
 Eindhoven University of Technology

MASTER

Verifying and optimising disjoint paths in ISP networks

Post, B.

Award date:
2014

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/beae42ba-ec4c-489c-88fb-3427b02ab97b


Verifying and optimising
disjoint paths in ISP

networks

Master Thesis

Bart Post BSc.

Department of Mathematics and Computer Science

Supervisors:
prof. dr. Nikhil Bansal (TU/e)
dr. Piotr Zuraniewski (TNO)

ir. Bart Gijsen (TNO)

In cooperation with:

Performance of Networks and Systems

Eindhoven, 10 October 2014





Abstract

Consider a company with two remote office locations that uses an Internet connection from an Internet
Service Provider to connect the two offices. In addition, that same company purchases a second Internet
connection hoping that when their primary connection fails, the secondary connection can take over. In
order to assure that this is the case it needs to be verified that the pair of connections does not have a
Single Point of Failure, causing both connections to fail simultaneously.

The challenge is to detect when two connections share common resources. We propose to check this
by means of topology discovery. A lot of work has been done on Network layer (ISO layer 3) topology
discovery, but the Network layer is a virtual layer that does not have a one-to-one relation with the
physical network resources. Therefore we present a method of topology discovery on the Data Link
layer (OSI layer 2) using Ethernet OAM technology, that has a correlation to the physical network.
Furthermore, We generalize topology discovery and present two strategies which recover the topology of
several simple network types. We present upper and lower bounds in terms of number of probes needed
by these strategies applied to the simple network types and we also show average performance.

In addition to testing if connections are disjoint we investigate how to create a pair of disjoint
connections given a discovered network topology. We transform problems of selecting a pair of disjoint
connections with optimal reliability to well studied problems of selecting a pair of disjoint paths in a
network with Min-Sum or Min-Max objectives. Finding a pair of disjoint paths with a Min-Max objective
is a NP-hard problem and a Min-Sum solution can be used as approximation to a Min-Max solution.
We present an algorithm which performs a smart search using the Min-Sum solution to find an improved
Min-Max solution.
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Chapter 1

Introduction

The title of this thesis is Verifying and optimizing disjoint paths in ISP networks. As such we will dive
into two different problems: verifying that two connections are disjoint by means of topology discovery
and choosing an optimal pair of disjoint connections.

1.1 Motivation

Many large companies today heavily depend on data connections which they buy from Internet Service
Providers (ISP’s). Most of the time these data connections form a link between two remote points
and may be used to create a connection between two geographically separated buildings. For example,
two remote office buildings can be linked to the same Virtual Local Area Network (VLAN) via such a
connection. Another possibility is that a local branch office may connect to the central database which
is situated in another city. If such a connection fails, the local branch office cannot serve their costumers
anymore which results in a loss of profit.

To protect against connection failure a bank buys a backup connection such that in case the primary
connection fails, the backup connection takes over. However, the ISP’s do not guarantee for 100% that
the backup connection is operational when the primary connection fails. It is possible that whatever
causes the primary connection to fail also causes the backup connection to fail. An example is when the
primary and backup connection share some resources, thus creating a Single Point of Failure: if such a
resource fails then both connections fail at the same time.

Our objective is to check if the primary and the backup connection “meet” somewhere other than at
the two points they connect. We propose to do this via topology discovery: if we know the topology of the
network and also how the connections run through the network, then we can see if the connections share
resources. A lot of research and work has been done to recover the Network layer (ISO layer 3) topology
of connections via the use of the Internet Protocol, e.g. the RocketFuel project [Spr04]. However, since
the Network layer topology consists of routers and servers it does not provide a good view on the physical
topology of the network. For instance; several virtual servers with different IP addresses may run on the
same physical device. For a visualisation of different abstraction layers in computer networks, see Figure
1.1, which is taken from [Wik14].

Two connections that seem disjoint on the Network layer can physically still share resources. Switches

Figure 1.1: Different abstraction layers in a computer network.
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CHAPTER 1. INTRODUCTION

and bridges, which are normally ISO layer 2 devices (Data Link layer), are not recognised by the Network
layer. As a consequence, most Network layer topology discovery algorithms which are based on IP
traceroute will not reveal switches and thus create an incomplete picture of the network topology.

In this thesis we will descend to the Data Link layer (ISO layer 2) and present an algorithm that
uses layer 2 protocols to recover the layer 2 topology of the network. We will show how this algorithm
performs and what its limitations are. We will extend the problem of topology discovery into a more
general mathematical setting and analyse some classes of networks that are commonly used by ISP’s.

In addition, we will have a look at the selection process of the two disjoint connections. Given
the network topology (for instance found by using a topology discovery algorithm) we might choose our
connections to optimize robustness. For that purpose we consider different types of robustness and figure
out how “hard” it is to select the two best connections in terms of computational complexity.

1.2 Problem description

We will change the problem of testing disjointness of connections to a problem of topology discovery
and address this problem at the Data Link layer. The idea is that once we know the topology of the
network (on the Data Link layer) and we also know how the connections run through this topology, then
we can easily verify if the connections share common resources (on the Data Link layer). Alternatively,
we can view the connection as a network and recover the topology of the connection itself. In both cases
the topology includes an identifier, a MAC address, for switch ports. As a result we can check if two
connections contain the same identifier, which means they are not disjoint.

One of the problems we will be looking at is discovering the network topology at the Data Link layer
using protocols of Connectivity Fault Management (CFM) (see Section 2.4). Can we discover the full
network topology and under what circumstances?

The second problem that we will consider is the performance of (a generalised version of) topology
discovery. Assuming that it is possible to find the topology using a probing operation, we wish to find
the topology with the least number of probing operations. We want to find upper and lower bounds on
the number of probes and also the expected number of probes needed to find the topology.

The third problem we consider concerns the selection process of the disjoint connections where we
assume to know the network topology together with values on the links representing failure probabilities
of that link. How can we select the best pair of disjoint connections given the network topology and
failure probabilities? When is a pair of disjoint connections considered the best pair? What is the
complexity of finding these optimal pairs?

1.3 Outline of this thesis

First we will have a quick glance at Ethernet, followed by a description of the Connectivity Fault
Management (CFM) protocols in Chapter 2. Connectivity Fault Management contains a very useful
protocol, known as the Linktrace protocol, comparable to the IP traceroute function. Chapter 2 will give
a general description of Connectivity Fault Management and will also provide a technical description of
the Linktrace protocol. In addition, we will cover another CFM protocol: the Continuity Check Message
(CCM) protocol. The CCM protocol allows us to learn how many network elements are on the boundary
of the measured network. These elements can be used to initiate a Linktrace or be used as a target for
a Linktrace.

A theoretic description of a protocol is necessary but for a full understanding we have experimented
and tested the behaviour of the protocol. In Chapter 3 we provide a set of different situations and the
results of initiating both the Linktrace protocol and the Continuity Check Messages.

Once we obtain a good understanding of how the protocols work and what information we can
extract by applying them, we will make the step to topology discovery. In Chapter 4 we will discuss
the advantages and disadvantages of using protocols on the Ethernet layer. Moreover, we propose our
algorithm which, under some constraints, can discover the Ethernet topology of the active Virtual Local
Area Network (VLAN).
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Continuing on the grounds of topology discovery, we will ascend to a more abstract version of topology
discovery in Chapter 5 in which all points in the network can be used as probing points. For a tree and
star network we will present our analysis of how many probing operations are needed in order to recover
the full network topology.

In Chapter 6 we will focus on choosing disjoint connections that maximise robustness in the discovered
network. For that purpose we introduce two important and well-studied 2-Disjoint Path problems and
formulate a new observation which links the solutions of these two problems. We use this observation
to come up with a heuristic which performs a smart search for a better solution than the solution of an
already existing approximation algorithm. We will also show that there is no guarantee that the heuristic
actually finds an improvement.

Finally, in Chapter 7 we will summarize our conclusions and shortly propose some directions for
further research concerning the topology discovery using CFM.
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Chapter 2

Ethernet Operations Administration
and Maintenance

This chapter will give a short introduction on Ethernet, Carrier Ethernet and a special set of func-
tionalities known as Operations, Administration and Maintenance (OAM). In order to provide these
functionalities in an Ethernet setting various standardization organisations have developed a set of pro-
tocols known as Connectivity Fault Management (CFM). The main goal of this chapter is to clarify and
understand the protocols of Connectivity Fault Management as they are described in the standards.

2.1 A short introduction to Ethernet

Ethernet is a technology designed for Local Area Networks (LANs) that works on the Physical and Data
Link layer of the OSI model. Ethernet wraps data in variable sized frames and transports these frames
over the network. Each frame has an Ethernet header containing a source address, a destination address
and error checking data that allows damaged data to be detected.

In an Ethernet network every station (which can be a computer, printer, router, et cetera) listens
to the network and will only start transmitting frames when no other station is using the network at
the moment. When two or more stations start transmitting at the same time, their transmissions will
result in a collision. In case of such a collision, the stations will stop transmitting and wait for a random
period of time before retrying to transmit their frames. In reality there are no collisions anymore due
to micro-segmentation and full-duplex. Micro-segmentation is segmenting the network in transmission
domains by placing switches in the network. Full duplex allows for two directional traffic, e.g. Ethernet
cables use separate pairs of cables to allow data transmission in both directions.

Similar to the IP address in the IP layer, Ethernet uses MAC addresses. Contrary to IP addresses,
MAC addresses are configured at the factory and remain mostly unchanged where IP addresses may
change every day, hour or even minute.

2.2 Carrier Ethernet and Ethernet OAM

Due to its simplicity, easy implementation and success, Ethernet became a popular candidate for Wide
Area Network (WAN) technology. Telecommunications network providers started providing Ethernet
services to customers and utilize Ethernet technology in their networks resulting in Carrier Ethernet.
However, Ethernet was not designed as a carrier-class technology and as a consequence was missing OAM
functionalities. OAM, shorthand for Operations, Administration and Maintenance, is a term referring to
management functionalities such as the ones listed in Table 2.1. In particular, OAM for Ethernet (Eth-
ernet OAM or E-OAM) refers to standards and their protocols involved with operating, administering,
managing and maintaining an Ethernet network. The Institute of Electrical and Electronics Engineers
(IEEE) similarly describes OAM in one of their standards, IEEE 802.1Q [IEE11, p. 19], as follows:

Operations, Administration, and Maintenance (OAM): A group of network manage-
ment functions that provide network fault indication, performance information, and data and
diagnosis functions. (adapted from ATM Forum Glossary).

Observe at this point that Ethernet OAM is not a standard itself, but merely a term for anything that
provides OAM functionalities in an Ethernet network, either carrier-class or local. Table 2.1 shows a
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description of the three OAM categories and what functionalities they contain.

Category Functionalities

Operations
� Automatically and pro-actively monitors environment.

� Quickly detects and isolates faults and recovers from them.

� Alerts administrators.

Administration
� Monitors performance.

� Facilitates capacity planning.

Maintenance
� Performs upgrades.

� Deploys new features.

� Monitors network health.

Table 2.1: Ethernet OAM functionalities by category, as described in [JN10].

Several standardization bodies like IEEE, International Telecommunication Union (ITU) and Metro
Ethernet Forum (MEF) have developed standards which add carrier grade OAM functionalities to Eth-
ernet, enabling the use of Ethernet in carrier networks1. Although these standards for Ethernet OAM
originated from requirements of the telecommunication network providers, they can be used for standard
switched Ethernet networks as well. These standards imply injecting extra frames in the network, such
that devices can communicate and react to each other by means of these special OAM frames.

2.3 E-OAM layers and standards

In the setting of a carrier network, three different parties arise naturally: the operator, the service
provider and the customer. The operator is the party owning and managing network equipment like
switches, routers, servers and the cables/wires connecting all the equipment. The service provider is the
party providing services towards customers over the networks of the operators and the customer is the
party that pays for a service provided by a service provider. An example of such a service is a data
connection with a guaranteed bandwidth between two geographically separated office buildings. This
allows the two offices to operate on the same VLAN. An operator can also directly provide a service to a
customer, such that the operator is also the service provider. This means that an organization can fulfill
more than one role.

Continuing with the idea of three different roles, the level on which Ethernet OAM functionalities
work can be split in three categories. Each of these categories roughly corresponds to one of the roles;
operator, service provider or customer.

Transport Layer: The transport layer is responsible for detecting “link down” failures and notifying
higher layers. It operates between two directly connected peers (port to port) and ensures that
they maintain bidirectional communication. This layer also monitors the link quality to ensure
that the performance meets an acceptable level. The transport layer roughly corresponds to the
operator party.

Connectivity Layer: This layer is also known as the Network Layer. It monitors the path between
two non-adjacent devices and roughly corresponds to the service provider party.

1Note that E-OAM is not sufficient to have carrier grade Ethernet. E.g. one needs a Quality of Service before Ethernet
is of carrier grade.
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Service Layer: This layer measures and represents the status of the services as seen by the customer.
It produces metrics that need to be monitored in order to confirm that the Service Level Agree-
ments, contracted between the service provider and a customer, are satisfied. The service layer
roughly corresponds to the customer party.

Section 2.2 already stated that three standardization bodies have developed several standards for
Ethernet OAM. We will provide a description of a selection (inspired by technical reports and presentation
[JN10; PM11; Das09]) of a few standards relevant to our cause.

MEF 16 is a standard developed by the Metro Ethernet Forum. The common name for MEF 16
is E-LMI: Ethernet Local Management Interface. MEF 16 provides protocols and mechanisms used
for notification of adding, deleting or status changes of Ethernet Virtual Connections (EVC). Such an
Ethernet Virtual Connection can be either active, not active or partially active. The abstract of MEF
16 [MEF06, p. 1] provides the following description:

The E-LMI procedures and protocol are used for enabling auto configuration of the customer
edge to support Metro Ethernet services. The E-LMI protocol also provides a user-network
interface and Ethernet Virtual Connection status information to the customer edge. The
user-network interface and Ethernet Virtual Connection information enables automatic con-
figuration of customer edge operation based upon the Metro Ethernet Network configuration.

The abstract mainly describes automatic configuration of customer edge devices, devices that are on
the boundary between the customer and the service provider. Anything on the customers side of the
customer edge is maintained and operated by the customer himself.

IEEE 802.3ah [IEE12, Clause 57] is a standard developed by the Institute of Electrical and Electronics
Engineers and is also known as Link Layer OAM or Ethernet in the First Mile. This standard provides
mechanisms useful for monitoring link operation. More specific, this standard only focuses on the data
link layer and is therefore only applicable to a single link at the time between two devices. It does not
monitor multiple links at the same time. That means that this standards resides in the Ethernet OAM
Transport layer.

The standard IEEE 802.1Q is also a standard developed by the Institute of Electrical and Electronics
Engineers and is more commonly known as Connectivity Fault Management. This standard provides
three protocols that can detect, verify and isolate connectivity faults: Continuity Check protocol, Loop-
back protocol and Linktrace protocol. The concepts, elements and protocols defined by this standard
can be applied at all Ethernet OAM layers. Therefore this standard can also be used to monitor a single
link. However, when this standard is restricted to only one link it is not the same as IEEE 802.3ah. For
one, frame loss measurement is described in IEEE 802.3ah and not in IEEE 802.1Q.

The International Telecommunication Union (ITU) developed a standard, ITU-T Y.1731 [ITU11],
which also describes Connectivity Fault Management, and even adds some more functionalities that are
not covered by IEEE 802.1Q like performance management. For the remainder of this thesis, the part
which is covered by both the standards ITU-T Y.1731 and IEEE 802.1Q is referred to as Connectivity
Fault Management (mainly the three protocols mentioned above and the respective concepts on which
these protocols are based). Connectivity Fault management is covered in more detail in Section 2.4. The
other standards are not covered in detail since they will not be used in this thesis.

Figure 2.1 shows the four standards mentioned above and on what Ethernet OAM layers they work.

Transport

Connectivity

Service

802.1Q /

Y.1731

802.3ah

MEF16

Figure 2.1: Four main standards operating on the E-OAM layers.
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Although almost all literature considered in this thesis refer to the standard IEEE 802.1ag, the
Institute of Electrical and Electronics Engineers (IEEE) lists 802.1ag as “superseded” on their website.
The newer standard IEEE 802.1Q [IEE11] has replaced IEEE 802.1ag as of 2011 as active standard.
The protocol descriptions in section 2.4 will follow the directions of the most recent and active standard
IEEE 802.1Q.

2.4 Connectivity Fault Management (CFM)

Connectivity Fault Management is described in IEEE standard 802.1Q, ITU-T Y.1731 and in MEF 30.1
and is sometimes referred to as Service Layer OAM. In contrast to what the name Service Layer OAM
suggests, Connectivity Fault Management does not primarily operate at the service layer of Ethernet
OAM. It can be applied at every layer, transport, connectivity and service.

Connectivity Fault Management introduces the concepts of Maintenance Domains, Maintenance End
Points and Maintenance Intermediate Points. These concepts will be explained in Section 2.4.1. In
addition, CFM also provides three protocols that can be used to detect and isolate connectivity faults.
These protocols are described in Section 2.5.

2.4.1 Maintenance Domains, End Points and Intermediate Points

Both the standards IEEE 802.1Q and ITU-T Y.1731 define the concepts of Maintenance Domains,
Maintenance End Points and Maintenance Intermediate Points, but the naming differs between the two.
We will adapt the naming of IEEE 802.1Q and the corresponding naming of ITU-T Y.1731 is listed in
Table 2.2.

Connectivity Fault Management divides the network in several hierarchical domains called Mainten-
ance Domains. Different Maintenance Domains may be nested within each other but they may never
overlap, see Figure 2.2. Each Maintenance Domain (MD) is the part of a network that is controlled by

A B

(a) Allowed: disjoint MDs.

A

B

(b) Allowed: nested MDs.

A B

(c) Not allowed: overlapping
MDs.

Figure 2.2: Different configurations of two Maintenance Domains A and B.

a single administrator and in which the Connectivity Fault Management is enabled. Each Maintenance
Domain is assigned a level number ranging from 0 to 7 (meaning there are at most 8 levels). This number
is called the MD level and corresponds to the defined hierarchy. Although 8 levels have been provided,
not all of them need to be used. For example in Figure 2.3 MD A may have level 7, B level 4 and C
level 0. The higher a MD’s level, the broader its reach. That is, a level 5 MD might contain several level
4 MDs and the level 5 MD spans at least as many devices as the level 4 MD (although not all devices
need to respond to the level 5 MD). The Metro Ethernet Forum proposes an allocation of MD levels,
described in [MEF12], such that:

� MDs operating on the E-OAM Service layer have MD level 5, 6 or 7,

� MDs belonging to service providers operating on the E-OAM Connectivity layer have MD level 3
or 4,
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� MDs belonging to operators operating on the E-OAM Connectivity layer have MD level 0, 1 or 2,

� MDs operating on the E-OAM Transport layer have default MD level 0.

An operator defines CFM reference points that initiate and react to CFM messages. These reference
points can be of two types:

MEP: Maintenance Domain End Point, a reference point that can initiate and react to CFM protocols.
A MEP is a reference point on the boundary of the network. MEPs are configured on device ports.
In a diagram they are displayed using the symbols ◀ and ▶. The triangle points towards the
direction in which the MEP communicates.

MIP: Maintenance Domain Intermediate Point, a reference point that can only react to CFM protocols.
It does not initiate CFM protocols and lives inside the network, not on the boundary. In this thesis
a MIP will be represented by the symbol uin diagrams.

When an operator has configured MEPs and MIPs inside a Maintenance Domain, IEEE 802.1Q states
that the collection of these MIPs and MEPs forms a Maintenance Association (MA) which receives a
unique identifier; a Maintenance Association Identifier (MAID). A MEP is uniquely bound to a Main-
tenance Association. It will only react to frames targeted at or originating from its own Maintenance
Association. ITU-T Y.1731 does not differentiate between a Maintenance Domain and a Maintenance
Association and uses the name MEG (Maintenance Entity Group) for a Maintenance Domain.

Reference points should only process protocol messages that belong to the associated Maintenance
Domain and thus only the messages that belong to the same MD Level and contain the same MAID. A
reference point should discard all messages that belong to a lower MD level and it should forward all
messages belonging to a higher MD level.

This does not apply to MIPs. The standard IEEE 802.1Q provides an overview of frame routes
through a MIP, provided in [IEE11, p. 860, Figure 19.3], in which it clearly shows that if the MD level
is not equal to the MIPs MD level, the frame should be forwarded without changing it.

Discarding lower level CFM frames ensures that messages do not leave their MD. As a consequence,
a MD is only aware of the MDs that are nested directly within itself. Consider Figure 2.3. Protocol
messages belonging to MD C are discarded by any MEPs belonging to B. These protocol messages
will never reach A and therefore A is not aware of the existence of C (if the Maintenance Domain is
configured properly).

A B C

Figure 2.3: Three nested MDs: A, B and C. A is only aware of B and cannot
see C.

MEPs come in two varieties: up and down. An up or inward-facing MEP is pointed away from the
wire connected to the port on which it is configured, and is pointed towards the switch relay. A down
or outward-facing MEP is pointed towards the wire connected to the port it is configured on and away
from the switch relay. Typically, up MEPs are only used in switches while down MEPs can be used in
both switches and routers. The difference between an up and a down MEP is visualized in Figure 2.4.

Since the MEPs and MIPs are configured at ports, one should take in account what happens when a
spanning tree protocol (STP) is in operation. The (Rapid) Spanning Tree Protocol [IEE04, Clause 17]
ensures that a switched network has a loop-free communication flow. For that purpose it constructs a
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Switch

wire 1 wire 2

Relay Entity

◀
◀ = down MEP

◀

◀ = up MEPPort 1 Port 2

Figure 2.4: The difference between an up and a down MEP.

spanning tree by blocking certain links that are part of a loop. If those loops would be allowed, frames
can circulate through these loops, being multiplied each time they arrive at a switch and thus causing
so called “broadcast storms”.

The spanning tree protocol can block a certain port on which a MEP or a MIP is configured such
that the MEP or MIP might be disconnected from the domain it belongs to. This thesis assumes that
MIPs and MEPs react to the Spanning Tree protocol as described in both Juniper ([JN14]) and Cisco
([Cis]) manuals for configuring Ethernet OAM. They state the following:

� If a down MEP is configured on a port which is blocked by the spanning tree protocol, then the
MEP can still transmit and receive CFM packages using the wire to which the port is connected.
Consider Figure 2.4 and suppose port 1 is in a STP blocking state. Then the red MEP at port 1
can still transmit and receive CFM packages using wire 1.

� If an up MEP is configured on a port which is blocked by the spanning tree protocol, then the
MEP can no longer transmit or receive CFM messages. Consider Figure 2.4 and suppose port 2
is in a STP blocking state. Then the blue MEP at port 2 can no longer transmit or receive CFM
messages.

� If a MIP is configured on a port which is blocked by the spanning tree protocol, then the MIP can
still receive and respond to CFM messages on the wire connected to the port, but it can no longer
receive or forward CFM messages to the relay side.

IEEE 802.1ag ITU-T Y.1731

ME Maintenance Entity ME Maintenance Entity
MA Maintenance Association MEG ME Group
MAID MA Identifier MEGID MEG Identifier
MD Maintenance Domain -
MD Level MD level MEG Level MEG level
MEP MA End Point MEP MEG End Point
MIP MA Intermediate Point MIP MEG Intermediate Point

Table 2.2: Difference in naming between the two CFM standards (according
to [Fin04]).

2.5 Connectivity Fault Management protocols

Both IEEE 802.1ag and ITU-T Y.1731 provide three protocols that can be used to detect and isolate
connectivity faults. The three protocols are:

� Continuity Check: a protocol that allows detection of connectivity faults,
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� Loopback: a layer 2 (ISO layer) ping protocol,

� Linktrace: a layer 2 (ISO layer) traceroute protocol.

The data packets or frames used in these protocols are called CFM packets. Each of these packets
contains a source address belonging to the reference point that created the packet. The packets also
contain a MD identification and a MD level. Moreover, each packet contains some protocol dependent
information and some more information which is not of importance for the scope of this research.

For completeness of information we will cover all three protocols, although we will not use the
Loopback protocol. The most important protocol that we use is the Linktrace protocol. We will also
use the Continuity Check Message protocol but only to make an inventory of the MEPs in the network.

2.5.1 Continuity Check Message Protocol

The Continuity Check Message protocol is used to detect connectivity faults within a Maintenance
Association (MA). In order to use the Continuity Check Message (CCM) protocol, each MEP must be
configured with the following:

� A Maintenance Association Identifier (MAID),

� A Maintenance Domain level (MD level),

� A MEP Identifier (MEP ID),

� List of all MEPs in the MA (a list of MEP IDs).

Each MEP periodically sends a Continuity Check Message (CCM) into the network. This message is a
multicast message and is received by all other reference points in the same MA. The transmission period
tccm of CCMs, the period between two consecutive CCM messages of a MEP, can be configured to be
one of 3.33ms, 10ms, 100ms, 1s, 10s, 1min or 10min. Once a Continuity Check Message has reached a
MEP, its path ends. The MEPs do not send a reply to the CCMs.

MIPs do not generate Continuity Check messages and only react to them in the sense that they
forward the CCMs without altering them. Therefore the MIPs are called transparent with respect to the
Continuity Check protocol. This is consistent with the idea that MIPs do not initiate CFM protocols
but only react to them.

The Continuity Check Protocol can detect the following connectivity faults (listed in IEEE 802.1Q,
[IEE11]):

� Inability of a MEP to receive three consecutive CCMs from any one of the other MEPs in its MA,
indicating either a MEP failure or a network failure;

� Reception by a MEP of a CCM with an incorrect transmission interval, indicating a configuration
error;

� Reception by a MEP of a CCM with an incorrect MEPID or MAID, indicating a configuration
error or a cross connect error;

� Reception by a MEP of a CCM with a MD Level lower than that of the MEP, indicating a
configuration error or a cross connect error;

� Reception by a MEP of a CCM containing a Port Status TLV or Interface Status TLV indicating
a failed Switch Port or aggregated port.

Figure 2.5 shows how the Continuity Check messages travel through a network. The Continuity Check
messages are carried within an Ethernet frame that has a destination MAC address 01-80-C2-00-00-3y,
where y corresponds to the MD level of the CCM.
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u

u= MIP

◀

◀ = MEP 1

CCM

▼

▼, ▶ = other MEPs

▶

Figure 2.5: Continuity Check Message sent by the red MEP 1.

2.5.2 Loopback Protocol

The loopback protocol is an Ethernet ping protocol and is used to check the connectivity between a
MEP and another reference point (MIP or MEP). The loopback protocol defines two types of messages:
a loopback message (LBM) and a loopback reply (LBR). A loopback message contains a destination
address and the destination point (target reference point) is the only reference point that replies to the
loopback message. The source of a loopback message is always a MEP (MIPs can not initiate protocols).
The target of a loopback message can be either a MIP or a MEP. When a loopback message has reached
its destination, the target reference point will reply to the source MEP with a loopback reply. Figure
2.6 shows a MEP sending a loopback message to a MIP.

▶

▶ = source MEP
LBM

u

u= target MIP

LBR

u

Figure 2.6: A loopback message (LBM) with the red MEP as source and the
blue MIP as target. The MIP sends an answer in the form of a loopback reply
(LBR) towards the source MEP.

A loopback message requires a destination address. MIPs do not broadcast their addresses by the
Continuity Check Protocol and therefore MEPs need to learn the existence and addresses of MIPs by
means of the Linktrace Protocol before they can send a Loopback Message towards a MIP.

2.5.3 Linktrace Protocol

The Linktrace protocol is used to recover the path between a MEP and another reference point in a
Maintenance Domain and is initiated by a message called a Linktrace Message (LTM). This means that
the target reference point can be either a MIP or a MEP. The Linktrace Message is carried in a Ethernet
frame targeted at the multicast address 01-80-C2-00-00-3y, where y is 8 plus the corresponding MD level
of the LTM. The Linktrace Message itself carries the destination address of the target MEP or MIP.

A network element with CFM capabilities has a Linktrace responder. This responder is responsible
for dealing with Linktrace Messages. The Linktrace Message only reaches the Linktrace responder if it
is deflected by a MIP or MEP at the right level. That means that if a Linktrace Message is sent at level
1, only level 1 MIPs and level 1 MEPs will deflect this Linktrace Message to the Linktrace responder.
The Linktrace responder will reply to the LTM if one of the two following is true:

1. The network element where the MIP or MEP resides is aware of the target MAC address in the
Linktrace request information and associates it to a single egress port, where the egress port is not
the same as the port on which the frame with ETH-LT request information was received; or,
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2. The target MAC address is the same as the MIP’s or MEP’s own MAC address.

A reply message consists of a Linktrace Reply inside an Ethernet frame. However, in this case the
Ethernet frame will not contain a multicast address but the unicast MAC address of the source MEP.

In addition, if the LTM is received by a MIP which is not the target of the LTM, then the Linktrace
responder also forwards the LTM and additionally decrements the LTM Time To Live (TTL) value by
one. This value is given to the LTM message to identify the amount of hops taken to reach the target.
This TTL value is then copied in the Linktrace reply message such the source MEP knows which hop
belongs to which MIP or MEP and can thus sort the Linktrace replies by the traveling order. Figure 2.7
shows the message flow of a Linktrace protocol, issued by the red MEP.

▶

▶ = source MEP
◀ = target MEP

LTM message
LTR message

1 3 5

▼

◀u u2

4

6

Figure 2.7: A Linktrace Protocol. The red dashed arrows represent LTMs send
by the red MEP and the blue dashed arrows represent LTRs.

It is not always the case that every MIP and MEP sends a reply to the Linktrace Message, even
though they are at the right level. How and when the Linktrace responder reacts to a Linktrace Message
is described in [IEE11, Section 20.47.1], the section which describes the function ProcessLTM() of the
Linktrace responder. Although this function seems to have quite a lot of distinctions between situations,
the following abstract description of the rules suffices for the purpose of this research:

1. A Linktrace responder will only send one reply message, even though the path towards the target
passes through two maintenance points on the switch on which the Linktrace responder resides.

2. A Linktrace responder will not respond if the path through the switch does not encounter any
maintenance points on the same level as the source MEP of the Linktrace Message. In other
words, if a LTM passes through two ports on a switch of which neither of them has a Maintenance
Point configured at the right level, the LTM is never deflected to the Linktrace responder and the
Linktrace responder will therefore never respond.

How these rules influence the Linktrace Replies will become clear in Chapter 3: CFM Protocols In
Action.
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Chapter 3

CFM Protocols In Action

Reading descriptions of standards is one way of getting familiar with them, yet it is as informative to
experiment with the standards and their protocols and get some hands on experience. This chapter covers
the setup and findings of these kind of experiments to further understand the protocols of Connectivity
Fault Management. The focus of the tests is on the three protocols of CFM: to initiate them in different
scenario’s or setups and study the reply messages and the information learned and stored by the switches.

The Continuity Check Messages sent by MEPs indicate how many MEPs are configured in the
maintenance domain. MEPs are always on the boundary of a maintenance domain. The Continuity
Check protocol can therefore help in determining the amount of boundary points and that gives partial
information on the topology of the network. The setups Alfa through Echo deal with extracting the
CCM information stored by the MEPs and MIPs. These five configurations have only one Maintenance
domain configured. The setups Foxtrot and Golf deal with multiple Maintenance Domains.

Recall that the Loopback protocol is meant to check the connectivity between a MEP and another
maintenance point. It is not designed to be used for topology recovery. In the Alfa configuration the
Loopback protocol is initiated once in order to confirm that indeed there is no additional information to
be learned from the Loopback protocol.

The description of the Linktrace protocol by standard IEEE 802.1Q [IEE11, Section 20.3] requires that
every MIP or MEP that is on the path towards the target maintenance point replies with a Linktrace
Reply message. However, an earlier section of that very same standard [IEE11, Section 19.6] states
that every switch entity has only one Linktrace Responder which serves all the maintenance points
configured on that switch. This raises some questions on the reception of LTMs, their processing and the
construction of LTRs. In particular we check the implementation of CFM of a given vendor in a given
Operating System of the switches.

For the purpose of testing and observing network protocols, TNO has a special computer laboratory
with many types of computer hardware. This includes four service delivery and aggregation switches;
switches which are typically used by telecommunication providers. These four switches were used in
experiments and tests for this research. In this thesis, the reference to the switches remains constant by
the use of the notation Si, 1 ≤ i ≤ 4. In other words, Si always refers to the same switch for every i, and in
particular: S1 is always the same switch. That explains why in some figures (e.g. Figure 3.1) the naming
of the switches is not in the traditional clockwise (or anti-clockwise) direction, but consistent with the
actual set-up at the time of the tests. Also we have obfuscated the MAC addresses of the switches in
the output.

3.1 Alfa configuration

The Alfa test configuration consists of four switches: S1, S2, S3 and S4. They constitute a star topology
with S3 as center; S3 is connected to all other switches while all switches S1, S2 and S4 are only connected
to S3. The switches S1, S2 and S4 have down MEPs configured on the ports that connect to S3, and S3

has MIPs configured on each port that is connected to one of the other switches. See Figure 3.1 for a
graphical layout of the Alfa test configuration.

3.1.1 Remote MEP Information

In contrary to what IEEE 802.1Q and ITU-T Y.1731 demand, the vendor specific implementation of
CFM does not require MEPs on switches S1, S2, S3 and S4 to be configured with all remote MEP IDs.
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Figure 3.1: The switch configuration of the Alfa experiment. Si is switch i, pj
stands for port j and the number next to each MEP is the configured MEP
ID.

The switches provide the functionality to automatically detect remote MEPs by listening to Continuity
Check messages. In order to see what information the MEPs get from the Continuity Check messages,
the MEPs were not configured with remote MEP IDs and the auto discovery was enabled. Requesting
the remote MEP info from switch S1 resulted in the output given in Table 3.1. For an explanation of
the relevant parameters, see Table A.1 in Appendix A.1.

+------------------------------ CFM REMOTE MEPS -------------------------------+

| | | |State|Total |Seq |Last |Fault|

|Service |Mepid|Mac Address |Ad|Op|Rx CCM |Error|Seq Num |F|P|R|

+----------------+-----+-----------------+--+--+---------+-----+---------+-+-+-+

|alfa |2 |AA:BB:CC:DD:EE:03|en|en|1006 |0 |1006 | | | |

+----------------+-----+-----------------+--+--+---------+-----+---------+-+-+-+

|alfa |3 |00:11:22:33:44:C4|en|en|997 |0 |997 | | | |

+----------------+-----+-----------------+--+--+---------+-----+---------+-+-+-+

Table 3.1: Output of remote MEP information request.

Clearly, the CCMs (Continuity Check Messages) contain the MEP ID and MAC address of the remote
MEPs. Other than that, the CFM Remote MEPs overview does not provide any more information useful
for topology recovery. Additional to viewing all remote MEPs it is also possible to focus on a single
remote MEP. Remember that also this information is only recovered from the CCMs, and not configured
beforehand. It appears that the only information relevant for the topology of the network learned by
listening to the CCMs, is the MAC address and the MEP ID. For an overview of the information on a
single MEP, see Appendix A.2, Table A.2.

MEPs are not the only maintenance points that can listen to the CCMs. MIPs can also listen to the
CCMs, and switches S1 to S4 provide a configuration such that MIPs store CCM information. They
create a list of MEPs in the Maintenance Domain which can be accessed and viewed. See Table 3.2 for
the output of an MIP CCM database request.

Interestingly, the vendor specific implementation of CMF is such that the MIP CCM database contains
information which is useful for recovering the topology of the network: the port number on which the
queried switch finds the MEPs. The MIPs keep track of the port numbers on which the MEPs can be
found. Consider Table 3.2: it shows that the MEP with MEP ID 1 can be found through port 1. Note
that this information is not carried in the Continuity Check messages but it is determined by the switch
or MIP itself. The Bravo 3 setup shows what the MIP CCM database looks like if not all ports have
MIPs configured. In addition, the Charlie 2 setup shows what the MIP CCM database looks like if MIPs
and an up MEP are configured on the same switch.
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+------------------------------ MIP CCM Database ------------------------------+

| | | |Total | Last CCM Information |

|VLAN| MAC Address |Port |CCM Rx |Seq Num |Time |Lv|Mepid| PS |RDI|

+----+-----------------+--------+---------+---------+--------+--+-----+----+---|

|1 |AA:00:BB:11:CC:93|1 |859236 |1128 |0 |2 |1 |Up | |

|1 |AA:BB:CC:DD:EE:03|2 |2724 |1159 |0 |2 |2 |Up | |

|1 |00:11:22:33:44:C4|3 |2716 |1121 |0 |2 |3 |Up | |

+----+-----------------+--------+---------+---------+--------+--+-----+----+---|

Table 3.2: Output of local MIP CCM database request on switch S3.

3.1.2 Initiating the Loopback Protocol

In this configuration, the Loopback protocol was initiated with source MEP 1 and target MEP 2. The
resulting output is in Table 3.3. The output does not provide any information on the topology of the

+--------------------------- MEP LOOPBACK MESSAGE INFORMATION ----------------------------+

| |Local|Remote |Rem |Next | LBM | Rx LBR | Loss |

|Service |Mepid|Mac Address |Mepid|Seq Number|Tx |ToTx|Io |Ooo |Con | |

+----------------+-----+-----------------+-----+----------+----+----+----+----+----+------|

|alfa |1 |AA:BB:CC:DD:EE:03|2 |2 |1 |0 |1 |0 |0 |0 |

+----------------+-----+-----------------+-----+----------+----+----+----+----+----+------|

Table 3.3: Output of a Loopback protocol with source MEP 1 and target MEP
2.

network other than the remote MAC address which can also be found by querying the MEPs or MIP
CCM databases. The Loopback protocol is therefore not considered in remainder of this thesis.

3.1.3 Initiating the Linktrace Protocol

In this configuration, the Linktrace protocol was initiated three times since there are (
3
2
) = 3 possible

pairs of source and target MEPs in the Alfa setup. The results were symmetric in the MEP IDs and
therefore only one Linktrace result is presented. The resulting output consists of two parts: the Linktrace
Message in Table 3.4, and a list of Linktrace replies in Table 3.5. The relevant parameters are explained
in Appendix A: Connectivity Fault Management information requests, Table A.3.

+----------------------------- Linktrace Message ------------------------------+

| | | | | Target | | | |

|Service |Port |Vlan|Mep |Mac Address |Mepid|Trans Id |Ttl|FDB|

|----------------+--------+----+----+-----------------+-----+----------+---|---+

|alfa |2 |1 |1 |AA:BB:CC:DD:EE:03|2 |1 |64 |No |

+----------------+--------+----+----+-----------------+-----+----------+---|---+

Table 3.4: Output of a Linktrace protocol with source MEP 1 and target MEP
2: Linktrace Message.

The presented Linktrace had source MEP 1 on switch s1 and target MEP 2 on switch S2. This can
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+--------------------------------- Linktrace Responses ----------------------------------------+

| |Ttl| | Remote MP | Relay |Flags| | |

|Ttl|Idx|Trans | Mac Address |Action |FY|TM| Ingress TLV | Egress TLV |

| | | Id | | | | | | |

+---+---+------+-----------------+-------+--+--+-----------------------+-----------------------+

|62 |1 |1 |AA:BB:CC:DD:EE:03|Hit | |X |MAC: AA:BB:CC:DD:EE:03 |MAC: |

| | | | | | | |Port: 2 |Port: |

| | | | | | | |Action: Ok |Action: undef |

+---+---+------+-----------------+-------+--+--+-----------------------+-----------------------+

|63 |1 |1 |A1:B2:C3:D4:E5:92|MFDB |X | |MAC: A1:B2:C3:D4:E5:92 |MAC: A1:B2:C3:D4:E5:93 |

| | | | | | | |Port: 1 |Port: 2 |

| | | | | | | |Action: Ok |Action: Ok |

+---+---+------+-----------------+-------+--+--+-----------------------+-----------------------+

Table 3.5: Output of a Linktrace protocol with source MEP 1 and target MEP
2: Linktrace Replies.

also be seen in the Linktrace Message shown in Table 3.4. Moreover, it shows an initial TTL value of
64, which is the default value configured on switches S1 to S4.

First consider the amount of Linktrace replies. Based on the topology of this setup the expected
amount of Linktrace replies would be two: one LTR from switch S3 and one LTR from the target MEP.
Remember from Section 2.5.3 that a Linktrace responder will only send one reply, even though two MIPs
are configured on the same switch. Indeed, Table 3.5 shows two LTRs, and the path from MEP 1 to
MEP 2 passes two MIPs which are on the same switch S3.

Secondly, observe that the TTL values are indeed decreasing among the replies as the Linktrace
message comes closer to the target. The first entry in Table 3.5 shows a Hit, meaning that the LTM
reached its target. That reply message has TTL 62. Combining this with the initial value of 64, it means
that the target MEP is 64 − 62 = 2 hops away from the source MEP. In addition, these hops are known
to be physical hops (e.g. switches) since a device sends at most one reply.

Finally, notice that the MAC addresses of the Ingress and Egress port of the second entry in Table
3.5 are distinct. Also, these MAC addresses are not the same as the chassis MAC of S3, which is
A1:B2:C3:D4:E5:90.

3.2 Bravo configurations

The Bravo configurations are almost the same as the Alfa configuration, but they differ in the amount of
MIPs configured on S3. Four variations on the Alfa configuration have been used to initiate and observe
the Linktrace Protocol, and only one has been used to query the MIP CCM database (Bravo 3). The
four configurations are:

� Bravo 1: S3 only has MIPs configured on ports 1 and 2.

� Bravo 2: S3 only has MIPs configured on ports 1 and 3.

� Bravo 3: S3 only has a MIP configured on port 1.

� Bravo 4: S3 has no MIPs configured.

3.2.1 Bravo 1 and 2

The Bravo 1 and 2 configurations are very much alike and can be considered symmetric. For the
configuration of Bravo 1, see Figure 3.2 and for Bravo 2 see Figure 3.3.

In each of the two configurations a Linktrace was initiated with source MEP 2 and target MEP 3.
In that way, the LTM should pass through two ports of S3, ports 2 and 3, on which only one of those
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Figure 3.2: The switch configuration of the Bravo 1 experiment. Si is switch
i, pj stands for port j and the number next to each MEP is the configured
MEP ID.
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Figure 3.3: The switch configuration of the Bravo 2 experiment. Si is switch
i, pj stands for port j and the number next to each MEP is the configured
MEP ID.

two ports has a MIP configured. The Linktrace replies of Bravo 1 are listed in Table 3.6 and the replies
of Bravo 2 are listed in Table 3.7.

The Linktrace replies confirm that the Linktrace responder does not have any information on ports
that have no MIP (or MEP) configured. In the Bravo 1 configuration, switch S3 has no MIP configured
on port 3. The path of the LTM goes through S3; it enters at port 2 and leaves through port 3, meaning
that port 3 is the egress port. However, since port 3 has no MIP configured, the Linktrace responder
does not know about port 3 and therefore the egress values are unknown in Table 3.6, second row (with
TTL of 63). This row corresponds to the LTR from the Linktrace responder of S3. Similarly, the ingress
values of the second row in Table 3.7 are unknown because in the Bravo 2 setup the ingress port on the
path of the LTM, port 2, has no MIP configured.

3.2.2 Bravo 3

The Bravo 3 configuration is different from the Alfa configuration in that it only has a MIP configured
on port 1 of switch S3. The configuration can be seen in Figure 3.4.

The Bravo 1 and 2 configurations showed that the Linktrace responder is not aware of any ports that
have no MIPs configured on them. The Alfa setup showed that the MIP CCM database knows which
MEP can be reached from what port. So what knowledge does the MIP CCM database have if not all
ports have a MIP configured? In this configuration (Bravo 3) the MIP CCM database was queried, and
the result is in Table 3.8.
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+-------------------------- Linktrace Responses -----------------------------------------------+

| |Ttl| | Remote MP | Relay |Flags| | |

|Ttl|Idx|Trans | Mac Address |Action |FY|TM| Ingress TLV | Egress TLV |

| | | Id | | | | | | |

+---+---+------+-----------------+-------+--+--+-----------------------+-----------------------+

|62 |1 |2 |00:11:22:33:44:C4|Hit | |X |MAC: 00:11:22:33:44:C4 |MAC: |

| | | | | | | |Port: 3 |Port: |

| | | | | | | |Action: Ok |Action: undef |

+---+---+------+-----------------+-------+--+--+-----------------------+-----------------------+

|63 |1 |2 |A1:B2:C3:D4:E5:93|MFDB |X | |MAC: A1:B2:C3:D4:E5:93 |MAC: |

| | | | | | | |Port: 2 |Port: |

| | | | | | | |Action: Ok |Action: undef |

+---+---+------+-----------------+-------+--+--+-----------------------+-----------------------+

Table 3.6: Linktrace replies of the Linktrace protocol in Bravo 1, with source
MEP 2 and target MEP 3.

+-------------------------- Linktrace Responses -----------------------------------------------+

| |Ttl| | Remote MP | Relay |Flags| | |

|Ttl|Idx|Trans | Mac Address |Action |FY|TM| Ingress TLV | Egress TLV |

| | | Id | | | | | | |

+---+---+------+-----------------+-------+--+--+-----------------------+-----------------------+

|62 |1 |3 |00:11:22:33:44:C4|Hit | |X |MAC: 00:11:22:33:44:C4 |MAC: |

| | | | | | | |Port: 3 |Port: |

| | | | | | | |Action: Ok |Action: undef |

+---+---+------+-----------------+-------+--+--+-----------------------+-----------------------+

|63 |1 |3 |A1:B2:C3:D4:E5:94|MFDB |X | |MAC: |MAC: A1:B2:C3:D4:E5:94 |

| | | | | | | |Port: |Port: 3 |

| | | | | | | |Action: undef |Action: Ok |

+---+---+------+-----------------+-------+--+--+-----------------------+-----------------------+

Table 3.7: Linktrace replies of the Linktrace protocol in Bravo 2, with source
MEP 2 and target MEP 3.

Clearly, the MIP CCM database still knows on what port number the CCMs of the MEPs arrive,
even though not all of these ports have a MIP configured. That gives a lot of information concerning
the topology; if the switch on which the MIP resides is considered as a vertex in a graph then the MIP
CCM database indicates the degree of this vertex and also what MEPs can be reached through which
“edge” (or port).

Concerning the Linktrace protocol, Section 2.5.3 Linktrace Protocol presented an abstract rule stat-
ing that A Linktrace responder will not respond if the path through the switch does not encounter any
maintenance points on the same level as the source MEP of the Linktrace message. To confirm this, a
Linktrace was initiated with source MEP 2 and target MEP 3. The LTM will therefore not pass through
port 1 which is the only port on S3 with a MIP configured. The output of the Linktrace is presented
in Table 3.9. It might come as no surprise that indeed only one Linktrace reply is received, since the
LTM did not encounter any MIPs in switch S3. This Bravo 3 configuration shows that this also holds
even when the switch has a MIP configured on other ports (port 1 in this case). This means that, even
though the Linktrace protocol is seen as a layer 2 traceroute, the Linktrace protocol is not able to see a
switch if the path of the LTM does not encounter at least one port with a MIP or MEP configured on
that switch.

3.2.3 Bravo 4

This configuration deals with the situation when no MIPs are configured. The setup is shown in Figure
3.5. It follows naturally that the MIP CCM database of switch S3 is empty in this case: there are no

20 Verifying and optimising disjoint paths in ISP networks



CHAPTER 3. CFM PROTOCOLS IN ACTION

S1 S3 S2

S4

▶ u ◀

▲

1 2

3

p2

p1

p3

p2

p2

p3

Figure 3.4: The switch configuration of the Bravo 3 experiment. Si is switch
i, pj stands for port j and the number next to each MEP is the configured
MEP ID.

+------------------------------ MIP CCM Database ------------------------------+

| | | |Total | Last CCM Information |

|VLAN| MAC Address |Port |CCM Rx |Seq Num |Time |Lv|Mepid| PS |RDI|

+----+-----------------+--------+---------+---------+--------+--+-----+----+---|

|1 |AA:00:BB:11:CC:93|1 |146 |3151 |0 |3 |1 |Up | |

|1 |AA:BB:CC:DD:EE:03|2 |5 |3222 |0 |3 |2 |Up | |

|1 |00:11:22:33:44:C4|3 |16 |2852 |0 |3 |3 |Up | |

+----+-----------------+--------+---------+---------+--------+--+-----+----+---|

Table 3.8: The MIP CCM database of switch S3 in the Bravo 3 setup.

MIPs that report incoming CCMs. Also, triggering any Linktrace in this setup has the same type of
output as the Linktrace in the Bravo 3 setup: there is only one Linktrace reply which comes from the
target MEP.
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+---------------------------------- Linktrace Responses ---------------------------------------+

| |Ttl| | Remote MP | Relay |Flags| | |

|Ttl|Idx|Trans | Mac Address |Action |FY|TM| Ingress TLV | Egress TLV |

| | | Id | | | | | | |

+---+---+------+-----------------+-------+--+--+-----------------------+-----------------------+

|63 |1 |1 |00:11:22:33:44:C4|Hit | |X |MAC: 00:11:22:33:44:C4 |MAC: |

| | | | | | | |Port: 3 |Port: |

| | | | | | | |Action: Ok |Action: undef |

+---+---+------+-----------------+-------+--+--+-----------------------+-----------------------+

Table 3.9: The Linktrace replies of the Linktrace protocol initiation in Bravo
3 with source MEP 2 and Target MEP 3.
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Figure 3.5: The switch configuration of the Bravo 4 experiment. Si is switch
i, pj stands for port j and the number next to each MEP is the configured
MEP ID.

3.3 Charlie configurations

The Charlie configurations deal with situations where switch S3 has a MEP configured on port 3, while
the switches remain connected to each other in the same way as in the Alfa and Bravo setups. There
are two Charlie setups:

� Charlie 1: only has a MEP configured on switch S3, port 3.

� Charlie 2: has a MEP configured on port 3, and a MIP on both port 1 and 2 on switch S3.

The purpose of these two configurations is to confirm if the Linktrace protocol indeed follows the rules
stated in Section 2.5.3, especially when there is an up MEP configured on a switch (S3). Secondly, what
does the MIP CCM database look like when a MEP is configured on the same switch as the MIP (note
that this must be an up MEP).

3.3.1 Charlie 1

In the Charlie 1 configuration, LTMs can pass through S3 without having MEP 3 as a target and without
passing a MIP. See Figure 3.6 for the Charlie 1 configuration.

Indeed when a Linktrace is initiated with source MEP 1 and target MEP 2, the only LTR that is
received is from MEP 2 (thus actually the Linktrace responder of switch S2). Clearly the second rule
holds; A Linktrace responder will not respond if the path through the switch does not encounter any
maintenance points on the same level as the source MEP of the Linktrace message.

22 Verifying and optimising disjoint paths in ISP networks



CHAPTER 3. CFM PROTOCOLS IN ACTION

S1 S3 S2

S4

▶

▲

◀1 2

3p2

p1

p3

p2

p2

p3

Figure 3.6: The switch configuration of the Charlie 1 experiment. Si is switch
i, pj stands for port j and the number next to each MEP is the configured
MEP ID.

3.3.2 Charlie 2

In this configuration, switch S3 contains both MIPs and a MEP, see Figure 3.7. The MIP CCM database

S1 S3 S2

S4

▶ u u

▲

◀1 2

3p2

p1

p3

p2

p2

p3

Figure 3.7: The switch configuration of the Charlie 2 experiment. Si is switch
i, pj stands for port j and the number next to each MEP is the configured
MEP ID.

of switch S3 in this configuration is presented in Table 3.10. Remarkably, the MIP CCM database does
not contain information on MEP 3, which also resides on switch S3. Apparently, MIPs do not receive
Continuity Check messages from up MEPs configured on the same switch. That means that if the MIP
CCM databases are used to recover all MEPs, at least two switches should be queried for the MIP CCM
databases. Otherwise the MEPs that are configured on the switch are left out.

The Linktrace protocol, with source MEP 1 and target MEP 2, outputs the expected two LTRs in
this configuration. Thus it behaves similarly to the Alfa configuration and according to rule 1 stated
Section 2.5.3.

In addition, when the Linktrace protocol is initiated with source MEP 1 and target MEP 3 the output
consists of only one LTR. This is indeed how it should behave according to rule 2 stated in Section 2.5.3.
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+------------------------------ MIP CCM Database -----------------------+

| | | |Total | Last CCM Information |

|VLAN| MAC Address |Port |CCM Rx |Seq Num |Time |Lv|Mepid| PS |RDI|

+----+-----------------+-----+--------+---------+-----+--+-----+----+---|

|1 |AA:00:BB:11:CC:93|1 |1046240 |1836 |0 |1 |1 |Up | |

|1 |AA:BB:CC:DD:EE:03|2 |4297 |1825 |0 |1 |2 |Up | |

+----+-----------------+-----+--------+---------+-----+--+-----+----+---|

Table 3.10: The MIP CCM database of switch S3 in the Charlie 2 setup.

3.4 Delta configuration

The Delta configuration deals with the case in which more than one up MEPs are configured on the same
switch. For the setup, see Figure 3.8. When querying the MIP CCM database of switch S3, the resulting
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Figure 3.8: The switch configuration of the Delta experiment. Si is switch i,
pj stands for port j and the number next to each MEP is the configured MEP
ID.

table lists only one remote MEP: MEP 1. This is similar to the case of the Charlie 2 configuration in
which the MEP on the same switch was not listed either.

Initiating the Linktrace protocol with source MEP 2 and target MEP 3 results in an error: Remote
MEP not found. That means that the Linktrace protocol can only be initiated between maintenance
points which are on physically disjoint devices. This makes sense since the Linktrace responder is bound
to the switch, and not to the maintenance points.

3.5 Echo configuration

This configuration is only for testing the MIP CCM database when CCMs of multiple MEPs arrive at
the same port of the switch on which the MIP is configured. For the configuration, see Figure 3.8.

Switch S1 was queried for the MIP CCM database and the output is in Table 3.11.

Observe that indeed MEPs 2 and 3 are both listed on port 2, which is the port of switch S1 which
is connected to MEPs 2 and 3. Thus, multiple MEPs can be listed on the same port in the MIP CCM
database.
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Figure 3.9: The switch configuration of the Echo experiment. Si is switch i,
pj stands for port j and the number next to each MEP is the configured MEP
ID.

+--------------------------- MIP CCM Database ------------------------+

| | | |Total | Last CCM Information |

|VLAN| MAC Address |Port |CCM Rx |Seq Num |Time |Lv|Mepid| PS |RDI|

+----+-----------------+-----+-------+--------+-----+--+-----+----+---|

|1 |AA:BB:CC:DD:EE:03|2 |65 |65 |0 |4 |2 |Up | |

|1 |00:11:22:33:44:C4|2 |51 |51 |0 |4 |3 |Up | |

+----+-----------------+-----+-------+--------+-----+--+-----+----+---|

Table 3.11: The MIP CCM database of switch S1 in the Echo setup.

3.6 Foxtrot configuration

The Foxtrot configurations test the behaviour of MIPs and MEPs when different configurations are
present at the same time. Note that IEEE 802.1Q requires that maintenance points discard CFM traffic
of lower levels. The Foxtrot configuration has the Alfa and Echo configurations enabled at the same
time. For the Alfa configuration, see Figure 3.1. For the Echo configuration, see Figure 3.9 .

When the Alfa configuration is active at level 2 and the Echo configuration is active at level 3 they
will operate at the same time without interfering with each other. However, when the Alfa configuration
is elevated to level 5, the Echo configuration indicates a remote defect at MEP 1. It does not receive
CCMs of (Echo) MEPs 2 and 3 anymore. That means that these CCMs are blocked by the Alfa-MEP 1,
as required by the standard.

Note that when Alfa was at level 2 it did not indicate any connectivity faults. That means that the
MIPs on level 3 do not block the CFM frames of level 2.

3.7 Golf configuration

The configurations Alfa through Foxtrot are all configured in the same VLAN. This raises the question:
what happens when CFM services are configured in different VLANs? The Golf configuration has the
Alfa configuration enabled at level 2 in VLAN 1. Moreover, it has a Charlie 2 configuration enabled at
level 5 on VLAN 2. For the Alfa configuration see Figure 3.1. For the Charlie 2 configuration see Figure
3.7.

This configuration does not trigger any connectivity faults. This shows that the Maintenance Domain
nesting only applies to maintenance domains in the same VLAN. This allows different Maintenance
Domains to intersect as long as they are not in the same VLAN.
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3.8 Summary

Assuming we can initiate CFM protocols on a switch with a MEP configured we can query that switch in
order to obtain the number of MEPs in the network together with their MEP IDs. Thus we can assume
we have a list of MEP IDs. Moreover, we can learn on what ports that switch can reach the remote
MEPs, even when not all ports that are active in the network have a MIP configured. However, the port
information originates from the MIP CCM database, meaning that at least one MIP is required on the
switch to learn this information.

Regarding the Linktrace protocol there is a very simple but important observation we make on how
it behaves. A switch will send a LTR in response to a LTM if and only if the LTM passes through a port
of that switch which has a MIP or MEP configured. In addition, the LTR will only contain information
on the ports which have a MIP or MEP configured. This is important when dealing with switches that
do not have Maintenance Points configured on all ports or not at all.
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Chapter 4

Topology Discovery

Why go through all the trouble of finding Ethernet (ISO layer 2) topology discovery methods when a
lot of research has been done already on Network Layer (ISO layer 3) topology discovery? The answer
is fairly simple: two different Network Layer routes might seem disjoint while on the physical level they
may meet several times. That is because the Network Layer does not recognise and is not aware of
Ethernet switches. Switches are normally layer 2 entities and do not support Network Layer technology.
As a consequence, they will not react to Network Layer protocols like Ping. That means that the IP
traceroute function, which is the most commonly used function for Network Layer topology discovery,
will not reveal switches. Descending to the Data Link layer (ISO layer 2) is therefore necessary to reveal
these switches.

It is important to keep in mind that the Data Link layer is still not the physical layer. On the Data
Link layer we still have the same sort of issues as we had on the IP layer; connections that appear to
be disjoint can still share resources on the Physical layer. For example, optical switches can be used to
redirect data flows and they work independently of the Data Link Layer. That means that the optical
switch does not recognize Ethernet frames and does not respond to them. As such the Data Link layer
will not reveal these types of switches. On the other hand, going to the Data Link layer is more precise
than staying on the IP layer and is therefore a big step forward already.

In this chapter we will look at topology discovery on the Data Link Layer and we consider two sets of
tools which we could use for topology discovery. The first is the Link Layer Discovery Protocol (LLDP)
and the second is Ethernet OAM.

4.1 The Link Layer Discovery Protocol

The Link Layer Discovery Protocol [IEE09] is a protocol that allows a device to learn all its direct
neighbours, but nothing beyond. A device will broadcast a LLDP frame to all of its neighbours at a
preset interval. The LLDP frame contains the following mandatory information:

� Chassis ID of the source; to identify the source device,

� Port ID of the source; to identify the port of the source device,

� Time To Live; indicates how long the receiver can keep the information contained in this LLDP
frame.

When a device receives a LLDP frame, it puts the information in a local database and then discards the
frame. It does not reply to the frame, nor does it forward the frame. It follows that a LLDP supporting
device will only learn of its direct neighbours.

4.1.1 Pros and Cons of LLDP

One option to use the LLDP for topology discovery would be to crawl through the network, visiting every
device and ask for all its neighbours. One advantage of this method is that it only needs one starting
point. As the algorithm crawls along the devices (or nodes) it learns of new nodes and edges. As long
as the network is connected, the algorithm will find all devices that react to the LLDP. This crawling
method could even make use of the Simple Network Management Protocol [Cas+90] minimizing manual
actions on each device.
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Secondly, this method would not require additional traffic on the network except for the SNMP
messages on the management network of the devices.

Thirdly, since the LLDP is unaffected by blocking states of ports, this method will reveal all devices
and links between devices. In other words: this method gives a complete physical topology of the
network.

However, the LLDP does not require to send port status information. Therefore it might be impossible
to actually distinguish the active topology from the complete topology. In the scope of this research it
is more important to have information on the active topology: the links that are actually operational.

In addition, the party executing the algorithm should have access to all devices. This probably means
that only operators will be able to use this method since they will be reluctant to give external parties
access to their equipment. Also, the measurements are then bounded by devices that the executing party
has no access to.

A short description of an algorithm using the LLDP is stated in Appendix B.

4.2 Choosing Ethernet OAM

The CFM protocols of Ethernet OAM have a few important advantages which could make the use of
CFM very attractive for an operator. These advantages are the reason that we chose to research topology
discovery based on EOAM. The advantages are as follows.

For one, it would allow an external party to measure the network without giving that external party
any access to devices. As such, the operator of the network could provide the ability to measure the
network as a service to a client.

Secondly, the operator can limit what parts of the network an external party can measure. This
would allow the operator to only enable this measurement on the part of the network that is actually
used by the external party. As such, the complete topology is not revealed to the external party.

Thirdly, the CFM protocols are designed to follow the same paths as service frames. As a result, the
topology returned by algorithms using CFM is a topology of the active network and represents the data
flow of the clients service and its normal traffic flow.

On the other hand, EOAM also has a few disadvantages. It is relatively new and based on Ethernet.
There is no guarantee that the complete network will actually support CFM measurements. When there
are devices that do not support CFM, it is very difficult to locate these devices and impossible to tell
how many of them there are. On the other hand, devices that do not support CFM should not disrupt
measurements since the EOAM frames are standard Ethernet frames and these devices should treat them
like regular traffic.

Also, using CFM, and especially the Linktrace Protocol, additional Ethernet frames are injected in
the network. This creates extra traffic loads on the switches and is especially dangerous when CFM is
implemented in the software of the switch and not in the hardware.

We think that the advantages of using EOAM, compared to using the Link Layer Discovery Protocol,
outweigh the disadvantages and therefore we have not further researched topology discovery using the
LLDP.

4.3 Algorithms using Ethernet OAM

Depending on the situation and assumptions, different algorithms are possible with the use of CFM and
Linktrace. We will present two algorithms dealing with a network which has CFM enabled on all devices
and elaborate on the strategy to follow when there are devices in the network that do not respond to
CFM and Linktraces.

The algorithms we propose build on the working of the Linktrace protocol and what information the
LTRs provide. We assume that we know how many MEPs there are in the network and that we know
their MEP IDs. This is a fair assumption since we can ask for this information at any switch with a
MEP configured. Assuming we have access to at least one such switch (otherwise we cannot do anything
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at all) we can query that switch for the remote MEP information as described in Chapter 3.

We will also assume that a switch has at most one MEP configured for we cannot initiate a Linktrace
between two MEPs on the same switch. Consequently, each MEP is identified with a switch. Finding
switches without MEPs is done by analysing the LTRs. Suppose we send a LTM from MEP a to MEP
b and we receive two LTRs. One of them lists that it hits the target MEP while the other lists at least
one port of a third switch. From a set of different LTRs we can identify different switches based on the
MAC addresses of their ports. If a LTR contains a MAC address that we have observed before, then
we know that it passes through the same port and thus the same switch. This allows us to group ports
together to represent a switch when LTRs list both the ingress and egress ports MAC address.

4.3.1 A Simple Algorithm for topology discovery

Observe that, in order to gain a complete (or as complete as possible) topology, every MEP must be
involved in at least one Linktrace. If there is a MEP which is not involved in a Linktrace then it is
unknown how this MEP is connected to the rest of the network, resulting in an incomplete topology.
This gives a lower bound on the amount of Linktraces needed to gain a complete topology. Given that
there are n MEPs, the amount of needed Linktraces λ is bounded by

n

2
≤ λ ≤ (

n

2
) =

n2 − n

2
.

The upper bound comes from the fact that there are (
n
2
) possible different Linktraces, assuming that a

Linktrace from MEP a to MEP b reveals the same path as the Linktrace from b to a (which is true in a
tree).

Assuming an ideal situation it is possible to reveal the complete topology of a VLAN. The following
assumptions are needed for an ideal situation (a motivation follows below):

1. All ports of switches in the VLAN are configured with MIPs or MEPs,

2. The CFM configuration is a valid configuration,

3. The VLAN forms a tree (no communication loops within the VLAN),

4. The number of MEPs and their ID and MAC address is known,

5. It is not possible to connect to MIPs,

6. It is possible to connect to at least one switch that has a MEP configured.

The first assumption makes sure that every switch reacts to the Linktrace protocol. For example, if
there is a switch such that two (active) ports do not have any MIP or MEP configured, then it is possible
that a Linktrace path goes through precisely those two ports and then the switch will not be noted in
that Linktrace. Requiring that all ports have a MIP or MEP configured takes care of this problem.

Secondly, for the Linktrace to work properly; Connectivity Fault Management should be configured
in a valid way. That means that there should be no conflicting Maintenance Domains or MEPs pointing
in the wrong direction (up when they should be down).

The third assumption makes sure that the VLAN is a tree. If there would be a loop somewhere in
the VLAN, then for sure broadcast storms will occur. In addition, if the VLAN is a tree then there is
only one unique path from one MEP to another, making it easier to reconstruct the network topology.
For example, consider three MEPs a, b and c. In a tree, if it is known how a is connected to b and how a
is connected to c, then we know how b is connected to c. So only a maximum of (

n
2
) Linktraces is needed

instead of n! to reveal the complete topology.

The fourth assumption makes it possible to determine source and target MEPs for the Linktraces.
Also note that this assumption will be valid in practice since Chapter 3 showed us we can query a switch
for all remote MEPs.

The fifth assumption basically prevents the use of MIP CCM databases. Also, this assumption makes
sure that the algorithms based on these assumptions could be used by external parties instead of only
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the operator. That is, there is no need to access switches that have MIPs configured (although the
operator should still configure the MIPs). Note that the algorithms will not fail if the access to MIP
CCM databases is enabled.

Lastly, in order to initiate a Linktrace it should be possible to connect to at least one switch that has
a MEP configured. Switches that can be accessed can be used to initiate Linktraces.

Based on these assumptions the most trivial algorithm would initiate a Linktrace between every
possible pair of MEPs. This would not exploit the assumption that the VLAN is a tree and it would
even require that it is possible to connect to at least half the switches that have a MEP configured.
A slightly better algorithm that exploits the assumption of a tree will initiate Linktraces from a single
source MEP to all other MEPs. A description of this algorithm is given in Algorithm 1. Suppose

input : A source MEP s and a set of target MEPs M
output : A Tree T representing the topology of the VLAN

foreach t ∈M do
Initiate a Linktrace from s to t;
Process the output of the Linktrace such that it forms a path from s to t. Every node on
the path is represented by an ingress and egress port;

end
Combine all the paths based on the ingress and egress port info into a tree T ;
return Tree T

Algorithm 1: A Naive algorithm using Linktraces.

there are n MEPs, then this algorithm initiates n − 1 = O(n) Linktraces. That means that n − 1 LTMs
(Linktrace Messages) are injected in the network, and also n − 1 LTRs (Linktrace Replies) are injected
in the network. This only accounts for the MEPs. The analysis for the MIPs is more difficult, since it
depends on the actual topology of the network.

Algorithm 1 combines all the paths based on the ingress and egress port info. Basically we exploit
that ports have a unique identifier known as a MAC (Media Access Control) address. It is very common
that ports on the same device have an almost equal MAC address. Typically only the last elements of
the MAC address are different for ports on the same device. Therefore we combine ports into a switch
if the MAC address only differs my a small amount.

4.3.2 Connecting-Parts Algorithm

A more sophisticated approach makes even stronger use of the assumption that the VLAN is a tree.
Every Linktrace is a path, which is also a tree. Because the VLAN forms a tree, combining the paths
(representing the Linktraces) will also form a tree. Algorithm 1 uses the same MEP as source for every
Linktrace but this is not necessary. Suppose there are n MEPs. Then, in a lucky situation the complete
topology might be revealed using ⌈n/2⌉ Linktraces by using ⌊n/2⌋ different source MEPs and ⌈n/2⌉
different target MEPs. Every target MEP is used exactly once and every source MEP is used at least
once, resulting in ⌈n/2⌉ Linktraces. In particular, for any star topology (where all MEPs are connected
via only one MIP) it will only take ⌈n/2⌉ Linktraces to reveal the complete topology in this way.

For such an approach to work, a stronger assumption is required: It must be possible to initiate
Linktraces from at least half the switches that have a MEP configured. The remaining assumptions 1 to
5 stated in Subsection 4.3.1 must remain valid.

Observe that when using different source MEPs and different target MEPs the resulting output might
be a forest rather than a tree (i.e. there are disconnected components). These components still have
to be glued together by initiating more Linktraces and this can be done in several ways. One way of
doing this is to choose one MEP as source, and a target MEP in every other component and initiate
Linktraces from the source to each target. However, this can result in doing Linktraces that do not add
information, for example when three components are suddenly glued together by one Linktrace. Then
we need only one Linktrace rather than two.
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A cheaper method (concerning network traffic) is to iteratively choose one source MEP and one target
MEP which lay in different components and initiate a Linktrace between them. The output is then used
to glue components together. Then, if there are still disconnected components, repeat this process until
the entire graph (tree) is connected. This method is shown in Algorithm 2.

Note that when choosing source MEPs, it should be taken into account which MEPs can be used to
initiate Linktraces and which MEPs can not. It is not possible to choose a MEP as source when we can
not initiate a Linktrace on the switch of that MEP.

input : A set of MEPs M , and a subset MS ⊂M of MEPs from which Linktraces can be
initiated, satisfying ∣MS ∣ ≥ ⌊∣M ∣/2⌋.

output : A Tree (connected forest) F representing the topology of the VLAN

initialize: Generate set Mpairs of pairs (s, t) ∈ S ×M of source (s) and target (t) MEPs as
described in Section 4.3.2, F = (V,E) = (∅,∅)

foreach (s, t) ∈Mpairs do
Linktrace(s, t);
Process Linktrace output: turn into Tree T = (VT ,ET );
F ← F ∪ T ;

end
if F is disconnected then

repeat
Choose s ∈ S and t ∈M such that s and t are not in the same connected component;
Linktrace(s, t);
Process Linktrace output: turn into Tree T = (VT ,ET );
F ← F ∪ T ;

until F is connected ;

end
return F

Algorithm 2: Description of the Connecting-Parts algorithm.

Algorithm 2 needs λ = n − 1 Linktraces in the worst case to finish. After the first ⌈n/2⌉ Linktraces
all MEPs have been used once and in a very unlucky case we have obtained ⌈n/2⌉ disconnected parts.
We continue to be very unlucky when, for every extra Linktrace we initiate, we only manage to connect
two parts every time. That means we have ⌈n/2⌉ initial Linktraces and need ⌈n/2⌉ − 1 extra Linktraces.
Adding them together results in n − 1 Linktraces. Figure 4.1 is an example of a network in which we
might get unlucky. To obtain n− 1 = 5 Linktraces the random pairs could be: (a, b), (c, d), (e, f), (a, c),

▶ ◀

▶ ◀

▶ ◀

a b

c d

e f

Figure 4.1: A network which attains a worst-case number of Linktraces.

(c, f). Then the first three pairs will induce three disconnected parts. The fourth pair, (a, c) will only
connect two parts and thus a fifth pair, (c, f), is needed to connect everything.

4.4 Non-responding switches

A next natural step is to see what we can do when we do not have a network that satisfies the strengthened
assumptions of Section 4.3.2. In particular, suppose there are some switches that do not respond to the
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Linktrace protocol or ports that do not have MIPs configured. Can we still use Algorithm 2 to identify
the network?

The answer is that we can partially discover the network topology. We will argue that the Linktrace
protocol enables us to determine if (and where) there is a switch that does not respond to the Linktrace
protocol. However, this is only possible when that switch has at least three ports connected to the
network. The technique to identify a non-responding switch is to recognise when the Linktrace output
encounters an unexpected diversion from an already known route.

Consider the simple situation in Figure 4.2b in which the switch S2 does not respond to the Linktrace
protocol (has no MIPs configured). If we perform a Linktrace from MEP a to MEP b and from MEP a

▶

▲

◀a

b

c
S1

(a) S1 is responsive switch.

▶

▲

◀a

b

c
S1 S2

(b) S2 is a non-responsive switch.

Figure 4.2: Two simple situations involving responsive switches and a non-
responsive switch.

to MEP c, the output will suggest that the topology is the one depicted in Figure 4.2a. When we also
perform a Linktrace from MEP b to MEP c we observe that the path from b to c does not go via switch

S1. The corresponding output restricted to b and c would suggest ▶ ◀b c . In other words, switch
S1 is not part of the route from b to c. Therefore, there must be another “junction” between S1 and c
to which b is connected. For the purpose of discovering S2 it doesn’t matter what is between a and S1.
In Figure 4.2 the part between a and S1 consists of only a single link, but if that part of the network
was bigger we would still observe that b and c are not connected via S1. That means we can repeat this
process for every switch which acts as a junction between at least three parts of the network, each part
containing at least one MEP.

However, it is not possible to find all non-responsive switches; only those that connected at least
three MEPs. In Figure 4.3 we see two situations which can not be distinguished from each other by use
of the algorithm. Switch S3 in Figure 4.3b divides the network in two parts and can therefore not be

▶

▲

◀a

b

c
S1 S2

(a) S2 is non-responsive switch.

▶

▲

◀a

b

c
S1 S2 S3

(b) S2 and S3 are a non-responsive
switches.

Figure 4.3: These two situations can not be distinguished.

found by analysing Linktrace outputs.

Another situation in which the correct physical topology cannot be observed is shown in Figure 4.4a.
The observed topology will correspond to the topology shown in Figure 4.4b. A fair question is if we
can even find the correct topology in Figure 4.4b? To answer that we must zoom to port level and
include port information, in particular the type of MEP: up or down. If all MEPs are down MEPs then
we indeed obtain the correct topology. If one of the MEPs is an up MEP, there is no way in which we
can detect the difference between the situations of Figure 4.5 since there will be no information on the
ingress/egress ports on the switch of MEP c. We can however learn that MEP c is an up MEP when
MEP c is a target MEP of a Linktrace. The corresponding LTR will show an empty ingress port and
MEP c will be listed as egress port, which means c is an up MEP.

We can also learn if a source MEP is an up or down MEP by just asking the switch on which the
source MEP is configured. This should be possible by using the same connection as the one used for
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▶
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▼
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b
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d
S1

S2

(a) S1 and S2 are non-responsive
switches.

▶

▲

▼

◀a

b

c

d
S1

(b) S1 is a non-responsive switch.

Figure 4.4: These two situations can not be distinguished.

▲ ▲
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▲
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c

d

(a) MEP c is an up MEP. MEPs a, b
and d are connected via the switch of c.

▶

▲

▼

◀
a

b

c

d
S1

(b) MEP c is an up MEP and S1 is a
non-responsive switch.

Figure 4.5: Zooming in on port level of the switch on which MEP c is con-
figured. Empty ports have no MIPs configured.

initiating the Linktrace. Note that if we require that when a switch has an up MEP configured also all
outgoing ports have MIPs configured, then the two situations of Figure 4.5 become distinguishable.

In short we have the following observations:

1. A non-responsive switch can only be identified if its deletion cuts the network into at least three
disjoint parts, each containing at least one MEP,

2. It is impossible to separate two neighbouring non-responsive switches (as shown in Figure 4.4a),

3. A switch with an up MEP and no MIPs may imply a wrong topology.

The above mentioned problems can be overcome by setting some restrictions on the network:

1. Every non-responsive switch must connect at least three disjoint parts of the network,

2. Every non-responsive switch has no other non-responsive switch as a neighbour,

3. If a switch has a MIP or up MEP configured, then all ports have a MIP configured (except the
port with an up MEP).

However, from the perspective of measuring the network it might of course be unknown if these re-
strictions are satisfied. Hence, if no information is available about non-responsive switches the resulting
topology can contain untraceable errors.

If we know there are non-responding switches in the network, we need to initiate a Linktrace between
all (n

2
) possible pairs of MEPs. Every pair of MEPs between which no Linktrace has been initiated may

hide a non-responsive switch. For example, consider Figure 4.2b in which the pairs (a, b) and (a, c) have
been used to initiate Linktraces. The non-responding switch S2 remains unobserved as long as we do
not initiate a Linktrace between b and c. For every non-used pair such a situation may exist. That
means that we need to initiate Linktraces between all possible pairs of MEPs when we are dealing with
non-responding switches.
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4.4.1 The importance of non-responding switches

Besides inducing an incorrect topology, non-responding switches can cause another problem. Let us go
back to the original problem: testing if two connections are disjoint. Most of the time these connections
are set up over (different) tunnels or VLANs. Consider Figure 4.6a with two different VLANs; one for
each connection. Since switch S2 is not responding we cannot see that the red and blue VLAN collide

▶

▶

◀

◀
S2

a c
S1 S3

b d
S4

(a) Physical red and blue VLAN with a
collision at non-responding switch S2.

▶

▶

◀

◀

a c
S1 S3

b d
S4

(b) Observed disjoint red and blue VLAN.

Figure 4.6: A non-responding switch can connect two different VLANs such
that the red and blue VLAN seem disjoint but in reality are not.

at that switch. From measurements it will seem as if the two VLANs are disjoint and thus very robust
while in reality they have a single point of failure: S2. Similarly, a link can also be an unobserved single
point of failure when it connects two non-responding switches.

4.5 Practical use of the algorithm

The algorithms and ideas presented in the previous sections are all based on theoretic descriptions,
standards and laboratory experiments. We implemented only the naive algorithm in Java and tested
it on a small network (Alfa configuration) and the output was indeed the physical topology. Of course
the conditions were nearly perfect: all switches were responding and we had access to all switches. The
question is if the algorithms are useful in real ISP networks, i.e. are our assumptions not too strong in
order to be used in a real ISP network?

In order to answer this question we consulted SURFnet and presented our algorithm and ideas. Our
first concern was the proportion of devices that could handle CFM. As it turns out, almost all equipment
of SURFnet can handle CFM, meaning that there is almost no need to scan for non-responding switches.
A disadvantage is that most devices have the CFM functionality implemented in software, which might
cause a major inconvenience when many CFM frames have to be processed. That means that keeping
the amount of Linktraces down is very important in order to prevent the switches from overloading their
queues.

In addition, many switches might be able to handle CFM but most of the time MIPs are not configured
on the switches. If someone triggers many Linktraces then the number of LTRs can be very high which
effectively might be observed as a DDoS attack. To protect the network from overloading with CFM
frames MIPs are not commonly configured. In addition, it is currently impossible to configure MIPs
inside a tunnel.

The second concern regards the type of connections used to provide customers with Ethernet connec-
tions. SURFnet told us that in almost all cases they provide Ethernet connectivity based on a service
over a tunnel using PBB-TE: Provider Backbone Bridge - Traffic Engineering. The idea is that a Net-
work Management System (NMS) is responsible for configuring this tunnel such that it does not have
loops (and thus will not cause broadcast storms). Data traffic enters the tunnel at one point and is only
evaluated again at the end of the tunnel. Entities between the two end points of the tunnel only forward
the data packets without looking at them. Once these tunnels have been set up they will preferably not
change too much, meaning that the active topology of such a connection is pretty static.

It is clear that in theory our algorithm can work but in practice it is not yet possible when taking
into account the above mentioned limitations. To overcome almost all these limitations we propose that
the algorithm can be run as a service. When a customer of an ISP wants to measure the topology of
their connections they can buy this as a service. The ISP in question can then configure a VLAN along
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the path of the already existing tunnel and configure MIPs and MEPs on that VLAN. After that, the
company can perform a measurement and when they are done the ISP will shut down the access to the
VLAN. This prevents (accidentally) overloading the network and also allows to configure MIPs among
all switches. SURFnet made clear that this is possible as long as the vendor of the Network Management
Software implements this functionality.

4.6 Summary

We presented an algorithm which used the Linktrace protocol to recover the network topology. Under
the assumption that all network elements (of the Data Link Layer and higher) respond to the Linktrace
Messages our algorithm finds the correct topology when the network is a tree. Moreover, we have shown
that it is possible to deal with switches that do not respond to the Linktrace protocol as long as there
are no two of such switches directly adjacent to each other. Finally we have received positive feedback
from SURFnet, basically stating that if a Network Management System vendor is willing to implement
our algorithm it is technically possible to use that algorithm in practice.
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Chapter 5

Generalised Topology Discovery

In this chapter we present a more abstract approach to topology discovery. In this approach we are
interested in the number of probes that we need to discover the network topology. In a data network,
initiating probes causes an increase in network traffic, and we want to keep the load on the network as
small as possible.

Suppose we are given a set of vertices V and some probing operation ρ. Rather than limiting the
vertices which can be used as probing points as in the situation of MEPs, we can now use all ∣V ∣ = n
vertices as probing points. A probe ρ(u, v) between vertices u and v will reveal the shortest path from u
to v (in terms of the number of edges). So after the probe ρ(u, v) we know all nodes and edges and their
order on the shortest path between u and v. Assuming that we are dealing with undirected graphs, the
shortest path from u to v is the reversed shortest path from v to u. Therefore we obtain ρ(u, v) = ρ(v, u).
We will present two strategies that use ρ to determine the network topology and analyse these strategies
for some different types of tree graphs.

Similar to the goal of Chapter 4, we wish to recover the topology of the network (or graph) G = (V,E).
In other words, we wish to find the edges E of the network. The first natural question is if we can recover
the topology by using ρ? Before we say something about this we set a limitation on the network. For
the purpose of this chapter, we suppose that the network topology is a tree; a connected graph without
cycles. This type of network is very interesting in the setting of VLANs or LANs, where loops are
forbidden in order to prevent broadcast storms. Given a tree, we can discover the complete topology in
the following way. Choose any vertex s ∈ V . Then, for every vertex v ∈ V ∖ {s} retrieve ρ(s, v). The
combined outputs of ρ will form a tree. In this way we have determined the connection of all vertices
relative to the vertex s. Since the network is a tree this ensures that we have indeed found all edges
using ∣V ∣ − 1 = n − 1 probes.

In Section 5.1 we will consider other probing strategies and we will analyse the performances for a
line and a star graph. The analysis of the presented probing strategies is very hard for general trees and
remains as an open problem.

5.1 Probing strategies

We already know that using ρ we can determine the topology of the network using n−1 probes. However,
the procedure we introduced above seems pretty inefficient since some probes will reveal a path which
was already known. Is there perhaps a better strategy? Can we recover the topology in less than n − 1
probes? A first simple improvement is to only probe to nodes which have not yet been observed. A node
u is considered observed when it has either been used as a probing node or when the result of a probe
includes u in the path output. The simple improvement results in Λ ≤ n − 1, where Λ is the number of
probes needed to recover the network topology. We will argue that any probing strategy will need n − 1
probes in the worst case.

First we define what a probing strategy actually is: given the current knowledge of the topology, a
probing strategy should choose a pair of vertices, u and v, and increase the knowledge by adding ρ(u, v).
A good strategy will not choose u and v in the same already observed connected component since that
does not add any new knowledge. Suppose we have a good probing strategy, i.e. one which does not
choose u and v in the same already observed connected component. Construct a tree network as follows.
Start with an empty network F on n vertices. Then, given the current situation, the strategy randomly
selects two vertices u and v. To F , add the edge (u, v). Repeat this process until F is connected. If we
now use the probing strategy on F , we need exactly n − 1 vertices. Also note that because the probing
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strategy does not select a pair of vertices which lie in the same observed connected component, the
resulting connected graph F has no loops and thus forms a tree.

We see that the worst-case bound for the number Λ is tight for any good probing strategy. Hence we
try to make up a probing strategy which does well on average. We will now choose our pairs of vertices
somewhat random.

Strategy I (Shrinking Random Pairs). From the set of vertices available to choose, randomly select two
vertices u and v and reveal ρ(u, v). Then, shrink ρ(u, v) into a single “super vertex” which is treated as
an unobserved vertex, but remember the underlying line ρ(u, v). Continue until there is only one “super
vertex” left.

Alternatively one might come up with the strategy which only chooses vertices that have not yet
been observed at all and where an already discovered connected part is left as it is. Then we would only
choose already observed nodes if all (or all but one) nodes have already been observed and the discovered
structure is still disconnected. The reasoning behind this strategy is that in the first probes one would
expect to discover more edges.

Strategy II (Unused Nodes First). From the set of vertices available to choose, randomly select two
vertices u and v and reveal ρ(u, v). Then, mark u, v and all other vertices discovered by ρ(u, v) as
unavailable nodes. When the number of unavailable nodes is zero or one, shrink every observed connected
component into a single node which is treated as an unobserved node (and thus available to choose).
Remember the underlying structure of the shrunken connected component. Continue until all nodes are
in the same connected component.

5.2 Line graph

We have analysed the performance of Strategy I on a line graph. In a line graph on n vertices, there are
two vertices which have degree 1 and all other vertices have degree 2. An example is given in Figure 5.1.

v1 v2 v3 vn−1 vn

Figure 5.1: A line graph on n vertices.

For n ∈ {3,4,5} we have explicitly calculated the expected value of the number of probes needed
to map a line graph using Strategy I and Strategy II. The expected values are 5/3, 13/6 and 77/30
respectively and they are equal for both Strategies. Since n = 5 is already an extensive case and both
strategies lead to the same expected value for all three values of n, we suspect that for a line graph the
strategies are equivalent in performance. However, we found no proof of this yet. It does motivate why
we have only analysed Strategy I for a line graph.

According to Strategy I a pair of vertices is selected at random among the currently unobserved
vertices. So in the first step any pair of vertices is just as likely. There is a possibility that we are very
lucky in choosing the first pair as two end nodes of the line. There are (

n
2
) = n(n − 1)/2 possible first

pairs and therefore with probability 1/(n
2
) we need only one probe.

Define Λn as the number of probes we need to fully identify a line on n vertices when following
Strategy I. Then what can we say about Λn? We have already seen that 1 ≤ Λn ≤ n−1 and as a next step
we will look at the expected value of Λn. First recall that the definition of the expected value applied to
Λn gives us

E[Λn] =
n−1

∑
y=1

yP[Λn = y]. (5.1)

We will exploit the conditional expectation in which we condition on the number of edges discovered at
the first probe. So, let Xn be the number of edges discovered in the first probe of a line on n vertices.
Then E[Λn] = E[E[Λn ∣Xn]]. We will first show that E[Λn ∣Xn = x] = 1 +E[Λn−x] in Lemma 1.
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Lemma 1. The expected number of probes needed to fully identify a line on n vertices satisfies

E [Λn] = 1 +
n−1

∑
x=1

n − x

(
n
2
)
E [Λn−x] .

Proof. Observe that for 1 ≤ x ≤ n − 1

E [Λn ∣Xn = x] =
n−1

∑
y=1

yP [Λn = y ∣Xn = x]

=
n−1

∑
y=1

y
P [Λn = y,Xn = x]

P [Xn = x]
.

Recall that for n points we need at most n − 1 probes. At the first probe we have identified x edges,
leaving us with an unknown line on n − x vertices. Thus for y > n − x we obtain P[Λn = y ∣ Xn = x] = 0.
In addition, the event (Λn = y)∩(Xn = x) only happens when Xn = x and Λn−x = y−1. For sure we need
to discover x edges at the first probe, which happens with probability (n − x)/(n

2
). Secondly, if in the

first step we discovered x edges, we have n − 1 − x edges left between n − x vertices and we must spend
y − 1 probes on these n − x vertices. This gives us:

E [Λn ∣Xn = x] =
n−1

∑
y=1

y
P [Λn = y,Xn = x]

P [Xn = x]

=
n−x

∑
y=1

y
P [Λn = y,Xn = x]

P [Xn = x]

=
n−x

∑
y=1

y
P [Λn−x = y − 1]P [Xn = x]

P [Xn = x]

=
n−x

∑
y=1

yP [Λn−x = y − 1]

=
n−x

∑
y=1

(y − 1 + 1)P [Λn−x = y − 1]

= 1 +
n−x−1

∑
y=0

yP [Λn−x = y] .

Since in the last expression we have 0 ⋅ P[Λn−x = 0] = 0 we obtain

1 +
n−x−1

∑
y=1

yP [Λn−x = y] = 1 +E [Λn−x]

and therefore we conclude
E [Λn ∣Xn = x] = 1 +E [Λn−x] . (5.2)

From 5.2 it follows that

E [Λn] = E [E [Λn ∣Xn]]

=
n−1

∑
x=1

P [Xn = x] (1 +E [Λn−x])

= 1 +
n−1

∑
x=1

n − x

(
n
2
)
E [Λn−x] .

The equality P[Xn = x] = (n − x)/(n
2
) is shown in Lemma 2.

The recursive expression for E[Λn] can be used to calculate all expected values, but it does not
directly give insight in how many probes we need proportional to the number of vertices. We would
expect that in each step the same proportion of the current unknown edges is revealed and that therefore
the expected number of probes needed to identify a line on n vertices grows logarithmically with n.
Theorem 1 shows that E[Λn] is upper bounded by a logarithmic function of n.
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Theorem 1. Let Λn be the number of probes needed to recover a line on n vertices, then

E [Λn] ≤ log 2
3
(2) + log 3

2
(n + 1),

for n ≥ 3.

We will first show how to get to the logarithmic expression and then present the proof of the theorem.
Consider the first probe on a line on n vertices and m = n − 1 edges. The number of edges we expect to
discover in the first probe is (m + 2)/3 as shown in the proof of Lemma 2.

Lemma 2. Given a line graph G on n vertices and m = n − 1 edges and two random vertices u and v
(u ≠ v) in this line graph, the expected number of edges revealed by ρ(u, v) is (m + 2)/3.

Proof. The operation ρ(u, v) reveals edges on the shortest path between u and v. In a tree graph, and
thus in a line graph, there is only one path from u to v which is automatically also the shortest path.
Suppose ρ(u, v) reveals 1 ≤ k ≤ n − 1 edges. Using Figure 5.1 we see that there are n − k such possible
pairs: (v1, vk), (v2, vk+1), . . ., (vn−k, vn). Thus the probability that ρ(u, v) reveals k edges is

P[ρ(u, v) reveals k edges] =
n − k

(
n
2
)
.

A quick sanity check tells us that if we sum over all 1 ≤ k ≤ n − 1 we get

n−1

∑
k=1

n − k

(
n
2
)

=
1

(
n
2
)
(n(

n−1

∑
k=1

1) − (
n−1

∑
k=1

k))

=
1

(
n
2
)
(n(n − 1) −

n(n − 1)

2
)

=
(
n
2
)

(
n
2
)
= 1.

This means that we have valid probabilities. It follows that the expected number of edges revealed by
ρ(u, v) is:

E[Number of edges revealed by ρ(u, v)] =
n−1

∑
k=1

n − k

(
n
2
)
k

=
1

(
n
2
)

n−1

∑
k=1

nk − k2

=
2

n(n − 1)
(n(

n−1

∑
k=1

k) − (
n−1

∑
k=1

k2
))

=
2

n(n − 1)
(
n2(n − 1)

2
−
n(n − 1)(2(n − 1) + 1)

6
)

= n −
2n − 1

3
=
n + 1

3
=
m + 2

3
.

Consequently, the expected number of unobserved edges after a first probe will be

m −
m + 2

3
=

2(m − 1)

3
. (5.3)

Continuing to apply Strategy I we shrink ρ(u, v) into a single vertex and we obtain a new line. This new
line has, on expectation m − (m + 2)/3) = 2(m − 1)/3 undiscovered edges. We pretend that we are again
in a situation in which we can issue a “first” probe but this time on a line on 2(m − 1)/3 edges. The
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expected number of edges we discover if we probe a line on 2(m − 1)/3 edges will be (2(m − 1)/3 + 2)/3
and thus the number of unobserved edges will be

2(m − 1)

3
−

2(m−1)
3

+ 2

3
= (

2

3
)

2

(m − 1) −
2

3
.

If we define Ni to be the number of unobserved edges at the ithstep of this process, then we claim that

Ni = (
2

3
)

i

(m + 2) − 2. (5.4)

This can be shown by induction. For i = 0, the situation in which we have not done any probing, we
obtain N0 =m. Assuming the statement is true for Ni, it follows that

Ni+1 =
2

3
(Ni − 1)

=
2

3
((

2

3
)

i

(m + 2) − 2 − 1)

= (
2

3
)

i+1

(m + 2) −
2

3
(3)

= (
2

3
)

i+1

(m + 2) − 2.

Thus indeed, for this process expression 5.4 is correct. We are interested in the value of i for which we
have 0 unobserved edges left. In other words; the value of i for which Ni is 0. We solve equation Ni = 0
for i and obtain

i = log 2
3
(2) + log 3

2
(m + 2) = log 2

3
(2) + log 3

2
(n + 1).

Theorem 1 states that this expression is an upper bound.

Proof of Theorem 1. We will prove this by induction. For the base case take n = 3. We can easily
calculate E[Λn] by using that P[Λn = 1] = 1/3 and P[Λn = 2] = 2/3 and we get E[Λn] = 5/3. On the other
hand we have log 2

3
(2) + log 3

2
(3 + 1) ≈ 1.7095 ≥ 1.7 ≥ 5/3. We see that for n = 3 the bound holds.

Next we assume that the bound holds for Λn and we consider Λn+1. Using Lemma 1 we write

E [Λn+1] = 1 +
n

∑
x=1

n + 1 − x

(
n+1

2
)

E [Λn+1−x] . (5.5)

Observe that 1 ≤ x ≤ n which means that n + 1 − x ≤ n and thus by our induction hypothesis we can use

E [Λn+1−x] ≤ log 2
3
(2) + log 3

2
((n + 1 − x) + 1).

If we substitute this in Equation 5.5 we obtain

E [Λn+1] ≤ 1 +
n

∑
x=1

n + 1 − x

(
n+1

2
)

(log 2
3
(2) + log 3

2
(n + 2 − x)) (5.6)

= 1 + log 2
3
(2) +

n

∑
x=1

n + 1 − x

(
n+1

2
)

log 3
2
(n + 2) + log 3

2
(1 −

x

n + 2
) (5.7)

= 1 + log 2
3
(2) + log 3

2
(n + 2) +

n

∑
x=1

n + 1 − x

(
n+1

2
)

log 3
2
(1 −

x

n + 2
) . (5.8)

For the upper bound to hold we need ∑
n
x=1

n+1−x
(
n+1
2
)

log 3
2
(1 − x

n+2
) ≤ −1. The proof of this inequality is in

Appendix C. Observe that this is an almost tight bound:

lim
n→∞

n

∑
x=1

n + 1 − x

(
n+1

2
)

log 3
2
(1 −

x

n + 2
) = −

1

log(9/4)
≈ −1.233.

This completes the proof of the theorem.

In short we now know that using Strategy I, the number of probes needed to discover a line graph is
lower bounded by 1 (constant), upper bounded by n− 1 (linear) and on expectation at most logarithmic
in n.
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5.3 Star graph

Define a star graph on n vertices as follows. There are n − 1 vertices, {v1, . . . , vn−1}, with degree 1,
and there is one vertex vn with degree n − 1. An example for n = 6 is given in Figure 5.2. Let ΛI

n be

v1

v2

v3v4

v5

vn

Figure 5.2: A star graph on n = 6 vertices.

the number of probes needed to identify a star graph on n vertices using Strategy I and let ΛII
n be the

number of probes needed to identify a star graph on n vertices using Strategy II. Note that this time we
need at least (n− 1)/2 probes rather than only 1 because we can discover at most 2 edges in each probe.
That means we have

n − 1

2
≤ ΛI

n ≤ n − 1.

Moreover, because Strategy II will not choose vertex vn again (it is always discovered in the first probe),
it will need at most ⌈(n − 2)/2⌉ probes. That means we have

n − 1

2
≤ ΛII

n ≤ 1 + ⌈
n − 2

2
⌉ .

The upper and lower bound for ΛI
n and ΛII

n are both linear. Let us look at the expected values E[ΛII
n ]

and E[ΛI
n].

First we consider E[ΛII
n ]. Note that whatever the first pair (u, v) is, vertex vn will always be

discovered at the first probe. Therefore we condition on whether or not vn is used as probing point.
Let Xn be the number of edges discovered in the first probe on a star graph on n vertices. Note that
Xn ∈ {1,2} is independent of the used strategy and

P[Xn = 1] =
n − 1

(
n
2
)

=
2

n

and

P[Xn = 2] =
(
n
2
) − (n − 1)

(
n
2
)

=
n − 2

n
.

When Xn = 1 we have used 2 nodes and we have not discovered a new node. That means we have n − 2
unobserved nodes left. In the case that n is even we can form (n− 2)/2 pairs and thus we need (n− 2)/2
extra probes (after the first one). In the case that n is odd we have that n − 2 is also odd and we need
(n − 3)/2 + 1 extra probes. A similar analysis for Xn = 2 shows that if n is even we need (n − 4)/3 + 1
extra probes and if n is odd we need (n − 3)/2 extra probes. Conditioning on Xn in the case n is even
results in:

E[ΛII
n ] = E[E[ΛII

n ∣Xn]]

= P[Xn = 1] ⋅ (1 +
n − 2

2
) + P[Xn = 2] ⋅ (1 +

n − 4

2
+ 1)

=
2

n
⋅ (1 +

n − 2

2
) +

n − 2

n
⋅ (1 +

n − 4

2
+ 1)

= 1 +
n − 2

n
+

(n − 2)2

2n
= 1 +

n − 2

2
.
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In the case that n is odd we have

E[ΛII
n ] = E[E[ΛII

n ∣Xn]]

= P[Xn = 1] ⋅ (1 +
n − 3

2
+ 1) + P[Xn = 2] ⋅ (1 +

n − 3

2
)

=
2

n
⋅ (1 +

n − 3

2
+ 1) +

n − 2

n
⋅ (1 +

n − 3

2
)

= 1 +
2

n
+
n − 3

2
.

We see that we have an exact expression for E[ΛII
n ]. It is not so easy to find an exact expression for

E[ΛI
n] but similar to the case of the line graph (Section 5.2) we can see that

E [ΛI
n ∣Xn = x] = 1 +E [ΛI

n−x] . (5.9)

Using Equation 5.9 we can then see that

E [ΛI
n] = E[E[ΛI

n ∣Xn]] (5.10)

= 1 +
2

n
E[ΛI

n−1] +
n − 2

n
E[ΛI

n−2]. (5.11)

In the setting of a star graph we would expect that Strategy II performs better than Strategy I
because there is a chance that Strategy I chooses the centre node vn multiple times. Indeed Theorem 2
shows that on expectation Strategy I performs worse than Strategy II.

Theorem 2. Let ΛI
n be the number of probes needed to identify a star graph on n vertices using Strategy

I and similarly define ΛII
n . Then

E[ΛI
n] ≥ E[ΛII

n ]. (5.12)

Proof. This proof works by induction. As base case take n = 3 and observe that

E[ΛI
3] = 1 ⋅

1

3
+ 2 ⋅

2

3
=

5

3
= E[ΛII

3 ].

For the induction hypothesis, assume that E[ΛI
n] ≥ E[ΛII

n ] for all integers up to and including n. In the
induction step we distinguish two cases: n + 1 is even and n + 1 is odd.

� n + 1 is even: When n + 1 is even we have n is odd and n − 1 is again even. We take (5.11) and
use the induction hypothesis to write

E[ΛI
n+1] = 1 +

2

n + 1
E[ΛI

n] +
n − 1

n + 1
E[ΛI

n−1]

≥ 1 +
2

n + 1
(1 +

2

n
+
n − 3

2
) +

n − 1

n + 1
(1 +

n − 3

2
)

= 1 +
n3 − n + 8

2n(n + 1)

= 1 +
(n + 1)(n − 1)

2(n + 1)
+

8

2n(n + 1)

≥ 1 +
n − 1

2
= E[ΛII

n+1].

� n+ 1 is odd: When n+ 1 is odd we have n is even and n− 1 is odd again. We take (5.11) and use
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the induction hypothesis to get

E[ΛI
n+1] = 1 +

2

n + 1
E[ΛI

n] +
n − 1

n + 1
E[ΛI

n−1]

≥ 1 +
2

n + 1
(1 +

n − 2

2
) +

n − 1

n + 1
(1 +

2

n − 1
+
n − 4

2
)

= 1 + 2
2

n + 1
+

2(n − 2)

2(n + 1)
+

2(n − 1)

2(n + 1)
+

(n − 1)(n − 4)

2(n + 1)

= 1 + 2
2

n + 1
+
n − 2

2

≥ 1 +
2

n + 1
+
n − 2

2
= E[ΛII

n+1].

This concludes the proof that E[ΛI
n] ≥ E[ΛII

n ].

Theorem 2 implies that for a star graph Strategy II better on average. Also, observe that E[ΛII
n ] is

very close to (n−1)/2, meaning that Strategy II performs on average very close to the minimum number
of probes needed.

5.4 General (tree) graphs

When we know nothing more than that the structure of the graph is a tree, we know at least when we
can stop: as soon as we have discovered n − 1 edges or, equivalently, as soon as we have connected all
vertices. In Section 5.1 we have seen that the upper bound for the number of probes needed to identify
a tree graph on n nodes is given by n − 1. Concerning the lower bound; in Section 5.2 we have seen an
example of a tree graph for which the minimum number of probes needed to identify the graph is 1.

As a final remark, let us divert from the assumption that the graph is a tree and suppose that we are
dealing with a general (undirected) graph. When dealing with a general graph the only way to know that
we have discovered the complete topology is when we have used all possible vertex pairs as probing pairs.
Strictly speaking we do not need to have used all pairs because some probes may give information on
vertex pairs other than the source and target vertices. For example, suppose that in some graph we get
ρ(u, v) = (u, v1, v2, v3, v). Then we automatically know that ρ(v1, v3) = (v1, v2, v3) because ρ returns the
shortest (u, v)-path. Unfortunately not all graphs will give that much information. An example of such a
graph is Kn with one edge removed. The number of edges of that graph is (

n
2
)−1 = n(n−1)/2−1 = O(n2).

Almost every pair of vertices will reveal only one edge and only one pair will reveal two edges. Therefore
we need as many probes as the number of edges plus one1. Even when we know that the graph we try
to map is Kn with one edge missing, we still need many probes. The chance that we pick the pair of
vertices between which no edge exists is very small (1/(n−i

2
) in for the ithprobe) and thus it may take

many probes before we figure out which edge is missing.

5.5 Summary

In this chapter we have focused on a more abstract form of topology discovery, applicable to any type
(data, electricity, etc.) of network - represented as a graph - for which there exists a probing operation
ρ that reveals the shortest path between two graph vertices. We showed that for any tree graph ρ can
be used to recover the graph topology. Moreover, we presented two probing strategies and analysed
their performance on two types of tree graphs: a line graph and a star graph. Strategy I uses at most a
logarithmic number of probes on average to identify a line graph. In the case of a star graph, the average
is linear in the number of vertices for both strategies although Strategy II performs better on average
than Strategy I. The average performance of the two strategies on a general tree graph remains open.

1We also need to use the pair of vertices between which no edge exists to discover that one edge is missing.
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Chapter 6

Disjoint Path Computation

In this chapter we reverse the problem of testing if two existing connections are disjoint. In an earlier
stage of the network configuration, when the network is there but the connections have not yet been set
up, it is possible to choose the connections such that they are disjoint in the first place. To do that we
need the topology of the network. Coincidently we have seen two chapters dealing with recovering the
topology of a network, so we assume that at this point that the network topology is known. In addition,
long and extensive monitoring of a network can provide information on the reliability of the links in the
network. As a result, we can assign values to the edges which represent the reliability of that edge in
terms of failure probabilities. In this chapter we will present different measures for the robustness of a
pair of disjoint connections (or paths). In addition, we will discuss the computational difficulty of finding
the best pair of disjoint paths regarding these measures. We will also show a new relation between the
optimal solutions of two different measures.

6.1 Network model

Consider a graph G = (V,E) with ∣V ∣ = n, ∣E∣ =m, source node s ∈ V , target node t ∈ V and for each edge
e ∈ E a probability pe ∈ [0,1) that edge e fails (these probabilities are mutually independent). Note that
if pe = 1 then edge e would always fail and we can just exclude it from the set of edges E. Therefore we
assume pe < 1. We are interested in finding two node disjoint (s, t)-paths A and B such that the resulting
pair A and B is as “robust” as possible. In terms of notation, paths A and B may be represented by
both an ordered list of vertices and an unordered list of edges. We propose some different measures
for robustness, because depending on the interest of the network operator robustness may be defined in
different ways.

When presented with a general graph, one can easily check if G contains a pair of disjoint (s, t)-paths
by applying a maximum flow algorithm with source s, sink t and edge and node capacities 1. The
resulting maximum flow (max-flow) then represents the amount of vertex disjoint (s, t)-paths. So, if this
max-flow value is ≤ 1, then a pair of disjoint (s, t)-paths does not exist. For the remainder of this chapter
we assume that the graph G contains at least one pair of disjoint (s, t)-paths.

The setting described in the Motivation implies that we are interested in finding vertex-disjoint
paths. The problem of finding vertex disjoint paths is equivalent to finding edge-disjoint paths by means
of splitting vertices. Starting with an undirected graph G, replace all undirected edges {u, v} by two
directed edges (u, v) and (v, u) resulting in a directed graph. Then, split every vertex v in two vertices
v1 and v2. Replace every directed (incoming) edge (u, v) with (u, v1) and replace every (outgoing) edge
(v, u) with (v2, u). Finally add the directed edge (v1, v2) and call the resulting directed graph G′. Now
observe that every edge-disjoint path in G′ is equivalent to a vertex-disjoint path in G and vice versa.
In the remainder of this chapter we will therefore mainly focus on edge-disjoint paths.

6.1.1 Measures for robustness

We propose four measures for the robustness of the two paths A and B. These measures can be seen as
optimisation problems. For the optimisation problems, denote

D(s, t)G ∶= {{A,B} ∣ A and B are two vertex disjoint (s, t)-paths in G}.

Also, call a path A operational if none of its edges is failing. A path is not operational or failing if at
least one of its edges is failing. In three of the four following proposed measures/optimisation problems
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it is possible to translate the problem into a problem which minimizes path lengths via a logarithmic
transformation.

6.1.1.1 Probability that both paths are operational

An obvious measure is the probability that both connections are up: P[A and B operational]. A higher
value of this probability coincides with a better choice of A and B. Therefore, the optimisation problem
that belongs to this measure is: given a graph G as described above, find

max
{A,B}∈D(s,t)G

{P[A and B operational]} .

This optimisation problem can be formulated as an optimisation problem which can be solved in poly-
nomial time. First of all, because the link failures are independent and A and B are disjoint it follows
that

P[A and B operational] = P[A is operational] ⋅ P[B is operational]

=∏
e∈A

(1 − pe)∏
e∈B

(1 − pe).

That means that

max
{A,B}∈D(s,t)G

{P[A and B operational]} = max
{A,B}∈D(s,t)G

{∏
e∈A

(1 − pe)∏
e∈B

(1 − pe)} .

Next we use the logarithm to formulate an equivalent optimisation problem. Maximizing over a product is
equivalent to maximizing over the sum of the logarithms. Observe that pe ∈ [0,1), and thus 1−pe ∈ (0,1].
From this it follows that log(1 − pe) < 0 and thus − log(1 − pe) > 0. This results in:

arg max
{A,B}∈D(s,t)G

{∏
e∈A

(1 − pe)∏
e∈B

(1 − pe)} = arg max
{A,B}∈D(s,t)G

{∑
e∈A

log(1 − pe) + ∑
e∈B

log(1 − pe)}

= arg min
{A,B}∈D(s,t)G

{∑
e∈A

− log(1 − pe) + ∑
e∈B

− log(1 − pe)} .

The latter is equivalent to finding two vertex disjoint paths that minimize their total cost, if set the
costs to be c(e) = − log(1−pe). Suurballe and Tarjan [ST84] showed that this can be solved in polynomial
time O(m log(1+m/n) n).

This measure is interesting for companies that use both connections simultaneously, particularly when
both connections have a high load. In such case it can happen that when one connection fails the other
connection does not have enough bandwidth left to redirect the traffic of the failed connection over the
connection which is still operational. This would result in a loss of connection or in a congestion on the
operational connection.

Another purpose for using two connections at the same time is for security reasons. Splitting and
directing a data flow along two paths ensures that no one who is listening in on one connection can view
the complete data flow. However, if one of the connections is down and all data traffic is routed along
the other single connection there is suddenly a security threat.

6.1.1.2 Strength of the weakest path

The next measure is the “strength” of the weakest path. In this sense, a pair is weaker when it has
a higher probability that one of its paths fails. In mathematical syntax the measure is described by:
max{P[A fails],P[B fails]}. Intuitively one would want the weakest path to be as strong as possible and
thus the maximum to be as low as possible. That results in the optimisation problem:

min
{A,B}∈D(s,t)G

{max{P[A not operational],P[B not operational]}} .
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Similar to the derivation we did in Section 6.1.1.1, using the logarithm we can see

arg min
{A,B}∈D(s,t)G

{max{P[A fails],P[B fails]}}

= arg min
{A,B}∈D(s,t)G

{max{1 −∏
e∈A

(1 − pe),1 −∏
e∈B

(1 − pe)}}

= arg max
{A,B}∈D(s,t)G

{min{∏
e∈A

(1 − pe),∏
e∈B

(1 − pe)}}

= arg min
{A,B}∈D(s,t)G

{max{∑
e∈A

− log(1 − pe),∑
e∈B

− log(1 − pe)}} .

This problem is then equivalent to finding {A,B} ∈ D(s, t)G such that the cost of the most expensive
path is minimized, when taking the cost equal to c(e) = − log(1 − pe). In Section 6.2 we will see that
Li et al [LMSL90] have shown that this problem is NP-complete. In the same paper they also propose
a heuristic which is simply Suurballe and Tarjans algorithm and show that this has a worst-case ratio
equal to 2, i.e. in the worst case the heuristic will output a solution which is twice as bad as an optimal
solution.

This measure is very interesting in terms of redundancy. Once the primary connection fails it is
important to have a reliable backup connection. A natural thing to do is to select the primary connection
as the connection with the lowest probability of failing. A secondary connection would be almost useless
if the probability that it fails is very high: in the case that you are already unlucky and your primary
connection goes down you would not want to have a high chance of getting in a worse situation. Intuitively
this measure makes sure that the two failure probabilities do not differ too much.

6.1.1.3 Probability of at least one operational path

The third proposed measure comes down to the probability that at least one path is operational
(P[A or B operational]) or, equivalently, the probability that not both paths fail simultaneously: 1 −
P[A and B fail]. Intuitively, the probability that both paths fail should be as small as possible, which
gives rise to the following optimisation problem:

max
{A,B}∈D(s,t)G

{P[A or B operational]} .

In trying to find an equivalent form; we derived:

arg max
{A,B}∈D(s,t)G

{P[A or B operational]} = arg max
{A,B}∈D(s,t)

{1 − P[A and B fail]}

= arg min
{A,B}∈D(s,t)G

{P[A and B fail]}

= arg min
{A,B}∈D(s,t)G

{P[A fails] ⋅ P[B fails]}

= arg min
{A,B}∈D(s,t)G

{(1 −∏
e∈A

(1 − pe))(1 −∏
e∈B

(1 − pe))} .

When we expand the last line we obtain

arg min
{A,B}∈D(s,t)G

{(∏
e∈A

(1 − pe))(∏
e∈B

(1 − pe)) − (∏
e∈A

(1 − pe) +∏
e∈B

(1 − pe))} .

This measure is very interesting in terms of connectivity connectivity. It maximizes the probability that
at least one of the connections works although it does not give any information on what the situation
is when a link breaks down. This measure might very well choose a very robust connection and a very
fragile connection. That would mean that if the primary connection (chosen as the most robust one)
breaks down then almost surely there is no connection at all. That would of course not do well in terms
of redundancy.
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6.1.1.4 Maximum operational probability

This measure is the maximum of the probabilities: path A being operational, path B being operational.
In mathematical syntax:

max
{A,B}∈D(s,t)G

{max{P[A operational],P[B operational]}} .

Again by using the logarithm we can see that this problem is equivalent to

min
{A,B}∈D(s,t)G

{min{∑
e∈A

− log(1 − pe),∑
e∈B

− log(1 − pe)}} .

This measure comes down to optimizing the primary connection such that it is as reliable as possible. It
is particularly interesting when a party heavily depends on the primary path and is reluctant to switch
to the secondary path, e.g. when the secondary path has very low bandwidth or high operation costs.

6.2 Complexity of disjoint path problems

We chose to further investigate the problem of finding two connections such that the weakest is as strong
as possible. Call this objective the Min-Max objective. This seems the most interesting problem in terms
of redundancy. In this section we cover the computational difficulty of finding such a pair of connections.
For the remainder of this chapter we will talk about paths rather than connections since we will also
switch to the notion of graphs.

Li et al. [LMSL90] have shown that the problem of finding two disjoint paths such that the length
of the longer path is minimized is strongly NP-complete. The proof is based on a reduction from the
Maximum 2-Satisfiability Problem [GJ79]. An instance of the Maximum 2-Satisfiability Problem consists
of variables z1, . . . , zr, giving rise to literals zi and z̄i, and clauses C1, . . . ,Cq: each a subset of 2 literals.
We say that Cj is satisfied under a truth assignment τ ∶ zi → {true, false} if Cj contains a literal zi with
τ(zi) = true or τ(z̄i) = true. The problem is; given a bound K ≤ q, is there a truth assignment τ which
satisfies ≥K clauses?

The reduction presented in [LMSL90] starts with an instance of the Maximum 2-Satisfiability Prob-
lem. Then, based on the literals zi and clauses Cj from the instance, Li et al construct a graph G with
specific edges and edge weights. In particular G contains also two special vertices s and t. They show
that a pair of disjoint (s, t)-paths in G with a Min-Max value of K̃ coincides with a truth assignment
τ which satisfies at least K clauses. The value of K̃ is based on the structure of the graph. Since the
construction of the graph can be done in polynomial time there is a polynomial time reduction from
Maximum 2-Satisfiability to finding a pair of disjoint paths with a Min-Max objective function.

Since the problem of finding two disjoint paths with a Min-Max objective function is NP-complete
one would typically fall back to using heuristics. Li et al proposed to use the Min-Sum solution as an
approximation of the Min-Max problem and show that this has a worst-case bound equal to 2. Again,
let P ∗

1 and P ∗
2 represent an optimal solution to the Min-Sum problem and let Q∗

1 and Q∗
2 represent an

optimal solution to the Min-Max problem. Then

c(P ∗
1 ) + c(P ∗

2 ) ≤ c(Q∗
1) + c(Q

∗
2).

From this it follows that
max
i=1,2

{c(P ∗
i )} ≤ c(Q∗

1) + c(Q
∗
2) ≤ 2 max

i=1,2
{c(Q∗

i )}

and thus
maxi=1,2{c(P

∗
i )}

maxi=1,2{c(Q∗
i )}

≤ 2.

Proving tightness is done using Figure 6.1. An optimal solution to the Min-Max problem on the graph
of Figure 6.1 has maxi=1,2{c(Q

∗
i )} = a1 + a2. The pair of paths P ∗

1 = (s,1, t) and P ∗
2 = (s,2,1,3, t)

is an optimal solution for the Min-Sum problem with c(P ∗
1 ) = 0 and c(P2) = 2(a1 + a2). Hence

maxi=1,2{c(P
∗
i )}/maxi=1,2{c(Q

∗
i )} = 2.

Moreover, Li et al proved that, for any directed graph, there exists no algorithm which has a better
worst-case behaviour unless P = NP :
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s
v1

v2 v3

t
0

a1 a2 a1 a2

0

Figure 6.1: A graph which attains the worst-case bound of 2 for the Min-Max
problem using the Min-Sum solution.

Theorem 3. ([LMSL90, Theorem 2]) If P ≠ NP , then any psuedo-polynomial-time heuristic for finding
two Min-Max disjoint s→ t paths in a directed network has a worst-case bound of at least 2.

The proof of this theorem relies on a result of Fortune, Hopcroft and Wyllie [FHW80]. Given any
directed graph G = (V,E) and four vertices s1, s2, t1, t2 ∈ V , the problem of finding two vertex-disjoint
(or arc-disjoint) paths, one from s1 to t1 and another from s2 to t2 is NP-complete. We will refer to this
problem as the 2DDP (2 Directed Disjoint Paths) problem.

Proof of Theorem 3. (Li et al, [LMSL90]) Suppose we have an instance of 2DDP with G = (V,E) and the
four vertices s1, s2, t1, t2 ∈ V . Create two new vertices s and t and define a new directed graph Ĝ = (V̂ , Ê)

by:

V̂ = V ∪ {s, t},

Ê = E ∪ {(s→ s1), (s→ s2), (t1 → t), (t2 → t)}.

The arcs (s → s1) and (t2 → t) get cost 1 and all other arcs get cost 0. Then the most expensive path
among any pair of disjoint (s, t)-paths in Ĝ has cost 1 or 2. Furthermore, if there exists a pair of disjoint
(s, t)-paths in Ĝ, the most expensive path has cost 1 if and only if there exists two disjoint paths in G
connecting s1 with t1 and s2 with t2.

In other words, if there is a pseudo-polynomial-time heuristic for finding two Min-Max disjoint (s, t)-
paths with a worst-case bound less than 2, then this heuristic would solve the 2DDP problem in G. This
would contradict the assumption that P ≠ NP .

6.3 Different solutions with different measures of robustness

In the previous section we have seen a few different measures. An interesting question is in what type
of graphs, networks and situations do these measures result in the same solution? To investigate this
question, let us consider the first two measures: “the probability that both paths are operational” and
“the strength of the weakest path”. We have seen that using the logarithm we can translate these two
measures to:

� LΣ(A,B): the total costs of the two paths A and B,

� Lmax(A,B): the cost of the most expensive path, i.e. max{A,B}.

Suppose we are given a network G = (V,E) with a source node s and a target node t and for every edge
e ∈ E a cost c(e) ≥ 0. Also, if A is a path, let c(A) = ∑e∈A c(e) denote the cost of a path A. Let the
two paths P ∗

1 and P ∗
2 be paths which minimize LΣ, and the two paths Q∗

1 and Q∗
2 be the paths which

minimize Lmax. In other words:

{P ∗
1 , P

∗
2 } = arg min

{A,B}∈D(s,t)G

{LΣ(A,B)} = arg min
{A,B}∈D(s,t)G

{c(A) + c(B)} (6.1)

{Q∗
1,Q

∗
2} = arg min

{A,B}∈D(s,t)G

{Lmax(A,B)} = arg min
{A,B}∈D(s,t)G

{max{c(A), c(B)}} (6.2)

Without loss of generality we may assume c(P ∗
1 ) ≤ c(P ∗

2 ) and c(Q∗
1) ≤ c(Q

∗
2). Using this we can prove

the following claim.
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Claim 1. c(P ∗
1 ) ≤ c(Q∗

1) and c(Q∗
2) ≤ c(P

∗
2 ).

Proof. First we show c(Q∗
2) ≤ c(P

∗
2 ) by contradiction. Suppose c(Q∗

2) > c(P
∗
2 ). Then

max{c(Q∗
1), c(Q

∗
2)} = c(Q

∗
2) > c(P

∗
2 ) = max{c(P ∗

1 ), c(P ∗
2 )}.

That means that choosing {P ∗
1 , P

∗
2 } leads to a better (lower) value for L2 which contradicts the minimality

of {Q∗
1,Q

∗
2}. Note that we can do this because P ∗

1 and P ∗
2 are also disjoint paths. Therefore c(Q∗

2) ≤

c(P ∗
2 ).

Secondly we show c(P ∗
1 ) ≤ c(Q∗

1), also by contradiction. Suppose c(Q∗
1) < c(P

∗
1 ). Using c(Q∗

2) ≤ c(P
∗
2 )

we can then derive c(Q∗
1)+ c(Q

∗
2) ≤ c(Q

∗
1)+ c(P

∗
2 ) < c(P ∗

1 )+ c(P ∗
2 ). That contradicts {P ∗

1 , P
∗
2 } being an

optimal solution to (6.1) and thus we can conclude c(P ∗
1 ) ≤ c(Q∗

1).

From Claim 1 and the assumptions c(P ∗
1 ) ≤ c(P ∗

2 ) and c(Q∗
1) ≤ c(Q

∗
2) it follows trivially that

c(P ∗
1 ) ≤ c(Q∗

1) ≤ c(Q
∗
2) ≤ c(P

∗
2 ).

Observe that if c(Q∗
2) = c(P

∗
2 ) then max{c(Q∗

1), c(Q
∗
2)} = c(Q

∗
2) = c(P

∗
2 ) = max{c(P ∗

1 ), c(P ∗
2 )} and then

{P ∗
1 , P

∗
2 } is also an optimal solution for (6.2).

Claim 2. Every (s, t)-path R which has c(R) < c(P ∗
2 ) also satisfies R ∩ P ∗

1 ≠ ∅, i.e. R intersects P ∗
1 .

Proof. This proof is by contradiction. For that purpose, suppose c(R) < c(P ∗
2 ) and that R and P ∗

1

are disjoint. Then, the pair {R,P ∗
2 } is a pair of disjoint (s, t)-paths and c(P ∗

1 ) + c(R) < c(P ∗
1 ) + l(P ∗

2 )

which contradicts the optimality of {P ∗
1 , P

∗
2 } under LΣ. Therefore path R can not be disjoint from path

P ∗
1 .

6.3.1 A special type of graph

Due to its significance in Telecom operator networks we will consider the following type of graph, a so
called dual-homed fully-meshed network. This type of network consists of Kn≥4, the complete graph on
n vertices with n ≥ 4 and two more vertices, s and t. Moreover, s is connected to only two nodes of
Kn: s1 and s2 such that s1 ≠ s2. Also, t is connected to only two nodes of Kn, t1 and t2 with t1 ≠ t2.
Lastly, all four nodes that connect to s and t are different, thus for i, j ∈ {1,2} we have si ≠ tj (which
also motivates why n should be bigger than or equal to 4). Denote such a graph with FM(n), n ≥ 4.
Figure 6.2 shows FM(4).

s

s1

s2

t1

t2

t

Figure 6.2: Example of dual-homed fully-meshed network with n = 4 (FM(4)).

We are interested in this graph because typically a Telecom providers core network is a fully meshed
network. Then, when a party wishes to connect two sites by a pair of disjoint connections; these two
sites together with the core network form a dual-homed fully-meshed network.

First consider a setting in which all the weights (representing the failure probabilities) of the edges
are equal; for example 1 (after scaling them). Then it is obvious that the pair of paths

((s, s1, t1, t), (s, s2, t2, t))
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is an optimal solution for both the Min-Sum and the Min-Max problem.

Next, consider a setting in which the weights satisfy for every three nodes a, b, c ∈ V (FM(n)):
c(a, b) + c(b, c) ≥ c(a, c). In other words, choosing paths with less number of links may only improve the
Min-Sum and Min-Max. That means that the only two pairs of paths that we need to consider are the
pairs

{(s, s1, t1, t), (s, s2, t2, t)} and {(s, s1, t2, t), (s, s2, t1, t)},

since they will be at least as good as any other pair. Checking these two pairs for optimality for Min-Sum
and Min-Max is then fairly easy.

The real challenge is when the weights do not have the structure as in the previous paragraph. When
we assume the weights to be random then there is no guaranteed structure to exploit and we are back
to square one. If we want to find the optimal solution for the Min-Max problem then the best thing to
do is to try all possible pairs of disjoint (s, t)-paths. The number of pairs of vertex-disjoint (s, t)-paths
in FM(n) quickly grows out of hands as we can see in Lemma 3.

Lemma 3. The number of different pairs (A,B) of disjoint (s, t)-paths in FM(n) is

n−4

∑
i=0

n−4−i

∑
j=0

2
(n − 4)!

(n − 4 − i − j)!
=

n−4

∑
i=0

n−4−i

∑
j=0

2
n−4

∏
k=n−4−i−j+1

k.

Proof. We will count the pairs as follows: first we will count pairs of paths with a specific number of
edges and then we will sum over the possible number of edges. Let

D(s, t)(G,i,j) = {(A,B) ∈D(s, t)G ∣ l(A) − 3 = i, l(B) − 3 = j}, i, j ≥ 0, i + j ≤ n − 4,

with l(A) the number of edges of path A. Intuitively D(s, t)(G,i,j) consists of all pairs (A,B) of
vertex-disjoint (s, t)-paths where A consists of i + 3 links and B consists of j + 3 links. The terms
i + 3 and j + 3 follow from the fact than any (s, t)-path in FM(n) consists of at least 3 edges. In
other words, for A we have chosen i extra vertices, and for B we have chosen j extra vertices (from
V (FM(n))/{s, s1, s2, t, t1, t2}). Recall that FM(n) has n + 2 vertices, of which s, t, s1, s2, t1 and t2
are always used. That leaves n + 2 − 6 = n − 4 free vertices which can also be used, which explains why
i + j ≤ n − 4.

As an example: consider paths with 3 edges. There are 4 such paths:

1. (s, s1, t1, t),

2. (s, s1, t2, t),

3. (s, s2, t1, t), and

4. (s, s2, t2, t).

These four paths can form two pairs of vertex-disjoint paths:

1. {(s, s1, t1, t), (s, s2, t2, t)}, and

2. {(s, s2, t1, t), (s, s1, t2, t)}.

Choosing a path A with l(A) = 3 means we can choose none of the remaining free n − 4 vertices. That
means ∣D(s, t)(FM(n),0,0)∣ = 2 as we have just seen.

We will determine the value of ∣D(s, t)(FM(n),i,j)∣. A (s, t)-path in FM(n) either passes through s1

or through s2. It also passes through either t1 or t2. Choosing through which vertices (out of s1, s2, t1,
t2) A passes determines through which vertices B will pass. That means that for counting the pairs we
only need to consider {(s1 → t1), (s2 → t2)} and {(s1 → t2), (s2 → t1)}. In other words, we may assume
A passes through s1 and B passes through s2 (if A passes through s2 we rename the paths).
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Definition 1. For the sake of writing, define Pa1,a2,...,ak
(i) to be the number of (a1, ak)-paths via at

least a2, . . . , ak−1 (not necessarily in this order) in FM(n) consisting of i ≥ k − 1 edges. Formally, for
a1, a2, . . . , ak ∈ V (FM(n)), i ∈ {0, . . . , n − 4}:

Pa1,a2,...,ak
(i) = ∣{(a1, ak)-paths P in FM(n) ∣ P goes through all of {a2, . . . , ak−1}, l(P ) = i}∣

Pa1,a2,...,ak
(i) counts paths which do not go via s or t. The special vertices s and t can only appear as

end point in these paths. In addition, Pa1,a2,...,ak
(i) only counts paths which do not go through both s1

and s2 (so it does count paths which go through only one of s1 or s2). The same holds for t1 and t2.

The number of paths from s to t via s1 is equal to the number of paths from s1 to t by construction
of FM(n). Equivalently, the number of paths from s to t via t1 is equal to the number of paths from s
to t1. From this it follows that the number of (s, t)-paths via s1 and t1 having i+ 3 edges is equal to the
number of (s1, t1)-paths containing i+ 1 edges. Thus Ps,s1,t1,t(i+ 3) = Ps1,t1(i+ 1). Then the number of
(s1, t1)-paths A having i+3 edges equals Ps1,t1(i+1)+Ps1,t2(i+1). Note that Ps1,t1(i+1) = Ps1,t2(i+1) by
construction of FM(n). That means that the number of paths A consisting of i+3 edges is 2Ps1,t1(i+1).

Fortunately we can compute Ps1,t1(i+1). For a path from s1 to t1 to have i+1 edges we must choose
i extra vertices out of n − 4 available vertices. This can be done in (

n−4
i
) ways. Also, these vertices can

be ordered in i! different ways. So, Ps1,t1(i+ 1) = (
n−4
i
)i!. Given a path A, how many choices for path B

have we left? Note that for path A we used i vertices, so for path B we can only choose from n − 4 − i
vertices. Thus, given A, we have (

n−4−i
j

)j! paths left for B. This shows that

D(s, t)(FM(n),i,j) = 2(
n − 4

i
)i!(

n − 4 − i

j
)j! = 2

(n − 4)!

(n − 4 − i − j)!
.

Here, the factor 2 comes from the fact that the paths A and B either connect s1 with t1 or s1 with t2.
Summing over all possible combinations of i and j such that i+ j ≤ n− 4 and i, j ≥ 0 gives us the desired
result:

n−4

∑
i=0

n−4−i

∑
j=0

D(s, t)i,j =
n−4

∑
i=0

n−4−i

∑
j=0

2
(n − 4)!

(n − 4 − i − j)!
=

n−4

∑
i=0

n−4−i

∑
j=0

2
n−4

∏
k=n−4−i−j+1

k.

Lemma 3 shows that the number of pairs of vertex-disjoint (s, t)-paths grows rapidly with n. The
values of the number of pairs is shown in Table 6.1 for some values of n. Suppose we have a computer

n # pairs

4 2
5 6
6 22

10 ≈ 23 ⋅ 103

15 ≈ 23 ⋅ 108

20 ≈ 18 ⋅ 1014

25 ≈ 58 ⋅ 1020

50 ≈ 13 ⋅ 1059

60 ≈ 21 ⋅ 1077

100 ≈ 51 ⋅ 10151

Table 6.1: The number of pairs of vertex-disjoint (s, t)-paths in FM(n) for
some values of n.

which can evaluate a billion (109) pairs of paths per second. For n = 50, for example, it would take
13∗1059/109/60/60/24/365 ≈ 3∗1042 years to evaluate all pairs. As a reference, 3∗1042 is approximately
7 ∗ 1032 times the age of the earth (estimated at 4.54 ∗ 109 years). Since the Min-Max problem is
NP -complete we know that in order to find a guaranteed optimal solution we should evaluate all pairs
(assuming P ≠ NP ). The above calculations show that this is impossible within a lifetime for FM(n ≥

50). Therefore we wish to apply the approximation algorithm (choosing (P ∗
1 , P

∗
2 )) and do a post-process

algorithm which is described in Section 6.4.
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6.4 Running the post-process algorithm

From Claim 2 it follows that when {P ∗
1 , P

∗
2 } is not an optimal solution for (6.2) and thus c(Q∗

1) ≤ c(Q
∗
2) <

c(P ∗
2 ), then both Q∗

1 and Q∗
2 have a non-empty intersection with P ∗

1 . This motivates the following idea
for a new algorithm:

1. Select the first edge e1 on the path P ∗
1 and remove it from G, obtaining the graph denoted by

G − e1.

2. In G − e1, find the shortest (s, t)-path R.

3. If c(P ∗
1 ) < c(R) < c(P ∗

2 ), take G again and remove the path R from G (denoted G − R). If
c(R) ≥ c(P ∗

2 ) or c(R) ≤ c(P ∗
1 ), move to step 5.

4. In G −R, find a shortest (s, t)-path R′ (if it exists, otherwise move to step 5). If c(P ∗
1 ) < c(R′) <

c(P ∗
2 ), then {R,R′} is a better option for (6.2) than {P ∗

1 , P
∗
2 } and the algorithm terminates with

outputting {R,R′}. Otherwise, move to step 5.

5. Suppose we write the vertex representation of P ∗
1 as P ∗

1 = (s, v1, . . . , vk, t). Then in the previous step
we deleted edge ei−1 = {vi−1, vi} (where v0 = s and vk+1 = t). Now we wish to look for a path which
starts at s, then goes to vi via P ∗

1 and then leaves the path P ∗
1 . Thus remove ei = {vi, vi+1} ∈ E

as well and look for a shortest (vi, t)-path Ri. Then the new path becomes R = P ∗
1 (s, vi) ∪Ri and

repeat steps 3 and 4 and see if we obtained a better solution.

6. If in the end no better solution than {P ∗
1 , P

∗
2 } has been found the algorithm outputs {P ∗

1 , P
∗
2 } as

solution.

This algorithm tries to use the results of Claim 2, which imply that if {P ∗
1 , P

∗
2 } is not an optimal

solution for (6.2) then Q∗
1 intersects P ∗

1 . Basically, after determining {P ∗
1 , P

∗
2 } (can be done in polynomial

time, see [ST84]) it runs at most 2k times the Dijkstra’s shortest path algorithm, where k is the number
of nodes on path P ∗

1 excluding s and t (thus k ≤ n). These steps run in polynomial time and therefore
this algorithm runs in polynomial time. So unless P = NP , this algorithm cannot always find an optimal
solution to (6.2). For example, Figure 6.3 is an instance of a graph for which the Post-Process algorithm
does not find an improvement. The optimal value for the Min-Sum is 12: c(P ∗

1 ) + c(P ∗
2 ) = 2 + 10 = 12.

s

v1

v2 v3

v4

v6

v5 v7 v8

v9

v10

t

2

1

4

0

0

0

4

5

0

0

0

2

2

0

2

2

4

P ∗
1

P ∗
2

Q∗
2

Q∗
1

Figure 6.3: Instance for which the Post-Process algorithm does not find an
improvement.

The optimal value of the Min-Max is 9: max{c(Q∗
1), c(Q

∗
2)} = max{8,9} = 9. The paths are:

P ∗
1 = (s, v1, v2, v3, v4, v6, t),

P ∗
2 = (s, v5, v7, v8, t),

Q∗
1 = (s, v3, v4, v10, t),

Q∗
2 = (s, v5, v1, v2, v7, v8, v9, v6, t).
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The algorithm was implemented in Sage [Sag14] as shown in Appendix D. The algorithm was then
tested on graphs of type FM(n). The failing probabilities of the edges (s, s1), (s, s2), (t1, t) and (t2, t)
are all taken to be equal to 0.0001 resulting in a weigth of − log(0.0001) ≈ 9.2. The failing probabilities
of the other edges are taken uniformly at random from [0,0.4] since failure probabilities of real network
links are typically small. However, it should not really matter since it is a matter of scaling. The
algorithm was repeated many times for different n. The amount of times it is repeated is given by the
number of simulations and the number of improvements is shown in Table 6.2.

n time in seconds # improvements

1 11.44 102
2 14.11 112
5 27.94 100

10 72.04 120
15 158.23 128
20 288.81 114
25 476.44 127
50 3615.37 148

(a) 1.000 simulations

n time in seconds # improvements

1 104.14 906
2 136.78 1016
5 302.84 1078

10 747.52 1254
15 1564.86 1264
20 2923.75 1346
25 4838.56 1413
50 88765.59 1548

(b) 10.000 simulations

Table 6.2: Results of running the post-process algorithms on FM(n) with
random edge weights.

The results in Table 6.2 suggest that in around 10-12% the post-process algorithm finds an improve-
ment in FM(n). In particular, the Post-Process Algorithm’s chance of finding an improvement seems
to increase as n grows. This can be explained by the fact that the chance that there exist pairs (A,B)

which have a better value for the Min-Max than (P ∗
1 , P

∗
2 ) also increases when n grows. Consequently

the algorithm also has a higher chance of finding a better solution.

6.5 Summary

Based on a network in which each edge has a failure probability, we proposed four different measures for
the optimality of a pair of disjoint paths. Two of these measures are particularly interesting in relation
to the robustness of a backup connection: the probability that both paths are operational and the strength
of the weakest path. Using the logarithmic function we transformed these measures into respectively
a Min-Sum and a Min-Max measure. Finding a pair of disjoint paths with a Min-Sum objective can
be done in polynomial time using Suurballe and Tarjans algorithm [ST84]. Finding a pair of disjoint
paths with a Min-Max objective is an NP -complete problem and Li et al. [LMSL90] proved that using
a Min-Sum solution is a 2-approximation to finding a Min-Max solution. We presented a new relation
between the two solutions. Using this relation; we made a new algorithm which runs in polynomial time
and performs a search for a better pair of disjoint paths than the Min-Sum solution. For a specific type
of graph, interesting for ISPs, we have shown that our algorithm finds improvements in approximately
10-12% of the cases.
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Chapter 7

Conclusions

Considering the first problem described in the problem description, we can conclude that it is theoretically
possible to recover the network topology using CFM. Depending on the presence of non-responsive devices
the resulting topology may be incomplete. Such incompleteness can result in a false sense of robustness
when two connections run through the same non-responsive switch. Also, in a real ISP network there
are some limitations that prevent the use of the algorithms proposed in Section 4.3. To overcome
these limitations and ensure that all switches respond to the Linktrace protocol we propose to offer a
measurement service along the same path as the connections we wish to test on disjointness. Such a
service is technically possible according to experts from an ISP and an external party can issue its own
measurements. The measurements can then be used to check whether two connections run through the
same devices.

Even though we have descended from the IP layer to the Data Link layer and concluded that we can
(presently only in theory) recover the network topology, we can not ensure complete disjointness. The
Data Link layer is on top of the Physical layer and the connections that we wish to test for disjointness
can still share Physical layer devices while being disjoint on the Data Link layer. Even then we have not
yet considered geographical disjointness. Two fibre cables laying in the same trench but routed through
different devices still poses a threat when both cables are cut simultaneously. To gain a truthful and
trustworthy answer on the question if two connections are disjoint, more research is needed to find and
evaluate topology discovery methods on the Physical layer.

Concerning the second problem that we considered: we concluded that in a tree graph it is possible
to recover the graph structure using the probing operation ρ with at most n − 1 probes. We have more
thoroughly analysed the performance of two probing strategies on a line graph and a star graph. We
discovered that on expectation Strategy I (Shrinking Random Pairs) needs at most a logarithmic number
of probes. This is a good improvement compared to the linear upper bound. For a star graph we have
computed the exact expected number of probes needed when using Strategy II (Unused Nodes First)
and showed that for this graph type it performs better than Strategy I. The expected number of required
probes for discovering the topology of general tree graphs and also for general graphs remains unknown,
yet.

Finally we showed that constructing a best pair of disjoint connections with failure probabilities is
equivalent to well studied problems such as the 2 Disjoint Path Problem with a Min-Sum or Min-Max
objective. The problem of finding a pair of disjoint paths with a Min-Sum objective can be solved in
polynomial time using Suurballe and Tarjans algorithm [ST84]. The problem of finding a pair of disjoint
paths with a Min-Max objective is NP -complete. We compared the optimal solutions to these two
problems and have shown a property which links the two optimal solutions. Using this property we
suggested an algorithm, running in polynomial time, that uses the solution of the Min-Sum (polynomial
time solvable) to do a smart search for a better approximation to the Min-Max problem. This algorithm
still has the same worst-case ratio as when using the Min-Sum solution directly, although simulations
on dual-homed fully-meshed network show that our new algorithm finds improvements in approximately
10-12% of the cases. It remains to show how it performs on general networks and how it performs on
expectation.
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Appendix A

Connectivity Fault Management
information requests

A.1 Remote MEP Parameters

Table A.1 explains the parameters of the remote MEP overview showed in Section 3.1, Table 3.1. The
Remote MEP overview was obtained from switch S1 in the Alfa set-up.

Parameter Description Values

Mepid The MEP ID of the remote MEPs. Integer between 1-8191.
Mac Address The MAC address of the remote MEP. A MAC address.
State Indicates whether the MEP is enabled. Enabled (en) or disabled

(dis).
Total Rx CCM Specifies the total number of CCM mes-

sages received.
Integer

Seq Error Specifies the number of CCM sequence
errors.

Integer

Last Seq Num Provides the last sequence number. Integer
Fault Remote MEP fault indicators. All defects currently in ef-

fect for a Remote MEP are
designated with an “X”.

Table A.1: Description of Remote MEP parameters.
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A.2 Information of a Single Remote MEP

Table A.2 shows the output of remote MEP information of a single remote MEP. In this case, the remote
MEP was the MEP wit MEP ID 2 in the Alfa set-up. The information was obtained from switch S1.

+---------------------------- CFM REMOTE MEP INFO -----------------------------+

| Parameter | Value |

+-------------------------------------+----------------------------------------+

| Service | alfa |

| MEPID | 2 |

| Mac Address | AA:BB:CC:DD:EE:03 |

| Service Network | 1 |

| MD Level | 2 |

| Admin State | enabled |

| Operational State | enabled |

| Hold State | enable |

| Time since last state change (ms) | 156490482 |

| CCM Sequence Errors | 0 |

| Total CCM Lost | 0 |

| Total Rx CCM | 1006 |

| CCM Failure Defect | No |

| Port Status Defect | Up |

| Interface Status Defect | Up |

| RDI Error Defect | No |

| DMM Tx Count | 0 |

| DMR Rx Count | 0 |

| DMM Min Delay (us) | 0 |

| DMM Ave Delay (us) | 0 |

| DMM Max Delay (us) | 0 |

| DMM Ave Jitter (us) | 0 |

| LMM Tx Count | 0 |

| LMR Rx Count | 0 |

| LMM Frame Loss Near | 0 |

| LMM Frame Loss Far | 0 |

| LMR Bad Sequence Number | 0 |

| CCM Loss Statistics | Disabled |

| CCM Loss Statistics Wrapped | No |

| CCM Current Loss Statistics Index | 0 |

| CCM Loss Bucket Size (minutes) | 15 |

+-------------------------------------+----------------------------------------+

Table A.2: Output of remote MEP information request for a given, single,
MEP ID.
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A.3 Linktrace Reply Parameters

Parameter Description Values

Ttl Time To Live Integer.
Ttl Idx Time To Live Index. Integer.
Relay Action Indicates how the LTM was handled by

the MEP or MIP.
Not relevant.

Flags Reports two flags in the Linktrace re-
sponses.

Not relevant.

Ingress Port Name of the port on which the LTM
was received.

Port number or aggrega-
tion name.

Ingress Action Reports how a data frame to the LTM
target MAC would be handled at the
ingress port.

Not relevant.

Egress Port Name of the port that is the target
of the LTM, or the port that a data
frame to the LTM target MAC would
be transmitted out when forwarded.

Port number or aggrega-
tion name.

Egress Action Reports how a frame to the LTM tar-
get MAC would be handled as it passes
through the egress port.

Not relevant.

Table A.3: Description of Linktrace Reply Parameters.
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Appendix B

Topology discovery algorithm using
LLDP

As described in Section 4.1, there is a straightforward method to reveal the topology of the network using
the Link Layer Discovery Protocol: crawl through the network, node by node, and at every node ask for
all its neighbours. Pseudo code for this algorithm is shown in Algorithm 3. Because it is only possible
to ask for neighbours of switches that the algorithm has access to, it is assumed that if the algorithm
has no access to a switch S then Neighbours(S) = ∅.

Note that the algorithm does not check if a switch S is already in the node set V but just sets
V ← V ∪ {S}. This is a valid and proper operation since in set theory for an element S and a set S of
switches:

S ∈ S ⇐⇒ S = S ∪ {S},

or in other words; adding an element to set while that element is already in that set does nothing.

input : Starting point/switch S0

output : A graph representing the network

initialize: Set S = {S0}, X = ∅, V = {S0}, E = ∅, G = (V,E).
while S ≠ ∅ do

Pick S ∈ S;
if S /∈X then

foreach v ∈ Neighbours(S) do
V ← V ∪ {S};
E ← E ∪ {(S, v)};
if v /∈X then
S ← S ∪ {v};

end

end
S ← S ∖ {S};
X ←X ∪ {S};

else
S ← S ∖ {S};

end

end
return G = (V,E);

Algorithm 3: Topology discovery with LLDP

Also, for this algorithm the following assumptions are needed:

1. Can connect to all switches and query it for the LLDP neighbours,

2. LLDP must be configured and enabled on all switches (IEEE 802.1AB-2009 standard).
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Appendix C

Proof of inequality

Theorem 4. Let n ≥ 3. Then

n

∑
x=1

n + 1 − x

(
n+1

2
)

log 3
2
(1 −

x

n + 2
) ≤ −1. (C.1)

Proof. We introduce a new variable

y = n + 1 − x.

Using y we can write

n

∑
x=1

n + 1 − x

(
n+1

2
)

log 3
2
(1 −

x

n + 2
) =

1

(
n+1

2
)

n

∑
y=1

y log 3
2
(
y + 1

n + 2
) (C.2)

=
1

(
n+1

2
)

n

∑
y=1

y (log 3
2
(y + 1) − log 3

2
(n + 2)) (C.3)

= − log 3
2
(n + 2) +

1

(
n+1

2
)

n

∑
y=1

y log 3
2
(y + 1) (C.4)

(C.5)

Notice that ∑
n
y=1 y log 3

2
(y + 1) is a right Riemann sum and the function y log3/2(y + 1) is increasing for

y ≥ 1. Therefore the right Riemann sum can be (upper) bounded:

n

∑
y=1

y log 3
2
(y + 1) ≤ ∫

n+1

1
y log 3

2
(y + 1)dy

=
⎡
⎢
⎢
⎢
⎣

(2y2 log(y + 1) − y2 + 2y − 2 log(y + 1))

4 log ( 3
2
)

⎤
⎥
⎥
⎥
⎦

n+1

1

=
2(n + 1) − (n + 1)2 + 2(n + 1)2 log(n + 2) − 2 log(n + 2) − 1

4 log ( 3
2
)

.

We plug this into C.4 and (rigorously) simplify to obtain

− log 3
2
(n + 2) +

1

(
n+1

2
)

n

∑
y=1

y log 3
2
(y + 1) ≤ log 3

2
(n + 2)

+
1

(
n+1

2
)

⎛

⎝

2(n + 1) − (n + 1)2 + 2((n + 1)2 − 1) log(n + 2) − 1

4 log ( 3
2
)

⎞

⎠

=
2 log(n + 2) − n

(n + 1) log ( 9
4
)
.

That means that we have bounded our original sum by

n

∑
x=1

n + 1 − x

(
n+1

2
)

log 3
2
(1 −

x

n + 2
) ≤

2 log(n + 2) − n

(n + 1) log ( 9
4
)
= B(n). (C.6)
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Let B(n) be as in Equation C.6. Then we notice that for small n B(n) ≥ −1 which works against us.
However, when we take n = 50 then

B(50) = −1.01789 . . . ≤ −1.

Moreover,
d

dn
B(n) =

n − 2(n + 2) log(n + 2)

(n + 1)2(n + 2) log(9/4)
≤ 0,

for n ≥ 3. That means that B(n) is descending for n ≥ 3 and thus B(n) ≤ −1 for n ≥ 50. This implies
that for n ≥ 50:

n

∑
x=1

n + 1 − x

(
n+1

2
)

log 3
2
(1 −

x

n + 2
) ≤ B(n) ≤ −1.

All that is left to do is to check the values n ∈ {3, . . . ,49} which can be easily done using a computer.
The values for n ∈ {3, . . . ,49} are in Table C.1 This concludes the proof that for n ≥ 3:

n

∑
x=1

n + 1 − x

(
n+1

2
)

log 3
2
(1 −

x

n + 2
) ≤ −1.
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n Value of the sum

3 -1.07176
4 -1.09272
5 -1.10866
6 -1.12123
7 -1.13141
8 -1.13984
9 -1.14693
10 -1.153
11 -1.15824
12 -1.16282
13 -1.16686
14 -1.17045
15 -1.17366
16 -1.17656
17 -1.17917
18 -1.18156
19 -1.18373
20 -1.18573
21 -1.18757
22 -1.18926
23 -1.19084
24 -1.1923
25 -1.19366
26 -1.19494
27 -1.19613
28 -1.19725
29 -1.1983
30 -1.1993
31 -1.20023
32 -1.20112
33 -1.20196
34 -1.20275
35 -1.20351
36 -1.20422
37 -1.20491
38 -1.20556
39 -1.20618
40 -1.20677
41 -1.20734
42 -1.20788
43 -1.20841
44 -1.20891
45 -1.20939
46 -1.20985
47 -1.21029
48 -1.21072
49 -1.21113

Table C.1: The values of ∑
n
x=1

n+1−x
(
n+1
2
)

log 3
2
(1 − x

n+2
) for n ∈ {3, . . . ,49}.
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Appendix D

Implementation of Post-Process
algorithm in Sage

import time ;
de f STWeight ( ) :

r e turn − l og ( 0 . 0001 ) ;

de f RandomEdgeWeight ( ) :
r e turn − l og (RR. random element ( 0 , 0 . 4 ) ) ;

de f FM(n) :
G = DiGraph (n) ;
G. a d d v e r t i c e s ( [ ’ s ’ , ’ s1 ’ , ’ s2 ’ , ’ t ’ , ’ t1 ’ , ’ t2 ’ ] ) ;
G. add edges ( [ ( ’ s ’ , ’ s1 ’ , STWeight ( ) ) , ( ’ s ’ , ’ s2 ’ , STWeight ( ) ) , ( ’ t1 ’ , ’ t ’ , STWeight ( )

) , ( ’ t2 ’ , ’ t ’ , STWeight ( ) ) , ( ’ s1 ’ , ’ t1 ’ , RandomEdgeWeight ( ) ) , ( ’ s1 ’ , ’ t2 ’ ,
RandomEdgeWeight ( ) ) , ( ’ s2 ’ , ’ t1 ’ , RandomEdgeWeight ( ) ) , ( ’ s2 ’ , ’ t2 ’ ,
RandomEdgeWeight ( ) ) ] ) ;

f o r x in range (n) :
G. add edges ( [ ( ’ s1 ’ , x , RandomEdgeWeight ( ) ) , ( ’ s2 ’ , x , RandomEdgeWeight ( ) ) , (x , ’

t1 ’ , RandomEdgeWeight ( ) ) , (x , ’ t2 ’ , RandomEdgeWeight ( ) ) ] ) ;
f o r y in [ x +1. .n −1 ] :

G. add edges ( [ ( x , y , RandomEdgeWeight ( ) ) , (y , x , RandomEdgeWeight ( ) ) ] ) ;
b = { ’ s ’ : 2 , ’ t ’ : −2 , ’ s1 ’ : 0 , ’ s2 ’ : 0 , ’ t1 ’ : 0 , ’ t2 ’ : 0}
f o r x in range (n) :

b [ x ] = 0 ;
re turn { ’G ’ :G, ’b ’ : b } ;

de f RunAlg (n , displayTime ) :
time1 = time . time ( ) ;
G = DiGraph (n) ;
G. a d d v e r t i c e s ( [ ’ s ’ , ’ s1 ’ , ’ s2 ’ , ’ t ’ , ’ t1 ’ , ’ t2 ’ ] ) ;
G. add edges ( [ ( ’ s ’ , ’ s1 ’ , STWeight ( ) ) , ( ’ s ’ , ’ s2 ’ , STWeight ( ) ) , ( ’ t1 ’ , ’ t ’ , STWeight ( )

) , ( ’ t2 ’ , ’ t ’ , STWeight ( ) ) , ( ’ s1 ’ , ’ t1 ’ , RandomEdgeWeight ( ) ) , ( ’ s1 ’ , ’ t2 ’ ,
RandomEdgeWeight ( ) ) , ( ’ s2 ’ , ’ t1 ’ , RandomEdgeWeight ( ) ) , ( ’ s2 ’ , ’ t2 ’ ,
RandomEdgeWeight ( ) ) ] ) ;

f o r x in range (n) :
G. add edges ( [ ( ’ s1 ’ , x , RandomEdgeWeight ( ) ) , ( ’ s2 ’ , x , RandomEdgeWeight ( ) ) , (x , ’

t1 ’ , RandomEdgeWeight ( ) ) , (x , ’ t2 ’ , RandomEdgeWeight ( ) ) ] ) ;
f o r y in [ x +1. .n −1 ] :

G. add edges ( [ ( x , y , RandomEdgeWeight ( ) ) , (y , x , RandomEdgeWeight ( ) ) ] ) ;
b = { ’ s ’ : 2 , ’ t ’ : −2 , ’ s1 ’ : 0 , ’ s2 ’ : 0 , ’ t1 ’ : 0 , ’ t2 ’ : 0}
f o r x in range (n) :

b [ x ] = 0 ;
time2 = time . time ( ) ;
i f displayTime :

p r i n t ’ Creat ing G took %f seconds . ’ % ( time2−time1 ) ;

time1 = time . time ( ) ;
E = G. edges ( ) ;
M = MixedIntegerLinearProgram ( maximization=False , s o l v e r = ”GLPK” ) ;
f = M. new var iab l e ( nonnegat ive=True , i n t e g e r=True ) ;

M. s e t o b j e c t i v e (sum( f [ x ]* x [ 2 ] f o r x in E) ) ;
f o r x in E:

M. add cons t ra in t ( f [ x ] <= 1) ;
Verz = G. v e r t i c e s ( ) ;
Verz . remove ( ’ s ’ ) ;
Verz . remove ( ’ t ’ ) ;
f o r v in Verz :

Verifying and optimising disjoint paths in ISP networks 65



APPENDIX D. IMPLEMENTATION OF POST-PROCESS ALGORITHM IN SAGE

IncomingEdges = G. incoming edges ( v ) ;
M. add cons t ra in t (sum( f [ e ] f o r e in IncomingEdges ) <= 1) ;

V = G. v e r t i c e s ( ) ;
f o r v in V:

M. add cons t ra in t (sum( f [ e ] f o r e in G. outgo ing edges ( v ) ) − sum( f [ e ] f o r e in G.
incoming edges ( v ) ) == b [ v ] ) ;

M. s e t b i n a r y ( f ) ;
time2 = time . time ( ) ;
i f displayTime :

p r i n t ’ I n i t i a l i z i n g MILP took %f seconds . ’ % ( time2−time1 ) ;

time1 = time . time ( ) ;
M. s o l v e ( o b j e c t i v e o n l y=False )
time2 = time . time ( ) ;
i f displayTime :

p r i n t ’MILP took %f seconds . ’ % ( time2−time1 ) ;
f low = M. g e t v a l u e s ( f ) ;

time1 = time . time ( ) ;
H = DiGraph ( ) ;
G. a d d v e r t i c e s (G. v e r t i c e s ( ) ) ;
f o r e in f low . keys ( ) :

i f f low [ e ] >0:
H. add edge ( e ) ;

#H. show ( )
p1 = H. s h o r t e s t p a t h ( ’ s ’ , ’ t ’ , by weight=True ) ;
p1length = H. s h o r t e s t p a t h l e n g t h ( ’ s ’ , ’ t ’ , by weight=True ) ;
H. d e l e t e v e r t e x ( p1 [ 1 ] ) ;
p2 = H. s h o r t e s t p a t h ( ’ s ’ , ’ t ’ , by weight=True ) ;
p2length = H. s h o r t e s t p a t h l e n g t h ( ’ s ’ , ’ t ’ , by weight=True ) ;
time2 = time . time ( ) ;
i f displayTime :

p r i n t ’ Creat ing H took %f seconds . ’ % ( time2−time1 ) ;

q1 = [ ] ;
q2 = [ ] ;
q1 length = p2length ;
q2 length = p2length ;
time1 = time . time ( ) ;
f o r i in [ 1 . . l en ( p1 ) −3 ] :

Gcopy = G. copy ( ) ;
Gcopy . d e l e t e e d g e ( ( p1 [ i ] , p1 [ i +1]) ) ;
q 1 l a s t p a r t = Gcopy . s h o r t e s t p a t h ( p1 [ i ] , ’ t ’ , by weight = True ) ;
q1new = [ ] ;
f o r j in [ 0 . . i ] :

q1new . append ( p1 [ j ] ) ;
f o r j in [ 1 . . l en ( q 1 l a s t p a r t ) −1 ] :

q1new . append ( q 1 l a s t p a r t [ j ] ) ;
q1newlength = Gcopy . s h o r t e s t p a t h l e n g t h ( p1 [ i ] , ’ t ’ , by weight = True ) + sum(G.

d i s t ance ( p1 [ j ] , p1 [ j +1] , by weight=True ) f o r j in [ 0 . . i −1 ] ) ;
i f q1newlength < p2length :

f o r j in [ 1 . . l en ( q1new ) −2 ] :
i f Gcopy . ha s ve r t ex ( q1new [ j ] ) :

Gcopy . d e l e t e v e r t e x ( q1new [ j ] ) ;
q2newlength = Gcopy . s h o r t e s t p a t h l e n g t h ( ’ s ’ , ’ t ’ , by weight = True ) ;
i f q2newlength < p2length :

q2new = Gcopy . s h o r t e s t p a t h ( ’ s ’ , ’ t ’ , by weight = True ) ;
i f max( q1newlength , q2newlength ) < max( q1length , q2 length ) :

q1 = q1new ;
q2 = q2new ;
q1 length = q1newlength ;
q2 length = q2newlength ;

time2 = time . time ( ) ;
i f displayTime :

p r i n t ’ I t e r a t i n g to f i n d Q1 and Q2 took %f seconds . ’ % ( time2−time1 ) ;
r e turn { ’ P1Length ’ : p1length , ’ P2Length ’ : p2length , ’Q1 ’ : q1 , ’Q2 ’ : q2 , ’ Q1Length ’ :

q1length , ’ Q2Length ’ : q2 length }
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de f Ratio (P1 , P2 , Q1, Q2) :
r e turn 1 − (max(Q1, Q2) − (P1+P2) /2) /(P2−(P1+P2) /2) ;

# k i s number o f s imu la t i on s
# n i s number o f v e r t i c e s other than s , s1 , s2 , t , t1 and t2 .
de f CountAlgIsBetter (n , s imu lat ions , displayTime , boxes ) :

b e t t e r = 0 ;
minimprove = 0 ;
maximprove = 0 ;
averageimprove = 0 ;
boxcount = boxes * [ 0 ] ;
output = {} ;
f o r k in [ 1 . . s imu la t i on s ] :

output = RunAlg (n , displayTime ) ;
i f output [ ’Q1 ’ ] != [ ] :

b e t t e r += 1 ;
newrat io = Ratio ( output [ ’ P1Length ’ ] , output [ ’ P2Length ’ ] , output [ ’ Q1Length ’ ] ,

output [ ’ Q2Length ’ ] ) ;
newrat io index = f l o o r ( boxes*newrat io ) ;
boxcount [ newrat io index ] += 1 ;
i f minimprove == 0 :

minimprove = newrat io ;
maximprove = newrat io ;

e l s e :
i f newrat io < minimprove :

minimprove = newrat io ;
i f newrat io > maximprove :

maximprove = newrat io ;
averageimprove += newrat io ;

averageimprove = averageimprove / b e t t e r ;
r e turn { ’ Better ’ : bet te r , ’Min ’ : minimprove , ’Max ’ : maximprove , ’ Average ’ :

averageimprove , ’ Boxcount ’ : boxcount } ;

b o x i n t e r v a l s = 10 ;
time1 = time . time ( ) ;
Improve = CountAlgIsBetter (5 , 10000 , False , b o x i n t e r v a l s ) ;
time2 = time . time ( ) ;
p r i n t ’ Algorithm took %f seconds ’ % ( time2−time1 )
p r i n t ’Number o f improvements : %i ’ % Improve [ ’ Better ’ ] ;
p r i n t ’ Minimal improvement : %f ’ % Improve [ ’Min ’ ] ;
p r i n t ’ Maximal improvement : %f ’ % Improve [ ’Max ’ ] ;
p r i n t ’ Average improvement : %f ’ % Improve [ ’ Average ’ ] ;
f o r i in range ( b o x i n t e r v a l s ) :

p r i n t ’ In box %i : %i ’ % ( i , Improve [ ’ Boxcount ’ ] [ i ] ) ;

Programming Code D.1: Implementation of Post-Process Algorithm in Sage
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List of Symbols

A A path in a graph, represented by its set of edges.

B A path in a graph, represented by its set of edges.

c(e) The cost of an edge e.

c(P ) The total cost of a path P : the sum of the weights of the edges of P .

D(s, t)G The set of pairs of vertex-disjoint (s, t)-paths in a graph G.

e An edge of a graph.

E(G) or EG The edge set of a graph G.

F A forest graph; a graph consisting of trees.

G A Graph with vertex set V (G) and edge set E(G).

G = (V,E) A Graph with vertex set V and edge set E.

i, j Integers acting as iterators.

k Natural number.

λ Number of Linktraces.

Λn The number of probes needed to recover the network topology on n nodes.

l(P ) The length (amount of edges) of path P .

m Number of edges.

M A set of MEPs.

▶ A MEP; Maintenance domain End Point.

u A MIP; Maintenance domain Intermediate Point.

n Number of vertices.

O Big O notation.

P A path in a graph, represented by its set of edges.

pe The failure probability of an edge e.

ρ(u, v) A probing operation which returns the shortest path between vertices u and v.

s A special vertex of a graph that acts as a source.

S or Si A switch, possibly indexed by a number i.

t A special vertex of a graph that acts as a target.

T A tree graph.

V (G) or VG The vertex set of a graph G.
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List of Abbreviations

CCM Continuity Check Message

DDoS Distributed Denial of Service

DNS Domain Name System

E-LMI Ethernet Local Management Interface

EVC Ethernet Virtual Connection

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

ITU International Telecommunications Union

LAN Local Area Network

LBM Loopback Message

LBR Loopback Reply

LTM Linktrace Message

LTR Linktrace Reply

MA Maintenance Association

MAC Media Access Control

MAID Maintenance Association Identifier

MD Maintenance Domain

MEF Metro Ethernet Forum

MEG Maintenance Entity Group

MEP Maintenance domain End Point

MIP Maintenance domain Intermediate Point

OAM Operations, Administration and Maintenance

OSI Open System Interconnectino

PBB-TE Provider Backbone Bridge - Traffic Engineering

STP Spanning Tree Protocol

VLAN Virtual Local Area Network

WAN Wide Area Network
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