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Abstract

This project provides an exploratory answer to the question of how to speed up the software package LMS
Virtual.Lab Motion, by LMS International. This software package is a simulator for mechanical devices that
offers a variety of time integration algorithms, the main one is based upon the general-purpose integrator
DASSL. Our results can reasonably be adapted to fit other applications that make use of DASSL or a similar
time-integrator.

Three approximate Newton methods (Simplified, Simplified with an approximate LU-decomposition, and
full Newton with an approximate Krylov solver) are studied to investigate whether or not they are likely to
increase the speed of DASSL. This study is not performed by implementing them but rather by providing an
estimate on how well they would perform when they are implemented.

We define the concept of refresh-cycle for integrators that use the simplified method. This is the number
of time-steps for which the integrator reuses an old Jacobian before refactoring. We exploit the fact that the
error in the Jacobian is likely to be non-decreasing during such a refresh-cycle in our application.

The results of the study on the separate approximate Newton methods suggests the concept of a three-
phase time-integrator that cycles through the three methods. This way, the benefits from each of the methods
are exploited on the right moment in the cycle. The expected speed gain of the three-phase cycle is investi-
gated. And we conclude that the addition of the approximate LU-decomposition is always beneficial and the
addition of the Krylov solver is beneficial for mechanical models with many sudden changes in the system’s
dynamics (e.g. collisions).

Finally we exploit some features of the Jacobian matrix to provide a way of updating it without the need to
refactor. These are specifically designed for LMS Virtual.Lab Motion but other time-integrators might benefit
from similar ideas.

- Do not disclose this thesis before August 2014 -
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Chapter 1 – Introduction

“Sense, sure, you have. Else could you not have motion.”
W. SHAKESPEARE

HAMLET (∼1600)

1.1 – Background and motivation

1.1.1 – Mechanical devices

When designing a complicated mechanical device like, for example, a car, a robotic arm or a landing gear,
it is often advisable to beforehand simulate the movement of the device. This practice not only gives insight in
whether or not the device will work properly but also provides information on various important quantities like
force and friction. In the early phase, manufacturers will typically simulate and test the various components
of a device individually but at some point it is important to gain knowledge about the interaction between a
greater number of components. In this phase, multibody simulations come into play.

A multibody simulator is a computer program which is capable of predicting the movement of a set of inter-
connected components under the influence of external and internal forces. To this end, one simulates the well
known equations for mechanical movement (i.e. Newton’s second law). But in addition the interaction between
objects is modelled. This is less straightforward. An interaction between two object is, most commonly, the fact
that they are linked in a way. This can be by joint, a spring, an actuator or other connections. A single joint
between two bodies, say a ball joint like Figure 1.1, is modelled by an additional equation which states that the
respective points where both bodies are linked are to be equal. This is effectively an imposed constraint on the
motion of the bodies. Springs and actuators constitute extra equations stating that there is some force exerted
on the two bodies as a of their relative position. Further terms and equations arise with the extension to more
complicated interactions like damping, friction and even controls and hydraulics. The arising set of equations
is called a system of differential-algebraic equations (DAEs).

Figure 1.1: A ball joint asserts that two corresponding points on two bodies have the same position.
(Image taken from https://en.wikipedia.org/wiki/File:Srjoint.jpg, licensed as CC-BY-SA-3.0)
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2 Chapter 1. Introduction

1.1.2 – Virtual.Lab Motion

The company LMS, head-quartered in Leuven, Belgium, produces LMS Virtual.Lab Motion (or VL Motion
for short), a software package capable of performing these simulations. Typical customers are manufacturers
of cars, aeroplanes and machinery. VL Motion contains a variety of time-integrators, the one on which we will
focus in this report is an integrator called DASSL, explained in Section 2.2.3.

1.2 – Goals and philosophy

The original goal of this project was to test whether or not efficiency can be gained for the time-integrator
by switching from a direct solver to a Krylov solver. This goals was quickly expanded to investigating the pos-
sibilities to adapt a general-purpose time integrator to better fit a subclass of equations. The goal is to find a
series of changes and additions (that may or may not include Krylov solvers) to the current integrator that are
expected to increase overall efficiency. Each of these is formally motivated in terms of computational effort and
preliminary testing is done to further solidify the claims made.

An important task of a simulation product is to perform repeated simulations with slightly varying param-
eters. This is an ubiquitous application for two reasons. The first being that some mechanical models are
optimised for a certain characteristic (like passenger comfort or noise level) by changing a set of parameters.
Then an optimisation is performed on a function that basically consists of performing the simulation. This op-
timisation can require many function calls. The second reason is that for safety reasons many manufacturers
need to run very similar simulations many times with just slightly different conditions to be notified early of
possible faults. This repetition makes it worthwhile to optimise an integrator for a single specific model.

The proposed changes are designed in such a way that they are strictly additions to the solver. It will always
fall back to the current solution in the case that there is no benefit from the additions. This way we are assured
that the augmented program will be at least as successful as the original one.

No implementation of the additions has been performed due to the time investment this requires. By avoid-
ing copious amounts of programming we managed to investigate a large number of options, the most viable of
which are presented here. Nonetheless, throughout the thesis many remarks are given on implementation.

We strive to base the reasoning and motivation as much as possible on theoretical results but experimental
results are not neglected. In some cases they prove to be more useful than the theoretical ones.

Furthermore, we identify some important characteristics of multibody models and we discuss how they af-
fect the usefulness of the additions.

Throughout we use data from three models in LMS Virtual.Lab Motion to test various ideas.

• All terrain vehicle (ATV)
A model for a small four-wheeled vehicle driving
over rough terrain. Although the motion is very wild
and profound, the problem is rather smooth and
not stiff. This model is similar to one a real client
might be interested in simulating.

T.R.T. Nijhuis



1.3. Outline and reading guide 3

• Gimbal
This is a model of a small desk toy consisting of two
gimbals supporting an eccentric weight. The model
is very small and very smooth. This model has very
few equations and hence allows for quick testing.

• Chain
A chain riding over two sprockets and one chain
guide. The motion is smooth, but there are many
collisions. This makes the problem very challeng-
ing.

1.3 – Outline and reading guide

This thesis consists of six chapters, three of which contain the original research.

• Chapter 2 contains preliminary knowledge on multibody simulations and time-integrators. There is no
original research in this chapter. We do, however, call attention to the definition of the refresh cycle
(Definition 2.2) which is a recurring motive throughout.

• Chapter 3 provides a general form of approximate Newton methods. This is used as a framework to de-
fine three specific method (one of which is the currently implemented method). Results are provided to
compare the three methods. These results are the basis for the motivations in the next chapter.

• Chapter 4 contains the most important part of original research: the concept of the three-phase cycle.
This concept is motivated from the results in the chapter before and extensive estimates are performed
on the efficiency that can be gained by it.

• Chapter 5 can be seen as an encore. It provides some ideas to further speed up the integrator. The ideas
presented in this chapter work with or without the three-phase cycle.

At the beginning of every chapter is a short overview of its structure and the main conclusion.

Eindhoven University of Technology & LMS International
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Chapter 2 – Preliminaries

“They, instead of remaining fixed in their places, move
freely about, on or in the surface, but without the power of

rising above or sinking below it.”
E.A. ABBOTT

FLATLAND (1884)

Overview

This chapter contains two parts. In the first part the equations of motion are derived in the form of an n-
dimensional evolution equation. The second part contains a description of DASSL, the time-integrator that is
used to numerically solve the evolution equation. The concept of refresh cycle is defined as the set of time-steps
that are solved with the same Jacobian matrix. The second part ends with definitions for computational effort
and simulation rate.

2.1 – Modelling multibody dynamics

In this section the equations of motion will be derived in the form of a system of differential-algebraic equa-
tions. We will begin by defining rigid body motion and the coordinate system we use, then we will apply New-
ton’s laws to these coordinates to obtain rigid body dynamics, finally, we add constraint equations to a system
of multiple bodies to obtain multibody dynamics.

2.1.1 – Rigid body motion and generalised coordinates

A rigid body is a single, free moving object in space which does not deform. The model we use for it is a
bounded, connected set of points in Euclidean space, say Σ ∈Rn . The movement of the body during the course
of time is represented by a mapping,

ξt : Rn →Rn (2.1)

ξt (Σ0) =Σt , (2.2)

which maps every point in some initial reference set Σ0 to its corresponding location in Σt which is the set of
points that make up the body on time t . The mapping should be regarded as a series of spatial maps in the time
domain. This is emphasised by time t not being an argument but a subscript parameter. By the definition of
rigid body motion, this mapping is restricted in that it should not deform the body. In other words, it should
preserve internal distances and angles

∀c,v,w∈Rn∀t∈R+ :
(
ξt (v)−ξt (c)

)T(
ξt (w)−ξt (c)

)= (
v − c

)T(
w − c

)
. (2.3)

5



6 Chapter 2. Preliminaries

Lemma 2.1. A mapping that preserves angles and distances is an affine map of the form

ξt (x) = Rt x +bt , (2.4)

with Rt an orthogonal matrix and bt some vector.

Proof. Equality (2.3) can be differentiated in the directions v and w to give

∂

∂w

∂

∂v

[(
ξt (v)−ξt (c)

)T(
ξt (w)−ξt (c)

)]= ∂

∂w

∂

∂v

[(
v − c

)T(
w − c

)]
(2.5)

∂ξt (v)

∂v

T ∂ξt (w)

∂w
= I , (2.6)

for all v and w . The right hand is the identity matrix. Thus the total derivative ∂xξt (x) is an orthogonal matrix
Rt , independent of x. Integrating in some direction x with integration constant bt yields (2.4)

c

w

v

ξt(c)

ξt(v)
ξt(w)

ξt

Figure 2.1: Rigid body motion, a visual interpretation of equation (2.3)

Furthermore, ξt (x) is continuous in t and at time zero it equals the identity since no movement has yet
taken place. Therefore, we know that the determinant of Rt is equal to one, not minus one. Thus Rt is strictly a
rotation. This kind of mapping is called a direct isometry. The group of all such mappings is called the Euclidean
motion group or rigid motion group and is denoted by SE(n).

By Lemma 2.1, the movement from Σ0 to Σt is completely characterised by the components of Rt and bt .
This leads to the notion of generalised coordinates for rigid bodies. We can associate a body with a long column
like

x = [s1, . . . , sn︸ ︷︷ ︸
position

,θ1, . . . ,θk︸ ︷︷ ︸
angle

]T . (2.7)

For the position vector s we typically use the position of the centre of mass. This choice is technically a
convention, but it does simplify the equations because a freely moving body will rotate about its centre of mass.
That means we can easily decouple the equations for translation and those for rotation. The vector θ, with the
angular information, is of length k = 1

2 (n2 −n), the number of coordinates needed to uniquely determine the
rotation matrix Rt .

In three dimensions: The notion of rotation is not commonly encountered in spaces of over three dimen-
sions. Fortunately, users of multibody simulations are rarely interested in such spaces. So henceforth in this
thesis, we will restrict ourselves to R3. Then k equals 3 and angular components are typically referred to by
the names of the Tait-Bryan angles: roll, pitch and yaw (φ,θ and ψ). They are defined as follows: Choose an
arbitrary axis for the body through the centre of mass. Then yaw is its angle with the fixed x y-place; pitch with

T.R.T. Nijhuis



2.1. Modelling multibody dynamics 7

the xz-plane and roll is the rotation of the body about this chosen axis. These three figures are sufficient to
describe any configuration of a three dimensional body. However, they are discontinuous. More specifically,
there exist a configurations for a body such that an arbitrarily small movement leads to a jump in the Tait-Bryan
angles. This phenomenon is known as gimbal lock and makes Tait-Bryan angles unsuitable for applications
where movement is involved.

The problem of gimbal lock is elegantly solved by regarding the three-dimensional space in which ψ,θ and
φ lie as a spherical surface in four-dimensional space. Every point on this sphere can be indicated by e =
(e1,e2,e3,e4) with ‖e‖ = 1. The numbers {ei }4

i=1 are called Euler-Rodrigues parameters and they are obtained
from the Tait-Bryan angles as follows

e1

e2

e3

e4

=


cos(φ/2)cos(θ/2)cos(ψ/2)+ sin(φ/2)sin(θ/2)sin(ψ/2)
sin(φ/2)cos(θ/2)cos(ψ/2)−cos(φ/2)sin(θ/2)sin(ψ/2)
cos(φ/2)sin(θ/2)cos(ψ/2)+ sin(φ/2)cos(θ/2)sin(ψ/2)
cos(φ/2)cos(θ/2)sin(ψ/2)− sin(φ/2)sin(θ/2)cos(ψ/2)

=


cos(χ/2)

u1 sin(χ/2)
u2 sin(χ/2)
u3 sin(χ/2)

 , (2.8)

with u and χ yet another description of rotation, namely decomposition in an axis of rotation u and an angle χ
about that axis [13]. If the four parameters ei are used instead of the three angles, then an additional equation
is required to avoid an under-determined system. This additional equation is given by the fact that the Euler-
parameters lie on a sphere, that is ‖e‖ = 1. This additional equation is a constraint equation that must be
satisfied. It will be expanded below in Section 2.1.2.

It is interesting to remark that the addition of a fourth angle-like quantity is not solely a theoretical trick. A
mechanical way to measure angles in aircraft and the likes thereof is by a system of gimbals. Indeed, adding a
fourth gimbal and actively controlling it at a ninety degree angle from the second one avoids gimbal lock. See
[14] for an amusing example from the 1963 Apollo mission.

Pitch

Roll

Yaw
Axis fixed
to body

Figure 2.2: The Tait-Bryan angles for an aeroplane. The direction of flight is the obvious choice as a main axis.
If the plane were flying up- or downwards (a pitch of ±90◦) it would suffer from gimbal lock, manifested by the
fact that then roll and yaw are interchangeable.
(This is a cosmetic adaptation of https://en.wikipedia.org/wiki/File:Yaw_Axis_Corrected.svg, licensed as CC-BY-SA-3.0)

We now have a convenient way to characterise a rigid body inR3: By the position of its centre of mass and
the four Euler angles. We can use Newton’s laws of motion to figure out how the body moves when subject to a
certain force.

2.1.2 – Constrained dynamics and multibody systems

The derivation for constrained dynamics is given in the introductory literature. For our application, the
examples of E.J. Haug[13] and [21] were followed. If the position of a body is described with its generalised

Eindhoven University of Technology & LMS International
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8 Chapter 2. Preliminaries

coordinates, we can formulate equations on these coordinates to describe the movement of the whole body.
The basic equations of motion we use are Newton’s second law for both translational and angular motion:

ms̈ = f (2.9)

µë = τ , (2.10)

with f an external force vector, τ the torque resulting from this force, m a scalar denoting the mass of the body
and µ the 4×4 inertial tensor. Due to the similar form of the two equations, we can collect them into one vector
equation(

mI
µ

)(
s̈
ë

)
=

(
f
τ

)
∈R7 . (2.11)

This is the equation to describe the motion of a single body. To describe more bodies (say l of them) simultane-
ously they can be collected within a single vector equation (in k = 7l dimensions). Moreover, we can now add
the constraints on the bodies by requiring a second set of equations to be satisfied. This second set is given by
a function Φ :Rk →Rm which only acts on x. From the definition of the Euler parameters above, we already
know one constraint equation that is inΦ, namely the normalisation of the Euler parameters: ‖e‖ = 1.

M ẍ =Q ∈Rk (2.12)

Φ(x) = 0 ∈Rm , (2.13)

with QA a generalised load function that contains applied forces, torques and inertial forces. The additional
equation is just algebraic rather than an differential equation. This means we are now considering a differential
equation on a manifold given by M = {x ∈ Rk | Φ(x) = 0}. A system like this is called a differential-algebraic
equation (DAE). Part of the loading force Q is responsible for making x satisfy the constraint equation. This is an
unknown internal reaction force that we want to distinguish from the external applied forces QA. The reaction
force is only unknown to a certain extent. In fact, we know that its direction is perpendicular to the face of the
manifold because of Newton’s third law. The magnitude of the reaction forces will be collected in the unknown
vector λ and then the system looks like (see Appendix B). The vector λ is a collection of Lagrange-multipliers,
see also the paper by Karabulut [15].

M ẍ +ΦT
x ·λ=QA (2.14)

Φ(x) = 0 . (2.15)

At this point we stress that the occurrence of internal forces results from a modelling assumption. We do not
choose to ‘manually add forces’ so as to constrain the bodies to Φ, but rather we make use of the modelling
assumption that the bodies are constraint toΦ and deduce what the internal force necessarily must look like 1.

2.1.3 – Preparing for numerical integration

The system in (2.14 - 2.15) is a complete description of multibody dynamics. It is, however, not yet suitable
for integration with DASSL for two reasons: It is an index-three system and it is second order.

1This assumption does not hold anymore when the magnitude of internal forces (i.e. λ) gets so large that the joints break of. Then
the bodies will stray away from the manifold.

T.R.T. Nijhuis



2.1. Modelling multibody dynamics 9

Index reduction

The concept of index is not an easy one. There are different definitions: Differentiation-index, kronecker-
index, perturbation-index and more. These all address different aspects of similar problem. The definition used
here is the differentiation-index found in [2].

Definition 2.1. The differentiation-index of a differential-algebraic system

f(x, ẋ, t ) = 0 (2.16)

is the smallest k such that

∂k

∂t k
f(x, ẋ, t ) = 0 (2.17)

is a system of ordinary differential equations.

It can be thought of as a measure of the dominance of the algebraic part in the systems. The general def-
inition is the number of times one needs to differentiate a system so as to end up with a differential equation
for every variable. For constrained dynamics the index is usually three. This is a problem since DASSL only al-
lows for differential-algebraic systems of index one. Therefore it is key to change the system so as to decrease
this index. Remark that the repeated differentiation in Definition 2.1 does reduces the index of the system. It
is, however, not a suitable means to obtain a lower index system since it also removes valuable information. A
more subtle approach is to differentiate the constraint equations once and to interchange the occurrence of λ
with its derivative, λ̇.

M ẍ +ΦT
x λ̇=QA (2.18)

Φy (x)ẋ +Φt (x) = 0 (2.19)

. (2.20)

This is a system of index one. The loss of information in the original system is minimal but not negligible:
where (2.15) fixed the relative position of the bodies, (2.19) fixes their relative speeds. Theoretically, this is not
a problem given proper initial conditions, but in numerical practice this leads to a phenomenon called drift,
in which the bodies slowly float away from each-other. This is remedied by actively monitoring the constraint
equationΦ(x) = 0 and stabilising if its residual exceeds a certain tolerance.

Order reduction

The integration order of the system is two. Most generic numerical integrators only solve equations of order
one. This is easily solved by the well known trick of adding an additional equation for the derivative of x

ẋ = v (2.21)

M v̇ +ΦT
x λ̇=QA (2.22)

Φy (x)ẋ +Φt (x) = 0 , (2.23)

in matrix form I 0 0
0 M ΦT

x

Φx 0 0

ẋ
v̇
λ̇

=
 v

QA

−Φt

 , (2.24)

Eindhoven University of Technology & LMS International



10 Chapter 2. Preliminaries

and cast as a general nonlinear system

f (y, ẏ , t ) =
 ẋ − v

M v̇ +ΦT
x λ̇−QA

Φy v +Φt

= 0 . (2.25)

with y = [
x, v, λ̇

]T
.

2.2 – Time integrators

2.2.1 – General description

A time integrator is an algorithm capable of approximating the solution to an evolution equation. In the
most general cases, an integrator is capable of approximating the solution of a system like

F (y, ẏ , t ) = 0 for t ∈ [0,T ] (2.26)

y(0) = y0 , (2.27)

for example the system (2.25). The output is a list of time values {ti } and a finite set of points {yi } that aim to
sample the exact solution y? within a certain tolerance margin τn :

0 = t0 < t1 . . . < tN = T (2.28)

yn = y?(tn)+τn . (2.29)

Note that we can not expect an absolute tolerance in general. Since future sample points are calculated from
the current ones, the error accumulates over time.

There are many different integrators available. On the highest level they can be classified as either a Runge-
Kutta method or a multi-step method. DASSL belongs to the latter category. A nice introduction is provided by
Hairer, Nørsett & Wanner in [11].

2.2.2 – Backward difference formulae

A time integrator yields a discrete set of points. Therefore the notion of derivative is non-existent and we
need an approximation for it given this set of points. The method that is used by DASSL is an implicit backward
difference on k points. That is, the derivative is approximated by

ẏn ≈αyn + c1 yn−1 + . . .ck yn−k (2.30)

=αyn +β . (2.31)

The factors α,c1, . . . ,ck are chosen according to the step sizes in-between the various points. Since the scheme
is implicit, the values for yn and possibly for the time step h are yet unknown. This is stressed by setting them
apart. For example, the traditional backward Euler difference is given by k = 1,α= 1/h and c1 = 1/h. In general,
α is always some constant depending on k divided by the time step h. This is important later on when we
discuss the scaling of the matrix.

With the approximation of (2.31), the system (2.25) becomes

f (y,αy +βy , t ) =
 αx +βx − v

M(αv +βv )+ΦT
x λ̇−QA

Φy v +Φt

= 0 . (2.32)
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2.2. Time integrators 11

2.2.3 – DASSL

A very generic integrator is DASSL (Differential algebraic system solver). The development and maintenance
of this algorithm is led by L.R. Petzold who released it into the public domain in 1982 [17]. A full description
of the algorithm is available in her book [2]. This section contains merely an overview of the different steps it
takes. Moreover, we will not regard the initial time-steps.

The following steps are looped during the execution. Below this list is a more detailed explanation.

1. Choose order k and time-step size h

2. Set tn = tn−1 +h

3. Predictor: given {yn−1, yn−2, . . . , yn−k }, extrapolate to yn
0

4. Corrector: Try to solve for yn in f (yn ,αyn +β, tn) = 0 with Newton iterations
If failure: Go to step 1

5. Increment n

6. Go to step 1

The choice of the order and the time-step size in Step 1 depends on how well the previous time step per-
formed. When there is fast convergence, the time-step is increased and for poor or no convergence the time-
step is decreased. In Step 2 the time is increased. Note that the value for n stays unchanged until Step 5. Step 3
calculates the predictor yn

0 . This is an extrapolation from a polynomial on the last k points. In Step 4 the pre-
dictor is used as an initial guess for the Newton algorithm to solve the non-linear system. If this fails, the flow is
redirected to Step 1. If the Newton iteration succeeded, then the step number is incremented in Step 5 and the
new point yn becomes a part of the output.

{
yn-3

yn-2

yn-1

tn-2tn-3 tn-1 tn 

h

tn-4t1t0 = 0

yn

Polynomial extrapolation

Newton iteration

yny0

Figure 2.3: A graphical explanation of DASSL. In this example k is equal to three
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12 Chapter 2. Preliminaries

Newton iterations in Step 4

By far most of the computational resources are spent in Step 4. Therefore we will concentrate on this step in
the remainder of the thesis. That is not to say that there is nothing to gain by reviewing the other steps. See the
recommendations for further work in Section 6.3.

To perform Newton iterations, one needs the Jacobian of (2.32)

∂y f (y,αy +β, t ) =G ==
 αI −I 0
α∂x

[
M v̇ +ΦT

x λ̇−QA

]
∂vQA−α [M −∂v̇QA] ΦT

x

∂x (Φx v −Φt ) Φx 0

 . (2.33)

This Jacobian is scaled on some of the rows with a factor α−1. This improves the scale and condition of the
matrix and allows for faster LU-factorisation. In this thesis we will not consider the scaling of the matrix, but a
current outlook on it is given in the paper by Botasso e.a. [?]. We do, however call attention to the fact that this
scaling factor α−1 is dependent on the time-step size. This will return in Section 5.2.

The Newton method that DASSL uses is in fact an approximate Newton method called the simplified Newton
method. The simplification entails that the Jacobian is not recalculated every step but rather kept constant for
a number of steps. This is efficient since the LU-decomposition that is needed to solve for the Jacobian can
then be kept throughout. Details about this and other approximate methods are explained in Chapter 3. We
will define the concept of refresh cycle. These refresh cycles are the focus of this thesis and can be viewed as the
unit cell on which the research is based.

Definition 2.2. A refresh cycle in DASSL (or similar) is a subsequent series of time-steps for which the Jacobian is
kept constant. A (Jacobian) refresh is the act of re-assembling and refactoring the current Jacobian.

2.2.4 – Computational effort and simulation rate

For any numerical application we strive to minimise the effort the process takes. To quantify this, the effort
κ is usually expressed in the number of flops (floating point operations) or more practically in CPU time or wall-
clock time. The desired goal of a time integrator is to simulate a model as it advances trough time τ as a result of
the computational effort. Both of these quantities are non-decreasing, so they are suitable to be plotted against
one-another. We call this the time/effort-plot.

A convenient notion is the simulation rate of an integration process. We define this as the simulated time
divided by the effort it took to get there.

Definition 2.3. The global (or average) (simulation) rate of a time integrator is defined as

σ := τend

κtotal
. (2.34)

the local rate of a time integrator on the interval T = [τ1,τ2] is defined as

σT := τ2 −τ1

κ2 −κ1
. (2.35)

The above definition of local rate would suggest to take the limit τ2 → τ1 to obtain an instantaneous rate as
the effort-derivative of time. However, this limit is not defined because the sample points are discrete.

In this thesis, no absolute quantitative research on the computational effort is performed. Algorithms will
be compared to one-another. In other words, we set the unit-time and unit-effort as those for the current
algorithm (in Section 4.2). That way, the efficiency of changes and additions is calculated as a speed gain on the
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2.2. Time integrators 13

current algorithm. It is, however, important to note that a time-integrator is well capable of keeping track of its
own computational effort. This means that an integrator can be designed to adjust its parameters accordingly
(see Section 4.3)

See Figure 2.4 for a schematic time/effort-plot of DASSL.
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Figure 2.4: A schematic view of how the simulated time progresses as a function of the computational effort. The
factorisation and integration are alternated. One refresh cycle consists of the factorisation and the subsequent
time integration together. The drawing is not to scale.
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Chapter 3 – Newton methods

“Can’t repeat the past? . . . Why of course you can!”
F.S. FITZGERALD

THE GREAT GATSBY (1922)

Overview

This chapter defines our framework for approximate Newton methods after a short introduction of the exact
Newton method. The framework consists of methods in which the solution of the Jacobian system is approx-
imated by approximating the matrix, simplifying the solving algorithm or both. From the framework follow
three approximate methods: Simplified (as used currently), simplified with dropped-LU (SDLU, defined below)
and truncated Krylov iterations.

The convergence speed (counted in Newton steps) of such approximated methods is given by the contrac-
tion factor of the process. This contraction is estimated by the spectral radius of the approximate Newton-
function when applied to a linear problem.

Finally numerical results are provided. From this it follows that the contraction rates of SDLU and Krylov are
respectively worse and better. Krylov shows exceptional performance for the irregular model.

3.1 – The exact Newton method

The Newton-Raphson method, or just Newton method, is a means to find a root y? of a differentiable vector-
valued function f : Rn →Rn . It is based on the expectation that a function is well enough approximated by its
linearisation and thus that the root of the linearisation is close to the root of the function itself. Repeating the
act of finding this root gives rise to an iterative process of the following form

yk+1 = yk −G(yk )−1 f (yk ) , (3.1)

with G(y) := ∂y f (y) the Jacobian in point y . See Figure 3.1 for sparsity plots of the Jacobians of the three test
models.

For sufficiently smooth functions, this process is guaranteed to find a root given that the initial guess is close
enough. That is, there exists an open set around y? such that a Newton process starting from within this set is
guaranteed to converge to y?. Moreover, the convergence is quadratic. That is

‖yk+1 − y?‖ ≤C‖yk − y?‖2 . (3.2)

In practical applications, one never makes use of the inverse G−1. Instead, we solve Gz = f by two backward

15
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Figure 3.1: Sparsity plots of the Jacobian for the three test models.

substitutions via the LU-decomposition G = LU .

factorise: G = LU (3.3)

solve: Ls = f (3.4)

solve: Uz = s . (3.5)

Throughout the thesis the notation G−1 will be used as shorthand for these backward substitutions.

3.2 – Approximate Newton methods

The Newton method as presented above has two major downsides: one, dependence on the quality of the
initial guess, and two, numerical effort. The first of these is not regarded in this thesis. We assume the initial
guess to be close enough to the root for the Newton method to achieve quadratic convergence. This assumption
is justified by the fact that DASSL decreases the time step if the corrector loop fails to converge. The second
downside stems from the fact that in in full Newton the Jacobian matrix G needs to be assembled and factorised
at every step. This is usually a prohibitive computational expense. This leads to a class of approximate Newton
methods that aim to mitigate this expense. A large number of approximate Newton methods is provided by
Deuflhard in [6].

We will consider iteration functions in this general form

yk+1 =µ(yk ) = yk −G−1(yk ; f ) . (3.6)

Where G−1 is a general operator acting on yk that is dependent on the function f . Given the Banach contraction
theorem (see Appendix A), we have a lot of leeway in choosing this mapping. It is sufficient if the fixed point of
µ is equal to y? and if µ is a contraction.

1. G−1(y?; f ) = 0

2. ρ
(
∂yµ(y)

)< 1

The second of these is troublesome. For differentiable functions it is easy to check whether or not they are a
contraction, but in general we do not know enough about the operator G−1, or even about the function f , to as-
certain facts about the derivative even if it exists. In Section 3.3 we sidestep this issue by a linear approximation
which still offers a consistent estimate of the convergence speed.
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3.2. Approximate Newton methods 17

In this thesis we look for operators G−1(y ; f ) that aim to approximate G−1 f . Heuristically, one can think of
G−1 as an algorithm. In the next section, we will consider two distinct approaches in approximating the solution
of such a system.

Lastly we remark that the convergence speed is no longer quadratic but linear for these approximate Newton
methods (see Deuflhard [6]). That is

‖yk+1 − y?‖ =C‖yk+1 − y?‖ . (3.7)

Nonetheless, the solution y? is found by an approximate method equally well as by the exact Newton method.
The fact that the system’s solutions are being approximated does not affect the accuracy of the final solution,
just the path towards it (see Figure 3.2).

Figure 3.2: Two Newton paths to the same solution. The blue path takes three iterations, the purple one takes
six. The purple method is faster if the speed gain on the iterations is more than a factor two compared to the
blue method. The achieved tolerance (as a red circle) is independent of the path that was taken.

3.2.1 – Approximating a linear system

The operator G−1 is a means to approximate the solution of G y = f . Depending on the problem, one can
think of many ways to make such an approximate solution. We will identify methods based on two options.

1. Matrix approximation: Solve for an approximation of G rather than the correct one.
We will denote a matrix approximation by an over-set tilde: G̃ . In this case the operator is simply a back-
ward substitution: G−1 = G̃−1

2. Solving approximation: Simplify the solving method.

We shall refer to the errors that arise from these approximation as the matrix error and solving error re-
spectively. The methods can be used independently so there are four combinations possible. They can be
conveniently laid out like in Table 3.1. In discussing the various Newton approximations below, we will refer to
their place in this table.

Either option of the two contains a few methods. Before we give a more detailed definitions and test results,
for both options short lists are given that describe the main ideas for each method.

Matrix approximation

• Use a dated matrix:
This method is suitable for applications in which a series of slowly changing systems is solved. This is an
obvious feature of the Newton method.

• Structural simplification:
In some cases, one can approximate a matrix well with a structural simplification. For example by using

Eindhoven University of Technology & LMS International



18 Chapter 3. Newton methods

Exact matrix Approx. matrix

Exact solution 1 2

Approx. solution 3 4

Table 3.1: Four options to approximate the solution of a linear system. This table appears more elaborate in
Figure 3.4.

just a diagonal matrix (which means that the system is nearly decoupled already) or by averaging out
small blocks to single elements.

• Low rank approximation:
When the distribution of eigenvalues (or singular values) of a matrix is skew, then most of its behaviour is
driven by the largest eigenvalues.

In our application, by far the best matrix approximation has proved to be the usage of a dated matrix.
A structural simplification, like lumping or domain decomposition, is usually suitable for discretisation-type
problems. For general multibody applications, no such simplifications were found. The low rank approxima-
tion was experimented with but then quickly discarded due to the fact that over 30% of the singular values were
needed to give an approximation that can compete with the dated matrix. Besides the relatively poor quality of
the other matrix approximation is the fact that the computational overhead for them is far bigger than for the
dated matrix. Therefore we will consider no other option than this.

Solution approximation

• A truncated iterative solver:
Iterative solvers repeat a process that improves a certain initial guess at every step. If the method is mono-
tone we are assured of an approximate solution that is at least as good as the initial guess after a finite,
fixed number of steps.

• Inexact decomposition:
Instead of performing a full LU-decomposition to solve the system, an inaccurate one can be used. By this
we mean obtaining two matrices L̃ and Ũ such that G ≈ L̃Ũ . The benefit of this approach is found in one
or both of the following reasons: one, the process of factoring might be cheaper, and two, the process of
the backward substitution might be cheaper.
The most well-known one is the incomplete-LU decomposition (ILU). An alternative, described below, is
what we will call the dropped-LU (DLU) decomposition.

Of the solution approximations we will first consider the truncated iterative solver. For generic linear sys-
tems, the prime choice for an iterative solver is a Krylov-subspace method. An introduction can be found in the
standard reference by Y. Saad [19].

T.R.T. Nijhuis



3.2. Approximate Newton methods 19

Definition 3.1. Dropping is the act of ignoring small, off-diagonal elements in a matrix. For a given drop-
parameter δ ∈ [0,1], every matrix slot {i j } gets ignored if and only if

[
|Ai j | < δ max

1≤k≤n
|Ai k |

]
∧ [

i 6= j
]

. (3.8)

The choice to compare with the largest element in a row as opposed to a column is arbitrary. However, in
applications with more specific matrix characteristics (like symmetry or diagonal dominance) it is worth it to
make a more systematic choice on which elements to drop.

When we perform dropping on the triangular matrices L and U from the exact LU-decomposition to obtain
L̃δ and Ũδ. This is called the dropped-LU factorisation (DLU). The benefit of dropping is the fact that fewer
nonzero values are used for the backward substitution. Hence the solver will perform faster. The computational
cost of the backward substitution is linear in the number of nonzero values, so if a fraction φ of the values
remains, the substitution will be 1/φ times faster. See Figure 3.3 for nonzero-plots of a typical triangular matrix
and the dropped version of it.

(a) L and U

(b) Lδ and Uδ, about one third of the original non-zeros are maintained.

Figure 3.3: Sparsity plots of L,U and Lδ,Uδ.

Note on implementation: We deliberately use the word ignore. This reflects the implementation of using
a boolean list alongside the row/column-pointers that state whether or not this value is contained within the
dropped variant of the matrix. Dropping is also known as ILU-threshold or ILUT (see Saad [20]). In this thesis,
however, we choose to use the terminology of dropping and ignoring to stress that the original LU-factors are
not discarded. Rather we see the matrices L̃δ and Ũδ as a byproduct of creating L and U .
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20 Chapter 3. Newton methods

3.2.2 – Approximate Newton methods

Simplified Newton

Approximation nature A dated Jacobian G0 and
exact LU

Justification Slow change in the Jacobian
Computational effort per step Two major backward substitutions

Overhead computational effort Occasional LU-factorisations
Parameters none

This method is the one currently used in DASSL. It is a matrix approximation with G̃ =G0 = LU

Simplified Newton with dropped LU (SDLU)

Approximation nature A dated Jacobian G0 and
DLU

Justification Slow change in the Jacobian
A very skew distribution of values in L and U

Computational effort per step Two minor backward substitutions
Overhead computational effort Occasional LU-factorisations and

comparing row elements in the factorisation
Parameters δ, the drop tolerance

Instead of using the exact LU-decomposition, we use the dropped version DLU. This will introduce extra
inaccuracies in the Newton path, but the steps are calculated faster. It is a matrix approximation with G̃ = LδUδ

Approximate Newton with a truncated Krylov solver

Approximation nature An exact Jacobian and
a truncated Krylov solver

Justification The availability of an excellent preconditioner and initial guess
Computational effort per step Assembling the Jacobian and

performing a fixed number of Krylov iterations
Overhead computational effort Refreshing the preconditioner

Parameters n, the number of iteration steps

As opposed to the two methods above, this is a solution approximation. In this discussion the nature of
the Krylov solver is intentionally kept generic but details about different Krylov subspace methods are found in
[19]. A typical choice is GMRES (which is used for the numerical results in this thesis), but for specific Jacobian
matrices there might be better options. We will denote the action of the truncated Krylov solver as K −1

n , with
the subscript n indicating the number of Krylov steps. One might want to consider restarting the iteration, but
as it turns out later a single iteration is already enough so restarting is not needed.

As stressed by [19], Krylov subspace methods are incredibly dependent of a suitable preconditioner and,
to a lesser extent, a suitable initial guess. A preconditioner P is a matrix that resembles G in some way and
that is easy to invert. Note that these requirements are contradictory. Now, the main idea, leading to the three-
phase cycle in Chapter 4, is the insight that an old Jacobian might very well be a fine preconditioner even if it
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3.2. Approximate Newton methods 21

is no longer suitable as a solver. It clearly resembles G since it is used successfully as a substitute of G in the
simplified method and it is easily invertible if we have the LU-factors calculated beforehand.

A potential downside of Krylov methods is the fact that the matrix needs to be assembled at every step.
Even though it is not factorised, the assembly might still take up considerable time that needs to be accounted
for in the analysis of the speed gain. In our application, however, the matrix assembly takes negligible time.
This is due to the fact that the Jacobian is assembled from differentiation rules in a look-up table for which no
calculation is required.

Finally, we refer to the integrator DASPK as introduced by Brown, Hindmarsh and Petzold [3]. This is an
integrator like DASSL that employs Krylov methods for solving the system. It is not a truncated Krylov solver, but
can nonetheless offer a great deal of background on how to implement a truncated solver within DASSL.

Map of Newton methods

The succinct schematic overview of Table 3.1 can be expanded to include the matrix- and solving-error. See
Figure 3.4 for a more detailed schematic of the various Newton methods with their place in the approximation
landscape.

Jacobian accuracy
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Figure 3.4: The four Newton methods indicated in the approximation landscape. Full Newton approximates
neither the matrix nor the solution. The other three methods approximate one or both. The degree of approxi-
mation is controlled by the various parameters for the methods (indicated by the small axes within the blocks).
Lastly, the total error (matrix plus solution) is indicated by the diagonals.
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22 Chapter 3. Newton methods

3.3 – Convergence speed

To estimate the convergence speed, we will use the contraction factor of the iterative process. The contrac-
tion factor κ is the rate at which the distance between successive iterates is expected to decline (or the distance
to the solution). For approximate Newton methods we have linear convergence, so the contraction looks like

‖yn+1 − yn‖ ≤ κ‖yn − yn−1‖ ∀n , (3.9)

with κ ∈ (0,1). See also Appendix A

3.3.1 – Estimates for the contraction factor

We consider the following two estimates for the contraction factor:

1. Theoretical estimate: The spectral radius of I −G−1G .

2. Experimental results: The rate at which ‖yk+1 − yk‖ decreases.

The first one, the spectral radius, is proposed by Brenan e.a. [2]. We shall denote the spectral radius of a
matrix A with ρ(A). The term G−1G is a matrix that is assembled by applying G−1 to the columns of G . This
figure is the contraction factor for a linear problem if the Newton method uses the approximate solution G−1 f
instead of G−1 f . Hence it is a sensible choice to use this method to compare the approximate Newton process
to the exact process. Remark, however, that the function x → ρ

(
I −x−1G

)
is not a matrix norm. We discard the

theoretical advantages of using a proper norm in favour of the practical viewpoint that we can readily equate
this spectral radius with the expected convergence speed of the Newton-process.

This spectral radius estimate for the true contraction factor κ is obtained from the derivative of the iterating
function as follows

yk+1 = yk −G−1 f (yk ) =µ(yk ) (3.10)

⇒ κ≤ ρ
(
∂µ(y)

∂y

)
, (3.11)

then

κ≤ ρ
(

I −G−1G − ∂G−1

∂y
f

)
. (3.12)

Now ∂G−1
∂y is a troubling term. It is a Hessian-like tensor (of size n ×n ×n) with the second order effects. Indeed,

the exact version (G−1 instead of G−1) relates to the Hessian H as follows:

∂G−1

∂y
=−G−1 ∂G

∂y
G−1 (3.13)

=−G−1HG−1 . (3.14)

This Hessian is definitely not readily available like the Jacobian. Moreover, for various choices of G−1, we cannot
even be sure that this derivative exists. This is the reason that (like Brenan e.a. [2]) we approximate by using a
linear version of the problem. That means that H ≡ 0 and we choose ∂yG

−1 ≡ 0 as well. Now, we finally get the
spectral radius estimate as

ρ
(
I −G−1G

)
. (3.15)
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Figure 3.5: A geometrical interpretation of the meaning of the spectral radius ρ. The function (indicated locally
in blue) has a gradient is equal to G , approximated by G̃ . The distance between ‖yn+1− ỹn+1‖ is at most ρ times
‖yn − yn+1‖ = ‖zn‖.

A geometric interpretation in one dimension of this spectral radius is given in Figure 3.5
The second of the two estimates mentioned above, the experimental value, follows from (3.9). It is calcu-

lated in DASSL as follows

r =
(‖yi+1 − yi‖
‖y1 − y0‖

)1/m

. (3.16)

This figure is purely experimental and cheaply computed during time integration. We can, however, not use it
as a comparison base since the algorithm needs to be implemented to obtain it.

3.3.2 – Numerical results

First, the two approximations for the contraction rate are compared. That is, the spectral radius ρ and the
experimental value r . The plots are shown in Figure 3.6 for the three test models. Note that the spectral radius
is an underestimation of the spectral radius estimate, save for some exceptions. The plots show individual
refresh cycles by virtue of the contraction factor (the error, if you will) starting out very small and then slowly
rising. DASSL rejects a Jacobian once the experimental contraction rate exceeds the hard-coded threshold 0.9.
For the chain model both the spectral radius and the experimental result are very chaotic. Only 150 time steps
are plotted1 but already many refreshes take place. The error is not nearly as monotone as for the smoother
models. Lastly note the initialisation phase in the first 60-odd time steps.

Now we will compare SDLU with the simplified method. As mentioned, due to the lack of implementation we
will only compare the spectral radius ρ and no longer the experimental value r . The plots for SDLU with various
drop tolerances are shown in Figure 3.7. The error of SDLU is indeed higher than the error of the simplified
method (in dashed blue. LU equals SDLU with δ = 1). Again, the chain model shows unexpected results. For
example: at the refresh cycle starting at time step 60 the smaller drop tolerance has a larger error. Finally, note
that the drop tolerance is chosen such that the error of SDLU is roughly similar on all models. To accomplish
this, wildly varying values had to be chosen for the different models. As of yet, the reason for this is not found

1due to computational restrictions, not more time steps were analysed
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Figure 3.6: The spectral radius and the experimental contraction for the three models respectively.
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since no research has been performed to understand the characteristics of the matrices L and U for various
models.

Finally, the Krylov iterations are compared with the simplified method. In this project we have chosen to
use the Krylov method GMRES as implemented in Matlab2. This is a generic solver and it is a sensible choice for
a preliminary analysis of the usefulness of Krylov methods. For a single Krylov iteration of GMRES the spectral
radius, ρ

(
I −K −1

n G
)
, is plotted in Figure 3.8. It is once more stressed that the matrix K −1

n G is obtained by
applying K −1

n to each of the columns of G . As expected the error of the Krylov iteration is lower than the
error of the original simplified method. It is very noteworthy that the reduction in error is more profound
for the chain model than for the other two models. To understand this, we refer back to the nature of the
simplified method, versus the nature of the Krylov approximation (see Figure 3.4): The simplified method has
no recent information whereas the Krylov approximation does use the most recent matrix. Apparently for the
fast-changing model of the chain, the more recent data in the Krylov method gives a great advantage over the
simplified method.

A single Krylov iteration can be regarded as an update of the solution of the dated system along the one-
dimensional Krylov space that is spanned by the residual of the current system.

3.4 – Observations and conclusions

We have investigated three approximate Newton methods that fall within the approximation framework.
The simplified method with dropped-LU can be seen as a quick but inaccurate variant of the regular simpli-
fied method and the truncated Krylov method, on the other hand, is a slower method that incorporates recent
information from the Jacobian as opposed to the dated information in the other two methods.

Choosing the drop-parameter for SDLU is somewhat of a conundrum. Its value seems highly model depen-
dent and can vary about nine orders of magnitude. For now, sensible values are found via trial and error.

Krylov is a slower but more accurate method. The results for single iteration with the dated Jacobian as
preconditioner already show good results. It keeps on performing well after the original cycle ends. Krylov
shows great potential for models that change quickly due to the fact that they are not very smooth. The original
simplified method needs to use very small refresh cycles (sometimes of just a single step) to accommodate to
the rapidly changing Jacobian. The Krylov method incorporates more of the new information and outperforms
the simplified method by about two orders of magnitude.

2the function gmres in Matlab R2012b
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Figure 3.7: The spectral radius for the DLU. In dashed blue the spectral radius for full LU is plotted as well for
comparison.
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Figure 3.8: The spectral radius for the Krylov method compared to the simplified method.
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Chapter 4 – Refresh cycles

“Now is no time to think of what you do not have. Think of
what you can do with what there is.”

E. HEMMINGWAY

THE OLD MAN AND THE SEA (1952)

Overview

From the results in the previous section we derive the concept of the multi-phase cycle, a refresh cycle that
is traversed by the SDLU method, the simplified method and the truncated Krylov iterations in that order. The
motivation is the roughly monotone behaviour of the spectral radius during a cycle.

Since the goal is to compare the new methods with the current one, the speed gain is analysed as a factor of
the current speed. To that end, the current average speed per Newton cycle is scaled to one.

The speed gain is estimated via two chief values: the expected length and the expected speed of each phase.
The length is estimated by assuming that a phase ends when its spectral radius hits a certain threshold value
and the speed is estimated from the speed per Newton step and the expected number of Newton steps.

Results are provided that are favourable for the first two phases. Phase one and two adhere to the philosophy
only adding aspects that improve the efficiency. For the third phase, no final result is reached since there is no
quantified data on the cost of the factorisation process. Moreover, Krylov is not guaranteed to improve the
efficiency. Nonetheless, the outlook is promising.

The chapter ends with an outline on how to design the time-integrator such that it automatically chooses
the optimal parameters (the drop tolerance for SDLU and the decision whether or not to include the Krylov-
phase).

4.1 – The multi-phase cycle

In Chapter 2 the concept of refresh cycle was introduced. We observed, for some models, a nearly monotonously
increasing Jacobian-error during a refresh cycle. Furthermore, we have seen in Chapter 3 that the integrator
uses a modified Newton method known as the simplified Newton method. We introduced two new methods
(SDLU and truncated Krylov) and compared these with the simplified method.

In this chapter we propose a novel approach, namely switching from one Newton method to another within
a refresh cycle. This way, we strive to benefit from various aspects of the different methods at various moments
in the refresh cycle. The goal is twofold: one, we aim to speed up the cycle, and two, we aim to increase its
life-time.

The speed-up can be gained in the beginning of the cycle when the error is still small. This is motivated
heuristically by the idea that we spend too much time on solving easy Newton iterations. We expect to be able
to make do with the faster, but less accurate, SDLU. Formally, we will justify this by comparing the speed gain we

29
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get from the faster iteration steps to the speed loss we suffer from the longer Newton path. The increased life-
time can be achieved by succeeding the simplified method with the Krylov-method. In the overall process an
increased life-time will result in fewer factorisations and thus in less time spent on the expensive factorisation
algorithm. It is formally justified by comparing the cost of the LU-factorisation to the speed that is lost on the
Krylov iterations.

These observations suggest the following three-phase cycle: Start with SDLU; when this fails, fall back to
the regular simplified method; when this fails, do not refactorise immediately but append the cycle with Krylov
iterations. Figure 4.1 gives a simple interpretation of the original single-phase cycle and the three-phased cycle
on a time-line of simulated time.

Single-phase

Three-phase

Simplified

SDLU Simplified Krylov

LU-factorisation SDLU fails Simplified fails
Original cycle ends

Krylov fails
Extended cycle ends

Figure 4.1: A simple graphical interpretation of the three phase cycle as proposed.

We can compare this three-phase cycle with the single-phase in the diagram of Figure 3.4. During a cycle,
the integrator follows a path through this diagram. For both the single-phase and the three-phase cycle, this
path is indicated in Figure 4.2. Note that the path for the current single-phase process, in blue, only traverses the
simplified method. The path for the three-phase cycle, in red, crosses all three of the approximate methods. As
a result, the total error (indicated by the diagonals) is expected to be better contained within a small bandwidth.

To analyse the expected speed gain, we start by considering the error of the various approximate meth-
ods. In Figure 3.7 and Figure 3.8 the spectral radii for the simplified method, SDLU, and Krylov were indicated.
Figure 4.3 contains a sketch of the error of all three methods in a single refresh cycle. This sketch is only viable
for the smooth models and not for the chain model since it does not show the monotone behaviour. Note how
in this sketch the Krylov method is extended until after the simplified method fails. This indicates how far it can
extend the cycle length. The plot indeed shows the error to be better contained within a certain bandwidth.

4.2 – Estimating the speed gain

The difference in speed between the single-phase and three-phase processes will be derived as a scale fac-
tor compared with the current single-phase process. First we identify the factors that contribute to the speed
gain. In accordance with Section 2.2.4 the average computational efforts for various processes in the cycle will
be denoted by κ and the resulting increase in simulated time with τ. The simulation rate is indicated by σ.
Moreover, as scaled unit-time and unit-effort we choose the average over a single-phase cycle without the LU-
factorisation. The other relevant factors will then be a multiple of these. All these values are annotated in the
time/effort-plots of Figure 4.4.

All these values can be readily estimated from the results of Chapter 3. We start by estimating the values
for τ, that is the duration of the approximate method in simulated time. DASSL discards a Newton process
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Figure 4.2: The diagram from Figure 3.4 with the path for the single-phase cycle in blue and the path for the
three-phase in red. The dashed purple line indicates the refresh-threshold taken from the single-phase process.
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Figure 4.3: A sketch of the error in the original single-phase cycle (left) and the expected error in the three-phase
cycle. Note how the total error is more constant during a cycle.

if the experimental contraction factor exceeds 0.9 [17, 18]. To predict when a method fails, we can therefore
mirror this with the spectral radius by deeming the process to have failed when the spectral radius exceeds some
hard-coded threshold. This seems, however, not very robust. We can gather from Figure 3.6 that this supposed
threshold for the spectral radius is not easily pointed out: Sometimes the process fails already at ρ equal to 0.5
and sometimes it even exceeds 1. Instead of a hard-coded threshold, we will use the final spectral radius of the
simplified method to capture this dynamic behaviour. In Figure 4.3 this refresh-threshold is already indicated
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and τ an interval of simulated time. σ is the slope ∆τ
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in dashed blue.
For the chain model, however, this method can not be relied upon. The estimate of when a method breaks

down is used under the assumption that the spectral radius is non-decreasing. As evidenced by Figure 3.6 this
is not the case for the chain. On a related note, the aforementioned threshold of 0.9 for DASSL also might need
to be revisited for models like these (see Section 6.3 for suggestions for future research).

Then we estimate the values for σ, the speed of the various Newton methods per time-step. These are
determined by two numbers: the number of Newton iterations and the cost of one such iteration. The number
of iterations that are needed for an alternative process will be estimated from the number that was needed
for the current method. We propose three methods to do this. The first with a theoretical motivation and the
second and third with an experimental motivation.

• Match the total contraction:
The total contraction of a mapping with contraction rate ρ after m steps is ρm . Thus given that a certain
method with spectral radius ρ1 converges in m1 steps, then an alternative process with spectral radius ρ2

will convergence in m2 steps such that

ρ1
m1 = ρ2

m2 (4.1)

⇒ m2 = logρ1

logρ2
m1 . (4.2)

• The worst-observed-case bound:
Given an alternative process with spectral radius ρ2, then we expect this method to take as many steps as
the maximum of steps that were needed by the original method for a spectral radius smaller or equal to
ρ2. That is

m2 = max{m1 | for all time-steps where ρ1 ≤ ρ2} . (4.3)

• The nearest-observed-case:
Given an alternative process with spectral radius ρ2, then we expect this method to take as many steps
as the number of steps that were needed by the original method for the nearest time step with a spectral
radius larger or equal to ρ2.

The downside of the first method is the fact that the values for m are integer. For Newton processes with more
iterations, this distinction gets increasingly less important. But for our application only a handful of iterations
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are used. Then the act of rounding m up to an integer seriously exaggerates the required contraction when
ρ1 is small. This method proved unsuitable for predicting the number of iterations required for the current
method for which we can verify the prediction. The second method is an experimental worst-case bound. In
Figure 4.5 the number of iterations as a function of the spectral radius is indicated together with the theoretical
contraction-matching and the worst-case bound. It shows indeed that the experimental values (blue dots in
the plot) do not coincide with one single level curve for constant ρm (dashed red). Especially for m equal to 1
or 2 the required contraction is exaggerated. In addition, note that some time steps occur that use no Newton
step at all, regardless of ρ. These steps correspond with the initial phase where the time step is so small that
the polynomial extrapolation of the estimator in DASSL already yields a sufficient result for the next time step.
The third method is maybe too lenient. For the methods tested in this thesis, it almost always gave the same
number of Newton iterations as the original method. It will not be investigated further.
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Figure 4.5: The blue dots are a scatter plot of m versus ρ, in dotted red some of the theoretical level curves where
ρm is constant are indicated, and in heavier dashed red the experimental worst-case scenario is indicated.

Besides the number of Newton iterations, the speed per iteration is also needed. For SDLU, this iteration
speed factor is equal to the reciprocal sparsity of the dropped matrices (see definition 3.1) and for Krylov every
iteration is deemed about as expensive as one backward substitution. So a single-iteration Krylov approxima-
tion is twice as expensive as the original simplified method.

Finally, the values for κ are calculated by the division σ
τ . Then the total simulation rate, including the LU-

factorisation, for a three-phase cycle is calculated by

σ3-phase =
1+τk

κLU +κs + (1−τs)+κk
, (4.4)

compared to the rate for the current single-phase process:

σ1-phase =
1

κLU +1
. (4.5)

The addition of SDLU as phase 1 always improves the simulation rate of the solver because it makes a fraction
of the time steps faster. For Krylov, however, we are not assured of a speed gain larger than one on the time-
steps. In fact, the Krylov phase is expected to be slower than the regular simplified process. Recall that the gain
from appending Krylov stems from the fact that fewer matrix factorisations will be necessary if the refresh cycles
are longer. This means that some work needs to be done (preferably during run-time, see below in Section 4.3)
to verify whether or not appending a Krylov phase is indeed a good idea. See Figure 4.6 for time/effort sketches
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that clarify the efficiency of Krylov addition. Notice that the case in which it is favourable, a relatively long time
is spent in the factorisation of the matrix. As observed in the previous chapter, Krylov indeed seems favourable
for models that have short refresh cycles.
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Figure 4.6: T/E-diagrams of a situation in which it is favourable to use the third phase (on the left) and one in
which it is not. The overall speed of a cycle with its factorisation is indicated by the slope of the dashed line.

4.2.1 – Results for SDLU

We begin the analysis by only considering the first two phases in the three-phase cycle. The third phase,
Krylov iterations, will be discussed shortly after in Section 4.2.2. The speed gain on the first two phases due to
the addition of SDLU is calculated by finding the reduction of the effort that is needed for these phases via

κphase 1,2 = κs + (1−τs) (4.6)

= τs

σs
+ (1−τs) , (4.7)

which is a weighted average of the effort of SDLU and simplified.

The speed τ of the Newton steps in phase 1 and 2 is indicated in Figure 4.7. This plot shows the speed
gain per Newton step. Note that the speed gain in cycles (whose bounds are given by the dashed vertical lines)
reduces to one. This is where the first phase ends. Moreover, a larger value of δ does not necessarily respond
with a greater speed gain. Often the effect is diminished by the increase in Newton steps (calculated via the
worst-observed-case bound).

The drop tolerance needs to be chosen such that this speed gain is maximal. A higher drop tolerance results
in faster backward substitution but also in a shorter length of the SDLU-phase and in an increase in Newton
iterations. These three effects are mostly monotone. Therefore, the speed gain as function of the drop tolerance
is roughly unimodal1 and thus has a single global maximum. See Figure 4.8 for the speed gain plotted as a
function of the drop-tolerance2. There is an optimum for δ between 0.05 and 0.15. In this case, the graph is not
very steep in the neighbourhood of this optimum. That suggests that not too much effort needs to be put in
fine-tuning δ.

Down below, in Section 4.3, it is discussed how this optimum can be found automatically during execution
of the solver. For the results presented here, it is found a-posteriori by a simple interval search.

1A function is unimodal if it is increasing on the left of the global maximum and decreasing on the right.
2This plot was only made for the small gimbal model due to the extensive calculations that are needed to obtain it.
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Figure 4.7: The speed gain on cycles 1 and 2. The dashed vertical lines bound the refresh cycles. The chain
model is omitted since the assumption of cyclically increasing error does not hold.

4.2.2 – Results for Krylov

Since the Krylov solver is not yet implemented, as opposed to the LU backward substitution, we cannot
properly address the speed of it compared to the backward substitution. In this preliminary analysis, we use
the fair assumption that one Krylov iteration is as expensive as a backward substitution. That means that each
Newton step is half as fast with Krylov as it is with full-LU. Given that the quantities are scaled such that the
speed of LU is equal to 1. We have for the Krylov process a Newton-step speed of 1

2 . To obtain the speed per time-
step, this value is multiplied by the ratio of Newton steps from the worst-observed-case bound. We consider the
time lost on assembling the matrix at every time-step negligible (see Section 3.2.2). This is a fair assumption in
our case, but in general it needs to be checked.

The remainder of the analysis of the Krylov-phase largely follows the format that was used for SDLU: First
estimate the length of the phase by searching for the moment after the cycle that the spectral radius for Krylov
exceeds the threshold; then use the worst case bound to obtain a ratio in Newton steps in phase three; finally
the speed of phase 3 is obtained by the multiplication of the two.
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Figure 4.8: The average speed gain on phase 1 and 2 for various drop tolerances on the gimbal model.

The krylov phase appears after the simplified-phase ends. That is, when the regular single-phase imple-
mentation decides to start a new cycle. To obtain a measure of when the Krylov-phase is expected to end, we
compare once again the error of this phase with the threshold value that is obtained from the very last error for
the simplified method (recall Figure 4.3). To get a sense of the behaviour after the the simplified phase, the error
of the Krylov approximation is plot in Figure 4.10 well beyond the cycle into the next cycle. Again, this analysis
is omitted for the chain model since it hinges on the assumption of monotone error. Let it be stressed, though,
that the fact that the estimates break down for this model does not imply that the model will not benefit from
the additions. In fact, we have already seen in Section 3.3.2 that the Krylov process is appealing for models like
these.

In Figure 4.9 the distribution of the length of the third phase is given. In accordance with the scaling, the
length is expressed as a fraction of the original single-phase cycle. Note that the Krylov phase often succeeds
better in adding more cycle length for the ATV model than for the Gimbal model. This once again reflects the
fact that Krylov is more successful if the problem is more challenging. On average for both models, the Krylov
phase is expected to last almost as long as the original cycle. This means that the number of LU-factorisations
would be reduced by almost half.

The expected length of the Krylov phase is one part of the speed analysis. The other is to compensate for the
difference in the number of Newton steps. For this the worst-observed-case bound is used once again. Similar
to the plots of Figure 4.7 the plots for the Krylov-phase are shown in Figure 4.11. Note that now the speed gain
drops below one whenever the Krylov phase is active. On average, the speed of the Krylov iterations is about
0.28 for the ATV model and 0.38 for the gimbal.

4.2.3 – Results for the complete three-phase cycle

As mentioned, due to insufficient data on the cost of the LU-factorisation, we are unable to give a single
figure that indicates the speed gain on the three phase cycle. Nonetheless, the results that were obtained in
Section 4.2.1 and Section 4.2.2 can be collected to obtain an overview in Table 4.1. This figures indicate an av-
erage speed gain on the various phases of the three-phase cycle. The first column contains the speed gain that
can be expected when only phase 1 and 2 are implemented. This option does not affect the cycle length, so the
data on the cost of the LU-factorisation is unnecessary there. When the third phase is implemented as well, the
cycle length is extended by the factor indicated in the second column. During this extended period, however,
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Figure 4.9: A histogram showing the distribution of the additional cycle length that is gained by the Krylov
phase. The length is expressed as a fraction of the length of the original cycle.

the speed of the Newton iterations drops by the factor indicated in the third column. On average, during the
whole three-phase cycle, the speed of the Newton iterations is indicated by the total speed gain indicated in the
fourth column.

Gain on phase 1&2: Length of phase 1,2,3: Gain on phase 3: Total speed gain:
κs + (1−τs) τ σk σ

ATV 1.54 1.97 0.28 0.92
Gimbal 3.51 1.98 0.38 1.95

Table 4.1: Averages of all the results from this chapter. The total speed gain is only on the Newton iterations. It
does not incorporate the decrease in required LU-factorisations.

It is probably fair to assume that the gimbal model is too easy, and thus the speed gain of 1.95 can not be
relied upon to mirror any real world models. The speed gain of 0.92 on the ATV model is very promising: we
trade off 8% of speed on the Newton iterations for a reduction of almost 50% (that is 1/1.98) of LU-factorisations.
Again, for deciding whether or not this is favourable, data on the cost of the LU factorisation is needed. But for
this model, if the integrator spends more than about 7% of the time on factorising, then it is already beneficial
to include phase 3.

If phase three proves not to be beneficial, we are assured of a speed gain of 54% on the newton iterations
of ATV model (and 251% on the gimbal model) if just phase 1 is implemented before the current single-phase
method.

Finally we remark that the analysis to decide on whether or not to include Newton iterations might just as
well be applied to decide whether or not to include phase 2 after phase 1. It might, after all, very well be the
case that just phase 1 provides the biggest speed up and that even the inclusion of phase 2 slows the process
down. At this moment, we leave this just as a remark for two reasons: firstly, there are again no sufficient data
on the cost of the LU-factorisation to asses this, and secondly, discarding the second phase, which is the original
method of DASSL, does not adhere to the intention of keeping the program such that it can always fall back on
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Figure 4.10: The error of the Krylov process (in red). It is extended until after the original cycle (in dashed red).

the current solution mentioned in the goals (Section 1.2).

4.3 – Parameter decisions

With the three-phase cycle two new parameters are introduced: the drop tolerance for SDLU and the de-
cision whether or not to include the Krylov phase. We could opt to have the end-user submit these choices
manually, but a preferably solution is one in which the integrator itself decides on them. There are two main
ways to consider: on the fly during runtime and a-posteriori after a complete integration. The first option, on
the fly, is the quicker one of the two. The idea for this optimisation is to constantly monitor the simulation
rate σ for different parts of the refresh cycle and to adjust the new parameters such that σ is maximised. The
second option would be a automated variant of the work above in Section 4.2. That means that a simulation
is ran once without the additional solvers and then some post-processing is performed to set the parameters.
As mentioned in the introduction (Section 1.2) some models need to be evaluated many times. This is a viable
option for them.
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Figure 4.11: The speed gain on the third phase.

4.3.1 – On the fly

To optimise δwe assume that the speed gain is roughly a unimodal function of δ like in Figure 4.8. Then the
optimal value is quickly enough approximated by an interval search. For the optimal δwe only need to monitor
the speed of the first and second phase of the cycle, that is:

σ12 = 1

κs + (1−τs)
. (4.8)

There are still two concerns, however, the first is that we have seen in Figure 3.7 that the optimal value for δ
can range from the order of 10−10 to 10−1. This makes it hard to define an initial interval in which the optimum
can be expected. To remedy this some additional work in the characteristics of the LU-factors is required. The
second concern is the fact that the optimal delta is likely not constant during the simulation, this means that
an algorithm that assumes a static value for the optimum will always be lagging behind on the optimal value.
On the other hand, we have already observed that we may not need to be very accurate in finding the optimum
due to the speed gain function not being very steep
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4.3.2 – A-posteriori

The a-posteriori optimisation would be an automated repetition of the analysis in Section 4.2. That means
that user first runs the simulation with the default settings and then runs an analysis program on the data that
are acquired from this first run. The analysis program then sets the parameters to their optimal values.

Many times a simulation is used to test various events to which a device can be subjected. For example,
a car accelerating to constant speed, then hitting a bump, then suddenly swerving and finally breaking to a
standstill. For a model like this, we expect the parameters to reflect the change in behaviour. When the analysis
is done a-posteriori, the integrator can pick up on these changes and adjust the parameters accordingly.

4.4 – Observations and conclusions

The previous chapter instigated the concept of the three-phase cycle consisting of SDLU first, then the Sim-
plified method and then the Krylov method. The expected speed gain is estimated by assuming a monotone
increasing spectral radius and a threshold for it above which we expect the method to fail. The speed of the
Newton steps is estimated by the combination of the speed of the linear solver and the expected number of
Newton steps. This number is obtained from the worst observed case. These estimates are not suitable for the
chain model since this does not show the monotone increasing spectral radius.

The estimated speed gain on phase 1 and 2 is about 50% for the ATV model. The Krylov phase allows an
extension of the cycle of almost 100%. The time steps of this phase are calculated with a almost 40% of the
speed of the original process. That means that the Krylov-phase is beneficial if the LU-factorisation takes up
more than 7% of the calculation.

For the actual implementation of this 3-phase cycle, two additional parameters are introduced: The drop
parameter δ and the decision whether or not to include phase 3. A short outline is provided on how these
parameters can be set automatically either on the fly or a-posteriori.
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Chapter 5 – The Jacobian

“Our ancestors had no great tolerance for anachronisms.”
H.G. WELLS

THE TIME MACHINE (1895)

Overview

This chapter contains three additional methods to improve the time-integrator. The first method is an ex-
ploit of the structure of the Jacobian, the second and third are a means to update the dated Jacobian matrix
such that it more closely resembles the current one without the need to refactor.

All the methods provided are designed such that they can be ‘wrapped around’ the linear system solver.
That means that the only change in the program is some pre-processing before and some post-processing after
the call to the solver. No global changes need to be made.

5.1 – Structure and ordering

In the corrector loop a root of the main function is aimed to be found by means of the Newton methods
described in Chapter 3. For this section we only need the global structure of the system. This is as follows

D1 D2 0
| | |

B1 B2 B3

| | 0


y1

y2

y3

=
[

b1

b2

]
, (5.1)

with D diagonal matrices and B general blocks.
In the current code this matrix is solved as is, but the two diagonals in the uppermost row can be exploited

by an elimination

D1x1 +D2x2 = b1 (5.2)

⇒ x1 =−D−1
1 D2x2 +D−1

1 b1 , (5.3)

and a substitution | | |
B1 B2 B3

| | 0

−D−1
1 D2 0
I 0
0 I

[
x2

x3

]
+

D−1
1 b1

0
0

= b2 (5.4)

⇒ [−B1D−1
1 D2 +B2 B3

][
x2

x3

]
= b2 −B1D−1

1 b1 . (5.5)
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42 Chapter 5. The Jacobian

Thus solving for [x1, x2, x3]T involves only solving for [x2, x3]T in (5.5) and then simply setting x1 according to
(5.3). The system in (5.5) has size (n+k)2 as opposed to (2n+k)2 for the original system, where n is the number
of differential equations and k is the number of constraint equations in the original system (2.14 - 2.15). The
difference in the original system and the reduced system is indicated in Figure 5.1 and Table 5.1. Note that the
reduced system is smaller and denser.
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Figure 5.1: The original and reduced Jacobian. A quantification of these plots is provided in Table 5.1.

Equations Non-zeros Density

ATV Original 612 8216 2.19%
Reduced 406 5268 3.20%

Gimbal Original 67 522 11.6%
Reduced 44 317 16.4%

Chain Original 1038 11309 1.05%
Reduced 658 6702 1.55%

Table 5.1: Key statistics for the original and reduced Jacobian.

Since LU-factorisation takes O (N 2) time, with N the number of equations, the time gain that can be expected

is a factor in the order of
(

2n+k
n+k

)2 = (
1+ n

n+k

)2, for 2n differential equations and k constraint equations. This

reduction is not tested in the code of VL Motion, but profiling in Matlab revealed that the reduced system solves
about 20% to 40% faster for all the test models. In addition to a gain in speed, we remark that this method will
also reduce the memory that the solver requires.

Finally we remark that a structural change of the Jacobian matrix affects the other methods: SDLU might
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5.2. Life-time and updating 43

need a different drop-tolerance (likely smaller) and Krylov will perform relatively worse on a smaller system.
We therefore recommend to implement this method before SDLU or Krylov (see Section 6.2.4).

5.2 – Life-time and updating

The reason for the corrector loop of DASSL to fail is the fact that the dated Jacobian G̃ is no longer recent
enough. That is, the current situation has changed so much that the Jacobian in use carries not enough valuable
information for the Newton process to converge. This is, of course, remedied by assembling and factoring a new
recent Jacobian. This is what we call refreshing. The length of the refresh cycle is the life-time of a Jacobian.

In this section we introduce the idea of improving the life-time of a Jacobian by updating it. This update
should resemble the current Jacobian G closer but still be easily invertible without having to refactor. Hereby
we aim to reduce the overall number of factorisations that are needed. In the most general sense, we are looking
for an update-mapping Ud on matrices such that

1. Ud(G̃) is closer to G than G̃ itself (in some sense),

2. given G̃−1, then
[
Ud(G̃)

]−1
is cheaply obtainable.

Like for preconditioners in Krylov methods, these requirements are contradictory. Even more so, the similarity
between updating and a preconditioning is not coincidental and many ideas can be interchanged amongst
them.

For the remainder of this chapter, we will use the spectral radius-error as before to decide whether or not a
matrix is closer to the current one.

5.2.1 – Multiplicative update

Falling back on the remarks about scale, we can choose to update in such a way that the scale of the old
Jacobian more closely resembles that of the current one. This adheres to the requirement of the result being
easily invertible because scaling corresponds to multiplication with diagonal matrices. So we have

Ud(G̃) = D1G̃D2 , (5.6)

with D1 a full-rank diagonal matrix to scale the equations and D2 to scale the unknowns. Note that the second
requirement is satisfied due to trivial inversion of diagonal matrices, this gives

Ud(G̃)−1 = D−1
2 G̃−1D−1

1 . (5.7)

There are many ways to obtain sensible matrices D1 and D2, many of which follow a black box approach of
only considering the numbers in the matrix. We propose so called step size matching. This is an attempt to
mitigate the difference in the matrix due to the fact that the time step changes. The Jacobian is dependent on
the time-step size. One of the dependencies shows up in the scaling with α = c

h as mentioned in Section 2.2.3.
Such a scaling can be expressed by left-multiplication of a diagonal matrix Dh

For this part we use an subscript h to stress the dependence on the time-step size. Note that the dependence
on the time step is ‘almost linear’ due to aforementioned scaling. By this we mean that many of the occurrences
of h are a row-factor in the matrix.

Gh ≈ DhG1 , (5.8)
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44 Chapter 5. The Jacobian

With Dh a diagonal matrix containing factors of h (or α) on the corresponding columns. This scaling has actu-
ally been performed with the dated time step size h̃. That means that these factors in front of the blocks consist
of dated information. Now if the current time-step h is different from the one at the beginning of the refresh
cycle, then these factors can easily be updated as follows

UdG̃ = Dh
(
Dh̃

)−1 G̃ (5.9)

= Dh/h̃G̃ . (5.10)

The motivation to arrive here is purely heuristic. The term ‘almost linear’ is used loosely and it provides no
formal justification. Nonetheless, the intuition can be easily checked in practice by comparing the spectral
radius-error of Ud(G̃) with that of G̃ . The results are shown in Figure 5.2 and Figure 5.3. These plots indicate
the ratio between ρ(I −Ud(G̃)−1G) and ρ(I −G̃−1G). Note that quite often the updated version is exactly as good
as the original. This is not a surprising result, it occurs when the step size has not changed since the refresh.
When it does change, however, the result is mainly positive. Moreover note that the majority of the negative
results are in the initialisation phase for the ATV model. This is not surprising either since then the time-step
changes many orders of magnitude. A scaling as in (5.10) is likely to go awry. Finally, the scaling is a tremendous
improvement for the chain model. More often than not it halves the spectral radius.

To implement this update, it is not even needed to multiply the rows of the matrix (taking O (n2) multiplica-
tions). Instead one can multiply the right hand side with the inverse of D like

Dh/h̃G̃z = y (5.11)

⇒ G̃z = Dh̃/h y , (5.12)

which takes only O (n) multiplications. In some cases, though, there is reason to perform the O (n2)-multiplication
on the matrix after all. This is for models where the time step size does not change very often. For example, the
gimbal model changes step size just 3% of the time (versus 12% for the ATV and 60% for the chain). In this case,
the sporadic matrix multiplication might still be cheaper than the recurring multiplication on the right hand
side.

5.2.2 – Additive update

For some specific cases, we can cheaply compute the inverse of G̃+U given the inverse of G̃ . This is done by
a technique due to Sherman, Morrison and Woodbury for matrices U of small rank. The SMW-formula is found
in an article by Hager on updating the inverse of a matrix [10].

Lemma 5.1 (Sherman-Morrison-Woodbury formula). Let A an invertible square matrix in Rn×n , let V and W
be rectangular matrices inRn×k with k < n. Then

[
A+V W T

]−1 = A−1− A−1V
(
I +W TA−1V

)−1
W TA−1 (5.13)

The matrix V W T is known as a rank-k update to A. In the case where k equals one, some terms reduce to scalars
and the equation is simplified to.

[
A+ v wT

]−1 = A−1
(

I − v wTA−1

1+wTA−1v

)
(5.14)
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Figure 5.2: The spectral radius of the time-step matching update from (5.10) compared to the original as the

ratio ρ(I−Ud(G̃)−1G)
ρ(I−G̃−1G)

.

To put this technique to use, we look for a low rank matrix V W T such that G̃ +V W T is closer to G . The first
that comes to mind is picking V W T equal to Dk a rank-k approximation of D = G − G̃ . The obvious way is by
the eigenvalue decomposition

D = EΛE−1 (5.15)

Dk =
 | | |

e1 e2 . . . ek

| | |



λ1

λ2
. . .

λk


 | | |

e1 e2 . . . ek

| | |

−1

. (5.16)

The downside of methods like these is that they are expensive. Calculating the eigenvalue-decomposition

Eindhoven University of Technology & LMS International



46 Chapter 5. The Jacobian

0 50 100 150 200 250 300 350 400 450 500
10

‐4

10
‐2

10
0

Sp
ec

tr
al

 r
ad

iu
s

Normal

Scaled

(a) ATV

0 50 100 150 200 250 300 350 400 450 500
10

‐4

10
‐2

10
0

Sp
ec

tr
al

 r
ad

iu
s

Normal

Scaled

(b) Gimbal

0 50 100 150
10

‐4

10
‐2

10
0

Sp
ec

tr
al

 r
ad

iu
s

Normal

Scaled

(c) Chain

Figure 5.3: Both the spectral radius of the original Jacobian and the time-step update from (5.10).

is an irreconcilable expense. In the philosophy of this thesis we propose a way to approximate this low rank
approximation by making use of the data we already have. The following is an extension to Broyden’s method
as described and motivated in his paper [5] and in [10].

Not only is the low-rank update a means to make the matrix more recent, it also provides a means to speed
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up Krylov iterations in particular. The details of this are explained in a conference paper by Giraud & Gratton [9].
For our application the usefulness of this technique is questionable since we only use a single Krylov iteration.

Low-rank updates as a byproduct of the Newton-process

For the Newton process a series of values for the function f is calculated at points {y0, y2, . . .}. These values
contain recent information about the function. Hence it stands to reason that they can be used to renew the
data in G̃ . This is done by a multidimensional finite difference (the secant equation)

G(yi )(yi+1 − yi ) ≈ f (yi+1)− f (yi ) (5.17)

Gi zi =∆ fi , (5.18)

which gives approximate information about the unknown matrix G . Indeed, the fact that the action of G upon
a single vector is given, restricts G to the following form

G ≈ v wT+G⊥ , (5.19)

with

wT = zTi (5.20)

v = ∆ fi

zTi zi
(5.21)

G⊥ such that G⊥zi = 0 . (5.22)

Now assume that the pairs
(
yi , f (yi )

)
and

(
yi+1, f (yi+1)

)
are obtained from an approximate Newton process

with G̃ . Define the vectors v and wT as above. Then G̃ can be updated by subtracting the current information
in the direction of w and adding the new result as follows

Ud(G̃) = G̃ + (−G̃w + v)wT (5.23)

= G̃ + ( fi + v)wT , (5.24)

in which we used that −G̃zi = fi by definition of the Newton process. This gives the required result

Ud(G̃)z =∆ f . (5.25)

The addition of the rank-1 matrix ( fi +v)wT in (5.23) can be seen as removing the directional part G̃zi in favour
of ∆ fi . We will refer to this rank-1 matrix as the Broyden-update. Once more we stress the fact that it is still an
approximation due to the fact that we use a finite difference rather than the actual derivative. This calls for some
caution when deciding to use the update. It might be that matrix error in the dated Jacobian is still less than the
discretisation error in the finite difference. In this case the Broyden update would actually be detrimental to the
overall matrix. This extra caution can be taken by only using the Broyden-update when the matrix is sufficiently
dated, when ‖zi‖ is sufficiently small (say, at the very last Newton iteration of each time-step) or by damping
the effect with a parameter β ∈ (0,1) as follows

Ud(G̃) = G̃ + (β fi + (1−β)v)wT . (5.26)

Note that the Broyden update is a backward approach to the Newton process. Instead of finding a sequence of
points from the derivative of a function we infer the derivative (or rather the finite difference) by a sequence of
points that is given by an inferior Newton process. As a final remark we stress that Broyden’s method from this
viewpoint is, as a Newton method, not distinct from the simplified method. Rather it is the simplified method
with a specific choice of additional matrix updating in-between Newton steps. Therefore, Broyden’s method is
not mentioned in Section 3.2.2.
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48 Chapter 5. The Jacobian

5.3 – Observations and conclusions

In this section, we have provided three additional improvements on the linear solver. They are designed
such that they can be ‘wrapped around’ the current solver. That means that they can be described in terms of
pre- and post-processing the Jacobian and/or the residual vector.

The first method is a reduction of the size of the Jacobian. This is an exploit of the two diagonals that appear
on top of the matrix. This results in a reduction from 612 to 406 equations for the ATV model and a reduction
from 1038 to 658 for the chain model.

The second method is a correction for the time step size on the scaling factors of the matrix. This correction
is a cheap way to update the matrix such that it contains more current information. This information is in the
form of the step size h. For the chain model, which often changes step size, this correction shows to be most
beneficial.

The third method is Broyden’s approximate Newton method. In this thesis, it is redefined as a way of matrix
updating. The update consists of a rank-1 matrix that is obtained from the Newton steps themselves. The
method is extended with a parameter β which allows us to set how influential this update is.
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Chapter 6 – Conclusion

“We have so much time and so little to do. Strike that,
reverse it.”

R. DAHL

CHARLIE AND THE GREAT GLASS ELEVATOR (1972)

6.1 – Summary

The time integrator DASSL is used to numerically integrate the equations of motion for constraint multibody
systems. The integrator uses an approximate Newton method called the Simplified method. The approximation
consists of the fact that an old Jacobian is kept in use to solve the subsequent Newton steps as long as this works.
This leads to the definition of refresh-cycle: the part in between renewals of the Jacobian.

In this thesis we investigated the use of two alternative approximate Newton methods: Simplified with
dropped-LU (SDLU) and a truncated Krylov solver. These methods are respectively less accurate but faster and
more accurate but slower than the original simplified method. The observation that the error of the dated Ja-
cobian is increasing leads to the idea of the three-phase refresh-cycle as follows: Start with SDLU, then regular
simplified and append with Krylov. The three methods share many characteristics which makes using them in
tandem appealing. We have estimated the speed gain that can be obtained when this idea is practically imple-
mented.

In addition to the revisions on refresh cycle-scale we also provided methods to improve the efficiency Newton
step-scale. This is done by the concepts of matrix-reduction and matrix-updating. Matrix-reduction is done by
eliminating equations to obtain a smaller, but denser, matrix. Matrix-updating is a means to introduce more
recent information into the system without the need to refactorise.

6.2 – Conclusions and recommendations

6.2.1 – Approximate Newton methods

The approximate methods SDLU and truncated Krylov show to be useful additions to the original algorithm.
The fact that SDLU is faster but less accurate than the original and that the Krylov approximation is more accu-
rate but slower makes the two complementary. This results in the introduction of the multiphase cycle consist-
ing of SDLU, simplified and Krylov in that order. We also observed that Krylov seems to perform well on models
that have sudden changes.

6.2.2 – Multi-phase cycle

The multiphase cycle consists of SDLU, simplified and Krylov. This order is based on the assumption that
the error in a dated Jacobian matrix is increasing in a refresh cycle. In this way, we benefit from the merits of
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the approximate Newton methods at the appropriate points in the cycle. The calculations to find the expected
speed gain and cycle length gain are dependent of the assumption that the error is indeed monotone. This
makes the analysis unsuitable for the chain model.

The addition of phase one, SDLU, makes the Newton iterations faster by a factor up to 2. The addition of the
Krylov-phase is not guaranteed to improve the efficiency. This depends on the effort that is spent in factoring
the matrix. No data were obtained in this project to compare the factorisation cost with the iteration cost.

6.2.3 – Jacobian optimisation

Independent of the used Newton method, there are three more options to improve the efficiency of the
integrator: Size reduction by elimination, multiplicative updating and additive updating. All these methods are
designed such that they can be ‘wrapped around’ the matrix-solver. From the outside, there is no change in the
behaviour of the solver, but the process is performed faster or more accurate.

Jacobian size reduction

The size reduction is a means to exploit the Jacobian’s structure for multibody dynamics. Due to the two
diagonals in the uppermost row-blocks of the matrix, the system can be reduced from size (2n + k)2 to (n +
k)2. This gives a quadratic increase in the speed of the LU-factorisation. For our test models in Matlab, this
improvement was 20% to 40%. It also reduces the memory that the solver needs.

Multiplicative update: Step size matching

The step size matching is a simple diagonal scaling to adapt the scaling with α to the new time-step size.
For such a simple idea, the results are very impressive.

Additive update: Broyden

The low-rank or Broyden-update is a means to update the Jacobian without having the need to refresh. The
update consists of adding a low-rank matrix with more recent information. The low-rank matrix is obtained
as a by-product of the Newton iterations. We do not have sufficient data to qualify the efficiency that can be
gained by this update.

6.2.4 – Prioritised list of recommendations

Since the purpose of this project was to explore various practical improvements on the solver, an important
part of the conclusion is a list of recommendations on which addition to implement. These recommendations
will follow from a combination of the expected gain in efficiency and the expected effort that is needed to im-
plement the method.

In Chapter 4 two possible major additions to the solver were provided: Adding SDLU as phase 1 and adding
Krylov as phase 3. In Chapter 5 three smaller ideas were given: dimensional reduction, multiplicative time-
step updating and additive Broyden-like updating. For each of these five methods the author has a sense of
the efficiency the solver will gain from it and of the effort that is needed to implement it. These are charted in
Figure 6.1.

This chart is backed by the the following prioritisation and motivation of recommendations:

1. Multiplicative update: Rescaling the equations according to the changing time-step should be very easy.
The result is a spectral radius which is almost always smaller.

T.R.T. Nijhuis



6.3. Further research 51

Li
ke

ly
 g

ai
n 

in
 e

ffi
ci

en
cy

Effort to implement it

Additive
update

?

?

Multiplicative
update

Less
smooth

Phase 1:
SDLU

Smoother

Dimensional
reduction

Fewer
constraints

Phase 3:
Krylov

Less 
smooth

Borrow from
DASPK

Figure 6.1: The five ideas that are proposed in this thesis charted to compare the likelihood that they increase
efficiency and the effort needed to implement it. The major methods are red, the minor ones blue. The arrows
indicate the most important characteristics that influence the position on the chart.

2. Dimensional reduction: Wrapping the matrix solver inside a routine which first reduces the matrix and
afterwards expands the solution is a clean and elegant way to implement this. The speed gain on the
factorisation step increases quadratically for the number of bodies. This method should be implemented
first since greatly changing the structure of the matrix affects the other methods.

3. SDLU: Phase 1 and 2 are guaranteed to speed up the simulator. Implementing the dropped-LU alongside
the regular LU and deciding on when to use it does require some bookkeeping.

4. Krylov: Krylov approximations show rather impressive results for the model that lacks smoothness. How-
ever, before the time spent on the LU-factorisation is analysed, implementing this option might not be
worth the effort. Moreover, the assumption that the cost of Jacobian-assembly is negligible is easily chal-
lenged.

5. Additive update: This Broyden-like update is completely untested since there are no obvious ways on
how to estimate the speed gain. The only real way to assess its usefulness is likely just to implement it.
This is not worth the risk of it being a failure.

6.3 – Further research

This project begs for a follow-up due to its exploratory nature. Moreover, some issues were merely remarked
upon and left open. A comprehensive list of directions to take for future research is the following

• Implementing one or more of the five options provided. Not only does this improve the integrator but it
can also serve as a validation of the work in this thesis.

• Analyse the cost of the LU-factorisation to complete the speed gain estimates in Chapter 4.
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• Understand the characteristics of the matrices L and U . How do they drive the optimal value for the drop
tolerance?

• How much time do we loose on the additional bookkeeping that is required for the three-phase cycle? Is
it indeed negligible?

• Theoretically formalise the estimates and provide proper bounds. Most of the estimates are rather heuris-
tic and applied. A more theoretical follow-up could be made to explore some of the inequalities in more
detail.

• Other parts of DASSL: Not only on the Newton iterations is a potential for speed-up. Especially when using
a general purpose integrator for a specific set of equations there are many more possibilities to fine-tune
the design of DASSL. Think of:

– The various units of the problem (like position, speed and force) are completely disregarded. With a
proper handling of them, we might benefit from additional physical knowledge.

– The Jacobian rejection policy might need to be revisited. The shortcomings of the hard-coded
threshold were already remarked upon in Section 3.3.2.

• Many models, or parts thereof, show periodic behaviour. For example, the chain model has a long period
equal to the complete rotation of the chain and a short period equal to the displacement of link to the
position of its neighbour. Can we make DASSL recognise these to obtain a better initial guess, for example?
Is a spectral analysis worthwile, for example to synchronise the refresh cycles with the natural frequencies
of the model?

• The demand for real-time solvers is growing. How does this work fit in that branch? Is the parameter
optimisation from Section 4.3 an option? Do we have time for the bookkeeping in between cycle phases?

• How does the idea of the multi-phase cycle translate to other similar time-integrators?

• The simplified method lends itself nicely to computational parallelisation. One core can be working on
the Newton iterations with the dated Jacobian whilst another is factorising a more recent Jacobian. How
does the three-phase cycle fit in a parallel solution? Is it still worthwhile?
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Appendix A – Contraction mappings

Definition A.1. A vector valued function µ : Rn →Rn is called a contraction in an open subsetΩ⊂Rn if

∃κ̃ ∈ [0,1) ∀x, y ∈Ω : ‖µ(x)−µ(y)‖ ≤ κ̃‖x − y‖ . (A.1)

The contraction factor κ is the smallest of all such κ̃.

Theorem A.1. Let µ :Rn →Rnbe differentiable. µ is a contraction in the neighbourhood of x0 if and only if

ρ
(
∂µ(x0)

)< 1 , (A.2)

where ρ(·) indicates the spectral radius of a square matrix and ∂µ the total derivative ofµ. This inequality is sharp.

Proof. (⇒) µ is a contraction around x0 so we have, for every unit vector u and for h sufficiently small

‖µ(x0)−µ(x0 +hu)‖ ≤ κ|h| < |h| . (A.3)

Now pick u the eigenvector of ∂µ corresponding to the biggest eigenvalue. Then

1 > ‖µ(x0)−µ(x0 +hu)‖
h

= ‖h∂µu +O (h2)‖
h

= ‖∂µu‖+O (h) = ρ(∂µ) as h → 0 , (A.4)

(⇐) Consider a vector x0 + y near x0. Write y as a linear combination of eigenvectors ei and a kernel-vector d
of ∂µ, so y =∑

βi ei +d . Then

‖µ(x0)−µ(x0 + y)‖ = ∥∥∂µy +O (‖y‖2)
∥∥= ∥∥∂µ(∑

βi ei +d
)+O

∥∥ (A.5)

= ∥∥∑
βiλi ei +O (‖y‖2)

∥∥≤∑∣∣βiλi
∣∣+O (‖y‖2) (A.6)

≤ ρ(∂µ)‖y‖+O (‖y‖2) , (A.7)

which, given that ρ(∂µ) < 1, implies that µ is a contraction directly around x0 (i.e. ‖y‖→ 0). When choosing y
equal to the eigenvector with the biggest eigenvalue all inequalities are sharp and the contraction factor κ will
equal the spectral radius.
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Appendix B – Manifolds

The following material is more extensively treated by Hairer and Wanner in [12] for our application. A truly
fundamental treatise is found in the book by Lee[16].

Given a smooth function Φ : Rn → Rm with m < n, we can have it generate a differentiable manifold by
defining the set M = {y ∈Rn |Φ(y) = 0}. This is a surface in n-dimensional Euclidean space. To define a dif-
ferential equation on this manifold, a proper definition for derivatives is needed on this curved space. This is
accomplished by the concepts of tangent space and charts.

Definition B.1. The tangent space or linearisation of a manifold M = {y ∈Rn |Φ(y) = 0} at a given point y ∈M

is denoted as and given by

TyM = {v ∈Rn |Φx · v = 0 ∈Rm} . (B.1)

The perpendicular space of M at y is the space perpendicular to the tangent space. It is given by(
TyM

)⊥ = {ΦT
x ·w ∈Rn | w ∈Rm} . (B.2)

Definition B.2. A chart for a manifold M is a smooth, bijective mapping τi : Ui → Ei where Ui ∈M and
Ei ⊂Rn−m . A collection of charts {τi } such that

⋃
Ui =M is called an atlas.

Consider a regular evolution equation in Euclidean space for the vector y(t ). Without loss of generality, the
equation can be assumed to be first order by virtue of the order reduction technique from Section 2.1.2. So

ẏ = f (y, t ) for t ∈ [0,T ] (B.3)

y(0) = y0 . (B.4)

It is useful to think of the curve y(t ) as the trajectory of a single particle in space.
Assume now that the solution is known to belong a certain manifold M , generated by Φ. This information can
be used to specify the equation further as

ẏ = f∥(y, t )+ f⊥(y, t ) (B.5)

Φ(y, t ) = 0 (B.6)

y(0) = y0 , (B.7)

with f∥ : M → TyM and f⊥ : M → (
TyM

)⊥. That is, the original driving function is decomposed in two parts

according to the direct sumRn = TyM⊕(
TyM

)⊥. Now f∥ is responsible for the movement of y over the manifold
and f⊥ is solely responsible for keeping y on the manifold. Given this meaning of f⊥, the second equation might
seem redundant. However, the additional modelling assumption that the solution is constraint to the manifold
results in an additional unknown. This unknown is the magnitude of f⊥.
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Since the direction of f⊥ is known to be perpendicular to the manifold, but the magnitude is unknown, we
can write

f⊥(y, t ) =ΦT
x ·λ , (B.8)

with λ the magnitude. Hence the full system can be written as

ẏ −ΦT
x ·λ= f⊥(y, t ) (B.9)

Φ(y, t ) = 0 (B.10)

y(0) = y0 . (B.11)

Now in addition to y(t ), an extra unknown λ(t ) is added. Note, however, that no initial conditions for λ are
known. These need to be chosen such that the initial system is consistent. This problem is addressed from both
a theoretical and a numerical angle in [4].
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