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Abstract

Code parallelizers are employed these days to reduce the efforts needed in manually par-
allelizing sequential code. But they are ineffective when it comes to handling programming
constructs like pointers. Code parallelizers like Par4all have a limited support for pointers while
approaches like the ASET + BONES cannot handle pointers at all. In this thesis we have
developed a pointer analysis infrastructure to enable pointer support for the ASET + BONES
approach. Our pointer analysis infrastructure is based upon LLVM’s compiler infrastructure
and relies on an indigenously developed flow insensitive, context sensitive analysis pass called
ex-ptrinfo. The pass is designed to perform static analysis of source code and extract required
pointer analysis information regarding pointer constructs that have been employed for perform-
ing memory accesses in PAINt and the Data Path algorithms1. Our results show that the
developed pointer analysis infrastructure can correctly identify such pointer constructs and ex-
tracts the required pointer analysis information which can be used for parallelizing the PAINt
and the Data Path algorithms with the ASET + BONES approach. At the moment the ASET
+ BONES approach is under development and has several limitations. In future we intend to
overcome these limitations and apply the ASET + BONES approach for parallelizing real world
code.

1PAINt and the Data Path algorithms are proprietary algorithms developed at Océ
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1 Introduction

The following report is a brief overview of the graduation thesis project jointly carried out at the
Eindhoven University of Technology and Océ Technologies.

Océ N.V. is a Netherlands-based company that develops, manufactures and sells printing and
copying hardware and its related software. Unlike table top printers these are huge machines and are
targeted for commercial printing. An Océ printer realizes its functionality by implementing several
algorithms. We will talk about two such algorithms called PAINt (see Sec. 1.1) and the Data Path
(see Sec. 1.2)

Figure 1: Arizona flatbed printer

1.1 PAINt Algorithm

PAINt is a compute intensive data processing algorithm. The algorithm is used for detecting block-
ages in the nozzles of a print head. If a blocked nozzle is encountered it can identify the nature of
the blockage. Such information can be employed for taking corrective action for maintaining and
improving print quality. PAINt also increases the life expectancy of a print head making them more
profitable.

1.2 Data Path Algorithms

To print any image we have to transform the input image into a form called printing image. A
printing image determines which nozzle of the print head should jet the ink at a given instance in
time while printing. The data path is a collection of data intensive image processing algorithms used
for deriving the printing image from the input image.

Currently Océ employs PC based platforms for running PAINt and the Data Path algorithms.
These algorithms have been implemented sequentially for the ease of development, portability and
maintainability of code. Although the current implementation meets all existing deadlines, the use
of PC based platforms is disadvantageous because of the following reasons.

1. PC based platforms are expensive. So it is not desirable to use them with commercial products.

2. PC based platforms are not guaranteed for long term availability. So maintaining product
compatibility becomes an issue.

To overcome these limitations Océ proposes the use of embedded platforms as an alternative to PC
based platforms. Such platforms are cheaper in comparison to PC based platforms and are guaran-
teed for long term availability [1]. But using embedded platforms has its own limitations. They are
slower in comparison to PC based platforms and so cannot meet the existing deadlines for PAINt
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and the Data Path algorithms.

Océ is working with an i.MX6Q based platform. i.MX6Q is an embedded heterogeneous SoC
consisting of multi-core CPU and GPUs. It can be programmed parallely and can be exploited for
speedup of PAINt and the Data Path algorithms to meet existing deadlines. Océ understands the
complexities of parallel programming [20] and wants to explore the feasibility of a semi-automatic
code parallelizing tool. Such a tool can reduce the effort otherwise needed in manually parallelizing
sequential code. Literature [12], [17], [9], [25] shows that many attempts have been made in the past
to develop automatic or semi-automatic code parallelizing tools.

Accordingly a feasibility study 2 was conducted for selecting a semi-automatic code parallelizer
suitable for the PAINt and the Data Path algorithms. To choose the right code parallelizing tool for
our purpose, we had derived requirements (see Sec. 1.3) from the hardware (i.MX6Q), the software
(PAINt and the Data Path algorithms) and the work practices adopted at Océ. These requirements
have been listed below.

1.3 Requirements for our code parallelizing tool

1. Implementations that are created semi-automatic as Océ wants to semi-automatically paral-
lelize sequential code. Océ sells small number of printing units each year. Also their algorithms
get modified from time to time. As a result it is economically inviable for the company to
invest huge man hours in the manual parallelization of sequential code.

2. Implementations which support multi-core, GPU and heterogeneous platforms as we would be
generating code for i.MX6Q which is a heterogeneous platform.

3. Semi automatic parallelizers that can generate code in human readable form thereby allowing
for custom hand optimizations.

4. Preferably open source implementations as they can be legally modified as per ones require-
ment.

5. Implementations capable of handling pointers as PAINt and the Data Path algorithms employ
pointers.

Based on these requirements we had evaluated (see Tab. 1) implementations like Par4all, ASET
+ BONES approach (see Chap. 2) and Pareon. We had considered Pareon as it was one of the
few commercially sold code parallelization tools available in the market.

Feature
Tool

Par4all ASET + BONES Pareon

Automation 1 Fully automatic Semi automatic Manual

Platform
Support 2

Multi-core, GPU and
heterogeneous

platforms

Multi core, GPU and
heterogeneous

platforms
Multi core platforms

Code
Readability 3

Generates human
readable code

Generates human
readable code

Output is human
readable

Distribution 4 Open Source Open Source
Licensed (closed

source)
Pointer

Capability 5
Par4all has a limited
support for pointers

ASET + BONES
cannot handle pointers

Can handle pointers

Table 1: A comparison of Par4all, ASET + BONES Approach and Pareon

2The feasibility study report was submitted earlier for the preparation phase of the thesis
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Pareon is a manual code parallelization tool. It lacks support for GPUs and heterogeneous plat-
forms. It is a licensed tool and it’s implementation is closed source. Because of all these limitations
using Pareon in our case was not a feasible option.

Par4all and the ASET + BONES approach equally fulfill most of our requirements. Both are
semi-automatic and open-source implementations. Both are capable of generating human readable
code for multi-core, GPU and heterogeneous platforms. But Par4all has a very limited support for
pointers where as the ASET + BONES approach cannot handle pointers at all.

Figure 2: Internal blocks of Par4all[10]

Par4all is a complex implementation composed of multiple blocks (see Fig. 2) (preprocessor, pass
manger, optimizer and source to source compiler). Performing any modifications to the tool would
require considerable amount of time and effort. So it was unsuitable for quick development. On
the other hand the ASET + BONES approach (see Fig. 6) is a much simpler implementation. It is
intuitive and can be easily modified in a short amount of time. So it was selected for our work

It was observed that tools like Par4all and the ASET + BONES approach offer limited or no
support for pointers due to lack of alias analysis 3 capability. Alias analysis enables us to identify
hidden dependencies in a code, which can then be resolved for achieving parallelism.

In this thesis we have developed pointer analysis infrastructure to enable the ASET to handle
pointer constructs used for performing memory accesses in PAINt and the Data Path algorithms.
Our results show that the developed infrastructure is capable of handling the pointer constructs
used for performing memory accesses in PAINt and the Data Path algorithms. We integrated the
developed infrastructure into ASET and tested the ASET + BONES approach for parallelizing these
algorithm.

The report is organized as follows, Chap. 2 gives the details of the ASET + BONES approach
and the reasons behind its inability of handling pointer constructs. Chap. 3 describes the problem
statement for our work. Chap. 4 describes the solution proposed as part of the thesis. Chap. 5
discusses the results obtained by applying the proposed solution. Chap. 6 describes the limitations
of our proposed solution. Chap. 7 discusses the conclusions that can be drawn from our work and
then finally we conclude by Chap. 8 and suggest scope for future work as part of our implementation.

3Alias analysis is the technique used to identify if a memory location can be accessed in more than one way at a
given instance.
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2 The ASET + BONES Approach

The following section describes the ASET + BONES [25] approach in more detail. We study the
architecture and the work flow for the approach. We then discuss the reasons behind the lack of
pointer handling capabilities in this approach.

ASET + BONES approach is a semi-automatic code parallelization approach developed at Eind-
hoven University of Technology. It is useful for semi-automatically parallelizing sequential programs
written in C language. Before we dive into the details of the approach we would like to explain some
basic terminology.

2.1 Terminology

2.1.1 Blocks

We have to delimit code sections with pragmas to indicate potentially parallelizable code fragments.
Such delimited code sections are called blocks. ASET uses delimiters like #pragma scop and #pragma
endscop to identify a block. The example in Fig. 3 is an illustration of a block.

Figure 3: for loop is an example of a block

2.1.2 Skeletons

Skeletons are highly optimized code fragments used for interpreting specific algorithms in the source
code. Skeletons are typically hand coded and are maintained in the form of library implementations
for individual target-language pairs. For example the version of BONES used as part of our work
offers skeletons for the following combinations gpu-cuda, cpu-c, gpu-opencl-amd, cpu-opencl-intel,
cpu-opencl-amd and cpu-openmp.

2.1.3 Species

Species are annotations applied to a block to represent the memory access patterns performed in it.
Species are based on the grammar and the vocabulary proposed in algorithm classification theory
[21]. The theory identifies five access patterns called element, chunk, neighbourhood, shared and full.
Fig. 4 illustrates an annotated block. Fig. 5 shows the specie derived by ASET in Fig. 4. Par(10)
implies we have 10 parallel iterations possible. The annotation means we can perform 10 parallel
element wise iterations between array A and array B.
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Figure 4: Example of an annotated block

Figure 5: Illustration of a specie

2.2 Architecture

Fig. 6 describes the architecture and the work flow of the ASET + BONES approach. The approach
employs two tools viz ASET and BONES. ASET is a code annotation tool and BONES is a source
to source compiler.

Figure 6: ASET + BONES work flow[25].

Source code to be parallelized is first delimited using the pragmas #pragma scop and #pragma
endscop to identify blocks (see Sec. 2.1.1). ASET (code annotation tool) processes such delimited
code to produce annotations for identified blocks called species (see Sec. 2.1.3). BONES (source to
source compiler) then interprets such species annotated code in term of skeletons (see Sec. 2.1.2) to
compile parallelized human readable code in CUDA, OpenCL or OpenMP.

2.3 ASET

In this section we give a brief overview of the code annotation tool ASET. ASET employs the theory
of algorithmic species [14] to derive species for the identified blocks. Fig. 7 describes the work flow
employed in ASET. The details of the work-flow have been documented in [14].

Source code to be annotated (see Fig. 3) is first delimited using the pragmas #pragma scop and
#pragma endscop to identify blocks. ASET relies on pet (polyhedral extraction tool) [28] to generate
(see step a in Fig. 7) per statement polyhedral representation (see Fig. 8a) for the identified block.

ASET processes (see step b in Fig. 7) the statement information (see lines 9-24 in Fig. 8a) from
the polyhedral representation to build an abstract syntax tree of loops and the statements inside
the loop bodies as shown in Fig. 8b. ASET employs the domain information (see line 11) to identify
loop bounds. It creates nodes based on the type of operation encountered in the body information
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Figure 7: ASET work flow

(a) Polyhedral representation

(b) Statement tree built from
polyhedral representation in
Fig. 8a.

Figure 8: Illustration of polyhedral representation and statement tree for block in Fig. 3

(see lines 13-24). An accesses operation implies a read (see line 21-24) or a write (see line 17-20)
operation to a memory location. A binary operation implies an arithmetic (see line 14) operation
on the read or written memory locations.

The domain information (see line 11) DS {i | 0 ≤ i ≤ 9} can be represented in homogeneous
coordinates as

DS = DS .
−→
tS ≤ 0

=

[
1 0
−1 9

]
.

(
i
0

)
≤ 0

where
−→
tS is called the iteration vector. Based on the domain information the array access functions

for array A and array B can be represented as

fA(
−→
tS) = FS,A .

−→
tS

=

[
1
0

]
.

(
i
1

)
= (i)
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fB(
−→
tS) = FS,B .

−→
tS

=

[
1
0

]
.

(
i
1

)
= (i)

The array access function generated by pet represents the access behavior of an array in isolation.
It does not consider the other array accesses in the block. So it is unsuitable for deriving species as
the access patters for two distinct arrays cannot be correlated

To overcome this problem ASET identifies structure loops and base loops in a block. A structure
loop can be formally defined as a loop containing either: (1) a read access that is dependent on the
loop iterator while all write accesses are not, or (2), a write access that is dependent on the loop
iterator while all read accesses are not. All other loops which contain at least an array access are
considered base loops.

ASET employs the algorithm (see Fig. 10a) described in [24] to identify structure and base loops

in a block. ASET creates the modified vector
−→
t′S by eliminating the constants in

−→
tS

−→
t′S =

(
i
)

Accordingly the access functions for array A and array B are updated as F′
S,A and F′

S,B.

F′
S,A =

[
1
]

F′
S,B =

[
1

]
ASET then constructs vectors

−→
RS and

−→
WS by summing all values per column (projection) of all

F′
S,a matrices where a is a read or a write access.

−→
RS =

[
1

]
−→
WS =

[
1

]
Based on the values of

−→
RS and

−→
WS ASET identifies the loop in Fig. 3 with iterator i as a base loop.

The corresponding iteration vector and domain for the base loop are represented as −→x and Dx,S

Dx,S = Dx,S . −→x ≤ 0

=

[
1 0
−1 9

]
.

(
i
1

)
≤ 0

As no structure loops were determined the iteration vector and domain for the structure loop are
zero.

−→y =
(

0
)

Dy,S =
[

0
]
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[24] introduces two new matrices K and L. K gives the relation between the array indices and the
base loop iterator −→x , while L gives the relation between the array indices and the structure loop
iterator −→y . Additionally, they introduce −→c to set a constant offset. It was identified that the value
for Ka = [1], La = [0] and −→c = [0]. Together K, L and −→c are used for deriving the new access
function (Ia) for array access a, described as

Ia = Ka .−→x + La .−→y + −→c

Till this point ASET has identified −→x , −→y , Dx,S, Dy,S, Ka , La and −→c (see step c in Fig. 7).

Accesses to the same array inside a loop is checked for dependencies. GCD-test [18] and the
Banerjee-test [18] are applied to compare addresses of reads and writes. The GCD-test searches
for integer solutions, but does not consider loop bounds. On the contrary, the Banerjee-test does
consider loops bounds and searches for non-integer solutions as well. Within ASET, both tests are
combined for checking dependencies (see step d in Fig. 7). If dependencies are found then no species
are produced for the corresponding block.

For the current example in Fig. 3 the array accesses are independent. ASET employs the algo-
rithm (see Fig. 10b) described in [24] to identify species from the values of matrices Ka and La (see
step d and e in Fig. 7). Based on the values of Ka and La the algorithm derives a specie with access
pattern of element for the example in Fig. 3

2.4 BONES

In this section we give a brief overview of the source to source compiler BONES. Fig. 9 describes
the working of BONES. The details of the compiler have been documented in [23].

Figure 9: Working of BONES.

Bones [23] is based on the skeleton based compilation theory [22]. Skeleton based compilation
is a source to source translation technique which relies on the interpretation of the source program
in terms of optimized skeleton code. It transforms species annotated code to OpenMP, CUDA or
OpenCL code with the help of a skeleton library.
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(a) Algorithm for deriving structure and base loops in a block.

(b) Algorithm for deriving species from the values of matrices Ka and La .

Figure 10: Algorithms employed for deriving species
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2.5 Limitations of ASET

In the previous sections we have talked about the ASET + BONES approach. One of the limitation
of the approach is its lack of support for pointers. In the following section we analyze this limitation
and investigate the reason behind it.

2.5.1 Lack of pointer handling capability in ASET

For the ASET + BONES approach to work it is a strict requirement that the memory accesses are
performed using arrays. The approach fails if memory accesses are performed using pointers.

If we consider the examples in Fig. 11 the code snippet in Fig. 11a involves memory accesses on
line 10. These memory accesses are performed using arrays A[20] and B[20]. As memory accesses
are performed using arrays ASET can successfully produce annotations (line 8) as shown in Fig. 11b.

On the other hand the code snippet shown in Fig. 11c involves memory accesses on line 13. These
memory accesses are performed using pointers A and B. ASET is incapable of handling memory
accesses using pointer constructs. As a result it crashes and fails to produce any annotations.

(a) Arrays for memory access (b) Example of an annotated block

(c) Pointers for memory access - No annotations are produced by ASET

Figure 11: Arrays vs. pointers for memory access

It was found that pet (polyhedral extraction tool) used for extracting polyhedral representation
(see step a in Fig. 7) had certain limitations (see Sec. 2.6). These limitations prevented ASET from
handling pointer constructs when used for performing memory accesses.
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2.6 Limitations in pet (polyhedral extraction tool)

In this section we talk about the limitations of pet which prevent ASET from handling pointer
constructs when used for performing memory accesses.

Before we discuss the limitations we would like to introduce some terminology.

1. Range: For a contiguous memory allocation the term range implies the number of bytes that
have been allocated for the chunk of memory.

2. Extent: For a contiguous memory allocation of a given type the term extent implies a ratio
of range of the memory allocation to the size of the type of the allocation.

If I[10] is an array of 10 integers and assuming that integers are 4 bytes wide we would say, range
for I is 40 while the extent is 40/4 which is 10. Also for I the lower bound of the extent would be 0
while the upper bound of the extent would be 10.

Similarly if I is an integer type of pointer and holds the address of a dynamically allocated
memory chunk (I=(int*)malloc(10*sizeof(int))) we would say, range for I is 40 while the extent is
40/4 which is 10. Also for I the lower bound of the extent would be 0 while the upper bound of the
extent would be 10.

2.6.1 Limitation 1: cannot determine the upper bound of the extent for pointers

When arrays are used for performing memory accesses pet can correctly determines the value of the
upper bound of the extent. But when pointers are used for performing memory accesses the value
of the upper bound of the extent is unknown. ASET requires the value of the upper bound of the
extent for deriving species.

(a) Arrays for memory access (b) Polyhedral representation for arrays

Figure 12: Polyhedral representation for array based memory accesses

Fig. 12 shows the polyhedral representation for array based memory accesses. The code snippet
in Fig. 12a involves memory accesses at line 10 using arrays A[20] and B[20]. Pet can identify the
value of the lower bound of the extent as 0 and can also correctly identify the value of the upper
bound of the extent as 20 for arrays A[20] and B[20]. In Fig. 12b we can see that pet generates
suitable entries at line 4 as i0 >= 0 and i0 <= 19 for array A[20] and at line 7 as i0 >= 0 and i0
<= 19 for array B[20] based on the values of their lower and upper bound of the extent respectively.
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(a) Pointers for memory access (b) Polyhedral representation for pointers

Figure 13: Polyhedral representation for pointer based memory accesses

Fig. 13 shows the polyhedral representation for pointer based memory accesses. The code snippet
in Fig. 13a involves memory accesses at line 13 using pointers A and B. Pet can only identify the
value of the lower bound of the extent as 0 but cannot identify the value of the upper bound of the
extent for pointers A and B. In Fig. 13b we can see that pet generates entries at line 4 as i0 >= 0
for pointer A and at line 7 as i0 >= 0 for pointer B based on the values of their lower bound of the
extent. But no entries are produced for the values corresponding to their upper bound of the extent.
As a result the entries for extent information at line 4 and at line 7 in polyhedral representation are
incomplete when used for deriving species. Because of this limitation ASET fails to derive species
when pointers are used for performing memory accesses.

2.6.2 Limitation 2: Pet cannot identify pointer aliases

ASET checks for dependencies in a block (see step d in Fig. 7) while deriving species. Species are
produced if the iterations in a block are found to be independent. The dependency check can yield
false positives if aliasing pointers are used for performing memory accesses.

The example in Fig. 14a employs arrays for performing memory accesses. ASET can correctly
annotate the block as there is no dependency on line 10. The annotated code is shown in Fig. 14b.
If ASET could handle pointers the example in Fig. 14c would yield a false positive. In the absence
of alias analysis capability ASET would have failed to identify the alias created on line 10 which
lies outside the delimitations of the block. As a result the iteration on line 14 would be tested as
independent and would get annotated. Because of this limitation ASET cannot perform correct
dependency analysis and hence fails to derive species.

2.6.3 Limitation 3: Pet-0.1 has support for limited code constructs

It was observed that the version of pet (version 0.1) originally used with ASET allowed only a small
set of code constructs to be used in a block. As a result any unsupported code construct would
prevent the identification of a potential block. For example constructs like shift operators were not
supported by pet-0.1. We have overcome this limitation by substituting pet-0.1 by pet-0.5. Pet-0.5
is capable of handling most of the code constructs of C language.
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(a) Arrays for memory access (b) Example of an annotated block

(c) Dependency in pointers

Figure 14: Significance of alias analysis

17



3 Problem statement

In the earlier chapter we have discussed the reasons behind ASET’s limitation of not handling point-
ers. The limitation arises because of the specific deficiencies (see Sec. 2.6.1, 2.6.2) of pet (polyhedral
extraction tool). These deficiencies prevent ASET from handling pointer constructs.

In this thesis we develop a pointer analysis infrastructure for ASET. The infrastructure enables
ASET to handle pointer constructs used for performing memory accesses in the PAINt and Data
algorithms. To realize our pointer analysis infrastructure we must achieve the following goals.

3.1 Proposed goals

1. We should be able to identify the pointer constructs that can be employed for performing
memory access. Such kind of pointers are typically encountered in a block.

2. We should be able to identify the value of the upper bounds of the extents for such pointer
constructs as it is needed for deriving species.

3. We should be able to identify the pointer aliases for such constructs. By identifying pointer
aliases ASET can correctly perform dependency analysis essential for deriving species.
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4 Proposed solution

In this thesis we have developed a custom pointer analysis infrastructure to enable pointer support
for the ASET + BONES approach. We handle pointer constructs used for performing memory
accesses in a block.

4.1 Pointer analysis

In the following section we give a brief introduction to pointer analysis and its related terminology.

4.1.1 Background about pointer analysis

Pointer analysis is a technique used to determine if two pointers refer to the same memory location
at any program execution point. Pointer analysis has been studied in literature for a long period of
time. We found [15] very helpful in understanding the basics of pointer analysis and designing our
pointer analysis infrastructure. We would like to recall some terminology related to the subject of
pointer analysis.

1. Flow sensitive analysis: A pointer analysis scheme is said to be flow sensitive if it takes
into consideration the control flow information of the program. For such schemes an analysis
solution is produced for each program execution point. As a result flow sensitive analysis
schemes are more accurate but less efficient.

2. Flow insensitive analysis: A pointer analysis scheme is said to be flow insensitive if the
control flow information of the program is not taken into consideration for analysis. For
such schemes only one analysis solution is produced for the entire program. As a result flow
insensitive analysis schemes are more efficient but are conservative and less accurate.

3. Context sensitive analysis: A pointer analysis scheme is said to be context sensitive if it
produces analysis solutions by taking into consideration the context of execution at a given
program point. For such schemes arguments are correctly handled for inter-procedural calls
and as return values.

4. Context insensitive analysis: A pointer analysis scheme is said to be context insensitive if
it produces analysis solutions for the current execution context (current procedure) only. Such
schemes are not designed to handle inter-procedural calls or return statements.

Most pointer analysis schemes produce analysis solutions of the following forms.

1. Must Alias: If two pointers refer to the same memory location at some program execution
point then the alias analysis yields a solution of Must Alias.

2. Partially Alias: If two pointers refer to a common chunk of memory allocation but are at a
continuous offset then the alias analysis yields a solution of Partially Alias.

3. May Alias: If two pointers might refer to the same memory location for some program
execution point then the alias analysis yields a solution of May Alias.

4. Do Not Alias: If two pointers do nor refer to the same memory location for any program
point then the alias analysis yields Do Not Alias.

4.1.2 Observations about pointer analysis

1. It was identified by [19, 26] that computing aliases in presence of general pointers is an unde-
cidable problem.

2. As a result implementations like [16] apply approximations to perform alias analysis in polyno-
mial time. They only treat a subset of constructs like pointers, reference formals and recursive
functions.
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3. A popular approach suggested in [15] is to design custom pointer analysis infrastructures as
per the clients need.

We are interested in creating pointer support for ASET. To derive species for pointer based code
ASET requires the pointers to be non aliasing. Also it needs additional information like value of
the upper bound of the extent for these pointer variables. Based on these observations we have
designed a custom flow insensitive, context sensitive pointer analysis infrastructure. It fulfills both
the requirements of ASET. It not only perform alias identification but also extracts required pointer
information essential for deriving species.

There are several other flow insensitive, context sensitive pointer analyses discussed in literature
like [11], [27]. They are useful for performing alias analysis only. They do not generate information
like upper bound of the extent for pointer variables which is required by ASET. As a result using
them for our work is not suitable. We would like to mention that if implementations for [11], [27]
are available they can be extended for deriving information like upper bound of the extent and can
be adopted for our work.

4.2 Modified work flow for the ASET + BONES approach

We modify the ASET + BONES approach as shown in Fig. 15. We introduce an additional stage
called pointer analysis for realizing our pointer analysis infrastructure.

Figure 15: Modified ASET + BONES approach

Source code to be annotated is first delimited using the pragmas #pragma scop and #pragma
endscop to identify blocks. Such delimited code (see Fig. 16a) is then subjected to the pointer analy-
sis stage. The pointer analysis stage performs static analysis of the source code and derives required
information (see Fig. 16b) regrading pointer constructs used for performing memory accesses. This
extracted data is then made available to ASET. ASET has been suitably modified to process this
additional data and generate species for pointer based code. Fig. 17 illustrates the species produced
by ASET for the block in Fig16a. We will elaborated the details of the pointer analysis infrastructure
in later sections.

(a) Pointer based code (b) Pointer Analysis information

Figure 16: Illustration of pointer analysis information

20



Figure 17: Species produced by ASET for block in Fig. 16a

4.3 Architecture of the pointer analysis stage

The pointer analysis stage employs LLVM [2] infrastructure for performing static analysis of source
code. We have preferred LLVM for its intuitiveness, modularity and extensive documentation.
Fig. 18a illustrates the individual components of LLVM infrastructure. Fig. 18b illustrates the
architecture of our pointer analysis stage.

(a) LLVM Components

(b) Architecture of the pointer analysis stage

Figure 18: LLVM components and the architecture of pointer analysis stage

As we are working with C language we use LLVM’s front-end for C language called Clang. Clang
transforms source code to a form called LLVM IR (intermediate representation). LLVM IR has a
SSA 4 form. Such LLVM IR code is then processed by LLVM’s optimizer called opt. Opt comes

4SSA: Stands for single state assignment. It is a popular form of representation employed in compilers. SSA
variables can be assigned only once and must be defined before they are used.
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pre-built with many optimization passes which can be used for optimizing and analyzing LLVM IR
code. LLVM allows writing custom optimization and analysis passes for opt.

To perform static analysis we have designed a flow insensitive, context sensitive, pointer analysis
pass called ex-ptrinfo (extract pointer information). The pass can be run with LLVM’s optimizer
opt to statically analyze source code and extract required pointer information like upper bound of
the extent and pointer aliases. The pointer analysis information produced by the pointer analysis
stage is encoded into yaml 5 format to make it compatible with ASET.

4.4 Algorithms employed in ex-ptrinfo pass

In this section we will discuss the algorithms employed in the ex-ptrinfo pass. Fig. 19 illustrates the
hierarchy adopted in LLVM.

Figure 19: Hierarchy in LLVM IR

Every working program is identified by a module. A module may be composed of several func-
tion. Each function can be composed of several basic blocks. Each basic block can be composed of
several instructions. Every instruction is a three address form of instruction involving an opcode
and two operands.

We are interested in handling pointer constructs used for performing memory operations in PAINt
and the Data Path algorithms. We illustrate such pointer constructs in Tab. 2.

Pointer based memory assignment Pointer based memory access

ptr=ptr+offset ptr[offset]

ptr = malloc() structmember.ptr[offset]

ptr = & Array[ ] structptr -> ptr[offset]

structmember.ptr = malloc() -

structmember.ptr = & Array[ ] -

structptr -> ptr = malloc() -

structptr -> ptr = & Array[ ] -

Table 2: Pointer constructs treated by the pointer analysis stage

5Yaml: Yaml is a data serialization format

22



Such form of memory operations fall under the category of getelementpointer (GEP) [3] instruc-
tions in LLVM. GEP instructions are used for address calculation of aggregate datastructures (arrays
and structures) in LLVM. Because of this reason we identify GEP instructions in our algorithm for
ex-ptrinfo pass (see Algo 1 step 8).

We generate LLVM IR code with debug information. It is very useful for identifying the details
of a pointer variable like the line number of the variable in source code, name of the parent func-
tion and name of the source file. LLVM stores this information in two type of instructions called
llvm.debug.declare (dbgDec) instructions [4] and llvm.debug.value (dbgVal) instructions [5]. We use
these values for deriving the pointer information in all our algorithms.

Algorithm 1 is the principle algorithm and forms the body of the ex-ptrinfo pass. It is respon-
sible for identifying the GEP instructions in the LLVM IR of the source code. It iterates over all
the instructions in a module looking for GEP instructions. Once a GEP instruction is found it
extracts memory access value (accessVal) and the type of memory access (accessType) performed.
Depending on the values of accessVal and accessType it employs specific algorithm (algorithm 2-7)
to identify the nature of the memory accesses performed. Once the memory access is recognized
the information of the corresponding variable is recorded. Every algorithm (algorithm 2-7) employs
algorithm 10 to identify extent value for the corresponding variable. When all the instructions in
a module have been checked algorithm 8 is employed for performing alias identification. Finally
algorithm 9 is employed for generating pointer analysis information in yaml format.
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Algorithm 1: Algorithm for the ex-ptrinfo pass
Output: Produce a yaml document with pointer analysis information
ex-ptrinfo()1

for every module in the file do2

moduleValue = getModule();3

for every function in the module do4

functionValue = getFunction();5

for every basic block in a function do6

for every instruction in a basic block do7

if instruction is a GEP instruction then8

accessValue = GEP -> getPointerOperand();9

accessType = GEP -> getPointerOperandType();10

if accessType == arrayType then11

error = checkArray(moduleValue, functionValue, accessValue);12

if error is equal to zero then13

continue;14

else15

if accessType == structType then16

structOffset = GEP -> getOffset();17

error = checkStruct(moduleValue, functionValue, accessVal,18

structOffset);
if error is equal to zero then19

continue;20

error = checkAutoScope(moduleValue, functionValue, accessVal);21

if error is equal to zero then22

continue;23

error = checkGlobalScope(moduleValue, functionValue, accessVal);24

if error is equal to zero then25

continue;26

error = checkStructArgument(moduleValue, functionValue, accessVal);27

if error is equal to zero then28

continue;29

error = checkArgument(moduleValue, functionValue, accessVal);30

if error is equal to zero then31

continue;32

checkAlias();33

yamlPrint();34

In algorithm 1 we iterate through all the instructions in the module to look for GEP instructions.
If a GEP instruction is found we extract the memory access value (accessValue) and the type of
the value (accessType). We treat array based values by function checkArray(). We treat structure
based values by function checkStruct(). Other values are checked based on their scope. Local values
are checked by function checAutoScope() while global values are checked by function checkGlob-
alScope(). If the access values are arguments we check if they are structure based arguments by
checkStructArgument() or regular arguments by checkArgument().

Once all the instructions in the module are processed we perform alias analysis of the identified
values with the function checkAlias(). Finally the analysis results are exported as a yaml document
with the function yamlPrint().

24



(a) struct Data

(b) struct Arg

(c) typedefs

Figure 20: structures and typedefs in ex-ptrinfo pass

Algorithm 2: Algorithm for a checkArray function
Output: Return zero if algorithm runs successfully
checkArray(moduleValue, sentFunctionValue, sentAccessValue)1

for every basic block in the sentfunction do2

for every instruction in a basic block do3

if instruction is a dbgDec instruction then4

arrayValue = dbgDec -> getAddress();5

if sentAccessValue is equal to arrayValue then6

entry.name = dbgDec -> getName();7

entry.value = arrayValue;8

entry.extent = getExtent(moduleValue, sentFunctionValue, arrayValue);9

entry.function = dbgDec -> getFunction();10

entry.file = dbgDec -> getFile();11

yamlSequence.push back(entry);12

In algorithm 2 we check for all the dbgDec instructions in the sentFunction and check if their
value matches to the sentAccessValue. If a match is found we extract the information from that
dbgDec instruction and upload the entry to yamlSequence.

6 7

6entry is a instance of struct Data
7yamlSequence is an instance of vector DataSequence
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Algorithm 3: Algorithm for a checkStruct function
Output: Return zero if algorithm runs successfully
checkStruct(moduleValue, sentFunctionValue, sentAccessValue, sentStructOffset)1

for every basic block in the sentfunction do2

for every instruction in a basic block do3

if instruction is a dbgDec instruction then4

structValue = dbgDec -> getAddress();5

storeValList = getStore(moduleValue, structVal);6

for every storeValue in the storeValueList do7

storeValueOffset = storeValue -> getOffset();8

if storeValueOffset is equal to sentStructOffset then9

entry.name = dbgDec -> getName();10

entry.value = storeValue;11

entry.extent = getExtent(moduleValue, sentFunctionValue, storeValue);12

entry.function = dbgDec -> getFunction();13

entry.file = dbgDec -> getFile();14

yamlSequence.push back(entry);15

In algorithm 3 we check for all the dbgDec instructions in the sentFunction. We extract the
structValue from these instructions and find a corresponding storeValue for it. From this storeValue
we extract the structure offset called storeValueOffset which represents the position of a member
in a structure. If the storeValueOffset matches to the value of sentStructOffset we extract the in-
formation from that dbgDec instruction and upload the entry to yamlSequence. sentStructOffset
represents the position of the structure member that was used for performing memory access.

8

8storeValList is instance of vector StoreSeq
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Algorithm 4: Algorithm for a checkAutoScope function
Output: Return zero if algorithm runs successfully
checkAutoScope(moduleValue, sentFunctionValue, sentAccessValue)1

for every basic block in the sentfunction do2

for every instruction in a basic block do3

if instruction is a dbgVal instruction then4

autoValue = dbgVal -> getValue();5

if sentAccessValue is equal to autoValue then6

entry.name = dbgVal -> getName();7

entry.value = autoValue;8

entry.extent = getExtent(moduleValue, sentFunctionValue, autoValue);9

entry.function = dbgVal -> getFunction();10

entry.file = dbgVal -> getFile();11

yamlSequence.push back(entry);12

In algorithm 4 we check for all the dbgVal instructions in the sentFunction and check if their
value matches to the sentAccessValue. If a match is found we extract the information from that
dbgVal instruction and upload the entry to yamlSequence.
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Algorithm 5: Algorithm for a checkGlobalScope function
Output: Return zero if algorithm runs successfully
checkGlobalScope(moduleValue, sentFunctionValue, sentAccessValue)1

globalList = getGlobalList();2

for every globalVariable in the globalList do3

globalValue = globalVariable -> getValue();4

if sentAccessValue is equal to globalValue then5

entry.name = globalVariable -> getName();6

entry.value = globalValue;7

entry.extent = getExtent(moduleValue, sentFunctionValue, globalValue);8

entry.function = ’ ’;9

entry.file = globalVariable -> getFile();10

yamlSequence.push back(entry);11

In algorithm 5 we try to identify global variables. First we get access to the global variable list
maintained for all the global variables in a module. For every variable in this global list we extract
its global value and try to find a match to the sentAccessValue. If a match is found we extract the
information from the corresponding globalVariable and upload the entry to yamlSequence.
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Algorithm 6: Algorithm for a checkStructArgument function
Output: Return zero if algorithm runs successfully
checkStructArgument(moduleValue, sentFunctionValue, sentAccessValue)1

Initialize argument.callingFunction;2

Initialize argument.actualArgument;3

structOffset = sentAccessValue -> getOffset();4

while argument.callingFunction != NULL do5

argument = getArgument(moduleValue, argument.callingFunction,6

argument.actualArgument);

for every basic block in the argument.callingFunction do7

for every instruction in a basic block do8

if instruction is a dbgDec instruction then9

tempValue = dbgDec -> getAddress();10

storeValList = getStore(moduleValue, tempVal);11

for every storeValue in a storeValueList do12

storeValueOffset = storeValue -> getOffset();13

for every basic block in the sentfunction do14

for every instruction in a basic block do15

if instruction is a dbgVal instruction then16

structValue = dbgVal -> getValue();17

if sentAccessValue is equal to structValue and storeValueOffset is equal to18

structOffset then
entry.name = dbgVal -> getName();19

entry.value = sentAccessValue;20

entry.extent = getExtent(moduleValue, argument.calling function, storeVal);21

entry.function = dbgVal -> getFunction();22

entry.file = dbgVal -> getFile();23

yamlSequence.push back(entry);24

We rely on getArgument() function to implement algorithm 6. getArgument() checks if the sen-
tAccessValue matches to any of the formal arguments in the sentFunction. If a match is found it
returns the corresponding calling function and the corresponding actual arguments.

In algorithm 6 we check if the sentAccessValue is an argument of structure type. For the sentAc-
cessValue we get the corresponding actual argument and the calling function. We identify the offset
for the actual argument called storeValueOffset. Also we derive the offset from sentAccessValue
called structOffset

We check for all the dbgVal instructions in the sentFunction. From these dbgVal instructions we
extract structValues. If the structValue matches to sentAccessValue and if the structOffset matches
storeValueOffset it implies we have found the appropriate member position in the structure of the
calling function. The additional check is important as the argument can be a structure pointer, a
structure member as a pointer or a structure member it self. If a match is found then we extract
the information from that dbgVal instruction and upload the entry to yamlSequence.

9

9argument is a instance of struct Arg
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Algorithm 7: Algorithm for a checkArgument function
Output: Return zero if algorithm runs successfully
checkArgument(moduleValue, sentFunctionValue, sentAccessValue)1

argument = getArgument(moduleValue, sentFunctionValue, sentAccessValue);2

for every basic block in the sentfunction do3

for every instruction in a basic block do4

if instruction is a dbgVal instruction then5

argumentValue = dbgVal -> getValue();6

if sentAccessValue is equal to argumentValue then7

entry.name = dbgVal -> getName();8

entry.value = sentAccessValue;9

entry.extent = getExtent(moduleValue, argument.callingFunction,10

argument.actualArgument);
entry.function = dbgVal -> getFunction();11

entry.file = dbgVal -> getFile();12

yamlSequence.push back(entry);13

We rely on getArgument() function to implement algorithm 7. getArgument() checks if the sen-
tAccessValue matches to any of the formal arguments in the sentFunction. If a match is found it
returns the corresponding calling function and the corresponding actual arguments. In algorithm
7 we check for all the dbgVal instructions in the sentFunction and check if their value matches to
the value if the actual argument produced by getArgument(). If a match is found we extract the
information from that dbgVal instruction and upload the entry to yamlSequence.
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Algorithm 8: Algorithm for a checkAlias function

checkAlias()1

while count <yamlSequence.size() do2

if yamlSequence[count].function is equal to yamlSequence[count+1].function and3

yamlSequence[count].name is not equal to yamlSequence[count+1].name then
query LLVM’s basicaa pass to check if the two pointers alias or not;4

result = basicaa(yamlSequence[count].value, yamlSequence[count+1].value);5

switch result do6

case 07

Do not Alias;8

case 19

May Alias;10

entry.mayAlias.push back(yamlSequence[count+1].name);11

case 212

Partially Alias;13

entry.partiallyAlias.push back(yamlSequence[count+1].name);14

case 315

Must Alias;16

entry.mustAlias.push back(yamlSequence[count+1].name);17

In algorithm 8 we check if two entires in the yamlSequence alias or not. We rely on LLVM pass
-basicaa [6] to perform alias analysis for us. For a given entry in yaml sequence if an alias is found
the corresponding AliasSeq vector gets appended with the name of the aliasing pointer. We check
for aliases if the two entries in the yamlSequence belong to the same function and do not have the
same name. In case of global variable we check for aliases based on the file names rather than the
function names.

10

10partiallyAlias, mayAlias, mustAlias are instances of Vector AliasSeq
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Algorithm 9: Algorithm for a yamlPrint function

yamlPrint()1

while count <yamlSequence.size() do2

export yamlSequence[count].entry as a yaml entry to interface.txt;3

The algorithm 9 employs APIs from yamlcpp (a yaml emitter for c++) for generating yaml doc-
uments. For every entry in the yamlSequence a yaml description is produced. This yaml data is
then exported as a yaml document called interface.txt to ASET.

11

11interface.txt is the yaml file containing pointer analysis information. This file is read by ASET for handling
pointer constructs
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Algorithm 10: Algorithm for a getExtent function
Output: Return the extent value for the sentAccessValue
getExtent(moduleValue, sentFunctionValue, sentAccessValue)1

size = sentAccessValue -> getSize();2

if sentAccessValue is a local variable or sentAccessValue is a global variable then3

if Check for malloc is true then4

derive range from malloc();5

extent=range/size;6

return extent;7

if Check for malloc + offset is true then8

derive range from malloc();9

derive offset from sentAccessValue;10

extent=((range/size)-offset);11

return extent;12

if Check for array is true then13

derive range from array[];14

extent=range/size;15

return extent;16

if Check for array + offset is true then17

derive range from array[];18

derive offset from sentAccessValue;19

extent=((range/size)-offset);20

return extent;21

if sentAccessValue is a structure variable then22

structOffset = sentAccessValue -> getOffset();23

storeValList = getStore(moduleValue, structVal);24

for every storeValue in the storeValueList do25

storeValueOffset = storeValue -> getOffset();26

if structOffset is equal to storeValueOffset then27

extent = getExtent(moduleValue, sentFunctionValue, storeValue);28

return extent;29

if sentAccessValue is an argument variable then30

argument = getArgument(moduleValue, sentFunctionValue, sentAccessValue);31

extent = getExtent(moduleValue, argument.callingFunction, argument.actualArgument);32

return extent;33

Algorithm 10 is used for extracting the value of the upper bound of the extent for pointer con-
structs used for performing memory accesses. Depending on the type of the access a suitable method
is applied and the value for extent is derived.
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4.5 Working

The following examples illustrate the input and the output of the pointer analysis stage. Fig. 21a
represents the delimited source code which acts as the input. Fig. 21b illustrates the pointer analysis
information generated by the pointer analysis stage at the output.

(a) Pointer based code (b) Pointer Analysis information

(c) Species produced by ASET for block in Fig. 21a

Figure 21: Pointer analysis information and its usage for deriving species for non aliasing pointers

It is evident that the two pointers do not alias and hence no alias information is generated (see
Algo 1, 4, 8, 9, 10). As a result the block in Fig. 21a can be annotated. ASET has been modified
to process the additional information in Fig. 21b to derive species as shown in Fig. 21c. Such an-
notated code in Fig. 21c can be used with BONES for compiling OpenCL, CUDA, or OpenMP code.
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The examples in Fig. 22 illustrate the case of aliasing pointers without dependency. Fig. 22a
represents the delimited source code with aliasing pointers. Fig. 22b illustrates the pointer analysis
information generated by the pointer analysis stage. It can be observed that the pointer analysis
stage could correctly identify Must Aliases at line 14 (see Algo 1, 4, 8, 9, 10). In case of Must Aliases
ASET has been modified to perform dependency analysis for the memory accesses performed (line
14). ASET found the iterations to be independent and so annotations were produced as shown in
Fig. 22c

(a) Pointer based code (b) Pointer Analysis information

(c) Species produced by ASET for block in Fig. 22a

Figure 22: Pointer analysis information and its usage for deriving species for aliasing pointers with
no dependency
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The examples in Fig. 23 illustrate the case of aliasing pointers with dependency. Fig. 23a rep-
resents the delimited source code with aliasing pointers. Fig. 23b illustrates the pointer analysis
information generated by the pointer analysis stage. It can be observed that the pointer analysis
stage could correctly identify Must Aliases at line 14 (see Algo 1, 4, 8, 9, 10).

(a) Aliasing pointers (b) Pointer Analysis information

Figure 23: Illustration of pointer analysis information for aliasing pointers with dependent accesses

In case of Must Aliases (see Algo 8 line 15) ASET performs dependency analysis for the memory
accesses performed (line 14). ASET found the iterations to be dependent (see loop bound in Fig. 23a
at line 12) and so no annotations were produced in this case.

Same treatment is applied to Partial Aliases (see Algo 8 line 12). ASET perform dependency
analysis for partially aliasing pointers and derives species if the pointers are found to be independent.
But in case of May Aliases (see Algo 8 line 9) we reject the block as there is an uncertainty that the
pointers may alias.

4.6 Treatment for May Aliases

We rely on LLVMS’s alias analysis infrastructure [7] to identify pointer aliases in source code. Specif-
ically we rely on passes -basicaa [6] and -globalsmodref [8] to perform alias identification. -basicaa is a
intra-procedural alias analysis pass. It requires that one of the aliasing candidates be declared within
the local scope of execution. The pass is incapable of performing inter-procedural alias analysis. So
if the aliasing candidates are declared beyond the current scope of execution they are marked as
May Aliases (see Algo 8 line 9). In such circumstances we inline the code in a bottom-up approach.
As a result main function can be treated as a composite executional unit to identify aliases over the
entire program.

In the examples in Fig. 24 we illustrate the process of resolving May Aliases. We make a call
from main() in Fig. 24a to foo() in Fig. 24c. In absence of inlining we get the interface data as
shown in Fig. 24e. . We identify that pointer X and pointer Y May Alias (see Algo 1, 4, 8, 9, 10).
When the functions are inlined we get interface data as shown in Fig. 24f. We derive that pointer
X and pointer Y Do Not Alias(see Algo 1, 4, 8, 9, 10). So the array operations on line 8 in Fig. 24c
can be annotated. Annotations are produced as shown in Fig. 24d
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(a) caller.c (b) myheader.h

(c) callee.c (d) annotations produced after resolving May Aliases in callee.c

(e) Interface data before inline (f) Interface data after inline

Figure 24: Resolving May Aliases
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5 Experiments

The following section describes the experiments we have performed to test our pointer analysis
infrastructure. We test the original version of the ASET + BONES approach (based on pet-0.1 )
against the modified ASET + BONES approach (based on pet-0.5 ) for handling pointer constructs.
The original version of the ASET + BONES (based on pet-0.1 ) is incapable of handling pointer
constructs. So in all the conducted tests the approach crashes and fails to produce any annotations.

5.1 Results

The following tests have been performed with the modified ASET + BONES approach (based on
pet-0.5 ).

5.1.1 Test to evaluate the correctness of species produced with ASET

The following test evaluates the capability of our pointer analysis infrastructure in correctly enabling
the ASET in deriving species for pointer based constructs.

Figs. 25a, 25b, 26a,27a, 28a and 29a are the source files and header files used for the test.

(a) main.c (b) my header.h

Figure 25: main.c and my header.h
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Fig. 26a represents element function which involves memory accesses of element type at line 10.
Fig. 26b represents the pointer analysis information produced by our infrastructure for the code
snippet in Fig. 26a. Fig. 26c represents the annotated code generated by ASET by processing the
information in Fig. 26b.

Pointer based memory assignment Pointer based memory access

ptr = malloc() ptr[offset]

Table 3: Pointer constructs treated in the example

(a) element.c (b) Pointer analysis data

(c) element specie

Figure 26: Deriving the element specie

It can be observed that the pointer analysis information in Fig. 26b correctly represents the
details of the memory accesses performed in Fig. 26a. It can be verified that pointer A and pointer
B both have local scope. Both are enclosed within the element function and are located at line 10.
Also both the pointers are present in the source file element.c. The pointer analysis information
can correctly represent the extent value for pointer A as 20 and for pointer B as 16. As the pointer
accesses on line 10 do not alias they are independent and can be annotated as shown in Fig. 26c
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Fig. 27a represents chunk full function which involves memory accesses of chunk, full and element
type at line 13. Fig. 27b represents the pointer analysis information produced by our infrastructure
for the code snippet in Fig. 27a. Fig. 27c represents the annotated code generated by ASET by
processing the pointer analysis information in Fig. 27b.

Pointer based memory assignment Pointer based memory access

ptr = malloc() ptr[offset]

Table 4: Pointer constructs treated in the example

(a) chunk full.c (b) Pointer analysis data

(c) chunk specie and full specie

Figure 27: Deriving the chunk specie and full specie

It can be observed that the pointer analysis information in Fig. 27b correctly represents the
details of the memory accesses performed in Fig. 27a. The extent value for pointer A was identified
as 20, for pointer U as 4 and for pointer X as 4. As A and U are both arguments our pointer
analysis infrastructure classifies them as May Aliases. We perform read operations on pointers A
and U and do not write to their addresses. So the accesses are independent and can be safely
annotated. Annotations are produced as shown in Fig. 27c
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Fig. 28a represents neighbourhood function which involves memory accesses of neighbourhood
and element type at line 10. Fig. 28b represents the pointer analysis information produced by our
infrastructure for the code snippet in Fig. 28a. Fig. 28c represents the annotated code generated by
ASET by processing the pointer analysis information in Fig. 28b.

Pointer based memory assignment Pointer based memory access

ptr = malloc() ptr[offset]

Table 5: Pointer constructs treated in the example

(a) neighbourhood.c (b) Pointer analysis data

(c) neighbourhood specie

Figure 28: Deriving the neighbourhood specie

It can be observed that the pointer analysis information in Fig. 28b correctly represents the
details of the memory accesses performed in Fig. 28a. The extent value for pointer A was identified
as 20 and for pointer B as 16. Although A is an argument we do not classify it as May Alias (see step
3 in Algo 8) because we do not check a pointer with itself for alias analysis. It would get checked in
dependency analysis stage (see step d Fig. 7) in ASET. All the accesses on line 11 were found to be
independent. So annotations were produced as shown in Fig. 28c
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Fig. 29a represents shared function which involves memory accesses of shared and element type
at line 10. Fig. 29b represents the pointer analysis information produced by our infrastructure for the
code snippet in Fig. 29a. Fig. 29c represents the annotated code generated by ASET by processing
the pointer analysis information in Fig. 29b.

Pointer based memory assignment Pointer based memory access

ptr = malloc() ptr[offset]

Table 6: Pointer constructs treated in the example

(a) shared.c (b) Pointer analysis data

(c) shared specie

Figure 29: Deriving the shared specie

It can be observed that the pointer analysis information in Fig. 29b correctly represents the
details of the memory accesses performed in Fig. 29a. The extent value for pointer U and W was
identified as 4, and for pointer X as 1. As A and U are both arguments our pointer analysis infras-
tructure classifies them as May Aliases. We only perform read operations on pointers U and W and
do not write to their addresses. So they are independent and can be safely annotated as shown in
Fig. 29c.

The results shown in Figs. 26, 27, 28, 29 demonstrate that the pointer analysis infrastructure
when integrated into ASET can successfully generate species based on all five types of the access
patters.
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5.1.2 Test to determine the ability to handle system defined pointer constructs

The following test evaluates the capability of our pointer analysis infrastructure to handle the system
defined pointer constructs that have been employed for performing memory accesses in PAINt and
the Data Path algorithms.

Figs. 30a, 30b, 30c, 30d are the source files and header files used for the test.

(a) main.c (b) myheader.h

(c) myc.c (d) yrc.c

Figure 30: source files main.c myheader.h myc.c yrc.c
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Fig. 30a represents the main.c file which involves memory accesses at line 11. Fig. 31a represents
the pointer analysis information produced by our infrastructure for the code snippet in Fig. 30a.
Fig. 31b represents the annotated code generated by ASET by processing the pointer analysis in-
formation in Fig. 31a.

Pointer based memory assignment Pointer based memory access

ptr = malloc() ptr[offset]

ptr = &Array[] -

Table 7: Pointer constructs treated in the example

(a) Pointer analysis data (b) annotated main.c

Figure 31: main.c

It can be observed that the pointer analysis information in Fig. 31a correctly represents the
details of the memory accesses performed in Fig. 30a. We could correctly identify the scope of array
K as global. Also the extent value for array K was identified as 128 (after adjusting the offset by 7),
and for pointer L as 121 after adjusting the offset. It was correctly identified that K and L Partially
Alias. As the accesses on line 11 were found to be independent annotations were produced by ASET
as shown in Fig. 31b.
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Fig. 30c represents the myc.c file which involves memory accesses at line 10. Fig. 32a represents
the pointer analysis information produced by our infrastructure for the code snippet in Fig. 30c.
Fig. 32b represents the annotated code generated by ASET by processing the pointer analysis in-
formation in Fig. 32a.

Pointer based memory assignment Pointer based memory access

ptr = malloc() ptr[offset]

ptr = ptr + offset -

Table 8: Pointer constructs treated in the example

(a) Pointer analysis data (b) annotated myc.c

Figure 32: myc.c

It can be observed that the pointer analysis information in Fig. 32a correctly represents the de-
tails of the memory accesses performed in Fig. 30c. The extent value for pointers X was identified as
128, for pointer F as 123 (after adjusting the offset by 5) and for pointers B as 256. As the accesses
on line 10 were found to be independent annotations were produced by ASET as shown in Fig. 31b.
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Fig. 30d represents the yrc.c file which involves memory accesses at line 9. Fig. 33a represents the
pointer analysis information produced by our infrastructure for the code snippet in Fig. 30d. Fig. 33b
represents the annotated code generated by ASET by processing the pointer analysis information in
Fig. 33a.

Pointer based memory assignment Pointer based memory access

ptr = &Array[] ptr[offset]

Table 9: Pointer constructs treated in the example

(a) Pointer analysis data (b) annotated yrc.c

Figure 33: yrc.c

It can be observed that the pointer analysis information in Fig. 33a correctly represents the
details of the memory accesses performed in Fig. 30d. The extent value for pointers U, V, L and
array Z was correctly identified. As pointers U and V are arguments they were identified as May
Aliases. Pointer L and array Z were found as Partial Aliases. We have perform read operations on
May Aliases U and V, so they were independent. Also the rest of the accesses on line 9 were found
to be independent. So annotations were produced by ASET as shown in Fig. 31b.

The following set of results shown in Figs. 31, 32, 33, demonstrates that our pointer analysis
infrastructure can handle the system defined pointer constructs that have been employed for per-
forming memory accesses in PAINt and the Data Path algorithms.
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5.1.3 Test to determine the ability to handle structure based pointer constructs

The following test evaluates the capability of our pointer analysis infrastructure to handle structure
based pointer constructs that have been employed for performing memory accesses in PAINt and
the Data Path algorithms.

Figs. 34a, 34b, 34c, 34d are the source files and header files used for the test.

(a) struct.c (b) myheader.h

(c) trc.c.c (d) yrc.c

Figure 34: source files struct.c myeader.h trc.c yrc.c
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Fig. 34a represents the struct.c file which involves memory accesses at line 15. Fig. 35a represents
the pointer analysis information produced by our infrastructure for the code snippet in Fig. 34a.
Fig. 35b represents the annotated code generated by ASET by processing the pointer analysis in-
formation in Fig. 35a.

Pointer based memory assignment Pointer based memory access

structmember.ptr = malloc() structmember.ptr[offset]

structmember.ptr = & Array[ ] -

structptr -> ptr = malloc() -

structptr -> ptr = & Array[ ] -

Table 10: Pointer constructs treated in the example

(a) Pointer analysis information (b) annotated struct.c

Figure 35: struct.c

It can be observed that the pointer analysis information in Fig. 35a correctly represents the
details of the memory accesses performed in Fig. 34a. The extent value for pointers P was identified
as 128 and for pointer Q as 506 (after adjusting the offset by 6). It was identified that pointer Q
and array K Partially Alias. The memory accesses performed on line 15 do not alias and were found
to be independent. So annotations were produced as shown in the example in Fig. 35b.

48



Fig. 34c represents the trc.c file which involves memory accesses at line 9. Fig. 36a represents
the pointer analysis information produced by our infrastructure for the code snippet in Fig. 34c.

Pointer based memory assignment Pointer based memory access

ptr = malloc() structptr -> ptr[offset]

- ptr[offset]

Table 11: Pointer constructs treated in the example

(a) Pointer analysis data (b) annotated trc.c

Figure 36: pointer analysis information for file trc.c

It can be observed that the pointer analysis information in Fig. 36a correctly represents the
details of the memory accesses performed in Fig. 34c.The extent value for pointers B was identified
as 256, for R as 256 and for S as 502 (after adjusting the offset by 10). Pointers R and S are structure
members. They were accessed with structure pointer X which is a formal argument. As a result R
and S were identified as May Aliases. We have performed read and write operations on May Aliases
B, R and S. So the block in Fig. 34c was not annotated. We have resolved these May Aliases by
applying the method suggested in Sec. 4.6 to produce annotations as shown in Fig. 36b.
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Fig. 34d represents the yrc.c file which involves memory accesses at line 10. Fig. 37a represents
the pointer analysis information produced by our infrastructure for the code snippet in Fig. 34d.
Fig. 37b represents the annotated code generated by ASET by processing the pointer analysis in-
formation in Fig. 37a.

Pointer based memory assignment Pointer based memory access

ptr = &Array[] ptr[offset]

Table 12: Pointer constructs treated in the example

(a) Pointer analysis data (b) annotated yrc.c

Figure 37: pointer analysis information for file yrc.c

It can be observed that the pointer analysis information in Fig. 37a correctly represents the de-
tails of the memory accesses performed in Fig. 34d. The extent value for pointers U, V, L and array
Z were correctly identified. As pointers U and V are arguments they were identified as May Aliases.
Pointer L and array Z were identified as Partial Aliases. We have performed read operations on May
Aliases U and V, so they were independent. Also the rest of the accesses on line 10 were found to be
independent. So annotations were produced for the memory accesses on line 10 as shown in Fig. 37b.

The results shown in Figs. 35, 36, 37 demonstrate that our pointer analysis infrastructure can
handle the structure based pointer constructs that have been employed for performing memory ac-
cesses in PAINt and the Data Path algorithms.
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5.2 Summary

We have conducted three tests for validating the behavior of our pointer analysis infrastructure.

1. The first test demonstrated that our pointer analysis infrastructure can be integrated into
ASET + BONES approach for deriving species based on all five access patterns for pointer
based code.

2. The second test demonstrated that our pointer analysis infrastructure can handle the system
defined pointer constructs used for performing memory accesses in PAINt and the Data Path
algorithms.

3. The third test demonstrated that our pointer analysis infrastructure can handle the structure
based pointer constructs used for performing memory accesses in PAINt and the Data Path
algorithms.
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6 Limitations

In the following section we discuss the limitations of our pointer analysis infrastructure. The pointer
analysis infrastructure has been designed keeping in mind the requirements of the ASET + BONES
approach. We have treated pointer constructs that are used for performing memory accesses in
PAINt and the Data Path algorithms. We do not treat general pointers as part of our work.

We found the following limitations in our work.

1. Our pass is designed to handle structure pointers and structure members as pointers. But the
approach in (algorithm 6) of back tracking arguments fails if structures are passes by value.

2. We have restricted ourselves at treating single level of pointers (pointer to variables). We do
not treat hierarchical pointers (pointer to pointer).

3. We have implemented a flow insensitive pass. We do not produce a solution based on the
control flow information of the code. So our approach is less accurate and is prone to false
positives.

4. We rely on GEP instructions in LLVM for identifying pointer constructs. GEP does not handle
unions. As a result our implementation is insensitive to unions in source code.

5. We identify pointer based memory accesses if and only if they are performed as array subscripts.
We do not treat value at address operator in our work. So a memory access at an address
should be done as address[offset] rather than *(address + offset).

Following are the limitations imposed by ASET.

1. ASET cannot perform constant propagation. As s result the block to be annotated must be
free from constant values or there values must be suitable propagated.

2. Memory accesses in ASET are classified based on a fixed set of formatting functions. The
current set of formatting functions are inadequate in classifying complex memory operation
performed using structure members in real world programs.
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7 Conclusion

Océ wants to exploring the feasibility of a semi-automatic code parallelizing tool to reduce the overall
effort otherwise needed in manually parallelizing sequential code.

It was observed that tools like Par4all and ASET + BONES offer limited or no support for
pointers due to lack of alias analysis capability. In this thesis we have developed a pointer analysis
infrastructure to enables the ASET to handle pointer constructs used for performing memory ac-
cesses in PAINt and the Data Path algorithms.

Our results show that the developed infrastructure can handle the pointer constructs used for
performing memory accesses in PAINt and the Data Path algorithms. We have integrated the de-
veloped infrastructure into ASET and have tested the ASET + BONES approach for parallelizing
these algorithm.

The ASET + BONES approach is under development and has several limitations. Because of
these limitations it is currently unsuitable for parallelizing real world algorithms. Although the
approach is promising and can be developed as a full fledged semi automatic code parallelizing tool
in the future.
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8 Future Work

In this thesis we have developed a pointer analysis infrastructure to enable pointer support for ASET
+ BONES approach. The pointer analysis infrastructure is under constant development and can be
considerably improved in the future.

1. In future we would like to incorporate support for additional constructs to increase the appli-
cability of our pointer analysis infrastructure.

2. The theory behind ASET and BONES can be extended to handle real world programs com-
posed of pointers and structures.

3. Bones is now interfaced with A-Darwin a species generation tool based on theory of interpro-
cedural analysis of array regions [13]. Our pointer analysis infrastructure can be explored for
getting pointer support into A-Darwin + BONES approach.
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