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Summary

In this report, an infinite-array model is employed to model a large patch-antenna array.
Its mathematical formulation employs the symmetries and periodicity of the model, which
keep it compact and efficient. Furthermore, a conjugate gradient scheme, viz., CGFFT
is employed, which reduces the computational load drastically. When the two are put
together a relatively fast simulation tool becomes available, which is used in conjunction
with a gradient-based-optimization scheme to make a first attempt in automating the
design process of a patch-antenna array or more generally an antenna. The presented
results show that the optimization of this relatively simple model already poses quite some
challenges. One of those challenges is the existence of (multiple) local optima, which can
be partially avoided by choosing the objective function wisely and by employing the
periodicity of some of the design parameters. Furthermore, a performance comparison
is made between two gradient-based-optimization schemes, viz., NPSOL and L-BFGS-B,
where the latter seems to outperform the first for the optimization problems tackled in
this report.
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Chapter 1

Introduction

Nowadays wireless applications of all sorts and sizes have become a common occurrence
in many modern societies around the globe. The applications, ranging from electronic
id-tags, cellular phones, to radar, are in a sense an extension of the human senses. They
allow us to detect things under normally difficult or even impossible circumstances for a
human. A nice example is the detection and tracking of ships or airplanes under foggy

Figure 1.1: Two antennas of weather-radar systems, in (a) a parabolic reflector an-
tenna of the National Severe Storms Laboratory (NSSL) and in (b) a phased-array
antenna of the National Oceanic & Atmospheric Administration (NOAA). Source:
www.photolib.noaa.gov

conditions or even beyond the horizon, made possible by the introduction of sophisticated
radar systems. For each application a specific set of design specifications can be formu-
lated, which includes things like size, weight, cost, and various application-dependent
demands. This set will indicate a ballpark for the design constraints for the radiating
element of the wireless application, the antenna. These constraints are often contradic-



tory, i.e., improving on one property deteriorates other properties. Given a number of
design constraints achieving the best possible solution can be a real challenge. This is
easily illustrated, by considering the design constraints of a radar system, as depicted in
Figure 1.1, which involves (among many others) high directivity, and a short scan time,
for the lowest achievable manufacturing cost. The high directivity could be achieved
by enlarging the effective surface area of the antenna. Traditionally this would mean a
larger parabolic reflector, but increasing its size and consequently the weight will make it
a lot more difficult to mechanically scan its surroundings in a short time. Note that the
word ‘difficult’ is in this case synonymous with ‘expensive’, and consequently the costs
will increase as well. The introduction of phased-array antennas made it possible to scan
electronically, which decreases the ‘long’ scan times dramatically. The downside however
is a dramatic increase in complexity of the overal system and in cost.

However, finding an appropriate solution for the entire radar system is beyond the scope
of this report. Instead the report will only consider the radiating elements of the phased-
array-radar system, which is in this case a patch-antenna array. A schematic 3D view of
a patch-antenna array is depicted in Figure 1.2.

unit cell

Figure 1.2: A schematic 3D view of a large patch-antenna array.

A large portion of the design process of an antenna is occupied by the optimization
of its characteristic behavior, where optimization means trying to find the optimal pa-
rameters (length and width of the patch, material properties, etc.) for which the given
design constraints are met. Traditionally this would mean performing some calculations,
while employing a simple model, constructing a prototype, measuring its characteristic
behavior, determining the deviation from the goal, adjusting the parameters and start
all over again by constructing another prototype and so on and so forth, knowing that
it will take at least 10 or 20 runs before one could talk about reaching some kind of
optimum. Needless to say, the optimization process can be both a time and money con-



suming part of the design process. A first step in automating the optimization process
would be the introduction of computer simulations, which will partially dispose of the
use for prototypes and consequently allows for a much faster and cost effective design
parameter evaluation. This has become possible thanks to various breakthroughs in the
field of electromagnetics, e.g., the development of Krylov’s iterative techniques, the con-
jugate gradient scheme (CGFFT) [16] and [17], and the fast multipole method (FMM)
[7], together with an ever growing increase in computing power. It is nowadays possible
to create and simulate some fairly accurate mathematical models of practical antenna
designs within a reasonable amount of time. Together with the widespread availability of
powerful search algorithms [15], the automation of the optimization process comes within
reach. Unfortunately, the optimization process has some nasty properties, which make
it hard to tackle. One of these properties is the existence of multiple local and/or global
optima. As mentioned earlier, the time it takes to evaluate a parameter set has become
reasonably short by the use of computer simulations, but if multiplied by the number
of attempts required to let the search algorithm converge it will still take a lot of time.
For instance if the number of attempts is about a hundred, which is a rather optimistic
amount, every minute it takes to evaluate a set of parameters will become several hours.
Consequently, the amount of time required to fulfill the optimization process will, de-
pending on the complexity of electromagnetic problem, still be considerably large. If a
gradient-based search algorithm is employed a considerable amount of time can be saved
by considering the adjoint problem [6]. Note that this approach was also followed in [3,
Section 5.1|, and by many others.

Only large antenna arrays are considered in this report, meaning that they have a large
number of antenna elements, e.g., 15 X 15 elements or more. Furthermore, the considered
antenna array is composed of a dielectric layer, which is sandwiched between a ground
plane on one side and metallic patches on the other side. The metallic patches are or-
ganized in a two-dimensional uniform array. Note that the presence of the ground plane
allows for the separate evaluation of the radiating elements and the rest of the radar
system. The array is excited by probes penetrating the ground plane, which are not
connected to the patches. A cross-section of this configuration is depicted schematically
in Figure 1.3. The model employed to simulate the behavior of the large patch-antenna
array is known as the infinite-array model. The model assumes that the array is infinite
in its extent and will therefore neglect various edge effects, which are certain to arise in
the actual array [2]. A more extensive discussion of the model is presented in Chapter 2.
The mathematical formulation of the model will incorporate excitation of the model by
means of dipoles situated underneath the patches and excitation by an incident plane
wave. The derived expressions for the generated far field, will allow for a first attempt
in automating the optimization process. The infinite-array model will be optimized for
two different optimization goals, viz., the radiated power and circular polarization, while
considering only a small number of design parameters. Afterwards the results are ana-
lyzed.
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Figure 1.3: A cross-section of the very large patch antenna array.

In Chapter 2, the infinite-array model is formulated mathematically. In Chapter 3, the
appropriate expressions are derived for both excitation cases. The first case involves an
incident plane wave. The second case involves the excitation by means of one or more
probes situated underneath the patches. A expression for the radiated far field is derived
in Chapter 4, which is considered a good measure of the antennas performance under
operating conditions. In Chapter 5, the optimization goals are set, the optimization of the
model is attempted for several configurations, and the results are analyzed. Conclusions
and recommendation are given in Chapter 6.



Chapter 2

Geometry and Formulation

2.1 Geometry

One of the first steps in solving a problem is the generation of a model, which is a way of
reducing the complexity of the problem, in order to obtain a problem that is (hopefully)
still manageable. Reducing the complexity of the problem is of course not without conse-
quence. The model shall in return for obtaining an easier problem not account for several
(minor) details. In effect, the obtained answer can only approximate the true solution.
The very large patch-antenna array, as shown in Figure 1.2, is a finite two-dimensional

(a) (b)

Figure 2.1: Two configurations, where (a) depicts a unit cell of the infinite-array model
and (b) depicts the same cell, but now positioned in a infinite dielectric medium, the
so-called single-cell configuration.

and uniform array. A large number of patches with identical but arbitrary shape cover
its upper surface and they reside on top of a dielectric medium. In turn, a metal sheet
the so-called ground plane backs the dielectric medium. Probes positioned underneath
the patches penetrate the ground plane but do not connect to the patches. Within the
whole structure a unit cell can be identified which is repeated many times and is marked
by the dashed box in Figure 1.2. The so-called infinite-array model is used to model the



electromagnetic behavior of the very large patch-antenna array. As the name of the model
already denotes, it is the infinite continuation of the unit cell as depicted in Figure 2.1a.
This unit cell models the unit cell previously identified in the real array. Because of the
model’s infinite extent, it will neglect various edge effects, which are certain to arise in
the real array. The advantage of using this model is that the calculations to simulate
the infinite array reduce to the ones needed for the simulation of a unit cell positioned
in an infinite dielectric medium, which will be referred to as a single cell, as depicted in
Figure 2.1b. Where as a finite array model requires approximately the same amount of
calculations times the size of the array, e.g. an array of 15 x 15 = 225 elements requires
roughly 225 times the amount of calculations. The previous example clearly shows that
application of the infinite-array model will dramatically reduce the total calculation time.

z patch z

(a) (b)

Figure 2.2: Two layered configurations; (a) depicts a unit cell of the infinite-array model
and (b) the single-cell configuration.

The model consists of two parts. The first part models the layered structure; the second
part models the excitation, which will be discussed in the first section of Chapter 3. The
model approach for the layered structure is a more general one than needed to model the
array. As a matter of fact the model could simulate a frequency-selective surface (FSS),
which is a property that will be exploited to test the far-field derivation of Chapter 4
against already published data. While considering a single cell as depicted in Figure 2.2a,
the layered structure is composed of two half spaces. The half space, z < 0, is charac-
terized by a stratified medium. The half space, z > 0, is considered homogeneous. The
patches partially cover the interface at 2z = 0 with a period equal to p and ¢, which
denote the maximum cell dimensions for the z- and y-direction, respectively. Although
the patches depicted in Figure 1.2 are rectangular a patch is allowed to have an arbitrary
shape that will fit on a uniform rectangular mesh, although the patch is restricted to fit
within the area a x b, where a and b denote the maximum dimensions for the z- and
y-direction, respectively. Note that 0 < a < p and 0 < b < g must hold. Considering
the metallic surfaces infinitely thin and perfectly conducting will allow the enforcement
of their presence by satisfying the appropriate boundary conditions. With this model, a



single layer with thickness d and two reflection coefficients defined at z = —d will describe
the half space containing the stratified medium. The two reflection coefficients Rf , and
ha will account for the interaction between layer one and the rest of the layers. The
superscript ¢ and * denote the E- and H-polarization contributions, respectively.

Note that throughout Sections 2, 3 and 4 the layered structure denotes the single-cell
situation, as depicted in Figure 2.2b. In Section 5, the infinite-array situation is consid-
ered, in order to put its periodicity property to use, which allows for a reduction of the
number of calculations.

2.2 Transmission-line equations

The point of departure are Maxwell’s equations in the frequency domain assuming linear
isotropic media and an exp (jwt) time dependence, which will be suppressed throughout
this report.

V xH=jweE+J, (2.1a)
V x E = —jwuH (2.1b)

where E and H denote the electric and magnetic field, respectively. The dielectric
medium below the patches is modeled as a stratified medium. As a consequence ¢ and u
will only depend on the z-coordinate, i.e., £(r) = €(2) and u(r) = u(z). The transverse
spatial Fourier transformation is defined as

kT,z w) / / F(r,w)exp(jkr-rr)dzdy, (2.2a)
1 oo oo R -
= m F(kr,z,w)exp(—j kr - rr) dk, dk, (2.2b)

where kr = kyu, + kyuy and rp =z Uy + YUy Applylng this to Egs. (2. la) and (2 1b)
together with the decomposition E = Er+Eu, H=Hr+Hu,and J = Jr+ J, Uu,,
results in a set of equations, which can be separated into longitudinal and transverse
parts, i.e.,

—jkr x Hy = jwe(2)E,u, + J,u, (2.3a)
jkr x Ep = jwu(z)Hyu, (2.3b)
and
—jkr x Hyau, +u, x 8,Hp = jws(z)E'T + Jr, (2.3¢c)
—jkr X Eyu, +u, x 8,Ep = —juu(z)Hy . (2.3d)



The substitution of Eq. (2.3a) and Eq. (2.3b) in Eq. (2.3¢) and Eq. (2.3d) leads to the
elimination of the longitudinal electromagnetic field components, viz.

2

T x (i x Br) +u, x 0. Fp = jue(2) Br + Jr, (2.40)
jwp(z)

_k%ux(u x Hr) +u, x 8,Er = —jwu(z)Hy + (u xu)k—T.f (2.4b)
jwe(2) k k T z 2T = —JWH T z k we(z) z) .

where k% = |kr|* = k2 + kZ and wy, = kp/kp. Note that this set of equations could also

be expressed in terms of B, and D,. Subsequently the equations are split in £- and
H-polarization contributions by using the following decomposition:

Er = ju,Ve(2) — u, x jupVi(z), (2.5a)
Hy = jupI"(2) + u, x jupI°(2), (2.5b)

where the V¢, I® and V", I* correspond to E- and H-polarization contributions of the
electromagnetic field. After substitution Egs. (2.4a) and (2.4b) can be split into:

2
81" = — VP (u, x juy) - Jr, (2.62)
jwp
.Vt = —jwulh, (2.6b)
and
8,I° = —jweVe + juy, - Jr, (2.6¢)
2
ovem ey b (2.6d)
Jwe Jwe

where v = \/k% — w?ep and €, i, 7 are all functions of z. The infinite-array model has only
metallic patches at z = 0, therefore the electric current density J reduces to an electric
surface current density Js which resides at z = 0. As a consequence Jr = Js¢ (z) and
J, = 0. After substitution Egs. (2.6a) through (2.6d) reduce to:

2
8,1 = - yh (u, x jug) - Jsd(z), (2.7a)
Jwi
8, Vh = —juulh, (2.7b)
and
8,1¢ = —jweV® + juy, - Js 0(z), (2.7c)
2
o,Ve=—L_I°, (2.7d)
Jwe

where v = \/k% — w?ep and €, u, v are all functions of z.

8



2.3 Stratified media

The mathematical result of the preceding section, i.e., Egs. (2.7a) through (2.7d) hold
generally for isotropic layered media and describes the transverse components of the
fields, which are related to the longitudinal components through Egs. (2.3a) and (2.3b)
and therefore they effectively describe the entire electromagnetic field. So solving the
field problem for the electric field becomes equivalent to finding a solution for V¢ and V"
at z = 0. The layers of the stratified medium are chosen to be piecewise homogeneous, as
stated in Section 2.1. Therefore the permittivity and permeability of layer 7 will reduce
to €:(2) = &, wi(z) = p; and the following expressions are obtained for V¢, which are
valid for the half plane z > 0 and layer one, respectively, i.e.,

Vg (2) ~13VE(z) =0 for z>0, (2.8a)
O2VE(2) —VE(z) =0 for —d<2<0, (2.8b)

where ; = \/k% — w?e;u;, 1 € {0,1}. Note that the positive solution of the square root
or principal square root is chosen, i.e., R{v;} > 0 for ¢ € {0,1}. Consequently {~;} >0
is chosen to ensure that the solution propagates or decays in the proper direction again
for 7 € {0,1}. Egs. (2.8a) and (2.8b) have the general solution:

Vo (z) = Vg exp (v2) + V5 exp(—0z), (2.9a)
Vi(z) = Vi_exp(mz) + V7, exp [-n(z + d)], (2.9b)

where V;°_ and V?, denote the amplitudes in layer ¢ of the downward and upward traveling
solutions, respectively. The scattered electromagnetic field, excited by the electric surface
current density at z = 0, must remain finite in the far field and therefore only a decaying
or propagating field solution in the positive z-direction is allowed. Consequently, Vi7_
must be equal to zero. This is known as the radiation condition. Substituting Eq. (2.7¢)
in Eq. (2.7d) reveals that the second derivative of V*(z) with respect to z must result
in a delta pulse, therefore V¢(z) must contain a kink at z = 0, which ensures that
Ve(z) will be continuous at the interface z = 0, as it should be agreement with the
boundary condition for the tangential part of the electric field as dictated by the Maxwell’s
equations. Therefore at the boundary z = 0, the condition

Vorr = Vi + Vi, exp (-md) (2.10)

holds. Due to the electric surface current density on the patch, the tangential component
of the magnetic field (and thus I®) will be discontinuous at z = 0, i.e.,

nXﬁo—nXH1=js, (211)

where Hy and H 1 denote the magnetic field close to the interface at z = 0% and z =0,
respectively, n denotes the normal of the surface P, which in this case coincides with wu,.



Js denotes in this case the electric surface current density residing at the surface P. The
substitution of Eq. (2.5b) in Eq. (2.11) results in,

s x ) [14(0%) = I%(07)] = jui [1°(0%) — I(07)] = Js, (2.12)

which can be split into terms for u; and u, x u,. The proposed separation of terms
results in:

I(0%) — I°(07) = juy - Js, (2.13a)
MO0y — IM07) = —(u, x jug) - Js. (2.13b)

The interaction between layer one and all the rest of the layers underneath layer one is
characterized by two reflection coefficients R, and Rf, defined at z = —d. The E- and
H-polarization contributions are denoted by the superscripts ® and ?, respectively. Both
can be defined as the ratio between the scattered and the incident field at the interface
z=—d,ie.,

V15,+ exp [“’71 (z+ d)] Vis

= ——ex d). 2.14
Vf_ exp (712) L Vf,_ P(Wl) ( )

€ —
12 =

By interchanging the superscripts ¢ and *, an equation is found for Rf,, which denotes
the H-polarization reflection coefficient. It is now possible to write the following for the
transverse field components at z = 0:

Vi(z=0) = {Vf,exp[-m (z+ d)]| + VP _exp (m2)}],_,
= Vle+ exp (—md) + Vle—
= R: ,Vi_ exp (—md) exp (—mid) + Vi
=V¢_ [1+ R exp(—2md)] .

(2.15)

Again, by interchanging the superscripts ® and * reveals the H-polarization counterpart.
Reusing Eq. (2.7d) and taking the limit as z approaches 0 from below yields the following
relation between 1°(07), V°_, and V¢ :

a,ve=—1_re =
Jwe
2
limd, V¢ = —lim—1I° =
270 zT02_]wE (2 16)
84! _
— —vid)] = — e
m Vi — Viy exp (—md)] jwell(0 ) =
.ws e e e -
~T 2 Vi~ Vi e (-md)] = 1(07).

By using Eq. (2.7d) and taking this time the limit as z approaches 0 from above yields
the following relation between I°(0%), and Vi,

jLUEo
Yo

Ve, = I°(0%). (2.17)

10



The substitution of Eqs. (2.16) and (2.17) in Eq. (2.13a) yields:

Jweo Jwey

Ve, +— [VE_ — Ve, exp (—md)] = juy - Js. (2.18)
Yo N

Together with Eq. (2.10) and Eq. (2.14) it is possible to eliminate Vy*_ and V¢, and the

following relation between Vi, and Js is found:

Ve, — Yo [1+ Bf5exp (=271d)] - Js.

o+ \jw {eom [1+ RS pexp (—2nd)] + €170 [1 — R§ g exp (—2’71d)]i (2.19)

= A(kr)

In a similar fashion a relation between VO" , and Js is found, i.e.,

jwpops [1 + Rk, exp (—2md)] . j
- 1+ R “onrd 1— R o] (Y X T Js
vy [1+ Ripexp (—=2md)] + pom | b, exp (—27v1d)]

;B‘EkT)

h
Vour =

(2.20)
Substituting Egs. (2.19) and (2.20) in Eq. (2.5a) results in a expression for E% at z = 0,

B2 (kr,0) = —% A (kr) — B (kp)] (kT : js) — B(kr) Js, (2.21)

where the superscript ° denotes the scattered field, which is, in this case, the electric
field due to the induced surface current density on the patch. By applying Eq. (2.2b) a
relation between E37 and Js can be obtained, i.e.,

[o <IN o]

>

Eisw ('I"T, 0) (kT, 0) exXp (—jkT . 'l"T) dkT

~N®

_ 1
T Aq?

)
8
!
8

Il
I
N
5|~
! I\g
8 ~~——g 8 3

{’]:_; [A(kr) — B(k7)] (kT . js) } exp (—jkr - r7) dkry

|
8

B (kr) Jsexp (—jkr - v7) dkr (2.22a)

[
3 -
—g

1
g

Using the fact that multiplying by jkr in the spectral domain corresponds to applying
Vr = 0;u, + dyu, in the spatial domain reduces the previous equation to:

E7 (r7,0) =V V- // G1 ('PT - "';ﬂ> Js (7';“> dry
P
- // G, (”'T - ""T> Js (7';“> dry., (2.22b)
P

11



where 77 € R? and P is the surface where the surface current density resides.

1 [ 71

Gl = F / / 3 [A (kT) - B (kT)] exp (—jkT : TT) dkz dky ) (2233‘)
™ kT
1 o o0

Gr= o / / B (kr) exp (—jkr - v7) dk, dk, . (2.23b)

The total transverse electric field Fr consists of two parts namely, the scattered field,
which is excited by the electric surface current density and the incident field, which refers
to the field that would be excited by the electromagnetic source if there would be no
metallization present, i.e.,

Er=E} + E}. (2.24)

On the metallic patch the boundary condition E7 = 0 must hold and therefore:
E, =-E3, for z=0,rreP (2.25)

which effectively relates the incident field E% and the electric surface current density Js.

2.4 Reflection coeflicients

The previously introduced reflection coefficients Rf , and R’l‘y2 remain to be determined.
To do so, certain assumptions need to be made about the interface at z = —d and/or
about the medium present underneath layer one. The following cases are considered.

e The interface at 2 = —d consists of a perfectly conducting metallization, occupying
the entire z-y-plane.

e The half space underneath layer one is homogeneous.

e The half space underneath layer one consists of multiple piecewise-homogeneous
layers.

e The half space underneath layer one has continuously varying material properties
along the z-axis, but is constant for any z-y-plane.

For the first assumption the reflection coefficients R , and R}, are equal to -1. With the
second assumption it is possible to express the reflection coefficients in terms of the ma-
terial properties. To find the appropriate expressions, consider the situation depicted in
Figure 2.3, where V¢_, V3 and V{?, denote the amplitudes of the downward and upward
traveling wave solutions in the appropriate layers. Note that of course the same situation

12
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|
$v;,_ gm
€1, H1
—d
€2, U2

Figure 2.3: Transverse fields situation, with a homogeneous half space at z < —d

holds for the H-polarization contribution denoted with the superscript . Reusing the
same derivation as for Egs. (2.16) and (2.17) the following two relations are found:

jwz-:1

= [Vi-exp (omd) — V] = I° (=) (2.26a)
_jw€2

Y2

Vi_=1¢(—d") . (2.26b)

The substitution of these relations in Eq. (2.13a) reveals

— L e _exp (—md) - Vi, ] + 2V =0, (2.27)
T ’ ’ Y2
together with
Vo =WVi_exp(—md)+ V¢, (2.28)

which is a direct result from preserving the boundary conditions for transverse electric
fields at the interface z = —d. The substitution of Eq. (2.28) in Eq. (2.27) and subse-
quently the substitution of Eq. (2.14) eliminates Vi°_, V*, and Vy_ and reveals:

e __ E172 &M

= . 2.29
2= o eam (2:29)

In a similar fashion a relation which expresses the reflection coefficient for the H-polarization
contribution, is found:

Rh. = o — K172

L2~ o

HoY1 + [17Ye

If the half space underneath layer one consist of multiple piecewise homogenous layers

the scattering matrix formalism as developed in [12], [14] can be used. It effectively

cascades the effects of the multiple layers. The same technique can be used to handle the

case of continuously layered media. Several recursive algorithms have been developed in

the Electromagnetics group at the University of Technology in Eindhoven for solving the

according differential equations numerically [22].

(2.30)
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2.5 Periodicity put to good use

Until now the periodicity of the problem has not been used. To do so some tools have to
be derived first. As mentioned before in Section 2.1 the model of the array is an extended
version of the real problem. If viewed upon as depicted in Figure 2.4 it is clear that the
metallization is periodic with respect to the two primitive vectors pu, and gu, along the
z- and y-direction. From this characteristic a Bravais lattice can be constructed,

Figure 2.4: Top view of the array model

R, , =mpu, + nqu,; m,n €z, (2.31)
and a corresponding translation operator is defined as:
Tonf(r)=f(r+ Rpn) . (2.32)

When the medium is horizontally stratified, i.e., e(r) = e(z) and p(r) = u(z), Maxwell’s
equations reduce to,

V x H = jwe(z) E+ J, (2.33a)
V x E = —jwu(z)H . (2.33b)

Applying the previously defined translational operator to Egs. (2.33a) and (2.33b) results
in:

V X T (H) = jwe (2) Tnn (E) + Tinn (J) (2.34a)
V X T (E) = —jwp(2) Tmn (H) . (2.34b)
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Egs. (2.34a) and (2.34b) clearly show that Maxwell’s equations are invariant with respect
to a periodic translation in the z-y-plane when the medium is horizontally stratified.
Together with the boundary conditions, which are also invariant with respect to the
same discrete translation in the z-y-plane, they form a linear operation, which can be
represented by a single linear operator £. This linear operator L is therefore also invariant
with respect to this discrete translation, i.e.,

Tonn (Lu) = LT n(u). (2.35)
Now consider the following operator equation,
Lu=f. (2.36)
Assuming £~! exists and that the forcing function f is quasi periodic, i.e.,
Tun (f) = fexp[j (mQy + nQ,)], (2.37)
the following nice result is found,

Lu=f
Ton (Lu) = T (f)
LTnn (u) = fexp[j(mf; +ny)]
Trnn(u) = uexp [j (mQy +ndy)],

L

(2.38)

where (2, and 2, denote the propagation constants of the forcing function f for the z-
and y-directions, respectively. These propagation constants will be examined later on in
Chapter 3. Closer examination of Eq. (2.38) shows that u must contain a periodic part
denoted by u®, i.e., Trnn (uf) = u”, where the superscript © denotes the periodicity of
uf. To put it in a nutshell a periodic system will react quasi periodic when it is excited
by a quasi-periodic forcing function. For both excitation cases, i.e., the dipole and plane-
wave excitation, the forcing function is quasi periodic. This means that for both cases
the electric surface current density Js and hence the scattered field E*, will be quasi
periodic. Applying the previously derived property to the electric surface current density
Js(rr) results in:

Js(rr+ R, ,) = Jg(rT) exp (—jk% - Ry, (2.39)

where ki = Quu, + Qu, and JE(rr) = JE(rr + R,.,). A similar relation can be
derived for the scattered field.
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The fact that the response will be quasi periodic when the system is excited by an quasi
periodic function justifies the single-cell analysis as can be shown by the following analysis.
The analysis starts out with Eq. (2.22b), which is rewritten in the following manner by
combining the two Green’s functions into one and by splitting up the integrals, i.e.,

E3(2=0)= / G12 rT — r}) - Js (r}) dry

-2y [ e (rr—ri)-7s (r) ar (2.40)

Pmn.

_ZZ//GD T — T — Rm,n) - Js (T:‘p-i-Rm,n) dry,

n
Po,0

where m,n € Z and Py or more general P, , denotes a surface area that covers a unit
cell or in other words cover a single period of the infinite-array model. It is now possible
to use the quasi periodicity of electric surface current density, Jgs, to relate the current
density of the 'center’ patch, J2, to the scattered electric field by substituting Eq. (2.39),
ie.,

E7(2=0)= ZZ/ G’12 'rT —rp — R,,m> J2 (rT> exp (—jk% - Rm,) dry .
™ Poo
(2.41)
Although the equation above is not a very convenient one it already justifies the single-
cell analysis. Employing the fact that J2 can only attain non-zero values at the ‘center’
patch restores the convolutional structure, i.e.,

B =0 =33 [ [ Gua(rr-ri=Run) - 38(vr) exp (~iki - Romn) dri,
o (2.42)
where k% = Q,u, + Qyu,. Interchanging m and n with —m and —n, respectively, yields

Ep(z=0)=)Y_Y (Gu*J3) (rr — Run)exp (—jki - Rmpn)

| (2.43)
= Z Z (G2 % JQ) (r7 + Runn) exp (jk3 - Renn) -

Note that the equation above can be identified as a Poisson summation formula like the
equation below, which is derived in detail in Section A.1.

a Z Z (27rm m“y) Z Z Y (mpus + nquy) , (2.44)
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where,

oD

. [ 2mm! 9! T 9! 9/
\I/( ki Uz + 7;71 uy> = / /'@b("'T)eXp [J( kil uz‘{”_?;’,—l'uy) ""T] drr, (2.45)

p p

is the sampled version of the Fourier transform for a continuous function v as previously
defined in Eq. (2.2a). Employing the Poisson summation formula reduces Eq. (2.43) to

1 - m,n > m,n .pmn
E(z=0) = p—qZZGm (k7™ - IS (k™) exp (—jkp™ - r7) (2.46)

which shows that the scattered field due to the surface-current density on the patches
comprises so-called Floquet modes [1]. The subsequent substitution of the equation above
yields

Bf (2= 0)= ~— 50 Gua (k) - JE (") exp (K7™ 7o)
S [ N L A (2.47)
= LSS [k (pn 32) + Gl exp (—kp" ),

m,

where G}, Gy and J3 are all functions of k7™ and kp™ = (21m/p)ug + (21n/q)u, + ki
The final result shows that the solution for the electric surface current density distribution
of a single patch only relies on the tangential part of the incident electric field.
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Chapter 3

Excitation

3.1 Modeling issues

In practice the patch-antenna array can be excited by all sorts of electromagnetic sources,
e.g., other antennas, probes, or open ends of waveguides situated underneath the patches.
The effects of the different sources can be roughly divided into two categories according to
their distance, measured in wavelengths, to the patch-antenna array. Sources positioned
‘nearby’ shall impress a fairly complex electromagnetic field distribution at the surface
of the patches. On the other hand, the field distribution induced by a source positioned
'far away’ will be almost the same as if the array were excited by an incident plane wave.

€0, K0 ~ . N £0, KO

€1, 41 }

(a) (b)

Figure 3.1: Two excitation models: (a) incident plane-wave, and (b) small electric dipoles
situated underneath the patches.

This report is restricted to two cases of excitation, where each of the cases represents
one of the two categories. The two excitation cases are: excitation by an incident plane
wave and excitation by one or more probes situated underneath each patch of the ar-



ray. Modeling the first case is almost trivial, for the second case some trade offs have to
be made. A practical example of a probe is the stripped end of a coaxial cable, which
penetrates the ground plane. The probe has various characteristics, e.g. the length and
thickness of the inner conductor, the diameter of the cable, the permittivity of the insu-
lation material, the conductivity of the metal, and so on and so forth. All these details
make something as simple as a probe already a fairly complex part to model accurately.
In this report no attempt will be made to model the probe as accurately as possible,
instead a simple model will be employed. Examination of a probe reveals that the tip
of the inner conductor and its aperture are the parts that will radiate most of the elec-
tromagnetic energy. A model, which takes these parts of the probe into account, will
most likely have an electromagnetic behavior, which includes the most significant elec-
tromagnetic properties of the probe. For reasons of (even more) simplicity the radiation
from the aperture is neglected at first, but could always be added to the model as an
equivalent magnetic current density residing at the aperture, which is frequently called a
magnetic-frill source, for more details on this topic see [19]. Consequently, only the tip of
the inner conductor of the probe is taken into account. It is modeled as a small electric
dipole, which has no physical dimensions. In turn, this is equivalent to an electric current
source, which is confined to a single point in space. Note that in case of multiple probes
per patch the total excitation field is determined by superimposing the fields due to the
individual probes. The two excitation models, viz. an incident plane wave and a small
electric dipole situated underneath each patch of the array are depicted in Figure 3.1.
The number of probes and their (relative) position underneath a patch are assumed to
be identical for each unit cell of the array. This assumption ensures the periodicity of
the infinite-array model.

In Section 2.5 Eq. (2.47) a relation between the incident electric field and the surface
current density on the patch has been established. Before any attempt can be made
to solve this equation numerically, an expression has to be derived, which relates the
electromagnetic source to the field that excites the patches. This expression, which is
often called a forcing function, indicated by f, has to be derived for each of the excitation
cases (Section 3.2 and Section 3.3). Both forcing functions will be quasi periodic and as
a consequence both will have the following property,

Tnnf(r) = fP(r)exp (j k¥ Rmnn) (3.1)

where fP (r) denotes the periodic part of the forcing function and kr = Quu, + Qu,,.
The periodic part of the forcing function is determined, while utilizing the same single-
cell analysis as used earlier to establish the relation between the tangential part of the
electric field and the surface current density residing at the patch. As a consequence, a
number of equations from Section 2.2 and Section 2.3 are reused in this chapter.

The basic principle behind the derivation of both forcing functions is the observation that
the total electromagnetic field is a superposition of two fields, viz. the field induced by
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the surface current density residing at the patch, i.e., the scattered field, and the field
induced by the electromagnetic source in the presence of the same media, but in absence
of the patches, i.e., the incident field. Note that the latter field will excite the patch. This
approach is also followed in {21], [19], and references herein. The described decomposition
is depicted in Figure 3.2. Note that for the sake of clarity the interaction between layer
one and two is not depicted in the figure.

z z

Loz L.
s

€0, HO

€1, H1 ;

(a) (b)

Figure 3.2: Superposition of two fields. (a) The field due to the source (incident plane-
wave case) in absence of the patches and (b) the scattered field due to the current density
on the patch.

3.2 Plane-wave excitation

The forcing function for the incident plane wave case and its derivation are split into E-
and H-polarization contributions. Revisiting the decomposition of the fields, as proposed
in Eq. (2.5), justifies this. Afterwards, the derived expressions are added. Before any
derivation is made, the source, which in this case is an incident plane wave, has to be
characterized. An incident plane wave is defined by its angle of arrival (6*,¢*), polarization
and frequency, while assuming that the incident plane wave originates from the upper
half space, i.e. z > 0. The incident plane wave can be represented in k-space by a single
mode, viz., the (0,0)-mode. As a consequence the (0,0)-mode will have a tangential
wave-vector kr equal to the tangential wave-vector k& impressed by the incident plane
wave, where k% = QL u, + Qiu,. From the angle of arrival and the incident plane wave’s
frequency 2}, and €, can be distilled, which will define the phase variation of the quasi
periodic forcing function at the surface, 2 = 0, of the infinite array for the z- and y-
direction, respectively. If ¢ and ¢¢ are defined according to Figure 3.3, the following
relation is found for 2, and ,,

Q, = —kosin (6%) cos (¢), (3.2a)
Y, = —kosin (¢*) sin (¢°) (3.2b)
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Figure 3.3: Angle of arrival definition.

where ky = w,/ggpto denotes the propagation constant for the upper half space. The
model will allow for all possible polarization configurations, because the incident field is
defined by the complex amplitudes of the u; and u, x u; terms.

The same single-cell analysis, as explained in Chapter 2, can now be used to derive the
periodic part of the forcing function. The derivation of the E-polarization contribution of
the forcing function starts by identifying the source term in Eq. (2.9). The incident plane
wave is assumed to originate from somewhere in the upper half space z > 0. Consequently,
Vo is identified as the complex amplitude of the E-polarization contribution of the
incident plane wave. As mentioned before, during this derivation the same media will be
considered, but now in absence of the patches. The appropriate boundary conditions at
z = ( are therefore,

u,x Eg—u,x E; =0, (3.3a)
u, x Hy—u,x H =0, (3.3b)

where {Ey, Hy} and {Ei, H;} denote the electromagnetic field close to the interface at
z = 07 and z = 07, respectively. The boundary condition Eq. (3.3a) is rewritten by
employing the spatial Fourier transformation as defined in Eq. (2.2a) together with the
decomposition as defined in Eq. (2.5a), ie.,

w, X jupVy (07) + junVy (07) —w, x jup VP (07) — jwnV (07) =0. (3.4)

The equation above can now be separated into terms with w, X u, or u,. Note that this is
also a separation of the £- and H-polarization contributions denoted by the superscripts
¢ and ", respectively. For the magnetic field boundary condition Eqgs. (2.13a) and (2.13b)
can be reused with the additional condition that Js is equal to zero owing to the absence
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of the patches. As a consequence, the boundary conditions for E-polarization reduce to:

Vg (0%) =V (07) =0, (3.5a)

Ig(0%) =I5 (07) =0. (3.5b)

Note that if the superscript © is interchanged with * the boundary conditions for the H-
polarization contribution are obtained. The substitution of Egs. (2.9a) and (2.9b) in the

boundary condition given in Eq. (3.5a), while using Eq. (2.15), establishes the following
relation between Vi, , Vy_, and V¢ _.

Vi + Ve, =Vi [1+ Rizexp (-2md)] , (3.6)

where v = \/(ki-)? — k2, ki = |k%|, k¥ = w21, and RS, = R¢,(v1). Employing the
magnetic-field boundary conditions in a similar fashion yields,

Jweg Jwer

. Vor—Voo) = - Ve_ [R{pexp(—md) — 1] . (3.7)

Combining Eq. (3.6) and Eq. (3.7), while using Eq. (2.15) yields,

) = 2e0m Vi [1+ Ripexp (—2md)]
mi€o [1 + RS 5 exp (—27md)] + Y0e1 [1 — R§pexp (—2md)]’

Vi(z=0 (3.8a)

which relates the u, component of the incident electric field, Vi_, to the E-polarization
contribution of the tangential electric field, V{® at z = 0. The H-polarization contribution
is derived analogously and its result is,
B 2v0m Ve [1 + R}, exp (—2nd))]

ot [1+ RYgexp (=2md)] + vipo [1 — RY 5 exp (—2711d))

Substitution of Eq. (3.8) in Eq. (2.5a) yields the spatial-Fourier transform of the forcing
function Ei(z =0), i.e.,

Vi (z=0)

(3.8b)

2e0m Vs [1+ Ripexp (=2md)]
meo [1 + RSy exp (—2md)] +70e1 [1 — RS exp (—2md)]
270 Vo' [1 + R, exp (—271d)]
Yot [1+ RE g exp (—=2md)] + mpo [1 — RE, exp (=27:d)
where Vi_ and VO’}_ denote the E- and H-polarization contribution of the tangential
electric field impressed by the incident plane wave. Exploiting the fact that the incident

plane wave can be represented by only one mode, viz., the (0,0)-mode, establishes a
relation for Ex at z = 0, i.e.,

Ei(z=0)=

JUe—
(3.9)

]uzxjuk,

. 1 .. .y
Er(z=0)= yPo) Ej(z=0)exp(—jky-rr), (3.10)

which concludes the derivation of the forcing function for the plane-wave excitation case.
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3.3 Dipole excitation

Similar as for the incident-plane-wave case, the forcing function for the dipole-excitation
case and its derivation is split into E- and H-polarization contributions, while employing
the decomposition as proposed in Eq. (2.5). Although this time, the two resulting ex-
pressions end up to be far less symmetric. The derivation given in this section assumes
only one dipole per unit cell, additional dipoles can always be added by employing the
superposition principle. The small electric dipole is defined by its current I, fictitious
length I, position 7, (radial) frequency w and a phase factor. Note that the position of the

(-2,7)  (-L,a)  (On) (ILm)  (2n)

ke
(a) (b)

Figure 3.4: (a) Scan angle definition, where the superscript * is short for ”scan”; (b)
Side view of the array, while it scans (6°¢, ¢* = 0).

dipole is relative to the unit cell (m,n). The phase factor enables the infinite-array model
to scan, or in other words create a single beam in a predetermined direction defined by
the scan angle. This goal can be achieved by making sure that the electromagnetic waves,
originating from each individual patch, will add up coherently for that direction. This
effectively means that the phase of the waves have to be pre-corrected for the difference
in covered distance, as depicted in Figure 3.4b. The difference in covered distance for
electromagnetic waves originating from neighboring patches can be expressed in terms of
scan angle and the period of the infinite-array model, i.e.,

a8, = psin (6°°) cos (¢°°) , (3.11a)
a8y = gsin (8°°) sin (¢°°), (3.11b)
for the z- and y-direction, respectively. The phase of an electromagnetic wave is related to

the covered distance by the propagation constant of the medium, in this case ky. Taking
the center patch, indicated by m = 0,n = 0, as the point of reference, the appropriate
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phase angles for a wave originating from patch (m,n) are,

s = maszko

= mp ko sin (6°°) cos (¢*°)

=mp§L°, (3.12a)
@y = nasyko

= ng ko sin (6) sin (¢*°)

=ng°, (3.12b)

for the z- and y-direction, respectively. The phase factor of the forcing function can now
be written as: _ . .
exp (—jmp ) exp (—jng Q;C) =
€Xp (_.7 k;"c ) R'm,n) )

where kf* = Q3°u, + °u,. Examination of Eq. (2.39) reveals that, if the forcing func-
tion f is quasi periodic then the response of a linear system must also be quasi periodic.
Consequently, if the forcing function is quasi periodic, then the field exciting the patch,
the electric surface current density residing at the patch, and the scattered field due to
the electric surface currents residing at the patches are all quasi periodic and will have
the same phase factor. In other words, the derived expression for the phase factor also
holds for the forcing function, in this special case. Note that the derived phase factor
defines the propagation direction of all of the propagating modes, but only one will match
the desired scan angle. In this case the phase factor will achieve this for the (0,0) mode.

(3.13)

The derivation of the periodic part of the forcing function, f¥, again employs the single-
cell analysis. The fact that the small electric dipole has no physical dimensions effectively
reduces it to a current source, which is confined to a single point in space. The probe’s
position is defined by 7o = ro1 + 2ou,, where 0 < 2o < p, 0 < yo < gand —d < z <0
must hold. The subscript o denotes that the position is relative to the center patch. The
dipole’s orientation is aligned with the z-axis, which is, more importantly, perpendicular
to the ground plane, as would be the case for the inner conductor of a real probe. Almost
any other orientation can be considered impractical, because there would be no room left
for the probe’s connection to the outside world. Hence the current density is of the form

J(r) = Jr(r) + J.(r)u,

= Iz l 6 (TT - "'O,T) 6(2 - Zo)uz N (314)

while assuming a vertical dipole, i.e. Jr(r) = 0. The spatial Fourier transform of J(r)
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is found by employing Eq. (2.2a), i.e.,

~

J(kr,z,w) = J(r,w)exp (jkr - rr)drr

LS (rr —ror)6(2 — 20)u.exp (j kr - r7) dry (3.15)

8

l\g 5:3\8
8 ~——3g 8 3

[

I lexp(jkr-ror)d(z — 20)u,

Jig,z 5(z — z0)u,,

where js,z is the z-component of a surface current density and it’s orientation is aligned

with the normal of the surface, z = z;, which is where the surface current density jg,z
resides. Substitution of Eq. (3.15) in Eq. (2.6) yields

0. 1° = —jweVe, (3.16a)
Ve =2y k1
Ve=———I°+ —Js; 0 (z —2) , (3.16b)
JWwe Jwe
2

oIt = -1yt (3.16¢)
jwp

VP = —juulh. (3.16d)

Close examination of Eq. (3.16¢) and Eq. (3.16d) reveals that these two equations will
not yield any solutions that were excited by the source. Consequently, there will be no
H-polarization contribution and the analysis can be restricted to the E-polarization con-
tribution. Differentiating Eq. (3.16a) with respect to z and the subsequent substitution
of that result in Eq. (3.16b) yields,

8215 — i If = —krJs . 6 (2 — 20) (3.17)

which holds for layer one. Examination of Eq. (3.17) reveals that the second-order deriva-
tive of I yields a &(z — 2p), as a consequence the first-order derivative of I must yield
a step function at z = z; as does V¢, i.e.,

lim [VE(2)] — lim [VE(2)] = —— Js , 3.18
zﬁiré[ F(2)] ;Trg;[ £(2)) jwele,, (3.18)

which is the boundary condition at the fictitious boundary z = 2o due to the presence of
a small electric dipole. The magnetic-field boundary condition is simply,

lim [I5(2)] — lim [I7(2)] = 0. (3.19)
zlzo zTzo
Dividing layer one into two halves, as depicted in the figure below, makes it possible to
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Figure 3.5: Division of layer one into two source-free and piecewise homogeneous halves.

treat the sub-layers as being source free and piecewise homogeneous, while the dipole is
treated as a boundary condition at the surface 2 = 2. The field solutions of the two
halves arise from the following two homogeneous differential equations,

EVi(2) —MVa(z) =0 for 2 <z<0, (3.20a)
BVin(z) — ¥ V(z) =0 for —d<z<z, (3.20Db)

where 71 = {/k% — we 1. As in Section 2.3 the positive branch of the square root is
chosen, i.e., R{m} > 0 and {71} > 0. Note that the equations above are very similar
to Eq. (2.8a) and Eq. (2.8b) and have the general solutions:

Vii= Vlel,— exp (mz2) + Vlel+ exp [-m (z — Zo)] ) (3.21a)
Ve =Vih_expm (z — 20)] + Vi, exp [-m (2 + d)], (3.21b)

where Vi _, Vi, Vi5_ and Vi3, are the amplitudes of the upward and downward
traveling wave solutions. By employing the magnetic-field boundary condition a relation
is established between the wave solutions of the upper and lower sub layers of layer one,
ie.,

Vis— — Vig e exp[—m (20 + d)] = Vi] _exp (1120) — Vi 4 - (3.22)

By employing the electric field boundary condition of Eq. (3.18) another relation between
the wave solutions of the upper and lower sub layers is established, i.e.,

kr

—Js.. (3.23)
Jwey

Vii,- exp (1120) + Vit = Vio - — Vig exp [-m (20 + d)] =

The interaction of the E-polarization contributions between the half space, z > 0, and
layer one is characterized by a reflection coefficient, Rf ;. It is defined as the ratio between
the scattered and the incident field at the interface z =0, i.e.,

. Vii,— exp (m2) Vi-

= — = ——exp(—m=2o) . 3.24
1o Vi exp [-m (2 — 20)] -0 i+ (=mz) ( )

27



The interaction of the FE-polarization contributions between layer one and layer two
(and, if present, the rest of the layers) is characterized by another reflection coefficient,
viz. Rf,. It is defined as the ratio between the scattered and the incident field at the

interface z = —d, i.e.,
€

£y = 2 exp (20 + )] (325)
V-
which is in most practical applications equal to -1 due to the ground plane separating
layer one and half space below layer one. In Section 2.4 an expression was established,
which relates the reflection coefficient, Rj ,, to the material properties of the layer one
and layer two. By interchanging the subscript 5 to ¢ a similar expression is obtained for
10y 1€y

e _ E17% —EM

= . 3.26
Y g0+ eom (3.26)
Rewriting Eq. (3.24) and Eq. (3.25) yields two expressions,
Vi = Vs Rioexp (m), (3.27a)
Vigy = Vis_Risexp[—m (20 + d)]. (3.27D)

which effectively relate V7 _ to V} , and Vj3 | to V)5 _, respectively. By employing these
two relations Eq. (3.22) and Eq. (3.23) reduce to,

k N
Vi 4 [RSoexp (2v120) + 1] — V5 _ {1+ R§ g exp [—27 (20 + d)]} = jwi”l Jsz, (3.28a)

Via,_ {1 — Ri,exp [—2v1 (20 + d)]} -Viis [R‘f’o exp (2m20) — 1] =0. (3.28b)
Substitution of Eq. (3.28b) in Eq. (3.28a) yields,

Ve ; kr 1— Rf,exp[—2v1 (2 + d)]
= JSz e " .
11,4+ j2we; 1— Riq Rf,exp(—2md)

(3.29)

By employing once more the relation found in Eq. (3.27a) an expression is found for Vj§ _.
Substitution of the expression for Vjj _ and Eq. (3.29) in Eq. (3.21a) for z = 0 yields

N 1—R¢ -2 +d
Ve(z=0) = J kr $2exp [~27 (20 + d))]

g 1+ Ry : 3.30
5% 9jwer 1— R§q RS exp (—2md) (14 Rio) exp (m20) (3.30)

which is proportional to the u; term of E‘r} Substitution of Eq. (3.30) in Eq. (2.5a)
yields the spatial-Fourier transform of the forcing function Ei(z = 0), i.e.,

1 1—Rj,exp [—2m1 (20 + d)]

Ei(z=0)= ikrJ z
r(z=0) = jkp Js, 2jwe; 1 — R$o RS, exp (—2md)

(1+ R§) exp(mz). (3.31)

By employing the inverse spatial-Fourier transformation, as defined in Eq. (2.2b), the
equation above can be written in a convolutional structure, i.e.,

Ei(z=0)= Vg / / Gs ('rT - r’T) Js.2 (r’T) dr | (3.32)
P
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where P denotes the surface, z = zp, at which the source resides and G3(rr) denotes a
Green'’s function, which is defined as,
exp (—jkr - rr) dkT .

1 00
s(rr) = " an?
(3.33)

Note that Eq. (3.32) is a result of the single-cell analysis. However, its convolutional
structure allows for the employment of the same analysis as used in Section 2.5, which
expands it to a solution for the infinite-array model. This yields,

1 — R5,exp[—27 (20 + d)]
23<.u51 1 — R§ 4 Rf 5 exp (—271d)

(14 R5 ) exp (1120) %

8\8

- ]- ST ML A T 3. M,n
E}(z=0)=ﬁZZ]kT’ G Jg  exp (—jk7™ - r7), (3.34)

where k7" = 2rm/qu,+2mn/qu,+ k5 and .]Agyz = Llexp (jk7™ - 7o,r). This concludes
the derivation of the forcing function for the dipole-excitation case.

29



Chapter 4
Far Field

4.1 Field regions

The field radiated by the infinite array can be seen as a superposition of two fields, i.e.,
a field due to the currents on the patches and a field due to the source in absence of the
patches. Note that the exact same superposition was proposed earlier for the entire field
in Chapter 3 and is depicted in Figure 3.2. An observer positioned at a large enough
distance, R, from the array will experience the remnants of this field, which is often
called the far field. This situation is depicted in Figure 4.1 in case of a simple dipole

antenna region

* near field X far field
region region

> o0

Figure 4.1: The different field regions, in case of a simple dipole antenna with a maximum
dimension L and where R denotes the distance from the antenna to the observation
point, x*.

antenna. The far field is composed of the same superposition and the expressions that
describe them are derived separately in the two remaining sections of this chapter. The
properties of the far field are generally considered to be a good measure of the antenna’s



performance under operating conditions, which is why they are used as objectives for the
optimization tool in Chapter 5. But before the properties of the far field can be utilized
one matter remains, viz., the classification of the near and far field regions. As mentioned
before, the far field region starts at a large enough distance from the source, but a ’large
enough distance’ is a somewhat vague measure and in practice a rule-of-thumb is applied,
e.g., ten times the wavelength. Another more sophisticated way of classifying the field
regions [20] employs the inequality below,

2
rR>2 (4.1)
Ao

where L denotes the largest physical dimension of the radiating element and g is the
wavelength of the radiated wave. In this case Eq. (4.1) is not meaningful, because of the
model’s infinite extent in the horizontal plane. Instead the height of the observation point
above the surface of the array will be used as a measure of distance, but this does not
address the ’large enough’ issue. Fortunately, an analytic expression of the radiated field
will be available after the derivations made in Section 4.2 and 4.3 of this chapter, which
allows for an exact way of identifying the near and far field. The near field will consist
of both propagating and evanescent modes. On the other hand, the far field will only
consist of propagating modes, because the evanescent modes are attenuated exponentially
as the distance between the source and the observation point increases and consequently
no significant part will contribute to the far field. An expression for the tangential part
of the radiated electric field at z = 0 due to the currents on the patches was already
derived in Section 2.5. The fact that the radiated field should vanish or propagate in the
positive z-direction is used to establish an expression for E%, which holds for z > 0, i.e.,

E%(kT, z) = E%(kT, 0) exp (—y02), (4.2)

where Yo = y/k% — w2eoup. Substitution of the equation above in Eq. (2.21) and subse-
quent employment of the same analysis as performed previously in Section 2.5 yields,

! G mn L J oa 1 .y mn
E; = E ZZ [kT’ G, (kT’ . Jg) + G2J§] exp (—yoz) exp (—jk7™ - 1) (4.3)

where Gy, G5 and 7, are functions of k5" and J2 is a function of k7"". Close examination
of Eq. (4.3) reveals that E3 is composed of an infinite number of so-called Floquet modes.
A mode is called a propagating mode if the argument of the exponent, exp(—7yo2), is
purely imaginary or if it is equal to zero. A mode is called an evanescent mode if the
argument is real valued and negative. The denotation becomes obvious when observing
the fact that each mode represents a plane wave. Consequently, the following must hold
for all propagating modes,

(k) + (k2)* < wleomo, (4.4)

which describes a circular area in the k7 domain, with a radius ko = w./€ofio as depicted
in Figure 4.2. In other words, all propagating modes belong to the encircled area. Note
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that Eq. (4.4) does not hold for propagating modes for which o = 0. As they propagate
they move along the surface of the array, which means that their Poynting vector will
not have a z-component and as such they will not contribute to the far field. Eq. (2.3)

(kT2 + (K7)? = w2eouo

propagating mode

/ evanescent mode
.

L] L] L] 18 L]
.o

Figure 4.2: Propagating and evanescent modes.

shows that II}, H S and E are proportional to E% or proportional to its derivative with
respect to z. This effectively means that all the components of the radiated field due
to the currents on the patches consist of identical propagating and evanescent modes.
Furthermore, the result of Section 2.5 shows that the field exciting the patches, the
current distribution at the patches and the field radiated by these currents all have an
identical phase variation. Consequently, the radiated field due to the source in absence of
the patches has the same phase variation and therefore potentially the same propagating
and evanescent modes. In effect the analysis made in this section holds for both parts of
the far field and consequently for the far field as a whole. Note that the analysis in this
report is restricted to configurations where only a single propagating mode is excited,
viz. (0,0)-mode.

4.2 Radiation due to currents on the patches

In this section the situation as depicted in Figure 3.2b is considered, i.e. radiating current
distribution on the patches, in absence of the source that excites the current distribu-
tion. As in Chapter 2, the analysis is performed for a unit cell positioned in an infinite
dielectric medium, as depicted in Figure 2.2b, and subsequently, the periodicity of the ar-
ray is employed to expand the single-cell solution to a solution for the infinite-array model.
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The field that is radiated by the electric surface current density, which resides at the
patches, is split into tangential and longitudinal components, i.e.,

E* = E5 + E'u, (4.5a)
H® = H: + H'u, . (4.5b)

As mentioned before, Eq. (2.3) relates the tangential and longitudinal components to
each other. Consequently, the expression for E% in Eq. (4.3) completely characterizes
the radiated field due to the currents on the patches. However, very often EZ, EJ, and
E3 are used to describe the far field or one of its properties. By applying a standard
coordinate transformation E?, Ej, and E7 can be expressed in terms of their Cartesian
counterparts E;, £, and E}, i.e.,

E? = E;sinflcos¢ + E;sinfsing + E; cosd, (4.6a)
Ej = E;cosflcos¢ + E;cosfsing — E]sind, (4.6b)
Ej = —~E;sin¢+ E cos ¢, (4.6¢)

where (0,$) determines the observation angle. Note that the same definitions for 4
and ¢ were used as in Chapter 3. The longitudinal component of the field, £}, is still
undetermined, but Eq. (2.3a) together with Eq. (2.4b) show that EZ and E$ are coupled.
By reusing the decomposition as proposed in Eq. (2.5b), I:I; can be written in terms
of E- and H-polarization contributions, which are denoted by the superscripts ® and *,
respectively, i.e.,

HS = ju IM(2) + u, x jupl®(2). (4.7)
Substitution of the equation above in Eq. (2.3a) yields,

- k

Er=—J, - L. (4.8)
Jjwe

Using the fact that the surface current density has no z-component reduces the equation

above to,
A k
) L (4.9)
Jwe
where I® can be expressed in terms of 0,V*® by applying Eq. (2.7d), i.e.,

~,  k
Es = 7—§azve, (4.10)
where Ve(z) = Vi§(z) = V5, exp(—yz) for the half plane z > 0. The subsequent
substitution of V¢ = V¢, exp (—v02) in Eq. (4.10) yields,

[s k/T e
E :—%V()’Jrexp(—fyoz), (4.11)

z
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Employing Eq. (2.5a) and Eq. (2.9a) yields,
b — jkr - E%

s 4.12
Yo ( )

z

which effectively establishes a relation between E; and E%. For Vi, an expression was
already obtained in Section 2.3. Substitution of Eq. (2.19) in Eq. (4.11) yields,

_ A(kr)
Yo

E;(kT, Z) = ]kT . jg exp (—"}’02) y (413)
where A(kr) is given in Eq. (2.19). By employing the inverse spatial-Fourier transfor-
mation, as defined in Eq. (2.2b), the equation above can be written as a convolution,
ie.,

E¥(r)=Vrp- / / Gy (rT . r;) Js (r'T) dri, (4.14)
P

where P denotes the surface at which the surface current density Js resides and G4 (rr)
denotes a Green’s function, which is defined as,

1 T T Ak ,
e (TT)=_H/ /%exp(-VOZ)eXP(—JkT'TT)dkT
e (4.15)
1 k.G, + G :
-5 / / L2 exp (—07) exp (—gkr - 7r) dbr

Note that Eq. (4.14) holds only for the single-cell configuration as depicted in Figure 2.2b.
However, its convolutional structure allows for the employment of the analysis as used in
Section 2.5. The analysis of Section 2.5 effectively expands the single-cell solution to a
solution for the infinite-array model. Employing the analysis yields,

s 1 km,n2é +é . 1m,n d g.m,n
Ez(r)z—ﬁzz( T )%1 2 j k™™ . JSexp (—yoz) exp (—jkP™ - rr), (4.16)

where Gy, G, and 7o are functions of k7™ and jg is a function of k7"". As mentioned
in the previous section, only the propagating modes will reach the far-field region. This
effectively reduces the sum over all modes, in Eq. (4.3) and Eq. (4.16), to the sum over
all propagating modes (p.m.), i.e.,
1 m,n A mn T o7 g.m,n
E(r) = EZ [kT’ & (kT’ -Jg) + Gng] exp (—o0z) exp (— k=" - rr),  (4.17a)

p.m.

s ]. km,n 2é +é . Frmn ¥ 3. MmN
Bir) = - Y B OO e g (—z)exp (<RF" ). (4170
p.m.
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In case of plane-wave excitation the configuration of the infinite-array model is chosen in
such a manner that only one propagating mode will be excited. This effectively reduces
the sum over all propagating modes to a single mode. As mentioned before in Section 4.1,
the far field is composed of a set of plane waves, where each plane wave corresponds to
one of the propagating modes. If each plane wave is evaluated in spherical components
and the observation angle (6, ¢) is chosen to correspond with the propagation direction of
the plane wave, then evidently E? = 0. This reduces the number of far-field components,
which reduces the number of unknowns by one and in turn reduces the computation time
needed to evaluate a single configuration.

4.3 The directly scattered field

The situation under consideration in this section is the one depicted in Figure 3.2a for
the incident-plane-wave-excitation case, i.e., scattering of the field that is radiated by
the source, in absence of the patches. The scattered field (E°, H®) denotes the field
that is radiated into the half plane z > 0. For both excitation cases an expression for
the scattered electric field is derived. If needed then the scattered magnetic field can be
computed form the obtained scattered electric field components. The scattered electric
field is split into tangential and longitudinal field components, i.e.,

E* = E} + Elu,, (4.18)

where the longitudinal field component, E}, is related to E7 by their spatial-Fourier
transforms, see Eq. (4.12). The spatial-Fourier transform of the tangential field compo-
nent is expressed in E- and H-polarization contributions, by employing Eq. (2.5a) and
Eq. (2.9a), i.e., X

E(2) = (jueVg, — u, x jurVy, ) exp (—v0z) . (4.19)

In Chapter 3 two expressions for the tangential part of the incident electric field, E%., are
derived, one for each excitation case. For the plane-wave-excitation case an expression for
E% is given in Eq. (3.9). Closer examination of this equation shows that Ej. consists of
the field impressed by the incident plane wave and the reflections due to the presence of
the stratified medium. Subsequent employment of Eq. (2.5a) and Eq. (2.9a) establishes
the following expression for Ei.,

Ei(z=0) = jur (Vo_ + Viy) — us x jue (Voo + Vi) (4.20)

where Vi _, Vg,‘_ denote the impressed fields and Vp 1, Vi, the scattered fields due to
the presence of the stratified medium. Subtraction of the impressed fields results in a
expression for the spatial-Fourier transform of the scattered electric field E7, i.e.,

Ef(2) = (jurVi_R§ ) — us X jurVo'_RG,) exp (=702) (4.21)
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where two new reflection coefficients have been introduced for the E- and H-polarization
contribution, viz.,

RS, = Y10 [1 + RS 5 exp (—2md)] — 7oe1 [1— R, exp (—2m1d)] (4.220)
' meo [1+ RSy exp (—2m1d)] + e [1 — Rz exp ( (—2md)]’
Rh, = T [1+ R}, exp (—2md)] — mapo [1 — R} g exp (—211d)] (4.22b)
Yot [1 + RYyexp (—2md)] + mpo [1 = RYgexp (—2md)]

The substitution of Eq. (4.21) in Eq. (4.12) yields an expression for the longitudinal
scattered field component, i.e.,

[s kr e

By =~ R exp (—07). (4.23)
Note that Vi_ and Vg are the uy and w, X u; components of the incident plane wave
and are therefore known. Employing the fact that the incident plane wave will only excite
one mode of the infinite-array model establishes a relation for E% and E}, i.e

E; = (jfu,kVOe’_B&1 —u, X jukVO’,‘_R&l) exp (—02) exp (—jky - 1), (4.24a)

% s
E: = 7T Vi _R§ exp (—0z) exp (—jki - r7) (4.24b)

where R§,, R§,, and 7o are all functions of k%. Note that the (0,0)-mode is always a
propagating mode and will therefore contribute to the far field for nearly all situations.
Exceptions arise for angles of incidence where the reflection grazes the array’s surface.
This concludes the derivation of the scattered field due to the source in absence of the
patches for the incident-plane-wave-excitation case.

In case of excitation by dipoles situated underneath the patches, the expression for ET
is given in Eq. (3.31). Closer examination of this equation shows that in this case ET
denotes the tangential part of the field that is transmitted in the half plane z > 0.
Employing this fact and subsequently using Eq. (4.2) establishes an expression for the
tangential part of the scattered field, i.e.,

E3(2) = up Js , Gsexp (—02), (4.25)

where G is the spatial-Fourier transform of the Green’s function, G5, which was defined
previously in Chapter 3 Eq. (3.33). Substitution of Eq. (4.25) in Eq. (4.12) yields,

o R kr -
E3(z) = Js,z% G exp (—702) . (4.26)

The quasi periodicity of the dipole currents enables the use of the analysis as employed in
Section 2.5, to expand the single-cell solution, as presented in Eq. (4.25) and Eq. (4.26),
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to a solution for the infinite-array model, i.e,

s 1 mn A +7.77,T
ET(T)=——ZZuk’ Js . Gs exp (—v02) exp (—jk7™ - 1), (4.27a)

24 .
Eﬁ(r>=EZZJ§Z—G3exp( 02) exp (—jkF" - 1), (4.27b)

where G3 and 7, are functions of k7™ and where jg,z = I, lexp (jk7" - ror). The far
field will only consist of propagating modes as mentioned before in Section 4.1. This
reduces the summation over all modes (m,n) to a summation over all propagating modes

(p.m.), ie.,

1 mmn ¥ A .3 m,n
Ei(r)y=—— u” Jg,z G exp (—voz) exp (—jkp™ - rr), (4.28a)

p.m.

k m,n
Ei(r)= mZJSZ: G exp (—0z) exp (— Jk" - rr), (4.28b)

which concludes the derivation of the scattered field due to dipoles situated underneath
the surface z = 0, while considering the same dielectric medium in absence of the patches.

4.4 Numerical verification

In the previous two sections the two parts that contribute to the far field have been
derived. By employing these expressions the far field can be determined for each of the
two excitation cases. The simulation data was tested against data obtained from [10] for
the plane-wave-excitation case. Note that the obtained data had to be gathered from the
figures in the paper due to the lack of data tables. For the dipole excitation no appro-
priate simulation data was found to test the far field expressions. The methods used in
the above paper are similar to the ones employed in this report.

In total the results of five simulations of reflection coefficients were tested against data
obtained from the paper. In all the graphs the data points obtained from the paper
are denoted by an open bullet (o). The first three simulations determine the reflection
coefficient of a frequency-selective surface (FSS) with square patches, while the angle of
incidence and the observation angle are both perpendicular to the surface of the array,
i.e., = 8 = 0. The side length of the square patch is 1 cm, the length of the single
cell, which is also square, is 2 cm. The three simulations represent three variations of
the thickness of the dielectric layer. The first simulation is performed in absence of a
dielectric layer, the other two are performed with a single dielectric layer present, which
has a thickness, d, equal to 0.1 cm and 0.2 cm, respectively. The material properties of
layer one are constant for all three simulations, where &, = 3.5 and u, = 1.
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Figure 4.3: Reflection coeflicient, I', vs. frequency, f, for a frequency-selective sur-
face(FSS) with a dielectric layer thickness (a) d = 0 cm, (b) d = 0.1 cm and (¢) d = 0.2 cm

For all three simulations the frequency is swept from 4 to 24 GHz and their results are
depicted in Figure 4.3. Note that all three graphs show a good agreement between the
two sets of data, with the exception of a few small deviations, which are probably caused
by the fact that the data was extracted manually from the figures in the paper.

The other two simulations consider the reflection coefhicient of a FSS with circular patches.
This poses an extra difficulty, because the patches are modeled by rectangular cells. As
a consequence the circular patches can only be approximated. The resulting staircase
approximation is depicted in Figure 4.4, where a top view of a unit cell of the FSS is
shown for the case of 15 x 15 square cells. The dimensions of the single cell have been
kept the same as for the previous three simulations. The cross section or diameter, D,
of the circular patch is 1.25 cm. For both simulations the angle of incidence is swept
from 6* = 0° to " = 90°, where ¢ is kept constant at 0°. The observation angle is
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D=

p=2cm

Figure 4.4: Top view of a unit cell with an approximately circular patch (15 x 15 cells),
where the light gray denotes the presence of a conductor.

swept synchronously, i.e. (8 = 6, ¢ = 180°), which is often referred to as a monostatic
setup. The frequency is held constant at 10.4 GHz and the dielectric has a thickness
d = 0.2 cm and its €, = 3.5. The circular patch in the first simulation is excited by
an incident transverse-electric (TE) wave, in the second simulation the excitation by an
incident transverse-magnetic (TM) wave is considered. For both situations the definitions
of the paper [10] were employed. Projection of these field definitions on the surface of

the array yields the appropriate expression for the tangential part of the incident electric
field, i.e.,

TE case: Er=wu, x uy E, (4.29a)
TM case: Ej = uy; Egcos (6°), (4.29Db)

where Ey denotes the complex amplitude of the incident electric field. The resulting
data is depicted in Figure 4.5a and in Figure 4.5b. Again, both graphs show a good
agreement between the two sets of data. Additional simulations with a different number
of rectangular cells, which approximate the circular shape of the patch, show that this
parameter has quite a bit of influence on the simulation results, as does the number of
modes that were employed to construct the Green’s functions G; and G3. The influence of
both parameters is illustrated in Figure 4.6, where the incident TE-wave case as depicted
in Figure 4.5a was recalculated for two variations. The solid line denotes the original
situation with 15 x 15 cells and only 21 modes per dimension, the dashed line denotes the
result obtained by increasing the number of modes to 101 per dimension and the dash-dot
line denotes the additional increase of the number of rectangular cells to 31 x 31. Note
that both variations should theoretically improve the accuracy of the results. These kinds
of problems can probably be avoided by employing of a differently shaped test function
that fits the circular shape better.
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Figure 4.5: Reflection coefficient, I, vs. 6* for a FSS with circular patches excited by (a)
an incident TE wave; (b) an incident TM wave.
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Figure 4.6: Reflection coefficient, I', vs. #* for a FSS with circular patches excited by
an incident TE wave for three configurations, solid line: 15 x 15 cells and 21 modes per
dimension, dashed line: 15 x 15 cells and 101 modes per dimension, dash-dot line: 31 x 31
cells and 101 modes per dimension.
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Chapter 5

Optimal parameters

5.1 Setting goals

The performance of a patch-antenna array, or more generally an antenna, is related to its
application. However for wireless applications that incorporate (patch-) antenna arrays a
number of common goals can be identified. Two common goals are: maximum efficiency
of the antenna and polarization of the radiated field. Maximum efficiency means the abil-
ity of the antenna to radiate as much of the supplied electromagnetic energy as possible
for a given frequency range. For a particular application a certain type of polarization can
be advantageous, e.g., linear polarization is often applied in radar applications to reduce
ground or sea reflections, and circular polarization is applied in satellite communications
to enable position-independent radio reception and to reduce the effect of the additional
polarization due to raindrops. Naturally, the list with common goals does not end here,
but the reader should note that the employment of the infinite-array model excited by
small electric dipoles, as described previously, imposes some restrictions. An example
would be an expression like: ’a low side lobe level’, which loses its meaning due to the
infinite extent of the employed model, which forces plane wave solutions.

The electromagnetic behavior of a patch-antenna array can be modified by modifying
its design parameters (length and width of the patch, permittivity, probe position, etc.)
or even the patch shape. Evaluation of a parameter set will be performed by means of
simulation. A comparison of two realizations can be achieved by constructing a measure
in the form of a function, the so-called objective function. The objective function will be
constructed in such a manner that it will return a value, which reflects the distance be-
tween the realized behavior and the desired behavior. Minimizing the objective function
will therefore become equivalent to searching for an optimal parameter set. The mini-
mization of a function has been for many years, and still is, an active area of research
and as a consequence numerous methods and routines [15] have been developed.

Optimization methods can be crudely divided into gradient and non-gradient based meth-



ods. The gradient-based methods are often (very) sophisticated offsprings of Newton’s
method. Examples of gradient-based methods are: CGFFT [17], [16], NPSOL (which is
part of the NAG Fortran library, EO4UFF), and L-BFGS-B [5]. Examples of non-gradient
based methods are: Genetic Algorithms (GAs) [9], Particle Swarm Optimization [4], and
the Minimax Optimization Method [18]. The gradient-based methods seem to be more
efficient, when comparing the results of gradient- and non-gradient-based methods, but at
the same time far less robust when it comes to finding a global optimum. A hybrid called:
Genetic Algorithm Coupled with Sensitivity analysis (GACS) [11], employs the best of
both worlds, i.e., a non-gradient-based method, viz., a Genetic Algorithm, is employed
to obtain a starting point for a gradient-based method near a suspected global optimum.
Subsequently, a gradient-based method, viz., the steepest-descent method is employed to
converge efficiently to the optimum. Although this method seems to be ideal, a lot of
fine tuning is required before the method’s performance is maximized and a change in
the optimization problem will probably mean re-tuning the method all over again. After
considering the pros and cons the gradient-based methods were chosen, mainly because
of their efficiency and the simple fact that finding a local optimum, which agrees with
the constraints, is in a practical sense not less desirable. There are of course drawbacks.
One of them is the fact that gradient-based methods can not handle the optimization
of non-differentiable problems. The optimization of the patch shape is, in this case, a
good example, because the shape is approximated by rectangular cells, see Section 4.4.
Changing the patch shape means adding or removing one or more rectangular cells of
metallization. The parameter that accounts for the presence and absence of rectangular
cells is by definition non-differentiable. This problem can be circumvented by employing
a different formulation of the problem, which will not be investigated in this report.

From a long list of gradient-based methods, NPSOL and L-BFGS-B were selected, simply
because they were available at the Electromagnetics group at the University of Technology
in Eindhoven. Both methods can handle a non-linear, but smooth objective function
and (non-)linear constraints (L-BFGS-B can only handle linear constraints), which are
based on quadratic programming [8]. As a consequence, these methods will perform well
for quadratic problems. For most real life problems the objective function will not be
quadratic, but if it is chosen carefully the method will converge more efficiently. Generally
the following expression for the radiated power, P,,q4, holds:

Prog = // S(r) u.r?dQ, (5.1)

where S denotes the Pointing vector and dQ2 the solid angle. By employing the fact that
the model will only radiate plane waves and by expressing the electric field in spherical
components the following relation is established:

Prag ~ |Es|2 = |E5|2 + |E;|2’ (5~2)

which shows that the power per radiated plane wave is proportional to the sum of the
squares of the field components amplitudes. Multiple plane-wave solutions, i.e., grating
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lobes, are in nearly all applications not desirable and therefore designs that give rise to
them are avoided by choosing the design parameters such that Eq. (4.4) holds only for the
(0,0)-mode. An appropriate normalization of the objective function can be achieved by
considering the input power, i.e., the power radiated by the small electric dipoles situated
underneath the patches. Note that maximizing the expression above equals minus one
times the result of minimizing its negative, i.e.,

max(Praa) = — min(—Praq) - (5.3)
The final objective function for maximizing the output power equals:
¥ = —| B2 - B2, (5.4)

which is plotted (normalized) as a function of |Ep| and |E,| in Figure 5.1. The figure

clearly shows a single optimum when the amplitudes of both parameters reach their
maximum.

¥ (normalized)

|Esl/|Es|

Figure 5.1: The normalized objective function, ¥, for maximizing the radiated power as

a function of |Eg| and |E}|, which shows a single optimum when both parameters are at
their maximum.

The derivative of the objective function, ¥, with respect to parameter, p;, yields:
8,,¥ = —2R [E$*0,,E5 + E5*0,,E3] , (5.5)

where * denotes complex conjugation. Note that this derivative still contains partial
derivatives of g and E3, which will be obtained in the next section.

The polarization of a plane wave is defined by the complex amplitudes of the 8- and
¢-components. In general the field is elliptically polarized. Two special cases of elliptical

polarization are identified as linear polarization and circular polarization. The linear

45



polarization case arises when the two components have an identical phase or one has
an amplitude equal to zero. The circular polarization case indicates.that the field com-
ponents have a phase difference of exactly +90° or —90° and equal amplitudes. Both
polarization cases are depicted in Figure 5.2. This report is restricted to the circular

Eg

(a) (b)

Figure 5.2: Two types of polarization: (a) linear, where the field components have an
equal phase, and (b) circular polarization, where the field components have a phase
difference of 90° and equal amplitudes.

polarization case, because optimizing for horizontal or vertical polarization is not much
of a challenge, when the horizontal probe position is considered as a design parameter as
will be shown briefly in Section 5.3. In contrast, obtaining a suitable objective function
for circular polarization proved to be a bit harder. The final expression for the objective
function is )
__m+mp

(IB512 + | B52)°
which gives rise to two optima, one for each circular polarization case. The numerator
of the objective function becomes zero when the two criteria, equal amplitudes and £90°
phase difference, are met by employing the fact that the doubled angle of £90° results
in a additional minus sign. The denominator simply normalizes the objective function.
In Figure 5.3 the objective function is plotted as a function of the field components
phase difference and the quotient of their amplitudes. Note that it combines the phase
and amplitude constraints in such a manner that both constraints are on a more or less
similar scale. Its derivative with respect to a parameter, p;, yields,

8,7 = 4 { R (B + E5°)" (E30,. B + E38,.E3)]
(1B31 + | E5)%)
|E;2 + E;2|2 r (Eg*ap,-Eg + E;*apiE;) }
3
(B2 + | E32)

(5.6)

(5.7)
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| Bol/1Ey|

Figure 5.3: The objective function, ¥, as function of the field components phase difference
and the quotient of their amplitudes, which combines both circular polarization case, i.e,
+90° phase difference.

Splitting up the two circular polarization cases, i.e., clockwise or counter-clockwise cir-
cular polarization gives rise to the following objective function,

8 y s 2
_1 |Es + 5 E3)| (58)
2 B3]+ |Eg?” '

where the = sign denotes each of the circular polarization cases. The objective function
for one of the circular polarization cases is depicted in Figure 5.4, where the minimum
of the function coincides with the optimum for one of the circular polarization cases. Its
derivative with respect to a parameter, p;, yields,
5 [(Es £7 E;) (05 B5 £56,,E3)]
Pi s s
|E5l* + B
8 o s 2 8% S §* s
|Es + j E3|" R (E3*0,,E§ + E3"0,,E3)
S S 2
(1E512 + | E3)?)

(5.9)

Note that both the objective functions and their derivatives for the circular polarization
cases have a singularity for |Ej| = |Ej| = 0. This is in fact desirable, because optimal
sets that result in small values of | Ej| and |E}| will hardly radiate and will therefore have
little practical use.
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Figure 5.4: The objective function, ¥, as function of the field components phase difference
and the quotient of their amplitudes. Note that minimization of this function optimizes
for a single circular polarization case.

5.2 Gradients and adjoint operators

The minimization methods, NPSOL and L-BFGS-B, which were selected in the previous
section, require only an objective function and its gradient with respect to the design
parameters pi,..., Pn, which are combined in a single vector p. Note that NPSOL will
also require the gradient of the non-linear constraints, if any are employed. The gradients
as determined in the previous section contain derivatives of Ej and Ej with respect
to the design parameters, which leaves the gradients still undetermined. In Chapter 4
expressions were derived for the scattered electric field, which shows that the scattered
electric field can be written as a convolution of a Green’s function with the current density
on the patches plus the part of the electric field that was radiated directly by the source.
As a consequence the scattered electric field, E*, in the direction, u,, can be expressed
as an inner product of Js and g,, which denotes the Green’s function and the spatial
derivatives acting on it, plus the directly radiated part E? ie.,

U - E°* = (J«Sagf) + §ource,é7 (510)

where the subscript , denotes for instance the 6-direction. Note that Js, g, and EZ,,;.,
are functions of the vector p, and that (-,-) denotes a complex inner product or more
precisely the L2(8D)? inner product, where D denotes an area, which in this case, equals
the plane z = 0 on which the patches reside. As a consequence of this formulation the
result from [3, Section 5.1] can be applied instantly, which establishes an expression for

the partial derivatives of Ej and E3, with respect to a design parameter p; by considering
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the following two systems

L(p) Js = f(p), (5.11a)
L(p)*ve = g¢(p) (5.11b)

where L(p) contains the Green’s functions that relate the electromagnetic field to the
currents on the patch, L(p)® denotes its adjoint with respect to (-,-) and f(p) denotes
the forcing vector, which is the discrete version of the forcing function. Subsequent
employment of these systems yields:

= (0p: £ (P) — [0p, L(P)]Is(P), ve(P)) + (Is(P), Op.9e(P)) +
a Esource@(p),

The real beauty of Eq. (5.12) lies in the fact that it takes, in total, only two matrix
inversions to determine the vectors v, and Jg, and they remain unchanged for each of
the partial derivatives that construct the gradient with respect to p. Consequently, only
four matrix inversion are needed to determine V, Ej and V,, E3.

(5.12)

However the result, i.e., Eq. (5.12), still contains a number of unknowns, viz., d,, f(p),

L(p), and 9,,9:(p). These unknowns are composed of Green's functions and linear
combinations of them, e.g., f(p) contains G as defined in Chapter 3, which means that
in the end the partial derivatives of the appropriate Green’s functions are needed. It
turns out that the partial derivatives of G;, G, (as defined in Chapter 2), and G5 are the
building blocks needed to construct the gradient of the objective function ¥(p). In this
report Zo, Yo, 20, €1 and d are considered as design parameters, where zy and 1, denote
the horizontal probe position, z; denotes the longitudinal position of the probe in layer
one, which has a permittivity, €, and thickness, d. Subsequently, linear constraints can
be determined for each of the design parameters: 0 < 2o < p, 0 < yp < q, —d < 25 < 0,
£ > €9, and d > 0, which immediately points out a dependence between the parameters
zp and d. This is easily solved by introducing a relative longitudinal probe position, «,,
which is related to zy by the following expression,

20 = —a,d. (5.13)

This new design parameter will replace 2; during optimization, which ensures that the
longitudinal probe position does not violate its constraints when d is updated. The
appropriate linear constraints are defined by: 0 < a; < 1. Closer examination of G, G,
and G3 reveals that Gy and Gz do not depend on the probe position and G3 does not
depend on the horizontal probe position. This leaves the partial derivatives of Gy, G,
and G5 with respect to ; and d, and the partial derivative of G5 with respect to a, to
be determined. Consider the decomposition of G’l and G’g,

. 1 (N4Dg—NgD,

Ci= 1z ( b, ) , (5.14a)
. Npg

C=50 (5.14b)
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where N denotes a numerator and D a denominator, the subscripts 4 and g indicate the
two parts of Gy. The decomposition of Eq. (5.15) clearly shows that finding a derivative
for G1 creates the parts needed to construct the derivative of G’z For the derivative of
G a similar decomposition is employed, i.e.,

. N
Gs = Ng =X Ng Ny . (5.15)
Dr

The derivatives of G, G, and Gy are derived by employing the product and quotient rule
for differentiating repeatedly. Subsequently, the partial derivatives of the individual parts
A, ..., H with respect to the appropriate parameters are obtained. These expressions are
presented in Appendix B together with the test results. In the tests, the analytically
determined derivative was plotted against its numerical counterpart as a function of kr.
Note that the numerically determined derivative employs a central differences scheme,
with a fixed value for the step size, h.

5.3 Numerical results

This section is divided into two parts, where each of the parts presents the results belong-
ing to one of the objectives, viz., maximization of the radiated power and optimization
for circular polarization. Furthermore, all results presented in this section were gener-
ated while using the same infinite-array configuration, which is given in Table B.1. Any
deviations from these values are presented together with the appropriate results.

Starting out with, which seemed the easiest problem, viz., optimizing the radiated power,
both optimization routines, NPSOL and L-BFGS-B, were employed. The optimization
of the radiated power is attempted for two different scan angles (6, ¢), viz., (45°,0°) and
(45°,20°). The center of the patch is used as a initial horizontal probe position. Analysis
of the results revealed that L-BFGS-B outperformed NPSOL, i.e., it required only 14
objective-function evaluations, where as NPSOL required 19. Both routines ended up
in a global optimum near the upper right corner of the patch for both scan angles, as
can be observed in Table 5.1a and Table 5.1b. The objective function, ¥, is plotted
for both scan angles as a function of the horizontal probe position, which are depicted
in Figure 5.5a and Figure 5.5b. Note that the two plots show a very smooth objective
function, with only a few optima, which contributes to a smooth convergence of the op-
timization. In Figure 5.6 the objective function, ¥, is again plotted as a function of the
horizontal probe position for the scan angle (8 = 45°,¢ = 0°), but now for two different
infinite-array configurations, viz. €1 = 3.5-£9, a, = 0.25 and €, = 6-¢&9p, o, = 0.25. These
results together with the previous ones suggest that the position of the optima remain
near the corners of the patch for any design parameter variation other than the shape of
the patch. This would indicate that the positions of the optima are related to that shape.
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| z5(m)

| w3 (m)

| U

| NF | Converged? |

NPSOL 9.311275- 1073 | 9.418367 - 103 | —4.067650-10% [ 19 [ Yes
L-BFGS-B | 9.311295- 1073 | 9.418364 - 103 | —4.067650- 10° | 14 | Yes

(a)
| | z5(m) | y3(m) | ¥ | NF | Converged? |
NPSOL 9.301638 - 10~3 | 9.403709 - 1073 | —7.129581-10% [ 19 [ Yes
L-BFGS-B | 9.314299- 1073 | 9.378452- 103 | —7.133176 - 10° | 14 | Yes

Table 5.1: The optimization results, while optimizing the radiated power for the scan
angles(d, ¢): (a) (45°,0°) and (b) (45°,20°). Note that NF denotes the number of function

evaluations.
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Figure 5.5: The objective function for maximizing the radiated power plot as a function
of the horizontal probe position for two different scan angles (6, ¢): (a) (45°,0°) and (b)

(45°, 20°).
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Figure 5.6: The objective function for maximizing the radiated power plot as a function

of the horizontal probe position for the scan angle (§ = 45°,¢ = 0°), but now for two
different model configurations, viz.(a) &y = 3.5-€9, @, = 0.25 and (b) £, = 6-&q, @, = 0.25.

| | z*(m) | v*(m) | ¥ | NF [ Converged? |
NPSOL 4.630829 - 1073 | 3.623427 - 1073 | 8.460895 - 10713 | 21 | Yes
L-BFGS-B | 7.027221-1073 | 6.871566 - 10~3 | 2.004203-10712 [ 6 Yes

Table 5.2: The optimization results, while optimizing for circular polarization for the
scan angle (8 = 45°, ¢ = 0°), where (z¢ = 6 - 1073,y = 6 - 1072) is chosen for the initial
horizontal probe position. Note that NF denotes the number of function evaluations.

As mentioned earlier in Section 5.1 the optimization for linear polarization, i.e., especially
horizontal or vertical polarization will not pose much of a challenge. This observation
can be made by examination of the objective function as depicted in Figure 5.7, where
the large dark area contains a single optimum near the center of the patch.

In a first attempt to optimize for circular polarization for a scan angle of (6 = 45°, ¢ = 0°),
(zo = 6-1072, 3o = 6-1072) is chosen for the initial horizontal probe position. Furthermore
the objective function, which combines both clockwise and counter-clockwise circular po-
larization, is employed. As with the previous optimization case both search algorithms
attempted to solve the optimization problem. The results are summarized in Table 5.3.
Note that NPSOL seems to ignore any initial point given to it as depicted in Figure 5.8a
for several different initial horizontal probe position, (3-1073,8-1072%), (4-1073,4-107%),
and (6-1073,6- 107%). Note also that NPSOL has found a global optimum, which can
not be detected in the objective function plot due to the mesh size. From these results
it is also clear that L-BFGS-B outperforms NPSOL with ease and grace, but the seem-
ingly inability to influence the trajectory of NPSOL by choosing a different initial point
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S
Figure 5.7: The objective function, |Ey|?, as function of the horizontal probe position for
horizontal polarization for a scan angle of (8 = 45°, ¢ = 0°).

justifies the fact that it was abandoned for the remainder of this report.

Close examination of the objective function plot, as depicted in Figure 5.8a, shows the
presence of several local optima. It also shows that the objective function has the same
periodicity as the infinite-array model. By employing the periodicity the local optima
at the constraints can be avoided as demonstrated by L-BFGS-B in Figure 5.8b, where
a stationary point is reached after employing the periodicity of the objective function
twice. Although the optimization eventually converged to a global optimum it did show
some undesirable behavior after restarting the optimization in the point (1-1072,2-1072).
In a attempt to improve on this behavior the other objective function for circular polar-
ization was employed, which distinguishes between clock and counter clockwise circular
polarization, as given in Eq. (5.8). Note that the +j variant is employed. This objective
function is even smoother then the last one and as a consequence the convergence of
the search algorithm will be improved. The results are depicted in Figure 5.9, which
show a beautiful convergence of the L-BFGS-B method, which required only 25 objective
function evaluations to do so. Note that this represents a very nice improvement when
compared to the 40 objective function evaluations, which were required previously.

Although this objective function seems to improve the convergence rate of the search
algorithm it does not seem to have any effect on the total number of local optima, which
now seem to be divided amongst the clockwise and counter clockwise circular polarization
cases. This can be illustrated by comparing Figure 5.8b with Figure 5.9 and Figure 5.10.
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Figure 5.8: Trajectories followed by (a) the NPSOL method and (b) the L-BFGS-B
method, while optimizing for circular polarization for a scan angle of § = 45°,¢ = 0°.
In (a) three different initial points (zo,%0): (3-1073,8-1073), (4-1073,4-1073%), and
(6-1072,6-1072) resulted in identical trajectories and the same stationary point (4.630829-
1072,3.623427 - 1073). In (b) only one initial point (5-107%,5 . 1073) was considered
and after 40 objective function evaluations and the employment of the periodicity of
the objective function (twice) the stationary point (1.806804 - 1072,9.347412 - 1073) was
reached.
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Figure 5.9: Trajectory followed by the L-BFGS-B method, while optimizing for circular
polarization for a scan angle of (§ = 45°,¢ = 0°), where (zg = 1-1072,yy = 2- 1072?)
is the initial point. Note that the objective function is the +j variant of Eq. (5.8).
After 25 objective function evaluations a stationary point was reached viz., (6.857647 -
1073,1.841962 - 102).

o (m)

Figure 5.10: The objective function for optimization of circular polarization for a scan
angle of (6 = 45°,¢ = 0°). Note that the objective function is the —j variant of Eq. (5.8).
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Chapter 6

Conclusions and Recommendations

In this report large uniform patch-antenna arrays on top of a layered medium are con-
sidered. The solution for the current distribution on the patches is obtained by solving
the appropriate integral equation numerically, i.e., the application of the method of mo-
ments (MoM) in conjunction with CGFFT to solve the resulting system of equations.
The fact that large arrays where considered, i.e., an array composing of a large number
of patches, is exploited by employing an infinite-array model. However, the employment
of the infinite-array model does have consequences, viz. it will neglect the edge effects,
which are certain to arise in the real array. The combination of the infinite-array model-
ing, the employment of MoM and CGFFT gives rise to a efficient simulation tool.

Employing a transverse spatial Fourier transformation on a horizontally layered medium
and subsequently expressing the equations in terms of its transverse field components
gives rise to a set of second-order differential equations, which can be solved analytically.

The presence (or absence) of the layers beneath the first dielectric layer is accounted for
by two reflection coefficients, one for each of the polarization contributions. They allow
for a reconfigurable model in terms of the number of layers and their composition.

The subsequent employment of a conjugate gradient scheme based on the CGFFT algo-
rithm reduces the computational load. The reduction is of such a degree that it enables
the evaluation of the electromagnetic behavior of the antenna within a reasonable amount
of time, while the calculations are performed on a by today’s standard normal personal
computer (see Table C.1).

In Section 4.4 the model is configured as a frequency-selective surface (FSS). The obtained
reflection coeflicients closely match the data obtained from [10]. This result increases the

confidence that the model and the derivation of the far field expressions are indeed correct.

The optimization method requires the derivative of the employed objective function with
respect to the considered design parameters, which are composed of linear and non-linear
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combinations of several Green’s functions. The derivatives of the Green’s functions were
derived and successfully tested by employing central differences, with a fixed step size h.
It has to be noted that finding a step size, which results in a good approximation of the
analytic results, requires some tuning.

The optimization results, when maximizing the radiated power, show that for a number of
design-parameter variations the optima for the horizontal probe position remain near the
corners of the patch. One possible explanation would be that these optima can be associ-
ated with a high input impedance. Subsequent excitation with ideal sources, i.e., a source
without a volume or impedance, would result in a strong response of the system. This
means that in reality those ‘optima’ might not radiate, because of the simple fact that
the generator will be unable to deliver the power. Another possible explanation would
be that the position of the optima are forced by the periodicity of the infinite-array model.

The optimization for circularly polarized plane waves already poses more of a challenge.
The optimization process is suddenly troubled with many local optima, where there are
nearly no local optima when maximizing the radiated power. This observation can al-
ready be made when considering only two parameters, which describe the horizontal probe
position. For a more practical optimization problem, the number of design parameters
shall be considerably larger. Consequently, the number of local optima shall increase as
well. Due to the increase in irregularity of the problem, the number of time-consuming
objective-function evaluations required to achieve convergence of the optimization process
will increase, unless a better understanding of the underlying mechanisms is developed.

Finally, it can be observed that even for a relatively simple model, i.e., the infinite-array
model, the average time needed to perform a optimization very soon becomes hours or
even days, while a single objective function evaluation requires only a few minutes. Note
that if the search algorithm does not strike gold the first time it will require the same
amount of time over and over again until it does.

Upgrading the excitation model to a more realistically modeled source, which will have a
finite volume, will allow the source to interact with the rest of the array and vice versa.
An additional impedance constraint can then be included when maximizing the radiated
power, which will result in design parameters with a more practical application.

The optimization objectives used in this report, viz., maximizing the radiated power and
optimizing for circular polarization, were employed separately. However a realization of
an antenna that does not radiate efficiently, but does have a nearly perfect circular polar-
ization is in a practical sense meaningless. Trying to combine both objectives is therefore
highly recommended. In addition, the optimization for bandwidth could be added for
instance by exploiting its relation with the Q-factor [23].

Each design parameter that is added to the optimization process will generally increase
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the number of iterations needed to let the optimization process converge and will require
the construction of two additional matrices (see Section 5.2), which will have to be re-
constructed for each iteration. Evidently, this will slow down the evaluation time and
will dramatically increase the total time required to complete the optimization process.
Speeding up the calculation time of the matrix elements is therefore recommended. This
can be realized by employing the asymptotic behavior of the appropriate Green’s func-
tions [13] (and their derivatives) to remove the slowly converging parts of the infinite
series that construct them. The slowly converging parts are then calculated separately
and finally added to the result of the sped up infinite series. Decreasing the amount of
time needed to evaluate the objective function and its derivatives will allow for even more
design parameters to be added to the optimization process, while the total time required
to complete the optimization remains reasonable. Examples of design parameters that
could be added are, the periods p and q of the array the z- and y-direction, the thickness
d of the dielectric layer, the length a, and width b of the unit-cell.

59



Appendix A

Auxiliary Equations and Formulas

A.1 Poisson summation formula

Let 9(rr) be a continuous function. Given the following Fourier series,

P (rr)=> > ¥(m,n)exp [—j (”Tmu + 2%“) : rT] , (A.1a)
1 rf . 2rm 2mn
\Il(ma Tl) - E ! 0/ w (TT) exp l:_] (_p_uz + Tuy) . ’l"T:l d’T‘T , (Alb)

where m,n € Z, one can write:

vrr) = =33 / / wir)exp | (0 + 20, ) - (g =) drp. (42

Applying the previous result to a new continuous function ¥(rr + R,y »/) yields,

P q
1 / / [ (27rm 2mn ) , }
— exp —Uy, + —uy, | - (rp —rr)| X
pq;Xn:O / "\ g ) rr =) (A.3)
»(ry + Roy ) dry = Y(rr + Ry o)
Shifting the integral over R,, - and employing the periodicity of the exponent yields,

ptpm/ gt+gqn’

e R

qn’

¥(rr) drr =Y(rr + Ron)
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Summing up all integral values for all (m', n’), where m’,n’ € Z, results in:

p+pm/ g+qn’

RETEL [ [ ool (e ) o)

qn’
’I‘T) d’r‘l‘p = Z Z’I,D(TT + Rm’,n’) .
T (A.5)

It is now possible to make use of the following property:

. drt, =//---dr'T. (A.6)

By employing this property Eq. (A.5) reduces to,

p+pm’ g4gn’

rr]

qn/

AER ] [ool (i) mmriei-
; ;w(w + Ry ).

Setting rr = 0 yields,

1 T T 2
L[ ) o

e e (A.8)

.

The double integral, ffooo ffooo -+ drh, is easily identified as the sampled version of the
Fourier transform, as previously defined in Eq. (2.2a). The substitution k7 = (27m/p)u,+
(2mn/q)u,, where m,n € Z samples the vector kr. Employing this knowledge reduces
Eq. (A.8) to

pa D (B + ) = S S wiR (49

which concludes the derivation of the Poisson summation formula.
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Appendix B

Green’s Function Derivatives.

B.1 Derivatives of Gl and éz

Employing the same decomposition as presented earlier in Section 5.2, G; and G, can be
written as:

N 1 NADB—NBDA

1= /C% ( DADB ) , (Bla)
- N
Gy==2 (B.1b)

where N denotes a numerator apd D a denominator, the subscripts 4 and g indicate the
two parts, A(kr) and B(kr) of G; as defined in Section 2.3. Consequently, the derivatives
of both Green’s functions with respect to 0,, can be expressed as:

5 1 Da,,l.N— Na,,l.D
BpiGl = 70? ( (D)2 ) , (B2a)
A Dpg apiNB — Np ap'.DB
aPiG2 - (DB)2 s (sz)
where
N=NADB——NBDA, (B.3a)
D=DuDs. (B.3b)
For the derivatives of N and D the following expressions are obtained:
8,,,,N = Dpg 8,,,.NA + Ny 8,,,.DB - (DA (9,,1.NB + Np BpiDA) , (B.4a)
6piD = Dp 6p,.DA+DA 8piDB. (B.4b)

The only unknowns left to be determined are: 8,,Na, 8,,Np, 0p, D4, and 8,,Dp with
respect to €, and d. For the derivatives with respect to €; the following expression were
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obtained:
8, Na =]7—:) {(Bem) [1+ RSy exp (—21d)] +

" [(851Ri2) exp (—2vd) — 2d R} 5 exp (—2v:d) 85171] } , (B.5a)
8z, Np =jwhop [(9e, BT ) — 2dR} 5(em1)] exp (—=2md) (B.5b)

ey Da =€0(0e,m) [1 + Ri,exp (—2m1d)] +
(eom — €170) [(8:, RS 5) — 2dRs 5 (8, m1)] exp (—2md)+

Yo [1 — Ri,exp (—271d)] , (B.5¢)
0, Dp = [ﬂo + (Q’Yfﬂo — 2mp o — MO)R?,z exXp (_2’71d)] Oe, M1+
(1170 — pom) (8, RY 2) exp (—271d) . (B.5d)

where 8;, 71 = —w?u1/(2v1). This leaves the partial derivatives of Rf,, R’f‘,2 with respect
to g1 to be derived, which was achieved by employing the chain rule for derivatives, i.e.,

ORT, 0 Wi
0., Rt = L2-0_ Py R , B.6
14112 By Oe 2 7 it1 2 (B.6a)
OR}, O Wi
O Rh, =122 X Bl Rh B.6b
1441,2 871 351 271 71441,2» ( )

where the partial derivative of R} ,, with respect to v; is found by firstly expressing ¢, in
1, defining a numerator and a denominator, obtaining their derivatives and subsequently
construct 0, Rf 5, i.e.,

e &2 —em _ k2o —vive — mwleaun  Nrs,

M emt e ke — v+ nwlen Drg,
Dge 0y, Npe , — Nge 0., Dpe, 8y Npe . = — 2172 — wea
0, R; y =— ’ I =, where ’ 9 .
| (Drs,) O Drs, = = 2z +weamn
1,2
(B.7)
In a similar way the following expression was obtained for 0., R’l"zz
2101 1o

a’hR?,Z = (BS)

(uom1 + i)’
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which concludes the derivation of (951@1 and Belég. For the derivatives with respect to
d, the following expression were obtained:

-2
BN = ]Zj”"  2exp (—2md) (B.9a)
84N = — 2jwn o1 RY 5 exp (—271d) , (B.9b)
84D a4 = (=27ieo + 270m€1) R} ,exp (—2md), (B.9¢c)
84Dp = (—2vomi1 + 2¥i ko) Ry exp (—271d) (B.9d)

which concludes the derivation of Bdél and Bdég. All four derivatives were tested and
the results are presented in the last section of this appendix.

B.2 Derivatives of ég

Employing the same decomposition as in Section 5.2, Gj is written as:

A N,

G; = Ng D—F Ng Ny, (B.10)
where N denotes a numerator or simply a part of the equation, which is multiplied with
the rest, p denotes a denominagor, the subscripts g, r, ¢, and g denote the different
parts of G3. For a derivative of G3 with respect to a parameter 0,, it holds that,

) N Dpd, Np — Npd, D
0p,G3 = (0,,NE) D_iNGNH + Ny (FDF)2F 2iF NoNp+
(B.11)
N N
Ng=LX (8,,Ng) Ny + Ng== Ng (8, ,Ny)
Dr Dp

For the derivative of G5 with respect to €, the following expressions were obtained,

1
BELNE = - 7 (B.12a)

2wef

220+d)

O Np = [(851 R;,) + Ri;—u(—v—m—] exp [—271 (20 + d)], (B.12b)
1

e e e € e e w2 d
0, Dp = [(661R1,0) 121 Bip (851R1,2) + R1,0R1,2_u_1'J exp (—2md), (B.12¢)

8€1NG =8€1R§,0 ’ (B12d)

w2 2
O, Ny = 2’; — exp (1120) - (B.12e)
1

Note that the expression for &;, Rf ,, which was obtained in the previous section is reused.
For 0., R}, an expression is obtained by simply interchanging the subscript  with ¢ in
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Eq. (B.6a) and Eq. (B.7). Examination of G shows that only N and Dp have a
dependence for d and as a consequence, the derivatives of Ng and Ng with respect to d
are zero, i.e.,

04sNg =034Ng =0, (B.13a)
OuNp=—2m (1 —a;) Rijexp[-2m (1 — @) d], (B.13b)
0:Df = — 21 R} 4 R{ 5 exp (—2m1d) (B.13c)
0Ny = — 1, exp (—ma.d), (B.13d)
where the d-dependence of z; has been employed, viz., 2o = —a,d, where «, denotes the

relative longitudinal probe position. For Gy’s derivative with respect to a, the following
expressions were obtained,

3QZNE = 3QZDF = 3QZNG = 0, (B.14a)
O, Nr =2711d Ry exp [-2711(1 — a.)d] (B.14b)
0o, Ny = — md exp (—ma.d), (B.14c)

which concludes the derivation of G3’s derivative with respect to the relative longitudinal
probe position, a,. All three derivatives of GG3 were tested and the results are presented
in the next section.
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B.3 Numerical verification

All derivatives of the Green’s functions, G‘l, G2, and G were tested against the results
produced by a central difference scheme, with a fixed step size, h. The testing was per-
formed separately for the real and imaginary part of the derivatives. The configuration
of the patch-antenna array is given in Table B.1, while considering a square patch shape.

| Parameter: | Value: | Description: |

f 8.10° Hz | The frequency.
p 2.107?> m | The length of the unit cell in the z-direction.
q 2:107?> m | The length of the unit cell in the y-direction.
a 1-1072 m | The length of the patch in the z-direction.
b 1-1072 m | The length of the patch in the y-direction.
d 1-10° m | The thickness of layer one.
Er1 3.5 The relative permittivity of layer one.
fr1 1 The relative permeability of layer one.
Er2 1 The relative permittivity of layer two.
Hr,2 1 The relative permeability of layer two.

Maximum number of points in the z-
Mo 31 ..

direction.

Maximum number of points in the y-
Niax 31 .

direction.
T 5-102 m | The z-position of the probe.
%o 5.-1073 m | The y-position of the probe.

-1 The relative longitudinal probe position,

a, 5-10

Zo = —a,d, where 0 < o, < 1.

_3 The product of the current amplitude and

L 1107 Am fictitious length of the probe.
6% 45° The 6 of the scan angle.
P> 0° The ¢ of the scan angle.
orr 1.10-7 The maximum allowed relative error for the

CGFFT routine.

Table B.1: The patch antenna array configuration.

The test results are found on the following pages, where they show generally a good
agreement when comparing the analytical and appropriate numerical obtained deriva-
tives. The used step size, h, is given in the figure caption. Note that the comparison
between analytical and numerical results is made on the left and the relative error is
depicted on the right.
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i#{9, G}

Figure B.1: A comparison between analytically and numerically evaluated real part of the
derivative of G; with respect to €; is shown in (a) where both are plotted as a function
of kr. The solid line denotes the analytical results and the open bullets (o) denote the
numerical results. The relative error is depicted in (b), again as a function of kr. Note
that a central difference scheme with a fixed step size, h = 1072, was used to produce the
numerical results.

[rel.err]

Figure B.2: A comparison between analytically and numerically evaluated imaginary part
of the derivative of G} with respect to €; is shown in (a) where both are plotted as a
function of kr. The solid line denotes the analytical results and the open bullets (o)
denote the numerical results. The relative error is depicted in (b), again as a function of
kr. Note that a central difference scheme with a fixed step size, A = 1075, was used to
produce the numerical results.
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Figure B.3: A comparison between analytically and numerically evaluated real part of
the derivative of G with respect to d is shown in (a) where both are plotted as a function
of kp. The solid line denotes the analytical results and the open bullets (o) denote the
numerical results. The relative error is depicted in (b), again as a function of k7. Note
that a central difference scheme with a fixed step size, h = 1072, was used to produce the
numerical results.

{rel.err|

(b)

Figure B.4: A comparison between analytically and numerically evaluated imaginary
part of the derivative of G with respect to d is shown in (a) where both are plotted as
a function of kp. The solid line denotes the analytical results and the open bullets (o)
denote the numerical results. The relative error is depicted in (b), again as a function of
kr. Note that a central difference scheme with a fixed step size, h = 1072, was used to
produce the numerical results.
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18{0,, G2}

Figure B.5: A comparison between analytically and numerically evaluated real part of the
derivative of G, with respect to €, is shown in (a) where both are plotted as a function
of k7. The solid line denotes the analytical results and the open bullets (o) denote the
numerical results. The relative error is depicted in (b), again as a function of kr. Note
that a central difference scheme with a fixed step size, h = 1072, was used to produce the
numerical results.

[9{0 G2}

Jrel.err|

Figure B.6: A comparison between analytically and numerically evaluated imaginary part
of the derivative of G5 with respect to £, is shown in (a) where both are plotted as a
function of kr. The solid line denotes the analytical results and the open bullets (o)
denote the numerical results. The relative error is depicted in (b), again as a function of
kr. Note that a central difference scheme with a fixed step size, h = 10™%, was used to
produce the numerical results.
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(a) (b)

Figure B.7: A comparison between analytically and numerically evaluated real part of
the derivative of G with respect to d is shown in (a) where both are plotted as a function
of kp. The solid line denotes the analytical results and the open bullets (o) denote the
numerical results. The relative error is depicted in (b), again as a function of kr. Note
that a central difference scheme with a fixed step size, h = 1072, was used to produce the
numerical results.

19{8:62}

|cel.err|

(a)

Figure B.8: A comparison between analytically and numerically evaluated imaginary
part of the derivative of Gy with respect to d is shown in (a) where both are plotted as
a function of kr. The solid line denotes the analytical results and the open bullets (o)
denote the numerical results. The relative error is depicted in (b), again as a function of
kr. Note that a central difference scheme with a fixed step size, h = 1072, was used to
produce the numerical results.
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kr

(a)

Figure B.9: A comparison between analytically and numerically evaluated real part of the
derivative of G3 with respect to £; is shown in (a) where both are plotted as a function
of k7. The solid line denotes the analytical results and the open bullets (o) denote the
numerical results. The relative error is depicted in (b), again as a function of kr. Note
that a central difference scheme with a fixed step size, h = 107°, was used to produce the
numerical results.

(9{8.,C3)]

Irel.err|

(b)

Figure B.10: A comparison between analytically and numerically evaluated imaginary
part of the derivative of G3 with respect to ; is shown in (a) where both are plotted as
a function of k7. The solid line denotes the analytical results and the open bullets (o)
denote the numerical results. The relative error is depicted in (b), again as a function of
kr. Note that a central difference scheme with a fixed step size, h = 1072, was used to
produce the numerical results.
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Figure B.11: A comparison between analytically and numerically evaluated real part of
the derivative of G with respect to d is shown in (a) where both are plotted as a function
of kr. The solid line denotes the analytical results and the open bullets (o) denote the
numerical results. The relative error is depicted in (b), again as a function of k7. Note
that a central difference scheme with a fixed step size, h = 1073, was used to produce the
numerical results.

(340,65}

Figure B.12: A comparison between analytically and numerically evaluated imaginary
part of the derivative of G3 with respect to d is shown in (a) where both are plotted as
a function of kp. The solid line denotes the analytical results and the open bullets (o)
denote the numerical results. The relative error is depicted in (b), again as a function of
kr. Note that a central difference scheme with a fixed step size, h = 1075, was used to
produce the numerical results.
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(a)

Figure B.13: A comparison between analytically and numerically evaluated real part of
the derivative of G3 with respect to o, is shown in (a) where both are plotted as a function
of k7. The solid line denotes the analytical results and the open bullets (o) denote the
numerical results. The relative error is depicted in (b), again as a function of kr. Note
that a central difference scheme with a fixed step size, h = 107, was used to produce the
numerical results.

19{8a.Ca}l
|rel.ers}

Figure B.14: A comparison between analytically and numerically evaluated imaginary
part of the derivative of G5 with respect to «, is shown in (a) where both are plotted as
a function of kr. The solid line denotes the analytical results and the open bullets (o)
denote the numerical results. The relative error is depicted in (b), again as a function of
kr. Note that a central difference scheme with a fixed step size, h = 1073, was used to
produce the numerical results.
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Appendix C

A by today’s standard normal PC

C.1 Configuration

| Component: | Description: |
CPU AMD Athlon(tm) 64 3200+, 2.2GHz |
Internal memory | 512MB RAM
Harddisk Western Digital 120GB, SATA Drive,

Max. data transfer 602Mbits/s,
Nominal RPM 7200, 8MB Buffer,
single NTFS partition

Floppy drive 1.44MB, 3.5 inch

Optical Drive(s) | DVD-ROM: DVD 16x, CD 48x, E-IDE
CD-RW: 52x/32x/52x, E-IDE

(2)

| Software package: | Description: ]
Operating System Microsoft Windows XP, SP2
Compiler Salford Fortran 95 compiler
Development Environment | Plato 2 IDE
Software Library NAG Mark 20

(b)

Table C.1: The hardware/software configuration of the personal computer that was used
to generate the results presented in this report.
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