Figure 48 illustrates a streaming application that is mapped onto a multiprocessor architecture. 
Each tile includes a cache with the reference configuration derived from the case study in chapter 
3. The execution is done in Round-Robin fashion in case more than one actor is mapped onto a 
processor. It is not possible to simulate TDMA in the simulation environment because that 
requires the implementation of a Kernel to save the status of the tasks upon a task-switch and to 
give a fixed budget for each actor in the application. The time factor was an important constraint 
of the work and it was not possible to evaluate the TDMA situation. In this experiment actor A1 
and A2 are mapped onto processor 1 and actor A3 is mapped to processor 2. 
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Figure 48 –Streaming application mapped onto multiprocessor architecture 

 
6.2.1 Data coherence between cache and memory  
 
The flush and invalidate cache management instructions have to be included in the program code 
of the actors in order to ensure data coherence between cache and memory. The actions to ensure 
data coherence are shown in Figure 49, where invalidation and flushing of the data is done in the 
end of the execution of the actors. 
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Figure 49 – Maintaining data coherence between cache and memory 

 
In this experiment actors A1, A2 and A3 are identical and they consume a token with the same 
data size. Assuming that the WCET of the actors is the same we can model the application with 
implementation-aware HSDF. Figure 50 shows the HSDF graph and the excepted execution 
timeline. 
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Figure 50 – HDSF graph of the streaming application and timeline execution 

 
There is limited amount of parallelism that can be achieved in this simple application due to the 
data dependencies between the actors.  
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6.2.2 ISS simulation 
 
The ISS simulation of the application shows the parallelism described above. More important, it 
shows that the response time of the actors in the simulation is smaller than the response time of 
the actor in the HSDF graph. The implementation-aware HSDF graph models the actors in a 
Worst-case response time yielding a minimum throughput. The response time of actors A1, A2 
and A3 in the simulation is lower or equal to the response time in the implementation-aware 
HSDF graph, because the DMA access to the memory does not cause the processor to stall in 
every access. 
 

6.3 Multiprocessor Simulation with communication via 
shared memory 

 
This study was not successful because there was no time to finish a running simulation with the 
set-up described in section 5.2.2.  

6.4 Conclusions 
 
From the experiments described above two bottlenecks are identified: 
 

• The DMAC is not autonomous and must be reprogrammed each time a number of tokens 
are copied to a buffer in memory. The actions of these task were described in Section 
6.1.2. 

 
• The DMA transfer has priority over the processor, which means that the processor will be 

stalled each time a sample is copied to the FIFO buffer in memory. 
 
The case study presented in chapter 3 section 3.1 showed that the performance execution of an 
audio streaming application is more dependent of other types of data (i.e. static, scratch and ROM 
data) when compared to I/O stream data. The conclusion is derived by the fact that the I/O data 
impact in the cache miss rate is considerable lower than the others. knowing that, the probability 
of the number of processor accesses to the main memory is much higher than the DMA.  
 
6.4.1 Recommendation 
 
Based in the last analysis, it seems plausible to consider that the processor should have priority 
over the DMA for a number of cycles. For example, in ten cycles, the DSP has nine cycles of 
priority and the DMA has one. This could improve the execution time of the actor running in the 
processor.     
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Chapter 7 

Conclusions and Future Work 
 
Trace driven analysis proves to be a good method to evaluate L1 cache performance; the results 
obtained are accurate within the context explained in chapter 3. It proved to be a good method for 
the architecture exploration and it may be possible to improve the cache performance with the 
recommendation given in chapter 3.     
 
ISS simulation allowed recreating the environment with enough detail that the events of the real 
system could be observed. In the example described in chapter 6 it was possible to consider: 

• Interrupt handling 
• Scheduling  
• Interaction with the cache 
• Supplying and consumption of samples by external sources. 

 
With the ISS simulator is difficult to analyse throughput and latency. With this level of detail it 
becomes hard and time consuming to analyse complex graphs. This also relates with variation of 
system parameters, for example modifying buffer sizes. The use of a data-flow simulator for 
simulation of dataflow graphs should be considered for exploration of more complex graphs. It 
would allow studying a streaming application that is represented in a SDF graphs in a much less 
time. To consider is the trade-off between accuracy and simulation time.  
 
For large and complex tasks, which may contain many input data-values dependent conditions, it 
is difficult and impractical to obtain a tighter bound on the WCET. Although it is possible to 
verify the dynamism of each process execution with trace-driven, it is not possible to know if the 
traces available represent the worst-case execution. Still a plausible way to estimate the execution 
time is with the ISS simulator, running a real-time application for a long period in order to derive 
this value.  
 
In [1] a design flow to obtain a mapping of soft-RT applications is presented where the value 
WCET is not considered. The study considers the fact that the WCET is complex to obtain and it 
may be too pessimistic. The deadline miss probability of real-time applications mapped onto 
multiprocessor architectures is the focus of the work. The design flow identifies the bottlenecks in 
the mapping of the application on to a multiprocessor system. The bottlenecks are removed by 
adaptation of the FIFO buffer capacities or an increase in the time slice for TDMA arbitration in 
order to not increase the end-to-end deadline miss probability. The design flow allows that in a 
few optimisation iterations to reduce the miss probability of real-time applications.  
 
Programming in the ISS simulation environment proved to be time consuming and affected the 
goals of this thesis because the applications are developed in a mixed of assembly and C and this 
affected decisively the progress of the work. The available framework, based on real-time 
applications (streaming kernel and decoders) and a network manager (setting applications and 
communication between tasks) was not open for modification and did not consider the use of 
cache and interrupt handling.  
 
For the study of the alternative architecture a FIFO buffer dll was developed. Unfortunately due 
to the short remaining of time was not possible to complete the implementation and have a 
successful simulation. The simulation environment is flexible but it required more time and 
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knowledge than the time left during this master project. The simulation of an alternative 
architecture was not successful and therefore the comparison between architectures did not take 
place. Still it is possible with the available tools to explore ISS simulation with network based 
FIFO communication. The small example was intended to illustrate that situation. 
 
For the current processor architecture, the study of an autonomous DMAC should be considered; 
it would to improve the execution time of the applications running in the processor. The example 
described in Chapter 6 explains the identified bottleneck. The simulation environment does not 
support pre-emptive task switching and therefore it was not possible to evaluate for example 
TDMA scheduling. To access the main memory, the arbiter gives priority to the DMAC. A 
possible modification on the arbiter priority should be considered and subjected to further 
analysis based in the observations described in chapter 6.  
 
Applications that require a high computational performance can only be provided by 
multiprocessor architectures. The current platform uses central resources: bus and memory. These 
central resources limit the scalability of the system. In hard-real time applications timing 
deadlines are very important, it is important that the architecture is predictable.  The use of caches 
and central resources insert uncertainty and it is hard to predict if the deadlines are going to be 
met.  
 

7.1 References of Chapter 7 
 
[1] Marco Bekooij, Sonali Parmar, Maarten Wiggers, Orlando Moreira and Jef van 

Meerbergen, Mapping of Soft Real Time Applications with Deadline Miss Probability 
Constraints. Submitted to date 2006. 
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Appendix A  

MP3 Decoder and AAC Decoder Case Study 
A.1 Required memory resources 
 
The required memory resources (in 16 bit words) for the MP3 decoder application [1] are 
shown in the table 1. 
 

Algorithm Input 
buffer 

Output 
buffer 

Static 
RAM 

Scratch 
RAM 

Data 
ROM 

Program 
ROM Stack 

MP3 
decoder 977 1154 4752 2262 10304 12455 31 

Table 2 – MP3 Application required resources 
 
The required memory resources (in 16 bit words) for the AAC decoder application [1] are 
shown in table 2. 
 

Algorithm Input 
buffer 

Output 
buffer 

Static 
RAM 

Scratch 
RAM 

Data 
ROM 

Program 
ROM Stack 

AAC 
decoder 1024 4096 2780 3492 13608 14820 54 

Table 3 –AAC Application required resources 
 
A.2 Memory references in the traces 
 
Between brackets is the percentage of the respective memory. 
 
 MP3 AAC 
ZM R 655734 1711445 
XM 390698 (53.13%) 929311 (58.02%) 
YM 344699 (46.87%) 672645 (41.98%) 
XM R 336535 (45.76%) 612670 (38.25%) 
XM W 54163 (7.36%) 316641 (19.76%) 
YM R 245616 (33.40%) 423940 (26.46%) 
YM W 99083 (13.47%) 248705 (15.53%) 

Table 4 – Number of Memory and data references in the traces 
 
 XM R XM W YM R YM W 
MP3 7019 2880 2464 8257 
AAC 9817 7609 12549 9852 

Table 5 – number of different data memory references in the trace 
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A.3 XY$ vs X$ Y$ model profiling results 
 
The notation is the following one: memory_size(Kw)_associativity 

• I$ Instruction memory 
• D$ double ported XY shared data memory 
• X$ uni-ported data memory 
• Y$ uni-ported data memory 

 
Trace 

simulation 
Cache Configuration 
(cache&size&ways) 

Total cache size 
(I$+D$) DSP miss rate 

MP3||AAC I$4Kw2W 
D$4Kw4W 8Kw 4.39 

MP3||AAC I$4Kw2W 
X$2Kw4W Y$2Kw4W 8Kw 6.33 

MP3||AAC I$2Kw2W 
X$4Kw4W Y$2Kw4W 8Kw 5.25 

MP3||AAC I$2Kw2W 
X$2Kw4W Y$4Kw4W 8Kw 5.52 

MP3||AAC I$8Kw2W  
D$8Kw4W 16Kw 1.87 

MP3||AAC I$8Kw2W  
X$4Kw4W Y$4Kw4W 16Kw 3.82 

MP3||AAC I$4Kw2W  
X$8Kw4W Y$4Kw4W 16Kw 3.32 

MP3||AAC I$4Kw2W  
X$4Kw4W Y$8Kw4W 16Kw 3.02 

Table 6 - XY$ vs X$ Y$ model profiling results 
 

 73



A.4 Cache Size, Line size and associativity level 
 
In Figure 51 and Figure 52: LS denotes the line size and (2, 4, 8, 16, 32, 64 and 128)w denotes 
the number of words in a cache line. 
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Figure 51– MP3 decoder miss rate as function of the cache configuration 
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Figure 52 - AAC decoder miss rate as function of the cache configuration 
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In the following graphs the cache line size is assumed to be 8 words. 
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Figure 53 – MP3 decoder miss rate as function of the cache configuration 
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Figure 54 - AAC decoder miss rate as function of the cache configuration 
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Figure 55 – log-log scale of the MP3 miss rate as function of cache configuration 
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Figure 56 - log-log scale of the MP3 miss rate as function of cache configuration 

 

 76



 

A.5 Algorithm Behaviour  
 
The x-axis denotes the algorithms procedure being executed (init – initialization routine, sync – 
synchronization, p1,2,3,4,... – main process routine) 
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Figure 57 – MP3 miss rate as function of the procedure calls 

 
 

Write 
back Drm Dwm Dwb Prm cpu 

cycles 
Dmiss 

rate 
DwBK 
Rate 

Pmiss 
rate 

DSPmiss 
rate 

Mp3_init 3 570 2 36 4777 11.99% 0.04% 0.80% 12.83% 
Mp3_sync 132 8 3 159 5235 2.67% 0.06% 3.04% 5.77% 
Mp3_p1 9 213 62 160 13234 1.68% 0.47% 1.21% 3.35% 
Mp3_p2 393 375 549 587 91342 0.84% 0.60% 0.64% 2.08% 
Mp3_p3 426 154 370 83 89917 0.63% 0.41% 0.09% 1.14% 
Mp3_p4 349 188 350 143 90566 0.59% 0.39% 0.16% 1.14% 
Mp3:p5 328 116 278 72 89561 0.50% 0.31% 0.08% 0.89% 
Mp3_p6 342 156 319 140 90565 0.55% 0.35% 0.15% 1.06% 
Mp3_p7 354 123 298 72 89918 0.53% 0.33% 0.08% 0.94% 
Mp3_p8 345 156 332 132 90619 0.55% 0.37% 0.15% 1.06% 

total 2671 2059 2563 1586 655734 0.72% 0.39% 0.24% 1.35% 
Table 7 – MP3 miss rate as function of the procedure calls 
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AAC decoder
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Figure 58 – AAC miss rate as function of the procedure calls 

 
 

 Drm Dwm Dwb Drm cpu 
cycles 

Dmiss 
rate 

DwbK 
rate 

Pmiss 
rate 

DSPmiss 
rate 

AAC_init 139 322 0 168 8020 5.75% 0.00% 2.09% 7.84% 
AAC_p1 2538 1321 1934 1192 268490 1.44% 0.72% 0.44% 2.60% 
AAC_p2 2597 992 1993 683 314479 1.14% 0.63% 0.22% 1.99% 
AAC_p3 2578 1050 1988 606 278285 1.30% 0.71% 0.22% 2.24% 
AAC_p4 2481 999 1945 521 275917 1.26% 0.70% 0.19% 2.15% 
AAC_p5 2513 1028 1971 545 279419 1.27% 0.71% 0.20% 2.17% 
AAC_p6 2337 1084 1865 549 286835 1.19% 0.65% 0.19% 2.03% 

total 15183 6796 11696 4264 1711445 1.28% 0.68% 0.25% 2.22% 
Table 8 – AAC miss rate as function of the procedure calls 
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A.6 Impact of data types 
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Figure 59 – MP3 miss rate as function of data type segments 

 
 

Mp3 Drmisses Dwmisses Dwbks Dmiss 
rate 

Dmiss 
rate 

SCRATCH_A  
[0x1246-0x178D] 5 541 419 0.083% 0.064% 

SCRATCH _B 
[0x1800-0x1B8D] 6 326 210 0.051% 0.032% 

STATIC: 
[0x2000-0x328F] 1024 795 614 0.277% 0.094% 

INPUT BUFFER 
[0x3400-0x37D0] 309 27 168 0.051% 0.026% 

OUTPUT BUFFER 
[0x3800-0x3C7F] 11 361 160 0.057% 0.024% 

STACK 
[0x6000-0x601F] 0 0 0 0.000% 0.000% 

DATA ROM  
[0x8005-0xA844] 1224 0 927 0.187% 0.141% 

NO REFERENCE 92 9 65 0.015% 0.010% 
total 2671 2059 2563 0.721% 0.391% 

Table 9 – MP3 Data type table of results 
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AAC decoder
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Figure 60 – AAC miss rate as function of data type segments 

 
 
 

AAC Drmisses Dwmisses Dwbks Dmiss 
rate 

Dmiss 
rate 

SCRATCH_A 
[0x1246-0x17FF] 187 1201 924 0.08% 0.054% 

SCRATCH _B 
[0x1800-0x1FE9] 428 2213 1546 0.15% 0.090% 

STATIC 
[0x2000-0x2ADB] 1682 438 863 0.12% 0.050% 

INPUT 
[0x4000-0x4400] 782 115 224 0.05% 0.013% 

OUTPUT BUFFER 
[0x3000-0x3FFF] 3223 2789 3382 0.35% 0.198% 

STACK 
[0x6F53] 0 0 0 0.00% 0.000% 

DATA ROM 
[0xA845-0xDD6C] 8358 0 4400 0.49% 0.257% 

NO REFERENCE 523 40 357 0.03% 0.021% 
TOTAL 15183 6796 11696 1.28% 0.683% 

Table 10 – AAC Data type table of results 
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A.7 Granularity 
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Figure 61 – Miss rate as function of application granularity 

A.8 Cache behaviour as function of time 
 
The x-axis denotes the number of execution cycles. The task-switch occurs after 1 million 
execution cycles. The miss rate is ‘sampled’ each 50K cycles of execution time.  
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MP3 decoder || AAC decoder
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Figure 62 – Miss rate as function of execution time. 

  
 

 82


	Chapter 1
	Introduction
	Background
	Problem Definition
	Outline of the thesis
	1.4. References of Chapter 1

	Chapter 2
	Trace-driven L1 cache profiler
	Application trace file
	The stand-alone profiler
	Cache model in the stand–alone profiler
	Block placement, replacement and identification.
	Memory Management Unit
	Write policies

	Cache performance issues
	Techniques modelled in the profiler
	Techniques not modelled in the profiler

	Cache model assumptions
	Cache Metrics
	Simulation Example
	2.8. References of Chapter 2

	Chapter 3
	Level 1 Cache profiling
	Case study
	MP3 and AAC decoder application and trace analysis
	Cache architecture exploration
	Reference cache architecture
	Algorithms dynamic behaviour
	Impact of data types
	Performance as function of execution time

	Application and trace analysis
	Cache architecture
	Debug information produced by the profiler
	Cache performance
	Cache Behaviour
	Supply and consumption of data samples
	Execution time and Response time
	Scheduling approach

	Results, Conclusions and Proposals
	Cache architecture
	Miss rate
	Processor Stall percentage
	Dynamic behaviour
	Task-switching Execution
	Trace-driven simulation
	Recommendation
	Proposal

	3.8. References of Chapter 3

	Chapter 4
	Instruction Set Simulator
	Integrated Development Environment
	Basic Design Flow
	Development flow
	Summary of IDE main features

	Supported Hardware Resources
	DSP subsystem
	Peripherals

	Profiling
	4.4. References of Chapter 4

	Chapter 5
	Processor Architecture, Model of Computation, communication 
	The Processor Template
	Actors and communication
	Model of computation, Communication and Scheduling
	Conclusions
	References of Chapter 5

	Chapter 6
	Simulation of Streaming Applications in the ISS Simulator
	Single processor simulation
	Multiprocessor Simulation with communication via shared memo
	Multiprocessor Simulation with communication via shared memo
	Conclusions

	Chapter 7
	Conclusions and Future Work
	References of Chapter 7

	Appendix A
	MP3 Decoder and AAC Decoder Case Study
	A.3 XY$ vs X$ Y$ model profiling results
	A.4 Cache Size, Line size and associativity level
	A.5 Algorithm Behaviour
	A.6 Impact of data types
	A.7 Granularity
	A.8 Cache behaviour as function of time


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


