Eindhoven University of Technology

MASTER

Onderzoek naar het geometrisch niet-lineair gedrag van constructies

Beijers, A.P.A.M.

Award date:
1971

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain

Aftudurop direkt

Sn eursock naar het geometiisch niet- hiveair sedrag van consticuties
A. P.A.H. BEIKERS. WEFI-B

Chhowd
Incliding
I Beschejoing oon het bachelment
III Siet-Lineaic Theorie
III Oplosesnigamethodes voor eun shehed miet-lineavie vergelifinings
III Toppacung wan ac oplosuingamethodikun woor wit- Lineaine Hehels in de elimentèmetho de

I Ofer baltellment big qeometrich viet fineasikuit met ac afliding wan $\frac{\partial \varepsilon_{i}^{*}}{\partial u_{j}}$ en $\frac{\partial \varepsilon_{0}}{\partial u_{2} u_{p}}$
II Tyirche incupretatic van de qebuilite matives van het balkelement

VII Reschajoring wan hel element TPIAX 5
IIII Het element TPIAXB bi peometrische wiet-lineavitect.
IX Beschrijonig van hel propramma os-064600
I Mineaire Allabilikit.
II Resceltaten en opmerkingen
APPENDIX I Geafinim

III proceocuse CHOLBD becelici oning
IV methode un ε_{1} en ε_{0} contimue funtitier som dee

III Compuhazrogrammo's

Likeramerlift
I HPl in rehumig oon pasticuhire oplosenigen by BNA elemmeten. D.H. Sour langen in C.H. Menchen.
PRCLC-ANA-PFO-1 KR-273

II Git hel, IUTAH Sympoxium on Skijh Speed Computing of Clastic Btwetares "Diege-Belgoinn 25 Auguat 197°
au volquen edlus:

1) Sometrically montinear statie and dypnanie analapis of chills of wolution

Youmes A. Dhickhim
2) Affective nue of the incrumental Shiffucer Inaticices in nonlinear Gometive analyisi.
Y.A. Xepuis, D.D. Papinger, PV. Enaveal
-) Gcometrically nonlinear thuchurat analyis biy the eivect olliffrees method
F. A. Srickhin, W.E. Haciar, W.IAvon Pieicumann

III Sabilineitichs on eurtoeh
II Collegreciclaat Techminder Snechomika III
A.PR.M. Bujen

$$
\begin{aligned}
& \text { WE Fr-s } \\
& \text { wha III }
\end{aligned}
$$

Bep.is. W.L. Sameijes
I thunericihe Snethode in ac Sheehauika di.s. I.D. Gomenen
II Reeent adwances in matrix methods of thenehural analyis
Y.H. Eugyis.
pergamon press N.Y. 1964
IW Ammerilh tpanmings en trillinigpondersoch Seryong he he Xeleft.

IIII Matrix methoas in struelural meehawies Y.S. Premienwicki, R.M. Bader, w.F Bowich, H.P. Gohnson, w. H. Duykytow.

II Goumal of the phuchural divirion
"Anmerical formelation of nonlinear elastiseichy problems" by T. Oden (Gumer967)
I Chternational jounal for numerical method in. enqenaring fool. 2 , req-241 (1979)
"trinite elemint tolition to an elastica problem of beams." Y. Tada, G.e. Ree.

II Collegediclaat Plactiche elmenten Pef. as. i. I. P. Pouriga.

Huleidnig

Ah afehuduerofdracht theb in in de qracp
Dechnishe Thechaumka eu ondursoch in qeetheld naas her geometrisch niet-lineacie pediag van ponshueties. Jere podiackt is uigemond in in postipleterpropramma voor qeometsiceh miet - Iiveaire balkeontwelies. Ifel venklag Sh handelt verder de aflecidir 9 van het Dinequic en het peonetriceh mit- Sineaire balheloment. Tyoun het onbursoct blect, dat het proflem sieh hof oesakelijit sond ac oflosesigimetho axiken vor shelsels wellineaire verqulythingen tuerkitute, vandaar dat hiiraan een hoof Xhtut peurid ti, met daarop volpend, cu hoof dokbte over de Jocpowtrig van sere methodika. in de metho ar der eindige elehaenten. Ins de berchende vorbeclden hijn un aontal recds, in ou litheraluwe bekende problewn qeverifiëerd. Dcurlothe wordt noq een houplaskik qeurid acu oe Htabilikit von bathronstrietirs in hel liveacire geluid. Yter verlag wordt herloter nut de afleidn'y van het lineaire rolatovisch tymmetricehe Alincutt $7 B 1 A \times 3$ ar em afleidaig ode thet geomeficsh wit- lineaire TPIAX s Clementt.

I Besehrijving van het bachelement
We heschouwen en balt met comlante dwassdoresnedy wawwan de hoof dheraghidisas met het Rliincte oppewdattetraaghidsmoment los dreett of hes whal wan teheming slaat. Verous machen we gebwith van de hlaswik bathentheosic, rodat de hyppoftese van Remocielli peldig blifft. Dt helastrigen in ace verplaatoingen tueden alleen in het olat van teheming op. Wiel voriqaan de aammames bolgt, dal de vesplaatsingen van de vibeindew wan het bathetement, de huoopfinting, them maetim ijor. We definiönen de veeplaatomigs vektor u abs volgt:

$$
\dot{u}^{\prime}=\left[\begin{array}{llllll}
u_{1} & w_{1} & \psi_{1} & u_{2} & w_{2} & \psi_{1}
\end{array}\right]
$$

Dereer eufinieisen we de helasinigsveltor van hel eliment als volgt:

$$
f^{\prime}=\left[\begin{array}{llllll}
N_{1} & D_{1} & M_{1} & N_{2} & D_{2} & M_{2}
\end{array}\right]
$$

lit euse definitic voor de helaslingovebtor blifit, dat we het elvment witsluitend met hivell gioatheden in de Anowp. punten humen helacter. Willn we bivoorhedod em seliphmatige belading in rehering bungen, eloun macten we dere doot equibalinte tubooppinhtskiechtes vervangen. (ici litt. I). Dese huooppinctshiaceten moeten dan eurstffe haeveetheid asheid veviethen dan de gelighmatige belastrig.

Ondal we eus turce- dimuscionaal balhelament hestuderen hinn we in slaat om ewor midolel van 3 rek- en 3 -spanningogroatheden het gehut the heschivion, de rogenaande Sequeraliceerde tp annings- en rek grootheden. De gequeratiscerad retgioothoden woiden ats volgt gedefiniend:

$$
\begin{align*}
& \sigma_{1}=u_{2}-u_{1} \\
& \varepsilon_{2}=-\psi_{1}-\frac{w_{2}-w_{1}}{l} \tag{II}\\
& \varepsilon_{3}=\psi_{2}+\frac{w_{2}-w_{1}}{l}
\end{align*}
$$

De uhveklos huft de volpende gedante:

$$
\sigma^{\prime}=\left[\begin{array}{lll}
\epsilon_{1} & \varepsilon_{2} & \varepsilon_{3}
\end{array}\right]
$$

We gaan me of het balhelumut het principe van mini. mak botentielk enerqie toepaveen. Valpens de hlawible theorie humeen we be inwen dige elastische energie ten qualge van nomadhiaedt len buigend moment ats volgt opschigiven:

$$
U=\int_{x=0}^{l}\left[\frac{E I}{2}\left(\frac{d^{2} w}{d x^{2}}\right)^{2}+\frac{E F}{2}\left(\frac{d u_{a}}{d x}\right)^{2}\right] d x
$$

$w=$ hel veplactinigs veld in y-vichling wan hel ellement
$u_{a}=$ het verphato ing puldor inl x - siceding van het elument
Voo ele fotutioal voor de vitwen dige huachtm hummen we, nelt woupaande belastingo- in veeplaatsingsuchbr,
schrijum ats het produkt wan:
f.u

Tolaal verkirg gen we nu voor de fotentielle energie de volgende witomkhing:

$$
\begin{equation*}
V=\int_{x=0}^{x}\left[\frac{E T}{2}\left(\frac{d^{1} w}{d x^{2}}\right)^{2}+\frac{E f}{2}\left(\frac{d u_{0}}{d x}\right)^{2}\right] d x-f u \tag{2}
\end{equation*}
$$

We nemen nu boor de porplaatinigpveldem W_{a} en w de volgende polynomen aan:'

$$
\begin{aligned}
& u_{a}=a_{1}+a_{2} x \\
& w=a_{3}+a_{4} x+a_{3} x^{2}+a_{6} x^{3}
\end{aligned}
$$

Hese buplaats vigp belden martus aan de colgende sandnowwarden ooldoen:

$$
\begin{aligned}
& x=0 \quad u_{a}=u_{1} \quad x=l \quad u_{a}=u_{2} \\
& \omega=\omega_{1} \\
& \frac{d w}{d x}=-\psi_{1} \\
& \omega=w_{z} \\
& \frac{d \omega_{1}}{d x}=-\psi_{2}
\end{aligned}
$$

We hummen ue de veeplaathingsveloun ats tolgt Letrioun

$$
\begin{aligned}
& \left.w=w_{1}, f-\frac{x}{l}\left|+w_{2} \frac{x}{l}+\varepsilon_{2} x\right| 1-\frac{x}{l}\right\}^{2}+\xi \frac{x^{2}}{l}\left|1-\frac{x}{l \mid}\right| \\
& u_{a}=u_{l}+\varepsilon_{1} \frac{x}{l}
\end{aligned}
$$

Whet behulp san de wit de nlasmike theosic behemde relatieis

$$
\begin{aligned}
& N=E F\left(\frac{d w_{e}}{d x}\right) \\
& H=-E I \frac{d^{2} w}{d x^{2}}
\end{aligned}
$$

humnen we de gegeneraliscerde

Spanning veltor als volgt definievin:

$$
\begin{align*}
& N=F F \frac{\varepsilon_{1}}{l} \\
& M_{x=0}=M_{0}=-E I\left\{\frac{-4 \varepsilon_{2}}{l}+\frac{1 \varepsilon_{3}}{l}\right\} \tag{I}\\
& M_{x=l}=M_{l}=-E I\left\{\frac{2 \varepsilon_{2}}{l}-\frac{4 \epsilon_{3}}{l}\right\}
\end{align*}
$$

de tpanmiqpetehtor: $\sigma^{\prime}=\left[\begin{array}{lll}N_{0} & H_{2}\end{array}\right]$ He tekmen aferiahen sinn ato, tolgt:

De berchuniqg van ac dwasshaekt in het element geschiadt met de hldssicihe relatie

$$
\begin{aligned}
& \frac{d r}{d x}=D \\
& D=\frac{r_{l}-r_{0}}{l}
\end{aligned}
$$

De hnooppentishacktim vin me ato volgt nit de Spamings vektor σ the berehenen:

We Rumnen selatic $\left(T_{3} 3^{3}\right)$ cott in maticx comm Hedsijen:

$$
\begin{align*}
& \sigma=S E \\
& S=\left[\begin{array}{ccc}
\frac{F F}{l} & 0 & 0 \\
0 & \frac{4 E I}{l} & -\frac{\beta E I}{l} \\
0 & -\frac{2 E I}{l} & \frac{4 E I}{l}
\end{array}\right]
\end{align*}
$$

Wut hethelf van formule (I4) Rinn we in slave om de Apammigen to Levthener, ato eu whken bekendrijn. De rethen humnen we wit de verplaatonigp vedtoe 4 met (I,) bevekuen. De veiplactosigo vehtor 4 beschuren we uit de relatio

$$
\begin{equation*}
Q_{0} u= \tag{750}
\end{equation*}
$$

waani to de ohiffhidmatix van het element is, wethe we hierna eit het principe van ninimale potentiele energie suden afleiden.

$$
\begin{gathered}
\delta V=0 \\
\left.\int_{x=0}^{x=}=\int F I \frac{d^{2} \omega}{d x^{2}} \delta\left(\frac{d^{2} w}{d x^{2}}\right)+E F \frac{d u_{0}}{d x} \delta\left(\frac{d u_{0}}{d x}\right)\right] d x-f \delta u=0
\end{gathered}
$$

In euste instantio gaon we nue $\delta\left(\frac{d^{\prime} v}{d x^{2}}\right)$ en $\delta\left(\frac{d u_{0}}{d x}\right)$ nader behifhen:

$$
\begin{align*}
& \delta\left(\frac{d^{2} w}{d x^{2}}\right)=\frac{d}{d \varepsilon}\left(\frac{d^{2} w}{d x^{2}}\right) \delta \varepsilon=\frac{d}{d \varepsilon}\left(\frac{d^{2} w}{d x^{2}}\right) \frac{d \varepsilon}{d u} \delta u \tag{I6}\\
& \delta\left(\frac{d u_{0}}{d x}\right)=\frac{d}{d \varepsilon}\left(\frac{d u_{o}}{d x}\right) \delta \varepsilon=\frac{d}{d \varepsilon}\left(\frac{d u_{0}}{d x}\right) \frac{d \varepsilon}{d u} \delta u
\end{align*}
$$

We rijo in slaat on formule (IG) in matrixnotatio alo volgte te cehigiven:

$$
\begin{aligned}
& \delta\left(\frac{d^{2} w}{\partial x^{2}}\right)=\left[\begin{array}{ccc}
0 & \frac{\sigma_{x}}{l^{2}}-\frac{4}{l} & \left.-\frac{b_{x}}{l}+\frac{l}{4}\right] \frac{\partial \varepsilon}{\partial u} \delta u \\
\delta\left(\frac{d u}{d x}\right)=\left[\frac{1}{l}\right. & 0 & 0
\end{array}\right] \frac{\partial \varepsilon}{\partial u} \delta u
\end{aligned}
$$

met $\frac{\partial E}{\partial u}$ de volpende matix:

$$
\frac{\partial E}{a_{u}}=\left[\begin{array}{cccccc}
-1 & 0 & 0 & 1 & 0 & 0 \\
0 & \frac{1}{l} & -1 & 0 & -\frac{1}{l} & 0 \\
0 & -\frac{1}{l} & 0 & 0 & \frac{1}{l} & 1
\end{array}\right] \text { (IF) }
$$

Substifutie in fommale oan minimabe fotertiele energui hurit de volgende hetuelting:
oftewet:

$$
\begin{aligned}
& \varepsilon^{r} s \frac{\partial \epsilon}{\partial u} \delta u=f^{\prime} \delta u \\
& \varepsilon^{r} s \frac{d \varepsilon}{\partial u}=f
\end{aligned}
$$

 sekhers en de veiflastosigien to logqen met relatie (II)

$$
\begin{equation*}
\varepsilon=C u \tag{-9}
\end{equation*}
$$

De matrix C hoff frecis dureffer gedaante als de matiox $\frac{d E}{d u}$, hel geen te verhlaim in uit het lineair bliven van exe relatic (IV).
Pelatic ($T 8)$ hummen we me ato volgt sebrijoen:

$$
\begin{align*}
& u^{\prime} c^{\prime} s c=f \\
& c^{\prime} s c u=f \tag{I,0}
\end{align*}
$$

Relakic (Iro) is de gerackte relatii hucum belactingsen verplaats ing uchtov. De slif heidsmatrix De is nu qeolficuierd als:

$$
Q_{e}=C^{\prime} S C
$$

Nic allum gelatt wor ean balkelement, wawwan de Htaafas Samenvalt net de x-a.

$$
s_{1}=\frac{E F}{l} \quad s_{s}=\frac{E I}{l^{3}}
$$

If hestiat ac thanfas van thet bathelement neit met de x-as van het sbobale ustustehel sancenvallen. We vreven dow en Liaws formativit. We nemen aan, dot het elevent in hoeh α met de poccitive globate x-as maakt.

Stel nu dat de verplaatwentor u, dil io de perptaatsingsvehtot to. o. v. het globale aumenhelrel, betend io. Wielen we m de whvektor he lepalu relatic (IS) hanterbn, dan moeter we de vesplaals niqpuettor 4 hamformeren naa het lokale $\dot{x}-\bar{y}$-asunctuluel.

$$
\bar{u}=T u
$$

$$
T=\left[\begin{array}{cccccc}
\cos \alpha & \sin \alpha & 0 & 0 & 0 & 0 \\
-\sin \alpha & \cos \alpha & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & \cos \alpha & \sin \alpha & 0 \\
0 & 0 & 0 & -\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Pauen we relatic (Iq) of het fohate axunatikel toe dom venkiggen we:

$$
\begin{aligned}
& \bar{\epsilon}=C \bar{u} \\
& \bar{\varepsilon}=C T u
\end{aligned}
$$

Lodat we de shi fheidema.
Six N.0.v. globele aseustelsel alo bolgt Rumuen tedigiven:

$$
\begin{align*}
& \text { TCScTu}=f \\
& \text { of: } Q u=f . \tag{array}
\end{align*}
$$

(I'2) is de velatie hucem belar tings-en verplatomigsvehto ho.v. globale aweushehel.

II Giet-hineaike Theovi.
Srenwieht van widwendage felaslingen en invendige tpanningen worlt gehankteriscesd duor gelikheid van wihwendige arbuid en invendige arbid biy withheurige hinematisch toclaatber tan woonwa ardm.

$$
\int_{r} \sigma_{i j} \delta \varepsilon_{i j} d V=\int_{V} \mathcal{H}_{i} \delta u_{i} d V+\int_{A} \beta_{i} \delta u_{i} \cdot d A
$$

Passen we duse vitucle arbeidnvergelifhnig wil du continuипmechanika toe op het xicerble model van de lompiuetic, dii we iil en aantal elementen samm. getheld denken, dan verkingen we:

$$
\begin{equation*}
\sum_{k=1}^{N} \sigma_{i j}^{k} \delta \varepsilon_{i j}^{k}=f_{k} \delta u_{k} \tag{II}
\end{equation*}
$$

In seit twofostat hullin we ons beparken fol the besebijeven van ein elvment:

$$
\sigma_{i j} \delta \varepsilon_{i j}=f_{i} \delta u_{i}
$$

Stel nu, dat we de velatic hucun verplaats sigsvehtor es rehvektor hermen, dan hmmen we de volquode relatic afleidem:

$$
\begin{align*}
& \varepsilon_{i}=\varepsilon\left(u_{p}\right) \\
& \delta \varepsilon_{i}=\frac{\partial \varepsilon_{i}}{\partial u_{p}} \delta u_{p} \\
& \sigma_{i} \frac{\partial \varepsilon_{i}}{\partial u_{p}} \delta u_{p}=f_{p} \delta u_{p} \tag{2}
\end{align*}
$$

Tommele (π^{2}) is in algemenc selatic, dui we ti princibe voor ablerbi wirt- lineaire problemen hemmer heepacsen. Bestuderen we het lineacice elastische eleneut, dan
tumnen we de volgende relaties apcehijven 1001 ein elcument:
" Hef verband huccen de rehvektor en dee virplaatinigs vettor is lineair en wordt pelkavakle-
iscend dor en in and "riscerd dover "encrdrachtimatix" "o

$$
\varepsilon_{i}=D_{i j} \mu_{j} \quad j=1 \ldots \sigma
$$

2) Bovendiin weten we, dat het verband husue de qe qeueraliscerde whem en tpanningen oot bueair ${ }_{0}{ }^{2}$:

$$
\sigma_{i}=\sigma_{i j} \varepsilon_{i} \quad i=1 \ldots 3 \quad j=1 \ldots 3
$$

Sutstifuerm we toorgaxnde velaties in (\bar{T})), de alpemene virtuele arbicids verfelyhing, dan verkiy gen we de vertuele bekmode betuchn nig (IV)

$$
\varepsilon_{i} S_{i j} \frac{d \varepsilon_{i}}{d u_{p}}=f_{p} \quad i=\ldots 3 j=1 \ldots 3 \quad p=1 . \ldots 6
$$

Ons het niet- Lineacic gedrag oan de comstwetic he feshuderen maken we ondersebelid tusees \& bormen van nietlineai gearag:
(a) fyeviche niel- lineavihit.

Dit han ain, met lineair gexrag hy Aleine. vervomingen, ssah truif. folaticitio't, en niellineair gedrag hi grote vevoiningen, koah nubbertachicétil', prote flastisek Deformatio.
(b) Geometiocke niel lineasitit
big qumetricehe niet- lineavifiil gaan hliine verbommi que sopaard nut qiote beyplaatsingen, bes
wril de lineaire relatic tusem ele geqenelaliecrd

Wì beperhen on tol geometiiscle niet Linearibeit. Loat Gereged bliffter ulatic

$$
\sigma_{i}=s_{i j j} \text { gelaig. }
$$

Sfet verband tusuen rethen en berplaatsingen mag tuet meer gelineariseced wosden hodal geld t:

$$
\delta \varepsilon_{i}=\frac{\partial \varepsilon_{i}}{\partial u_{p}} \delta u_{p}
$$

Sutalitutic in $(\pi \varepsilon)$ hocet:

$$
\varepsilon_{i} s_{i} \frac{\partial \varepsilon_{i}}{\partial u_{p}}=f_{p}
$$

Tommele $\left(\pi^{3}{ }^{3}\right)$ is een shehel, wiet-lineaide vergelikinigen voor ein elemunt, dat het zeometioche nut-leiveair goerag wan dat element beseling ft.
Woorlde jehele pomstuetic gelart:

$$
\sum_{k=1}^{N} \varepsilon_{i} s_{i j} \frac{\partial \varepsilon_{i}}{\partial u_{p}}=f_{k}
$$

$$
\begin{aligned}
i & =1 \ldots 3 \\
j & =1 \ldots 3 \\
p & =1 \ldots 6
\end{aligned}
$$

$k=1 \ldots$ antal suifhiangpadem oan de combinctio.

III Obboxingemethoom 000 en thehel viel-lineaire vergelifhingen.
In hitheradure (II) worden vurchillmode methodes aangequen thoe men en wiel- liveait ohebel vergelyhingen Kan oplousen. Whe sullem ni sui thoof oukick de vehschillende metteodes hehandelle.
a) De hewton-Paphoon methode.

Shel het sheled wiet-lineaive vergetighinigen heeft de volgende qedaonte.

$$
\begin{aligned}
& F_{1}\left(x_{1}, \ldots . . x_{n}\right)=b_{1} \\
& F_{2}\left(x_{1}, \ldots . x_{n}\right)=b_{2} \\
& \vdots \\
& F_{n}\left(x_{1}, \ldots \ldots x_{n}\right)=b_{n} \\
& P_{N L}\left(x_{p}\right)=b_{\alpha}
\end{aligned}
$$

$B_{M L}=$ niel. lineaine matix
$b_{\alpha}=$ boigenelicoun seenfelior
$x_{p}=$ de onbchende veltor.
The sekijuen mu boor hel sthel (III R)

$$
E_{\alpha}=P_{N L}\left(x_{p}\right)-b_{\alpha}
$$

Tomule (III3) Lal dan sleekts gelif aon nut inn, alo we coot de vehtor x_{p} de exahte oplosin'g hichem geoonden. Stel dat we duse kumen, dan willen we de oplacsing Remmen ooot ere hlime slap verocer in de
 (IIIJ) in een Tayloveeks orturikhelm.

$$
\begin{aligned}
E_{\alpha}+\Delta E_{\alpha} & =E_{\alpha}+\frac{\partial E_{\alpha}}{\partial x_{q}} \Delta x_{q}+\cdots \cdot \\
& =A_{M L}\left(x_{p}\right)-b_{\alpha}+\frac{\partial R_{\alpha}\left(x_{p}\right)}{\partial x_{q}} \Delta x_{q}+\cdots \cdots(\text { IIG) }
\end{aligned}
$$

Cergelifhing (III4) mod toor de exathe opbesing voor x_{p} solijt aam nut rín.

$$
\begin{equation*}
\frac{\partial P_{w l}\left(x_{p}\right)}{\partial x_{q}} \Delta x_{q}=b_{\alpha}-A_{N L}\left(x_{p}\right) \tag{III}
\end{equation*}
$$

Thet formule (III5) hins we nee in ottact on het niet lumaise stekel voor un hepaatde ventor b op te buem. De weinurise geat dom als volgt:
" Vius un olartwacide x_{0}
4) Cos (IIT5) of loor due waarde x_{0}
3^{3} Los thelel (III 5) dam wrer of voot $x_{1}=x_{0}+\Delta x$. Δx is ple correctio of x_{0} fevonden nuel

$$
\Delta x=\left\{A_{N L}\left(x_{0}\right) f_{x_{0}}=b_{\alpha}\right] * \frac{-1}{\frac{\partial k_{k}\left(x_{0}\right)}{\partial x_{q}}}
$$

4) ete.

Hel Lat duidely'h hinn, doul hel hiswod bestruven proves en itterakief pioces $A_{M L}$, wasiby hy denselhe, íforahictap de hem $\frac{\partial B_{N L}}{\partial x_{q}}$ alo comant wordt berchound.
b) "Eneremental approach"

Hiariy loum we het shehel (III2) of, avor se vektor b, slafquaris of te bownen net een vehtor Δb_{α} en ale by dese ćncrmentrektor hoinde . . Axphe bepalen.
Whe gaan weer wit van hel stelel $\left(\frac{\mathbb{Z}}{}\right.$ 2)

$$
\begin{aligned}
& A_{N L}\left(x_{p}\right)=b_{\alpha} \\
& A_{N L}\left(x_{p}+\Delta x_{p}\right)=b_{\alpha}+\Delta \sigma_{\alpha} \\
& P_{N L}\left(x_{p}\right)+\frac{\partial P_{N L}\left(x_{p}\right)}{\partial x_{q}} \Delta x_{q}=b_{\alpha}+\Delta b_{\alpha}
\end{aligned}
$$

$$
\begin{aligned}
& A_{N L}\left(x_{p}\right)-b_{o}=0 \\
& \frac{\partial P_{N L}\left(x_{p}\right)}{\partial x_{q}} \Delta x_{q}=\Delta b_{\alpha}
\end{aligned}
$$

Shet nu dat we n Atappen qedaan hebben, dom veethigen we:

$$
\left\{\frac{\partial B_{N L}\left(x_{p}\right)}{\partial x_{q}}\right\}_{x_{p}=x_{p}^{\prime}} \Delta x_{q}=\Delta \sigma_{\alpha}
$$

Hep inerment $4 b_{\alpha}$ haeft in princife wiet comstomet te Bliven. De oplossing wordil:

$$
x_{p}^{n+1}=x_{p}^{n}+\Delta x_{q}
$$

c) Ie quesdifiecerde heuton-Papheon metho de

Dese metho de is en combinatie hussun de "SuotonPaphoon "en de "inerumental approach". Qte sehryiven nu de pouptenkelyhe relatie in eu sodanige boin, dat his elk inerumut eu slaq hewton- Paphson wordt h'st quover, oftewet big tek inemment ein iteratiedtap.

$$
\begin{gathered}
A_{N L}\left(x_{p}\right)=b_{\alpha} \\
A_{N L}\left(x_{p}\right)+\frac{\partial A_{N L}\left(x_{p}\right)}{\partial x_{q}} \Delta x_{q}=b_{\alpha}+\Delta b_{\alpha} \\
\frac{\partial B_{N L}\left(x_{p}\right)}{\partial x_{q}} \Delta x_{q}=\Delta b_{\alpha}+b_{\alpha}-A_{N L}\left(x_{p}\right)
\end{gathered}
$$

We sekriven toorgaande formule weer na n slappen
 Xe opbssing na in slappen io me:

$$
\begin{aligned}
& b_{n}=\sum_{i=1}^{n} \Delta b_{i} \\
& x_{n}=\sum_{i=1}^{n} \Delta x_{i}
\end{aligned}
$$

Het sal suixulikt sinn, etat no n stappen ou rebatie $A_{N L}\left(x_{p}\right)-\sigma_{\alpha}$ mid qulȳt a an mul is, ondar het ins henoocernigsmetho divih is. Ats me me oir vervetil berchimen en ats errictici big het valpende incerment in' as vorquebriven vektion bo taevaegen, dam is ail de slag hewtor- Papheon.

II Toypassig van ace oploserigemetho divinen midt- Coneaire steltelsin ele elamentemmetho ore

In hooforshent II is pesteld, dat we ves jublen bepuhm tot seometrich wiet-lineaice foroblumen. We ionden ecaat het oolgende thelad, geinotered met indernolatie:

$$
\sum_{k=1}^{N} \varepsilon_{i} \delta_{i j} \frac{\partial \varepsilon_{i}}{\partial u_{p}}=f_{k}
$$

We sulter nu ac oplossing prmethodichen soats heschrums in horf estuct III toep asten op dit stebet. Nour elhe metho de is ien pomputerpropiamma pemaatit, aon de hond waswan de butissing is genomen wethe methode voldoend nawwhenrige revelteter geeft.
a) "Mncremental approach

Het vier-lineaire shethet heft mu an volgende gedante

$$
\left\{\sum_{k=1}^{N} \varepsilon_{i} s_{i j} \frac{\partial \varepsilon_{j}}{\partial u_{p}}\right\}=f_{k}
$$

De incrementele vergetyhinig woult nu:

$$
\begin{align*}
& \left\{\sum_{k=1}^{N} \frac{\partial \varepsilon_{i}}{\partial u_{q}} \int_{i j} \frac{\partial s_{i}}{\partial u_{p}}+\varepsilon_{i} \int_{i j} \frac{\partial_{i}^{2} \varepsilon_{i}}{\partial u_{i} \partial_{u_{p}}}\right\}_{u_{k}=u_{k}^{n}} \Delta u_{k}=\Delta / k \\
& \left\{\sum_{k=1}^{N} \frac{\partial \varepsilon_{i}}{\partial u_{z}} \sum_{i j} \frac{\partial \varepsilon_{i}}{\partial u_{p}}+\sigma_{j} \frac{\partial \varepsilon_{i}^{2}}{\partial u_{z} \partial u_{p}}\right\}_{u_{k}=u_{k}^{n}}^{u_{k}=u_{k}} \Delta u_{k}=\Delta \delta_{k} \tag{2}
\end{align*}
$$

$p=\ldots 6$ andianinad
 sal in horfartuk I cian dockt wordm hustical.
b/ De . gunocvificeude Chewtor - Paphaon "methode, Hot stelsel (IT), humeen we me met hahulf san formule (IIIF) ab volgt sedigiven:

$$
\left.\left\{\sum_{k=1}^{N} \frac{\partial \varepsilon_{i}}{\partial u_{q}} s_{i j} \frac{\partial \varepsilon_{i}}{\partial u_{p}}+\sigma_{j} \frac{\partial^{\varepsilon} \varepsilon_{i}}{\partial u_{q} \partial_{u_{p}}}\right\}_{u_{k}=u_{k}^{\prime}} \Delta u_{k}=\Delta / k+/_{k}^{n}-j \sum_{k=1}^{N} \varepsilon_{i} \cdot s_{i j} \frac{\partial \varepsilon_{i}}{\partial u_{p}}\right\}_{u_{i}=u_{h}^{n}}\left(\frac{\pi^{n}}{}\right)
$$

In wex formulte is If "a leladringuedior no n
Dappen. aan re componculten.
ef De. Sewton-Paphoon "methode
In dere laatate methode is in principe hel olapopuris
 wordt in in her aan qebredkt in we ixterven naar de verplacativigpvehtor ut met en volpunde formule:
 teratuislappen.
Deve hewton- Daphron methode, waviby de wiburenoige helacting in iem heer wordt of gebrackt, levert in hes algencm mocilikhoden of, om delat het istevalipices Avivigart. In dir he woovtomen, brengen we dee uiturendige helasting, we ook in' en aontal stafper acan, wavily na' elhe stap qeïteverd wovet naar sel exatte oflossing. Ho eu tenasuring vololounde nowwhenrig, dal wid seggen, dat het vuchid
$u_{k}^{n, t}=$ verplatitrigolethto van de comstuelii na n slappen in be belaitinguctito en t ithentiostappon na de la atite helacinipectap

De torebattare afweitton'g on than nuen self thepaten. Ats aan at hueswoor fothelde ciiteria woidif voldaan, dan woidt de witwen dige felarting mest een trap verthovy ol.

$$
f_{k}^{n+1}=\frac{f^{n}}{n}+\Delta / k
$$

Wolledigheidrnaher nuvet nog ofo pencrhth worden, dert de inercincutele helathiquventhe neet wor elter shap st iclot piovthe hetaefte te hebleen on teet umptuterpropuommin, dat is hov/ ocatuth VIIT fevthrwen Lact wordcu, to de proothe van, thet inevunewt aftrantelyh quoteld van thet aontal iferatcictaphen pat mo elter thaf wh opvoud nouct worden. in appendex I GPAF no $=\frac{1}{L}$ Dipn de iuculiatur wan ou heerivont the sokrever oftoxs mqpinetho ecs werpeteken aon ace Darrd san en Foorkceld, wat exaht herchend Ban Gorden.

Het voorbectar heetond wit een eexirydig migentemde halle, welte dor u w witurnocig monnuct movdit helatit. Whe nerten dat de balt t. fov. het teucigend monent erdtSens cen aidelobog witferigit.

$$
\begin{aligned}
\Delta y & =P-P \operatorname{Co\varphi } \\
\varphi & =\frac{l}{P} \\
M & =-E I K=-\frac{E I}{P} \\
\Delta y & =-\frac{E I}{H}(P-R \cos \varphi)
\end{aligned}
$$

Wi hether m 2 contiotl mogetiftehedu:
If De exatte Δy vergelichen met eu benaderde Δy uit de venschillende oploutiggometho dees.
2) Derder hunnew we contialiven of de hnooppincten vas de elurceution allunaat ap sin ciihil liggen. Dere contróler inin pedaan toot ek verechillende oplossingomethoeces en het bleet dat ou Thewtom-Maptren methede inderdacad de exahte oploresing benaderde, tevuijl de andere 2 methodes theedo verder van ae exakte waarde ainip on afurithen. Of prond thiwon to bustoten on thet thewtion Papheon proces toe the passen.

IV Het bathelement big geometisct niel-lineaviteit. net eu afleidinig van $\frac{\partial \varepsilon_{i}}{\partial u_{p}}$ en $\frac{\partial^{2} \varepsilon_{c}}{\partial u_{q} \partial u_{p}}$.
Bì peometidete niet- Anearitith bliven de set Spammigoselaties

$$
\sigma=S \varepsilon
$$

Suen linexire funthies. nuer van de verplaxtsmipen sy'n. We machen dus in eurte inslantie eu niel-lineaire relakies tuseen rekhus en verplaatovigen van hel slement wast probeun he leggen.

4

We sufiniciren nu de retgroothedu ats volgt:

$$
\begin{aligned}
& \text { definiëren uer de rexquoo-1 } \\
& \varepsilon_{1}=\left[\left(x_{1}-x_{1}+u_{2}-u_{1}\right)^{2}+\left(y_{1}-y_{1}+w_{2}-w_{2}\right)^{2}\right]^{1 / 2}+\frac{1}{2} \int_{\bar{x}=0}^{l}\left(\frac{d \overline{0}}{d x^{2}}\right)^{2} d \bar{x}-L \\
& \varepsilon_{2}=\left[-\psi_{1}+\text { arctan } \frac{y_{2}-y_{1}}{x_{2}-x_{1}}-\text { arctan } \frac{y_{2}-y_{1}+w_{2}-w_{1}}{x_{2}-x_{1}+u_{2}-u_{1}}\right]
\end{aligned}
$$

$$
\xi_{3}=\left[\mathscr{L}_{2}-\text { auctan } \frac{y_{2}-y_{1}}{x_{2}-x_{1}}+\arctan \frac{y_{1}-y_{1}+w_{2}-w_{1}}{x_{2}-x_{1}+u_{2}-u_{2}}\right]
$$

\bar{w} is het verptaatsingould van het bathelement mide \bar{y} - tiekting van het $\bar{x} j, \bar{y}$ assenhwior.
Wijhinn in olaal om $\int_{k=0}\left(\frac{0}{a x}\right)^{b} d \bar{x}$ in de componenten wous de velplaatosigevehtor " van het element wit he auchken, Lie appendix II.

$$
\begin{equation*}
\frac{1}{2} \int_{\vec{x}=0}^{0}\left(\frac{d \bar{w}}{d \bar{x}}\right)^{2}=\frac{b^{2}}{30}\left[2 \bar{\psi}_{1}^{2}-\bar{\psi}_{1} \bar{\psi}_{2}+2 \bar{\psi}_{2}^{2}\right] \tag{I}
\end{equation*}
$$

Shbsiduerm we relatii (V) in (V)) dav verhicigen we het volqunde stelad ver pelijtimigen voor de whken:

$$
\begin{align*}
& \varepsilon_{1}=\left[\left(x_{2}-x_{1}+u_{2}-u_{1}\right)^{2}+\left(y_{2}-y_{1}+w_{1}-w_{1}\right)^{2} 7^{1 / 2}\left[1+\frac{1}{30}\left(1 \bar{\psi}_{1}^{2}-\bar{\psi}_{1} \bar{\Psi}_{2}+2 \bar{T}_{2}^{2}\right)\right]-1\right. \\
& \varepsilon_{2}=\left[-\psi_{1}+\text { auctan } \frac{y_{2}-y_{1}}{x_{2}-x_{1}}-\arctan \frac{y_{2}-y_{1}+w_{2}-w_{1}}{x_{2}-x_{1}+u_{2}-u_{2}}\right] \tag{3}\\
& \varepsilon_{3}=\left[\psi_{2}-\operatorname{arclon} \frac{y_{2}-y_{1}}{x_{2}-x_{1}}+\text { autan } \frac{y_{2}-y_{1}+w_{2}-w_{1}}{x_{1}-x_{1}+u_{2}-u_{1}}\right]
\end{align*}
$$

Hoats in hoofoshuk IV gerteld is, hummen we nee vij eemondig wit (ITS) de relatiens

$$
\frac{\partial \varepsilon_{c}}{\partial u_{p}} \ln \frac{\partial^{2} \varepsilon_{c}}{\partial u_{q} \partial u_{p}} \text { afliiden. }
$$

$$
\begin{aligned}
& \frac{\partial \xi_{2}}{\partial u_{p}}=\left[-\frac{\sin \beta}{b^{3}} \quad \frac{\cos \beta}{\ell^{3}}-1 \quad \frac{\sin / \beta}{b^{3}}-\frac{\cos \beta}{b^{3}} \quad 0\right]
\end{aligned}
$$

Whe gaan nu ae vesschillende temm afsehattem:

$$
\begin{aligned}
& \overline{\psi_{1}} \ll 1 \\
& \overline{S_{s}} \ll 1 \\
& \frac{\Delta l}{l} \ll 1
\end{aligned} \quad \Delta l=l^{\prime}-l
$$

Bovenatavide ongelithhoden bliven gelolig, on dal de rek- tpaminigsulaties limeais bliven, big geometrische mir- limearcheit.
Whe sehrijuen nue $\frac{\partial \varepsilon_{i}}{\partial u p}$ in ele voin wan de fom van 2 mativice:

$$
\begin{equation*}
\frac{\partial \varepsilon_{c}}{\partial u_{p}}=Q_{1}+O(\xi) \tag{1}
\end{equation*}
$$

Ans see termen wan $\frac{\partial k_{i}}{\partial u_{g} \partial u_{p}}$ te verhrijgen, macters we de termen van $\frac{\partial \varepsilon_{i}}{\partial u p}$ naas de componenten van de verplaativig.whtor differcutieisen. Im un de orde groothe the hepatun, welhe we in dese termen mee witten nemen, moctes

$$
\left\{\sum_{k=1}^{N} \frac{\partial \varepsilon_{i}}{\partial u_{q}} s_{i j} \frac{\partial \varepsilon_{j}}{\partial u_{p}}+\sigma_{j} \frac{\partial^{2} \varepsilon_{j}}{\partial u_{q} \partial u_{p}}\right\}_{k=u_{k}} \quad \Delta u_{k}=/_{k}-\left\{\left.\sum_{k=1}^{N} \varepsilon_{i} s_{i j} \frac{\partial \varepsilon_{j}}{\partial u_{p}}\right|_{k=u_{k}} t\right.
$$

In de terman $\frac{\partial \varepsilon_{i}}{\partial u b}$ hobbin we de $D(E)$ muquomen. Daar $\sigma=S \varepsilon$ helf oun ele arde tpoulon is behowen we in de heumen van $\frac{\partial^{2} \partial^{2} \text {. }}{\partial \partial_{p} u_{g}}$ sleetts dee $O(1)$ mue te numen. She beshuderen daciom eent de herm $\frac{\partial^{k} \xi_{1}}{\partial u, \partial u_{1}}$.

$$
\begin{aligned}
& -\frac{\Delta l}{l^{2}} \sin \beta \cos \beta\left[\mathscr{H}_{1}+H_{i}\right]
\end{aligned}
$$

Hoals mods gesteld in, is attem $O(1)$ helounqijth, iodat we humen sekijvens:

$$
\frac{\partial^{2} \varepsilon_{1}}{\partial u, \partial u,}=\frac{36}{30} \frac{\frac{2 m^{2} / 3}{l}}{l}
$$

He lupating van de andus termen veeloopt gehut anabog, sodat wre tenalotte de valgende resultaKar widem:

$$
\begin{aligned}
& \frac{\partial^{2} \xi_{j}}{\partial \partial_{u_{p}}}=-\frac{\partial^{2} \xi_{p}}{\partial u_{p} \partial_{u_{p}}}
\end{aligned}
$$

Definieren we nue $\frac{\partial^{2} \varepsilon_{1}}{\partial \partial_{q} \partial_{p}}=S_{1}, \frac{\partial^{2} \varepsilon_{z}}{\partial u_{q} \partial_{p}}=S_{2} \operatorname{en} \frac{\partial^{2} \varepsilon_{\xi}}{\partial u_{q} u_{p}}=S_{3}$, dan Lumen we relatie (IT4) ats volgt selujecen in matixixom:

$$
\begin{gather*}
\sum_{k=1}^{N}\left[\left[Q_{1}+O[(\xi)] S\left[Q_{1}+O(\xi)\right]+N G_{1}+r_{0} G_{2}+M_{1} G_{3}\right]_{u} \Delta u=\right. \tag{ㅍ5}\\
\left.\Delta f+f_{n}+\sigma\left[Q_{1}+\sigma(\varepsilon)\right]\right]_{u=u_{n}, t}
\end{gather*}
$$

In = uitwendige belactingpuektor na nstapteen.
$u_{n, t}=$ vouplaats ing wochtor na n stappen. En t iterakietapfen.
Of fomule (IT5) is nu hel computerprogramme 050646000 "Bertherning veerkarakteristich mel hehulf van de methode der eviderge elementen, wacebiy de stapgiodte in de belarling af hanhelyh is oan het aontal Efecatiesteppen" quasurd.
Δu en $\Delta f:$ Ryin de inerementen van de rupectivelifhe verplaatimgp - en helastinguedtor van de gehele eomstruetie.

Fypiche inhupretatic van ea gebmikte matrices van hes balkeloment.

Im een witepraath to soens oree de fyrische hethenis
 shat I,, gaon we nit wan ien balhelmants dal onvercound in en waawan de elaagas samenwalt met de x-as.

Ten guolge van en witwen orige belasting ontelaat ove verplaatíniguceltor

$$
\ddot{u}^{\prime}=\left[\begin{array}{llllll}
u_{1} & w_{1} & \psi_{1} & u_{2} & w_{2} & \psi_{2}
\end{array}\right]
$$

De niet fineacic rekfomules gaan we nu voor dit balt. ctement in em reets onturktlen, wasuri we hemen oan hogere arde verwaarlasen: De retformules thethen voor ker hivivor bescheven element de bolgonde gedaante:

$$
\begin{align*}
& \sigma_{1}=\left[\left(l+\omega_{2}-u_{1}\right)^{2}+\left(\omega_{2}-w_{1}\right)^{2} 7^{1 / 2} / 1+\frac{1}{50}\left(2 \psi_{j}^{-2}-\psi_{1} y_{1}+2 \psi_{2}^{2}\right)\right]- \\
& \varepsilon_{2}=\left[-\psi_{1}-\arctan \frac{\omega_{2}-\omega_{1}}{l+u_{2}-u_{1}}\right] \\
& \epsilon_{j}=\left[\varphi_{2}+\text { auctan } \frac{\omega_{3}-\omega_{1}}{\ell+\omega_{2}-\omega_{1}}\right]
\end{align*}
$$

The spormikem da volpende benadurnigen:

$$
\left[\left(l+u_{1}-u_{1}\right)^{2}+\left(\omega_{1}-\omega_{1}\right)^{2}\right]^{1 / 2}=l+u_{2}-u_{1}+\frac{\left(\omega_{1}-\omega_{1}\right)^{2}}{l l}+\cdots(\underline{\pi} 2)
$$

axelan $\frac{\omega_{2}-\omega_{1}}{l+u_{2}-u_{1}}=\frac{\omega_{2}-\omega_{1}}{l}-\frac{\left(\omega_{2}-\omega_{1}\right)\left(u_{2}-\omega_{2}\right)}{l^{2}}+\cdots \quad\left(\underline{\pi} 3_{3}\right)$ $\left.\mathscr{H}(\mathbb{W} 2) \operatorname{en}(\mathbb{I I})^{3}\right)$ Sipn herrmen $\operatorname{van}\left(\frac{\omega_{2}-w_{1}}{l}\right)^{n} \operatorname{ten} \frac{\left(\omega_{2}-\omega_{1}\right)\left(a_{1}-u_{1}\right)^{n-1}}{l^{n}}$ net $n>2$ verwacarloosd. Subtitutic van (VIS) in (VIT, 3) in (位) luveren de volpende fomules of, waawon her werte gedulte de limeaire en het hovede gededto het mil-lineaine gedielte amoat.

$$
\begin{aligned}
& \varepsilon_{1}=\psi_{2}-\mu_{1}+\frac{3}{5} \frac{\left(\omega_{3}-\omega_{1}\right)^{2}}{l}+\frac{1}{15} \psi_{1}^{2} l+\frac{1}{15} \psi_{1}^{2} l-\frac{l}{30} \psi_{1} \psi_{2}+\frac{1}{10} \psi_{1} \frac{\omega_{2}-\omega_{1}}{l}+ \\
& \varepsilon_{2}=-\psi_{1}-\frac{\omega_{3}-\omega_{1}}{l}+\frac{\left(\omega_{2}-w_{1}\right)\left(u_{2}-\omega_{1}\right)}{b^{2}}+\frac{1}{10} \psi_{2} \frac{\omega_{3}-\omega_{1}}{l} \\
& \varepsilon_{3}=\psi_{2}+\frac{w_{2}-\omega_{1}}{l}-\frac{\left(\omega_{2}-\omega_{1}\right)\left(u_{3}-\omega_{1}\right)}{l^{2}}
\end{aligned}
$$

Voor de inurendige energie van het Gablelment gelact:

$$
\begin{aligned}
& U=\frac{N}{2} E_{1}+\frac{M_{0}}{2} \varepsilon_{2}+\frac{H_{1}}{2} E_{3} \\
& U=U_{\text {linair }}+U_{\text {mir lineair. }} .
\end{aligned}
$$

Ueineais hubben we in hoofarhutt I in matrix vorm afgeSecid.

$$
U_{\text {limais }}=\frac{1}{z} u^{\prime} Q u .
$$

Doot de neit lineaire hy draigen hammen we rehrijen:

$$
\begin{aligned}
& U_{\text {mir lincain }}=\frac{N}{2} u G_{01} u+\frac{M_{0}}{2} u G_{02} u+\frac{w_{i}}{2} u G_{0 s} u \\
& G_{01}=\frac{1}{30}\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
& \frac{36}{l} & -3 & 0 & -\frac{36}{l} & -3 \\
4 l & 0 & 3 & -l \\
5 y m & & 0 & 0 & 0 \\
& & & \frac{36}{l} & 3 \\
& & & & 4 l
\end{array}\right]
\end{aligned}
$$

$$
G_{02}=-K_{03}=\frac{1}{l^{2}}\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & -1 & 0 \\
& 0 & 0 & -1 & 0 & 0 \\
& 0 & 0 & 0 & 0 \\
\text { sym. } & & 0 & 1 & 0 \\
& & & 0 & 0 \\
& & & & & 0
\end{array}\right]
$$

He tum $\frac{N}{2}$ "Go, u quft de extra arbeid aan, die de nosmavkrackt verrickt H.q.N. selative Rnoofepuntsverpleatshigen von hel etement, veroviracht dooi hel w- veld. Dl tiem $\frac{s}{2}$ "Cor" queft de extra arbuid ann, dal het moment vervicht dour un exter solatic ath Har lichaam H.q.o. "-veld. Now $\frac{\text { Me ub bos u quat hetrelpde. }}{2}$

Willen we dew voorgadnde affeidmigen tocpartan of een element, dat en hoet ot met de porituive x-as maadt, dan ombelaan de bolsende velaties. (a links om povikif)

$$
\begin{align*}
& G_{1}=\frac{\partial^{2} \varepsilon_{1}}{\partial u_{q} \partial u_{p}}=T G_{01} T \\
& G_{2}=\frac{\partial^{2} \varepsilon_{2}}{\partial u_{q} \partial u_{p}}=T G_{02} T \tag{UI}\\
& G_{3}=\frac{\partial^{2} \varepsilon_{3}}{\partial u_{g} \partial u_{p}}=T G_{03} T
\end{align*}
$$

Tis de trans formatimatixi en festaat uit de treime volgende comporsuten:

$$
T=\left[\begin{array}{cccccc}
\cos \alpha & \sin \alpha & 0 & 0 & 0 & 0 \\
-\sin \alpha & \cos \alpha & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & \cos \alpha & \sin \alpha & 0 \\
0 & 0 & 0 & -\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Tendatte reet nog de fyische interpsetatio van:

$$
\frac{\partial \varepsilon_{i}}{\partial u_{p}}=Q_{1}+O(\varepsilon)
$$

We betichen in uste malantic de Ineair retrelaties voor un bolhelment, waawan de slaafos samenvalt met de x-as. The unidm ecan de volfende relatie:

$$
\begin{gathered}
\varepsilon=D u \\
D=\left[\begin{array}{cccccc}
-1 & 0 & 0 & 1 & 0 & 0 \\
0 & \frac{1}{l} & -1 & 0 & -\frac{1}{l} & 0 \\
0 & -\frac{1}{l} & 0 & 0 & \frac{1}{l} & 1
\end{array}\right]
\end{gathered}
$$

Valt de staafor niet meet met de x-as Samen, maar masht ien hoeh α, dan humnen we volgende ulatie opschriven:

$$
\begin{aligned}
& \text { Uobhat }=T \text { uglobad } . \\
& E=D T \text { uglabaal }
\end{aligned}
$$

Het blyth nu dat : $Q_{1}=D T$
(III 6)
Hel andeve worden Q is riets anders dom en foout Tram formatimatici van globaal nove fohash acmensteluel. ©H de niet- hineacie theovie is D niet L_{0} 'm nethe matic mees. De matix $o(\varepsilon)$ vont nu em porectic To de Q_{1} mativivan het elmment, ondal we de Hijfheidsmatiox in verwounde taesland willen bevkenes. Ah we verqelijhing $\left(\mathbb{T} V^{5}\right)$ wikwerkm, dan sien we on -
meidelallink, dat de hermen $O(\varepsilon) \leq Q_{1}, Q_{1}^{\prime \prime} \leq O(\varepsilon)$ an $O(\varepsilon) \leq O(\varepsilon)$ correctier ruin of de lineaize shy fhidematuix. The humen α o $O(\varepsilon)$ ats tolgt bepalen:
Whe hrschowwen, Me element, waasion de verbiniding. fin van de hnooppturten in kervornde foestand Samenvalt met ele pacíficin x-as.

We definieren ue de retkus ah volgt:

$$
\begin{aligned}
& \varepsilon_{1}(n+1)=\varepsilon_{1}(n)+\Delta \varepsilon_{1} \\
& \varepsilon_{2}(n+1)=\varepsilon_{2}(n)+\Delta \varepsilon_{2} \\
& \varepsilon_{3}(n+1)=\xi_{3}(n)+\Delta \varepsilon_{3}
\end{aligned}
$$

Hankeren we un de rekformules soal grolefinciès voor seometrisch niel-Lineacise problewen, xan verkingen we de valqunde Relaties:

$$
\begin{aligned}
& \varepsilon_{1}(n+1)=\varepsilon_{1}(n)+\left[\left(l+u_{1}-u_{1}\right)^{2}+\left(w_{i}-w_{1}\right)\right]^{2 / 1 /}\left[1+\frac{1}{30}\left(2 \varepsilon_{2}^{2}(n+1)+\xi(n+1) \xi(n+1)+2 \xi(n+1)\right)\right] \\
& -l\left[1+\frac{1}{30}\left(2 \varepsilon_{1(n)}^{2}+\varepsilon(n) \varepsilon_{i(n)}^{\xi}+2 \varepsilon_{3}^{2}(n)\right)\right] \\
& \varepsilon_{i(n n)}=\varepsilon_{2}(n)-\psi_{1}-\arctan \frac{w_{2}-w_{1}}{h+\mu_{2}-\mu_{1}} \\
& \xi_{3}(n+1)=\xi_{3}(n)+\psi_{2}+\arctan \frac{\omega_{2}-\omega_{1}}{b+w_{2}-u_{1}}
\end{aligned}
$$

Whe gaan formule (IIF) weer in een ruks antwikhelm:

$$
\begin{align*}
& \varepsilon_{(n+1)}=\xi_{(n)}+u_{2}-u_{1}+\frac{1}{30} / \int \xi_{(n)} \frac{w_{1}}{l}-3 \xi_{(n)} \frac{w_{1}}{l}-\xi_{2}(n)-\xi_{(n)}-3 \xi_{(0)} \frac{w_{2}}{l}+3 \xi_{(n)} \frac{w_{2}}{l}+ \\
& \left.4 \varepsilon_{(n)}+\epsilon_{2(0)}\right]+\frac{3}{5} \frac{\left(\mu_{3}-\omega_{1}\right)^{2}}{l}+\frac{1}{15} \mathscr{H}_{1}^{2} l+\frac{1}{15} \psi_{1}^{2} l-\frac{L}{30} \psi_{1} \psi_{2} \\
& +\frac{1}{10} \psi_{1}\left(\frac{\omega_{3}-\omega_{1}}{l}\right)+\frac{\psi_{2}}{10}\left(\frac{\omega_{2}-\omega_{1}}{l}\right) \\
& \varepsilon\left(n_{1}\right)=\varepsilon(n)-\psi_{1}-\frac{\omega_{2}-w_{1}}{l}+\frac{\left(\omega_{2}-w_{1}\right)\left(u_{2}-\psi_{1}\right)}{l^{2}} \\
& \varepsilon_{3(n+1)}=\xi_{(n)}+\psi_{2}+\frac{\omega_{2}-\omega_{1}}{l}-\frac{\left(\omega_{2}-\omega_{1}\right)\left(\mu_{2}-\mu_{2}\right)}{l^{2}}
\end{align*}
$$

Mats int formule (IIO) blitt, gupt allem E(nx) en bijdrage in de $O(E)$ 'is wel neet de volpende bijdrage:

In maticinolatio luvert ail juis/ de ons reeds hehunde matix of namelik $O(E)$ voor $B=0$. Haat hit eliment onder iun hepocalde hoek 13 met x x-as dan hift de matiox $O(E)$ de volpende qudavante:

$$
O(\varepsilon)=O_{0}(\varepsilon) T
$$

III Besckuying van hel element TRIAX 3
tite besthowven un solatorich Hymmetrich divihochig elumentt. She numen aan, dat dee verplaatomigen vain de 5 hroofobunten nodaing Rlem bliven, dar oxe hlawihe foumules voor solatorisch tymmeticiche eess otureties goloing bliven.

We nemer ac y-as als rolatoriche eymmetice-as acu. He verplaato niqs vektor per element deficiieisen we abs:

$$
\ddot{u}^{\prime \prime}=\left[\begin{array}{lllll}
u_{1} & v_{1} & u_{2} & v_{2} & u_{j} \\
v_{3}
\end{array}\right]
$$

Voot de vaplaatsinqporlden i'en \vec{V} nemen we ele volgende polynomes aan:

$$
\begin{align*}
& \hat{u}=\alpha_{1}+\alpha_{2} x+\alpha_{3} y \\
& \hat{r}=\alpha_{4}+\alpha_{3} x+\alpha_{6} y \tag{LI}
\end{align*}
$$

Cit dese aamames bolgt diukt, dat de siden wan hel elunent TPSAX's na vewoming vent bliven, met ats
iandvoowaarden;

$$
\begin{array}{lll}
x=x_{1} \operatorname{en} y=y_{1}: & \vec{u}=u_{1} & \vec{v}=v_{1} \\
x=x_{2} \operatorname{en} y=y_{2}: & \vec{u}=u_{2} & \vec{v}=v_{2} \tag{IIII2}\\
x=x_{3} \operatorname{en} y=y_{3}: & \vec{u}=u_{3} & \vec{v}=v_{3}
\end{array}
$$

Derder defimism we de vektor or ab:

$$
\alpha^{\prime \prime}=\left[\begin{array}{llllll}
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{5} & \alpha_{5} \tag{43}
\end{array}\right] .
$$

Whe hermen nu met ere retatier (III), (III 2) en (DIT 3) hed verband hucen de retitoren of in a hepalem.

Th due formule is A gelyik aan:

$$
A=x_{1} y_{3}-x_{3} y_{3}+x_{3} y_{1}-x_{1} y_{3}+x_{1} y_{2}-x_{3} y_{1}
$$

bit an thacwithe theovi wetm we, hae ar whhen vood totatoinch Eymmetrische corstweties, aan het verplaatomigoveld tijn gehop peld.

$$
\begin{align*}
& \varepsilon_{2}=\frac{\partial u}{\partial x}=\alpha_{2} \\
& \varepsilon_{y}=\frac{\partial v}{\partial y}=\alpha_{6} \tag{捂4}\\
& \varepsilon_{t}=\frac{u}{x}=\frac{u_{m \omega}}{x_{m \omega}}=\frac{\alpha_{1}}{x_{2 \omega}}+\alpha_{2}+\frac{y_{2 \omega}}{x_{2 \omega}} \alpha_{3} \\
& \gamma_{2 y}=\frac{\partial_{u}}{\partial y}+\frac{\partial \nu}{\partial x}=\alpha_{3}+\alpha_{3}
\end{align*}
$$

We morkum to, dat ae langentiele reh met precies of gelidid io, maas henaderd is ats $\frac{u_{s w}}{x_{x+w}}$.
De pequeratieerde ukuktor hueft de Volpende gedaante:

$$
\varepsilon^{\prime}=\left[\begin{array}{llll}
\varepsilon_{z} & \varepsilon_{y} & \varepsilon_{z} & \text { Yoy } \tag{ㅈIT5}
\end{array}\right]
$$

Thet hehulp wan ou relatiod (IIT) en (III sa) sijn we in slaat pm het verband tusun de rekhem en ev verplatinigovehtor the loggen.

$$
\begin{gathered}
C=\frac{1}{A} C u \\
C=\left[\begin{array}{ccccc}
y_{2}-y_{3} & 0 & y_{3}-y_{1} & 0 & y_{1}-y_{2} \\
0 & x_{3}-x_{3} & 0 & x_{1}-x_{3} & 0 \\
a_{1} & 0 & a_{3} & 0 & x_{3}-x_{1} \\
x_{3}-x_{2} & y_{2}-y_{3} & x_{1}-x_{3} & y_{3}-y_{1} & x_{2}-x_{1} \\
y_{1}-y_{2}
\end{array}\right] \\
\text { met: } a_{1}=\frac{x_{3} y_{3}-x_{3} y_{2}}{x_{2 \omega}}+\left(y_{2}-y_{3}\right)+\left(x_{3}-x_{3}\right) \frac{y_{2 \omega}}{x_{2 \omega}} \\
a_{2}=\frac{x_{3} y_{1}-x_{1} y_{3}}{x_{2 \omega}}+\left(y_{3}-y_{1}\right)+\left(x_{1}-x_{3}\right) \frac{y_{m 0}}{x_{2 \omega}} \\
a_{3}=\frac{x_{1} y_{3}-x_{1} y_{1}}{x_{2 \omega}}+\left(y_{1}-y_{2}\right)+\left(x_{2}-x_{1}\right) \frac{y_{2 \omega}}{x_{2 \omega}}
\end{gathered}
$$

Het vaband hucun de geqpureatisenge rehvehtor en de Sequevaliseerde tpannings vektior, humen we loggen met hehulp wan de wet wom tooke:

$$
\begin{aligned}
& \sigma_{i}=F \frac{(1-\nu) \varepsilon_{2}+\omega \varepsilon_{t}+N \varepsilon_{y}}{(1+\omega)(1-2+)} \\
& \sigma_{y}=F \frac{(1+1) \varepsilon_{y}+\omega_{E_{2}}+\cdots \varepsilon_{z}}{(1+N)(1-8-1)} \\
& \sigma_{t}=E \frac{(1-\mu) \varepsilon_{t}+r \varepsilon_{z}+N \varepsilon_{y}}{(1+r)(t-R r)}
\end{aligned}
$$

$$
\tilde{s}_{x y}=\frac{E}{2(1+x)} \gamma_{z y}
$$

hodat we in vehtornotatie de valpende vergelyibing thiggen:

$$
\sigma=5 \varepsilon
$$

$$
S=\frac{F}{1+\mu}\left[\begin{array}{cccc}
\frac{\rho}{1-2 \mu} & \frac{\rho}{1-2 \mu} & \frac{\rho}{1-2 \mu} & 0 \\
\frac{\rho}{1-2 \mu} & \frac{1-\mu}{1-2 \mu} & \frac{\rho}{1-2 \mu} & 0 \\
\frac{\rho}{1-2 \mu} & \frac{\rho}{1-2 \mu} & \frac{1-2 \mu}{1-2 \mu} & 0 \\
0 & 0 & 0 & \frac{1}{2}
\end{array}\right]
$$

Am ale sti fhidamatrix van het element Tpisx 3 the hepaten, gaan we nit san her princibe van minimate potentiele cureqie. De Selastingoretitor f definicisen we als:

$$
f^{\prime}=\left[\begin{array}{llllll}
N_{1} & D_{1} & N_{2} & D_{2} & N_{3} & D_{3} \tag{III}
\end{array}\right]
$$

We humon un de poturtiel anequi opschsijem:

$$
\begin{equation*}
V=\int_{V}\left(\frac{1}{2} \sigma_{z} \varepsilon_{z}+\frac{-}{2} \sigma_{y} \varepsilon_{y}+\frac{1}{2} \sigma_{y} \varepsilon_{y}+\frac{1}{2} \sigma_{z y} r_{y}\right) d V-f_{u} \tag{페9}
\end{equation*}
$$

Substicutic in $(\overline{\overline{\text { IIIN}} 9)}$ wan ou hineaic Hooke-selatios geft:

$$
\begin{aligned}
& V=\frac{1}{2} 0.2 \pi x_{w \omega} \varepsilon^{r} s \varepsilon-f_{u} \\
& 0=\frac{|A|}{2}=\text { oppewlatite TBiAX a eloment }
\end{aligned}
$$

Substituern we selatie (TV 6) un mi (IIIT '1) dou onslaat de volgende witecubthing too sa potentiolle menqii:

$$
V=\frac{1}{2} \frac{\pi x_{m}}{|A|} \dot{\prime} c^{\prime} s c u-f u
$$

tit het pincike van minimale fotukiète anergio thumones we eflisiden, dat:

$$
\begin{gathered}
Q u=f \\
\text { mat } \varphi=\frac{\pi x_{\text {mos }}}{|R|} C S C \quad=\text { thiffhidomatic } \\
\text { ellment TRIRX 3. }
\end{gathered}
$$

IIII SHet element TPiAks lin geometische niel-fineavitut

 tol uildunkting homt in de ret-verplaato ingo ulatio.

Om nu de vervormigen van het element he bestuderens verplaatsen we het lement naat Dijn wilgan go foritic, in dat dven we Nodarig, dat iés hnoofofint Samewvalt met hed porsprowheliyhe.

Boren diin io un befpaclae rolatie wan het etencent novdrakeligite, on ein syide samen he baker vallen nuett
do ouspronkelfike toctand, we hiesim hisivod sigele l_{12}

De tolatikhaeh at is me gelift aan:

$$
\begin{gather*}
\alpha=\beta_{1}-\beta_{0} \\
\alpha=\operatorname{auctan}\left(\frac{y_{1}-y_{1}+\nu_{2}-\nu_{1}}{x_{2}-x_{1}+u_{2}-u_{1}}\right)-\operatorname{arclan}\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right) \tag{펜}
\end{gather*}
$$

We definizicn se relatieve verplatomigovettor \bar{u} ahs:

$$
\overline{u_{u}}=\left[\begin{array}{lllll}
\overline{u_{1}} & \overline{v_{1}} & \bar{u}_{2} & \overline{v_{2}} & \bar{u}_{3} \tag{VIII2}\\
\bar{v}_{3}
\end{array}\right]
$$

Whe humen uit vovrgaande fiquren de oolquade relaties noor de comp oncuten sam $\frac{\bar{u}}{}$ lefleiden:

$$
\begin{aligned}
& \bar{u}_{1}=\bar{v}_{1}=0 \\
& \bar{u}_{2}=\left[\left[\left(x_{2}-x_{1}+u_{2}-u_{1}\right)^{2}+\left(y_{2}-y_{1}+v_{2}-v_{1}\right)^{2}\right]^{1 / 2}-\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}\right]^{1 / 2}\right] \cos \beta_{0} \\
& \overline{V_{2}}=\left[\left[\left[\left(x_{2}-x_{1}+u_{2}-u_{1}\right)^{2}+\left(y_{2}-y_{1}+v_{2}-v_{1}\right)^{2}\right]^{1 / 2}-\left[\left(x_{1}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}\right]^{1 / 2}\right]^{2} \text { sin } \dot{\beta}_{0}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\left[\left(x_{3}-x_{1}\right)^{2}+\left(y_{3}-y_{1}\right)^{2}\right]^{1 / 2} \cos \text { \{autan } \frac{y_{3}-y_{1}}{x_{3}-x_{1}}\right\} \\
& \vec{v}_{3}=\left[\left(x_{3}-x_{1}+u_{3}-u_{4}\right)^{2}+\left(y_{3}-y_{1}+v_{3}-v_{3}\right)^{37 / 2} \sin \left\{\arctan \left(\frac{y_{3}-y_{1}+v_{3}-v_{3}}{x_{3}-x_{1}+u_{3}-u_{3}}\right)-\alpha\right\}\right. \\
& -\left[\left(x_{3}-x_{1}\right)^{2}+\left(y_{3}-y_{1}\right)^{2}\right]^{1 / 2} \operatorname{din}\left\{\text { avelan }\left(\frac{y_{3}-y_{1}}{x_{3}-x_{1}}\right)\right\}
\end{aligned}
$$

Whe macten hiorbiy eether omidoalligh opmeeken, dat de selaticive verplaatonigen $\overline{\bar{u}}_{2}, \overline{\bar{M}}_{3}, \bar{u}_{3} \operatorname{en} \bar{v}_{3}$ allem geloden toot de vervoimmigen hi hel olah van fekernig. Ait houdet ing dat we voor eer langentiele reh de eente verplaatsingovehtor a mocten gebuichen.

$$
\varepsilon_{t}=\frac{u_{m \omega}}{x_{2 \omega}}=\frac{\alpha_{1}}{x_{2 \omega}}+\alpha_{2}+\frac{y_{2 \omega}}{x_{2 \omega}} \alpha_{3}
$$

 de segeneraticerde rehwehtor he herchenen:

$$
\begin{aligned}
& \varepsilon=\frac{1}{A} \subset \mu\left(1000 d \varepsilon \varepsilon_{i}\right) \\
& \varepsilon=\frac{1}{A} \subset \bar{u}\left(1000 \varepsilon_{2}, \varepsilon_{y}, V_{x y}\right)
\end{aligned}
$$

He vektor ì hueft de volgende gedaante.

$$
\overline{\vec{u}}=\left[\begin{array}{llllll}
0 & 0 & \overline{u_{2}} & \overline{v_{3}} & \overline{u_{3}} & \overline{v_{3}}
\end{array}\right]
$$

hodal we voor ou ge-
generaliserde retgrookhedu de volyende niet lineaise Selaties onidens in de tnoopptuntsverplaatsmigas.

$$
\begin{align*}
& \varepsilon_{1}=\frac{1}{A}\left[\left(y_{3}-y_{1}\right) \overline{u_{2}}+\left(y_{1}-y_{2}\right) \overline{u_{3}}\right] \\
& \varepsilon_{y}=\frac{1}{A}\left[\left(x_{1}-x_{3}\right) \overline{V_{2}}+\left(x_{2}-x_{1}\right) \bar{V}_{3}\right] \\
& \varepsilon_{t}=\frac{3}{A\left(x_{1}+x_{2}+x_{3}\right)} /\left[\left(x_{1} y_{3}-x_{1} y_{2}\right) u_{1}+\left(x_{1} y_{1}-x_{1} y_{3}\right) u_{2}+\left(x_{1} y_{2}-x_{2} y_{1}\right) u_{3}\right]+ \\
& +\frac{1}{A L}\left[\left(y_{2}-y_{3}\right) u_{1}+\left(y_{3}-y_{1}\right) u_{2}+\left(y_{1}-y_{2}\right) u_{3}\right]+ \tag{VIII4}\\
& +\frac{1}{g L}\left[\frac{y_{1}+y_{2}+y_{3}}{x_{1}+x_{2}+x_{3}}\left[\left(x_{3}-x_{3}\right) u_{1}+\left(x_{1}-x_{3}\right) u_{2}+\left(x_{1}-x_{1}\right) u_{3}\right]\right] \\
& x_{y} y=\frac{1}{A}\left[\left(x_{1}-x_{3}\right) \overline{a_{2}}+\left(x_{2}-x_{1}\right) \overline{a_{3}}+\left(y_{3}-y_{1}\right) \overline{\bar{V}_{3}}+\left(y_{1}-y_{2}\right) \overline{v_{3}}\right]
\end{align*}
$$

Bestudern we nu weer de ooufionkelike vergelyihmig 100 geometrich mid－lineaise fioblemen $(\mathbb{1 7} 4)$ ：

$$
\left\{\sum_{k=1}^{N} \frac{\partial \varepsilon_{i}}{\partial u_{q}} s_{i i} \frac{\partial \varepsilon_{i}}{\partial u_{p}}+\sigma_{i} \frac{\partial \varepsilon_{j}}{\partial \varepsilon_{q} \partial u_{p}}\right\}_{q=u_{n}^{t}} \Delta u_{k}=f_{k}-\left\{\sum_{k=1}^{N} \varepsilon_{i} s_{i j} \frac{\partial \varepsilon_{i}}{\partial u_{p}}\right\}_{q=u_{p}^{t}}
$$

Si de matrix，die hel hineaír verband fuccen de rehhen In Npamingen legt，Lie formule（III 7 ）．
In appendit no \bar{Y} sín de aflidinigen geqeven van de henodigas matrices．The vollatann heet met de vemelding dat gelat：

$$
\begin{array}{ll}
\frac{\partial \varepsilon_{i}}{\partial u_{q}}=Q_{1} & \\
\frac{\partial^{2} \varepsilon_{z}}{\partial u_{q} \partial u_{p}}=G_{1} & \frac{\partial^{2} \varepsilon_{q}}{\partial u_{q} \partial u_{p}}=G_{2} \tag{⿻上丨ix5}\\
\frac{\partial^{2} \varepsilon_{c}}{\partial u_{q} \partial u_{p}}=[0] & \frac{\partial^{2} y_{y}}{\partial u_{q} u_{p}}=G_{4}
\end{array}
$$

shbelikueren wiy un（VIINS）in ac mit－lineause verge－ lyifing（TV4），dan ontelaat henelotte en vergeliginig， dii hel geometrisch mier－lineair gediag hevekift van sotatoriseh dymmetische cematuet ies in maticix notariei：

$$
\left\{\sum_{k=1}^{N} Q_{1}^{r} s Q_{1}+\sigma_{2} G_{1}+\sigma_{y} G_{2}+\tilde{r}_{2 y} G_{4}\right\}_{u=u_{n}^{r}} \Delta u=\Delta f+f_{n}-\left\{\dot{\sigma}\left[Q_{1}\right]\right\}_{u=u_{n}^{t}}
$$

In＝uitwendige belast higpvektor na n Hlappen．
$u_{n}{ }^{t}=$ verplaatoning vehtor na us slafpen en t íferatios．
Δu en of hinn de incrementar van de respedivivelifle voplatisingo－en belarlingovectior san de qochle cimstructic．

IIX Beschnionig van hel progiamma 050646008
"Berchering veertaratteristick met hehulfo van de methode der eindige elementes, waarby de Rlapgroothe in de betasing athankelyh is wan het avatat víciratieslappen

Allercest wit it heginnen met de hexchsionig san de spburibte procedures, sui in het programma getruiht wordin. Mbina tat it een beschryionig van het hoofdpro plaunina quen aan de hand van het semaakte tekema.
forcedure $\operatorname{STYFEL}(E, I, A, L, S)$.
In sure procedure wordit an matiixS, die thel oerband Hucen Apamnisiqu en tekhen leqt, qeireld.
seal. E = Marticiteitimodulus.
$I=$ opperolatrtetraagheidonmonent van de dwars deor-
onesle
$A=$ oppervlathte vom du dwarsdovencede.
$t=$ lesqte van het elenuct, ooispronhelijh.
anray $5[1: 3,1: 3]=$ bomocmden mahici.
procedure $\operatorname{HULP}(a, b, C, d, e, f, L E N$, st, en, Le, $K N)$. Mr dere brocedure worden eus acutal huelp giootheden herchend van eas hepacald balhelument.

peal $a=\sin \beta$

$$
\begin{aligned}
& b=\cos / 3 \\
& c=\sin ^{2} / 3 \\
& d=\cos 2 / 3 \\
& e=\sin 2 / 3 \\
& f=\cos 2 / 3
\end{aligned}
$$

integer st $=1$: hij de euste stap in de felathinquvertor 2: Mij alte voligen de etappen.
$e n=$ teller boor thet elementummmed.
anay $\angle E M / 1: 2$, live]: Te euthe holom is quuld med de vispionkelijhe lengt'es van het bockelement, hevary.l de hwrede holom suould is met de nuivive efatand hussen de hroopp nenten van hel element. Se $[1: 2,1: \mathrm{Ne}]=$ de le-veltor
$K K[1: 2,1: N]=$ array wavin de niveve tnoopphntscoirdinaten ofogeborgen tín.
procedure BELASTINGSVEKTOR $(T, \ln \beta, f)$.
In dure procedure woidt de tolale viluven dige belasiniquettor of quould met de in voer ing evens.
integer T =folaat aant al virkeidsqradus van dé comtructic.
arhay hep $[1: 3,1: N]=$ hep- vetitor
f[1:T] = Melact miqovertos.
procedure ONDEPSTEUNING (N, T, hefo).
In are procedure wordt de hup-vehtor guould, en het aantal viyheidsgraden Twan de eornticuetiei hepaald.
integer $N=$ aaulal huooppunten
$T=$ a antal vieikeids graden
anay hip $[1: 3,1: N]=$ hef-vettor oan de eorostuctie.
procedute INLE (Ne, le).
In euse proceduse worat xe lo vechton gevald.
inkeper $N e=$ a antal elumenten
array $\mathrm{Le}[1: \mathrm{R}, 1: \mathrm{Ne}]=$ de he vehtor.
 Ins dere procedire worden de matrices $N_{*} \frac{\partial{ }^{2} E_{1}}{\partial_{2} \partial_{p}}$,
$H_{0} * \frac{\partial \hat{\varepsilon}_{2}}{\partial u_{2} \partial u_{p}}$ en $H_{l} * \frac{\partial \hat{\varepsilon}_{3}}{\partial u_{q} \partial u_{p}}$ qeould. Hisma worden de de overcenkomatige temmes in dex 3 matices oppeteld en in de tolale geometiisehe matici van hel elenent Qeplaatet.
pal It = niviure lengte van het element, de verberidmigs. hin hurcen de truoopptutan.
digmal $=$ womaalkraeht N
Ligmas $=$ moment H_{0}
tigma $3=$ moments H_{l}
a, b, a, d, e, frivin de hulp grootheden vil de procedule

array $G_{1}[1: 6,1: 6]=N_{*}^{*} \frac{\partial^{2} \varepsilon_{1}}{\partial u_{q} \partial_{p}}$.

$$
\begin{aligned}
& C 2[1: 6,1: 6]=H_{0} * \frac{\partial^{2} \varepsilon_{z}}{\partial u_{z} \partial u_{6}} \\
& G \dot{0}[1: 6,1: 6]=H / W \frac{\partial^{2} \varepsilon_{3}}{\partial u_{g} \partial u_{p}} \\
& 4[1: 6,1: 6]=\text { som voun } 41+42+4,5
\end{aligned}
$$

procedure ORDEEPS (a, b, A, eps1, eps2, epss, Deps)
In dure fiocedure wordt de matrix $O(\varepsilon)$ quould.
Leal $a=5 \mathrm{~m} / 3$

$$
b_{0}=\cos \beta
$$

$t=$ nuevure tengte wan het elmentt.
$\varepsilon_{p 51}=\varepsilon_{1}$
eps2 $=\varepsilon_{2}$
epors $=\varepsilon_{3}$
auray $\operatorname{Oep} 5[1: 6,1: 6]=O(\varepsilon)$
procedure $\operatorname{DEPSDU}(a, b, l, Q 1, Q, T)$
In dure procedure worden matrices Q_{1} en de qetrans-
formeerde van Q_{1} bepaald.
Leal $a=\sin 1 / 3$

$$
\sigma=\cos \beta
$$

$t=$ neinwe lanqte oan thet element
anay $Q 1[1: 3,1: 6]=$ de matiex Q_{1}
$Q, T[1: 6,1: 3]=$ de getians forncerde van P,
prowdure VERHENIGVuLDIGING ($A, B, C, D, D T$). In aure procedure wordt de vermeniquoldinging wan 3 matrices nit quored, te wet en $D=$ PBC . Doves diein
woudt de setram formeerde van de matrix D heparald. anay $A[1: 6,1=3]-B[1: 3,1: 3]-C[1: 3,1: 6]-D[1: 6,1: 6]-D T[1: 6,1: 6]$.
procedure OPTELLINS (B, B, C, D, Qtot)
In dese procedure hinmen we 4 matices of tellen in hel resullat of de evevenk omstige flacks in Qrot ob hergen.
avay $A, B, C, D, Q t o b[1: b, 106]$.
procedure QKONSTRUKTIE (en, Qtot, le, lup, Q hon)
In dere procecure wordit de tolale tiy fheidomatix van hel element of de gebwifcliyte mamis inde thiffheidmatrix vain de getele combruetic Of geborgen. inkeger en=t teller boot het elenentummer.
artay Ptot $[1: 6,1: 6]=$ tolale oli fheidamaticix can hel element be $[1: 2,1: N e]=$ le - vektor
hup $[1: 3,1: N]=$ hup-vektor.
Qkon I:T, $0: b b]=$ Shi fheidomatix woot de pehele comstuetie in de Roqenaamele baudthectant.
procedure $C H$ oLBD (n, m, dec, a, b, fail). In dere frocedure lowen we het intersonante shelael Qhon $u=f$ op. Xe proecaure wordit. appendix no III beschreven.
procedure IITVOERFFTOT (N, fftot, hap).
In dess procedure vocren we de beladingsventioe vif un wel of de Volgende mavies:
, tonooppint $=c^{\circ}$ a b
$a=$ belastingseomp onent in throop puntt i in x-vichting
$b=$ helart ingscomponewt in knoofpentt is in y-isenting
$C=$ het moment in muoopprint L :
integer $N=$ aantal hnooppernten.
array fftot[I:T] = folale whwendige helactinigoveditor.
hap $[1: 3,1: N]=$ hap vehtor.
proeowie I ITVOERKNSIR (KN, SI, R, Ne, R, ST, N). In deer frocedure woidies de hrooppenntacoirdinate de spamunigen en de reteten wan de elencwten ma the stap in de wibuen dige belarting witgevoerd.
sinkeger Ne = aantal elenuntes
he = Hellu in broceduce UITVOEP
st = filler voor Lel aantal uitquorrde stafpen.
$S=$ a antal knooppunten.
auay $K N[1: 2,1: N]=$ hnoopp maticoädin aten.
$S I[1: 3,1: N e]=$ elke iy vertequivovrdigt de Apanviniqpivehtor boor cen bepaald Plement.
$P[1: 3,1: N e]=$ elhe iy vectequivordig their de rehucticor booi un hefoald elensent.
procedur HITGANGSHOEK (en, KN, le, hup, HOEK).
In dere prosedure wordt hel avray HOEN quould ma de hocken welte de elenventer met de x-as maken in wilgangopositic.
inhega en $=$ Kelles 100 , hel elementrumunes.
array $k M[1: R, ~ I: K]=$ hudopphntucoärdinaton.
be $1:-2,1: N e]=$ le vettor
hap $[1: 3,1: N]=\ln p-$ vektor.
HOEK[II: Ne] = HOEK[C.] io de hoek welhe element med de x-as in witgangopositic maalt.
proudue REKSPANITTERATIE (Cn,ue, R,KN, KNH, LEN, Le, hap,u, SI, $S, E, I, A, P_{S I}$, PSIH, HOEK).
In aue froceaure wordin na ethe Hap of :iteratio.de hroopfintresaindinaten axugepart, de verbinduighlin tusum de hnoobpmeten of de vicivere lngit van hel elvint berchend, de tparnmigen in hed elumut brekend en de terch thepaald welke hel elument mef de posikive t-as marht. He ruden waarom dere hock telkens herchend en aan gepout moet wordun, wardt in appendit no IV lethem deld.
inheges en = hebler elunentumoner
seal $E=$ elasticihicitomodulus
I = oppervlahte haa gheid pan de dwais devornede
A = obpewlalte dwassdooisnede
away $u e[1: 6]$ = verplaatringrvektor per element P[I:s, $1: N e]=$ rehtur van de elencuten.
$k N[1: 2,1: N]=$ Rnopphutsecördinates.
$K N H[1: 2,1: N]=$ hulfairay voot de hnooppmotsesisdinaton.
$\angle E N[1: 2,1: N e]=$ lengtes van de elementen : Sowat - lmimus.
be $[1: 2,1: N e]=$ le - ventor
lup $[1: 3,1: N T=\ln p$ - vetelor
$4[1: T]=$ vesplaato ingovehtor uns de constinktiè.
SIT $113,1: \mathrm{Ne}]=$ Apamuingen in de elementen.
$5[1: 3,1: 3]=$ matrik woor de Relatio husen verken in Pammingon.
PSITl:2, 1:Ne] = absolute hachorrdraaing h.0.v. vilgangs pocitic van hnoopplunt 1 man vas element $:$.
PSTH[I:Ne] = hocken, die de verbindingolinn tuwen de treouppunten van elevent' maakt mer de positive x-as.
HOEX[T:NeT = hocken die de elencut an in uitpanqppositic met de x-as maken.
procedure UITVOER (Ne, K, M).
In dixe procedure wordt de matrix H of een Apeciale vretichlelige mancir vilgevoerd.
integer $N e=$ aoulal ijien van de matixi.
R = aantal holommen van de maticix array $M[1: N e, 1: K]$
procedure VERHVEKTOR (ST, DEDU, velEtor, en)
In dese procedure wordt un vettor met en matix vermenvigvaldiged en osgetorgen is "vehtor
integer en = Hetler voor elamentinumuner
ariay $5 T / 1: 3,1: N E]=$-tp anvinigon in de elencenton

$$
\begin{aligned}
& \text { DEDu }[1: 5,1: 6]=Q++D(\varepsilon) \\
& \text { vebtion }[1: 6] \text {. }
\end{aligned}
$$

procowice PECHTERLID (veltor, hecthes, en, te, hop) In aure frocedure wordt de uitwendige belardingsvehtor herehend, door de trachtuchtorm, getianeforneerd noar het globaal aumunhelul, fer elennent ver de pehele comatruetic bi elhaser of te hellus. Heh newellaal wordet orgeborgen in ac veltor reekter. inheqer en = helles voot, eluncintuunumes
ansy metlos $1: 67$ = twacht wetlor ber elunent setrans forneed mad het globaal aventhelsel.
seckber $[I: T]=$ wordt ac henadude wikuendige helastuis wehton in ofpebargen.
Me $[1: 2,1=N e]=$ le whtor
$\operatorname{lng}[1: 3,1: M]=\ln$ - vektor.
hrocudure BANDBPEEDTE (2 , a the, avh, hop, hes, bl).
In dere procedure wordt de bandbucedte van de thiy.fheidsmatix herchend.
inkeqet $a e=$ a anflat elunenten
ate $=$ audal hrovopunten per element
avh = auntal vrifheidograden pee tnooppunt
bl = bandbuciate
avocy $\ln [1: 3,1: N]=$ hup. vettor
les $\left[1: 1,1: N_{4}\right]=$ le- vehtor.
Hoats in het begin wan ait horfastuch gesteld ri, volgt nu en houte beschiyimig vou hil hoofaibropramma (osob4bods) aan de hand voun het gemaakte Blokechema:
Alleverst wordun de nodige invoergeg evens ingelenen, waasma met ee procedure UITGANGSHOEK de threhus van de elmmenten
 BANDBREEDTE hepaalt vewolgens de Re vewwedten bandbrexte van de totale tijflidamatiix. Madal de tolale uitwendige belasiniqsventor is ingelesen, wordt de belartingtotap hepaald Aloot de componenten van de tolale helactingovektor he delen deve hel aantal geschathe tlappen in de helasting. Hhima woudt nut hehulf van de procedures thW SP, STYFEL, GOM, ORDEEPS, DEPSDU, VERMENIGVULDIGING, OPTELLING en QKONSTRUKTIE de Lolale Hę̈epheids-
 en RECCHTERLID worat ace henaslinquelitor hachend doo alle medergrootheden in de haoppliniten hijchlase op te tellon en
 nuelelided wood me op jurald mel hal wacthil von ac meets-

 wasiaan al veltos sectherlid sal maeden volotaen om hel wifoounig von ou vot fued tlap mor te facan. Jere evikesia

 "Componut ongeligh aan uul in en ein atodute of fury hring

 potae of seliffin aou da Male helacimigoveltor, ho a, dan
 weer gebhem is of we ac helosting gelas mocten wergothy

(1) Llam de qutedae ovitria woove nief olvas.
 Bheahicelapper bemoden em bopoaldo in the lim getal higt.

 in de belasling. De octhomsuetbedide in weht hifle helas

 a procedwe CHOLBD. Sodls ou matixix Q med hovitid aifminal sins, dam wodd oppinimu gentait bid her enide oan du toongaande Hap, masi dean mel hatue rep propte in ide be-

 oun at thiffhiinmathix Plham maximaal $5 x$ adeles elhase

 ma guariniga wordens. Wo au thif hieamatuix Q wel poikiy aufouit, ban wodit hal shelul met CHosBD of gubsh in mat

 OPina wodt wres Opmencu hnet oe aploww van ab thithewemmatix en vecturlix legomen, waama her hiviowo

I hineaine Stabiliteit.
In hoof sunhech IV is de volgende selatie voor seome bivich nit-' lineocise problemen ef seleid:

$$
\begin{equation*}
\left.\left\{\sum_{k=1}^{N} \frac{\partial \varepsilon_{i}}{\partial \varepsilon_{q}} \sigma_{i j} \frac{\partial \varepsilon_{i}}{\partial u_{p}}+\sigma_{j} \frac{\partial^{2} \varepsilon_{i}}{\partial u_{q} \partial u_{p}}\right\}_{u_{i=u_{k}}^{t}}=I_{k}-\int \sum_{k=r}^{N} \varepsilon_{i} \Gamma_{i} \frac{\partial \varepsilon_{i}}{\partial u_{j}}\right\}_{\mu=u_{k}} \tag{I}
\end{equation*}
$$

Bi Sineaire Habilikit of huik, worde ran gmomen, dat de lineaire relatier hucim ore voeplaatinigen en rethen getrindchaafor bliven, nodal we de $O(c)$ loy ourage mutbig bumnen verwactoren.

$$
\begin{equation*}
\frac{\partial \varepsilon_{i}}{\partial u_{p}}=Q_{1} \tag{xa}
\end{equation*}
$$

Subdinutie van (I_{2}) in $\left(\frac{P}{\prime}\right)$ geeft nu ae volgende vergelifting in matic notatie (hic formules (vivis).

$$
\begin{equation*}
\left\{\sum_{k=1}^{N} Q_{1}^{r} S Q_{1}+N * G_{1}+M_{0} G_{2}+M_{1} G_{3}\right\} \Delta n_{k}=A_{n}-\left\{\sum_{k=1}^{N} \sigma Q_{1}\right\} \tag{3}
\end{equation*}
$$

 hhel limeais blijven, hodal vergelighmg $\left(I_{3}\right)$ niech hequecert

$$
\begin{equation*}
\left\{\sum_{k=1}^{N} Q_{1}^{r} 5 Q_{1}+N G_{1}+M_{0} G_{2}+M_{2} G_{3}\right\}_{M_{k}}^{\prime}=F_{k} \tag{4}
\end{equation*}
$$

2o comstuetic is doun en stents cian imataliel, hooua de relatic huccen telasting in verplaatinig nit nuer gedefinivierd is. Hit hetekculs Nat hel Shetuel (X Q a fhanheligh wodt, wat we ab volit hmmen formulem:

$$
\begin{equation*}
\operatorname{det}\left\{Q_{1}^{\prime} S Q_{1}+N G_{1}+M_{0} G_{0}+N_{2} G_{s}\right\}=0 \tag{0}
\end{equation*}
$$

De wavarden wow de Mpanniggentorm, want dase sinn immers nog de enige variablen in $\left(X{ }^{5}\right)$, wasiby (\bar{y}, If filan helifh wbratt, lat de ba aqsh liqumanarde van hel stehel sipn. 2e hierbig bekorende spamunigoveltoren tumen we berekenen, hodal we pok ac miluren dige heladringovehlor
hunnen bepalen, wave biy de corstmetie fuest histabili i: tese hivroor omsehicuen quocochtungang ligt aan het cemphterprogramma 05064355, ss herchuming vom de huichhrackt vou en vahwerk, met behelf vain de elementen. methode, wasmi teveus da verpataatinigen en an "heach. then in de huooffinuten hepaald hummu worden." san then giondslag. Te sullen hiei en houte busehvioning van hel bro gramma qeven aan ac hand san hel biygaande blokschema:
Whe hegimens met het inberns van de usdige innoceqeques. warbiy we, met hehulf, an de procedure PPoFIELKELSE in that sijs om ti prineipe en emstwehie net is Lositen balhelomenten he bevehenen. Hewol gues warde met al procedures HIKLP, STYFEL, DEPSDU, VEPMENIGVULDIGIEY en QKONSTAUKTIE de Lolale thifhiarsmatiix van de censtivehie op petomed. Inet de hibliothuhp rocedures CHOLESKI DEC OMPOSITION E. CHOL ESKISOLU TION wontt her limeain theluel

$$
\varphi_{u}=
$$

op gelost. Hficina wordt vor
 assmothkel getioun formeerd nows het blale arenateshet, hodar we met bikulf oan formule (II) de tohale Spannin pers in hes element humees borehemens. Reve Apanming en tijn me oot jurit en prootheding, alie we in ae proceducr GOM nodig helthen om de peometiciche matives the vublen, nodat we els tolak Geomelsiveh matixix van de comstuctie humnen oplourvees. Anet hehulf van de hibliothectprocedure GENERAL EISEN VBLUF PROBLEM towen we nu hil wolpende theled op:

$$
\begin{equation*}
\operatorname{Det}\{Q-56=0 \tag{x7}
\end{equation*}
$$

Dise procoure berchut de iiqumaardm en iigemveh toren van de comtruetie. De hlimite iiqumarde me it en maat voor de haibbladlnig, hel is mavelyith em nemocrig valodigningo foctor, hodat we voor de hirike-
basting het volyende humen sehiriven:

$$
\text { Mhaik }=1 f * P K
$$

AShint = himhbelartmig
If = wihwen dige belad merpsechioe
Ph = laagute ex gewwarde, de vernmenig vuloighigpfactor
Io bi de laazpte riqumrande hovende eiquvehtor queft feuclotte ew beeld hae de thand wan de combruetii na wifmikhen io.

Whe tuellen nu het tol gende boorbuelod dorreheusen:

$$
\begin{aligned}
& F=N_{m}^{2} \\
& Z=1 m^{4} \\
& I=1 m^{4}
\end{aligned}
$$

We vin dem hel wol gende shelel:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 12 & 6 \\
0 & 6 & 4
\end{array}\right]\left[\begin{array}{l}
\mu_{2} \\
w_{2} \\
\psi_{2}
\end{array}\right]=\left[\begin{array}{c}
-N \\
0 \\
0
\end{array}\right]} \\
& u_{2}=-N \\
& w_{2}=0 \\
& \psi_{2}=0 \\
& \varepsilon_{1}=-N \\
& \varepsilon_{2}=0 \\
& \varepsilon_{3}=0
\end{aligned} \quad \sigma=[
$$

Derqelifinig (FF) hingt nu or toljende gedaoute:

$$
\operatorname{Pet}\left[\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 12 & 6 \\
0 & 6 & 4
\end{array}\right]+\frac{N}{30}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 36 & 3 \\
0 & 3 & 4
\end{array}\right]\right]=0
$$

Dit hunneen we herbiden tot:
$\operatorname{Let}\left[\frac{100}{N}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]+\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 63 & -90 \\ 0 & -6 & 15\end{array}\right]\right]=0$

Shellen we nu $\lambda=\frac{180}{N}$ dan moeten we het volgende eiquwasoupioblem oplown:

$$
\operatorname{Aet}\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 63-1 & -90 \\
0 & -6 & 1 s-1
\end{array}\right]=0
$$

Xe harabterititike purqelighnig inu:
$-1\}(63-1)(15-1)-540\}=0$ mas ah eiqum a arden

$$
d_{1}=0
$$

$$
d_{2}=72
$$

of $\frac{180}{N}=7^{2}$
De huikhlacting in m: $P_{k N}=\frac{180}{72}=2,5 \mathrm{~N}$.
oftewet wor willehenicige E, I en b :

$$
P_{K N}=2,5 \frac{E I}{l^{2}} N
$$

He exatite oflossing is:

$$
P_{\text {eules }}=2,485 \frac{E T}{b^{2}} N .
$$

 het effeet van ae nomaalhiaekt. Ti duns da hasludeming van de geomutirethe mil-Livearitil bleen eekter, dal ele peometrische mativies Y_{2} en G3 (niehorfoutatit, oth nog em sol thelen in het eigew aserd problem. IH litherakuer (IV) wordt eexher avidulyik serteld, dat het moment pien inolocd hefft of on Habilificits. waarde. Daarom is het programma 0.0644355 quebreven on eventivet verselithen in de hmikblassing aou be tonem. Re eorvehuci msett rijen, dat M', althaur boos ae berckuon voobhellau, gen enket verschil hertaat voor de knikhelailinig. Poot hogere eifenw acorocs head en surientile verschil of.

II Rewelaten us opmerhinigen
 gramma 05064608 hebben we en aculal hoobledom oworqerehend, wawan de gequens verenneld syim in apfendeix.I. Of ac eurhe plasts is oe emaijocig ingellemade bladvee
 em hel fergramma the hecter. We vonden met veuschitlende aonlallen elementen een seer goede hunadernig van ere exalte hromme (yeafint IT). Grafich III seff de verovinde toceland van de fladvees weer hiy $M=46,752 \mathrm{Nm}$ en biy $\pi=42 \mathrm{Nm}$.
Gafinh IIT veeft de werharaktevinhih van eun bladver belad met ees awantraett. Vrieficatie wridt un dese reuelsatem in quafiot II ploats. \$/ cuse giofin is de qetiokhers lin berekend of ac hbaviche methode th wetem met de elleptivehe integrater, sie liftiatumet (I + II). H2 lifkerakeur (I) wordt forendicin de berehivion'g sam een ana-elventt poquen voor gete
 de herekende hromms met het in oui verclag heseticuen geomefiisch wet lineaike balkelemchat; te conclucie mod syis, dat hel rewllaat wifidikind hlopt met se Alacicike opbsenig. Grafish I quet en indrute van de vervormde toestand van een Bladveet ondes en dwavshackt von 150 N. Graficik III quet Ne venkavaktevichick I.q.e. em dwashracat en finigend moment wan cen bendel. Grafich VIII geeft west en vi dunt van ea vervosmsle tocetand by ens mosment inan 1,45 Nm en cen selwashluats van $2,9 \mathrm{~N}$
Aan euc hand oan grafuit III humnes we ewidili) sen lueperking wan het fero sramm a dumourtresm. In het programma hunner we allem mavi en povikive recpectiveligh negative beloulnigestap socdince. Xit wil reggen, kodra we em maximums renpeelivivelyik minvimum sam de werkarathticiobiel maderen, de
velakii tuecen belanting en verplaatuig theeds Abekher gedefincicret hal sijins of temet de tolale Ahifteidinmatrix ial wit to hext nues speondidioncus ryin. Dis betchent dat in hel pro gramina theeds meer ixerakiectappen Plaatsonidun hy theedo Lliner worelma belashingutappen. De vaag siet nu, hoe hummen ver un over een dergeligh maximum respeetivelijk minimem hienteomen. Hfel vermacem bustond dat ait ori gemakhelyik sou himmen ned em ovorgevkreven verplaats in govehtos in flaaks son en belaeringovektos. We heblem het propramma aaugepart, movar het bleck op groke mocilijhleden he shuiten en mul de volpende:
De verplacto niquettor van ae vovigaande stay wordt qebrintht voor en volgende thaf. stekel Q.Au $=\Delta f$ worat wifquechend. The oniden un ren Δ f. Dere Δ of worect m qebrwikt voor het founcren van au viccuve ust wendige helartnigo vehbor. SHet erikerium voor het al of mit inereven hebben we on grwinvigd pelatem
 het versehil

$$
\varepsilon \delta \frac{\partial \varepsilon}{\partial u}-f .
$$

Biy de herkeunigen bhek, dat het iteraki prows bleuf divergeren ovk nog na ien aaribal malun halveren wan de vooigesckieven veepla ato migs vektos. Keunebifh is de voorgesetriev verplato in govedior Δu Lo'm tlecthe tethatinig woor ol werhely he verploatonigovellor, dar ae bij duse Δu hehovende Δ If so thexlic (wach wed he groke Ntappen guonden vor 4 f) dat hiy het ihereven het proves divivesq eest. The sullen de worgerchreven veiplaato ingochehtor daarom preciixer macten herekenen, bojo divo eert x moal een belastniguta/ he doen, de bijbchoren de verplaat ingpvethtoren onthouden, om na dure K stappen door numerieke extrapolatio em betere shatinig voor
de werhelyike Δu the prigigen.
Graficit IX geeft verkaiahteritheit van eun petiromde hlaolveer, terweyil giafeet III een inderch geeft van ale vervornde hoektand. Coun de hound van oeit boverheetd swllen we en merkurarenig versthyindel berfethens wat sok by's de andere vorrheeldu is qeecsatakeerd. In prafiek II tekhen we de qehrannde fladveer in 16 Nementa verdeeld wan on gever gelythe Den pte. Dle pontakersan dat ee weerharahtercisicit na 9 belartingetsappen os een groothe wan $D 1 N$ is qekorcen, het ofpervilatite Fraagheidenorment is $0^{-5}-1 \mathrm{~m}$ " Wh laten het pro. grainma opccium sekenes net meer seturkid pi ponthaperes dat na het bervitur wan dese 82 N de plap grotte heel suel apreent en het aontal iderakieitheptin thest townent. Dit lachbik sucigh evep, dat het ctheratieproces thect convergecte. tr 29 thappen bercihen we punt B mi grafieit IP met mog een thap groothe wan
$0,00125 \mathrm{~N}$. $0,00125 \mathrm{~S}$.
Graficite I speft se veerharatiteriokith won derelf ace
 in s Delennwiter wan onquen selyke teuqte verdiceld is. Whe inerten mmuidelelijh of, dat het froued hair Nutier nowar het moximun von de wecikaraktanikin loopt nut recelyite thap proothes wan 2 a 4 N. Xe hatche thap was 0 , 5 .
Het mertewamaigh in vu, dat we met nui der thementen hennelyh hetere renclatan verkiygm, waorvan miy de ovitaak op xit monnent wog wel qehwel dvidely tei. Hen mogetike vertelaring wiac ootgende: Wh we cen fyur Alcurntwerdelnig heblun, daw berlatat de nesqelikhiid, dat tyidus en belatingsutap en bepara elevnent neiving vervormo. Dat urit regqem dat de selation thesen Ho anucinga en swepthatomigen of alat moment slevt peocfinceicet tyin, nodalt de Desomne vow de tparnisig - veplaatsmig of an maximum rewpech wiere. Bitk nuinimun sit. Dit han dav sýn Nffeet hebben. in or tolale othy; theidmatrix, dui dan slewt peeen di.
tionuerd tan kinn, temmincte si sei hethemi, deal it de trop sioothe sheds Rhince sal methen matu
 Iner minowr elementen sal ou wrovinuig ber elvent Gister ain, iodar ace -spanming-veplashoviguclatios luter quoufinicerd im.
hilht voorgaonde Kan minchin greonelesderd worden, ocal vee de elementwerdeling tectum mactu amp accu

 in tus grome elemutwerviling in qetioden waor de Mouming weinig meen verdrowt.
Whe dacht dar her gibuikte cowrergentiecribivim
 orblamen bal mueten woiden. It parauil XIII in oc moment-verphaticigsphomme von in gethomea shotuat suergeguem nel fol shotm. gra fink DE ou verwomod bouland biy em monuent tom 60 Nm .

APPENDIXI T

GPAFIEKEN

APPENDIX II
Bepaling van $\int_{x=0}^{1}\left(\frac{d u}{d x}\right)^{2} d x$
We buschouwen cen ellment in cerwomsele toentand:

She thmmens eec lungto van het, bathelement in mewomoce hoe stand berchenm.

$$
\text { Cowounat }=\int_{0}^{\infty} d s
$$

Terder hummen we de volgande relatier afleidem:

$$
\begin{aligned}
& d s=\left(d \vec{x}^{2}+d \vec{w}^{2}\right)^{1 / 2} \\
& a s=\left(1+\left(\frac{d u}{d x}\right)^{2}\right)^{1 / 2} d x \\
& \text { ds } \left.=\int 1, \frac{1}{2}\left(\frac{p u s}{a r}\right)^{2}\right\} d x
\end{aligned}
$$

De, couspronkeligh llugto van her elemutt is h, hodat ou engteverandeuning K. $q .0$ het, \bar{w}-veld geligh is aam:

$$
l_{\text {nevorend }}-h=\frac{1}{2} \int_{0}^{1}\left(\frac{d x}{d x}\right)^{2} d x
$$

 henaderd; huncipl we het i- veld met in ecest-gracads polynovm hivaderor hedhen.

$$
\begin{aligned}
& \bar{w}=a_{3}+a_{4} \bar{x}+a_{5} \bar{x}^{2}+a_{6} \bar{x}^{3} \\
& \bar{u}=a_{1}+a_{2} \bar{x}
\end{aligned}
$$

De randuoowaarden Lifn:

$$
\begin{aligned}
& \bar{x}=0 \quad \bar{u}=0 \\
& \bar{\omega}=0 \\
& \frac{d \bar{\omega}}{d \bar{x}}=\bar{H}=\xi \\
& \bar{x}=l^{\prime} \quad \bar{u}=h l^{\prime}=u_{2} \\
& \bar{\omega}=0 \\
& \frac{d \bar{o}}{d \bar{x}}=-\bar{\Psi}_{2}=-\xi_{3}
\end{aligned}
$$

Thet dere randwoorwardem humnen we boor hel $\bar{\omega}$-veld de volpende vergeliphing afleiden:

$$
\left.\bar{w}=\varepsilon_{2} x,\left\{1-\frac{\bar{x}}{b^{3}}\right\}^{2}+\varepsilon_{3} \frac{\bar{x}^{2}}{l^{2}} / 1-\frac{\bar{x}}{\ell^{0}}\right\}
$$

of in vehtomalatic:

$$
\begin{aligned}
& =\frac{l^{3}}{2_{0}}\left[4 \bar{\psi}_{y}^{2}-2 \overline{\psi_{1}} \overline{F_{2}}+4 \bar{\Psi}_{2}^{2}\right]
\end{aligned}
$$

APPENDIX III
Bectivionig wan de proceouue CHOLBD (n,m, der, a, b, fouis Feqever is het stehet vergelijhingon met reiele componenten,

$$
A x=6
$$

wavin A en n-ryïge symme -
tirche posihif- Defímite matrix is, die en bandsturetour heeft. Dus de intereu aute bennen van de maticix o hinn on de hoofdediagonaal seconcenturerd.

He bandbreate m van de matixix A oufiniiren we nu als het sulat xat ann peeft wethe laatite eo-diaqonaat in' het reentsloven quacelte wan A nog termen ongelyft aan uul hevat, bexin vanaf de hoofldigonaal wan A. Dit hetehent

$$
A[i ; j]=0 \text { woor }|i-j|>m \text {. }
$$

He matix A ontbinden wer in 2 matives I en Pen wet rodanig, dat

$$
\begin{aligned}
& A=\angle P \\
& \angle=P
\end{aligned}
$$

in Pis een 3 hochomativit, diw.2. Sellem het seetter fovengedultie is quadd.
Omdat A en tymmeticche matrix is, hoeft men Nlechts het reentehvengedulte te hemmen. Dese inkerensante gegevens bergen we ecaarom in de matiox

$$
a[1: n, 0: m]
$$

Re diagonaalelementan van A slaan un of a [i;o]. Le hermen woaruoo $i^{\circ}+j>n$. fomen in de matiox a hermen boot, die geAhk aon mul rijs.
Al naor gelaing de keuse van de farameter dee, sout de procecure de orlquide beverkingen wil:

Se label fail vout de vilpang ats de matiext niet posinuef definiel is.

PPPEND/XIII
By de frocedure REKSTANITTERATIE i de opmertming geplautrl, dat we na ethe Nlap in de withven digy helaitmigs. vektor, of na dhe óteratii. de hoch dic de verbindings-
bin wan de 2 huoofobunten van elevent i maakt nuet de bin wan de I huoofopunter van Slewent i maakt net de x-as opnciuw ncocters berchmen. Ait nocten we bebkems doen, mdat dure hock in de rehoufinities geburuitet word.

Sigio: $\sigma_{2}=-\psi_{1}+\arctan \frac{y_{2}-y_{1}}{x_{2}-x_{1}}-$ arctan $\frac{y_{2}-y_{1}+w_{2}-w_{1}}{x_{2}-x_{1}+w_{2}-u_{1}}$ \#, is tueivin de absolute hochverseraaiing dat element ' $'$ is het euste huooppunt ondergaat R.q.O. Delartings - of intinatio. Hap.
aretan $\frac{y_{2}-Y_{1}}{x_{2}-x_{1}}$ is de hoch, wethe her Aleunewt mi uilgangsposilic maakt met de x-as. Dere Kummen we door en eumalige herehemnig vantleggen. (broudure IITGANGSHOEK)
avetan $\frac{y_{2}-y_{1}+w_{2}-w_{1}}{x_{2}-x_{1}+u_{2}-u_{1}}$ wethetur we ooh inderidig vastlegqen en $x_{2}-x_{1}+u_{2}-u_{1}$ wel of een hodanige macuir, dal de respecticivelite ε_{2} en ε_{3} continue fintilies van de verplaatonigen hyins.
He werhwiste gaat mu ab volgt:
thel $H_{0}=$ aretan $\frac{y_{2}-y_{1}+w_{2}-w_{1}}{x_{3}-x_{1}+u_{2}-u_{1}}$

hit ex figunt hien we, dat gelat:
$\beta=400+\alpha$
The nemen acen, dat too behemed is. We willen see hock a bep alun. We A Aun formeren hirvoor de verplationigs ocktor $M_{u}=\left[\begin{array}{lllll}u_{1} & w & \Psi_{1} u_{2} & w_{2} & Y_{2}\end{array}\right]$ naas het lobele arkeurtehed $\bar{x}-\bar{y}$.
The golat:

$$
\begin{aligned}
& \overline{u_{1}}=u_{1} \cos \beta_{0}+v_{1} \sin \beta_{0} \\
& \overline{V_{1}}=-u_{1} \sin \beta_{0}+v_{1} \cos \beta_{0} \\
& \overline{u_{2}}=u_{2} \cos \beta_{0}+v_{2} \sin \beta_{0} \\
& \overline{v_{2}}=-u_{2} \sin \beta_{0}+v_{2} \cos \beta_{0}
\end{aligned}
$$

The beectemen we ex hoek at alg oolyt:

$$
\alpha=\arctan \frac{\bar{v}_{2}-\bar{V}_{1}}{\left[E N_{1} / \overline{e n}_{2} \sqrt[2]{ }\right]+\bar{u}_{2}-\bar{a}_{1}}
$$

Whe stellen nu:

$$
\begin{aligned}
& \overline{V_{1}}=y_{2} \\
& \overline{V_{1}}=y_{1} \\
& {\left[E N[\overline{C n}, 2]+\overline{u_{2}}=x_{2}\right.} \\
& \overline{a_{1}}=x_{1}
\end{aligned}
$$

Dan definieiren we $\alpha=$ aretan $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ ato volgt:
(1) $x_{2}>x$, elan $\alpha=$ avelom $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
(3) $x_{2}<x$, en $y_{2}>y_{1}$ dan $\alpha=\arctan \frac{y_{2}-y_{1}}{x_{2}-x_{1}}+\pi$
(3) $x_{2}<x$, en $y_{2}<y$, etan $~ r=$ arelan $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}-\pi$
(7) $x_{2}=x$ en $y_{2}>y_{1}$ dan $\alpha=\frac{\pi}{2}$
(8) $x_{2}=x$, en $y_{2}<y_{1}$, cian $\alpha=-\frac{\pi}{2}$.

2e hoct α io nu $c^{3} n d u i d i g$ geafiniverd in

$$
-\pi \leqslant \alpha \leq \pi
$$

Su berchemen we hock fo ats colyt:

$$
\beta=\beta_{0}+\alpha
$$

en huina hriggt to de waande
van fo. Duet andere woorden, we helber ervoot gerongd dat de avetan $\frac{y_{2}-y_{1}+w_{2}-w_{1}}{x_{2}-x_{1}+u_{2}-u_{1}}$ en enstivuce funtitic lwan de Hnooppuntoverplaato migen is, modat we de hack helkens h.o.v. Dyin fuist vooraf gaande tlap berehenes.

APPENDIX \bar{I}
Afleiding van ac matrices $\frac{\partial \varepsilon_{i}}{\partial u_{p}}, \frac{\partial^{p} \varepsilon_{i}}{\partial u_{z} \partial u_{p}}, \frac{\partial^{*} \varepsilon_{y}}{\partial u_{q} \partial u_{p}}$ $\operatorname{mn} \frac{\partial^{2} y_{z y}}{\partial u_{g} \partial u_{p}}$
Enkele hulf defferentiatios:

$$
\begin{aligned}
& \frac{\partial \overrightarrow{u_{2}}}{\partial u_{1}}=-\cos \beta \cos \beta_{0} \\
& \frac{\partial \bar{u}_{2}}{\partial u_{1}}=-\cos \beta \sin \beta_{0} \\
& \frac{\partial \overline{u_{s}}}{\partial u_{2}}=\cos \beta \cos \beta_{0} \\
& \frac{\partial \bar{V}_{2}}{\partial V_{1}}=-\operatorname{sui} / \frac{s}{2} \sin \delta_{0} \\
& \frac{\partial \overline{u_{2}}}{\partial V_{1}}=-\sin \beta \cos \beta_{0} \\
& \frac{\partial \bar{v}_{2}}{\partial u_{2}}=\cos \beta \sin \beta_{0} \\
& \frac{\partial \bar{u}_{z}}{\partial v_{z}}=\text { sinis cospo } \\
& \frac{\partial \bar{v}_{2}}{\partial v_{2}}=\sin \beta_{\sin } \sin _{0} \\
& \frac{\partial \bar{u}_{z}}{\partial u_{g}}=0 \\
& \frac{\partial \vec{V}_{z}}{\partial u_{3}}=0 \\
& \frac{\partial \overline{u_{2}}}{\partial v_{3}}=0 \\
& \frac{\partial \bar{z}_{z}}{\partial v_{3}}=0 \\
& \frac{\partial \bar{u}_{3}}{\partial u_{1}}=-\cos \gamma \cos (\gamma-\alpha)-h_{13}^{\prime} \sin (\gamma-\alpha)\left[\frac{\sin \gamma}{\operatorname{l}_{13}^{\prime}}-\frac{\sin \frac{1}{3}}{h_{12}^{\prime}}\right] \\
& \frac{\partial \overline{u_{3}}}{\partial \nu_{1}}=-\sin j \cos (\gamma-\alpha)-l_{13}^{\prime} \sin (\gamma-\alpha)\left[\frac{-\cos \gamma}{l_{13}^{\prime}}+\frac{\cos / 3}{l_{13}^{\prime}}\right] \\
& \frac{\partial \bar{u}_{3}}{\partial u_{2}}=-\frac{l_{13}^{\prime}}{l_{12}^{\prime}} \sin (\gamma-\alpha) \sin / 3 \\
& \frac{\partial \overline{u_{3}}}{\partial v_{2}}=\frac{l_{13}^{\prime}}{\overline{l_{12}^{\prime}}} \sin (\gamma-\alpha) \cos \beta \\
& \frac{\partial \overline{u_{3}}}{\partial u_{3}}=\cos \gamma \cos (\gamma-\alpha)+\sin (\gamma-\alpha) \sin \gamma \\
& \frac{\partial \bar{u}_{o}}{\partial V_{z}}=\sin \gamma \cos (\gamma-\alpha)-\sin (\gamma-\alpha) \cos \gamma \\
& \frac{\partial v_{3}}{\partial u_{1}}=-\cos \gamma \sin \cdot(\gamma-\alpha)+h_{18}^{\prime} \operatorname{ec}(\gamma-\alpha)\left[\frac{\partial \sin \gamma}{h_{18}^{s}}-\frac{\Delta i n g s}{h_{13}^{\prime}}\right] \\
& \frac{\partial \bar{\nu}_{3}}{\partial \nu_{1}}=-\sin \gamma \sin (\gamma-\alpha)+l_{13}^{\prime} \cos (\gamma-\alpha)\left[\frac{-\cos \gamma}{l_{18}^{\prime}}+\frac{\cos / 1 / 3}{l_{13}^{\prime}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \bar{v}_{3}}{\partial u_{2}}=\frac{\mu_{13}^{\prime}}{b_{12}^{\prime}} \cos (\gamma-\alpha) \sin \beta \\
& \frac{\partial \bar{V}_{3}}{\partial V_{2}}=-\frac{\mu_{10}}{\operatorname{l}_{18}^{\prime}} \cos (\gamma-\alpha) \cos \beta \\
& \frac{\partial \overline{V_{3}}}{\partial u_{3}}=\cos \gamma \sin (\gamma-\alpha)-\cos (\gamma-\alpha) \sin \gamma \\
& \frac{\partial \overline{V_{3}}}{\partial V_{3}}=\sin \gamma \sin (\gamma-\alpha)+\cos (\gamma-\alpha) \cos \gamma
\end{aligned}
$$

Terder seburiken we nog:

$$
\begin{aligned}
& y=\arctan \frac{y_{3}-y_{1}+v_{3}-v_{1}}{x_{3}-x_{1}+v_{j}-u_{1}} \\
& \frac{\partial \mu}{\partial u_{1}}=\frac{\Delta m_{1} \psi}{l_{18}^{g}} \quad \frac{\partial \gamma}{\partial u_{2}}=0 \\
& \frac{\partial \gamma}{\partial u_{3}}=-\frac{\Delta m j}{l_{13}^{\prime}} \\
& \frac{\partial \gamma}{\partial v_{1}}=-\frac{\cos \alpha}{l_{13}^{3}} \quad \frac{\partial \gamma}{\partial v_{2}}=0 \\
& \frac{\partial \gamma}{\partial v_{3}}=\frac{\cos \gamma}{\operatorname{lin}_{13}^{9}} \\
& \alpha=\arctan \frac{y_{2}-y_{1}+v_{2}-v_{1}}{x_{2}-x_{1}+u_{2}-u_{1}} \text {-arctan } \frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& \begin{array}{lll}
\frac{\partial \alpha}{\partial u_{1}}=\frac{\sin \beta \beta}{l_{13}^{3}} & \frac{\partial \alpha}{\partial u_{2}}=-\frac{\sin \beta}{l_{12}^{\prime}} & \frac{\partial \alpha}{\partial u_{3}}=0 \\
\frac{\partial \alpha}{\partial v_{1}}=-\frac{\cos / 3}{l_{13}^{\prime}} & \frac{\partial \alpha}{\partial v_{2}}=\frac{\rho_{13}}{l_{12}^{3}} & \frac{\partial \alpha}{\partial v_{3}}=0
\end{array} \\
& B=\arctan \frac{y_{2}-y_{1}+v_{2}-v_{1}}{x_{2}-x_{1}+u_{2}-u_{1}} \\
& \frac{\partial \beta}{\partial u_{1}}=\frac{\sin ^{-1} \beta}{l_{12}^{2}} \\
& \frac{\partial B_{3}}{\partial u_{2}}=-\frac{\mu m_{1} \frac{3}{2}}{l_{12}} \\
& \frac{\partial \alpha}{\partial u_{j}}=0 \\
& \frac{\partial \beta}{\partial V_{1}}=-\frac{\mu 01 \beta}{\ell_{1,3}^{3}} \\
& \frac{\partial / 3}{\partial \nu_{2}}=\frac{\operatorname{los} \beta}{l_{12}^{3}} \\
& \frac{\partial \alpha}{\partial \tau_{\delta}}=0
\end{aligned}
$$

The mullen ne regimen mel de matrix $\frac{\partial \varepsilon_{c}}{\partial u_{p}}$

$$
\begin{aligned}
& \frac{\partial \varepsilon_{1}}{\partial u_{1}}=\frac{1}{A}\left[\left(y_{3}-y_{1}\right) \frac{\partial \overline{u_{2}}}{\partial u_{1}}+\left(y_{1}-y_{2}\right) \frac{\partial \bar{u}_{3}}{\partial u_{1}}\right] \\
& \frac{\partial \varepsilon_{2}}{\partial v_{1}}=\frac{1}{\bar{B}}\left[\left(y_{3}-y_{1}\right) \frac{\partial \overline{u_{3}}}{\partial v_{1}}+\left(y_{1}-y_{8}\right) \frac{\partial \bar{u}_{3}}{\partial v_{1}}\right] \\
& \frac{\partial \varepsilon_{2}}{\partial u_{2}}=\frac{1}{A L}\left[\left(y_{3}-y_{1}\right) \frac{\partial u_{3}}{\partial u_{2}}+\left(y_{1}-y_{2}\right) \frac{\partial \overrightarrow{u_{3}}}{\partial u_{2}}\right] \\
& \frac{\partial \varepsilon_{2}}{\partial v_{3}}=\frac{1}{A}\left[\left(y_{0}-y_{1}\right) \frac{\partial \overline{u_{2}}}{\partial v_{3}}+\left(y_{1}-y_{2}\right) \frac{\partial \bar{u}_{3}}{\partial v_{2}}\right] \\
& \frac{\partial \varepsilon_{2}}{\partial u_{3}}=\frac{1}{B L}\left[\left(y_{3}-y_{1}\right) \frac{\partial u_{3}}{\partial u_{3}}+\left(y_{1}-y_{2}\right) \frac{\partial u_{3}}{\partial u_{3}}\right] \\
& \frac{\partial \varepsilon_{z}}{\partial v_{j}}=\frac{1}{A L}\left[\left(y_{3}-y_{1}\right) \frac{\partial u_{z}^{-}}{\partial \xi_{3}}+\left(y_{1}-y_{2}\right) \frac{\partial u_{z}}{\partial v_{j}}\right] \\
& \frac{\partial \varepsilon_{q}}{\partial u_{1}}=\frac{1}{\bar{B}}\left[\left(x_{1}-x_{3}\right) \frac{\partial \bar{v}_{2}}{\partial u_{1}}+\left(x_{2}-x_{1}\right) \frac{\partial \bar{v}_{0}}{\partial u_{1}}\right] \\
& \frac{\partial \varepsilon_{y}}{\partial v_{1}}=\frac{1}{A}\left[\left(x_{1}-x_{g}\right) \frac{\partial \bar{v}_{3}}{\partial v_{1}}+\left(x_{3}-x_{1}\right) \frac{\partial \bar{v}_{3}}{\partial v_{1}}\right] \\
& \frac{\partial \varepsilon_{y}}{\partial u_{z}}=\frac{1}{A}\left[\left(x_{1}-x_{3}\right) \frac{\partial \bar{v}_{z}}{\partial u_{2}}+\left(x_{2}-x_{1}\right) \frac{\partial v_{3}}{\partial u_{2}}\right] \\
& \frac{\partial \varepsilon_{y}}{\partial v_{2}}=\frac{1}{B}\left[\left(x_{1}-x_{3}\right) \frac{\partial \bar{v}_{2}}{\partial v_{2}}+\left(x_{2}-x_{1}\right) \frac{\partial \bar{v}_{3}}{\partial v_{2}}\right] \\
& \frac{\partial \varepsilon_{y}}{\partial u_{3}}=\frac{1}{A}\left[\left(x_{1}-x_{3}\right) \frac{\partial \bar{V}_{2}}{\partial u_{j}}+\left(x_{2}-x_{1}\right) \frac{\partial V_{3}}{\partial u_{j}}\right] \\
& \frac{\partial \varepsilon_{y}}{\partial v_{3}}=\frac{1}{A L}\left[\left(x_{1}-x_{3}\right) \frac{\partial v_{3}}{\partial v_{3}}+\left(x_{2}-x_{1}\right) \frac{\partial \bar{v}_{3}}{\partial v_{3}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial x_{1}}{u_{x_{1}}}=\frac{3}{A\left(x_{1}+x_{2}+x_{2}\right)}\left[\left(x_{3} y_{3}-x_{1} y_{3}\right)\right]+\frac{1}{A}\left(y_{2}-y_{3}\right)+\frac{1}{A} \cdot \frac{y_{1}+y_{3}+y_{3}}{x_{1}+x_{2}+x_{3}}\left(x_{2}-x_{2}\right) \\
& \frac{\partial \varepsilon}{\partial v_{V}}=0 \\
& \frac{\partial \varepsilon_{y}}{\partial u_{2}}=\frac{3}{A\left(x_{1}+x_{2}+x_{3}\right)}\left[\left(x_{3} y_{1}-x_{1} y_{3}\right)\right]+\frac{1}{A}\left(y_{3}-y_{1}\right)+\frac{1}{A} \frac{y_{1}+y_{3}+y_{3}}{x_{1}+x_{2}+x_{3}}\left(x_{1}-x_{3}\right) \\
& \frac{\partial \varepsilon_{t}}{\partial \nu_{2}}=0 \\
& \frac{\partial \varepsilon_{4}}{\partial u_{3}}=\frac{3}{A\left(x_{1}+x_{2}+x_{3}\right)}\left[\left(x_{1} y_{2}-x_{2} y_{1}\right)\right]+\frac{1}{A}\left(y_{1}-y_{2}\right)+\frac{1}{A} \frac{y_{1}+y_{2}+y_{3}}{x_{1}+x_{2}+x_{3}}\left(x_{2}-x_{1}\right) \\
& \frac{\partial \epsilon_{t}}{\partial v_{3}}=0 \\
& \frac{\partial \gamma_{2} y_{1}}{\partial u_{1}}=\frac{1}{A}\left[\left(x_{1}-x_{3}\right) \frac{\partial \bar{c}_{3}}{\partial u_{1}}+\left(x_{2}-x_{1}\right) \frac{\partial \bar{u}_{3}}{\partial u_{1}}+\left(y_{1}-y_{1}\right) \frac{\partial x_{3}}{\partial u_{1}}+\left(y_{1}-y_{2}\right) \frac{\partial u_{3}}{\partial u_{1}}\right] \\
& \frac{\partial x_{1}}{\partial u_{2}}=\frac{1}{A}\left[\left(x_{1}-x_{3}\right) \frac{\partial u_{3}}{\partial u_{2}}+\left(x_{2}-x_{1}\right) \frac{\partial u_{3}}{\partial u_{2}}+\left(y_{3}-y_{1}\right) \frac{\partial \tilde{v}_{2}}{\partial u_{2}}+\left(y_{1}-y_{2}\right) \frac{\partial \bar{y}_{3}}{\partial u_{2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \nu_{2 y}}{\partial v_{1}}=\frac{1}{A}\left[\left(x_{1}-x_{3}\right) \frac{\partial v_{2}}{\partial v_{1}}+\left(x_{2}-x_{1}\right) \frac{\partial \bar{k}_{3}}{\partial \nu_{1}}+\left(y_{2}-y_{1}\right) \frac{\partial \nu_{2}}{\partial v_{1}}+\left(y_{1}-y_{2}\right) \frac{\partial z_{2}}{\partial v_{1}}\right] \\
& \frac{\partial v_{1}}{\partial \nu_{2}}=\frac{1}{A L}\left[\left(x_{1}-x_{3}\right) \frac{\partial \xi_{3}}{\partial v_{2}}+\left(x_{2}-x_{1}\right) \frac{\partial \bar{y}_{0}}{\partial v_{2}}+\left(y_{3}-y_{1}\right) \frac{\partial \overline{v_{2}}}{\partial v_{2}}+\left(y_{1}-y_{2}\right) \frac{\partial \bar{v}_{g}}{\partial v_{2}}\right]
\end{aligned}
$$

 we ele hioma volyunde halfo differmbiabies modig:

$$
\begin{aligned}
& \frac{\partial \bar{u}_{3}}{\partial y_{0} \partial_{1}}=\cos h_{0} \frac{\operatorname{lin}^{2} / 3}{h_{13}^{2}} \\
& \frac{\partial \bar{L}_{s}}{\partial z_{1} \partial u_{1}}=\lim i_{0} \frac{\sin ^{2} / 3}{l_{12}^{2}} \\
& \frac{\partial \bar{u}_{3}}{\partial u_{1} \partial_{1}}=-\cos \beta_{0} \frac{\sin 2 / 3}{2 l_{12}^{\prime}} \\
& \frac{\partial \nu_{2}}{\partial u_{1} \partial v_{1}}=-\sin j_{0} \frac{\sin 2 / \beta}{2 l_{1}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \bar{u}_{2}}{\partial u_{1} \partial u_{2}}=-\cos \beta_{0} \frac{\sin \beta}{\operatorname{l}_{12}^{3}} \\
& \frac{\partial \bar{u}_{3}}{\partial u_{1} \partial u_{2}}=-\sin \beta_{0} \frac{\Delta m_{1}^{3} / 3}{h_{12}^{\prime}} \\
& \frac{\partial \bar{u}_{2}}{\partial u_{1} \partial v_{2}}=\cos b_{0} \frac{\Delta \sin 2 \beta_{3}}{2 l_{12}^{3}} \\
& \frac{\partial \bar{V}_{2}}{\partial u, \partial V_{2}}=\sin \beta_{0} \frac{\sin 2 \beta}{g l_{12}^{\prime}} \\
& \frac{\partial \bar{u}_{z}}{\partial u_{j} \partial u_{z}}=\frac{\partial \bar{u}_{z}}{\partial u_{i} \partial u_{3}}=0 \\
& \frac{\partial \overline{v_{2}}}{\partial u_{1} \partial u_{3}}=\frac{\partial \overline{v_{2}}}{\partial u_{1} \partial v_{3}}=0 \\
& \begin{array}{l}
\frac{\partial \overline{u_{g}}}{\partial v_{v} \partial v_{1}}=\cos \beta_{0} \frac{\cos / \beta}{\lim _{2}^{2}} \\
\frac{\partial \overline{u_{s}}}{\partial v_{1} \partial u_{z}}=\cos \beta_{0} \frac{\beta i n}{2 l_{12}}
\end{array} \\
& \frac{\partial \nu_{2}}{\partial \nu_{1} \partial \nu_{1}}=\sin \beta_{0} \frac{\text { en } 2 / 3}{\operatorname{lis}_{1}^{2}} \\
& \frac{\partial \bar{v}_{2}}{\partial v_{1} \partial u_{2}}=\sin \bar{s}_{0} \frac{\sin 2 / 3}{2 \operatorname{l}_{18}^{3}} \\
& \frac{\partial \overline{u_{z}}}{\partial v_{1} \partial v_{2}}=-\cos \beta_{0} \frac{\cos ^{2} / 3}{\operatorname{liz}_{12}^{3}} \\
& \frac{\partial \overline{r_{s}}}{\partial v_{1} \partial v_{2}}=-\sin \beta_{0} \frac{c_{0}^{2} / 3}{h_{12}^{2}} \\
& \frac{\partial \overline{u_{2}}}{\partial V_{1} \partial u_{3}}=\frac{\partial \bar{u}_{2}}{\partial v_{1} \partial v_{3}}=0 \\
& \frac{\partial \bar{v}_{3}}{\partial v_{1} \partial u_{3}}=\frac{\partial \bar{v}_{3}}{\partial v_{1} \partial v_{3}}=0 \\
& \frac{\partial \bar{c}_{3}}{\partial u_{2} \partial u_{z}}=\cos \beta_{0} \frac{\sin ^{2} / 3}{l_{13}^{2}} \\
& \frac{\partial \overline{v_{2}}}{\partial u_{2} \partial u_{2}}=\sin _{0} \frac{\sin _{0}{ }^{2} / 3}{\rho_{12}{ }^{9}} \\
& \frac{\partial \overline{u_{2}}}{\partial u_{2} \partial v_{2}}=-\cos \beta_{0} \frac{\sin r / 3}{2 l_{12}^{\prime}} \\
& \frac{\partial \bar{u}_{2}}{\partial u_{2} \partial u_{3}}=\frac{\partial \bar{u}_{2}}{\partial u_{2} \partial v_{3}}=0 \\
& \frac{\partial \overrightarrow{v_{2}}}{\partial u_{2} \partial u_{3}}=\frac{\partial \vec{v}_{2}}{\partial u_{2} \partial v_{3}}=0 \\
& \frac{\partial \bar{u}_{3}}{\partial V_{2} \partial V_{2}}=\cos \beta_{0} \frac{\operatorname{los} \frac{2}{\alpha_{2}}}{\rho_{2}^{2}} \\
& \frac{\partial \bar{u}_{2}}{\partial v_{2} \partial u_{3}}=\frac{\partial \bar{u}_{2}}{\partial v_{2} \partial v_{3}}=0 \\
& \frac{\partial v_{s}}{\partial v_{s} \partial v_{2}}=\delta 4_{0} \cdot B_{0} \frac{\cos { }^{2} / 3}{h_{3}^{2}} \\
& \frac{\partial \bar{V}_{3}}{\partial V_{2} \partial u_{3}}=\frac{\partial \bar{v}_{3}}{\partial v_{2} \partial v_{3}}=0
\end{aligned}
$$

$$
\frac{\partial \overline{u_{3}}}{\partial u_{3} \partial u_{3}}=\frac{\partial \bar{u}_{3}}{\partial u_{3} \partial v_{3}}=\frac{\partial \bar{u}_{3}}{\partial v_{3} \partial v_{3}}=0 \quad \frac{\partial \bar{v}_{3}}{\partial u_{3} \partial u_{3}}=\frac{\partial \bar{k}_{2}}{\partial u_{3} \partial v_{3}}=\frac{\partial \bar{v}_{3}}{\partial v_{3} \partial v_{3}}=0
$$

Voor ae verplaabtigecmmp ment $\overline{u_{3}}$ volgen de de hulp. alifferentiatior Sucema:

$$
\begin{aligned}
& \left.\left.\frac{\partial u_{3}}{\partial u_{j} \partial u_{1}}=\cos (\gamma-\alpha) \right\rvert\,-\frac{\sin j \sin j_{3}}{l_{12}^{\prime}}\right]+\sin (\gamma-\alpha) \cdot \frac{\cos j \sin / 3}{l_{12}^{9}} \\
& \frac{\partial u_{3}}{\partial V_{3} \partial u_{1}}=\cos (\gamma-\alpha) \cdot \frac{\operatorname{los} \mu_{\sin } / 3}{h_{L_{2}}^{\prime}}+\sin (\gamma-\alpha) \frac{\sin / 3 \sin \gamma}{l_{12}^{\prime}} \\
& \frac{\partial u_{3}}{\partial u_{1} \partial v_{1}}=\cos (\gamma-\alpha)\left[\frac{\operatorname{sen} \psi \cos / 3}{l_{12}^{9}}-\frac{\cos \phi_{1} l_{13}}{l_{13}^{22}}\right]+\sin (f-\alpha)\left[\frac{\sin \psi \cos \beta}{l_{12}^{2}}-\frac{\sin 2 \beta_{3} h_{13}}{2 l_{12}^{2-2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \overline{a_{j}}}{x_{1} \partial u_{3}}=\cos (\gamma-\alpha)\left[\frac{\sin j \cos \beta}{h_{13}^{\prime}}\right]-\sin (\gamma-\alpha) \cdot \frac{\cos \gamma \cos \beta}{h_{12}^{\prime}} \\
& \frac{\partial u_{j}}{\partial v_{1} \partial_{3}}=\cos (\gamma-\alpha)\left[-\frac{\cos \gamma \cos \beta}{h_{12}^{\prime}}\right]+\sin (\gamma-\alpha)\left[-\frac{\sin j \cos \beta 3}{\operatorname{lis}_{2}^{\prime}}\right] \\
& \frac{\partial u_{3}}{\partial u_{2} \partial u_{2}}=\operatorname{es}(f-\alpha)\left[-\frac{\sin ^{2} / h^{2} h_{1}}{l_{12}^{\prime}}\right]+\sin (f-\alpha) \frac{\sin 2 / 2 h_{13}}{2 h_{12} \sin ^{2}},
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial u_{3}}{\partial \nu_{2} \partial V_{2}}=\cos (\gamma-\alpha)\left[-\frac{\cos ^{2} b l_{10}^{\prime}}{l_{12}^{22}}\right]-\sin (\gamma-\alpha) \frac{\sin 2 / 3 l_{10}{ }^{\prime}}{2 l_{13}^{2 d}} \\
& \frac{\partial \dot{u_{j}}}{\partial \nu_{2} \partial u_{j}}=\cos (\gamma-\alpha)\left[-\frac{\sin j \cos / 3}{l_{13}^{3}}\right]+\sin (\gamma-\alpha) \frac{\cos \mid \cos / 3}{l_{13}^{9}} \\
& \frac{\partial u_{j}}{\partial v_{i} \partial v_{3}}=\cos (\gamma-\alpha) \frac{\cos \gamma \cos \beta}{h_{12}^{3}}+\sin (\gamma-\alpha) \frac{\sin \gamma \cos \beta}{h_{12}} \\
& \frac{\partial \overline{u_{z}}}{\partial u_{j} \partial u_{z}}=\frac{\partial \overline{u_{z}}}{\partial u_{j} \partial v_{z}}=0 \\
& \frac{\partial \bar{u}_{3}}{\partial v_{j} \partial v_{j}}=0
\end{aligned}
$$

Door de venflaatstigp component is volgu de hulfdifferentiakies hima:

$$
\begin{aligned}
& \frac{\partial v_{3}^{-}}{\partial u_{1} \partial V_{1}}=\cos (f-\alpha)\left[\frac{\text { siniborij }}{l_{12}^{\prime}}-\frac{\sin 2 / 3 h_{13}^{2}}{l_{12}^{2-2}}\right]+ \\
& \sin (\gamma-\alpha)\left[-\frac{\sin j \cos \beta}{h_{13}^{\prime}}-\frac{\sin h_{1} \cos \gamma}{h_{3}^{9}}+\frac{\sin 2 h_{3} h_{13}}{2 h_{12}^{3 e}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{\partial v_{3}}{\partial r_{1} \nu_{1}}=\cos (\gamma-\alpha) /-\frac{\sin y \cos / 3}{l_{12}^{2}}+\frac{\operatorname{lin} 2 / 3}{2 l_{12}^{92}} l_{13}^{\prime}\right]+ \\
& \sin (\gamma-\alpha)\left[\frac{2 \cos y \cos \beta}{l_{12}^{3}}-\frac{\operatorname{en} 2 / 3 h_{13}^{3}}{l_{13}^{32}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \bar{v}_{3}}{\partial V_{1} \partial u_{3}}=\cos (\gamma-\alpha) \frac{\cos \gamma \cos \beta}{l_{13}^{\prime}}+\sin (\gamma-\alpha)\left[\frac{\sin j \cos \beta}{\operatorname{lin}_{n}^{\prime}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial v_{3}}{\partial r_{\partial} v_{3}}=\cos (\gamma-\alpha) \frac{s \sin \gamma \cos / 3}{l_{12}^{\prime}}+\sin (\gamma-\alpha)\left[-\frac{\operatorname{cog} \cos / 3}{l_{12}^{\prime}}\right] \\
& \frac{\partial v_{3}}{\partial a_{2} \partial u_{2}}=\cos (\gamma-\alpha)\left[-\frac{\sin 2 / 3 h_{13}}{2 h_{12}^{32}}\right]+\sin (\gamma-\alpha)\left[-\frac{\sin ^{2}-2 h_{13} h_{13}^{\prime}}{h_{12}^{\prime 2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \bar{V}_{3}}{\partial u_{2} \partial_{u_{3}}}=\cos (\gamma-\alpha) \frac{\cos \gamma \sin / 3}{\operatorname{lin}_{12}}+\sin (y-\alpha) \frac{\sin \cdot \gamma \sin / 3}{\operatorname{lin}_{12}} \\
& \frac{\partial \bar{v}_{0}}{\partial u_{2} \partial_{3}}=\cos (\gamma \cdot \alpha) \frac{\sin \gamma \sin j_{3}}{l_{12}^{2}}+\sin -(\gamma-\alpha)\left[-\frac{\cos \gamma \sin \beta_{3}}{h_{18}^{2}}\right] \\
& \frac{\partial v_{0}}{\partial v_{2} \partial v_{2}}=\cos (\gamma-\alpha) \frac{\sin 2 h_{3} h_{3}^{\prime}}{2 l_{12}^{\prime 2}}+\sin (\gamma-\alpha)\left[-\frac{\cos { }^{2} / 3 h_{13}^{\prime}}{l_{12}^{2-2}}\right] \\
& \left.\left.\frac{\partial v_{3}}{\partial v_{3} \partial u_{3}}=\operatorname{en}(\gamma-\alpha)\left[-\frac{\cos \gamma \cos / 3}{l_{13}^{\prime}}\right]+\sin \cdot(\gamma-\alpha) \right\rvert\,-\frac{\sin j \cos \beta s}{h_{13}^{\prime}}\right] \\
& \frac{\partial \bar{\sigma}_{j}}{\partial V_{2} \partial V_{j}}=\cos (\gamma-\alpha)\left[-\frac{\sin \cdot \gamma \cos / \beta}{\operatorname{lin}_{22}^{\prime}}\right]+\sin (\gamma-\alpha)\left[\frac{\cos \gamma \cos / \beta}{l_{12}}\right] \\
& \frac{\partial \bar{v}_{3}}{\partial u_{j} \partial u_{3}}=\frac{\partial \bar{v}_{j}}{\partial u_{3} \partial v_{3}}=0 \\
& \frac{\partial \overline{V_{3}}}{\partial r_{3} \partial V_{3}}=0
\end{aligned}
$$

 If de lolgende mavicir:

$$
\begin{aligned}
& \frac{\partial^{2} z_{z}}{\partial u_{z} \partial u_{p}}=\frac{1}{A L}\left[\left(y_{j}-y_{1}\right) \frac{\partial^{2} \bar{u}_{z}}{\partial u_{z} \partial u_{p}}+\left(y_{1}-y_{2}\right) \frac{\partial^{2} \overline{u_{j}}}{\partial u_{q} \partial u_{p}}\right] \\
& \frac{\partial^{2} \varepsilon_{q}}{\partial u_{q} \partial u_{p}}=\frac{1}{A_{2}}\left[\left(x_{1}-x_{s}\right) \frac{\partial^{2} \bar{v}_{s}}{\partial u_{q} \partial u_{p}}+\left(x_{2}-x_{1}\right) \frac{\partial^{2} \bar{V}_{3}}{\partial u_{q} \partial u_{p}}\right] \\
& \frac{\partial^{2} \varepsilon_{z}}{\partial_{u_{q}} \partial u_{p}}=0 \\
& \frac{\partial^{2} \gamma_{z y}}{\partial u_{q} \partial u_{p}}=\frac{1}{A L} /\left(x_{1}-x_{3}\right) \frac{\partial^{2} \bar{u}_{z}}{\partial u_{q} \partial u_{p}}+\left(x_{2}-x_{1}\right) \frac{\partial^{2} \bar{u}_{3}}{\partial u_{q} \partial u_{p}}+\left(y_{2}-y_{1}\right) \frac{\partial^{2} \bar{v}_{2}}{\partial u_{z} \partial_{i}}+\left(y_{1}-y_{2}\right) \frac{\partial^{2} \bar{u}_{j}}{\partial u_{2} \partial u_{j}}
\end{aligned}
$$

He op boim wan de hiewore quevem de matrieer io voor elte gelgit, hodat we het allem woor $\frac{\partial^{2} \epsilon_{z}}{\partial i_{z} \partial i_{p}}$ dimomatieven:

Gehul analoge otwelunt boot $\frac{\partial^{2} \mathrm{Ey}}{\partial u_{z} \partial u_{p}}$ en $\frac{\partial^{2} / x_{y}}{\partial u_{q} \partial u_{p}}$

PPPENDIX TT

end HuLP;

كTHINLS pur

> ¢

 end bepaling lnp vektor met T vrijheidsgraden;
 - 2, 3 do 19

end DEPSDU;

ERMENIGVULDIGING(A. B, C. D. DT):

$$
\begin{aligned}
& \text { value } n, m, \text { dec; integer } n \text {, } \\
& \text { begin } \frac{1 n t e g e r}{m 1}:=m ; ~
\end{aligned}
$$

strxnatisumo puo , oop ${ }^{\circ} \mathrm{m}$

(yaOHSOMVOIn pro
 end UITVOER KN SI R;
 $\operatorname{ABSFIXT}(3,0$, st); CARRIAGE(2); UTTVOER(Ne, 3, SI);
CARRIAGE 5$) ;$ SPACE(10);

ABSFIXT $(3,0$, st); CARRIAGE(2);
UITVOER(N, $2, \mathrm{KN})$)
CARRIAGE 5) ; SPACE (10); ARSFIXI $(3,0, s t)$; CARRIAGE (2);

CARRIAGE (5) 3 SPACE (10);
PRMITIEXT (\&Knooppuntskoo
value N, Ne, st; $\frac{\text { nteger }}{} \mathrm{N} ; \mathrm{Ne}$, st, k ; array $\mathrm{KN}, \mathrm{SI}, \mathrm{R}$;
begin CARRIAGE(5) $\operatorname{SPACE}(10)$;
endutricrions
begin $\operatorname{SPACE}(5) ; \operatorname{FLOT}(5,3, \operatorname{mn}[k])$ end;

 (() KOVTYYYD

> © वTाष TT: IT पा
 procedure R円CHITRLID(vektor, rechter, en, le, lnp):

 $\frac{\text { də2s }}{\text { də7s }} 1=1=1 \frac{\text { IoJ }}{\text { 20I }}$

 : (Nar 2 N)yFOnith
 'maner

if st $f 0$ then , step 1 until T do begin if sitot $[1]=0$ then				
Begin if abs (rechverlid[i]) $>$ absol then				
If fitot [i] to then begin (rechterlid[i] $\times 100 /$ fftot [i]) $>$ procent then				
$\frac{\text { begin }}{\text { if }}$ abs (rechterlid[i] $\left.\times 100 / \mathrm{fftot}[\mathrm{i}]\right)$) procent then				
end; end				
if hu >3 then begin for $\overline{1:=1}$ step 1 until T do ff[1]:=ff[1]/2 end;				
hu : $=0$;				
for $1:=1$ step 1 until T do begin if abs(fftot[i]) $>\overline{\mathrm{abs}}($ ffkon[1]) then goto EINDE;				
begin if abs(fftotiJ) $>$ abs (ffkonli]) then goto EINDE; fftot $[1]:=$ fftot $[1]+\mathrm{ff}[1]$;				
rechterlid[1]: $=$ fftot[1]-rechter[i];				
if $s t=0$ then UITVOERKNSIR $(K N, S I, R, N e, 3$, st, $N)$; st: $=s t+\overline{1 ;}$ con $:=2$;				
for $1:=1$ step 1 until T do for $j:=0$ step 1 until bb do $Q k o n$ hulp $[i, j]:=Q k o n[i, j]$; for $1:=1 \overline{\text { step }} 1 \overline{\text { until }} \mathrm{t}$ de reehterlidhulp $[1]:=$ rechterlid [i];				
for $1:=1$ step 1 until ${ }^{\text {for }}$ do for $\rho:=1$ step 1 until 2 do $\operatorname{KNRE}[1, j]:=\operatorname{KN}[1, j]$;				
for $1:=1$ step $1 \overline{\text { unti] }} \mathrm{Ne}$ do begin LENRE[1] $:=\overline{\operatorname{LFN}[1,2] ; \operatorname{PSIHRE}[1]:=\operatorname{PSIH}[i] ; ~}$				
end;				
CARRIAGE(3); PRINITEXT (De belastingskomponenten in de knooppunten na een aantal stappen van申); $\operatorname{ABSFIXI}(3,0$, st) ; CARRIAGE(2);				
CHOLBD ($\mathrm{P}, \mathrm{bb}, 0$, Qkon, rechterlid, fail)				
for en: $=1$ step 1 until Ne do REKSPANITTERATIE (en, ue, R, $K N$, KNH, LEN, le, lnp, rechterlid, SI, $\mathrm{S}, \mathrm{E}, \mathrm{I}, \mathrm{A}, \mathrm{PSI}, \mathrm{PSIH}, \mathrm{HOEK}$);				
$\frac{\text { for } 1:=1 \text { step }}{\text { goto } \mathrm{VEROLR} ;}$ until N do for $j:=1,2$ do $\operatorname{KNN}[i, j]:=\operatorname{KNH}[1, j] ;$				
If hu <cond then				
begin cholin ($T, \mathrm{bb}, 0$, Qkon, rechterlld, fail);				
for en: $=1$ step until Me do				
for $1:=1$ step 1 unti] 1 do for $j:=1,2$ do $k n 1, j]:=\operatorname{KNH}[1, f]$;				

$\stackrel{\stackrel{H}{\oplus}}{\stackrel{\text { e }}{\sim}}$

 SMAMINAO -20.5
 for $1:=1$ step 1 unti 1 T do $f f t o t[1]:=f f t o t[1]-f f[1]$;

 \geq cond then goto VERDER;

R

> 部喿
> syanza

धмптindo $\overline{0708}$

NLCR；PRUNTTEXT（kte krijgen wordt de stap gehalveerd \downarrow ）；

Mwoer volgorde hoor progiamuna 05064608
$N=$ anctal fnooppunten
$N e=$ aantal elementen
$E=$ elarticiteitumodulus
I = oppervlaktefraagherdnmonnut van de dw ausdersernede $A=$ oppervlakte udn de swaisdodisnede
aheol = ahrolute afurejthling t.0.V. mel
prownt = prountuele afveg bing
Sap = avntal gercha the slappen in ar uitwendige belastivip lond = aoulal íteratirtappen, dat hacgelaten wridt vobrdat de helartingustafo gohalveerd wordt.

- Muclesur van de Henoofpmutceörsinaten. De poördimaten interus in surelfde colgorde dan de tenoofphuts. summering.
- Sfet valler van de hup-vettor.
ao = asutal huooppunten met boorgetehieven orplaatiniga
$n=$ Ruoofonotwunmes
$a V=$ aqutah vooigencckreven siedlingen.
$v=$ tichling, die vooigamehriven is.
-: vutten van de he-vehtor. In bolgorde van de elementuummering de knoopfonten per element.
-: vullen wan de helasthiqpvektor.
ob = aantal tenoopfurten met voorquehreven helartirig
$n=$ buoobpintwummer
 hiema richting in proothe wan de boorgesedreven felantinigen.
¢TInH pü

end VERMENIGVULDIGING;
 end DEPSDD:

 - en de krachten in de knooppunten bepaald kunnen worden;
begin

spuz
procedure GENERAL EIGRVALUE PROBIFM(n, A, C, lambd, $\mathrm{X}, \mathrm{k} 1, \mathrm{k} 2$, non definite, eivec);

 procedure PROFIELKEUZE(Ne, keuze, di, F, I, b, h); alue Ne; integer Ne, keuze; array di, $F, 1, b, h ;$

© $\frac{\text { putaturnpur }}{}$

迢

 - IT

begin $\operatorname{SPACE}(5) ; \operatorname{FlOH}(5,3, \operatorname{mn}[k])$ end;

$$
\int_{f} 1+0
$$

 $u \quad$ rod
$=: ~ u t ~$

$$
\frac{y_{8}^{1+}}{8+1}
$$

$$
\begin{gathered}
\text { TF7 un } \\
\text { ur } \\
601
\end{gathered}
$$

 4604

=: [1 'x] $\frac{\text { परिә }}{\text { पर्किव }}$

 value Ne; integer Ne ; integer array le; procedure $\operatorname{INLE}(\mathrm{Ne}, \mathrm{le}$);end bepaling lnp vektor met T vrijheidsgraden; Cf =: $\frac{\text { U }}{\text { pu a }}$ begin $t:=t+1 ;$
$\operatorname{lnp}[n, v]:=t ;$ for $n:=1$ step 1 until N do for $v:=1,2,3$ do if $\operatorname{lnp}[n, v]=1$ then $\frac{1}{\text { pita }}=$ begin $n:=R E A D$, av: $=\operatorname{READ} ;$ for $:=1$ step 1 until $a 0:=$ READ; for $1:=1$ step 1 until

$$
\begin{aligned}
& \text { J, 1; }
\end{aligned}
$$ 80

$$
\text { ABSFIXT }(3,0,1) \text { end, NLCR; }
$$

$$
\frac{\text { until } r}{} \text { do } \operatorname{sPACE}(2) ;
$$

	a

:GロNIT

 ¢puo :pü

PRINTIEXT((de elgenvektoren van de construktie $\rangle)$; CARRTAGE (2);
$\operatorname{URM}(X, T, 1, T)$; EARRIAGE(5):
if eigenvektoren $=1$ then
begin CARRLAGE(5);
GENERAL EIGEN VALUE PROBLEM(T,Gkon, Qkon, lambda, X, 1, T, non definite, eigenvektoren $=1$); CARRIAGE(2); ITVOER(Ne, 3,S1);
 $\frac{\operatorname{cor}}{\operatorname{CAR} u A G E}(5) ; 2$ step 1 until T do for $j:=1$ step 1 until $i-1$ do Gkon[$\left.1, j\right]:=G k o n[j, i] ;$ spua
GKONSTRUKTEE(en,Gtot, le, lnp, Gkon)s
CARRIAGE(2):

STYFEL(E,I[en], F[en], IEM[en], s);
$\begin{aligned} \text { eps }[2]:= & (\text { ueg }[2]-\text { ueg[5])/LEN[en] - ueg[3]; } \\ \text { eps }[3]:= & \text { ueg[2] }+ \text { ueg[5] }) / \operatorname{LEN}[e n]+\text { ueg[6]; }\end{aligned}$
 $\operatorname{ABSFIXI}(3,0, e n) ;$
$\operatorname{SPACE}(5) ;$
TRANSFOMMATIE(ue, ueg, $a, b)$:

Itwoervolgorde progranuma osob 4is5s
"OtPebilinid wavini het effect van hel monent i. mee genormen."
$N=$ auntal hnooppunten
$N e$ = aoulal efleminten
E = elarficifeitamoculus
tent = variable one getmint worat woor hulp withon, in mil in ber afinithe be bro seamma gebruiht.
$a_{n}=1$, dam woiden ou cignewaardes cirlplooed. eigenvek Eoun $=1$ dan netiover van el eiquwehtorm.
-: inluen huoop funfreociscui ates
hums =, iishelvomigg ocwass dwo snede
ber element meleson: $d[c \cdot]=$ exaneter
heure =e wehthochige ewars doosmede $b>h$ tulesens bli.] = brecate element . $^{\circ}$
$h\lceil\cdot \cdot]=$ hoogte etcment \cdot
heurse $=3 \quad$ reethoichigg ewarsdioranede $b<h$ inleren $b \% \cdot$.$] = bruate element:$
$b[\cdot \square=$ hoogte element i
heure =4 Alemeiten hibhem ex volfende dwass dwounde.
h)

$$
T=2 \cdot \frac{h^{2} F}{4}
$$

$F[\cdot]=$ opperwlalte elvent $:$
$b\left[\cdot \bar{C}=\right.$ hoogte slment ${ }^{\circ}$.
heurde $=5$ Willehewrige enwandoovencele:
$F L i J=$ op pertart element i ${ }^{\circ}$

Het op ae hekmoe wijler vulle van de hop. pektor.
aO = auntal Anoopfinuta met vorenenchuen verplaetsigon
$n=$ fenoop pern trummee
$a_{0}=$ adilal voor juchieven verplaatinigen
$v=$ sickling toorgueksum verplaatonig
Inlerus van de le-vehtor.
Sullem van do belad nigp veltor

