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Abstract

The finite-difference method provides a fast, accurate and efficient computation of boundary
value problems due to its structured, staggered grid. Despite the necessity for numerical radiation
conditions, the method is very popular for the computation of electromagnetic scattering. How­
ever, this popularity does not reflect the applicability to a broad class of problems: when the scat­
tering object is of arbitrary shape, the structured grid is no longer conformal to the scatterer and
consequently the method loses its accuracy. In these cases, an integral-equation method, based
on Galerkin discretisation, is often used to solve the scattering problem. Its inconveniences,
however, are the computationally more expensive matrix inversion and higher memory usage. A
hybrid method has been studied to benefit from the advantages of both methods: conformity of
the grid to the arbitrarily shaped scatterer from the integral-equation method, and accuracy and
efficiency from the finite-difference method. The hybridisation is based on a mathematical de­
composition of the scattered field, established by a smooth, partitioned truncation function. The
expectation is that this partitioning results in a more efficient matrix-vector product, and hence
a faster convergence, than with currently available hybrid methods. De field decomposition and
the basic functionality of the hybrid method has been validated numerically for a dipole field.
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Chapter 1

Introduction

1.1 General

Ever since the physicist Enrico Fermi numerically simulated the microscopical, statistical mech­
anisms of heat conduction in solids, with the aid of "the Maniac", a computer built after the ideas
and under supervision of the mathematician John Von Neumann in 1952 (see [8]), many numer­
ical methods have been studied and implemented to simulate a variaty of physical phenomena.
A very popular numerical method for electromagnetism is the finite-difference method, as in­
troduced in the classical publication by Yee in 1966 (see [23]). In this publication, he presents
an application of the leap-frog schemel to Maxwell's curl equations. Although many differ­
ent finite-difference schemes have been developed for the computation of fluid dynamics and
thermo dynamics (see [11D, the leap-frog scheme is still the most popular method in compu­
tational electromagnetics. This is due to its accuracy, relatively simple implementation and the
fact that most electromagnetic scattering problems are linear. In this linear case, the staggered
grid is in close correspondence with the mathematical interpretation of Maxwell's curl equations.
However, because of reasons explained further on, this method is often used in combination with
other numerical methods like integral-equation methods. These so-called hybrid methods try to
benefit from the advantages of the combined methods, while avoiding their inconveniences as
much as possible.

The method studied in this report is a frequency-domain hybrid method between an integral­
equation method with Galerkin discretisation (sometimes referred to as the Method of Moments
(MoM)), and the standard finite-difference method, based on central differences on a structured,
staggered grid. The hybrid method is dedicated to the computation of electromagnetic scattering
from thin, perfectly electrically conducting (PEe) wires or surfaces of arbitrary shape. The mo­
tivation of this study is not only to regularise the discontinuous scattered field for the use of finite
differences on the structured grid, but also to obtain a more efficient discretisation of the integral
equation. The study covers a theoretical description of the method and a numerical validation
with the decomposition of a dipole field. At the time of writing this report, the hybrid method

li.e., a time domain finite-difference (FDTD) method with central differences on a staggered, structured grid
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has not been completely implemented.

1.2 The Finite-Difference Method

CHAPTER 1. INTRODUCTION

The frequency domain finite-difference method (FDFD) is based on the discretisation of Maxwell's
equations by central differences, achieved by sampling the electromagnetic field at a staggered,
structured rectangular grid for the domain of computation (see [23,21,11,7]). Advantages of this
method are:

• Accuracy: central differences at a structured grid results locally in second order accuracy.

• Efficiency: a low-cost matrix-vector product, due to its sparse matrix or due to the possible
implementation as an operator.

• Low memory usage: there is no need to store the coordinates of these samples of the fields
in the domain since they are distributed uniformly in the domain of computation.

• Consistency: when a solution of the numerical matrix equation exists, simultaneous infinite
refinement of the mesh in each spatial dimension will result locally in the exact solution.

• Dissipation: the leap-frog scheme is free from numerical dissipation.

Disadvantages of the finite-difference method are:

• The field between two gridpoints must be smooth.

• Localisation: due to the staggered grid and the non-conformity of this grid to the scattering
object, the source distributions on the boundary of a scatterer and hence the discontinuity
of the scattered field, cannot be well defined on this grid.

• Radiation: the radiation conditions (at infinity) must be simulated numerically at the
boundary of the (finite) domain of computation because this domain is not naturally bounded.

• Dispersion: the finite-difference method is spatially numerically dispersive, i.e., the nu­
merical phase velocity depends on the number of samples per wavelength.

The non-conformity to the scattering object, the localisation of the source distribution and the
required smoothness of the electromagnetic field between grid points are the most important
disadvantages of the finite-difference method with respect to the arbitrary shape of a scattering
object. A FDTD-MoM-hybrid method, based on a domain decomposition, has already been
developed to embed an arbitrarily shaped scatterer in a structured grid, in order to couple elec­
tromagnetically various scatterers (see [5,6]). However, this method does not gain efficiency for
a single scatterer compared to a pure integral-equation method with Galerkin discretisation.
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1.3 The Integral-Equation Method

3

The integral-equation method with Galerkin discretisation computes numerically the surface­
current density on the scatterer, by a discretisation of both this surface distribution and the in­
tegral equation on finite (boundary) elements on the scatterer. The advantages of this method
are:

• Localisation: since the grid is conformal to the scatterer by definition, source distributions
on the scatterer can be well defined (localised) on the grid.

• Radiation: The method does not require numerical radiation conditions, because the do­
main is bounded naturally by the scatterer.

Disadvantages of the integral-equation method with Galerkin discretisation are:

• Efficiency: the method will result in a full matrix since it requires an interaction of the
surface distribution and the electromagnetic field on the entire surface. This full matrix
results in an expensive matrix-vector product.

• High memory usage: the full matrix and the absence of a structured grid results in a high
memory usage.

Several numerical methods have been developed to deal with the problem of the expensive
matrix-vector product due to the Galerkin discretisation. A very popular method is the Fast­
Multipole Method (FMM) and several of its derivations, like Multi-level FMM. However, these
methods will not be considered in this study.

1.4 The Hybrid Method

The integral-equation method and the finite-difference method will be hybridised by a decompo­
sition of the scattered field to a regular and a singular field, where the former is to be solved by
the finite-difference method and the latter is to be solved by the integral-equation method. Since
the integral-equation method computes the surface-current density on the scatterer, by which the
discontinuity of the scattered field is parametrised, the singular field is to contain this discon­
tinuity exactly. It will be localised in a small region around the entire scatterer, achieved by a
spatial truncation of the integral representation of the scattered field. The regular field is defined
as the difference between the scattered field and the singular field. Since the finite-difference
method requires the regular field to be smooth (i.e., continuous and continuous differentiable),
the truncation for the singular field must be achieved by a smooth truncation function.

The integral equation has to be solved numerically for the surface-current density on the en­
tire surface, implying that no benefit is taken yet from the advantages of the finite-difference
method. To do benefit from its advantages, the surface-current density will also be truncated by
a smooth truncation function. This truncation will be partitioned, such that the surface-current
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density, and hence the integral equation, is localised on a part of the surface. This localisation
is a grouping of the boundary elements on which the surface-current density is discretised. Due
to this grouping, the interaction between the current elements is localised on a small region on
the scatterer. However, due to the interaction of the surface current on the entire scatterer, the
grouped boundary elements must interact on the entire scatterer as well. This is achieved by also
partitioning the truncation function for the singular field, such that the integral representation of
the scattered field is localised in a small region around a part of the scatterer only. The grouped
current elements will now interact globally by the regular field, to be computed by the finite­
difference method.

Truncation of the surface-current density, and hence local interaction of the current elements,
will result in a sparser matrix than that with global interaction of the current elements, as with a
pure integral-equation method based on Galerkin discretisation. The global interaction between
the partitioned singular field by the regular field will introduce two coupling-operator matrices,
which create (secondary) volume sources for the two hybridised methods. As implied by the
smoothness of the truncation, these volume sources for the regular field will be smooth, as re­
quired by the finite difference method.

The two coupling-operator matrices and the operator matrices of the two hybridised methods
will result in a larger system of discrete equations than with one of the two pure methods seper­
ately. However, due to the partitioning of the truncation, the coupling-operator matrices will
be sparse. Together with the sparse operator matrix for the finite-difference method and that of
the localised integral equation, the entire operator will be sparse. Therefore the method is ex­
pected to result in an efficient and accurate computation of the scattered electromagnetic field on
a structured grid from an arbitralily shaped scatterer.

1.5 Outline of the report

The basic theory of electromagnetics is presented in Chapter 2. This starts by stating Maxwell's
equations and the constitutive relations, supplemented by the jump conditions across a transition
layer between two media. Next, the scattering problem is formulated as a boundary-value prob­
lem, where the scatterer is represented by some interior domain in free space and the scattered
field is to be calculated on the corresponding exterior domain in free space. Next, the boundary­
value problem is defined in the entire free space by modelling the scatterer as an infinitesimally
thin surface or wire. Then the decomposition of the scattered field is presented, followed by the
definition of the resulting operator. The truncation functions are defined in the last paragraph.

Chapter 3 describes the numerics, starting by the definition of the discrete truncation functions.
Then the structured, staggered grid in the free space and the finite-element grid on the scat­
terer are presented. This comes with the discretisation of the operator, consisting of the finite­
difference equations on the structured grid, the Galerkin discretisation of the partitioned integral
equation on the finite-element grid and the implied coupling operators. The numerical radiation
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conditions, required by the finite~difference method, are presented in the end of this chapter.

5

Chapter 4 presents the results of the various numerical experiments. First, the numerical ra­
diation condition in the boundary layer is verified with the computation a modal field from its
boundary values. This quasi-one-dimensional problem allows for a straightforward investigation
of the various parameters of the boundary layer. After having deduced the optimal settings for
these parameters, the hybrid method will be partially validated by the numerical computation of
a dipole field from its decomposition.

Chapter 5 presents the conclusions from this study, followed by recommendations for future
research.



Chapter 2

Problem definition

"(. ..) and God saith: 'Let light be'; and light is." (Genesis 1:3).

2.1 Genesis

The above citation, taken from Genesis 1:3 of Young's Literal Translation (of the Bible, see [1]),
indicates the beginning of the (re)creation of the Earth by the division of light and dark. Light
can be seen physically as an electromagnetic phenomenon, governed by the study of electromag­
netism. And Maxwell saith:

v xH-dtD=J,

V x E+dtB = -K.

(2.1a)

(2.1b)

These equations form a system of coupled, linear partial differential equations for vector-valued
functions, where Band H are the magnetic volume flux density and magnetic volume field
strength, respectively, and D and E are the electric volume flux density and electric volume
field strength, respectively. These are supposed to be smooth (i.e. continuous and continuously
differentiable) on the domain, let's say n+ x R+, where Maxwell's equations hold:

{E,H} E C2(n+ x R+),

{B,D} EC2(n+ xR+),

and are related by the constitutive relations:

D=eE,

B = jiH,

(2.2a)

(2.2b)

(2.3a)

(2.3b)

where e and ji are the permittivity and the permeability of the medium, respectively. The bar
denotes that these quantities are tensor valued, allowing for an anisotropic medium.

7



8 CHAPTER 2. PROBLEM DEFINITION

In the frequency domain, Maxwell's equations are stated as:

v x H - jweE = J,
V x E+jw{LH = -K,

(2Aa)

(2Ab)

where J and K are the electric volume-current density and the magnetic volume-current density,
respectively. The magnetic volume-current density is defined here for duality only, which will
be used in the next chapter. These volume-current densities can be decomposed into a primary
and secondary component:

{J,K} := {J,Kyri + {J,K}sec, (2.5)

where the primary component represents the impressed volume-current density and the sec­
ondary component represents the induced volume-current density. With the relations

Jsec = crEE,

Ksec = aHH ,

(2.6a)

(2.6b)

where aE and aH are the electric and magnetic conductivity tensors, respectively, Maxwell's
equations can be written as:

V x H - jweE - crEE = Jpri,

V x E+jw{LH+aHH = _Kpri.

Now the complex permittivity and complex permeability can be defined by:

-E -E_ _ cr _ .cr
Cc := C + jw = C - JC;;'

-H -H_ _ cr _ .cr
P-c:= P- + -.- = P- - J-.

JW W

With these complex constitutive parameters, Maxwell's equations can be written as:

V x H - jwecE = Jpri,

V x E + jW{LcH = _Kpri.

For non-static fields, auxiliary equations can be derived [19]:

V·B=O,

V·D=p,

V· (J + jwD) = O.

(2.7a)

(2.7b)

(2.8a)

(2.8b)

(2.9a)

(2.9b)

(2.10a)

(2. lOb)

(2.lOc)
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The set of differential equations is supplemented by the jump conditions across a smooth tran­
sition layer l s of two media (denoted by []s) on the tangential field components and the normal
field components, respectively:

[n xH]s = Js,

[nxE]s = 0;

[n·B]s = 0,

[n.D]s = Ps,

where for a general vector field A:

[n xA]s := n x (A2 - AI),

[n·A]s:= n· (A2-AI),

(2. 11a)

(2.11b)

(2.12a)

(2.12b)

(2. 13a)

(2.13b)

with n is the normal vector, pointing from region 1 to region 2. These jump conditions mean that
the tangential component of the magnetic field and the normal component of the electric field are
in general discontinuous across s. These discontinuities are represented by the induced surface­
current density Js and the induced surface-charge density Ps, respectively. On the contrary, the
tangential component of the electric field and the normal component of the magnetic field are
continuous across such a layer.

The discontinuity of the electric volume-current density J satisfies the following relation (see
[15]):

-Vs·Js- jrops = [n·J]s, (2.14)

where [n· J]s denotes the jump of the electric volume-current density across the transition layer s.

In a source-free configuration, JPri = Kpri = O. Then, the conservation law of surface charge
(surface continuity) is obtained2, which is similar to the conservation of volume charge. The
equations are given by, respectively:

v.J + jrop = 0,

Vs·Js+ jcops = [n·JsecJs.

From now on, only source-free configurations will be considered.

(2.15a)

(2.15b)

Since only electromagnetic field radiation in a homogeneous, source-free medium will be treated,
the fields described in this report must also satisfy the homogeneous Helmholtz equation (i.e. the
reduced wave equation in [12]):

(V2 +!?)E = 0,
(V2 +!?)H = O.

1A definition of a smooth surface can be found in [12]
2A very elegant derivation of surface continuity from volume continuity is presented in [22].

(2.16a)

(2.16b)
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x

Figure 2.1: An electromagnetic field incident on a thin scatterer, represented by the domain
(Q- UaQ+) c JR3

2.2 The boundary-value problem

The scattering problem will be described mathematically as a boundary-value problem on an
unbounded (exterior) domain Q+ with its boundary aQ+. The scatterer will be represented by
the domain Q- with its boundary aQ-, such that aQ+ = aQ- (see Figure 2.1):

VxH-jweE =0 onQ+,
V x E+jwPH = 0 on Q+,

fixE =0 on aQ
(2.17)

The electromagnetic field can be decomposed to an incident electromagnetic field and a scattered
electromagnetic field. The incident electromagnetic field is defined as the electromagnetic field
in absence of the scatterer. Therefore, it is continuous and continuously differentiable on JR3 =

Q+ uQ- u aQ. The scattered field is defined as:

ESC: = E _ Ein ,

H Sc := H _ H in .

(2.18a)

(2.18b)

Since Maxwell's equations are linear and required to hold for the incident field on JR3, the scat­
tering problem can now be defined as the boundary-value problem for the scattered field on Q+:

V x HSC - j(jJeEsc

V x ESC +j(jJpHsC
ESC

tg

=0
=0
- _Ein- tg

onQ+ ,
onQ+ ,
on aQ+.

(2.19)
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y

z
x

Figure 2.2: An electromagnetic field, incident on a infinitesimally thin scatter, represented by the
infinitesimally thin, double-sided surface L

For a unique solution of Helmholtz' equations for the scattered field, extra boundary conditions,
known as the radiation conditions, are required (see [22,12]):

lim r [Zoro x H SC + ESC] := 0,
r-'>oo

lim r [ZoHSC - ro x ESC] := 0,
r-'>oo

{E,H} = o(}),

(2.20a)

(2.20b)

(2.20c)

where Zo is the wave impedance in vacuum and ro := f. These conditions imply that, asymp­
totically, the scattered electromagnetic field is locally a TEM-wave, vanishing at infinity. With
these conditions, the term radiation can be defined as the solution of the wave equation propagat­
ing from the scatterer towards infinity. From now on, the radiation conditions will be left implicit.

As motivated in the introduction, the aim is to use finite differences with a structured grid on
IR3 for numerical computation of the scattered field. However, the boundary-value problem is
stated in the domain .0+ and on its boundary aQ only. For this, the thin scatterer will be mod­
elled by an infinitesimally thin, double sided, orientable surface L on IR3. This is depicted in
Figure 2.2.

The scattered field is now discontinuous across this surface, representable by its two tangential
components on this surface:

[nxHSC]~=t,

[n x ESC]~ = 0.

(2.21a)

(2.21b)
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The scattering problem can now be formulated on JR3 as:

V x HSC - jweESC -f- = 0
V x ESC +jwJLHsC = 0

ESC - _Ein
tg - tg

on JR3 ,
on JR3 ,
onL,

(2.22)

where f- is the volume distribution on JR3, corresponding to the surface distribution J; on L.

2.3 Field decomposition

Now that the scattered field is defined as a discontinuous field on JR3, the problem arises that a
structured grid on JR3 is generally not conformal to the (arbitrarily shaped) scatterer. The dis­
continuity of the scattered field is therefore possibly located between grid points, which is in
contradiction with the restriction that the field must be smooth between these points. To over­
come this problem, the scattered field is decomposed into a smooth (regular) and a discontinuous
(singular) component:

(2.23)

To define these components, the scattered field is first written in terms of the source distributions
via the potentials A and ep, according to [22], [15]:

H SC = V xA

Esc . -A Vep
= -JwJ1 - --­

£

These potentials are given by:

(2.24a)

(2.24b)

A(r) := JGrJ;dA,

L

ep (r) := JGrp;dA,

L

where Gr is the frequency-domain Green function in free space:

Gr : JR3 --+ C by Gr: r' f--+ Gr(r'),

with

(2.25a)

(2.25b)

(2.26)

(2.27)
e- jkllr-r'll

Gr(r') = 4nllr - r'1I'
The expressions given in (2.24a) and (2.24b) must satisfy Maxwell's equations. This implies a
relation between the scalar and the vector potential, which is given by:

V·A=-jwep, (2.28)
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1

o '-----..L.-------------'"--- x

Figure 2.3: An example of a one-dimensional truncation function X(x). This function equals
unity inside, and zero outside a certain region (in this case an interval on x).

which is known as the Lorenz gauge. It follows directly from the continuity of surface charge
(2.I5b).

The scattered field, in a homogeneous medium, can now be written as:

HSC = V' xA
1 1

ESC = -.-_ V' x V' x A = -.-_ {V'V'. +t?}A
JWc JWc

(2.29a)

(2.29b)

where the second equality in (2.29b) is obtained by using the identity (A,6).

Next, these integral representations of the scattered field are spatially truncated by a function
X. A truncation function is a function which equals unity in a certain region, and equals zero
outside this region. Truncating the scattered field therefore causes this field to be nonzero in a
limited region around L only. An example of a truncation function is given by Figure 2.3. The
truncation function must be chosen such, that the resulting regular field is smooth on }R3. This
implies that the truncation must be smooth on }R3.
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The following definitions of the singular field have been studied:

H~ng:= XV x A,

Esng:= ~XV x V x A = ~X{VV. +!?}A =
1 jW£ jW£

= _l_ V x Hsng - _l_VX x V xA'
jw£ 1 jw£ '

H~ng := V X XA ,

1 1Esng '= -V x V x XA = -V x H sng.2 . . - . - 2,
jW£ jW£

H~ng:= H~ng = xV x A,

sng 1 n 1 sngE '=-VxXvxA=-VxH .
3 . jw£ jw£ l'

1 1
Esng := Esng = -.-_ XV x V x A = -.-_X{VV, +!?} A,

4 1 jW£ jW£

Hsng.= ~V x X{VV. +!?}A = __l_ V x Esng
4 • k2 jWjl 4'

(2.30a)

(2.30b)

(2.30c)

(2.30d)

(2.30e)

(2.30f)

(2.30g)

(2.30h)

The choice for these four definitions of the singular field are based on the observation that, from
Equations (2.29a) and (2.29b), either the potential, its curl or its double curl can be truncated.
With the definitions given by the expressions (2.30c)-(2.30h), one of the two Maxwell equations
is satisfied. This will result in a zero-block of the operator matrix (as will be shown further),
which might be advantageous.

It is important to emphasize that the singular field is to represent the discontinuity of the scat­
tered field exactly, and that {E, H}sng and {E, Hyeg do not satisfy Maxwell's equations sepa­
rately. This is due to the fact that the separate fields are non-physical, since the truncation of the
scattered field contradicts with the analyticity on IR3 of solutions of Maxwell's equations.

2.4 The operators

Since the total scattered field satisfies Maxwell's equations on IR3, the sum of the singular and
regular parts must also satisfy these equations:

(
Vx -jW£) (Hreg) (Vx -jW£) (HSng) (0) = (0)
jwjl Vx Ereg + jWjl Vx Esng + -.f O' (2.31)
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Elaborating this equation for the four definitions of the singular field, with the aid of the identities
in Appendix A, yields:

(2.32a)

(
vx
jOJ{1

(
Vx
jOJ{1

. -) (HSng) ( 0 )-jOJ£' 2 _

Vx E~lg - j~£VxVxVxXA+jOJ{1VxXA '

. -) (H
Sng

) ( 0 )-jOJ£' 3 _

Vx E~ng - j~£ [VX x {VV. +k2}A+ V x (VX x V x A)] ,

(2.32b)

(2.32c)

(
Vx -jOJ£) (H~ng) = (xVxA+bvxx{VV.+k2}A-X{VV'+~}A) (2.32d)
jOJ{1 V x E~ng 0 '

where the curly brackets {} are used to distinguish between an operator acting on the following
term and a multiplication of two terms.

With Equation (2.25a), Equations (2.32a)-(2.32d) can be expressed in terms of the surface current
J;. The operator-matrix equation (2.31) can now be written as:

where

[M] := (~~ -~OJ£).
jOJJ,l v x

(2.33)

(2.34)

The operator matrix Cl is an expansion operator, coupling the parametrisation of the singular
field to Maxwell's equations for the regular field. It can therefore be seen as a source for the field
described by the differential equations.

Singular field decomposition (2.32b) introduces third-order derivatives of the truncation func­
tion X; it will therefore not be considered any further.

Elaborating the surface condition in boundary-value problem (2.22) for the decomposed scat-
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tered field on L gives:

Ereg +Esng = Ereg +E sng = Ereg + [_I_XV' V' A]
tg 1,tg tg 4,tg tg j())e x x

tg

= E~;g + [~X{V'V" +JcZ}A]
j())c

tg

Ein= - tgl

and:

Ereg +Esng = Ereg + [_I_V' x xV' x A]tg 3 tg tg .-, j())c
tg

= E;;g + [~X{V'V" +JcZ}A] + [~V'X x V' x A]
j())c j())c

tg tg

Ein
= - tgl

(2.35)

(2.36)

respectively, which can again be written in terms of the surface current jf. This will result in the
operator-matrix equation:

(2.37)

where [C~] is the trace operator on L, and [BIE] is the boundary integral operator on L. The
presence of the regular field on L must be interpreted physically by the fact that H~;g and E~~

are smooth on L, but not necessarily zero.

With the aid of Equations (2.33) and (2.37), boundary-value problem (2.22) can be written in
operator-matrix form as:

(2.38)

where

(2.39)

the Maxwell operator matrix.

2.5 The truncation functions

As stated in the previous section, definitions (2.30c) and (2.30d) for the singular field will not be
used because of the implied third-order derivatives of X. This is due to the choice for X to be a
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1

o x

Figure 2.4: An example of the partitioning of a one-dimensional truncation function X(x). This
partitioning is a decomposition of the truncation function to partial truncation functions.

smooth function:

(2.40a)

in correspondance with Equations (2.2a) and (2.2b).

As motivated in the introduction, the method will only be useful with a partitioned truncation
function for the singular field and for the surface-current density. The partitioning of a truncation
function is a decomposition of that function in partial truncation functions. This is depicted in
Figure 2.4. This partitioning implies the definition of a set X of partial truncation functions Xk,
and the definition of a set \f' of partial truncation functions V!k' This results in a partitioning of
the singular field:

Hsng = LH~ng,

k

Esng = LE~ng 1

k

and in a partitioning of the surface-current density:

(2.41a)

(2.41b)

(2.42)

Consequently, the integral representations for the partitioned singular field can be written as:

H~~f = XkV x JV!kGrJ;dA,
Lk

E~nf = .Xk_ {VV. +k?- }JV!kGrJ;dA,
, J(J)£

Lk

(2.43a)

(2.43b)

from which the truncation of the surface-current density can be interpreted as a localisation of
Green's kernel of the integral representation. Numerically, this is be a grouping of the boundary
elements on which the surface-current density is sampled (see the next chapter). This localisation
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Figure 2.5: An impression of the support of partial truncation functions. The trace of these
truncation functions on the scatterer results in the partitioned truncation of the surface-current
density. This is a localisation of Green's kernel of the integral representation, which numerically
is a grouping of the current elements.

is depicted in Figure 2.5. Since the regular field is continuous in lR,3 by definition, the disconti­
nuity of the scattered field is now represented entirely by the jump of the tangential components
of the singular magnetic field:

[nxHfC]s = [nxH~ng]s = [nx Xk'V x JlVkGrJ;dAJs.

Lk

As shown in [10], this results in:

(2.44)

(2.45)

Two choices can now be made, based upon the aim to represent the parametrisation of the dis­
continuity in the singular field exactly:

i) the total surface current is represented exactly by a summation of partial surface currents,
as defined by Equation (2.42);

ii) the trace of X on L equals lV, such that the surface current is represented exactly by Equa­
tion (2.50)

Elaborating the first choice, results in:

(2.46)
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which implies that '¥ is a partition of unity on It, with local support (see [2]):
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i) 'v'lI'kE'P V'v'XElR3 : 0:::; lJIk(X) :::; 1,
ii) 'v'k'v'x~Uk lJIk(X) = 0,

(2.47)
iii) 'v'XEL Lk lJIk = 1,
iv) 'v'lI'kE'P SUPPlJlk(X) ~ Uk,

where Uk E U is a spatial region, covering a part of It. Together with Equation (2.50), this restricts
Xk to equal unity on the entire support of lJIk:

(2.48)

since otherwise the partition of unity for '¥ will be violated. This result implyies that the trace of
X on It is not a partition of unity, and hence VX =1= o.

The second choice implies that the trace of X at It equals lJI:

(2.49)

Then, from the continuity of the tangential components of Hreg and Equation (2.23):

(2.50)

From Equation (2.41b), the total surface current will then be:

(2.51)

Define CPk := (lJIk)
2

E <1>, then Equation (2.51) restricts <I> to be a partition of unity on It, satisfying
the same conditions as for (2.46). This choice again implies that the trace of X on It is not a
partition of unity, and hence again VX =1= o.



Chapter 3

Numerics

3.1 The truncation functions

The truncation is elaborated for the case where tr(xh: = ljI, such that tr( qJ h: := ljI2. It is most
easily implemented with respect to the structured, rectangular grid in lR3 . This rectangularity of
the grid allows the truncation function to be a product of functions in each Cartesian coordinate
of the grid:

-a -a -a -a " a a a
qJri,j,k := qJx qJy qJz = L.J qJx,kqJy,kqJz,kl

k
(3.1)

where the function qJ;x,p [i] is the p-th local truncation function, defined on the p-th covering of
L, in the x-direction. It containing a cells of the structured grid. For this function qJx,p, three
regions can be identified:

I qJx,p equals unity in a finite region around its center,

II qJx,p smoothly decays to a value of ! where two partial truncation functions intersect"

III qJx,p equals zero at the cell edges.

Further, due to the structured grid, qJx,p must be symmetrical with respect to the cell edges and
cell corners of its support (i.e., the interval where the function does not equal zero). It should
be emphasized that this support is several times the mesh size of the structured grid. The above
observations are depicted in Figure 3.1a for the one-dimensional truncation function. A resulting
two-dimensional truncation function is depicted in Figure 3.1b. The following function for qJx,p[i]

21
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Cl'x,p[i]

1

1
2

a

(a) A one-dimensional partial truncation function

Cl'x,p [i] C{>y,p [j]

0.8

0.6

0.4

0.2

o

)'-L- l:,.y

(b) A two-dimensional partial truncation function

o

Figure 3.1: The partial truncation function, where the 8's define the region where the truncation
function equals unity, the transition region of the truncationfunction and the region where the
truncation function equals zero.
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Figure 3.2: An impression of the truncation of the scattered field in the case of a thin wire as
scattering object.

has been chosen:

q>x,p[i] :=

1 [ (n(ip - OX,I))]
"2 1 +cos 20

x,l

1

o

;Ox2 < i < OX3,, ,

;OxI<i<Ox2, ,

;i<Oxo 1\ i>Ox3,, ,

(3.2)

where the ox's are depicted in Figure 3.1a, and where ip parametrises the x-coordinate on the
support of the p-th truncation function.

The functions cpya [j] and cpff [k] are defined similarly. The gradient of this truncation function
still is a smooth function, its Laplacian or higher-order derivatives (which appear in the defi­
nitions of the singular field) are discontinuous. These discontinuities create spurious (current)
sources on the structured grid, and should therefore be avoided. Therefore, only Expressions
(2.30a) and (2.30b) will be used as definitions for the singular field.

Figure 3.2 finally gives an impression of how the truncation of the scattered field should be
partitioned in the case of a thin wire as scattering object.
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The chosen definition of the truncation function allows for two parameters to adjust:

• the size of the region where the truncation equals unity,

• the size of the transition region.

However, when the transition region is taken too small with respect to the mesh size, the numer­
ical approximation of the truncation functions will introduce spurious singular terms and hence
spurious surface currents on L.

3.2 The difference equations

The sampling of the fields in 1R3 will be defined on a structured, staggered rectangular grid. To
define this grid on 1R3 , the cartesian positioning vector is discretised:

r:= xUx +yuy +zuz ~ rijk,

with

(3.3)

The various field components are sampled on:

Ex: x = xi+!, Y =Yj, Z=Zk,
2

Ey : x = Xi, Y=Yj+!' Z=Zk,

Ez : x =Xi, Y =Yj, Z = Zk+!'
Hx : x =Xi, Y=Yj+!' Z = Zk+!'
Hy : X=Xi+1, Y=Yj, Z = zk+1'
Hz: x =xi+!, Y=Yj+!' Z =Zk.

2

(3.5)

For reasons of implementation, a single-parameter notation has been used to formulate the dif­
ference equations. For this, the Cartesian components {x,y,Z} are indexed with wE {O,1,2},
respectively. Index calculations are implemented by adding an integer modulo 3 to the index,
such that the components X,Y,Z will maintain there mutual ordening. This is represented by the
symbol +3.

Next, the sampling of the field components on this grid is written in terms of the index w. For this,
two matrices are defined with the discretised position vector for the v-th cartesian component in
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the v-th column:

C+l Xi
Xi )

[e](i,j,k):= Yj Y'+1 Yj ,] 2

Zk Zk Zk+i

C'
Xi+i

X+' )1 2

[h](i,j,k):= Yj+i Yj Yj+i .

Zk+i Zk+i Zk

[e] and [h] are related by:

[h] = [e] + [b],

where

25

(3.6a)

(3.6b)

(3.7)

(3.8)

The discretised position vectors ew and b w are defined as the w-th column of the matrices [e] and
[b], respectively.

The difference equations for the fields, sampled at the structured grid, are now given by:

L. 1 (Ew-t:J2[eW-t:J2 -dw-t:J1] -Ew-t:J 2[ew-t:J 2])
w-t:J2

- L. 1 (Ew-t:J 1[ew-t:J 1 +dw-t:J2] -Ew-t:Jdew-t:J1])
w-t:Jl

+jOJpJ{w[ew+b w] = 0, (3.9a)

L. 1 (Hw-t:J 2[ew-t:J 2 + bw-t:J 2] - Hw-t:J 2[ew-t:J 2 + bw-t:J 2 - dw-t:J 1])
w-t:J2

- L. 1 (Hw-t:J dew-t:J 1 + bw-t:J 1] - Hw-t:J 1[ew-t:J 1 + bw-t:J 1 - dw-t:J2])
w-t:J2

- jOJ£wEw[ew]= 0, (3.9b)

where dw is defined as w-th collumn-vector of [d]:

(

-L.O

[d]:= ~ (3.10)
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~_--;7V;;

Figure 3.3: The two elements of the n-th RWG basis function corresponding to the n-th non­
boundary edge

3.3 The integral equation

The surface-current density J; is sampled by an expansion in triangular basis functions on L,
according to [14]:

(3.11)

where fn is the n-th basis function, defined with respect to the n-th non-boundary edge in the
finite-element space. Since such an edge is always the common one for two elements, the basis
functions exist of two elements. The elements are usually denoted by +, -, where the sign can
be chosen according to the direction of the surface current. One such basis function is depicted
in Figure 3.3, and is defined as:

rET!,
(3.12)

elsewhere,

where, A; is the area of triangle Tn±, in is de length of the n-th non-boundary edge and i; (r) is
the position vector for a point r E Tn±, with respect to the vertex v;. The factor ;;t normalises

the basis functions, such that the normal component of the surface-current density is continu­
ous across the common edge of their triangles and hence no (spurious) line charges are induced.
Despite the fact that several authors have published about these basis functions l , in electromag­
netics they are usually referred to as the RWG basis functions.

IThe more general case of a volume discretisation is described in detail in a.o. [13]
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The surface divergence is given by:

rE r:,
elsewhere.
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(3.13)

Together with the truncation function for the current, l/f, the discretised vector potential A be­
comes:

(3.14)

Note that

(3.15)

where AVG, n denotes the average value in the n-th element. For far-field calculations (relative
to the dimensions of triangle), the value at the barycenter (i.e. the center of mass) of each
triangle, as proposed in [14], is a good approximation of this average value. However, Hsng and
Esng are required on gridpoints in the near-field zone of each triangle. A seven-point Gaussian
quadrature integration rule has been implemented, with the aim to obtain a more accurate near­
field approximation:

(3.16)

(3.17)

(3.18)

where where w; (rp ) is the weighting factor for the p-th abscis. The approximation of the vector
potential can now be written as:

N P

A(r) ::::: L Lin (w;pGr(rp)l/fi; (rp)+w~Gr(rp) l/fi; (rp))In.
n=Op=O

To discretise the integral equation, (i.e., the discretisation of the operator [HIE] in Equation
(2.38)), Equations (2.35) and (2.36) will be tested by the same functions as the basis function
(3.12). Testing these equations gives:

< fm, -E:~ > =< fm,E~;g+ ~X{V'V'· +I!-} A>
JOJc

=< fm,E;;g >+~ < fm,X{V'V" +I!-}A >,
JOJc
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< fm, - E:; > =< fm,E~;g +~ (X {VV. +I? } A > +VX x V x A) >
J(JJ£

=< fm,E~;g > +~(< fm,X{VV. +I?}A > + < fm, Vx x V x A», (3.19)
J(JJ£

respectively, where linearity is used.

First, the second term in both equations is elaborated. This gives for Equation (3.18):

< fm,X{VV. +I?}A > = J fm· X{VV. +k2
} AdA

Tm

=J fm· XVV·AdA +J fm·XI?AdA,
Tm Tm

of which the first term can be rewritten as:

J fm· XVV·AdA = J V· (XfmV.A)dA - J V·AV· (Xfm)dA =
Tm Tm Tm

= J na' (XfmV·A)dl- J V·AV· (Xfm)dA,

a~ ~

(3.20)

(3.21)

where Tm = T,;i U T,;; is the union of the two triangles of the m-th non-boundary edge, and
naTm = ntTmUnaTm (depicted in Figure 3.3) is the constant normal vector on the boundary aTm.

Since by definition of the test functions no line charges or currents exist, the contour integral
is equal but opposite of sign for two adjacent triangles and therefore, for non-boundary triangles,
the contour integral vanishes. Elaborating the second term of (3.21) results in:

<fm,X{VV.+I?}A>=- JV.AXV.fmdA - JV.Afm·VXdA+ J Xl?fm·AdA. (3.22)

~ ~ ~

Equation (3.20) can now be rewritten as:

Following the same steps, this yields for (3.19):

< fm,X{VV, +k2 }A > + < fm, Vx x V x A >

= - < V· fm,XV·A > + < fm,VX x V x A > + < fm,xl?A > . (3.24)

The transposition of one of the two nablas from the potential to the test function is advantageous
since this requires less operations on the unknown potential, while the divergence of the test
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functions is calculated analytically. This also holds for the scalar product of the test function
with the gradient of the truncation function. For this reason, definition (2.32a) for the singular
field seems to be the best choice, and will therefore be the only one further elaborated.

Next, the test functions must be defined. According to [14], these functions will be identical
to the basis functions, which is known as the Galerkin method. Substituting for the discretised
vector potential (i.e. Equation (3.17) and the test functions fm, yields for Equation (3.24):

N PJ{fm · VX}V·AdA ~J{ fm • VX} V· L L In (w:pGr(rp)l[fi: (rp) +w;pGr(rp)l[fi; (rp))IndA
T

m
T

m
n=Op=O

~,f lmln[ 1 J{o+ ) } + ( ) 0+ )= :::Op7:
o
2 A;t -I- 1m (rp .Vx WnpV· Gr(rp l[fln (rp) dA

Tm

+A~ J{i;;;(rp)' Vx}w;pV. (Gr(rp)l[fi;(rp))dA] , (3.25b)

T,;;

(3.25c)

The physical interpretation of the scalar product i;;;(rq) ·i;;-(rp) follows from the interpretation
of the basis functions and the test functions: the normal component of the n-th current element
doesn't contribute to tangential components of the potential, and vice versa.
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3.4 The coupling equations

The operator matrix [Cl] expands the integral representations of the scattered field to the struc­
tured grid in IR3 . The following observations can be made:

~VX x {VV. +!?} A ----. E-grid,
jC1J£

VX X V x A ----. H-grid.

(3.26a)

(3.26b)

(3.27a)

(3.27b)

The surface-current density J; will be partitioned, as stated in the previous chapter. This implies
that the expansion of the above equations on the structured grid can be done for each partial
surface current seperately. This expanded singular field on the structured grid will vanish outside
the support of the truncation function l/J, due to the choice of equal truncation functions lfI for the
singular field (see Equation (2.49)). Therefore a limited number of samples of the surface current
will contribute to the coupling by [Cl] , thereby sparsening this operator matrix. This sparsening
is expected to result in a more efficient matrix-vector product.

Second, [C2] Ereg is tested. However, this operator will not result in some Galerkin-like ma­
trix, since Ereg is not expanded by basis functions. The trace of the regular field components on
:E is computed by a linear interpolation of the field samples on the structured grid to:E. This inter­
polation must be computed for all the P points on which the surface-current density is computed;
see Equations (3.14)-(3.17). For each Cartesian component (w E {O, 1, 2}) of the approximated
surface current, eight corresponding gridpoints are involved. The interpolated electric regular
field and the interpolated electric incident field are tested in a similar way as the singular field:

p

< fm, E~;g > = L J fm · E~;g (rp)dA,
p-o

- T,;iUT';

p

< fm,E:; > = L J fm·E:;(rp)dA.

P-o
- T,;iuT';

Approximating the integrals gives, respectively:

.. Ereg _ ~ (1m + Ereg( ) .+() 1m - Ereg( ) ._( ))< 1m, tg > - £..J ~wm,p tg r p 'Im r p + ------::::wm,p tg r p 'Im r p ,
p=o 24m 24m

f Ein ~ (1m + Ein ( ) .+() 1m - Ein ( ) .- ( ))< m, tg > = £..J ~wm,p tg r p 'Im r p + ------::::Wm,p tg r p 'Im r p .
p=o 24m 24m

3.5 The numerical radiation condition

(3.28)

(3.29)

For obvious reasons, the domain of computation must be finite. This is often achieved by im­
plementing a perfectly electrically conducting bounding box around the domain of computation,
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such that the electromagnetic field in this interior domain is not transmitted to the exterior do­
main. If the aim is to simulate the (infinite) free space within the finite domain of computation,
the radiation conditions must be simulated at the boundary. For arbitrary radiation2 in free space,
the radiation conditions are simulated by increasing, in a small region near the boundary of the
domain of computation, the order of attenuation to an exponential one. When the region is chosen
sufficiently large, the fields will become negligable on the boundary of the domain of computa­
tion. In this study, the small region near the boundary will be interpreted as an (anisotropically)
absorbing material layer. To prevent reflections from occuring on the interface between the
background and the boundary layer, the impedance of the material in the boundary layer must be
matched to the impedance of the background.

Research on absorbing-material boundary layers has been started with the classical paper of
Berenger (see [3]), in which he presents a perfectly matched layer (PML). However, because
"his" PML implies a modification of Maxwell's equations in the boundary layer, it is neither
straightfOlward to implement in a standard finite difference scheme, nor the fields in this bound­
ary layer can be interpreted physically. The absorbing material used here will therefore be an
axially anisotropic lossy medium, as described in [17,9,24,25]. Another presentation will be
given here, based on [18]. Aim is to avoid the confusingly many (superfluous) variables as
in [25] and to give a physically correct interpretation of this boundary layer.

As stated before, the numerical radiation condition is simulated by an exponential decay of elec­
tromagnetic radiation towards the boundary of the domain of computation. This exponential
attenuation in the boundary layer is achieved by a pull-back transformation of the analytical
(complex) continuation of the electromagnetic field, with conservation of its implied exponential
behaviour. The analytical continuation is in fact a stretch of the coordinates from the real axis to
the complex plane (as described in [7]), transforming a propagating wave to an evanescent wave.

The analytically continuated field must satisfy Maxwell's equations with stretched coordinates:

Vx H' - jrofj' = 0, (3.30a)

Vx E' +jroB' = 0, (3.30b)

where a homogeneous medium is supposed. Quantities in the boundary layer are denoted by
a prime' and the analytic continuation is denoted by a~. Now the analytically continuated
fields must be pulled back to the domain of computation, i.e., transformed to the domain with
real-valued coordinates. This is achieved by the pull-back transformation V-I:

V-I: ([;3 ----+]R3 by i' t--+ r' =V-Ii'. (3.31)

The stretch of a coordinate is chosen to depend only on the direction of that coordinate. There­
fore, the transformation matrix [V] can be written in Cartesian coordinates as a diagonal matrix:

[V] := diag{ VX1 vy,vz } E ([;3. (3.32)

2According to a.o. [4], evanescent waves require boundary conditions other than the radiation conditions men­
tioned here.
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y-PML:

z

)-y
x

Figure 3.4: An intersection of two PML-faces creates a PML-edge, an intersection of three PML­
faces creates a PML-corner. Therefore the stretch of coordinates can be assigned to a PML-face.
The names of the PML-faces are chosen according to the direction of the normal vector on each
face.

Each corner and each edge in a rectangular domain are formed by an intersection of the orthogo­
nal PML-faces, as depicted in Figure 3.4. Therefore, in Cartesian coordinates, the transformation
matrix [V] can be written as a multiplication of the transformation matrices for the PML-faces:

(3.33)

For each PML-face, only the corresponding coordinate is stretched. This yields for, for example,
thez-PML:

[V]~x) = [1],

[V]y) = [1],

[V]~z) = diag{l, 1, vz},

(3.34a)

(3.34b)

(3.34c)

with [1] := diag{ 1, 1, I}. The continuity conditions for the electromagnetic field incident on an
interface between two penetrable media hold:

and

[nxH] = n x (H' -H) = 0,

[[nxE]] = n x (E' -E) = 0,

[n·B] = n· (B' - B) = 0,
[n·D] = n· (D' - D) = 0,

(3.35a)

(3.35b)

(3.36a)

(3.36b)
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where the constant normal vector n points from the background region to the boundary layer.
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The stretch of the coordinates implies a transformation of functions with these coordinates.
Therefore a transformation y*-l is associated with y-l, transforming Maxwell's equations for
the analytically continuated fields to similar curl equations for the pulled-back fields. This asso­
ciated transformation is defined for general functions f as:

(3.37)

such that

(3.38)

(3.39a)

(3.39b)

where C is a constant tensor, scaling the naturally induced transformation. By this associated
transformation, the curl equations (with non-stretched coordinates), for the pulled-back electro­
magnetic field in the boundary layer become:

(CYV) x y-IH' - jwy-ID' = 0,

(CYV) x y-IE' +jwy-IB' = 0.

The transformation of the electromagnetic field can now be converted to a transformation of the
curl operator, as demonstrated in [7]. However, the aim is to simplify the implementation of
the PML. For this, let C := y-2. Then, with the aid of the matrix representation in Cartesian
coordinates of the pulled-back curl operator:

(3.40)

(3.41a)

(3.41b)

Equations (3.30a) and (3.30b) become:

( v:~ J, - v~, J, :::{v~,) H' _ jW.s[V-I]E' = 0,

- vy\x ay vx\y ax 0

(

0 - v}vyax v}vzay )

vz\ ax 0 - vx\z ax E' + jw.u [V-I ]H' = 0.

- vyvxay vx\yaX 0

Now the associated transformation for the curl operator and the pull-back transformation of the
electromagnetic field can be combined to scale either the curl operator or the material param­
eters. The latter is elaborated here, for a correspondence with the literature mentioned in the
introduction of this paragraph. By this, Maxwell's equations for the electromagnetic field in the
PML can be written as:

v x H' - jw[e']E' = 0,

V x E' +jw[.u']H' = 0,

(3.42a)

(3.42b)
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where
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[e'] := [A][e], (3,43a)

[,u'] := [A][,u], (3,43b)

and where

C'
0 0 )VX

[A] := diag{Ax,Ay,Az} = ~
VzVx 0 (3,44)Vy

0 VyVx
Vz

Equations (3,42a) and (3,42a) allow for an easy implementation of the PML: the same finite­
difference equations can be used in this region, only the material parameters have to be multi­
plied by a complex number.

In agreement with Equation (3.33), [A] can be written as:

[A] = [A] (x) [A](y) [A](z).

From Equation (3,40), the following relation for the Aw's on the i-PML can be obtained:

. 1 1
~=-.-=-.-=:A w,iE{X,y,z},

A~+31 A~+32

so that:

(3,45)

(3.46)

where

A = A' - jAil E C; (3.48)

when the coordinates in the corresponding direction are stretched.

A comparison of Equation (3,47) with Equations (2.8a) and (2.8b) yields to the interpretation
of the PML as a lossy, axially anisotropic medium. This can be seen from the elaboration of the
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material parameters of, for example, the z-face of the PML:
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( E )-1ex,r + j~Xf;o 0 0

[e]' = eo[A](Z) [e]r = eo 0 ( crE )-1 0 (3049a)eyr+~, JWC:o

0 0
(jE

ez,r + jWt.o

( H )-1
J.lx,r + j~~o 0 0

[J.l]' = J.lo [A] (z) [J.l]r = J.lo 0 ( crH ) -1 0 (3049b)J.ly,r +j~o

0 0
crH

J.lz,r + jw10

As shown in Appendix B, the interface between the PML and the background is now iso­
reflective.

With the background medium being purely real ([J.l]' [e] E .JR3x3), A can be interpreted physi­
cally as well:

~ = eW,r,
E H

A::, = (Jw = (Jw

(Oeo (0J.lo 1

(3.50a)

(3050b)

where (JE and (JH are the electric and magnetic conductivity, respectively. The last equality
states that

(3.51)

Since there is no need to scale the real part of the constitutive parameters, AI : = 1. In this case,
Equation (3.51) is the matching condition for the PML to the background.

The PML is now easy to implement; the constitutive parameters in this region are multiplied
by a complex number only. The difference equations (3.9a) and (3.9b) can therefore be formu-
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lated in the entire domain of computation as:

6 1 (Ew-h2[eW-h2 - dW-h 1] -Ew-h2[eW-h2])
w-h2

- 6 1 . (Ew-hdew-hl-dw-h2] -Ew-hdew-hl])
w-hl

+jWAwJlwHw[ew + bw] = 0,
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(3.52a)

6 1 (Hw-h2[eW-h2 + bW-h2] -Hw-h2[ew-h2 + bW-h2 + dW-h 1])
w-h2

- ~w (Hw-h dew-h1 +bw-hl] -Hw-h dew-h1 +bw-hl + d w-h 2])+

- jWAw£wEw[ewJ = 0,

where Aw equals unity in the background medium.

(3.52b)

(3.53)

According to [3], the thickness of each PML-face should be multiple cells (of the structured
grid) in order to achieve sufficient attenuation. To also minimise numerical (spurious) reflections
from the interface between the background and the PML, the conductivity of the first PML-Iayer
should not be too large. To satisfy both conditions, the following parametrised profile for A" is
chosen:

A" = A1J' (1 + (Iw (wol )m),

where AfJ' represents the minimum conductivity (in the first layer of the PML) and Iw - wol is the
position wrelative to the position of the interface between the background and the PML woo The
parameter m allows to adjust the gradient of the conductivity and consequently the attenuation of
the electromagnetic power in the PML. The parameter ~ allows to control their maximum values.

Since the exponential attenuation is approximated linearly in each cell of the structure grid,
non-physical results can occur when the mesh size is taken too large. This implies an upper limit
on the mesh size, e.g. for the z-PML:

A" 1
z «kz6 z '

where kz = wy'Jlz£z of the background medium, so that

a(zl« 6 ~
z Jlz£z

When the background is a vacuum, this can be rewritten as:

E 1
a(z) «6

zZ
o'

(3.54)

(3.55)

(3.56)
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It is here where the parameter Sis useful: with the formulation in [9], condition (3.54) might be
violated when the central-difference scheme is used in this region3. Important to notice is that
this relation is independent of the frequency.

3 Berenger used for this purpose an exponential quadrature in the boundary layer to discretise his modified
Maxwell equations.



Chapter 4

Validation

As stated in the introduction, the hybrid method has not been completely implemented and hence
it has not been verified numerically for "real" scattering problems. In this chapter, a dipole field
will therefore be considered as a scattered field, the dipole itself being considered as an induced
source. This will be preceded by numerical experiments with the PML, in order to obtain its op­
timal conductivity profile. With this profile, the numerical reconstruction of the dipole field from
its decomposition is presented, where the most important objective is to verify that the singular
field vanishes in the region where the truncation function equals unity.

In all the numerical experiments, a BiCG-stab solver (i.e., an iterative method based on squared
bi-conjugated gradients, see [16]) has been used to compute iteratively the regular field by the
finite-difference equations. The relative error of the n-th iterate vector is defined as the 2-norm
of the n-th residue vector, relative to the 2-norm of the right-hand side vector:

._ Ilb-Axnllz
Errrel,n .- I!bll

z
'

where Ax = b is the system of equations to be solved iteratively.

(4.1)

It should be emphasized that the boundary value problem is formulated in the frequency do­
main. For the finite-difference equations, this implies the abscence of the explicit time step, as
present in the leap-frog scheme. As a consequence, each iteration does not show the propagation
of electromagnetic waves, but the numerical propagation of the iterative solution through the
domain of computation.

4.1 Modal Field

4.1.1 Experiment

The numerical computation of a modal field in a waveguide allows for a straightforward study of
the finite-difference method and the PML, since this numerical field can easily be compared to its

39
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PEe

PML

Figure 4.1: The waveguide with the electric field for the TE~o mode. This configuration requires
one PML-face only, backed by a perfectly electrically conducting screen.

analytic counterpart. Furthermore, since a waveguide has only got one open end in the direction
of propagation, only one PML-face is needed (the problem is quasi-one-dimensional). The modal
field in the domain of computation will be reconstructed numerically from its tangential electric
field (boundary values) on one open end of the waveguide, such that the reconstructed modal field
will propagate from this open end to the PML. This is shown in Figure 4.1. The configuration is
chosen such that the mode will be propagating (see Appendix C.2), and such that no resonances
can occur. A TEfo-mode is chosen:

• f = 300 [MHz].

• b = 0.75 [m).

• a = 0.75 [m].

• L = 0.50 [m),

where f is the frequency and a, b, L are the dimensions of the waveguide.

From various numerical experiments, the lowest relative error of the numerical field compared
to the analytical field, in a configuration with a homogeneous PML, has been achieved with
ag = 3· 10-2 [Sm-1]. When choosing the value of ag and af (where 0, L indicates the first and
last PM-layer, respectively) such that condition (3.54) is satisfied, variations of the conductivity
will result in equal variations of the attenuation. For the case where the conductivity is increased
linearly in the PML (m = 1), the value of ag is chosen slightly lower and the value of af is
chosen slightly higher than those with the homogeneous profile, such that the reflection from the
first layer will be less while still providing sufficient attenuation. The following values have been
chosen:

erg = 1.5 . 10-2

at = 4.0· 10-2

(4.2a)

(4.2b)
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yielding for s:
S=O.15 [1].
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(4.3)

Now the numerical experiments are performed for various values of m1 , with variable er5' The
conductivity profiles are depicted in Figure 4.2a, their corresponding attenuation (accumulative
per cell) are depicted in Figure 4.2b. The expectation is that in the homogeneous case, a small er5
will result in considerable reflection from the PEe-boundary, while a large er5 will result in con­
siderable numerical reflection from the first boundary layer. With the non-homogeneous profile,
the expectation is that a small value for m will slightly improve the numerical approximation of
the interior modal field, while a large value for m will result in non-physical results due to the nu­
mericallinear approximation of the attenuation in the PML. For each m, the curves of the relative
error of the numerically reconstructed interior modal field are expected to decrease or increase
monotoneously towards an optimum value, when er5 is increased or decreased, respectively.

4.1.2 Algorithm

As described in the previous chapter, the domain of computation is bounded by a perfectly elec­
trically conducting bounding box, of which each face is supplied with a PML. The waveguide
will be simulated numerically by this bounding box, but now only one face will be supplied with
a PML, i.e., acting as the open end of an infinite waveguide. On the opposite face of the boundary
of the domain of computation, the tangential electrical modal field will be expandeded. By this,
the vector of unknowns, as in Equation (4.1), x can be decomposed as:

(4.4)

where xi represents all the interior (unknown) field components and:>!g represents the expanded
analytic tangential electric components. Since the face on which :>!g is expanded now contains
the boundary values for the propagating modal field, it can be seen as the other open end of the
waveguide. However, due to implementation, the tangential electric field is set to zero on the
boundary of the domain of computation when iteratively solving the operator-matrix equation.
Therefore the expanded tangential eleCtric modal field at this boundary will be converted to an
equivalent volume magnetic current density b' in the interior of the domain2:

b' := - [Mfgx'g, (4.5)

such that

(4.6)

where b := 0 since no impressed volume sources are present. Distinction is made between the
Maxwell-operator matrix acting on the boundary values (tg ) and the Maxwell-operator matrix
acting on the interior values (i), since their ranks are different. However, the same Maxwell­
operator matrix has been used for the numerical computation. Equation (4.6) is now the equation
for the interior numerical field, to be solved iteratively.

IThe homogeneous conductivity profile, i.e., m = 0, is achieved by , --+ 00 and m --+ 00.

2This is possible owing to the staggered grid.
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(a) Conductivity profiles in the PML
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(b) Attenuation in the PML

Figure 4.2: Conductivity profiles and their corresponding attenuation in the PML for a~ = 1.5·
10-2 [Sm-1], m = 1. .. 5, S= 0.15. The distance z is normalised, i.e., z = acorresponds with the
transition layer between background and PML.
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Figure 4.3: Relative errors of the numerical modal field compared to the analytical modal field,
for various conductivity profiles with variable conductivity.

4.1.3 Results

Figure 4.3 shows the relative error of the numerical interior modal field compared to the analyt­
ical interior modal field, for five conductivity profiles of the PML, each with varying conductiv­
ity. Except for the homogeneous conductivity profile, these curves do not exhibit the expected
monotonicity. This is probably due to the fact that the equivalent volume source (i.e., hi) does
not correspond with the actual boundary values of the numerical modal field in case of reflection
from the PEe-boundary behind the equivalent volume source. This reflection will not be attenu­
ated due to the presence of the absorbing boundary layer on the opposite open end only.

Figures 4.4 and 4.6 show the absolute values of the non-zero components of the numerical and
analytical interior modal field, computed with ag = 1.5· 10-2 [Sm-1] and m= 2. As expected
from the relative error, shown in Figure 4.3, the modal field in the background region looks
very similar to the analytical modal field. It can be seen that the tangential components of the
modal field are continuous across the transition layer between the background and the PML,
in correspondence with Equations (3.35a) and (3.35b). Since the discontinuity of 1Hz I equals
approximately the discontinuity of )1z across the transition layer, IBzl is expected to satisfy conti­
nuity condition (3.36a). Furthermore, the attenuation in the boundary layer is also clearly visible.
For the tangential components, this attenuation seems to be exponential as expected. At a first
glance, this does not seem to be the case for the attenuation of IHzl. However, this cannot be
concluded from the figure, since the attenuation of this field component might be exponental for
each layer of the PML, while being discontinuous across the transition with the next layer. What
ever be the case, this field component is attenuated sufficiently at the end of the PML. The con-
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Figure 4.5: The IHx\ COlnponent of the modal field in the xz-plane at y~ 0
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(b) analytical

Figure 4.6: The IH,\ component of IDe modal field in the :a-plane at y~ 0

(a) numerical
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Figure 4.7: Convergence of the iterative solution to the modal field. Despite the quite erratic
curve of convergence and despite increase of the relative error after the 50-th iteration, the itera­
tive solution does converge to the modal field.

clusion can therefore be drawn that the finite-difference scheme, with the chosen conductivity
profile of the PML, correctly and accurately computes the (numerical) interior modal field from
its (analytic) boundary values.

The convergence of the iterative solution to the modal field is shown in Figure 4.7. This figure
shows an approximately monotone decrease of the relative error until the 50-th iteration, after
which the relative error increases and the convergence becomes quite erratic. This due to the fact
that, until the 50-th iteration, the numerically propagating iterative solution has not reached the
PEC boundary yet. Reflections from this boundary are therefore not taken into account, while the
iterative solution already does satisfy the larger part of the finite-difference equations. However,
this iterative solution does not correspond to the modal field and hence, the relative error of the
iterative solution, as defined by Equation (4.1), does not represent the relative error of the numer­
ical field compared to the analytical field. From the 50-th iteration on, the numerical reflections
are taken into account. Therefore the iterative solution increases quite monotonously, until just
after the 100-th iteration. From then on, the convergence becomes erratic. This is due to the re­
flections on the PEC-boundary behind the equivalent source, of the waves already reflected from
the opposite boundary. These reflections now have the same direction of propagation as the ex­
panded analytical modal field, and are therefore added to this field. This causes the relative error
of the iterative solution not to decrease any further. Based on the above observations and the rea­
sonably low relative errors of the numerical field compared to the analytical one, the conclusion
can be drawn that the relative error of the iterative solution does measure the relative error of the
numerical solution compared to the analytical one, as long as the number of iterations is chosen
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several times the dimensions of the domain of computation in the direction of propagation.

4.2 Truncated Dipole field

This section presents the numerical validation of the reconstruction of a dipole field, being con­
sidered as a scattered field, from its decomposition to a regular and a singular field. For this, the
dipole field will be truncated, thereby constructing the singular field. The regular field can now
be constructed numerically from the secondary sources, created in the transition region of the
truncation function. Since the scattered field is represented entirely by the singular field in the
region where the truncation function equals unity, the regular field must vanish there3 . This will
be the main objective of this section.

4.2.1 Experiment

Maxwell's equations for the decomposed field state:

(E) dip (E) reg (E) sng (0)
[MJ H = [MJ H + [MJ H = Jdip

In the transition region, the singular field will create secondary sources:

(4.7)

(E) sng
[MJ H = [MJ (j~e {VV. +k2

}) A =: (KS

)

XVx JS on.ox,

elsewhere,

(4.8)

where .01 is the region where X = 1 and .ox is the transition region where
o~ X < 1, i.e., where X starts to truncate.

Since the Hertzian dipole produces electromagnetic fields satisfying the radiation conditions,
the solution of Equation (4.7) will exist and will be unique, and hence the Maxwell operator is
assumed to be invertable for exterior solutions. The regular field can therefore be constructed
from the secondary sources:

3For "real" scattering problems, only the discontinuous field components will vanish in this region. The contin­
uous field components will not vanish.
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-1 ( 0) (E)Sng (0)[MJ Jdip - H = 0

[MJ -1 (J~p) - [MJ -1 (~:)

-1 ( 0) (E) dip[MJ Jdip = H

onQx,

elsewhere.

(4.9)

If now the secondary sources are taken into account for the entire domain R 3, the equation to be
solved for the regular field becomes:

[MJ (~) reg = _ (~:) (4.10)

As stated in the previous chapter, the transition region should not be chosen too small with respect
to the mesh size. Also, the region where the truncation function equals unity should not be too
small. By implementation of the truncation function, this region should at least contain six cells
of the structured grid. However, from visual inspection of the secondary sources, the following
restrictions have been found:

Q x ~ 10L.h

Q 1 ~ 16L.h

(4.11)

(4.12)

for each direction x, y and z. The relatively large region where the truncation function equals
unity is due to the singularity of the dipole field: the magnetic field is 0 (;2) singular, the elec­

tric field is 0 (Jb-) singular. The expectation is that this size can be chosen smaller when the
scattered field is less singular, which is the case for scattering problems with a surface or a wire
as scattering objects.

The following configuration has been chosen, with an equal PML as for the numerical com­
putation of the modal field. The dipole placed in the center of the domain of computation:

• Dimensions of the domain: 2.5x2.5x2.5 [m].

• Grid size: 0.025xO.025xO.025 [m].

• NpML = 10 (for each face).

• 0'0 = 1.5.10-2 [Sm-1].

• S=0.15.

• m=2.
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Figure 4.8: Is,x in the xz-plane at Y = Ydip with its singularity due to the singular dipole field. As
can be seen, the minimum size of the region 0.1 is limited by this singularity.

• rtip = (1.0,1.0,1.0) [m].

• up = Uz.

• f = 300 [MHz].

• o.x = 0.25xO.25xO.25 [m].

• 0.1 = 0.4 [m].

This yields a free space of 0.35 [m] between the truncation region and the PML. This might seem
small, but since the secondary sources are smooth by construction, no field discontinuities are
present in the vicinity of the PML.

4.2.2 Results

As stated before, the dipole field is heavily singular, requiring 0.1 to be large. This singularity
is depicted in Figure 4.8, together with the x-component of the electric secondary source in the
xz-plane. This discontinuity defines the minimum size of 0.1. i.e., the domain where the trunca­
tion function equals unity. The lower the order of the singularity of the scattered field, the better
the numerical approximation of this field and hence the smaller the region where the Maxwell
operator results in a zero-field will be. Therefore, the expectation is that the lower the order of
singularity, the smaller the truncation region can be.

The method requires the dipole source to be cut-out from the domain of computation, since
the regular field is computed numerically from the secondary sources only. Two components of
these secondary sources in the xy-plane, at z = Zdip, are shown in Figure 4.9. It can be seen that
these sources are smooth in IR3, as required by the finite-difference method.
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(a) IKs,x1 in the xy-plane at Z = Zdip

25

(b) IJs,zl in the xy-plane at Z = Zdip

Figure 4.9: Two examples of the secondary sources for the regular field. With the chosen config­
uration, these sources are smooth.
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Next, Equation (4.9) is solved numerically, which yields the regular field. The composition of
this regular field and the singular field, together with the analytical dipole field, are depicted
in Figure 4.10. The resulting regular field, together with the corresponding singular field, is
depicted in Figure 4.11, where the singularity of the electric dipole field has not been visualised
entirely. Only the region of interest is shown, i.e., the truncation region. Although the entire
domain of computation is not shown in this figure, it shows that the regular field is smooth in the
region where the secondary sources are present. It also shows that the regular field vanishes on
Ql, i.e., the region where the truncation function equals unity.
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Figure 4.10: The electric dipole field in the background. For clarity, the singularity of the dipole
field is only partially visualised. The numerical dipole field has been obtained by the composition
of the singular field and the regular field, where the latter has been computed from the secondary
sources. The numerically field is a good approximation of the analytic field. Only at the interface
between background and PML, a negligable discontinuity can be observed.
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L = x
6x

Figure 4.11: The regular field and the singular field in the xy-plane, at Z = Zdip' The truncation
region is the only region of interest, therefore this region (and a little more) is shown only. It can
be seen that the regular field vanishes in .QI, i.e. where the truncation function equals unity.
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Figure 4.12: Convergence of the iterative solution to the regular field..

The converge of the iterative solution to the regular field is depicted in Figure 4.12. As with the
converge of the iterative solution to the modal field (see Figure 4.7), this convergence is quite
erratic. This is again due to the fact that, outside the truncation region, the secondary sources
represent the radiating dipole field. In case of unsufficient attenuation of reflection from the
PEC-boundary or in case of reflections due to the numerical mismatch of the PML itself, the sec­
ondary sources no longer represent the numerically computed radiating dipole field and hence
Maxwell's equations are no longer satisfied. The same rule of thumb for the correspondence of
the relative error of the iterative solution to the relative error of the numerical field compared to
the analytical field can be applied: these two relative errors correspond if the number of iterations
equals several times the mesh size in the direction of propagation.

Although not important for this study, a remarkable (at least to me) observation has been made
concerning the numerical reconstruction of a dipole field. The dipole field in the interior domain
can be computed numerically by the finite-difference method from its boundary values, i.e., the
tangential components of the electric field on the boundary of the domain of computation, in the
same way as the interior modal field has been computed. This implies that also the electric dipole
itself can be reconstructed numerically, which seems to be in contradiction with the fact that the
inverse boundary-value problem is not well posed (due to possible non-radiating sources). The
correct numerical computation of the interior dipole field can be explained by the observation
that non-radiating sources cannot be reconstructed numerically for the same reasons the hybrid
method has been studied: the finite-difference method requires the electromagnetic field to be
smooth.
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Conclusions and Recommendations

Modelling a thin PEC-scatterer as an infinitesimally thin wire or surface allows the formulation
of a scattering problem as a boundary-value problem for the scattered electromagnetic field in
lR3 . This scattered field can be decomposed in a singular field and a regular field, the former
containing the discontinuity of the scattered field exactly and being localised in a small region
around the scatterer, the latter being smooth in lR3. The smooth truncation of the integral rep­
resentation of the scattered field seems to be the best definition of the singular field, for reasons
of smoothness of the coupling equations between the finite-difference method and the integral­
equation method. The truncation of the scattered field and that of the surface-current density
must be partitioned for the method to be useful. When these two truncation functions are chosen
to be equal on the scatterer, their implementation is simplified. With this choice, the trace of
the two truncation functions on the scatterer is not constant, causing extra terms to arise in the
Galerkin discretisation of the integral equation. However, these terms can partially be calculated
analytically, the other part is already calculated numerically in the other terms.

Rather than being a point of departure itself, the interpretation of the PML as a boundary layer of
diagonally anisotropic, lossy material follows from a proper choice of the associated pull-back
transformation of Maxwell's equations for the analytically continuated electromagnetic field.
This choice of the transformation enables a relatively simple implementation of the numerical
radiation conditions by nothing but a complex scaling of the material properties in the boundary
layer. An augmenting loss in the PML, towards the boundary of the domain of computation,
results in a better numerical approximation of the radiation conditions.

The optimal values of the various parameters of the PML have been obtained by simulating a
modal field in an infinite waveguide. When one open end of this waveguide is simulated by
applying the numerical radiation conditions to one face of the boundary of the domain of com­
putation, and the other open end by expanding the boundary values of a propagating modal field
on the opposite face, the convergence will become erratic due to (numerical) reflections. These
reflections cause the expanded boundary values to no longer correspond with the interior elec­
tromagnetic field. However, when the number of iterations is chosen to equal at least twice the
number of field samples in the direction of propagation, the resulting relative error of the iterative
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method will be a good measure for the relative error of the numerically computed field.

The numerical reconstruction of a dipole field, which can be considered as a scattered field,
from the composition of its regular field and its singular field, allows for a straightforward study
of the truncation function and that of the field decomposition. The numerical experiments show
that the secondary sources, for the regular field, are smooth and that the regular field vanishes
where the scattered field is determined entirely by the singular field, i.e., where the truncation
function equals unity. The strong singularity of the dipole field causes this region to be relatively
large. However, since the electromagnetic field scattered from a surface or a wire is less singular
than that of a dipole, this region can probably be chosen smaller with "real" scattering problems.
Since the secondary sources for the regular field represent only the radiation of the dipole field,
erratic convergence will occur in case of (numerical) reflections. Therefore, as with the compu­
tation of the modal field, the number of iterations should be twice the maximum number of field
samples in one direction.

For the method to be applicable to "real" scattering problems, the combination of the parti­
tioned truncation of the surface-current density and that of the singular field must be verified
numerically. This might introduce more sophisticated truncation functions. An implementation
in the time domain is also recommended for further study.



AppendixA

Vector Identities

A.I Identities involving vector fields

Let A and B be smooth vector fields on R3 , let a be a scalar variable, and let 0 be the constant
normal vector on the surface of an orientable object in R3 . Then the following identities are used
(see [15,22]):

v x (aB) = Vax B +aV x B

V 0 (aB) =aV ·B+B· Va

V· (aB) = aV.B +B .Va

V x (Va) = 0

V·(VxA)=O

V x V x (A) = VV· A - 6.A

Vs . (0 x A) = - 0 0 (Vs x A)

o x V x A = Vs(o· A) - (0' V)As

A.2 Identities involving the plane wave

(A1)

(A2)

(A3)

(A4)

(A.5)

(A6)

(A7)

(AS)

Let Eo be a constant vector field and let k := k 0 k, then E = Eoe- jkr is a plane wave. For this
plane wave, the following identities hold:

n (E -jk-r) Ok (E -jkr)v X oe = -J x oe ,

/I.E - jk'r ,2E - jk·r
~ oe = -Il oe 0
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A.3 Identities involving the position vector

Let r be the position vector on R3 , let R := Ilrll the distance as defined in Chapter 2 and let Gr

be the frequency domain Green function on R3 . Then the following identities are used:

(All)

(A12)

(AB)

(A14)

(A15)



(B.1a)

(B.1b)

Appendix B

Oblique-incidence reflection problem

A reflection problem for a plane wave with oblique incidence on the interface between the homo­
geneous, isotropic, lossless background medium and the homogeneous, axially anisotropic lossy
PML is elaborated in this chapter. The incident field will be a plane wave:

E = Eoe- jk.r ,

H = Hoe- jk.r.

The analytic continuation of this field is:

E= Eoe-jk[Vlr,

II = IIoe-jk[Vjr.

(B.2a)

(B.2b)

From equations (3.42a) and (3.42b), the algebraic Maxwell equations can now be derived for the
field in the PML:

[Ar1 [V]k x E- wJ.lIl = 0,

[A]-l [V]k x II + weE = 0,

from which the dispersion relation can be obtained:

[Gf(k. k) = w2J.le = k'-,

where [0] := [A]-l [V]. Elaborating for the Cartesian components gives:

k'- = (kxAyAz)2 + (ky AzAx)2 + (kzAxAy) 2
,

which can be solved according to [17] for the individual components:

kx = ~Az sin ecos </J ,

ky = Azk
Ax

sin esin </J ,

k
kz = AxAy cos e.
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(B.3a)

(B.3b)

(B.4)

(B.5)

(B.6a)

(B.6b)

(B.6c)
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If now the propagation vectors are restricted to the xz-plane, which correspond to </J = 0 and ky =
0, the electromagnetic field can be decomposed into a TE-polarisation and a TM-polarisation.
Only the TE-polarisation will be elaborated, [20] will be used to state the results for the TM­
polarisation. The TE-polarised incident (i), reflected (') and the transmitted et) electric field can
now be written as:

(B.7a)

(B.7b)

(B.7c)

where the prime I denotes the field in the PML. The corresponding magnetic waves can be found
from equation (B.3a).

Elaborating jump condition (2.llb) for the electric field, while assuming the interface between
the background medium and the PML at z = 0, results in:

(B.8)

Since an infinite interface is assumed, this equation must hold for all x, and therefore

(B.9)

(B.1Oa)

(B.1Ob)

Together with equation (B.6a), Snell's laws can be obtained:

sin ai = sin ar ,

. a l. e
sm i = AzAy sm t·

Elaborating jump condition (2.lla) for the electric field, while still assuming the interface be­
tween the background medium and the PML at z = 0, results in:

(ki
X Ei)x + (kr x Er)x _ G (Ie X Et)x
wJ1 wJ1 - [] wJ1 '

which, together with equation (B.6a), can be elaborated to:

Solving the system of equations (B.8),(B.l2) results in the reflection coefficient:

TE cos ai - ~ cos at
R = ---,..::---

cos ai +~ cos at .

(B.ll)

(B.l2)

(B.B)



(B.14)
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The reflection coefficient for the TM-polarisation is given by:

TM ~ cos Bi - cos Bt
R = ~---;;-----

cos Bt +~ cos Bi .

Now the PML can be made iso-reflective (i.e., a zero reflection of the incident field) by letting
A; = -h and ;..; = A;, as already stated by Equation (3.46).



64 APPENDIX B. OBLIQUE-INCIDENCE REFLECTION PROBLEM



Appendix C

Analytic fields

e.l Dipole Field

The vector potential A is for the Hertzian dipole:

(C.1)

(C.2)

where up is the polarisation vector. Here, the z-polarisation will be used, so up = Uz. Substituting
this potential in equation (2.29b), results in:

Edip = ~di~ {VV. +!?- }(Grup)
J(J)£

Elaborating the derivatives, with the aid of the identities in Appendix A, yields:

VV· (Grup) = (up· Ur )ur (2Gr' - !?-Gr ) (C.3)

(CA)

(C.S)

Since the factor (up· Ur )ur represents the longitudinal component, the aim is to decompose the
term k2A in a longitudinal and transversal component as well. With the observation that (ur .

ur ) = 1, this leads to:

!?-Grup = !?-Grup(Ur . ur ) = !?-Gr ((up· Ur )ur - Ur X Ur X up)

Now the electric dipole field can be written as:

Edip = ~di~ ((up. Ur )ur 2Gr' - (ur x Ur x up)!?-Gr )
J(J)£

For the magnetic dipole field, the potential is substituted in Equation (2.29a). This results in:

Hdip = V x (AdipGrUp) = AdipVGr x up

Using the relation (A. 13) and the chain rule of differentiation results in:

6S

(C.6)

(C.7)
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C.2 Modal Field

Two polarisations can be present in a waveguide: TE and TM. For TE polarisation, the mn-th
mode, propagating in the z-direction, is given by [20]:

and for TM polarisation:

-CYmn mn mn nn
Ex = cos(-x) sin (_y)e- YmnZ

(':1r) 2 + (n:) 2 a a b

_ -CYmn nn. (mn) (nn) -Ymnz
Ey - 2 2 b SIll -x cos -by e

(':1r) + (n:) a

Ez = C sin(mnx) sin (nny)e-YmnZ

a b
Cjro£ nn. (mn) (nn) _')I zHx = SIll -x cos -y e mn

(':1r) 2 + (n:)2 b a b

-Cjro£ mn mn nn
H = cos(-x) sin (-y) e-Ymnz

y ( ':1r )2 + (n:) 2 a a b

Hz=O

In both polarisations, the propagation constant Ymn is given by [20]:

(C.Sa)

(C.Sb)

(C.Sc)

(C.Sd)

(C.Se)

(C.St)

(C.9a)

(C.9b)

(C.9c)

(C.9d)

(C.ge)

(C.9t)

Ymn = (C.lO)

Frequencies resulting in propagative modes are below cut-off; above this frequency modes are
attenuative. Expressing the cut-off frequency in m, n and waveguide dimensions result in a circle
equation, see figure c.l.
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Figure C.l: Region of frequencies below cut-off, parametrised by the dimensions of the wave
guide.
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Samenvatting

De eindige differentie methode biedt een snelle, accurate en efficiente methode voor het nume­
riek oplossen van randwaarde-problemen dankzij het gestructureerde, gestapelde rooster. On­
danks de noodzaak van numerieke uitstralingsvoorwaarden is de methode erg populair voor het
berekenen van elektromagnetische verstrooiing. Desalniettemin weerspiegelt deze populariteit
niet de toepasbaarheid van de methode voor een breed scala van problemen: wanneer het ver­
strooiende object willekeurig van vorm is, is het gestructureerd rooster niet langer conform en
verliest de methode dientengevolge zijn precisie. In deze gevallen wordt vaak een integraalver­
gelijkings methode, gebaseerd op Galerkin discretisatie, gebruikt. Echter, de nadelen van deze
methode zijn een numeriek dure matrix-inversie en een hoger gebruik van geheugen. Een hy­
bride methode is bestudeerd geweest om te profiteren van de voordelen van beide methoden:
conformiteit van het rooster aan de willekeurig gevormde verstrooier door de integraalvergelij­
kings methode, en precisie en efficientie door de eindige differentie methode. Zij is gebaseerd
op een mathematische decompositie van het verstrooide veld door een gladde, gepartitioneerde
truncatie-functie. De verwachting is dat deze partitionering een efficienter matrix-vector product
en dus een snellere convergentie oplevert ten opzichte van de reeds bestaande hybride methoden.
De veld-decompositie en principiele werking van de hybride methode is numeriek geverifieerd
geweest met een dipool-veld.
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